WorldWideScience

Sample records for chandra transmission grating

  1. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight

    CERN Document Server

    Canizares, C R; Dewey, D; Flanagan, K A; Galton, E B; Huenemoerder, D P; Ishibashi, K; Markert, T H; Marshall, H L; McGuirk, M; Schattenburg, M L; Schulz, N S; Smith, H I; Wise, M; Canizares, Claude R.; Davis, John E.; Dewey, Daniel; Flanagan, Kathryn A.; Galton, Eugene B.; Huenemoerder, David P.; Ishibashi, Kazunori; Markert, Thomas H.; Marshall, Herman L.; Guirk, Michael Mc; Schattenburg, Mark L.; Schulz, Norbert S.; Smith, Henry I.; Wise, Michael

    2005-01-01

    Details of the design, fabrication, ground and flight calibration of the High Energy Transmission Grating, HETG, on the Chandra X-ray Observatory are presented after five years of flight experience. Specifics include the theory of phased transmission gratings as applied to the HETG, the Rowland design of the spectrometer, details of the grating fabrication techniques, and the results of ground testing and calibration of the HETG. For nearly six years the HETG has operated essentially as designed, although it has presented some subtle flight calibration effects.

  2. In-Flight Calibration of the Chandra High Energy Transmission Grating Spectrometer

    CERN Document Server

    Marshall, H L; Ishibashi, K; Marshall, Herman L.; Dewey, Daniel; Ishibashi, Kazunori

    2003-01-01

    We present results from in-flight calibration of the High Energy Transmission Grating Spectrometer (HETGS) on the Chandra X-ray Observatory. Basic grating assembly parameters such as orientation and average grating period were measured using emission line sources. These sources were also used to determine the locations of individual CCDs within the flight detector. The line response function (LRF) was modeled in detail using an instrument simulator based on pre-flight measurements of the grating alignments and periods. These LRF predictions agree very well with in-flight observations of sources with narrow emission lines. Using bright continuum sources, we test the consistency of the detector quantum efficiencies by comparing positive orders to negative orders.

  3. TGCat, The Chandra Transmission Grating Catalog and Archive: Systems, Design and Accessibility

    CERN Document Server

    Mitschang, Arik W; Nichols, Joy S

    2010-01-01

    The recently released Chandra Transmission Grating Catalog and Archive, TGCat, presents a fully dynamic on-line catalog allowing users to browse and categorize Chandra gratings observations quickly and easily, generate custom plots of resulting response corrected spectra on-line without the need for special software and to download analysis ready products from multiple observations in one convenient operation. TGCat has been registered as a VO resource with the NVO providing direct access to the catalogs interface. The catalog is supported by a back-end designed to automatically fetch newly public data, process, archive and catalog them, At the same time utilizing an advanced queue system integrated into the archive's MySQL database allowing large processing projects to take advantage of an unlimited number of CPUs across a network for rapid completion. A unique feature of the catalog is that all of the high level functions used to retrieve inputs from the Chandra archive and to generate the final data produc...

  4. Chandra/High Energy Transmission Grating Spectrometer Spectroscopy of the Galactic Black Hole GX 339-4: A Relativistic Iron Emission Line and Evidence for a Seyfert-like Warm Absorber

    NARCIS (Netherlands)

    Miller, J.M.; Raymond, J.; Fabian, A.C.; Homan, J.; Nowak, M.A.; Wijnands, R.A.D.; van der Klis, M.; Belloni, T.; Tomsick, J.A.; Smith, D.M.; Charles, P.A.; Lewin, W.H.G.

    2004-01-01

    We observed the Galactic black hole GX 339-4 with the Chandra High Energy Transmission Grating Spectrometer (HETGS) for 75 ks during the decline of its 2002-2003 outburst. The sensitivity of this observation provides an unprecedented glimpse of a Galactic black hole at about a tenth of the luminosit

  5. Chandra Grating Spectroscopy of Three Hot White Dwarfs

    Science.gov (United States)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2013-01-01

    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region

  6. The Chandra High Energy Transmission Grating Spectrometer probes the dusty warm absorber in the Seyfert 1 galaxy MCG--6-30-15

    CERN Document Server

    Lee, J C; Marshall, H L; Fabian, A C; Morales, R; Schulz, N S; Iwasawa, K

    2001-01-01

    The Chandra HETGS spectra of the Seyfert 1 galaxy MCG--6-30-15 show numerous narrow, unresolved (FWHM 0.48 keV (< 26 A). We attribute previous reports of an apparently highly redshifted O VII edge to the neutral Fe L absorption complex and the O VII resonance series (by transitions higher than He $\\gamma$; He $\\alpha,\\beta,\\gamma$ are also seen at lower energies). The implied dust column density needed to explain the FeI L edge feature agrees with that obtained from earlier reddening studies, which had already concluded that the dust should be associated with the ionized absorber (given the relatively lower observed X-ray absorption by cold gas). Our findings contradict the interpretation of Branduardi-Raymont et al. (2001), based on XMM-Newton RGS spectra, that this spectral region is dominated by highly relativistic soft X-ray line emission originating near the central black hole. Here we review these issues pertaining to the soft X-ray spectral features as addressed by Lee et al., (2001). (Details foun...

  7. Exploiting a Transmission Grating Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  8. Transmission grating stretcher for contrast enhancement of high power lasers.

    Science.gov (United States)

    Tang, Yunxin; Hooker, Chris; Chekhlov, Oleg; Hawkes, Steve; Collier, John; Rajeev, P P

    2014-12-01

    We propose, for the first time, a transmission grating stretcher for high power lasers and demonstrate its superiority over conventional, reflective gold grating stretchers in terms of pulse temporal quality. We show that, compared to a conventional stretcher with the same stretching factor, the transmission-grating based stretcher yields more than an order of magnitude improvement in the contrast pedestal. We have also quantitatively characterized the roughness of the grating surfaces and estimated its impact on the contrast pedestal.

  9. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    Science.gov (United States)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  10. Graphene-ribbon-coupled tunable enhanced transmission through metallic grating

    Science.gov (United States)

    Peng, Yu-Xiang; He, Meng-Dong; Li, Ze-Jun; Wang, Kai-Jun; Li, Shui; Li, Jian-Bo; Liu, Jian-Qiang; Long, Mengqiu; Hu, Wei-Da; Chen, Xiaoshuang

    2017-01-01

    We report the tunable enhanced transmission of light through a hybrid metal-graphene structure, in which a graphene ribbon array is situated over a metallic grating. The graphene ribbon is employed to make the graphene-insulator-metal waveguide of finite length as a Fabry-Perot (F-P) cavity. When the slit of metallic grating is opened at the position with a maximal magnetic field in F-P resonant cavity, the transmission of light through metallic grating is greatly enhanced since the strongly localized magnetic field is effectively coupled to the slit. The transmission spectrum and the enhancement factor can be adjusted by changing geometrical parameters including the width and the length of slit, the width of graphene ribbon and the period of metallic grating. The transmission peaks exhibit a broad tuning range with a small change in the Fermi energy level of graphene. Moreover, the enhancement factor of transmission peak can be manipulated by the Fermi energy level and the carrier mobility of graphene, and an enhancement factor of 154 is obtained. The findings expand our understanding of hybrid metal-graphene plasmons and have potential applications in building active plasmonic devices.

  11. Holographic construction of open structure, dispersion transmission gratings

    NARCIS (Netherlands)

    Dijkstra, J.H.; Lantwaard, L.J.

    1975-01-01

    A method of fabricating free-standing transmission gratings with line densities of the order of 1000 /nm is described. The technique involves a combination of two well-known procedures: application of photoresist and electroplating for the production of fine metal grids, and holographic (interferogr

  12. Optimization of top polymer gratings to improve GaN LEDs light transmission

    Institute of Scientific and Technical Information of China (English)

    Xiaomin Jin; Bei Zhang; Tao Dai; Wei Wei; Xiangning; Guoyi Zhang; Simeon Trieu; Fei Wang

    2008-01-01

    @@ We present a grating model of two-dimensional (2D) rigorous coupled wave analysis (RCWA) to study top diffraction gratings on light-emitting diodes(LEDs). We compare the integrated-transmission of the non-grating,rectangular-grating,and triangular-grating cases for the same grating period of 6μm,and show that the triangular grating has the best performance. For the triangular grating with 6-μmperiod, the LED achieves the highest light transmission at 6-μ gratingbottom width and 2.9-μm grating depth. Compared with the non-grating case, the optimized light transmission improvement is about 74.6%.The simulation agrees with the experimental data of the thin ploymer grating encapsulated flip-chip(FC) GaN-based LEDs for the light extraction improvement.

  13. Unidirectional transmission in non-symmetric gratings containing metallic layers.

    Science.gov (United States)

    Serebryannikov, A E; Ozbay, Ekmel

    2009-08-03

    The mechanism of achieving unidirectional transmission in the gratings, which only contain isotropic dielectric and metallic layers, is suggested and numerically validated. It is shown that significant transmission in one direction and nearly zero transmission in the opposite direction can be obtained in the same intrinsically isotropic gratings as those studied recently in A. E. Serebryannikov and E. Ozbay, Opt. Express 17, 278 (2009), but at a non-zero angle of incidence. The tilting, non-symmetric features of the grating and the presence of a metallic layer with a small positive real part of the index of refraction are the conditions that are necessary for obtaining the unidirectionality. Single- and multibeam operational regimes are demonstrated. The frequency and angle ranges of the unidirectional transmission can be estimated by using the conventional framework based on isofrequency dispersion contours and construction lines that properly take into account the periodic features of the interfaces, but should then be corrected because of the tunneling arising within the adjacent ranges. After proper optimization, this mechanism is expected to become an alternative to that based on the use of anisotropic materials.

  14. Fresnel equations and transmission line analogues for diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, S.

    1995-08-01

    A simple and intuitive formalism is presented to describe diffraction in multi-layered periodic structures. We use the well known results from scalar analysis (wave propagation in homogeneous layered media) and show that they can be generalized rather readily to vector problems such as diffraction analysis. Specifically, we derive: (1) generalized Fresnel equations appropriate for reflection and transmission from an infinitely thick grating, (2) a generalized Airy formula for thin-film to describe reflection and transmission of light through a lamellar grating and (3) a matrix propagation method akin to that used for multi-layer thin film analysis. The results developed here complement the recent work on R-matrix and S-matrix propagation algorithms that have been used in connection with modal and differential grating theories. These algorithms have proven to be numerically stable for calculating diffraction efficiencies from deep groove gratings. The formalism developed here expands upon the earlier literature by providing important details that are hitherto unavailable.

  15. The nature of transmission resonances in plasmonic metallic gratings

    CERN Document Server

    D'Aguanno, G; Bloemer, M J; de Ceglia, D; Vincenti, M A; Alu', A

    2010-01-01

    Using the Fourier modal method (FMM) we report our analysis of the transmission resonances of a plasmonic grating with sub-wavelength period and extremely narrow slits for wavelengths of the incoming, transverse magnetic (TM)-polarized, radiation ranging from 240nm to 1500nm and incident angles from 0 degree to 90 degree. In particular, we study the case of a silver grating placed in vacuo. Consistent with previous studies on the topic, we highlight that the main mechanism for extraordinary transmission is a TM-Fabry-Perot (FP) branch supported by waveguide modes inside each slit. The TM-FP branch may also interact with surface plasmons (SPs) at the air/Ag interface through the reciprocal lattice vectors of the grating, for periods comparable with the incoming wavelength. When the TM-FP branch crosses a SP branch, a band gap is formed along the line of the SP dispersion. The gap has a Fano-Feshbach resonance at the low frequency band edge and a ridge resonance with extremely long lifetime at the high frequenc...

  16. Application of the Transmission Bragg Gratings for Vibration Monitoring

    CERN Document Server

    Tikhonov, E A

    2010-01-01

    It is shown that the optical-electronic system consisted of the transmission Bragg grating, a laser and the intermediate sensitive to the vibrations mirror can detect the vibrations, when touched by them laser beam scan will exceed the angular divergence of the beam. The mathematical model of the sensor of the vibrations presented in the form of Taylor series describes the system response taking into account the operating point, in particular, describes the effect of the doubling of the modulation frequency response relative to the frequency of acting vibrations.

  17. Normal incidence narrowband transmission filtering in zero-contrast gratings

    CERN Document Server

    Cui, Xuan; Du, Yan; Tan, Peng; Shi, Guang; Zhou, Zhongxiang

    2015-01-01

    We report narrowband transmission filtering based on zero-contrast grating (ZCG) reflectors at normal incidence. Computational results show that the filtering is realized through symmetry-protected modes coupling. The guided modes introduced by the slab layer make the filter frequencies flexible to modify. The rectangular structure of the filter allows simple fabrication and integration into optical systems. The quality factor of the filters could exceed 106. Owing to the low refraction index dispersion of the semiconductor and their scale-invariant operations, these filters can be applied in a broad infrared range from near infrared to terahertz wavelengths.

  18. Distributed delay-line interferometer based on a Bragg grating in transmission mode

    CERN Document Server

    Preciado, Miguel A; Shu, Xuewen; Sugden, Kate

    2016-01-01

    A novel approach for a delay line interferometer (DLI) based purely on forward Bragg scattering is proposed. We have numerically and experimentally demonstrated that a Bragg grating can deliver the functionality of a DLI in its transmission mode along a single common interfering optical path, instead of the conventional DLI implementation with two interfering optical paths. As a proof of concept, a fiber Bragg grating has been designed and fabricated, showing the desired functionality in the transmission mode of the Bragg grating. The proposed "Bragg-DLI" approach is applicable to any kind of Bragg grating technology, such as volume Bragg gratings, dielectric mirrors, silicon photonics, and other optical waveguide based Bragg structures.

  19. Study of transmission grating diffraction efficiencies for soft X—ray

    Institute of Scientific and Technical Information of China (English)

    YANGJiamin; CUIMingqi; 等

    1999-01-01

    Tansmission grating spectrometers are extensively used to measure absolute X-ray spectra in a photon-energy range below 1000eV.the transmission grating,as its dispersive element,must be calibrated to obtain its diffraction efficiencies.Calibrations of absolute diffraction efficiencies of the transmission grating at photon energy of 844eV have been caried out on Bejing synchrotron Radiation Facility.With the aid of grating model,all of the grating structure parameters have been determined and the absolute diffraction efficeencies in a photon-energy range below 2000eV have also been calculated and discussed.

  20. Asymmetric transmission of surface plasmon polaritons on planar gratings

    CERN Document Server

    Kuzmiak, Vladimir

    2016-01-01

    We describe a surface structure consisting of a metal-air interface where the metallic part consists of two metallic segments with a periodic modulation of the interface between them. Such a structure possesses a different transmissivity for a surface plasmon polariton incident on it from one side of it than it has for a surface plasmon polariton incident on it from the opposite side. This asymmetric transmission of a surface plasmon polariton is based on the suppression of the zero-order Bragg beam which, for a certain value of the modulation depth, is not transmitted through the structure, while the diffraction efficiencies of the +1 and -1 Bragg beams can be modified by varying the period of grating and/or the angle of incidence. For a certain range of the incidence angle one can observe asymmetry in transmittance for the -1 mode while the +1 mode is completely suppressed. By varying the material and geometrical parameters of the diffractive structure one can control the contrast transmission that characte...

  1. Study of a displacement sensor based on transmission varied-line-space phase grating

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jing; OUYANG Min; SHEN Yan; LIU Da-he

    2008-01-01

    A displacement sensor based on transmission varied-line-space (VLS) phase gratings is proposed.The relationship between the properties of the sensor and the parameters of VLS is discussed.Compared with the displacement sensor manufactured by the reflective VLS grating,this type of sensor contains a grating with simpler structure and high diffraction efficiency.It also has good stability with the change of temperature.

  2. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    Energy Technology Data Exchange (ETDEWEB)

    Santosa, Ignatius Edi [Department of Physics Education, Sanata Dharma University, Paingan Maguwohardjo Depok Sleman, Yogyakarta 55281, Indonesia edi@usd.ac.id (Indonesia)

    2015-04-16

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold.

  3. Transmission Properties of Metallic Grating with Subwavelength Slits in THz Frequency Region

    Directory of Open Access Journals (Sweden)

    Dong Liang

    2007-01-01

    Full Text Available This paper presents a fully experimental and theoretical study on transmission properties of a deep metallic grating with subwavelength slits in THz frequency region by using THz time domain spectroscopy (THz-TDS. The grating exposed to p-polarized incident wave exhibits enhanced nonresonant transmission in the long-wavelength region where the incident wavelength is larger than the grating period. Wood anomalies are observed when the wavelength is comparable to the grating period. Strict theory is given to explain the experimental results and the two are in good agreement. It is proposed that the Wood dips may be considered a criterion and a tool to judge and control the uniformity or fabricating accuracy of the grating period.

  4. Extraordinary Transmission through Metallic Grating with Subwavelength Slits for S-Polarization Illumination

    Institute of Scientific and Technical Information of China (English)

    YUAN Guang-Hui; WANG Pei; ZHANG Dou-Guo; JIAO Xiao-Jin; MIN Chang-Jun; MING Hai

    2007-01-01

    Based on the rigorous coupled-wave analysis algorithm, we have systematically analysed the effect of the geometrical parameters of a dielectric film coated metallic grating with subwavelength slits on extraordinary optical transmission for s-polarization illumination. Results show that the dielectric Glm which sustains a waveguide electromagnetic mode on the top of the metallic lamellar grating can strongly enhance the transmittance, the positions of the transmission peaks are mainly determined by the period of the metallic grating, the thickness and refractive index of the dielectric Glm. This structure shows potential applications in excellent polarizers or polarization-isotropic devices at infrared spectral range by appropriately choosing the geometrical parameters.

  5. Soft x-ray blazed transmission grating spectrometer with high resolving power and extended bandpass

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alexander Robert; Schattenburg, Mark

    2016-04-01

    A number of high priority questions in astrophysics can be addressed by a state-of-the-art soft x-ray grating spectrometer, such as the role of Active Galactic Nuclei in galaxy and star formation, characterization of the Warm-Hot Intergalactic Medium and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, as well as stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (> 1,000 cm2), high resolving power (R = λ/Δλ > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology. Still significantly higher performance can be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission. CAT gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. They are high-efficiency blazed transmission gratings that consist of freestanding, ultra-high aspect-ratio grating bars fabricated from silicon-on-insulator (SOI) wafers using advanced anisotropic dry and wet etch techniques. Blazing is achieved through grazing-incidence reflection off the smooth grating bar sidewalls. The reflection properties of silicon are well matched to the soft x-ray band. Nevertheless, CAT gratings with sidewalls made of higher atomic number elements allow extension of the CAT grating principle to higher energies and larger dispersion angles. We show x-ray data from metal-coated CAT gratings and demonstrate efficient blazing to higher energies and larger blaze angles than possible with silicon alone. We also report on measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing mirror pair from Goddard Space Flight Center and CAT gratings, to be

  6. Study of sandwiched three-port transmission grating with a connection layer under normal incidence

    Science.gov (United States)

    Li, Hongtao; Wang, Bo

    2016-09-01

    A sandwiched three-port transmission grating with a connection layer under normal incidence is shown. The sandwiched dielectric grating can mainly diffract the identical energies in the ±1st orders and the zeroth diffraction order based on optimized grating parameters by employing rigorous coupled-wave analysis (RCWA) for TE and TM polarizations. On account of optimized parameters, efficiencies more than 32.5% in each diffraction order for two polarizations can be gained under normal incidence. A simplified modal method is used to describe the mechanism of beam propagation and analyze diffraction behavior clearly in the grating. Most importantly, diffraction efficiencies numerically obtained by using RCWA can be in agreement with the rough theoretical analysis on account of the simplified modal method. Therefore, the connection-layer-based sandwiched three-port grating is significant for the further practical manufacture.

  7. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Qi, Dong-Xiang, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Science, Jiangnan University, Wuxi 214122 (China)

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  8. Plasmonic band edge effects on the transmission properties of metal gratings

    Directory of Open Access Journals (Sweden)

    D. de Ceglia

    2011-09-01

    Full Text Available We present a detailed analysis of the optical properties of one-dimensional arrays of slits in metal films. Although enhanced transmission windows are dominated by Fabry-Perot cavity modes localized inside the slits, the periodicity introduces surface modes that can either enhance or inhibit light transmission. We thus illustrate the interaction between cavity modes and surface modes in both finite and infinite arrays of slits. In particular we study a grating that clearly separates surface plasmon effects from Wood-Rayleigh anomalies. The periodicity of the grating induces a strong plasmonic band gap that inhibits coupling to the cavity modes for frequencies near the center of the band gap, thereby reducing the transmission of the grating. Strong field localization at the high energy plasmonic band edge enhances coupling to the cavity modes while field localization at the low energy band edge leads to weak cavity coupling and reduced transmission.

  9. Study of transmission grating diffraction efficiencies for soft X-ray

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Tansmission grating spectrometers are extensively used tomeasure absolute X-ray spectra in a photon-energy rangebelow 1000 eV. The transmission grating, as its dispersive element, must be calibrated to obtain its diffraction efficiencies.Calibrations of absolute diffraction efficiencies of the transmissiongrating at photon energy of 844 eV have been carried out onBeijing Synchrotron Radiation Facility. With the aid of gratingmodel, all of the grating structure parameters have been determinedand the absolute diffraction efficiencies in a photon-energy rangebelow 2000 eV have also been calculated and discussed.

  10. Numerical Analysis on Transmission Characteristics of a Bragg Grating Assisted Mismatched Fiber Coupler

    Institute of Scientific and Technical Information of China (English)

    WEI Daoping; JIANG Zhong'ao; ZHAO Yucheng; JIAN Shuisheng

    2000-01-01

    Based on mode-coupled theory, a Bragg grating assisted mismatched fiber coupler is analyzed theoretically. At the same time, a detailed numerical analysis on transmission characteristics of the coupler is carried out when it considers the arcs of two fibers in the coupling region of the coupler or not, and the optimized design on the Bragg grating assisted mismatched fiber coupler for wavelength-division multiplexing/ demultiplexing is proposed.

  11. Quenched Optical Transmission in Ultrathin Subwavelength Plasmonic Gratings

    Science.gov (United States)

    2011-01-01

    column as the slit aperture decreases, while on the contrary the dispersion of the SRSP undergoes a blueshift . (d) The grating with the typical dimensions...redshifts as the columns get closer and closer, while on the contrary the SRSP dispersions manifest a typical blueshift . This fact is a further proof, if

  12. Improvement of the validity of the simplified modal method for designing a subwavelength dielectric transmission grating.

    Science.gov (United States)

    Jing, Xufeng; Zhang, Junchao; Tian, Ying; Jin, Shangzhong

    2014-01-10

    To accurately and easily design the diffraction characteristics of a rectangular transmission grating under the illumination of Littrow mounting, the validity and limitation of the simplified modal method is evaluated by a comparison of diffraction efficiencies predicted by the modal approach to exact results calculated with rigorous coupled-wave analysis. The influence of the grating normalized period, the normalized groove depth, and the fill factor on the accuracy of the modal method is quantitatively determined. More importantly, the reflection effect of two propagating grating modes with the optical thin-film model and the nonsymmetrical Fabry-Perot model is proposed and applied in the modal method to improve the accuracy of the calculated diffraction efficiencies. Generally, it is found that the thin-film model of reflection loss is valid at the smaller normalized period, but the Fabry-Perot model can exactly calculate the reflection loss of grating modes at the larger normalized period. Based on the fact that the validity of the modal approach is determined independently of the incident wavelength, the exact design and analysis of grating diffraction elements can be implemented at different wavelengths by simply scaling the grating parameters. Moreover, the polarization effect of diffraction properties on the limitation of the modal method without and with the reflection loss of grating modes is clearly demonstrated.

  13. High-resolution x-ray studies of an AXAF high-energy transmission grating

    DEFF Research Database (Denmark)

    Abdali, S.; Christensen, Finn Erland; Schnopper, H. W.

    1993-01-01

    A triple axis X-ray diffractometer, designed and built at the Danish Space Research Institute, was used to make a high resolution study of the performance of a 2000 angstroms period, high energy X-ray transmission grating developed at MIT for one of the grating spectrometers on the Advanced X-ray...... Astrophysics Facility. Data was obtained at CuK(alpha )1 (8.048 keV) and, using single reflection asymmetric Si(044) crystals for both the monochromator and analyzer, an angular resolution of 1.5 arcsec FWHM was achieved. The efficiency of the grating in all orders up to the 15th was measured using a 12 k......W rotating anode X-ray generator. These data provided the basis for a modelling of the grating structure....

  14. Microfluidic refractometer with integrated optical fibers and end-facet transmission gratings.

    Science.gov (United States)

    Lei, Lei; Li, Hao; Shi, Jian; Chen, Yong

    2010-02-01

    We demonstrated a microfluidic refractometer with an integrated high resolution transmission grating. This grating was fabricated by UV nanoimprinting on the end facet of a multimode optical fiber which was then placed in the plan of the microfluidic device and perpendicular to a microchannel. On the opposite side of the channel, three cleaved optical fibers were added for the light collection of the zeroth and the +/- first diffraction orders. A white light source was used for illumination and the diffraction beams were analyzed with a minispectrometer. The transmission grating was merged in the sample solution of the channel, providing a refractive index-dependent diffraction efficiency. As expected, the diffraction efficiency of the zeroth and the +/- first diffraction orders are different, both being reliable for the refractive index monitoring. Such a white source and multibeam diffraction analysis also allows monitoring the sample absorption or fluorescence, thereby providing a more accurate determination of the sample refraction index.

  15. IR color separation in transmission through gratings on (110) silicon: FTIR experiment versus theory

    CERN Document Server

    Auslender, Mark

    2012-01-01

    The phenomenon of filtering in zero-diffraction order is studied for transmission through 1D-periodic structures on a silicon wafer. Our study combines FTIR spectrometry in the range from 2.5 to 25 microns, and a rigorous full-vector simulation. The phenomenon exhibits itself as 'bright' and 'dark' bands in the spectra of normal transmission through grating samples, which replace each other quasi-periodically with respect to wave number, at wavelengths smaller than the grating period. The transmission modulation ratio is extremely high for two-side polished samples. Good agreement between the rigorous theory and experiment both in the range of the transmission oscillations and in the region of enhanced absorption is obtained

  16. Manipulation and analysis of atomic and molecular beams using transmission gratings and Fresnel zone plates

    Energy Technology Data Exchange (ETDEWEB)

    Grisenti, R.E.

    2000-06-01

    In this thesis experimental results on the diffraction of rare gas atoms (He, Ne, Ar, Kr) and molecular (D{sub 2}) beams by a 100 nm period transmission grating and on the focusing of a helium atom beam through a Fresnel zone plate have been reported. (orig.)

  17. Chandra High Resolution Spectroscopy of the Burst Spectrum of EXO 0748-67

    NARCIS (Netherlands)

    Telis, G.; Paerels, F.; Audard, M.; Lanz, T.; Cottam, J.; Méndez, R.M.; Bildsten, L.; Chang, P.; Marshall, H.

    2004-01-01

    We have observed EXO0748-67 for approximately 300 ksec with the High Energy Transmission Grating Spectrometer on Chandra. A total of 35 Type I X-ray bursts occurred during our observation, and from these we obtained a composite burst spectrum with high sensitivity in the Fe K band. Along with the sp

  18. Transmission comb of a distributed Bragg reflector induced by two surface dielectric gratings

    CERN Document Server

    Zhao, Xiaobo; Zhang, Yongyou

    2015-01-01

    With transfer matrix theory, we study the transmission of a distributed Bragg reflector (DBR) with two dielectric gratings on top and on the bottom. Owing to the diffraction of the two gratings, the transmission shows a comb-like spectrum which red shifts with increasing the grating period during the forbidden band of the DBR. The number density of the comb peaks increases with increasing the number of the DBR cells, while the ratio of the average full width at half maximum (FWHM) of the transmission peaks in the transmission comb to the corresponding average free spectral range, being about 0.04 and 0.02 for the TE and TM incident waves, is almost invariant. The average FWHM of the TM waves is about half of the TE waves, and both they could be narrower than 0.1 nm. In addition, the transmission comb peaks of the TE and TM waves can be fully separated during certain waveband. We further prove that the transmission comb is robust against the randomness of the heights of the DBR layers, even when a 15\\% randomn...

  19. Transmission and Reflection through $1$D Metallo-Dielectric Gratings of Real Metals under Sub-wavelength Condition

    CERN Document Server

    Rahman, A T M Anishur; Vasilev, Krasimir

    2015-01-01

    Under the sub-wavelength condition ($w<\\lambda/2$), an analytical model of light transmission and reflection through $1$D metallo-dielectric gratings of real metals has been developed. It has been shown that the transmission intensity associated with the Fabry-Perot (FP) resonance of a $1$D metallo-dielectric grating of a real metal decreases with the increasing grating thickness and the dielectric constant of the ridge material. Further, it has also been demonstrated that the intensity of the FP resonance increases with the increasing slit width while it is independent of the grating period ($P$) and the incidence angle (when $P << \\lambda$

  20. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    CERN Document Server

    Henley, D B; Pittard, J M; Stevens, I R; Hamaguchi, K; Gull, T R

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star Eta Carinae, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of Eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggestin...

  1. Transmission Properties of THz Radiation Pulses through Very Deep Zero-Order Metallic Gratings

    Institute of Scientific and Technical Information of China (English)

    XING Qi-Rong; LI Shu-Xin; ZHANG Wei-Li; LANG Li-Ying; MAO Fang-Lin; XU Shi-Xiang; CHAI Lu; WANG Qing-Yue

    2005-01-01

    @@ Very deep zero-order metallic grating structures are processed to study the transmission properties of THz radiation pulses. The experiments have been performed with two samples. The delay of the THz pulses and the corresponding resonantly enhanced transmission spectra through the samples are observed. To explain the extraordinary transmission we have treated the samples as Fabry-Perot resonators through resonant excitation of the coupled surface plasmon polaritons filled in the cavities between the metal slats. The experimental results are in reasonable agreement with the numerical simulation. Our results show that THz-time-domain spectroscopy may be an effective technique for studying the optical properties of various THz microstructured devices.

  2. Transmission spectra of coated phase shifted long-period fiber gratings

    Institute of Scientific and Technical Information of China (English)

    GU Zheng-tian; ZHAO Xiao-yun; ZHANG Jiang-tao

    2009-01-01

    The transmission spectrum of the coated phase-shifted long-period fiber gratings (LPFGs) with single and multiple phase shifts is analyzed by the coupled-mode theory and the transfer matrix method, and the influences of the film parameters on the spectral characteristics are also studied. It is shown that these parameters will affect the LPFG filtering characteristics. The loss peak of transmission spectrum decreases with the increase of film thickness, and the peak position shifts with the film refractive index. Compared with the non-coated phase-shifted LPFG, the coated one has the similar desirable filtering characteristics, and it has a flexile ability to adjust the transmission properties.

  3. Critical-angle x-ray transmission grating spectrometer with extended bandpass and resolving power > 10,000

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Kolodziejczak, Jeffery; Gaskin, Jessica A.; O'Dell, Stephen L.; Bhatia, Ritwik; Schattenburg, Mark L.

    2016-07-01

    A number of high priority subjects in astrophysics can be addressed by a state-of-the-art soft x-ray grating spectrometer, such as the role of Active Galactic Nuclei in galaxy and star formation, characterization of the Warm-Hot Intergalactic Medium and the missing baryon problem, characterization of halos around the Milky Way and nearby galaxies, as well as stellar coronae and surrounding winds and disks. An Explorer-scale, largearea (> 1,000 cm2), high resolving power (R =λ/Δλ > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Still, significantly higher performance can be provided by a CAT grating spectrometer on an X-ray- Surveyor-type mission. CAT gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (lowmass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimalmission resource requirements. They are high-efficiency blazed transmission gratings that consist of freestanding, ultra-high aspect-ratio grating bars fabricated from silicon-on-insulator (SOI) wafers using advanced anisotropic dry and wet etch techniques. Blazing is achieved through grazing-incidence reflection off the smooth grating bar sidewalls. The reflection properties of silicon are well matched to the soft x-ray band, and existing silicon CAT gratings can exceed 30% absolute diffraction efficiency, with clear paths for further improvement. Nevertheless, CAT gratings with sidewalls made of higher atomic number elements allow extension of the CAT grating principle to higher energies and larger dispersion angles, thus enabling higher resolving power at shorter wavelengths. We show x-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition, and demonstrate efficient

  4. High Sensitivity Transmission-Type SPR Sensor by Using Metallic-Dielectric Mixed Gratings

    Institute of Scientific and Technical Information of China (English)

    WU Bin; WANG Qing-Kang

    2008-01-01

    We theoretically investigate transmission-type SPR sensors with novel metallic-dielectric mixed gratings by rigorous coupled-wave analysis (RCWA),compared to the conventional dielectric gratings based structure.It is found that the transmittance efficiency and the full width at half-maximum (FWHM) of the transmission curve can be modulated by increasing or decreasing the metallic part.Therefore,appropriate proportion of metal part will induce enhancement factor of sensor merit.Furthermore,this novel structure will also bring enhancement of resonant angle shift,which can be explained by plasmonic interpretation based on a surface limited increase of interaction area and excitation of localized surface plasmons (LSPs).The proposed configuration has a wide range of potential applications not only as sensor but also other optical devices.

  5. Single-shot calibration of soft x-ray mirrors using a sinusoidal transmission grating.

    Science.gov (United States)

    Shpilman, Z; Ehrlich, Y; Maman, S; Levy, I; Shussman, T; Oren, G; Zakosky Nueberger, I; Hurvitz, G

    2014-11-01

    Calibration of soft x-ray diagnostics is a challenge due to the lack of laboratory-size calibrated sources. An in situ calibration method for newly developed x-ray mirrors, is presented. The x-ray source is produced by laser-matter interaction, and twin transmission gratings which create two identical dispersion lines. The gratings have a sinusoidal transmission function, which produces a highly precise high-orders free spectrum. An x-ray mirror interacts with one of the dispersion lines, and the mirror efficiency curve as a function of wavelength is extracted. Mirror efficiency shows good agreement with the literature, and evidence of water layer may justify the need of in situ calibration.

  6. Characterization of imprinted gratings based on transparent materials by transmission scatterometry

    KAUST Repository

    Pietroy, David

    2013-06-01

    Transmission scatterometry is studied as a characterization tool for gratings nanoimprinted in a resist layer spincoated on the top of a transparent substrate. In this case, the larger part of the incident signal is transmitted which can make the reflection analysis harder. Although the backward reflections in the substrate induce an error which is difficult to correct, results are shown to be in good agreement with SEM measurements and reflection mode scatteromerty. © 2013 Elsevier B.V. All rights reserved.

  7. Transmission grating Validation and Qualification for Mars and Future Planetary exploration Missions

    Science.gov (United States)

    Gallego, P.; Fernández, M.; Guembe, V.; Ramos, G.; González, C.; Prieto, J. A. R.; Canchal, R.; Moral, A.; Pérez, C.; Rull, F.

    2013-09-01

    In the frame of ExoMars 2018 mission (ESARoscosmos collaboration), the Instituto Nacional de Técnica Aeroespacial (INTA) in Spain, has successfully finish validation test plan of the transmission grating, one of the key optical components that forms part of the Spectrometer Unit of the instrument Raman Laser Spectrometrer that will be on board of ExoMars 2018 and that has never being qualified before.

  8. Transmission comb of a distributed Bragg reflector with two surface dielectric gratings

    KAUST Repository

    Zhao, Xiaobo

    2016-02-19

    The transmission behaviour of a distributed Bragg reector (DBR) with surface dielectric gratings on top and bottom is studied. The transmission shows a comb-like spectrum in the DBR band gap, which is explained in the Fano picture. The number density of the transmission peaks increases with increasing number of cells of the DBR, while the ratio of the average full width at half maximum to the corresponding average free spectral range, being only few percent for both transversal electric and magnetic waves, is almost invariant. The transmission peaks can be narrower than 0.1 nm and are fully separated from each other in certain wavebands. We further prove that the transmission combs are robust against randomness in the heights of the DBR layers. Therefore, the proposed structure is a candidate for an ultra-narrow-band multichannel filter or polarizer.

  9. Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings.

    Science.gov (United States)

    Wen, Harold H; Bennett, Eric E; Kopace, Rael; Stein, Ashley F; Pai, Vinay

    2010-06-15

    We describe an x-ray differential phase-contrast imaging method based on two-dimensional transmission gratings that are directly resolved by an x-ray camera. X-ray refraction and diffraction in the sample lead to variations of the positions and amplitudes of the grating fringes on the camera. These effects can be quantified through spatial harmonic analysis. The use of 2D gratings allows differential phase contrast in several directions to be obtained from a single image. When compared to previous grating-based interferometry methods, this approach obviates the need for multiple exposures and separate measurements for different directions and thereby accelerates imaging speed.

  10. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    Science.gov (United States)

    Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star eta Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is > 1.6 stellar radii from the companion star, and that the emitting plasma may be in a non-equilibrium state. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry. Subject headings: X-rays: stars -stars: early-type-stars: individual (q Car)

  11. Critical-angle x-ray transmission grating spectrometer with extended bandpass and resolving power > 10,000

    CERN Document Server

    Heilmann, Ralf K; Kolodziejczak, Jeffery; Gaskin, Jessica A; O'Dell, Stephen L; Bhatia, Ritwik; Schattenburg, Mark L

    2016-01-01

    Several high priority subjects in astrophysics can be addressed by a state-of-the-art soft x-ray grating spectrometer (XGS). An Explorer-scale, large-area (> 1,000 cm2), high resolving power (R > 3,000) XGS is highly feasible based on Critical-Angle Transmission (CAT) gratings, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance can be provided by a CAT XGS on an X-ray-Surveyor-type mission. CAT gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of transmission gratings (low mass, relaxed alignment and temperature requirements, transparent at high energies) with minimal mission resource demands. They are high-efficiency blazed transmission gratings that consist of freestanding, ultra-high aspect-ratio grating bars made from SOI wafers using anisotropic dry and wet etch techniques. Blazing is achieved through reflection off grating bar sidewalls. Silicon is well matched to the soft x-ray band, and...

  12. Simultaneous NuSTAR/Chandra Observations of The Bursting Pulsar GRO J1744-28 During Its Third Reactivation

    DEFF Research Database (Denmark)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.

    2015-01-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to ...

  13. Soft x-ray transmission grating spectrometer for X-ray Surveyor and smaller missions with high resolving power

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alexander; Schattenburg, Mark; Kolodziejczak, jeffery; Gaskin, Jessica; O'Dell, Stephen L.

    2017-01-01

    A number of high priority subjects in astrophysics are addressed by a state-of-the-art soft x-ray grating spectrometer, e.g. the role of Active Galactic Nuclei in galaxy and star formation, characterization of the WHIM and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, and stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (A > 1,000 cm2), high resolving power (R > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance could be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission (A > 4,000 cm2, R > 5,000). CAT gratings combine advantages of blazed reflection gratings (high efficiency, use of higher orders) with those of transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. Blazing is achieved through grazing-incidence reflection off the smooth silicon grating bar sidewalls. Silicon is well matched to the soft x-ray band, and 30% absolute diffraction efficiency has been acheived with clear paths for further improvement. CAT gratings with sidewalls made of high-Z elements allow extension of blazing to higher energies and larger dispersion angles, enabling higher resolving power at shorter wavelengths. X-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. Measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing optic from GSFC and CAT gratings, taken at the MSFC Stray Light Facility, have demonstrated resolving power > 10,000. Thus currently fabricated CAT gratings are compatible

  14. Dispersion compensation of fiber Bragg gratings in 3100 km high speed optical fiber transmission system

    Institute of Scientific and Technical Information of China (English)

    Li PEI; Tigang NING; Fengping YAN; Xiaowei DONG; Zhongwei TAN; Yan LIU; Shuisheng JIAN

    2009-01-01

    By optimizing the fabrication process of the chirped optical fiber Bragg grating (CFBG), some key problems of CFBG are solved, such as fabrication repetition, temperature stability, group delay ripple (GDR), fluctuation of the reflection spectrum, polarization mode dispersion (PMD), interaction of cascaded CFBG, and so on. The CFBG we fabricated can attain a temperature coefficient less than 0.0005 nm/℃, and the smoothed GDR and the fluctuation of the reflection spectrum are smaller than 10ps and 0.5dB, respec-tively. The PMD of each CFBG is less than 1 ps and the dispersion of each grating is larger than -2600 ps/(nm·km). With dispersion compensated by the CFBGs we fabricated, a 13×10 Gbit/s 3100 km ultra long G.652 fiber transmission system is successfully imple-mented without electric regenerator. The bit error rate (BER) of the system is below 10-4 without forward error correction (FEC); when FEC is added, the BER is below 10-12. The power penalty of the carrier-suppressed return-to-zero (CSRZ) code transmission system is only 2.5 dB.

  15. Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra

    CERN Document Server

    Thomas, Jens; Becker, Ria G; Marshall, Graham D; Withford, Michael J; Tünnermann, Andreas; Nolte, Stefan; Steel, M J

    2010-01-01

    The spectral characteristics of a fiber Bragg grating (FBG) with a transversely inhomogeneous refractive index profile, differs con- siderably from that of a transversely uniform one. Transmission spectra of inhomogeneous and asymmetric FBGs that have been inscribed with focused ultrashort pulses with the so-called point-by-point technique are investigated. The cladding mode resonances of such FBGs can span a full octave in the spectrum and are very pronounced (deeper than 20dB). Using a coupled-mode approach, we compute the strength of resonant coupling and find that coupling into cladding modes of higher azimuthal order is very sensitive to the position of the modification in the core. Exploiting these properties allows precise control of such reflections and may lead to many new sensing applications.

  16. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    Directory of Open Access Journals (Sweden)

    Mehdi Shadaram

    2010-10-01

    Full Text Available In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  17. Design of Time-Resolved Shifted Dual Transmission Grating Spectrometer for the X-Ray Spectrum Diagnostics

    Science.gov (United States)

    Wang, Baoqing; Yi, Tao; Wang, Chuanke; Zhu, Xiaoli; Li, Tingshuai; Li, Jin; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-07-01

    A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion. supported by National Natural Science Foundation of China (Nos. 11405158 and 11435011) and Development Foundation of China Academy of Engineering Physics (Nos. 2014B0102011 and 2014B0102012)

  18. Simultaneous NuSTAR/Chandra Observations of The Bursting Pulsar GRO J1744-28 During Its Third Reactivation

    DEFF Research Database (Denmark)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.;

    2015-01-01

    keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains......We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60...

  19. Chandra LETGS and XMM-Newton observations of NGC 4593

    CERN Document Server

    Steenbrugge, K C; Blustin, A J; Branduardi-Raymont, G; Sako, M; Behar, E; Kahn, S M; Paerels, F B S; Walter, R

    2003-01-01

    In this paper, we analyze spectra of the Seyfert 1 galaxy NGC 4593 obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS), the Reflection Grating Spectrometer (RGS) and the European Photon Imaging Camera's (EPIC) onboard of XMM-Newton. The two observations were separated by ~7 months. In the LETGS spectrum we detect a highly ionized warm absorber corresponding to an ionization state of 400x10^{-9} W m, visible as a depression at 10-18 AA. This depression is formed by multiple weak Fe and Ne lines. A much smaller column density was found for the lowly ionized warm absorber, corresponding to xi = 3x10^{-9} W m. However, an intermediate ionization warm absorber is not detected. For the RGS data the ionization state is hard to constrain. The EPIC results show a narrow Fe Kalpha line.

  20. Performance of a 10-Gbit/s Transmission System over 1500 km G.652 Fibre Compensated by Cascaded Narrow-Band Chirped Fibre Bragg Gratings

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; CHEN Yong; TAN Zhong-Wei; CAO Ji-Hong; ZHENG Kai; NING Ti-Gang; CHEN Ting; DONG Xiao-Wei; JIAN Shui-Sheng

    2005-01-01

    @@ We obtain the error-free transmission of an 8 × 10 Gb/s signal over a 1500km G.652 fibre by means of significantly improving the quality of narrow-band chirped fibre Bragg gratings (FBGs). Asymmetric apodization is one of the powerful measures to improve the quality of gratings. Wavelength-dependent transmission performance is also observed. The experimental results indicate that the total in-band local dispersion deviation of the cascaded gratings in each channel could be a good indicator of the performance degradation tendency at different operating wavelengths, which further reveals the potential of local dispersion deviation as a performance evaluating indicator of chirped FBGs.

  1. Transmission-type SPR sensor based on coupling of surface plasmons to radiation modes using a dielectric grating

    Institute of Scientific and Technical Information of China (English)

    Changkui HU; Deming LIU

    2009-01-01

    A transmission-type surface plasmon resonance (SPR) sensor is presented. In the transmission-type SPR structure, surface plasmon waves are outcoupled to radia-tion modes by the use of dielectric grating on a thin-film layer of Ag. Compared with the traditional reflection-type SPR sensor, the new method provides larger detectable range, which might be useful to investigate thick targets such as in cell analysis. Theoretical simulations show that the structures provide high transmission efficiency for surface plasmon resonance and the devices present extre-mely linear sensing characteristics. Furthermore, it is found that the transmission efficiency and the refractive index detection sensitivity of the SPR sensor can be improved by the use of a lower refractive index glass prism.

  2. Transmissive grating-reflective mirror-based fiber optic accelerometer for stable signal acquisition in industrial applications

    Science.gov (United States)

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-05-01

    This paper discusses an applicable fiber-optic accelerometer composed of a transmissive grating panel, a reflection mirror, and two optical fibers with a separation of quarter grating pitch as transceivers that monitor the low-frequency accelerations of civil engineering structures. This sensor structure brings together the advantages of both a simple sensor structure, which leads to simplified cable design by 50% in comparison with the conventional transmission-type fiber optic accelerometer, and a stable reflected signals acquisition with repeatability in comparison to the researched grating-reflection type fiber optic accelerometer. The vibrating displacement and sinusoidal acceleration measured from the proposed fiber optic sensor demonstrated good agreement with those of a commercial laser displacement sensor and a MEMS accelerometer without electromagnetic interference. The developed fiber optic accelerometer can be used in frequency ranges below 4.0 Hz with a margin of error that is less than 5% and a high sensitivity of 5.06 rad/(m/s)2.

  3. Theoretical analysis of transmission characteristics for all fiber, multi-cavity Fabry-Perot filters based on fiber Bragg gratings

    Institute of Scientific and Technical Information of China (English)

    XU OU; LU ShaoHua; DONG XiaoWei; LI Bin; NING TiGang; JIAN ShuiSheng

    2008-01-01

    The characteristics of transmission spectra for the all fiber, multi-cavity FabryPerot (FP) configuration based on fiber Bragg gratings (FBG) are theoretically analyzed and modeled. The general transmission matrix function for the structure with any number of cavities is derived, and explicit expression of the power trans-mission coefficient for symmetrical two-cavity FP is presented. The general condi-tions for flat-top single resonant peak at the central wavelength in FBG stop band are derived and verified in the numerical simulation section. The transmission peaks of single-cavity and two-cavity FP structures are compared and discussed, and results show that compared to the single-cavity FP, flatness of the top and steepness at the edge of transmission peak can be improved by introducing one more cavity. The resonant transmission peak properties of two-cavity structure are investigated in detail for various values of cavity length and FBGs with different reflection characteristics, and the design guidelines for transmission-type filters are presented. The results show that the steepness of peak slope can be improved by increase of FBG reflectivities, and these kinds of filters can be used as nar-row-band single-channel selectors and multi-channel wavelength de-multiplexing by properly choosing the length of cavities and reflectivities of FBGs.

  4. Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions

    Science.gov (United States)

    Günther, Hans M.; Bautz, Marshall W.; Heilmann, Ralf K.; Huenemoerder, David P.; Marshall, Herman L.; Nowak, Michael A.; Schulz, Norbert S.

    2016-07-01

    We study a critical angle transmission (CAT) grating spectrograph that delivers a spectral resolution significantly above any X-ray spectrograph ever own. This new technology will allow us to resolve kinematic components in absorption and emission lines of galactic and extragalactic matter down to unprecedented dispersion levels. We perform ray-trace simulations to characterize the performance of the spectrograph in the context of an X-ray Surveyor or Arcus like layout (two mission concepts currently under study). Our newly developed ray-trace code is a tool suite to simulate the performance of X-ray observatories. The simulator code is written in Python, because the use of a high-level scripting language allows modifications of the simulated instrument design in very few lines of code. This is especially important in the early phase of mission development, when the performances of different configurations are contrasted. To reduce the run-time and allow for simulations of a few million photons in a few minutes on a desktop computer, the simulator code uses tabulated input (from theoretical models or laboratory measurements of samples) for grating efficiencies and mirror reflectivities. We find that the grating facet alignment tolerances to maintain at least 90% of resolving power that the spectrometer has with perfect alignment are (i) translation parallel to the optical axis below 0.5 mm, (ii) rotation around the optical axis or the groove direction below a few arcminutes, and (iii) constancy of the grating period to 1:105. Translations along and rotations around the remaining axes can be significantly larger than this without impacting the performance.

  5. Influence of 4,4’-azobis (4-cyanopentanoic acid in Transmission and Reflection Gratings Stored in a PVA/AA Photopolymer

    Directory of Open Access Journals (Sweden)

    Elena Fernandez

    2016-03-01

    Full Text Available Holographic transmission gratings with a spatial frequency of 2658 lines/mm and reflection gratings with a spatial frequency of 4553 lines/mm were stored in a polyvinyl alcohol (PVA/acrylamide (AA based photopolymer. This material can reach diffraction efficiencies close to 100% for spatial frequencies about 1000 lines/mm. However, for higher spatial frequencies, the diffraction efficiency decreases considerably as the spatial frequency increases. To enhance the material response at high spatial frequencies, a chain transfer agent, the 4,4’-azobis (4-cyanopentanoic acid, ACPA, is added to the composition of the material. Different concentrations of ACPA are incorporated into the main composition of the photopolymer to find the concentration value that provides the highest diffraction efficiency. Moreover, the refractive index modulation and the optical thickness of the transmission and reflection gratings were obtained, evaluated and compared to procure more information about the influence of the ACPA on them.

  6. Fabrication and characterization of free-standing, high-line-density transmission gratings for the vacuum UV to soft X-ray range

    NARCIS (Netherlands)

    Goh, S.J.; Bastiaens, H.J.M.; Vratzov, B.; Huang, Q.; Bijkerk, F.; Boller, K-J.

    2015-01-01

    We present state-of-the-art high resolution transmission gratings, applicable for spectroscopy in the vacuum ultraviolet (VUV) and the soft X-ray (SRX) wavelength range, fabricated with a novel process using ultraviolet based nano imprint lithography (UV-NIL). Free-standing, high-line-density gratin

  7. Enhancement and Inhibition of Transmission from metal gratings: Engineering the Spectral Response

    CERN Document Server

    de Ceglia, D; Scalora, M; Akozbek, N; Bloemer, M J

    2010-01-01

    We present a systematic analysis of the optical properties of slit arrays in metal films. An exhaustive investigation of geometrical and dispersive properties reveals the resonance features of these structures, including the role of surface waves and their relationship with features in the transmission spectrum. Although enhanced transmission windows are significantly dominated by the longitudinal resonances localized inside the slits, the periodicity introduces transverse resonances that can either enhance or inhibit light transmission. We thus illustrate the intriguing interaction regime between longitudinal and transverse resonances, where the two modes hybridize leading to the formation of a photonic band gap spectrum.

  8. Upscaling of Helmholtz Equation Originating in Transmission through Metallic Gratings in Metamaterials.

    Science.gov (United States)

    Mahato, Hari Shankar

    2016-01-01

    We investigate the transmission properties of a metallic layer with narrow slits. We consider (time-harmonic) Maxwell's equations in the H-parallel case with a fixed incident wavelength. We denote η > 0 as the typical size of the complex structure and obtain the effective equations by letting η → 0. For metallic permittivities with negative real part, plasmonic waves can be excited on the surfaces of the slits. For the waves to be in resonance with the height of the metallic layer, the corresponding results can be perfect transmission through the layer.

  9. Upscaling of Helmholtz Equation Originating in Transmission through Metallic Gratings in Metamaterials

    Science.gov (United States)

    2016-01-01

    We investigate the transmission properties of a metallic layer with narrow slits. We consider (time-harmonic) Maxwell's equations in the H-parallel case with a fixed incident wavelength. We denote η > 0 as the typical size of the complex structure and obtain the effective equations by letting η → 0. For metallic permittivities with negative real part, plasmonic waves can be excited on the surfaces of the slits. For the waves to be in resonance with the height of the metallic layer, the corresponding results can be perfect transmission through the layer. PMID:27738650

  10. 15 Years of Chandra Observations of Capella

    Science.gov (United States)

    Kashyap, Vinay

    2014-11-01

    Capella is the strongest coronal line source accessible to Chandra. It has been cumulatively observed with gratings for over 1.2 Ms. The accumulated spectrum represents astrophysical ground truth for atomic physics calculations that is unprecedented in quality. We analyze co-added spectra to generate a comprehensive list of detectable lines and their locations, spanning two orders of magnitude in photon energy. We compare the locations of identifiable lines with locations from atomic databases ATOMDB and Chianti and characterize the uncertainties in the databases. The full line lists and comparisons will be made available at the Dataverse at http://dx.doi.org/10.7910/DVN/27084 This work is supported by Chandra grant AR0-11001X and NASA Contract NAS8-03060 to the Chandra X-Ray Center.

  11. The First Chandra Field

    OpenAIRE

    Weisskopf, Martin C.; Aldcroft, Thomas L.; Cameron, Robert A.; Gandhi, Poshak; Foellmi, Cédric; Elsner, Ronald F.; Patel, Sandeep K.; Wu, Kinwah; O'Dell, Stephen L.

    2005-01-01

    Before the official first-light images, the Chandra X-Ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ``Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Sou...

  12. The Reusable Load Cell with Protection Applied for Online Monitoring of Overhead Transmission Lines Based on Fiber Bragg Grating.

    Science.gov (United States)

    Ma, Guoming; Mao, Naiqiang; Li, Yabo; Jiang, Jun; Zhou, Hongyang; Li, Chengrong

    2016-06-21

    Heavy ice coating of high-voltage overhead transmission lines may lead to conductor breakage and tower collapse causing the unexpected interrupt of power supply. The optical load cell applied in ice monitoring systems is immune to electromagnetic interference and has no need of a power supply on site. Therefore, it has become a hot research topic in China and other countries. In this paper, to solve the problem of eccentric load in measurement, we adopt the shearing structure with additional grooves to improve the strain distribution and acquire good repeatability. Then, the fiber Bragg grating (FBG) with a permanent weldable package are mounted onto the front/rear groove of the elastic element by spot welding, the direction deviation of FBGs is 90° from each other to achieve temperature compensation without an extra FBG. After that, protection parts are designed to guarantee high sensitivity for a light load condition and industrial safety under a heavy load up to 65 kN. The results of tension experiments indicate that the sensitivity and resolution of the load cell is 0.1285 pm/N and 7.782 N in the conventional measuring range (0-10 kN). Heavy load tension experiments prove that the protection structure works and the sensitivity and resolution are not changed after several high load (65 kN) cycles. In addition, the experiment shows that the resolution of the sensor is 87.79 N in the large load range, allowing the parameter to be used in heavy icing monitoring.

  13. Temporal characterization of short-pulse third-harmonic generation in an atomic gas by a transmission-grating Michelson interferometer.

    Science.gov (United States)

    Papadogiannis, N A; Nersisyan, G; Goulielmakis, E; Rakitzis, T P; Hertz, E; Charalambidis, D; Tsakiris, G D; Witte, K

    2002-09-01

    By use of a transmission-grating-based Michelson interferometer, second-order interferometric as well as intensity autocorrelation traces of the third harmonic of a Ti:sapphire 50-fs laser beam produced in Ar have been measured. The duration of the harmonic is found to be that expected from lowest-order perturbation theory. At this wavelength, the performance of the interferometer with respect to pulse-front distortion and dispersion is found to be satisfactory. This result is a first step toward the use of the interferometer for the temporal characterization of higher harmonics or harmonic superposition forming attosecond pulse trains.

  14. Interstellar X-ray Absorption Spectroscopy of Oxygen, Neon, and Iron with the Chandra LETGS Spectrum of X0614+091

    CERN Document Server

    Paerels, F B S; Van der Meer, R L J; Kaastra, J S; Kuulkers, E; Den Boggende, A J F; Predehl, P; Drake, J J; Kahn, S M; Savin, D W; McLaughlin, B M; Paerels, Frits; Drake, Jeremy J.; Kahn, Steven M.; Savin, Daniel W.; Laughlin, Brendan M. Mc

    2000-01-01

    We find resolved interstellar O K, Ne K, and Fe L absorption spectra in the Chandra Low Energy Transmission Grating Spectrometer spectrum of the low mass X-ray binary X0614+091. We measure the column densities in O and Ne, and find direct spectroscopic constraints on the chemical state of the interstellar O. These measurements probably probe a low-density line of sight through the Galaxy and we discuss the results in the context of our knowledge of the properties of interstellar matter in regions between the spiral arms.

  15. Characteristics of the transmission spectrum of the long period fiber gratings based on the coupling of core mode to the higher order cladding modes

    Institute of Scientific and Technical Information of China (English)

    Zijia Zhang(张自嘉); Wenkang Shi(施文康)

    2003-01-01

    The characteristics of the transmission spectrum of the Long-period fiber gratings (LPFGs) based on thecoupling of core mode to a higher order cladding mode (HE mode) are investigated using the coupled modetheory. This kind of LPFGs is different from that based on the coupling of core mode to a lower ordercladding mode because of the effect of the coupling of core mode to EH cladding mode. When the claddingmode order is higher, the coupling coefficients of core mode to HE and EH cladding modes are comparableand both of the propagation constants of HE and EH cladding modes approach, so the spectrum has anadditional loss peak. The bandwidth of LPFG based on the coupling of core mode to different claddingmode differs greatly. With the change of the mode orders from lower to higher, the transmission spectrumchanges from narrow to wide and more narrow.

  16. Chandra X-Ray Observatory Image of Crab Nebula

    Science.gov (United States)

    1999-01-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  17. Comparison of contrast-to-noise ratios of transmission and dark-field signal in grating-based X-ray imaging for healthy murine lung tissue

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Felix [Ludwig Maximilians-Univ. Hospital Munich (Germany). Inst. for Clinical Radiology; Schleede, Simone; Hahn, Dieter [Technische Univ. Muenchen, Garching (Germany). Dept. of Physics and Inst. of Medical Engineering] [and others

    2013-10-01

    Purpose: An experimental comparison of the contrast-to-noise ratio (CNR) between transmission and dark-field signals in grating-based X-ray imaging for ex-vivo murine lung tissue. Materials and Methods: Lungs from three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Background noise of transmission and dark-field signal was quantified by measuring the standard deviation in a region of interest (ROI) placed in a homogeneous area outside the specimen. Image contrast was quantified by measuring the signal range in rectangular ROIs placed in central and peripheral lung parenchyma. The relative contrast gain (RCG) of dark-field over transmission images was calculated as CNRDF / CNRT. Results: In all images, there was a trend for contrast-to-noise ratios of dark-field images (CNRDF) to be higher than for transmission images (CNRT) for all ROIs (median 61 vs. 38, p = 0.10), but the difference was statistically significant only for peripheral ROIs (61 vs. 32, p = 0.03). Median RCG was >1 for all ROIs (1.84). RCG values were significantly smaller for central ROIs than for peripheral ROIs (1.34 vs. 2.43, p = 0.03). Conclusion: The contrast-to-noise ratio of dark-field images compares more favorably to the contrast-to-noise ratio of transmission images for peripheral lung regions as compared to central regions. For any specific specimen, a calculation of the RCG allows comparing which X-ray modality (dark-field or transmission imaging) produces better contrast-to-noise characteristics in a well-defined ROI. (orig.)

  18. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    Science.gov (United States)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  19. Design and Operation of a Frequency Doubled Nd:YAG Thomson Scattering System with Transmission Grating ICCD Spectrometer

    Science.gov (United States)

    Schoenbeck, N. L.; Dowd, A. S.; Fonck, R. J.; Schlossberg, D. J.; Winz, G. R.

    2012-10-01

    A novel Thomson scattering system has been deployed on the Pegasus Toroidal Experiment. It provides a relatively low-cost, simplified design. Scattering is achieved using a 7 ns, 2 J frequency doubled Nd:YAG laser operating at 532 nm. The laser focuses to ˜3 mm diameter within the plasma via a 7 m beam-line. The beam-line contains cameras as beam finders and remotely adjustable mirrors for shot-to-shot alignment. A custom multi-element lens collects scattered photons from 15 cm 40%) image intensified CCD (ICCD) camera. Three spectrometers provide a total of 24 channels. Two interchangeable gratings exist to cover low (Te = 10--100 eV) and high (Te = 0.10--1 keV) electron temperature regimes on Pegasus. The spectrometer is optimized for ne from mid-10^18 to mid-10^19 m-3. The signal-to-noise expected is ˜0.5 of an equivalent system using Nd:YAG at 1064 nm and avalanche photodiode detectors.

  20. Chandra Publication Statistics

    CERN Document Server

    Rots, Arnold H; Becker, Glenn

    2011-01-01

    In this study we develop and propose publication metrics, based on an analysis of data from the Chandra bibliographic database, that are more meaningful and less sensitive to observatory-specific characteristics than the traditional metrics. They fall in three main categories: speed of publication; fraction of observing time published; and archival usage. Citation of results is a fourth category, but lends itself less well to definite statements. For Chandra, the median time from observation to publication is 2.36 years; after about 7 years 90% of the observing time is published; and the total annual publication output of the mission is 60-70% of the cumulative observing time available, assuming a two year lag between data retrieval and publication.

  1. Ten Years of Chandra

    Science.gov (United States)

    Weisskopf, Martin C.

    2009-01-01

    We celebrated the 10-th anniversary of the Launch of the Chandra X-ray Observatory on July 13, 2009. During these 10 years data from this Great Observatory have had a profound impact on 21st century astrophysics. With its unrivaled capability to produce sub-arcsecond images, the Observatory has enabled astronomers to make new discoveries in topics as diverse as comets and cosmology. We shall review some of the highlights, discuss the current status, and future plans.

  2. The Chandra Bibliography Database

    Science.gov (United States)

    Rots, A. H.; Winkelman, S. L.; Paltani, S.; Blecksmith, S. E.; Bright, J. D.

    2004-07-01

    Early in the mission, the Chandra Data Archive started the development of a bibliography database, tracking publications in refereed journals and on-line conference proceedings that are based on Chandra observations, allowing our users to link directly to articles in the ADS from our archive, and to link to the relevant data in the archive from the ADS entries. Subsequently, we have been working closely with the ADS and other data centers, in the context of the ADEC-ITWG, on standardizing the literature-data linking. We have also extended our bibliography database to include all Chandra-related articles and we are also keeping track of the number of citations of each paper. Obviously, in addition to providing valuable services to our users, this database allows us to extract a wide variety of statistical information. The project comprises five components: the bibliography database-proper, a maintenance database, an interactive maintenance tool, a user browsing interface, and a web services component for exchanging information with the ADS. All of these elements are nearly mission-independent and we intend make the package as a whole available for use by other data centers. The capabilities thus provided represent support for an essential component of the Virtual Observatory.

  3. Galaxy Clusters with Chandra

    CERN Document Server

    Forman, W; Markevitch, M L; Vikhlinin, A A; Churazov, E

    2002-01-01

    We discuss Chandra results related to 1) cluster mergers and cold fronts and 2) interactions between relativistic plasma and hot cluster atmospheres. We describe the properties of cold fronts using NGC1404 in the Fornax cluster and A3667 as examples. We discuss multiple surface brightness discontinuities in the cooling flow cluster ZW3146. We review the supersonic merger underway in CL0657. Finally, we summarize the interaction between plasma bubbles produced by AGN and hot gas using M87 and NGC507 as examples.

  4. Lunar Prospecting With Chandra

    Science.gov (United States)

    2003-09-01

    Observations of the bright side of the Moon with NASA's Chandra X-ray Observatory have detected oxygen, magnesium, aluminum and silicon over a large area of the lunar surface. The abundance and distribution of those elements will help to determine how the Moon was formed. "We see X-rays from these elements directly, independent of assumptions about the mineralogy and other complications," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., at a press conference at the "Four Years with Chandra" symposium in Huntsville, Alabama. "We have Moon samples from the six widely-space Apollo landing sites, but remote sensing with Chandra can cover a much wider area," continued Drake. "It's the next best thing to being there, and it's very fast and cost-effective." The lunar X-rays are caused by fluorescence, a process similar to the way that light is produced in fluorescent lamps. Solar X-rays bombard the surface of the Moon, knock electrons out of the inner parts of the atoms, putting them in a highly unstable state. Almost immediately, other electrons rush to fill the gaps, and in the process convert their energy into the fluorescent X-rays seen by Chandra. According to the currently popular "giant impact" theory for the formation of the Moon, a body about the size of Mars collided with the Earth about 4.5 billion years ago. This impact flung molten debris from the mantle of both the Earth and the impactor into orbit around the Earth. Over the course of tens of millions of years, the debris stuck together to form the Moon. By measuring the amounts of aluminum and other elements over a wide area of the Moon and comparing them to the Earth's mantle, Drake and his colleagues plan to help test the giant impact hypothesis. "One early result," quipped Drake, "is that there is no evidence for large amounts of calcium, so cheese is not a major constituent of the Moon." Illustration of Earth's Geocorona Illustration of Earth's Geocorona The same

  5. Chandra Discovers Cosmic Cannonball

    Science.gov (United States)

    2007-11-01

    One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are

  6. New Results from Chandra

    CERN Document Server

    Forman, W; Jones, C; Vikhlinin, A A; Churazov, E

    2001-01-01

    We discuss two themes from Chandra observations of galaxies and clusters. First, we describe the effects of radio-emitting plasmas or ``bubbles'', inflated by active galactic nuclei, on the hot X-ray emitting gaseous atmospheres in galaxies and clusters. We describe the interaction of the ``bubbles'' and the X-ray emitting gas as the buoyant bubbles rise through the hot gas. Second, we describe sharp, edge-like surface brightness structures in clusters. Chandra observations show that these features are not shock fronts as was originally thought, but ``cold fronts'', most likely the boundaries of the remaining cores of merger components. Finally, we present recent observations of M86 and NGC507 which show similar sharp features around galaxies. For M86, the sharp edge is the boundary between the galaxy's X-ray corona and the Virgo cluster gas. The structures around NGC507, the central galaxy in a group, could be relics of galaxy formation or may reflect the motion of NGC507 in the larger potential of the group...

  7. The Chandra Source Catalog

    CERN Document Server

    Evans, Ian N; Glotfelty, Kenny J; Anderson, Craig S; Bonaventura, Nina R; Chen, Judy C; Davis, John E; Doe, Stephen M; Evans, Janet D; Fabbiano, Giuseppina; Galle, Elizabeth C; Gibbs, Danny G; Grier, John D; Hain, Roger M; Hall, Diane M; Harbo, Peter N; Xiangqun,; He,; Houck, John C; Karovska, Margarita; Kashyap, Vinay L; Lauer, Jennifer; McCollough, Michael L; McDowell, Jonathan C; Miller, Joseph B; Mitschang, Arik W; Morgan, Douglas L; Mossman, Amy E; Nichols, Joy S; Nowak, Michael A; Plummer, David A; Refsdal, Brian L; Rots, Arnold H; Siemiginowska, Aneta; Sundheim, Beth A; Tibbetts, Michael S; Van Stone, David W; Winkelman, Sherry L; Zografou, Panagoula

    2010-01-01

    The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public ACIS imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents <~ 30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to ...

  8. Chandra Finds Oxygen and Neon Ring in Ashes of Exploded Star

    Science.gov (United States)

    2000-01-01

    NASA's Chandra X-ray Observatory has revealed an expanding ring-like structure of oxygen and neon that was hurled into space by the explosion of a massive star. The image of E0102-72 provides unprecedented details about the creation and dispersal of heavy elements necessary to form planets like Earth. The results were reported by Professor Claude Canizares of the Massachusetts Institute of Technology (MIT), Cambridge, at the 195th national meeting of the American Astronomical Society in Atlanta, Ga. Drs. Kathryn Flanagan, David Davis, and John Houck of MIT collaborated with Canizares in this investigation. E0102-72 is the remnant of a supernova explosion located in our neighbor galaxy, the Small Magellanic Cloud, nearly 200,000 light years away. It was created by the explosion of a star that was more than ten times as massive as our Sun. We are seeing the aftermath of the explosion a thousand or more years after the outburst. Shock waves are heating gas to temperatures of nearly 10 million degrees, so it glows with X-rays that are detected by Chandra's instruments. By using the High Energy Transmission Grating Spectrometer (HETG), astronomers were able to pinpoint the distribution of each chemical element individually and measure the velocities of different parts of the expanding ring. They also show the shock wave in a kind of "freeze-frame," revealing the progressive heating of the stellar matter as it plows into the surrounding gas. This is the first time such detailed X-ray information has ever been obtained for a supernova remnant, and should provide critical clues to the nature of supernovas. The grating spectrometer, which was built by an MIT team led by Canizares, spreads the X-rays according to their wavelength, giving distinct images of the object at specific wavelengths characteristic of each chemical element. Small wavelength shifts caused by the Doppler effect are used to measure the expansion velocities of each element independently. "We've been

  9. Chandra Observes Cosmic Traffic Pile-Up In Energetic Quasar Jet

    Science.gov (United States)

    2000-11-01

    produced in gamma rays, a question that researchers are unable to resolve with current telescopes. The energy emitted from the jet in 3C273 probably comes from gas that falls toward a supermassive black hole at the center of the quasar, but is redirected by strong electromagnetic fields into a collimated jet. While the black hole itself is not observed directly, scientists can discern properties of the black hole by studying the jet. The formation of the jet from the matter that falls into the black hole is a process that remains poorly understood. The quasar 3C273 is no stranger to making astronomical news. Discovered in the 1960s, 3C273 was one of the first objects to be recognized a "quasi-stellar" object, due to its incredible optical and radio brightness, but perplexing properties. Only after careful consideration did astronomers determine that 3C273 and others of its ilk were not nearby stars, but instead incredibly powerful objects billions of light years away. The Chandra observation of 3C273 was made with both the Low Energy Transmission Grating (LETG) and the High Energy Transmission Grating (HETG), in conjunction with the High Resolution Camera (HRC) and the Advanced CCD Imaging Spectrometer (ACIS). In addition to Dr. Marshall, the team of researchers includes J.J. Drake, A. Fruscione, J. Grimes, D. Harris, M. Juda, R. Kraft, S.S. Murray, D. Pease, A. Siemiginowska, S. Vrtilek, and B.J. Wargelin (Harvard-Smithsonian Center for Astrophysics), P.M. Ogle (MIT), and S. Mathur (Ohio State University.) The HRC was built for NASA by the Smithsonian Astrophysical Observatory. The HETG and ACIS instruments were built for NASA by the Massachusetts Institute of Technology, Cambridge, MA, and Pennsylvania State University, University Park. The LETG was built by the Space Research Organization of the Netherlands and the Max Plank Institute. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime

  10. Simultaneous NuSTAR/Chandra Observations of the Bursting Pulsar GRO J1744-28 during Its Third Reactivation

    Science.gov (United States)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.; Tomsick, J. A.; Tennant, A.; Finger, M. H.; Fürst, F.; Pottschmidt, K.; Bhalerao, V.; Boggs, S. E.; Boirin, L.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Degenaar, N.; Fabian, A. C.; Gandhi, P.; Göğüş, E.; Hailey, C. J.; Harrison, F. A.; Kennea, J. A.; Miller, J. M.; Stern, D.; Zhang, W. W.

    2015-05-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 × 107 cm, which translates to a surface dipole field B ≈ 9 × 1010 G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe xxv and Fe xxvi emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  11. SIMULTANEOUS NuSTAR/CHANDRA OBSERVATIONS OF THE BURSTING PULSAR GRO J1744-28 DURING ITS THIRD REACTIVATION

    Energy Technology Data Exchange (ETDEWEB)

    Younes, G.; Finger, M. H. [Universities Space Research Association, 6767 Old Madison Pike, Suite 450, Huntsville, AL 35806 (United States); Kouveliotou, C.; Tennant, A. [Astrophysics Office, ZP 12, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Grefenstette, B. W.; Fürst, F. [Cahill Center for Astrophysics, 1216 East California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Tomsick, J. A.; Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Pottschmidt, K. [Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Bhalerao, V. [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India); Boirin, L. [Observatoire Astronomique de Strasbourg, 11 Rue de l' Université, F-67000 Strasbourg (France); Chakrabarty, D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Degenaar, N. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Gandhi, P. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); and others

    2015-05-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)–Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5–70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 × 10{sup 7} cm, which translates to a surface dipole field B ≈ 9 × 10{sup 10} G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe xxv and Fe xxvi emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  12. Curved VPH gratings for novel spectrographs

    Science.gov (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  13. Recent observation of Nova SMC 2016 with X-ray grating

    Science.gov (United States)

    Orio, M.; Rauch, Thomas; Zemko, Polina; Behar, Ehud

    2017-01-01

    Nova SMC 2016 (see ATel #9621, #9733) was observed again with the Chandra Low Transmission Grating (LETG) coupled with the High Resolution Camera (HRC-S; see ATel #9810 for the previous exposure) on 2017 January 4 for 28160 s. An average count rate of 11.55+-0.02 counts/s was measured (average of both +1 and -1 orders), although the count rate during the exposure had large oscillations, with variations by up to 45%. The spectrum of the source can be approximately fit with a static white dwarf atmospheric model with a higher effective temperature than in November (ATel #9810), about 750,000 K. Deep absorption features of carbon and nitrogen are measure, blue-shifted by about 2100 km/s.

  14. The Chandra HelpDesk

    Science.gov (United States)

    Galle, Elizabeth C.

    2008-03-01

    The Chandra X-ray Center (CXC) HelpDesk has answered hundreds of user questions over the course of the Chandra mission, ranging from basic syntax errors to advanced analysis questions. This talk gives an introduction to the HelpDesk system and staff, presents a sample of recent HelpDesk requests, and discusses how user-submitted questions improve the software and documentation.

  15. X-ray emission line spectroscopy of cataclysmic variables. II. Temperatures and densities from line ratios in the Chandra HETG band

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, E. M.; Shipley, H. V. [Department of Physics and Astronomy, University of Texas-San Antonio, San Antonio, TX 78249 (United States); Rana, V. R. [Space Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Barrett, P. E. [US Naval Observatory, Washington, DC 20392-5420 (United States); Singh, K. P., E-mail: eric.schlegel@utsa.edu, E-mail: vrana@srl.caltech.edu, E-mail: barrett.paul@usno.navy.mil, E-mail: singh@tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai (India)

    2014-12-10

    We summarize the results of a line-by-line fitting analysis of the available spectra obtained using the Chandra High-Energy Transmission Grating. We confirm the existence of broad ionization and electron temperature ranges and high number densities in cataclysmic variables (CVs) of all subtypes. Temperatures range from ∼0.4 keV to ∼5-10 keV or more with a broad range detected in any given CV. In other words, single-temperature models do not describe the line emission. Number densities also cover a broad range, from 10{sup 12} to >10{sup 16} cm{sup –3}. We demonstrate that much of the plasma is in a nonequilibrium state; the Fe emission, however, may arise from plasma in the ionization equilibrium.

  16. The High Resolution X-ray Spectrum of SS 433 using the Chandra HETGS

    CERN Document Server

    Marshall, H L; Schulz, N S; Marshall, Herman L.; Canizares, Claude R.; Schulz, Norbert S.

    2001-01-01

    We present observations of SS 433 using the Chandra High Energy Transmission Grating Spectrometer. Many emission lines of highly ionized elements are detected with the relativistic blue and red Doppler shifts. The lines are measurably broadened to 1700 km/s (FWHM) and the widths do not depend significantly on the characteristic emission temperature, suggesting that the emission occurs in a freely expanding region of constant collimation with opening angle of 1.23 +/- 0.06 deg. The blue shifts of lines from low temperature gas are the same as those of high temperature gas within our uncertainties, again indicating that the hottest gas we observe to emit emission lines is already at terminal velocity. Fits to the emission line fluxes give a range of temperatures in the jet from 5e6 to 1e8 K. We derive the emission measure as a function of temperature for a four component model that fits the line flux data. Using the density sensitive Si XIII triplet, the characteristic electron density is 1e14 cm^{-3}, where th...

  17. The X-ray Spectrum of the Rapid Burster using the Chandra HETGS

    CERN Document Server

    Marshall, H L; Fox, D; Miller, J M; Guerriero, R; Morgan, E; Van der Klis, M; Bildsten, L; Dotani, T; Lewin, W H G

    2001-01-01

    We present observations of the Rapid Burster (RB, also known as MXB 1730-335) using the Chandra High Energy Transmission Grating Spectrometer. The average interval between type II (accretion) bursts was about 40 s. There was one type I (thermonuclear flash) burst and about 20 "mini-bursts" which are probably type II bursts whose peak flux is 10-40% of the average peak flux of the other type II bursts. The time averaged spectra of the type II bursts are well fit by a blackbody with a temperature of kT = 1.6 keV, a radius of 8.9 km for a distance of 8.6 kpc, and an interstellar column density of 1.7e22 per sq. cm. No narrow emission or absorption lines were clearly detected. The 3 sigma upper limits to the equivalent widths of any features are < 10 eV in the 1.1-7.0 keV band and as small as 1.5 eV near 1.7 keV. We suggest that Comptonization destroys absorption features such as the resonance line of Fe XXVI.

  18. X-Ray Spectroscopy of diffuse Galactic Interstellar Matter with Chandra

    Science.gov (United States)

    Schulz, Norbert S.; Paerels, Frits

    One of the expectations with the advent of the High Energy Transmission Grating (HETG) spectrometer onboard the Chandra X-ray Observatory was to measure precise photoelectric edges of major cosmic elements such as O, Ne, Mg, Si, S, Ar, Ca, and Fe. Early studies revealed complex absorption structures around the O K, Fe L, and Ne K edges which were identified with absorption from the various phases of the interstellar medium and which could place limits on ionization fractions in these phases. The dust content in interstellar matter as well as, for example, the fraction of how much oxygen is locked into dust are issues of importance and here resolved X-ray edges can determine significant limits. I will review predictions made by cross-sections and depletion factors and compare with current observations specifically with respect to silicon absorption in the interstellar medium. Dust grain models and in conjunction with laboratory measurements are now used to improve current interstellar X-ray absorption models.

  19. A Chandra HETG Observation of the Quasar H 1821+643 and Its Surrounding Cluster

    CERN Document Server

    Fang, T; Lee, J C; Marshall, H L; Bryan, G L; Canizares, C R

    2001-01-01

    We present the high-resolution X-ray spectrum of the low-redshift quasar H 1821+643 and its surrounding hot cluster observed with the Chandra High Energy Transmission Grating Spectrometer (HETGS). An iron emission line attributed to the quasar at ~6.43 keV (rest frame) is clearly resolved, with an equivalent width of ~100 eV. Although we cannot rule out contributions to the line from a putative torus, the diskline model provides an acceptable fit to this iron line. We also detect a weak emission feature at ~6.9 keV (rest frame). We suggest that both lines could originate in an accretion disk comprised of a highly ionized optically thin atmosphere sitting atop a mostly neutral disk. We search for absorption features from a warm/hot component of the intergalactic medium along the ~1.5Gpc/h line of sight to the quasar. No absorption features are detected at or above the 3 sigma level while a total of six OVI intervening absorption systems have been detected with HST and FUSE. Based on the lack of OVII and OVIII ...

  20. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    Science.gov (United States)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  1. The Chandra Galactic Bulge Survey

    NARCIS (Netherlands)

    Hynes, Robert I.; Jonker, P.G.; Bassa, C. G.; Dieball, A.; Greiss, S.; Maccarone, T. J.; Nelemans, G.; Steeghs, D.; Torres, M. A. P.; Britt, C. T.; Clem, J. L.; Gossen, L.; Grindlay, J. E.; Groot, P.J.; Kuiper, L.; Kuulkers, E.; Mendez, M.; Mikles, V. J.; Ratti, E. M.; Rea, N.; van Haaften, L.; Wijnands, R.; in't Zand, J. J. M.

    2011-01-01

    The Chandra Galactic Bulge Survey (CGBS) is a shallow but wide survey of two approximately 6x1 degree strips of the Galactic Bulge about a degree above and below the plane. The survey by design targets regions where extinction and crowding are manageable and optical counterparts are accessible to de

  2. The Chandra Galactic Bulge Survey

    NARCIS (Netherlands)

    Hynes, Robert I.; Jonker, P. G.; Bassa, C. G.; Nelemans, G.; Steeghs, D.; Torres, M. A. P.; Maccarone, T. J.; Greiss, S.; Clem, J.; Dieball, A.; Mikles, V. J.; Britt, C. T.; Gossen, L.; Collazzi, A. C.; Wijnands, R.; In't Zand, J. J. M.; Mendez, M.; Rea, N.; Kuulkers, E.; Ratti, E. M.; van Haaften, L. M.; Heinke, C.; Ozel, F.; Groot, P. J.; Verbunt, F.

    2012-01-01

    The Chandra Galactic Bulge Survey (GBS) is a shallow but wide survey of two approximately 6x1 degree strips of the Galactic Bulge about a degree above and below the plane. The survey by design targets regions where extinction and crowding are manageable and optical counterparts are accessible to det

  3. Theoretical analysis on x-ray cylindrical grating interferometer

    CERN Document Server

    Cong, Wenxiang; Wang, Ge

    2015-01-01

    Grating interferometer is a state of art x-ray imaging approach, which can simultaneously acquire information of x-ray attenuation, phase shift, and small angle scattering. This approach is very sensitive to micro-structural variation and offers superior contrast resolution for biological soft tissues. The present grating interferometer often uses flat gratings, with serious limitations in the field of view and the flux of photons. The use of curved gratings allows perpendicular incidence of x-rays on the gratings, and gives higher visibility over a larger field of view than a conventional interferometer with flat gratings. In the study, we present a rigorous theoretical analysis of the self-imaging of curved transmission gratings based on Rayleigh-Sommerfeld diffraction. Numerical simulations have demonstrated the self-imaging phenomenon of cylindrical grating interferometer. The theoretical results are in agreement with the results of numerical simulations.

  4. CIAO: Chandra's data analysis system

    Science.gov (United States)

    Fruscione, Antonella; McDowell, Jonathan C.; Allen, Glenn E.; Brickhouse, Nancy S.; Burke, Douglas J.; Davis, John E.; Durham, Nick; Elvis, Martin; Galle, Elizabeth C.; Harris, Daniel E.; Huenemoerder, David P.; Houck, John C.; Ishibashi, Bish; Karovska, Margarita; Nicastro, Fabrizio; Noble, Michael S.; Nowak, Michael A.; Primini, Frank A.; Siemiginowska, Aneta; Smith, Randall K.; Wise, Michael

    2006-06-01

    The CIAO (Chandra Interactive Analysis of Observations) software package was first released in 1999 following the launch of the Chandra X-ray Observatory and is used by astronomers across the world to analyze Chandra data as well as data from other telescopes. From the earliest design discussions, CIAO was planned as a general-purpose scientific data analysis system optimized for X-ray astronomy, and consists mainly of command line tools (allowing easy pipelining and scripting) with a parameter-based interface layered on a flexible data manipulation I/O library. The same code is used for the standard Chandra archive pipeline, allowing users to recalibrate their data in a consistent way. We will discuss the lessons learned from the first six years of the software's evolution. Our initial approach to documentation evolved to concentrate on recipe-based "threads" which have proved very successful. A multi-dimensional abstract approach to data analysis has allowed new capabilities to be added while retaining existing interfaces. A key requirement for our community was interoperability with other data analysis systems, leading us to adopt standard file formats and an architecture which was as robust as possible to the input of foreign data files, as well as re-using a number of external libraries. We support users who are comfortable with coding themselves via a flexible user scripting paradigm, while the availability of tightly constrained pipeline programs are of benefit to less computationally-advanced users. As with other analysis systems, we have found that infrastructure maintenance and re-engineering is a necessary and significant ongoing effort and needs to be planned in to any long-lived astronomy software.

  5. Fiber-bragg grating-loop ringdown method and apparatus

    Science.gov (United States)

    Wang, Chuji

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  6. Chandra Independently Determines Hubble Constant

    Science.gov (United States)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  7. Sampled phase-shift fiber Bragg gratings

    Institute of Scientific and Technical Information of China (English)

    Xu Wang(王旭); Chongxiu Yu(余重秀); Zhihui Yu(于志辉); Qiang Wu(吴强)

    2004-01-01

    A phase-shift fiber Bragg grating (FBG) with sampling is proposed to generate a multi-channel bandpass filter in the background of multi-channel stopbands. The sampled noire fiber gratings are analyzed by Fourier transform theory first, and then simulation and experiment are performed, the results show that transmission peaks are opened in every reflective channel, the spectrum shape of every channel is identical.It can be used to fabricate multi-wavelength distributed feedback (DFB) fiber laser.

  8. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    Science.gov (United States)

    2000-11-01

    profiles have been observed for over one hundred years. "When you see a P Cygni profile, you immediately know the object you are observing is producing a powerful outflow," Brandt says. Chandra is the first X-ray observatory capable of capturing data of sufficiently high resolution to reveal an X-ray P Cygni profile. Brandt and Schulz say their discovery occurred because they were able to use Chandra continuously for one-third of a day to observe Circinus X-1, plus its signal in X rays is generally very bright, partly because it is relatively nearby in our own Galaxy. P Cygni lines at ultraviolet or optical wavelengths had not been previously seen from Circinus X-1 because a large amount of dust in the galactic plane lies between Earth and this system and this dust is an efficient absorber of ultraviolet and optical light. However, the energetic X rays created by Circinus X-1 could easily penetrate through the obscuring dust and gas--similar to the way medical X-rays on Earth can penetrate through people's bodies. "We were hoping to detect some kind of X-ray line emission from the accreting neutron star in Circinus X-1, but it caught us totally by surprise to observe a complex emission structure like a P Cygni profile in high-energy X rays." schulz says. "This detection clearly marks a new area in X-ray astrophysics, where we will be able to study dynamical structures in the universe like we currently do at ultraviolet or optical wavelengths." Brandt and Schulz used two of Chandra's instruments, known together as the High-Energy Transmission Grating Spectrometer (HETGS), to detect the X rays and produce a high-resolution X-ray spectrum of Circinus X-1. This spectrum is analogous to the rainbow we can see at optical wavelengths. "Chandra's X-ray spectrum is 50 times more detailed than previous X-ray observatories could obtain," Schulz says. First, the super-fine transmission gratings acted like a prism to separate the X-rays into discrete energy bands. Then, the Advanced

  9. The complex circumnuclear environment of the broad-line radio galaxy 3C 390.3 revealed by Chandra HETG

    CERN Document Server

    Tombesi, F; Kallman, T; Reynolds, C S; Mushotzky, R F; Braito, V; Behar, E; Leutenegger, M A; Cappi, M

    2016-01-01

    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high energy transmission grating (HETG) spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range between E = 700-1000 eV associated with ionized Fe L transitions (Fe XVII-XX). An emission line at the energy of E=6.4 keV consistent with the Fe K\\alpha is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT=0.5+/-0.1 keV; (ii) a warm absorber with ionization parameter log\\xi=2.3+/-0.5 erg s^{-1} cm, column density logN_H=20.7+/-0.1 cm^{-2}, and outflow velocity of v_{out}<150 km s^{-1}; (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad ...

  10. Chandra Detection of the First X-ray Forest along the Line of Sight To Mkn 421

    CERN Document Server

    Nicastro, F; Elvis, M; Drake, J; Fiore, F; Fang, T; Fruscione, A; Krongold, Y; Marshall, H; Williams, R; Nicastro, Fabrizio; Mathur, Smita; Elvis, Martin; Drake, Jeremy; Fiore, Fabrizio; Fang, Taotao; Fruscione, Antonella; Krongold, Yair; Marshall, Herman; Williams, Rik

    2005-01-01

    We present the first >=3.5 sigma (conservative) or >=5.8 sigma (sum of lines significance) detection of two Warm-Hot Intergalactic Medium (WHIM) filaments at z>0, which we find along the line of sight to the blazar Mkn 421. These systems are detected through highly ionized resonant metal absorption in high quality Chandra-ACIS and -HRC Low Energy Transmission Grating (LETG) spectra of Mkn 421, obtained following our two Target of Opportunity requests during two outburst phases. The two intervening WHIM systems that we detect, have OVII and NVII columns of N(OVII)=(1.0 +/- 0.3) x 1e15 cm-2} N(NVII)=(0.8 +/- 0.4) x 1e15 cm-2, and N(OVII)=(0.7 +/- 0.3) x 1e15 cm-2, N(NVII)=(1.4 +/- 0.5) x 1e15 cm-2 respectively. From the detected number of WHIM filaments along this line of sight we can estimate the number of OVII filaments per unit redshift with columns larger than 7e14 cm-2, dP(OVII)/dz(N(OVII)>=7e14) = 67^{+88}_{-43}, consistent, within the large 1-sigma errors, with the hydrodynamical simulation predictions o...

  11. Resolving the Composite Fe K-alpha Emission Line in the Galactic Black Hole Cygnus X-1 with Chandra

    CERN Document Server

    Miller, J M; Wijnands, R; Remillard, R A; Wojdowski, P S; Schulz, N S; Matteo, T D; Marshall, H L; Canizares, C R; Pooley, D; Lewin, W H G

    2002-01-01

    We observed the Galactic black hole Cygnus X-1 with the Chandra High Energy Transmission Grating Spectrometer for 30 kiloseconds on 4 January, 2001. The source was in an intermediate state, with a flux that was approximately twice that commonly observed in its persistent low/hard state. Our best-fit model for the X-ray spectrum includes narrow Gaussian emission line (E = 6.415 +/- 0.007 keV, FWHM = 80 (+28, -19) eV, W = 16 (+3, -2) eV) and broad line (E = 5.82 (+0.06, -0.07) keV, FWHM = 1.9 (+0.5, -0.3) keV, W = 140 (+70, -40) eV) components, and a smeared edge at 7.3 +/- 0.2 keV (tau ~ 1.0). The broad line profile is not as strongly skewed as those observed in some Seyfert galaxies. We interpret these features in terms of an accretion disk with irradiation of the inner disk producing a broad Fe K-alpha emission line and edge, and irradiation of the outer disk producing a narrow Fe K-alpha emission line. The broad line is likely shaped predominantly by Doppler shifts and gravitational effects, and to a lesser...

  12. Maximising the mileage from the Chandra podcasts

    Science.gov (United States)

    Arcand, K. K.; Watzke, M.

    2008-06-01

    NASA's Chandra X-ray Observatory captures X-ray images and measures spectra of many highenergy cosmic phenomena. There is a constant challenge to devise new and appropriate means to bring these potentially esoteric science results and concepts in a digestible way to the public. One of the ideas to address this challenge became the Chandra podcast.

  13. Investigation into the design and diffraction efficiency of shifted dual transmission grating%基于移位双光栅色散元件的X射线谱仪研制∗

    Institute of Scientific and Technical Information of China (English)

    易涛; 王传珂; 杨进文; 朱效立; 谢常青; 刘慎业

    2016-01-01

    In inertial confined fusion (ICF) experiments, the temporal evolution of X-ray spectrum can provide important diagnostic information such as electron temperature and density on laser-plasma interaction. Accurate diagnostic requires a wide range of X-ray spectrum from several hundred eV to kilo eV to be measured with high temporal resolution. For traditional single grating spectrometer coupled with streak cameras, the limited recording length of streak cameras severely restricts measured X-ray spectral range in one laser shot. Here we design a shifted dual transmission grating (SDTG) spectrometer for laser-produced plasma X-ray diagnostics in ICF experiments which can provide wide-range X-ray spectrum measurement from 100 eV to 5 keV with high temporal and spectral resolution. This SDTG spectrometer comprises two X-ray gratings: one with high line density and the other with low line density. The high line density grating is used to measure X-ray spectrum from 1000 eV to 5000 eV and the low line density grating measures X-ray spectrum from 100 eV to 1000 eV respectively. These two kinds of X-ray gratings are arranged in a plane with their centers shifted by a certain distance. A shifted double slit component is designed according to the spatial positions of the two gratings and set in front of the photocathode in the streak camera to ensure that two sets of X-ray spectra by two shifted gratings are projected on the photocathode without overlapping. This novel SDTG-based X-ray spectrometer can take the most of recording panel space, offering a path to realize a high resolution and broad spectral ranges in diagnosing soft X-rays. In this paper, the design method and the technical data of the SDTG-based X-ray spectrometer are given. The SDTG-based X-ray spectrometer is integrated, debugged and used to measure X-ray pulse at SG-III prototype facility located in Laser Fusion Research Center of Chinese Academy of Engineering Physics. The time integral results are captured

  14. Contemporaneous Chandra HETG and Suzaku X-ray observations of NGC 4051

    Science.gov (United States)

    Lobban, A. P.; Reeves, J. N.; Miller, L.; Turner, T. J.; Braito, V.; Kraemer, S. B.; Crenshaw, D. M.

    2011-07-01

    We present the results of a deep 300 ks Chandra High Energy Transmission Grating (HETG) observation of the highly variable narrow-line Seyfert Type 1 galaxy NGC 4051. The HETG spectrum reveals 28 significant soft X-ray ionized lines in either emission or absorption; primarily originating from H-like and He-like K-shell transitions of O, Ne, Mg and Si (including higher order lines and strong forbidden emission lines from O VII and Ne IX) plus high-ionization L-shell transitions from Fe XVII to Fe XXII and lower ionization inner-shell lines (e.g. O VI). Modelling the data with XSTAR requires four distinct ionization zones for the gas, all outflowing with velocities log ξ= 4.1+0.2-0.1; vout˜-0.02c) which potentially may have a significant effect on the host galaxy environment via feedback. Finally, we also simultaneously model the broad-band 2008 XIS+HXD (Hard X-ray Detector) Suzaku data with archival Suzaku data from 2005 when the source was observed to have entered an extended period of low flux in an attempt to analyse the cause of the long-term spectral variability. We find that we can account for this by allowing for large variations in the normalization of the intrinsic power-law component which may be interpreted as being due to significant changes in the covering fraction of a Compton-thick partial-coverer obscuring the central continuum emission.

  15. CHANDRA LETGS spectroscopy of ionized absorbers: The quasar MR 2251-178

    Science.gov (United States)

    Ramírez, J. M.; Komossa, S.; Burwitz, V.; Mathur, S.

    2008-04-01

    We analyze the Chandra Low Energy Transmission Grating Spectrometer (LETGS) observation of the quasar MR 2251-178. The warm absorber of MR 2251-178 is well described by a hydrogen column density of ≈ 2×10(21) cm(-2) , an ionization parameter log(xi) ≈ 0.6, and a global best-fit outflow velocity of ≈ -1100 km s(-1) . We find in the spectrum evidence of narrow absorption lines. The K_alpha and K_beta transitions of C VI and N VI ions display an outflow with (at least three) components traveling at ≈ -600, -2000 and -3000 km s(-1) . We measure a (0.1-2) keV flux of 2.58_{-0.04} (+0.03) ×10(-11) erg s cm(-2) s(-1) , and a (2-10) keV flux of 1.64_{-0.05} (+0.05) × 10(-11) erg s cm(-2) s(-1) . This flux implies that the nuclear source of MR 2251-178 is in a relatively low state. We did not find evidence for an extra cold material in the line of sight, that would be associated to the giant [O III] emission region surrounding the nucleus of MR 2251-178. If present, we can set an upper limit of ≈ 1.2×10(20) cm(-2) . The X-ray spectrum does not appear to show evidence for dusty material, though an upper limit in the neutral carbon and oxygen column densities can only be set to N_{CI} ≈ 2×10(19) cm(-2) and N_{OI} ≈ 9×10(19) cm(-2) , respectively.

  16. Chandra Observations of Starburst Galaxies

    Science.gov (United States)

    Prestwich, Andrea; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We present early X-ray results from Chandra for two starburst galaxies, M82 and NGC3256, obtained using AXAF CCD Imaging Spectrometer (ACIS-I) and the HRC. For M82 the arcsecond spatial resolution enables us to separate the point source component from the extended emission for the first time. Astrometry reveals that most of the X-ray sources are not coincident with the family of compact radio sources believed to be Super Nova Remnants (SNRs). In addition, based on three epoch Chandra observations, several of the X-ray sources are clearly variable indicating that they are binaries. When we deconvolve the extended and point source components detected in the hard X-ray band, we find that 50 percent arises from the extended component. This fact, together with its morphology, constrains the various models proposed to explain the hard X-ray emission. For NGC3256 we resolve two closely separated nuclei. These new data support a pure starburst origin for the total X-ray emission rather than a composite AGN/starburst, thereby making NGC3256 one of the most X-ray luminous starburst galaxies known.

  17. Deep Medium-Band Subaru Imaging of the MUSYC Extended Chandra Deep Field South

    Science.gov (United States)

    Urry, C. Megan; Cardamone, C.; van Dokkum, P.; Gawiser, E.; Brammer, G.; Taylor, N.; Treister, E.; Taniguchi, Y.; Sasaki, S.; Virani, S.; Kriek, M.

    2009-01-01

    We report on deep medium-band imaging with the Subaru telescope, in 18 filters from 427 nm to 856 nm, of the MUSYC survey field in the Extended Chandra Deep Field South. We detect 80,000 galaxies to equivalent magnitude R 27 mag, of which approximately 1,000 are X-ray-luminous AGN observed with Chandra and XMM. Combining the Subaru data with optical and IR data (in U,U38,B,V,R,I,z,J,K) we obtain photometric redshifts using EAZY, a fast public photometric redshift code, in the range 0outliers. We describe the colors of normal galaxies and AGN host galaxies at 0gratefully acknowledge support from NSF Grant AST 04-07295.

  18. Wavelength-independent field enhancement in subwavelength gratings

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Novitsky, Andrey; Shyroki, D.

    2011-01-01

    We show that lamellar metal gratings exhibit total transmission of incident radiation and strong nonresonant electric field enhancement in extremely subwavelength regime (in the nanometer-sized slits). With high accuracy the enhancement equals the ratio of the grating period to the slit width...

  19. The Chandra Galactic Bulge Survey

    Science.gov (United States)

    Britt, C. T.; Hynes, R. I.; Jonker, P. G.; Maccarone, T.; Torres, M. A. P.; Steeghs, D.; Nelemans, G.; Johnson, C.; Greiss, S.

    2015-05-01

    The Chandra Galactic Bulge Survey (GBS) is a multi-wavelength survey of two 6×1 degree strips above and below the Galactic plane, including deep r' and i' imaging and time domain photometry from CTIO and shallow, wide-field X-ray imaging with Chandra. Targeting fields above |b|=1 avoids most of the copious extinction along the Galactic plane while maintaining high source density. This results in targets that are accessible to follow up in optical and NIR wavelengths. The X-ray observations are shallow to maximize the number of quiescent Low Mass X-ray Binaries (LMXBs) relative to Cataclysmic Variables (CVs). The goals of the GBS are to conduct a census of Low Mass X-ray Binaries in the Milky Way in order to constrain models of binary evolution, the common envelope phase in particular, and to expand the number of known LMXBs for optical follow up. Mass measurements in particular will help constrain the black hole (BH) mass distribution and the equation of state for neutron stars (NS). Constraining the BH mass distribution will constrain models of their formation in supernovae. The current population of Galactic BHs suffers from selection effects, which the GBS avoids by finding new objects while still in quiescence. We expect to find qLMXBs, magnetic CVs, RS CVn stars, and smaller numbers of other types of sources. After removing duplicates, there are 1640 unique X-ray sources in the 12 square degree survey area, which closely matches the predicted number of 1648. We are currently matching X-ray sources to counterparts in other wavelengths using new photometric and spectroscopic observations as well as in archival data where it exists, and searching for variability and periodicity in the counterparts in photometric data. So far, we have spectroscopically identified 27 interacting binaries including promising candidates for quiescent black holes.

  20. Thin film coated submicron gratings: theory, design, fabrication and application

    Energy Technology Data Exchange (ETDEWEB)

    Heine, C.

    1996-12-31

    The realization of new applications of submicron grating structures requires efficient theoretical methods and elaborate fabrication techniques. In this work rigorous diffraction theory for one-dimensional gratings has been investigated and optimization techniques, based on methods used in thin film optics, have been developed. Submicron gratings embossed in polycarbonate have been fabricated and characterized. This includes transmission measurements which are in good agreement with theoretical calculations. Designs for a wide range of optical filters, which lead to improved optical and mechanical properties, are presented. This has been demonstrated for broadband antireflection structures for solar energy applications, based on MgF{sub 2}-coated gratings. (author) figs., tabs., refs.

  1. First order Bragg grating filters in silicon on insulator waveguides

    Science.gov (United States)

    Waugh, Peter Michael

    2008-08-01

    The subject of this project is the design; analysis, fabrication and characterisation of first order Bragg Grating optical filters in Silicon-on-Insulator (SOI) planar waveguides. It is envisaged that this work will result in the possibility of Bragg Grating filters for use in Silicon Photonics. It is the purpose of the work to create as far as is possible flat surface waveguides so as to facilitate Thermo-Optic tuning and also the incorporation into rib-waveguide Silicon Photonics. The spectral response of the shallow Bragg Gratings was modelled using Coupled Mode Theory (CMT) by way of RSoft Gratingmod TM. Also the effect of having a Bragg Grating with alternate layers of refractive index of 1.5 and 3.5 was simulated in order to verify that Silica and Silicon layered Bragg Gratings could be viable. A series of Bragg Gratings were patterned on 1.5 micron SOI at Philips in Eindhoven, Holland to investigate the variation of grating parameters with a) the period of the gratings b) the mark to space ratio of the gratings and c) the length of the region converted to Bragg Gratings (i.e. the number of grating period repetitions). One set of gratings were thermally oxidised at Philips in Eindhoven and another set were ion implanted with Oxygen ions at the Ion Beam Facility, University of Surrey, England. The gratings were tested and found to give transmission minima at approximately 1540 nanometres and both methods of creating flat surfaces were found to give similar minima. Atomic Force Microscopy was applied to the grating area of the as-implanted samples in the Advanced Technology Institute, University of Surrey, which were found to have surface undulations in the order of 60 nanometres.

  2. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  3. History of grating images

    Science.gov (United States)

    Iwata, Fujio

    2001-06-01

    Toppan Printing Co., Ltd. originated the name of 'grating image'. It means an image that consists of diffraction grating dots that look similar to the halftone dots of conventional printing. We proposed this new display method using simple gratings in order to enhance the visual effects when illumination is made by a fluorescent lamp. We considered the use of simple gratings as elemental dots, and used a number of elemental dots to display a 2D image. This method produces an effect something like the halftone dots of printing. The grating image technology grows from its starting to become able to produce 3D images and a 3D-video system using an electron beam grating-writing system.

  4. Grating image technology

    Science.gov (United States)

    Iwata, Fujio

    1995-07-01

    The word 'grating image' was first named by Toppan Printing Company, Ltd. It means that an image consists of grating dots. In 1988, we presented this new technology at the Optical Security Systems Symposium, in Switzerland. Then it was improved and applied in display application. Recently, it was further applied in 3D video systems. In this report, the development history and the recent situations of grating image technology are described.

  5. Novel diffraction gratings for next generation spectrographs with high spectral dispersion

    Science.gov (United States)

    Ebizuka, N.; Okamoto, T.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.

    2016-07-01

    As a transmission grating, a surface-relief (SR) grating with sawtooth shaped ridges and volume phase holographic (VPH) grating are widely used for instruments of astronomical observations. However the SR grating is difficult to achieve high diffraction efficiency at high angular dispersion, and the VPH grating has low diffraction efficiency in high diffraction orders. We propose novel gratings that solve these problems. We introduce the hybrid grism which combines a high refractive index prism with a replicated transmission grating, which has sawtooth shaped ridges of an acute apex angle. The birefringence VPH (B-VPH) grating which contains an anisotropic medium, such as a liquid crystal, achieves diffraction efficiency up to 100% at the first diffraction order for natural polarization and for circular polarization. The quasi-Bragg (QB) grating which consists of long rectangular mirrors aligned in parallel precisely, like a window blind, achieves diffraction efficiency of 60% or more in higher than the 4th diffraction order. The volume binary (VB) grating with narrow grooves also achieves diffraction efficiency of 60% or more in higher than the 6th diffraction order. The reflector facet transmission (RFT) grating which is a SR grating with sawtooth shaped ridges of an acute apex angle achieves diffraction efficiency up to 80% in higher than the 4th diffraction order.

  6. Sangac interferometer on the holographic bragg grating

    CERN Document Server

    Tikhonov, E A

    2015-01-01

    The ring interferometer with zero optical path difference known as Sagnac one is offered with a diffraction splitting of the entering light beam. As the beamsplitter, a transmission holographic Bragg grating is used. Conditions of normal operation of this interferometer achieve under the equal intensity of beam copies and the adjustable phase shift between them in its two interferometer shoulders. These conditions are met with the holographic grating, which provides the phase shift 180^0 on the central Bragg wavelength. Experimental approbation of the modified interferometer validates the expected results.

  7. Bragg gratings in Topas

    DEFF Research Database (Denmark)

    Zhang, C.; Webb, D.J.; Kalli, K.

    We report for the first time fibre Bragg grating inscription in microstructured optical fibre fabricated from Topas® cyclic olefin copolymer. The temperature sensitivity of the grating was studied revealing a positive Bragg wavelength shift of approximately 0.8 nmK-1,the largest sensitivity yet...

  8. An elastomeric grating coupler

    NARCIS (Netherlands)

    Kocabas, A.; Ay, F.; Dana, A.; Aydinli, A.

    2006-01-01

    We report on a novel nondestructive and reversible method for coupling free space light to planar optical waveguides. In this method, an elastomeric grating is used to produce an effective refractive index modulation on the surface of the optical waveguide. The external elastomeric grating binds to

  9. High-Energy Processes in Young Stars: Chandra X-ray Spectroscopy of HDE 283572, RY Tau, and LkCa 21

    CERN Document Server

    Audard, M; Smith, K W; Güdel, M; Pallavicini, R; Audard, Marc; Skinner, Stephen L.; Smith, Kester W.; Guedel, Manuel; Pallavicini, Roberto

    2004-01-01

    Weak-lined T Tauri stars (WTTS) represent the important stage of stellar evolution between the accretion phase and the zero-age main sequence. At this stage, the star decouples from its accretion disk, and spins up to a higher rotation rate than in the preceding classical T Tauri phase. Consequently, dynamo processes can be expected to become even stronger at this stage. High energy processes can have effects on the remaining circumstellar material, possibly including protoplanets and planetesimals, and these effects may account for certain observable properties of asteroids in the current solar system. Chandra observed for 100 ks the WTTS HDE 283572 which probes the PMS stage of massive A-type stars. We present first results of the analysis of its high-resolution X-ray spectrum obtained with the High-Energy Transmission Grating Spectrometer. A wide range of Fe lines of high ionization states are observed, indicating a continuous emission measure distribution. No significant signal is detected longward of the...

  10. Chandra X-ray spectroscopy of the focused wind in the Cygnus X-1 system I. The non-dip spectrum in the low/hard state

    CERN Document Server

    Hanke, Manfred; Nowak, Michael A; Pottschmidt, Katja; Schulz, Norbert S; Lee, Julia C

    2008-01-01

    We present analyses of a 50 ks observation of the supergiant X-ray binary system Cygnus X-1/HDE 226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). Cyg X-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for Cyg X-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe Kalpha line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect t...

  11. Chandra/HETGS Spectroscopy of the Galactic Black Hole GX 339-4: A Relativistic Iron Line and Evidence for a Seyfert-like Warm Absorber

    CERN Document Server

    Miller, J M; Fabian, A C; Homan, J; Nowak, M A; Wijnands, R; Van der Klis, M; Belloni, T; Tomsick, J A; Smith, D M; Charles, P A; Lewin, W H G

    2004-01-01

    We observed the Galactic black hole GX 339-4 with the Chandra High Energy Transmission Grating Spectrometer (HETGS) for 75 ksec during the decline of its 2002-2003 outburst. The sensitivity of this observation provides an unprecedented glimpse of a Galactic black hole at about a tenth of the luminosity of the outburst peak. The continuum spectrum is well described by a model consisting of multicolor disk blackbody (kT = 0.6 keV) and power-law (Gamma = 2.5) components. X-ray reflection models yield improved fits. A strong, relativistic Fe K-alpha emission line is revealed, indicating that the inner disk extends to the innermost stable circular orbit. The line is not sufficiently broad to strongly require black hole spin. Absorption lines from H-like and He-like O, and He-like Ne and Mg are detected, as well as lines which are likely due to Ne II and Ne III. The measured line properties make it difficult to associate the absorption with the coronal phase of the interstellar medium. A scenario wherein the absorp...

  12. Effect of Effective Refractive Index of Grating in FBG Splitter

    Directory of Open Access Journals (Sweden)

    DINESH ARORA

    2011-09-01

    Full Text Available The Fiber Bragg Gratings have been used extensively in the communication industry. Fiber Bragg grating is written directly into the core of the optical fiber and it is quite an attractive technique for wavelength splitter since it provides high reflectivity at a certain wavelength, with negligible transmission losses for others, providing a wavelength-channel selection with low crosstalk between adjacent channels.In this paper we propose a Fiber Bragg Grating base splitter with alteration of effective refractive index of grating for Ethernet passive optical network. With the increase in the effective refractive index the reflectivity of grating is increased. We analysed the effect of effective refractive index on reflectivity of grating. In our work the Bragg wavelength has been fixed at 1550 nm,length of the grating as 10mm and with effective refractive index as 4.0 it has been found that the reflectivity of the grating or the effectiveness of the grating in extracting the wavelength is 92-93%.

  13. Beyond Chandra - the X-ray Surveyor

    CERN Document Server

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  14. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  15. Chandra Looks Back At The Earth

    Science.gov (United States)

    2005-12-01

    In an unusual observation, a team of scientists has scanned the northern polar region of Earth with NASA's Chandra X-ray Observatory. The results show that the aurora borealis, or "northern lights," also dance in X-ray light, creating changing bright arcs of X-ray energy above the Earth's surface. While other satellite observations had previously detected high-energy X-rays from the Earth auroras, the latest Chandra observations reveal low-energy X-rays generated during auroral activity for the first time. The researchers, led by Dr. Ron Elsner of NASA's Marshall Space Flight Center in Huntsville, Ala., used Chandra to observe the Earth 10 times over a four-month period in 2004. The images were created from approximately 20-minute scans during which Chandra was aimed at a fixed point in the sky and the Earth's motion carried the auroral regions through Chandra's field of view. From the ground, the aurora are well known to change dramatically over time and this is the case in X-ray light as well. The X-rays in this sample of the Chandra observations, which have been superimposed on a simulated image of the Earth, are seen here at four different epochs. Illlustration of Earth's Magnetosphere and Auroras Illlustration of Earth's Magnetosphere and Auroras Auroras are produced by solar storms that eject clouds of energetic charged particles. These particles are deflected when they encounter the Earth�s magnetic field, but in the process large electric voltages are created. Electrons trapped in the Earth�s magnetic field are accelerated by these voltages and spiral along the magnetic field into the polar regions. There they collide with atoms high in the atmosphere and emit X-rays. Chandra has also observed dramatic auroral activity on Jupiter. Dr. Anil Bhardwaj of Vikram Sarabhai Space Center in Trivandrum, India, is the lead author on a paper describing these results in the Journal of Atmospheric and Solar-Terrestrial Physics. Dr. Bhardwaj was a co

  16. Calculation of optical-waveguide grating characteristics using Green's functions and Dyson's equation

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Mortensen, Asger

    2006-01-01

    We present a method for calculating the transmission spectra, dispersion, and time delay characteristics of optical-waveguide gratings based on Green's functions and Dyson's equation. Starting from the wave equation for transverse electric modes we show that the method can solve exactly both...... profile of the grating. Numerically, the method scales as O(N) where N is the number of points used to discretize the grating along the propagation axis. We consider optical fiber gratings although the method applies to all one-dimensional (1D) optical waveguide gratings including high-index contrast...

  17. Plasmonic Transmission Gratings – Fabrication and Characterization

    DEFF Research Database (Denmark)

    Sierant, Aleksandra; Jany, Benedykt; Bartoszek-Bober, Dobrosława;

    Surface plasmon polaritons (SPPs) are collective electron oscillations, confined at metal-dielectric interfaces. Coupling incident photons to SPPs may lead to spectrally broad field enhancement and confinement below the diffraction limit [1]. This phenomenon facilitates various applications, incl...

  18. Chandra Imaging of Gamma-Ray Binaries

    CERN Document Server

    Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G

    2013-01-01

    We review the multiwavelength properties of the few known gamma-ray binaries, focusing on extended emission recently resolved with Chandra. We discuss the implications of these findings for the nature of compact objects and for physical processes operating in these systems.

  19. The Chandra Source Catalog: Processing and Infrastructure

    Science.gov (United States)

    Evans, Janet; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Hall, Diane M.; Miller, Joseph B.; Plummer, David A.; Zografou, Panagoula; Primini, Francis A.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.

    2009-09-01

    Chandra Source Catalog processing recalibrates each observation using the latest available calibration data, and employs a wavelet-based source detection algorithm to identify all the X-ray sources in the field of view. Source properties are then extracted from each detected source that is a candidate for inclusion in the catalog. Catalog processing is completed by matching sources across multiple observations, merging common detections, and applying quality assurance checks. The Chandra Source Catalog processing system shares a common processing infrastructure and utilizes much of the functionality that is built into the Standard Data Processing (SDP) pipeline system that provides calibrated Chandra data to end-users. Other key components of the catalog processing system have been assembled from the portable CIAO data analysis package. Minimal new software tool development has been required to support the science algorithms needed for catalog production. Since processing pipelines must be instantiated for each detected source, the number of pipelines that are run during catalog construction is a factor of order 100 times larger than for SDP. The increased computational load, and inherent parallel nature of the processing, is handled by distributing the workload across a multi-node Beowulf cluster. Modifications to the SDP automated processing application to support catalog processing, and extensions to Chandra Data Archive software to ingest and retrieve catalog products, complete the upgrades to the infrastructure to support catalog processing.

  20. Spectral analysis of the Chandra comet survey

    NARCIS (Netherlands)

    Bodewits, D.; Christian, D. J.; Torney, M.; Dryer, M.; Lisse, C. M.; Dennerl, K.; Zurbuchen, T. H.; Wolk, S. J.; Tielens, A. G. G. M.; Hoekstra, R.

    2007-01-01

    Aims. We present results of the analysis of cometary X-ray spectra with an extended version of our charge exchange emission model (Bodewits et al. 2006). We have applied this model to the sample of 8 comets thus far observed with the Chandra X-ray observatory and acis spectrometer in the 300 - 1000

  1. Chandra Examines a Quadrillion-Volt Pulsar

    Science.gov (United States)

    2001-09-01

    The high-voltage environment of one of the most energetic and strongly magnetized pulsars known has been surveyed by NASA's Chandra X-ray Observatory. A team of astronomers found a powerful jet of high-energy particles extending over a distance of 20 light years and bright arcs believed to be due to particles of matter and anti-matter generated by the pulsar. The team of US, Canadian, and Japanese scientists pointed Chandra at the rapidly spinning neutron star B1509-58, located 19,000 light years away in the constellation of Circinus, for over five hours. These results were announced at the "Two Years of Science with Chandra" symposium in Washington, DC. "Jets and arcs on this vast scale have never been seen in any other pulsar," said Bryan Gaensler of the Smithsonian Astrophysical Observatory. "The spectacular images we have obtained of this source are letting us test theories as to how pulsars unleash so much energy." The features seen with Chandra give the scientists insight into the process by which voltages of more than 7000 trillion volts are created around rotating neutron stars (the dense remnants of supernova explosions) and how these extreme voltages affect their environment. B1509-58 is of particular interest because it has a much stronger magnetic field than the Crab Nebula pulsar, which exhibits similar features on a much smaller scale. The general picture emerging from these results is that high-energy particles of matter and antimatter are streaming away from the neutron star along its poles and near its equator. The particles leaving the poles produce the jets; astronomers speculate that only one side of the jet is apparent in B1509-58, indicating that this one side is beamed in our direction, while the other is rushing away. "Until this observation, no one knew for sure whether such tremendous voltages and energy outputs were a trademark of all pulsars, or if the Crab was an oddball," said Vicky Kaspi of McGill University in Montreal. "Now thanks

  2. Chandra Catches Early Phase of Cosmic Assembly

    Science.gov (United States)

    2004-08-01

    A NASA Chandra X-ray Observatory image has revealed a complex of several intergalactic hot gas clouds in the process of merging. The superb Chandra spatial resolution made it possible to distinguish individual galaxies from the massive clouds of hot gas. One of the clouds, which that envelops hundreds of galaxies, has an extraordinarily low concentration of iron atoms, indicating that it is in the very early stages of cluster evolution. "We may be seeing hot intergalactic gas in a relatively pristine state before it has been polluted by gas from galaxies," said Q. Daniel Wang of the University of Massachusetts in Amherst, and lead author on an upcoming Astrophysical Journal article describing the study. "This discovery should provide valuable insight into how the most massive structures in the universe are assembled." 3-Panel Image of Abell 2125, Its Core & Galaxy C153 3-Panel Image of Abell 2125, Its Core & Galaxy C153 The complex, known as Abell 2125,is about 3 billion light years from Earth, and is seen at a time about 11 billion years after the Big Bang, when many galaxy clusters are believed to have formed. The Chandra Abell 2125 image shows several huge elongated clouds of multimillion degree gas coming together from different directions. These hot gas clouds, each of which contains hundreds of galaxies, appear to be in the process of merging to form a single massive galaxy cluster. Chandra, Hubble Space Telescope, and Very Large Array radio telescope data show that several galaxies in the Abell 2125 core cluster are being stripped of their gas as they fall through surrounding high-pressure hot gas. This stripping process has enriched the core cluster's gas in heavy elements such as iron. Abell 2125's Core & Galaxy C153 Abell 2125's Core & Galaxy C153 The gas in the pristine cloud, which is still several million light years away from the core cluster, is conspicuous for its lack of iron atoms. This anemic cloud must be in a very early evolutionary stage. The

  3. Holographic liquid crystal polarization grating with Fabry-Perot structure.

    Science.gov (United States)

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-15

    A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically.

  4. Gratings in polymeric waveguides

    Science.gov (United States)

    Mishakov, G.; Sokolov, V.; Kocabas, A.; Aydinli, A.

    2007-04-01

    Laser-induced formation of polymer Bragg grating filters for Dense Wavelength Division Multiplexing (DWDM) applications is discussed. Acrylate monomers halogenated with both fluorine and chlorine, which possess absorption losses less than 0.25 dB/cm and wide choice of refractive indices (from 1.3 to 1.5) in the 1.5 μm telecom wavelength region were used. The monomers are highly intermixable thus permitting to adjust the refractive index of the composition within +/-0.0001. Moreover they are photocurable under UV exposure and exhibit high contrast in polymerization. These properties make halogenated acrylates very promising for fabricating polymeric waveguides and photonic circuits. Single-mode polymer waveguides were fabricated on silicon wafers using resistless contact lithography. Submicron index gratings have been written in polymer waveguides using holographic exposure with He-Cd laser beam (325 nm) through a phase mask. Both uniform and apodized gratings have been fabricated. The gratings are stable and are not erased by uniform UV exposure. The waveguide gratings possess narrowband reflection spectra in the 1.5 μm wavelength region of 0.4 nm width, nearly rectangular shape of the stopband and reflectivity R > 99%. The fabricated Bragg grating filters can be used for multiplexing/demultiplexing optical signals in high-speed DWDM optical fiber networks.

  5. Periodically patterned columnar thin films as Blazed gratings

    CERN Document Server

    Dutta, Jhuma; Lakhtakia, Akhlesh

    2012-01-01

    Periodically patterned columnar thin films (PP-CTFs) were made by evaporating CaF2 and directing the vapor flux obliquely towards lithographically fabricated micrometer/sub-micrometer gratings. The growth of the PP-CTFs was controlled by the deposition rate to form prismatic air cavities within them and they function like blazed diffraction gratings with asymmetric diffraction patterns and diffraction efficiencies upto 52% in transmission at visible wavelengths. Scalar diffraction theory qualitatively explained the measured diffraction efficiencies.

  6. Chandra X-ray Observatory Optical Axis and Aimpoint

    Science.gov (United States)

    Zhao, Ping

    2016-01-01

    Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond resolution. Chandra comprises of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM). To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements stay rigid and stable for the entire life time of the Chandra operation. Tracking the Chandra optical axis and aimpoint with respect to detector positions is the most relevant measurement for understanding telescope stability. The study shows that both the optical axis and the aimpoint has been drifting since Chandra launch. I will discuss the telescope focal-point, optical axis, aimpoint, their positiondrifts during the mission, the impact to Chandra operations, and the permanent default aimpoint, to be implemented in Chandra cycle 18.

  7. Chandra hardware and systems: keeping things running

    Science.gov (United States)

    Paton, Lisa

    2006-06-01

    System management for any organization can be a challenge, but satellite projects present their own issues. I will be presenting the network and system architecture chosen to support the scientists in the Chandra X-ray Center. My group provides the infrastructure for science data processing, mission planning, user support, archive support and software development. Our challenge is to create a stable environment with enough flexibility to roll with the changes during the mission. I'll discuss system and network choices, web service, backups, security and systems monitoring. Also, how to build infrastructure that's flexible, how to support a large group of scientists with a relatively small staff, what challenges we faced (anticipated and unanticipated) and what lessons we learned over the past 6 years since the launch of Chandra. Finally I'll outline our plans for the future including beowulf cluster support, an improved helpdesk system, methods for dealing with the explosive amount of data that needs to be managed.

  8. Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN.

    Science.gov (United States)

    Gross, Simon; Ams, Martin; Lancaster, David G; Monro, Tanya M; Fuerbach, Alexander; Withford, Michael J

    2012-10-01

    Strong waveguide Bragg gratings (10.5 dB transmission dip) were fabricated using the femtosecond (fs) laser direct-write technique in ZBLAN glass. The Bragg gratings are based on depressed cladding waveguides and consist of planes, periodic according to the Bragg condition, which are constructed from a transverse hexagonal lattice of smaller point features. Such gratings are a key step toward the realization of mid-infrared monolithic waveguide lasers using the fs laser direct-write technique.

  9. Influence of Non-uniform Temperature Field on Spectra of Fibre Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan; HE Xing-Fang; YUAN Jie; YIN Li-Qun; FANG Xiao-Yong; CAO Mao-Sheng

    2009-01-01

    We simulate the spectrum characteristics of fibre Bragg grating (FBG) with non-uniform temperature using the transmission matrix method, and the results are analysed. It is found that firstly the modulated coefficient of average refractive index is a very important parameter that influences the spectrum characteristic of the fibre Bragg grating, and secondly the spectrum curves are different in different temperature fields at the same parameter. Hence, we can determine the metrical temperature by analysing the spectrum of fibre Bragg grating.

  10. Statistical Characterization of the Chandra Source Catalog

    CERN Document Server

    Primini, Francis A; Davis, John E; Nowak, Michael A; Evans, Ian N; Glotfelty, Kenny J; Anderson, Craig S; Bonaventura, Nina R; Chen, Judy C; Doe, Stephen M; Evans, Janet D; Fabbiano, Giuseppina; Galle, Elizabeth C; Gibbs, Danny G; Grier, John D; Hain, Roger M; Hall, Diane M; Harbo, Peter N; Xiangqun,; He,; Karovska, Margarita; Kashyap, Vinay L; Lauer, Jennifer; McCollough, Michael L; McDowell, Jonathan C; Miller, Joseph B; Mitschang, Arik W; Morgan, Douglas L; Mossman, Amy E; Nichols, Joy S; Plummer, David A; Refsdal, Brian L; Rots, Arnold H; Siemiginowska, Aneta; Sundheim, Beth A; Tibbetts, Michael S; Van Stone, David W; Winkelman, Sherry L; Zografou, Panagoula

    2011-01-01

    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of ~0.75% of the entire sky, using data from ~3,900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data-set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other, large Chandra catalogs, such as the ChaMP Point Source Catalog (Kim et al. 2007) or the 2 Mega-second Deep Field Surveys (Alexander et al. 2003), while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and e...

  11. Circular Fibonacci gratings.

    Science.gov (United States)

    Gao, Nan; Zhang, Yuchao; Xie, Changqing

    2011-11-01

    We introduce circular Fibonacci gratings (CFGs) that combine the concept of circular gratings and Fibonacci structures. Theoretical analysis shows that the diffraction pattern of CFGs is composed of fractal distributions of impulse rings. Numerical simulations are performed with two-dimensional fast Fourier transform to reveal the fractal behavior of the diffraction rings. Experimental results are also presented and agree well with the numerical results. The fractal nature of the diffraction field should be of great theoretical interest, and shows potential to be further developed into practical applications, such as in laser measurement with wideband illumination.

  12. Integral Method for Gratings

    CERN Document Server

    Maystre, Daniel

    2014-01-01

    The chapter contains a detailed presentation of the surface integral theory for modelling light diffraction by surface-relief diffraction gratings having a one-dimensional periodicity. Several different approaches are presented, leading either to a single integral equation, or to a system of coupled integral equations. Special attention is paid to the singularities of the kernels, and to different techniques to accelerate the convergence of the numerical computations. The theory is applied to gratings having different profiles with or without edges, to real metal and dielectrics, and to perfectly conducting substrates.

  13. An elastomeric grating coupler

    Science.gov (United States)

    Kocabas, Askin; Ay, Feridun; Dâna, Aykutlu; Aydinli, Atilla

    2006-01-01

    We report on a novel nondestructive and reversible method for coupling free space light to planar optical waveguides. In this method, an elastomeric grating is used to produce an effective refractive index modulation on the surface of the optical waveguide. The external elastomeric grating binds to the surface of the waveguide with van der Waals forces and makes conformal contact without any applied pressure. As a demonstration of the feasibility of the approach, we use it to measure the refractive index of a silicon oxynitride film. This technique is nondestructive, reversible, low cost and can easily be applied to the characterization of optical materials for integrated optics.

  14. Ultra-High Temperature Gratings

    Institute of Scientific and Technical Information of China (English)

    John Canning; Somnath Bandyopadhyay; Michael Stevenson; Kevin Cook

    2008-01-01

    Regenerated gratings seeded by type-Ⅰ gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.

  15. Chandra Catches Cannibal Galaxy in the Act

    Science.gov (United States)

    2000-07-01

    NASA's Chandra X-ray Observatory image of Perseus A provides new insight into how this supergiant galaxy has grown by cannibalizing other galaxies and gas in the vicinity. For the first time astronomers see an X-ray shadow cast by a smaller galaxy as its gas is being stripped away by the enormous galaxy. The research was reported by Professor Andrew Fabian of the Institute of Astronomy, Cambridge, England on June 7 at the 196th National Meeting of the American Astronomical Society, in Rochester, NY. Other members of the research team are Jeremy Sanders, Stefano Ettori, Steve Allen, Carolin Crawford, Kazushi Iwasawa, and Roderick Johnstone of the Institute of Astronomy, Gregory Taylor on the National Radio Astronomy Observatory, Socorro, NM, and Patrick Ogle of the Massachusetts Institute of Technology, Cambridge, MA. Perseus A, or NGC 1275, is in the center of a large galaxy cluster 320 million light years from Earth. The cluster, which contains thousands of galaxies and enough gas to make thousands more, is one of the largest gravitationally bound objects in the universe. Over the eons, Perseus A has accumulated hundreds of billions of stars to become one of the most massive known galaxies as gas and galaxies have been pulled inward by gravity. The Chandra observation shows a region of hot gas that extends over several hundred thousand light years. The gas in the outer portion of the cluster has a temperature of 70 million degrees. The cluster gas cools gradually and settles toward the center of the cluster. A galaxy with "only" about 20 billion stars is falling into Perseus A (located at two o'clock from the center of the image) and appears as a small dark patch due to absorption of X rays by cool gas in the infalling galaxy. Another larger hole seen further out is thought to be due to a bubble of high-energy particles ejected in an explosion from Perseus A hundreds of millions of years ago. These outbursts are presumably fueled by matter releasing tremendous

  16. Reduction of Bragg-grating-induced coupling to cladding modes

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.

    1999-01-01

    We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...... gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength...

  17. Coherently controlling Raman-induced grating in atomic media

    CERN Document Server

    Arkhipkin, V G; Timofeev, I V

    2015-01-01

    We consider dynamically controllable periodic structures, called Raman induced gratings, in three- and four-level atomic media, resulting from Raman interaction in a standing-wave pump. These gratings are due to periodic spatial modulation of the Raman nonlinearity and fundamentally differ from the ones based on electromagnetically induced transparency. The transmission and reflection spectra of such gratings can be simultaneously amplified and controlled by varying the pump field intensity. It is shown that a transparent medium with periodic spatial modulation of the Raman gain can be opaque near the Raman resonance and yet at the same time it can be a non-linear amplifying mirror. We also show that spectral properties of the Raman induced grating can be controlled with the help of an additional weak control field.

  18. Analysis of dispersion characteristics of long period fiber grating

    Science.gov (United States)

    Jain, Vishal; Pawar, Santosh; Kumbhaj, S.; Sen, P. K.

    2016-10-01

    Present work deals with theoretical analysis of dispersion characteristics of long period fiber grating using straight forward coupled mode theory. Simple analytical solutions are obtained for co propagating core and cladding modes under linear regime. These solutions are used to derive expressions for transmission coefficient (tLPG), phase (ϕL), delay (τρ) and group velocity dispersion (Dρ) for proposed grating structure. Attention is paid to study the delay response of the grating, by varrying physical parameters like incident wavelength and coupling strength of grating. Negative values of group delay for certain value of coupling strength shows that long period fiber can be used as dispersion compansator device in optical fiber communication link.

  19. A Chandra HETGS observation of the Narrow-line Seyfert 1 galaxy Ark 564

    CERN Document Server

    Matsumoto, C; Marshall, H L; Matsumoto, Chiho; Leighly, Karen M.; Marshall, Herman L.

    2004-01-01

    We present results from a 50 ks observation of the narrow-line Seyfert 1 galaxy Ark 564 with the Chandra HETGS. The spectra above 2 keV are modeled by a power-law with a photon-index of 2.56+/-0.06. We confirm the presence of the soft excess below about 1.5 keV. If we fit the excess with blackbody model, the best-fit temperature is 0.124 keV. Ark 564 has been reported to show a peculiar emission line-like feature at 1 keV in various observations using lower resolution detectors, and the Chandra grating spectroscopy rules out an origin of blends of several narrow emission lines. We detect an edge-like feature at 0.712 keV in the source rest frame. The preferred interpretation of this feature is combination of the O VII K-edge and a number of L-absorption lines from slightly ionized iron, which suggests a warm absorber with ionization parameter xi~1 and N_H ~ 10^21 cm^-2. These properties are roughly consistent with those of the UV absorber. We also detect narrow absorption lines of O VII, O VIII, Ne IX, Ne X, ...

  20. Numerical Analysis of Fiber Bragg Grating and Long Period Fiber Grating Undergoing Linear and Quadratic Temperature Change

    Institute of Scientific and Technical Information of China (English)

    YUAN Yinquan; DING Liyun

    2009-01-01

    The coupled-mode equations for fiber Bragg grating(FBG)and long period fiber grating(LPFG)undergoing linear and quadratic temperature change were given.The effects of tem-perature gradient and quadratic temperature change on the reflectivity spectrum of fiber Braggs grating and the transmission spectrum of long period fiber grating were investigated using the numerical simulation,and the dependence relationships of the central wavelength shift,the full-width-at-half-maximum,and the peak intensity upon temperature gradient were also obtained.These relation-ships may be used to design a novel fiber optical sensor which can simultaneously measure the tem-perature and temperature gradient.

  1. ASA's Chandra Neon Discovery Solves Solar Paradox

    Science.gov (United States)

    2005-07-01

    NASA's Chandra X-ray Observatory survey of nearby sun-like stars suggests there is nearly three times more neon in the sun and local universe than previously believed. If true, this would solve a critical problem with understanding how the sun works. "We use the sun to test how well we understand stars and, to some extent, the rest of the universe," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But in order to understand the sun, we need to know exactly what it is made of," he added. It is not well known how much neon the sun contains. This is critical information for creating theoretical models of the sun. Neon atoms, along with carbon, oxygen and nitrogen, play an important role in how quickly energy flows from nuclear reactions in the sun's core to its edge, where it then radiates into space. Chandra X-ray Spectrum of II Pegasi Chandra X-ray Spectrum of II Pegasi The rate of this energy flow determines the location and size of a crucial stellar region called the convection zone. The zone extends from near the sun's surface inward approximately 125,000 miles. The zone is where the gas undergoes a rolling, convective motion much like the unstable air in a thunderstorm. "This turbulent gas has an extremely important job, because nearly all of the energy emitted at the surface of the sun is transported there by convection," Drake said. The accepted amount of neon in the sun has led to a paradox. The predicted location and size of the solar convection zone disagree with those deduced from solar oscillations. Solar oscillations is a technique astronomers previously relied on to probe the sun's interior. Several scientists have noted the problem could be fixed if the abundance of neon is in fact about three times larger than currently accepted. Attempts to measure the precise amount of neon in the Sun have been frustrated by a quirk of nature; neon atoms in the Sun give off no signatures in visible light. However, in a gas

  2. The Chandra Delta Ori Large Project: Occultation Measurements of the Shocked Gas tn the Nearest Eclipsing O-Star Binary

    Science.gov (United States)

    Corcoran, Michael F.; Nichols, Joy; Naze, Yael; Rauw, Gregor; Pollock, Andrew; Moffat, Anthony; Richardson, Noel; Evans, Nancy; Hamaguchi, Kenji; Oskinova, Lida; Hamann, W. -R.; Gull, Ted; Ignace, Rico; Hole, Tabetha; Iping, Rosina; Walborn, Nolan; Hoffman, Jennifer; Lomax, Jamie; Waldron, Wayne; Owocki, Stan; Maiz-Apellaniz, Jesus; Leutenegger, Maurice; Hole, Tabetha; Gayley, Ken; Russell, Chris

    2013-01-01

    Delta Ori is the nearest massive, single-lined eclipsing binary (O9.5 II + B0.5III). As such it serves as a fundamental calibrator of the mass-radius-luminosity relation in the upper HR diagram. It is also the only eclipsing O-type binary system which is bright enough to be observable with the CHANDRA gratings in a reasonable exposure. Studies of resolved X-ray line complexes provide tracers of wind mass loss rate and clumpiness; occultation by the X-ray dark companion of the line emitting region can provide direct spatial information on the location of the X-ray emitting gas produced by shocks embedded in the wind of the primary star. We obtained phase-resolved spectra with Chandra in order to determine the level of phase-dependent vs. secular variability in the shocked wind. Along with the Chandra observations we obtained simultaneous photometry from space with the Canadian MOST satellite to help understand the relation between X-ray and photospheric variability.

  3. Si3N4 Grated Waveguide Optical Cavity based Sensors for Bulk-index Concentration, Label-free Protein, and Mechano-Optical Gas Sensing

    NARCIS (Netherlands)

    Pham, S.V.; Dijkstra, M.; Hollink, A.J.F.; Ridder, de R.M.; Pollnau, M.; Hoekstra, H.J.W.M.

    2011-01-01

    A grated waveguide (GWG), which is a waveguide with a finite-length grated section, acts as an optical resonator, showing sharp fringes in the transmission spectrum near the stop-band edges of the grating. These oscillations are due to Fabry-Perot resonances of Bloch modes propagating in the cavity

  4. Chandra X-Ray Spectroscopy of the Focused Wind in the Cygnus X-1 System. II. The Nondip Spectrum in the Low/Hard State - Modulations with Orbital Phase

    CERN Document Server

    Miškovičová, Ivica; Hanke, Manfred; Nowak, Michael A; Pottschmidt, Katja; Schulz, Norbert S; Grinberg, Victoria; Duro, Refiz; Madej, Oliwia K; Lohfink, Anne M; Rodriguez, Jérôme; Bel, Marion Cadolle; Bodaghee, Arash; Tomsick, John A; Lee, Julia C; Brown, Gregory V; Wilms, Jörn

    2016-01-01

    The accretion onto the black hole in the system HDE 226868/Cygnus X-1 is powered by the strong line driven stellar wind of the O-type donor star. We study the X-ray properties of the stellar wind in the hard state of Cyg X-1 as determined with data from the Chandra High Energy Transmission Gratings. Large density and temperature inhomogeneities are present in the wind, with a fraction of the wind consisting of clumps of matter with higher density and lower temperature embedded in a photoionized gas. Absorption dips observed in the light curve are believed to be caused by these clumps. This work concentrates on the non-dip spectra as a function of orbital phase. The spectra show lines of H-like and He-like ions of S, Si, Na, Mg, Al and highly ionized Fe (Fe xvii-Fe xxiv). We measure velocity shifts, column densities, and thermal broadening of the line series. The excellent quality of these five observations allows us to investigate the orbital phase dependence of these parameters. We show that the absorber is ...

  5. Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings

    CERN Document Server

    Yan, Guofeng; Mikulic, Predrag; Bock, Wojtek J; Skorobogatiy, Maksim

    2013-01-01

    We report fabrication of THz fiber Bragg gratings (TFBG) using CO2 laser inscription on subwavelength step-index polymer fibers. A fiber Bragg grating with 48 periods features a ~4 GHz-wide stop band and ~15 dB transmission loss in the middle of a stop band. The potential of such gratings in design of resonant sensor for monitoring of paper quality is demonstrated. Experimental spectral sensitivity of the TFBG-based paper thickness sensor was found to be ~ -0.67 GHz / 10 um. A 3D electromagnetic model of a Bragg grating was used to explain experimental findings.

  6. Voltage-controlled compression for period tuning of optical surface relief gratings.

    Science.gov (United States)

    Kollosche, Matthias; Döring, Sebastian; Stumpe, Joachim; Kofod, Guggi

    2011-04-15

    This Letter reports on new methods and a consistent model for voltage tunable optical transmission gratings. Elastomeric gratings were molded from holographically written surface relief gratings in an azobenzene sol-gel material. These were placed on top of a transparent electroactive elastomeric substrate. Two different electro-active substrate elastomers were employed, with a large range of prestretches. A novel finite-deformation theory was found to match the device response excellently, without fitting parameters. The results clearly show that the grating underwent pure-shear deformation, and more surprisingly, that the mechanical properties of the electro-active substrate did not affect device actuation.

  7. The BMW-Chandra Serendipitous Source Catalog

    Science.gov (United States)

    Romano, P.; Campana, S.; Mignani, R. P.; Moretti, A.; Mottini, M.; Panzera, M. R.; Tagliaferri, G.

    2004-08-01

    We present the BMW-Chandra source catalog drawn from all Chandra ACIS-I pointed observations with an exposure time in excess of 10 ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by Lazzati et al. (1999) and Campana et al. (1999), which can characterize point-like as well as extended sources, we identified 21325 sources. Among them, 16758 are serendipitous, i.e. not associated with the targets of the pointings, and do not require a non-automated analysis. This makes our catalog the largest compilation of Chandra sources to date. The 0.5--10 keV absorption corrected fluxes of these sources range from ˜ 3× 10-16 to 9×10-12 erg cm-2 s-1 with a median of 7× 10-15 erg cm-2 s-1. The catalog consists of count rates and relative errors in three energy bands (total, 0.5--7 keV; soft, 0.5--2 keV; and hard band, 2--7 keV), and source positions relative to the highest signal-to-noise detection among the three bands. The wavelet algorithm also provides an estimate of the extension of the source which we refined with a σ -clipping method. We report on the main properties of the sources in our catalog, such as sky coverage ( ˜ 8 deg2 at a limiting flux of ˜ 10-13 erg cm-2 s-1) and cosmological log N--log S for a subset at high Galactic latitude (∣ b ∣ > 20o) for a flux as low as ˜ 1.5 × 10-15 erg cm-2 s-1. Support for this work was provided by the Italian MIUR.

  8. Chandra Associates Pulsar and Historic Supernova

    Science.gov (United States)

    2001-01-01

    SAN DIEGO -- Scientists using NASA’s Chandra X-ray Observatory have found new evidence that a pulsar in the constellation of Sagittarius was created when a massive star exploded, witnessed by Chinese astronomers in the year 386 AD. If confirmed, this will be only the second pulsar to be clearly associated with a historic event. These results were presented today by Victoria Kaspi and Mallory Roberts of McGill University at the American Astronomical Society meeting. Also participating in the research were Gautum Vasisht from the Jet Propulsion Laboratory, Eric Gotthelf from Columbia University, Michael Pivovaroff from Therma-Wave, Inc., and Nobuyuki Kawai from the Institute of Physical and Chemical Research, Japan. The scientists used Chandra to locate the pulsar exactly at the geometric center of the supernova remnant known as G11.2-0.3. This location provides very strong evidence that the pulsar, a neutron star that is rotating 14 times a second, was formed in the supernova of 386 AD, and therefore has an age of 1615 years. "Determining the true ages of astronomical objects is notoriously difficult, and for this reason, historical records of supernovas are of great importance,"said Kaspi."In roughly the past 2,000 years, fewer than 10 reports of probable supernovae have been archived mostly by Asian astronomers. Of those handful, the remnant of 1054 AD, the Crab Nebula, was until now the only pulsar whose birth could be associated with a historic event - and, hence, the only neutron star that has a firm age." Between mid-April and mid-May in the year 386 AD, a young "guest star", presumably a supernova, was recorded by Chinese observers in the direction of the sky now known as the constellation of Sagittarius. In the 1970s, radio astronomers discovered an expanding nebula of gas and high-energy particles, called G11.2-0.3, that is believed to be the remnant of that explosion. In 1997, a team of X-ray astronomers used Japan’s ASCA satellite to discover a pulsar

  9. Chandra Observations of Embedded Young Stellar Objects

    CERN Document Server

    Koyama, K

    2001-01-01

    This paper reviews the Chandra deep exposure observations of star forming regions, rho-Ophiuchi, Orion Molecular Clouds 2 and 3, Sagittarius B2 and Monoceros R2. The results are; (1) class I protostars are found to exhibit higher temperature plasma than those of T Tauri stars, (2) heavily absorbed X-rays are discovered from the candidates of class 0 protostars, (3) hard and highly variable X-rays are observed from high-mass young stars, and (4) young brown dwarfs emit X-rays similar to those of low-mass young stars.

  10. Enhanced resolution of long-period grating bend sensor

    DEFF Research Database (Denmark)

    Glavind, Lars; Gao, S; Cook, K;

    2013-01-01

    We present an optical fiber bend sensor with enhanced resolution based on the principle of a Mach-Zehnder interferometer in transmission. The sensor is based on two identical Long-Period Gratings separated by approximately 100 mm in a D-shaped single-mode optical fiber. The sensor provides a narrow...

  11. Chandra Observations of SNR RCW 103

    CERN Document Server

    Frank, Kari A; Park, Sangwook

    2015-01-01

    We analyze three Chandra observations, with a combined exposure time of 99 ks, of the Galactic supernova remnant RCW 103, a young supernova remnant, previously with no clear detection of metal-rich ejecta. Based on our imaging and spectral analyses of these deep Chandra data, we find evidence for metal-rich ejecta emission scattered throughout the remnant. X-ray emission from the shocked ejecta is generally weak, and the shocked circumstellar medium (CSM) is a largely dominant component across the entire remnant. The CSM component shows abundances of ~0.5 solar, while Ne, Mg, Si, S, and Fe abundances of the ejecta are up to a few times solar. Comparison of these ejecta abundances with yields from supernova nucleosynthesis models suggests, together with the existence of a central neutron star, a progenitor mass of ~18-20 M$_\\odot$, though the Fe/Si ratios are larger than predicted. The shocked CSM emission suggests a progenitor with high mass-loss rate and subsolar metallicity.

  12. A Deep Chandra Observation of A2052

    Science.gov (United States)

    Blanton, E. L.; Douglass, E. M.; Sarazin, C. L.; Clarke, T. E.; McNamara, B. R.

    We present initial results from a long (125 ksec) Chandra observation of Abell 2052. A2052 is a bright, nearby, cooling core cluster at a redshift of z=0.0348. It was previously observed for 36 ksec with Chandra [3,4]. The longer observation reveals ripples in the surface brightness, similar to what has been seen in e.g., the Perseus cluster [5] and M87/Virgo [6]. The southern cavity now appears to be split into two cavities with the southernmost cavity likely representing a ghost bubble from earlier radio activity. There also appears to be a ghost bubble present to the NW of the cluster center. Bright emission in the X-ray corresponds very well with optical line emission, and the correlated X-ray emission is seen to continue from the N bubble edge closer to the AGN in this longer exposure, tracking the H-α emission. The energy deposited by the radio source, as determined by measuring the pressure in the bright, X-ray shells, averaged over the repetition rate of the radio source (determined from either the ripple separation or the ghost cavity distances) can easily offset the cooling in the core of the cluster.

  13. Stellar Forensics with Striking Image from Chandra

    Science.gov (United States)

    2007-10-01

    A spectacular new image shows how complex a star's afterlife can be. By studying the details of this image made from a long observation by NASA's Chandra X-ray Observatory, astronomers can better understand how some stars die and disperse elements like oxygen into the next generation of stars and planets. At a distance of about 20,000 light years, G292.0+1.8 is one of only three supernova remnants in the Milky Way known to contain large amounts of oxygen. The image shows a rapidly expanding, intricately structured, debris field that contains, along with oxygen, other elements such as neon and silicon that were forged in the star before it exploded. Hard X-ray Image of G292.0+1.8 Hard X-ray Image of G292.0+1.8 "We are finding that, just like snowflakes, each supernova remnant is complicated and beautiful in its own way," said Sangwook Park of Penn State who led the work, released in conjunction with the "8 Years of Chandra" symposium in Huntsville, Ala. The new, deep Chandra image - equaling nearly 6 days worth of observing time - shows an incredibly complex structure. Understanding the details of G292.0+1.8 is especially important because astronomers have considered it to be a "textbook" case of a supernova created by the death of a massive star. Chandra X-ray Image of G292.0+1.8 Chandra X-ray Image of G292.0+1.8 By mapping the distribution of X-rays in different energy bands, the Chandra image traces the distribution of chemical elements ejected in the supernova. The results imply that the explosion was not symmetrical. For example, blue (silicon and sulfur) and green (magnesium) are seen strongly in the upper right, while yellow and orange (oxygen) dominate the lower left. These elements light up at different temperatures, indicating that the temperature is higher in the upper right portion of G292.0+1.8. Slightly below and to the left of the center of G292.0+1.8 is a pulsar, a dense, rapidly rotating neutron star that remained behind after the original star

  14. X-raying Galaxies: A Chandra Legacy

    CERN Document Server

    Wang, Q Daniel

    2010-01-01

    This presentation reviews Chandra's major contribution to the understanding of nearby galaxies. After a brief summary on significant advances in characterizing various types of discrete X-ray sources, the presentation focuses on the global hot gas in and around galaxies, especially normal ones like our own. The hot gas is a product of stellar and AGN feedback -- the least understood part in theories of galaxy formation and evolution. Chandra observations have led to the first characterization of the spatial, thermal, chemical, and kinetic properties of the gas in our Galaxy. The gas is concentrated around the Galactic bulge and disk on scales of a few kpc. The column density of chemically-enriched hot gas on larger scales is at least an order magnitude smaller, indicating that it may not account for the bulk of the missing baryon matter predicted for the Galactic halo according to the standard cosmology. Similar results have also been obtained for other nearby galaxies. The X-ray emission from hot gas is well...

  15. Slow light in fiber Bragg gratings and its applications

    Science.gov (United States)

    Skolianos, George; Arora, Arushi; Bernier, Martin; Digonnet, Michel

    2016-11-01

    Slow-light fiber Bragg gratings (FBGs) belong to a class of gratings designed to exhibit one or more narrow resonances in their reflection and transmission spectra, produced either by introducing a π phase shift near the middle of the grating, or by increasing the index modulation so that the grating behaves like a Fabry-Perot interferometer. These resonances can have very narrow linewidths (optics, optical switching, optical delay lines, and sensing. This paper reviews the principle of these gratings, in particular the more recent slow-light gratings relying on a strong index modulation. It discusses in particular the requirements for achieving large group delays and high sensitivities in sensors, and the fabrication and annealing techniques used to meet these requirements (high index modulation, low loss, index-profile apodization, and optimized length). Several applications are presented, including record-breaking FBGs that exhibit a group delay of 42 ns and Q-factor of ~30 million over a 12.5 mm length, robust acoustic sensors with pressure resolution of ~50 µPa (√Hz)-1 in the few-kHz, and a strain sensor capable of resolving as little as 30 femtostrain (√Hz)-1.

  16. Observations of Classical and Recurrent Novae with X-ray Gratings

    CERN Document Server

    Orio, Marina

    2012-01-01

    X-ray grating spectra have opened a new window on the nova physics. High signal-to-noise spectra have been obtained for 12 novae after the outburst in the last 13 years with the Chandra and XMM-Newton gratings. They offer the only way to probe the temperature, effective gravity and chemical composition of the hydrogen burning white dwarf before it turns off. These spectra also allow an analysis of the ejecta, which can be photoionized by the hot white dwarf, but more often seem to undergo collisional ionization. The long observations required for the gratings have revealed semi-regular and irregular variability in X-ray flux and spectra. Large short term variability is especially evident in the first weeks after the ejecta have become transparent to the central supersoft X-ray source. Thanks to Chandra and XMM-Newton, we have discovered violent phenomena in the ejecta, discrete shell ejection, and clumpy emission regions. As expected, we have also unveiled the white dwarf characteristics. The peak white dwarf...

  17. Electronically reconfigurable superimposed waveguide long-period gratings

    Science.gov (United States)

    Kulishov, Mykola; Daxhelet, Xavier; Gaidi, Mounir; Chaker, Mohamed

    2002-08-01

    The perturbation to the refractive index induced by a periodic electric field from two systems of interdigitated electrodes with the electrode-finger period l is analyzed for a waveguide with an electro-optically (EO) active core-cladding. It is shown that the electric field induces two superimposed transmissive refractive-index gratings with different symmetries of their cross-section distributions. One of these gratings has a constant component of an EO-induced refractive index along with its variable component with periodicity l, whereas the second grating possesses only a variable component with periodicity 2l. With the proper waveguide design, the gratings provide interaction between a guided fundamental core mode and two guided cladding modes. Through the externally applied electric potential, these gratings can be independently switched ON and OFF, or they can be activated simultaneously with electronically controlled weighting factors. Coupling coefficients of both gratings are analyzed in terms of their dependence on the electrode duty ratio and dielectric permittivities of the core and cladding. The coupled-wave equations for the superimposed gratings are written and solved. The spectral characteristics are investigated by numerical simulation. It is found that the spectral characteristics are described by a dual-dip transmission spectrum with individual electronic control of the dip depths and positions. Within the concept, a new external potential application scheme is described in which the symmetry of the cross-sectional distribution of the refractive index provides coupling only between the core mode and the cladding modes, preventing interaction of the cladding modes with each another. This simple concept opens opportunities for developing a number of tunable devices for integrated optics by use of the proposed design as a building block.

  18. Grating Spectroscopes and How to Use Them

    CERN Document Server

    Harrison, Ken M

    2012-01-01

    Transmission grating spectroscopes look like simple filters and are designed to screw into place on the eyepiece tube of a telescope for visual use, or into a camera adapter for digicam or CCD imaging. They are relatively inexpensive and by far the easiest type of astronomical spectroscope to use, and so are the starting point for most beginners. Using the most popular commercially made filter gratings - from Rainbow Optics in the United States to Star Analyser in the United Kingdon - as examples, the book provides all the information needed to set up and use the grating to obtain stellar spectra. It also presents methods of analyzing the results. No heavy mathematics or formulas are involved, although a reasonable level of proficiency in using an astronomic telescope and, if relevant, imaging camera, is assumed. This book contains many practical hints and tips - something that is almost essential to success when starting out. It encourages new users to get quick results, and by following the worked examples,...

  19. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    Science.gov (United States)

    Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Joern; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, Jhn E.; Tramper, Frank

    2009-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states". Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary s focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is > 40 GM/c(sup 2).

  20. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique.

    Science.gov (United States)

    Williams, Robert J; Krämer, Ria G; Nolte, Stefan; Withford, Michael J

    2013-06-01

    We report the inscription of low-loss fiber Bragg gratings using focused femtosecond (fs) pulses and a continuous core-scanning technique. This direct-write technique produces high-fidelity Type I-IR gratings that share the inherent advantages of other direct-write methods, such as the point-by-point (PbP) method, for which the grating period is a free parameter. However, here we demonstrate an order of magnitude improvement in scattering loss compared to PbP gratings, to a level comparable with that of phase-mask-based fs inscription. A first-order grating was inscribed in standard telecommunications fiber with -49 dB transmission at the Bragg wavelength and 0.1 dB broadband scattering loss. Potential application of these gratings to large-mode-area fibers and chirped grating fabrication are highlighted.

  1. Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter

    Energy Technology Data Exchange (ETDEWEB)

    Deng Yang; Liu Yuan; Gao Dingshan, E-mail: dsgao@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-01

    We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.

  2. Switchable Bragg gratings

    DEFF Research Database (Denmark)

    Marckmann, Carl Johan

    2003-01-01

    The subject of this ph.d. thesis was the development of an electrically switchable Bragg grating made in an optical waveguide using thermal poling to be applied within optical telecommunication systems. The planar waveguides used in this thesis were fabricated at the Micro- and Nanotechnology....... This result is very useful in the production of telecommunication devices since polarization independence of the second-order nonlinearity is wanted. In order to increase the second-order nonlinearity, it was found that the introduction of a high refractive index trapping layer was favorable. During...

  3. Electromagnetically induced grating in a crystal of molecular magnets system

    Science.gov (United States)

    Liu, Jibing; Liu, Na; Shan, Chuanjia; Liu, Tangkun; Li, Hong; Zheng, Anshou; Xie, Xiao-Tao

    2016-07-01

    We investigate the response of the molecular system to the magnetic field modulation. Molecular magnets are subjected to a strong standing ac magnetic field and a weak probe magnetic field. The transmission and absorption of the weak probe magnetic field can be changed due to quantum coherence and the spatially modulating of the standing field. And a electromagnetically induced grating is formed in the crystal of molecular magnets via electromagnetically induced transparency (EIT). The diffraction efficiency of the grating can be adjusted efficiently by tuning the intensity of the standing wave field and the single photon detuning.

  4. Symmetry and resonant modes in platonic grating stacks

    CERN Document Server

    Haslinger, Stewart G; Movchan, Natasha V; McPhedran, Ross C

    2013-01-01

    We study the flexural wave modes existing in finite stacks of gratings containing rigid, zero-radius pins. We group the modes into even and odd classes, and derive dispersion equations for each. We study the recently discovered EDIT (elasto-dynamically inhibited transmission) phenomenon, and relate it to the occurrence of trapped waves of even and odd symmetries being simultaneously resonant. We show how the EDIT interaction may be steered over a wide range of frequencies and angles, using a strategy in which the single-grating reflectance is kept high, so enabling the quality factors of the even and odd resonances to be kept large.

  5. Chandra's View of Tycho's Supernova Remnant

    Science.gov (United States)

    2000-01-01

    This Chandra image reveals, in detail, the turbulent debris created by a supernova explosion that was observed by the Danish Astronomer Tycho Brahe in the year 1572. The colors show different x-ray energies, with red, green, and blue representing low, medium, and high energies, respectively. Most likely caused by the destruction of a white dwarf star, a shock wave produced by the expanding debris is outlined by the sharp blue circular arcs of 20 million degree Celsius gas seen on the outer rim. The stellar debris, visible only by x-ray, has a temperature of about 10 million degrees, and shows up as mottled yellow, green, and red fingers of gas.

  6. Chandra data archive operations: lessons learned

    Science.gov (United States)

    McCollough, Michael L.; Rots, Arnold H.; Winkelman, Sherry L.

    2006-06-01

    We present a discussion of the lessons learned from establishing and operating the Chandra Data Archive (CDA). We offer an overview of the archive, what preparations were done before launch, the transition to operations, actual operations, and some of the unexpected developments that had to be addressed in running the archive. From this experience we highlight some of the important issues that need to be addressed in the creation and running of an archive for a major project. Among these are the importance of data format standards; the integration of the archive with the rest of the mission; requirements throughout all phases of the mission; operational requirements; what to expect at launch; the user interfaces; how to anticipate new tasks; and overall importance of team management and organization.

  7. The BMW-Chandra Serendipitous Source Catalogue

    Science.gov (United States)

    Romano, P.; Campana, S.; Mignani, R. P.; Moretti, A.; Panzera, M. R.; Tagliaferri, G.

    We present the BMW-Chandra Source Catalogue drawn from all Chandra ACIS-I pointed observations with an exposure time in excess of 10 ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by \\citep{Lazzatiea99} and \\citep{Campanaea99}, which can characterize point-like as well as extended sources, we identified 21325 sources which were visually inspected and verified. Among them, 16758 are not associated with the targets of the pointings and are considered certain; they have a 0.5-10 keV absorption corrected flux distribution median of ˜ 7 × 10-15 erg cm-2 s-1. The catalogue consists of source positions, count rates, extensions and relative errors in three energy bands (total, 0.5-7 keV; soft, 0.5-2 keV; and hard band, 2-7 keV), as well as the additional information drawn from the headers of the original files. We also extracted source counts in four additional energy bands, (0.5-1.0 keV, 1.0-2.0 keV, 2.0-4.0 keV and 4.0-7.0 keV). We compute the sky coverage in the soft and hard bands. The complete catalogue provides a sky coverage in the soft band (0.5-2 keV, S/N =3) of ˜ 8 deg2 at a limiting flux of ˜ 10-13 erg cm-2 s-1, and ˜ 2 deg2 at a limiting flux of ˜ 10-15 erg cm-2 s-1. http://www.merate.mi.astro.it/~xanadu/BMC/bmc_home.html

  8. Chandra Survey of Nearby Galaxies: The Catalog

    Science.gov (United States)

    She, Rui; Ho, Luis C.; Feng, Hua

    2017-02-01

    We searched the public archive of the Chandra X-ray Observatory as of 2016 March and assembled a sample of 719 galaxies within 50 Mpc with available Advanced CCD Imaging Spectrometer observations. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H ii nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 1037 erg s‑1 on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results will be reported in forthcoming papers.

  9. Stretchable diffraction gratings for spectrometry

    NARCIS (Netherlands)

    Simonov, A.N.; Grabarnik, S.; Vdovine, G.V

    2007-01-01

    We have investigated the possibility of using transparent stretchable diffraction gratings for spectrometric applications. The gratings were fabricated by replication of a triangular-groove master into a transparent viscoelastic. The sample length, and hence the spatial period, can be reversibly cha

  10. Picosecond Holographic-Grating Spectroscopy

    NARCIS (Netherlands)

    Duppen, K.

    1987-01-01

    Interfering light waves produce an optical interference pattern in any medium that interacts with light. This modulation of some physical parameter of the system acts as a classical holographic grating for optical radiation. When such a grating is produced through interaction of pulsed light waves w

  11. Slow plasmons in grating cavities

    Science.gov (United States)

    Aydinli, Atilla; Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun

    2016-03-01

    Recent research on surface plasmon polaritons and their applications have brought forward a wealth of information and continues to be of interest to many. In this report, we concentrate on propagating surface plasmon polaritons (SPPs) and their interaction with matter. Using grating based metallic structures, it is possible to control the electrodynamics of propagating SPPs. Biharmonic gratings loaded with periodic Si stripes allow excitation of SPPs that are localized inside the band gap with grating coupling. The cavity state is formed due to periodic effective index modulation obtained by one harmonic of the grating and loaded Si stripes. More complicated grating structures such as metallic Moiré surfaces have also been shown to form a localized state inside the band gap when excited with Kretschmann configuration.

  12. Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating.

    Science.gov (United States)

    Liu, Qing; Gu, Zhonghua; Kee, Jack Sheng; Park, Mi Kyoung

    2014-12-01

    In this paper, we demonstrate an optical filter using cladding modulated anti-symmetric long-period grating in a two-mode silicon waveguide. The filter consists of a two-mode waveguide connected with an input and output single-mode waveguide through two linear tapers. The anti-symmetric grating is formed by placing two periodic arrays of silicon squares offset by half of a grating pitch along the two-mode waveguide. Light coupling occurs between two co-propagating modes at the coupling wavelength through the grating and results in a rejection band at the output. The grating pitch, coupling coefficient, transmission spectrum and 3-dB bandwidth of the grating are investigated with the coupled-mode theory. By using a cladding modulated grating, the grating coupling strength can be controlled over a wide range by the two-mode waveguide width or separation distance between the grating and waveguide. Band-rejection filters are experimentally demonstrated in 1-μm, 0.8-μm and 0.7-μm wide two-mode silicon waveguides and rejection bands with different bandwidths and maximal attenuation contrasts larger than 15 dB (~97% coupling efficiency) have been achieved.

  13. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  14. In Brief: Chandra Observatory marks 10 years in space

    Science.gov (United States)

    Showstack, Randy

    2009-08-01

    NASA's Chandra X-ray Observatory, originally envisioned as a 5-year mission, was deployed into an elliptical orbit around Earth 10 years ago, on 23 July 1999. The most powerful X-ray telescope yet, Chandra has provided a peak into the high-energy universe and has independently confirmed the existence of dark energy. Martin Weisskopf, Chandra project scientist at NASA's Marshall Space Flight Center, Huntsville, Ala., said discoveries made possible by the observatory “have made dramatic changes to our understanding of the universe and its constituents.” “The Great Observatories program—of which Chandra is a major part—shows how astronomers need as many tools as possible to tackle the big questions out there,” said Ed Weiler, associate administrator of NASA's Science Mission Directorate at NASA Headquarters in Washington. The Hubble Space Telescope, Compton Gamma Ray Observatory, and Spitzer Space Telescope are NASA's other Great Observatories. For more information, visit http://chandra.harvard.edu/ten/ and http://chandra.nasa.gov.

  15. Deep Chandra observations of Pictor A

    CERN Document Server

    Hardcastle, M J; Birkinshaw, M; Croston, J H; Goodger, J L; Marshall, H L; Perlman, E S; Siemiginowska, A; Stawarz, L; Worrall, D M

    2015-01-01

    We report on deep Chandra observations of the nearby broad-line radio galaxy Pictor A, which we combine with new Australia Telescope Compact Array (ATCA) observations. The new X-ray data have a factor 4 more exposure than observations previously presented and span a 15-year time baseline, allowing a detailed study of the spatial, temporal and spectral properties of the AGN, jet, hotspot and lobes. We present evidence for further time variation of the jet, though the flare that we reported in previous work remains the most significantly detected time-varying feature. We also confirm previous tentative evidence for a faint counterjet. Based on the radio through X-ray spectrum of the jet and its detailed spatial structure, and on the properties of the counterjet, we argue that inverse-Compton models can be conclusively rejected, and propose that the X-ray emission from the jet is synchrotron emission from particles accelerated in the boundary layer of a relativistic jet. For the first time, we find evidence that...

  16. Chandra observations of Cygnus OB2

    CERN Document Server

    Wright, Nicholas J; Drew, Janet E; Vink, Jorick S

    2011-01-01

    Cygnus OB2 is the nearest example of a massive star forming region, containing over 50 O-type stars and hundreds of B-type stars. We have analyzed two Chandra pointings in Cyg OB2, detecting ~1700 X-ray sources, of which ~1450 are thought to be members of the association. Optical and near-IR photometry has been obtained for ~90% of these sources from recent deep Galactic plane surveys. We have performed isochrone fits to the near-IR color-magnitude diagram, deriving ages of 3.5(+0.75,-1.0) and 5.25(+1.5,-1.0) Myrs for sources in the two fields, both with considerable spreads around the pre-MS isochrones. The presence of a second population in the region, somewhat older than the present-day O-type stars, has been suggested by other authors and fits with the ages derived here. The fraction of sources with inner circumstellar disks (as traced by the K-band excess) is found to be very low, but appropriate for a population of age ~5 Myrs. We measure the stellar mass functions and find a power-law slope of Gamma = ...

  17. Fiber Bragg gratings in the radiation environment: Change under the influence of radiolytic hydrogen

    Science.gov (United States)

    Butov, Oleg V.; Golant, Konstantin M.; Shevtsov, Igor'A.; Fedorov, Artem N.

    2015-08-01

    The change of the transmission spectra of fiber Bragg gratings written in the optical fibers, whose silica cores are doped with either germanium or nitrogen, is studied experimentally under the influence of gamma-radiation. The transmission spectra in the neighborhood of the resonance (Bragg) wavelengths were regularly recorded "in-situ" in the course of irradiation during 24 days. For this purpose, uncoated gratings were placed in a pool near the spent fuel rods of a nuclear reactor. The fibers with the gratings written in them were in immediate contact with water. The estimated total absorbed radiation dose of the fibers is approximately 5 MGy. Molecular hydrogen, which is produced by radiolysis of water and penetrates into the core of silica fiber, is found to interact with the defects of Ge-doped silica induced by gamma-radiation, thereby causing a strong impact on the parameters of the spectrum of the Bragg gratings. On the contrary, in the case of gratings inscribed in N-doped silica fibers, the hydrogen molecules interact with defects induced in the course of laser UV exposure during the grating writing only. The possible subsequent formation of additional defects in N-doped silica under the influence of gamma-radiation has no substantial impact on the transmission spectra of Bragg gratings, which remained stable. The obtained results suggest that a small amount of molecular hydrogen resided in the fiber core is the main source of radiation instability of Ge-doped fiber Bragg grating sensors in radiation environments. These hydrogen molecules can remain in the Bragg gratings, in particular, after the inscription process in the hydrogen-loaded fibers.

  18. Fiber Bragg gratings in the radiation environment: Change under the influence of radiolytic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Butov, Oleg V., E-mail: obutov@mail.ru; Golant, Konstantin M. [Kotel' nikov Institute of Radio-Engineering and Electronics of RAS, 11-7 Mokhovaya Str., Moscow 125009 (Russian Federation); Shevtsov, Igor' A.; Fedorov, Artem N. [Prolog LLC, PO Box 3007, Obninsk, the Kaluga Region 249033 (Russian Federation)

    2015-08-21

    The change of the transmission spectra of fiber Bragg gratings written in the optical fibers, whose silica cores are doped with either germanium or nitrogen, is studied experimentally under the influence of gamma-radiation. The transmission spectra in the neighborhood of the resonance (Bragg) wavelengths were regularly recorded “in-situ” in the course of irradiation during 24 days. For this purpose, uncoated gratings were placed in a pool near the spent fuel rods of a nuclear reactor. The fibers with the gratings written in them were in immediate contact with water. The estimated total absorbed radiation dose of the fibers is approximately 5 MGy. Molecular hydrogen, which is produced by radiolysis of water and penetrates into the core of silica fiber, is found to interact with the defects of Ge-doped silica induced by gamma-radiation, thereby causing a strong impact on the parameters of the spectrum of the Bragg gratings. On the contrary, in the case of gratings inscribed in N-doped silica fibers, the hydrogen molecules interact with defects induced in the course of laser UV exposure during the grating writing only. The possible subsequent formation of additional defects in N-doped silica under the influence of gamma-radiation has no substantial impact on the transmission spectra of Bragg gratings, which remained stable. The obtained results suggest that a small amount of molecular hydrogen resided in the fiber core is the main source of radiation instability of Ge-doped fiber Bragg grating sensors in radiation environments. These hydrogen molecules can remain in the Bragg gratings, in particular, after the inscription process in the hydrogen-loaded fibers.

  19. Extreme Silica Optical Fibre Gratings

    Directory of Open Access Journals (Sweden)

    Kevin Cook

    2008-10-01

    Full Text Available A regenerated optical fibre Bragg grating that survives temperature cycling up to 1,295°C is demonstrated. A model based on seeded crystallisation or amorphisation is proposed.

  20. A Full Year's Chandra Exposure on SDSS Quasars from the Chandra Multiwavelength Project

    CERN Document Server

    Green, Paul J; Richards, G T; Barkhouse, W A; Constantin, A; Haggard, D; Karovska, M; Kim, D -W; Kim, M; Vikhlinin, A; Mossman, A; Silverman, J D; Anderson, S F; Kashyap, V; Wilkes, B J; Tananbaum, H

    2008-01-01

    We study the spectral energy distributions and evolution of a large sample of optically selected quasars from the Sloan Digital Sky Survey (SDSS) that were observed in 323 Chandra images analyzed by the Chandra Multiwavelength Project (ChaMP). Our highest-confidence matched sample includes 1135 X-ray detected quasars in the redshift range 0.23 QSOs detected, we find no evidence for evolution out to z~5 for either the X-ray photon index Gamma or for the ratio of optical/UV to X-ray flux alpha_ox. About 10% of detected QSOs are obscured (Nh>1E22), but the fraction might reach ~1/3 if most non-detections are absorbed. We confirm a significant correlation between alpha_ox and optical luminosity, but it flattens or disappears for fainter AGN alone. Gamma hardens significantly both towards higher X-ray luminosity, and for relatively X-ray loud quasars. These trends may represent a relative increase in non-thermal X-ray emission, and our findings thereby strengthen analogies between Galactic black hole binaries and ...

  1. MEMS Bragg grating force sensor

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....

  2. Hollow-core grating fiber

    Science.gov (United States)

    Barillé, R.; Tajalli, P.; Roy, P.; Ahmadi-kandjani, S.; Kucharski, S.; Ortyl, E.

    2012-02-01

    We propose a new type of hollow-core fiber where the propagation is ensured by a photoinduced self-pattern acting as a surface relief grating (SRG). The SRG is written by launching a suitable laser beam with proper polarization in a capillary glass fiber with the inner surface previously coated with an azopolymer thin film. Such a grating acts as a wavelength/angle dependant reflective mirror and enhances the confinement and the propagation of the light.

  3. Chandra Spectroscopy of a Remarkable Neutron Star

    Science.gov (United States)

    Miller, Jon

    2013-09-01

    IGR J17062-6143 is one of only 5 sources that have displayed a super-expansion burst. This requires a special mode of continuous low-level accretion that allows material to accumulate on the stellar surface, without triggering smaller bursts. Swift spectroscopy of a super-expansion burst in IGR J17062-6143 revealed the only strong detections of atomic emission and absorption lines in a burst observed at CCD or gratings resolution. Whereas atomic features from the stellar surface have not been detected in other neutron stars, the accretion mode in IGR J17062-6143 may provide the right conditions. To search for lines from the surface, and to better understand the nature of low-level accretion, we request a 100 ksec HETGS observation of IGR J17062-6143.

  4. Resonant Response in Mechanically Tunable Metasurface based on Crossed Metallic Gratings with Controllable Crossing Angle

    CERN Document Server

    Yachin, Vladimir V; Polevoy, Sergey Y; Tarapov, Sergey I

    2016-01-01

    We report on a resonant response in transmission spectra of a linearly polarized wave passing through the system of crossed gratings. Each grating consists of an array of parallel metallic strips located on the top of a dielectric substrate. It is revealed that the resonant position appears to be dependent on the angle of gratings crossing. It is found out that the resonant shift on the frequency scale appears as a result of increasing in the length of the resonating portion of the parallelogram periodic cell formed by the crossed metallic strips with decreasing crossing angle and the proposed design can be used in new types of planar metamaterials and filters.

  5. Coupled-mode analysis for single-helix chiral fiber gratings with small core-offset

    Institute of Scientific and Technical Information of China (English)

    Li Yang; Linlin Xue; Jue Su; Jingren Qian

    2011-01-01

    Using conventional coupled-mode theory,a set of coupled-mode equations are formulated for single-helix chiral fiber long-period gratings.A helical-core fiber is analyzed as an example.The analysis is simple in mathematical form and intuitive in physical concept.Based on the analysis,the polarization independence of mode coupling in special fiber gratings is revealed.The transmission characteristics of helical-core fibers are also simulated and discussed.

  6. [Measurement of steel corrosion in concrete structures by analyzing long-period fiber grating spectrum character].

    Science.gov (United States)

    Wang, Yan; Liang, Da-Kai; Zhou, Bing

    2008-11-01

    The consideration on the durability of concrete structures with reinforcement corrosion has become a most urgent problem. A new technique to measure the corrosion of steel in concrete structures was proposed in the present paper. It is based on the microbending characteristic of long period optical grating (LPFG). The temperature spectum character and curvature spectrum character of long period optical fiber grating were studied first. It was shown that the transmission spectrum of long period optical fiber grating shifted right and the transmission of the resonance wavelength was invariable when the temperature increased, while the transmission spectrum of long period optical fiber grating became shallow when the curvature increased, the transmission of the resonance wavelength would increase and it was linear with the curvature. On the basis of the characteristic, a notch shaped pedestal was designed and a long period optical fiber grating was laid on the steel surface. With this method the radial expansion of the steel resulting from the steel corrosion would translate into the curvature of the long period optical fiber grating. The curvature of long period optical fiber grating could be obtained by analyzing the change of spectrum, and then the steel corrosion depth could be measured. This method is simple and immediate and is independent of the variety in temperature, strain and refractive index owing to the inimitable spectrum characteristic of long period optical fiber grating. From the experiment it was found that the precision of the corrosion depth was better than 1.2 microm, and the corrosion depth of 3 mm could be achieved. This measurement could be used to monitor the early to metaphase corrosion of reinforcing steel in concrete structures.

  7. Time delay in double micro-ring resonator with grating

    Science.gov (United States)

    Li, Qiliang; Chen, Xin; Song, Junfeng; Bi, Meihua; Hu, Miao; Li, Shuqin

    2016-10-01

    In this paper, using the transfer matrix which is obtained by coupled mode theory, we have studied the transmission and time delay characteristics of the micro-ring resonator with the grating. We find that fast- and slow-light can occur in double ring resonator which contains the grating. We also study the effect of coupling coefficient on transmission characteristics. The results reveal that the increase of the coupling coefficient can lead to the change of the time delay at various ports at the resonant point. Thus by adjusting the frequency of the incident light and selecting the device with different coupling coefficient, we can realize the output of the fast and slow light.

  8. Interface Selective Transient Grating Spectroscopy: Theory and Applications to Thermal Flow and Acoustic Propagation in Thin Films.

    Science.gov (United States)

    Marshall, Christopher David

    A general theoretical and experimental treatment of transient grating diffraction is developed for interfacial holographic gratings in thin film structures. The gratings are assumed to have nonuniform spatial amplitude throughout the sample. Both reflection and transmission diffraction geometries are examined where the probe beam is incident on either side of the film-substrate interface with the grating wave-vector parallel to the interface. For samples in which the grating amplitude perpendicular to the sample interface varies slowly relative to the optical wavelength, the majority of the reflection geometry signal amplified is shown to arise from the surface or interfacial region. In contrast, the transmission geometry signal amplitude is dominated by contributions from the bulk of the sample. Three different material systems are examined. The first is a thin (impedance matching. The frequency, wave-vector, and acoustic damping rate of high frequency (>1 GHz) acoustic Rayleigh waveguide modes are measured in the YBCO films from 17 to 300 K.

  9. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    Science.gov (United States)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  10. Optimization design of flat-band long-period grating

    Institute of Scientific and Technical Information of China (English)

    Yumin Liu(刘玉敏); Zhongyuan Yu(俞重远); Jianzhong Zhang(张建忠); Bojun Yang(杨伯君); Xiaoguang Zhang(张晓光)

    2004-01-01

    We present a method to optimize the flat-band long-period fiber Bragg grating (FBG) in this letter. The method is based on the particle swarm optimization method and the matrix transmission method. The optimized refractive modulation profile does not introduce so many phase shifts and is easier to fabricate compared with that of layer-peeling method which introduces lots of π phase shift at each zero point of apodization profile in designing for the same problem.

  11. High-Resolution {\\it Chandra} Spectroscopy of tau Scorpii A Narrow-Line X-ray Spectrum From a Hot Star

    CERN Document Server

    Cohen, D H; MacFarlane, J J; Miller, N A; Cassinelli, J P; Owocki, S P; Liedahl, D A; Cohen, David H.; Messi\\`{e}res, Genevi\\`{e}ve E. de; Farlane, Joseph J. Mac; Miller, Nathan A.; Cassinelli, Joseph P.; Owocki, Stanley P.; Liedahl, Duane A.

    2003-01-01

    Long known to be an unusual early-type star by virtue of its hard and strong X-ray emission, tau Scorpii poses a severe challenge to the standard picture of O star wind-shock X-ray emission. The Chandra HETGS spectrum now provides significant direct evidence that this B0.2 star does not fit this standard wind-shock framework. The many emission lines detected with the Chandra gratings are significantly narrower than what would be expected from a star with the known wind properties of tau Sco, although they are broader than the corresponding lines seen in late-type coronal sources. While line ratios are consistent with the hot plasma on this star being within a few stellar radii of the photosphere, from at least one He-like complex there is evidence that the X-ray emitting plasma is located more than a stellar radius above the photosphere. The Chandra spectrum of tau Sco is harder and more variable than those of other hot stars, with the exception of the young magnetized O star theta Ori C. We discuss these new...

  12. 75 FR 7471 - Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company, Respondent; Notice of...

    Science.gov (United States)

    2010-02-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company... January 8, 2010, Chandra Coffee and Rabun Boatworks (Complainants) filed with the Federal...

  13. Efficient iterative technique for designing bragg gratings

    DEFF Research Database (Denmark)

    Plougmann, Nikolai; Kristensen, Martin

    2004-01-01

    We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings.......We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings....

  14. Optimization and efficient routing scenario of system using C-band: reconfigurable multiwavelength optical cross connect based on tunable fiber Bragg grating and optical circulator

    Science.gov (United States)

    Singh, Manpreet; Dewra, Sanjeev; Kaler, Rajinder S.

    2016-07-01

    The impact of physical parameters such as grating length, effective index of grating, and apodization on the performance of 5×5 reconfigurable multiwavelength optical cross connect based on tunable fiber Bragg grating and optical circulator in DWDM system with 0.8-nm channel spacing at 15×10 Gbps is evaluated. It is observed that least BER is achieved at the minimum input transmission power with specific values of grating length, effective index of grating, and apodization change of a T-FBG. It shows that BER increases as the values of T-FBG grating length, effective index of grating, and apodization decrease. The data can be transmitted over a distance of 60 km in the presence of fiber nonlinearities without optical amplifier and dispersion compensating techniques.

  15. The X-ray spectrum of delta Orionis observed by LETGS aboard Chandra

    CERN Document Server

    Raassen, A J J

    2013-01-01

    We analyze the high-resolution X-ray spectrum of the supergiant O-star delta Orionis (O9.5II) with line ratios of He-like ions and a thermal plasma model, and we examine its variability. The O-supergiant delta Ori was observed in the wavelength range 5-175 Angstrom by the X-ray detector HRC-S in combination with the grating LETG aboard Chandra. We studied the He-like ions in combination with the UV-radiation field to determine local plasma temperatures and to establish the distance of the X-ray emitting ions to the stellar surface. We measured individual lines by means of Gaussian profiles, folded through the response matrix, to obtain wavelengths, line fluxes, half widths at half maximum (HWHM) and line shifts to characterize the plasma. We consider multitemperature models in collisional ionization equilibrium (CIE) to determine temperatures, emission measures, and abundances. Analysis of the He-like triplets extended to N VI and C V implies ionization stratification with the hottest plasma to be found withi...

  16. Visible light metasurfaces based on gallium nitride high contrast gratings

    Science.gov (United States)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  17. A porous silicon Bragg grating waveguide by direct laser writing

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Ilaria; Iodice, Mario; Coppola, Giuseppe; Rendina, Ivo; De Stefano, Luca [National Council of Research, Institute for Microelectronic and Microsystems, Department of Naples, Via P Castellino 111, I-80131 Naples (Italy); Marino, Antigone [Department of Physics, ' Federico II' University of Naples, Via Cinthia, I-80126 Naples (Italy)], E-mail: ilaria.rea@na.imm.cnr.it

    2008-09-10

    We have designed, fabricated and characterized a porous silicon-based Bragg grating integrated in an optical waveguide, by using a low cost and fast technique, direct laser writing. A periodic optical structure with a pitch of 10 {mu}m, resonant in the near-infrared wavelength region, has been obtained. The simulated transmission spectra, calculated by the transfer matrix method and waveguide modal computation, are in good qualitative agreement with the experimental ones. The waveguide transmission losses have been quantified as 22 dB cm{sup -1}.

  18. Chandra Observations of Eight Sources Discovered by INTEGRAL

    Science.gov (United States)

    Tomsick, John A.; Krivonos, Roman; Wang, Qinan; Bodaghee, Arash; Chaty, Sylvain; Rahoui, Farid; Rodriguez, Jerome; Fornasini, Francesca M.

    2016-01-01

    We report on 0.3-10 keV observations with the Chandra X-ray Observatory of eight hard X-ray sources discovered within 8° of the Galactic plane by the International Gamma-ray Astrophysics Laboratory satellite. The short (˜5 ks) Chandra observations of the IGR source fields have yielded very likely identifications of X-ray counterparts for three of the IGR sources: IGR J14091-6108, IGR J18088-2741, and IGR J18381-0924. The first two have very hard spectra in the Chandra band that can be described by a power law with photon indices of Γ = 0.6 ± 0.4 and -{0.7}-0.3+0.4, respectively (90% confidence errors are given), and both have a unique near-IR counterpart consistent with the Chandra position. IGR J14091-6108 also displays a strong iron line and a relatively low X-ray luminosity, and we argue that the most likely source type is a cataclysmic variable (CV), although we do not completely rule out the possibility of a high mass X-ray binary. IGR J18088-2741 has an optical counterpart with a previously measured 6.84 hr periodicity, which may be the binary orbital period. We also detect five cycles of a possible 800-950 s period in the Chandra light curve, which may be the compact object spin period. We suggest that IGR J18088-2741 is also most likely a CV. For IGR J18381-0924, the spectrum is intrinsically softer with {{Γ }}={1.5}-0.4+0.5, and it is moderately absorbed, NH = (4 ± 1) × 1022 cm-2. There are two near-IR sources consistent with the Chandra position, and they are both classified as galaxies, making it likely that IGR J18381-0924 is an active galactic nucleus. For the other five IGR sources, we provide lists of nearby Chandra sources, which may be used along with further observations to identify the correct counterparts, and we discuss the implications of the low inferred Chandra count rates for these five sources.

  19. Chandra x-ray results on v426 ophiuchi

    Directory of Open Access Journals (Sweden)

    Lee Homer

    2004-01-01

    Full Text Available De las observaciones de 45 ks de Chandra de V426 Oph hemos obtenido espectros de rayos X de alta resoluci on con relaci on se~nal-a-ruido moderada, y una curva de luz no interrumpida de buena calidad. Los espectros se adaptan razonablemente a un modelo de ujo de enfriamiento, similar a EX Hya y U Gem. Nuestro an alisis de las curvas de luz de Chandra y las adicionales de rayos X/ optico revela una modulaci on persistente a 4.2 hr desde 1988 hasta 2003, probablemente el per odo de giro de la enana blanca, indicando una naturaleza polar intermedia para V426 Oph.

  20. Chandra Images Provide New Vision of Cosmic Explosions

    Science.gov (United States)

    1999-09-01

    Images from NASA's Chandra X-ray Observatory released today reveal previously unobserved features in the remnants of three different supernova explosions. Two of the remnants G21.5-0.9 and PSR 0540-69 show dramatic details of the prodigious production of energetic particles by a rapidly rotating, highly magnetized neutron star, as well as the enormous shell structures produced by the explosions. The image of the third remnant, E0102-72, reveals puzzling spoke-like structures in its interior. G21.5-0.9, in the constellation of Scutum, is about 16,000 light years (1 light year = 6 trillion miles) from Earth. Chandra's image shows a bright nebula surrounded by a much larger diffuse cloud. Inside the inner nebula is a bright central source that is thought to be a rapidly rotating highly magnetized neutron star. A rotating neutron star acts like a powerful generator, creating intense electric voltages that accelerate electrons to speeds close to the speed of light. The total output of this generator is greater than a thousand suns. The fluffy appearance of the central nebula is thought to be due to magnetic field lines which constrain the motions of the high-energy electrons. "It's a remarkable image," said Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics. "Neither the inner core nor the outer shell has ever been seen before." "It is as though we have a set of Russian dolls, with structures embedded within structures," said Professor Gordon Garmire of Penn State University, and principal investigator of the Advanced CCD Imaging Spectrometer, the X-ray camera that was used to make two of the images. NASA's project scientist, Dr. Martin Weisskopf of the Marshall Space Flight Center said, "Chandra's capability to provide surprises and insights continues." PSR 0540-69 PSR 0540-69 The existence of a rotating neutron star, or pulsar, in the center of G21.5-0.9 is inferred from the appearance of the nebula and the energy distribution of X-rays and radio

  1. High efficiency multilayer blazed gratings for EUV and soft X-rays: Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Voronov, Dmitriy; Ahn, Minseung; Anderson, Erik; Cambie, Rossana; Chang, Chih-Hao; Goray, Leonid; Gullikson, Eric; Heilmann, Ralf; Salmassi, Farhad; Schattenburg, Mark; Warwick, Tony; Yashchuk, Valeriy; Padmore, Howard

    2011-07-26

    Multilayer coated blazed gratings with high groove density are the best candidates for use in high resolution EUV and soft x-ray spectroscopy. Theoretical analysis shows that such a grating can be potentially optimized for high dispersion and spectral resolution in a desired high diffraction order without significant loss of diffraction efficiency. In order to realize this potential, the grating fabrication process should provide a perfect triangular groove profile and an extremely smooth surface of the blazed facets. Here we report on recent progress achieved at the Advanced Light Source (ALS) in fabrication of high quality multilayer coated blazed gratings. The blazed gratings were fabricated using scanning beam interference lithography followed by wet anisotropic etching of silicon. A 200 nm period grating coated with a Mo/Si multilayer composed with 30 bi-layers demonstrated an absolute efficiency of 37.6percent in the 3rd diffraction order at 13.6 nm wavelength. The groove profile of the grating was thoroughly characterized with atomic force microscopy before and after the multilayer deposition. The obtained metrology data were used for simulation of the grating efficiency with the vector electromagnetic PCGrate-6.1 code. The simulations showed that smoothing of the grating profile during the multilayer deposition is the main reason for efficiency losses compared to the theoretical maximum. Investigation of the grating with cross-sectional transmission electron microscopy revealed a complex evolution of the groove profile in the course of the multilayer deposition. Impact of the shadowing and smoothing processes on growth of the multilayer on the surface of the sawtooth substrate is discussed.

  2. Nonperiodic metallic gratings transparent for broadband terahertz waves

    Science.gov (United States)

    Fan, Ren-Hao; Ren, Xiao-Ping; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu

    Recently, we demonstrate both theoretically and experimentally that nonperiodic metallic gratings can become transparent for broadband terahertz waves. Quasiperiodic and disordered metallic gratings effectively weaken and even eliminate Wood's anomalies, which are the diffraction-related characters of periodic gratings. Consequently, both the transparence bandwidth and transmission efficiency are significantly increased due to the structural aperiodicity. Furthermore, we show that for a specific light source, for example, a line source, a corresponding nonperiodic transparent grating can be also designed. We expect that our findings can be applied for transparent conducting panels, perfect white-beam polarizers, antireflective conducting solar cells, and beyond. References: X. P. Ren, R. H. Fan, R. W. Peng, X. R. Huang, D. H. Xu, Y. Zhou, and Mu Wang, Physical Review B, 91, 045111 (2015); R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, Mu. Wang, and X. Zhang, Advanced Materials, 24, 1980 (2012); and X. R. Huang, R. W. Peng, and R. H. Fan. Physical Review Letters, 105, 243901 (2010).

  3. Tuning Fano resonances of graphene-based gratings

    Science.gov (United States)

    de Ceglia, Domenico; Vincenti, Maria A.; Grande, Marco; Bianco, Giuseppe Valerio; Bruno, Giovanni; D'Orazio, Antonella; Scalora, Michael

    2016-09-01

    We present a strategy to control Fano resonances in hybrid graphene-silicon-on-insulator gratings. The presence of a mono- or few-layer graphene film allows to electrically and/or chemically tuning the Fano resonances that result from the interaction of narrow-band, quasi-normal modes and broad-band, Fabry-Perot-like modes. Transmission, reflection and absorption spectra undergo significant modulations under the application of a static voltage to the graphene film. In particular, for low values of the graphene chemical potential, the structure exhibits a symmetric Lorentzian resonance; when the chemical potential increases beyond a specific threshold, the grating resonance becomes Fano-like, hence narrower and asymmetric. This transition occurs when the graphene optical response changes from that of a lossy dielectric medium into that of a low-loss metal. Further increasing the chemical potential allows to blue-shift the Fano resonance, leaving its shape and linewidth virtually unaltered. We provide a thorough description of the underlying physics by resorting to the quasi-normal mode description of the resonant grating and retrieve perturbative expressions for the characteristic wavelength and linewidth of the resonance. The roles of number of graphene layers, waveguide-film thickness and graphene quality on the tuning abilities of the grating will be discussed. Although developed for infrared telecom wavelengths and silicon-on-insulator technology, the proposed structure can be easily designed for other wavelengths, including visible, far-infrared and terahertz, and other photonic platforms.

  4. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... wavelength. It is shown that it is possible to tune and modulate a DFB fiber laser with both strain from a piezoelectric transducer and by temperature through resistive heating of a methal film. Both a chemical deposited silver layer and an electron-beam evaporation technique has been investigated, to find...

  5. Chandra and XMM-Newton X-ray Observations of the Hyperactive T Tauri Star RY Tau

    CERN Document Server

    Skinner, Stephen L; Guedel, Manuel

    2016-01-01

    We present results of pointed X-ray observations of the accreting jet-driving T Tauri star RY Tau using Chandra and XMM-Newton. We obtained high-resolution grating spectra and excellent-quality CCD spectra and light curves with the objective of identifying the physical mechanisms underlying RY Tau's bright X-ray emission. Grating spectra reveal numerous emission lines spanning a broad range of temperature superimposed on a hot continuum. The X-ray emission measure distribution is dominated by very hot plasma at T_hot ~ 50 MK but higher temperatures were present during flares. A weaker cool plasma component is also present as revealed by low-temperature lines such as O VIII. X-ray light curves show complex variability consisting of short-duration (~hours) superhot flares accompanied by fluorescent Fe emission at 6.4 keV superimposed on a slowly-varying (~one day) component that may be tied to stellar rotation. The hot flaring component is undoubtedly of magnetic (e.g. coronal) origin. Soft and hard-band light ...

  6. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  7. High Efficiency Low Scatter Echelle Grating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high efficiency low scatter echelle grating will be developed using a novel technique of multiple diamond shaving cuts. The grating will have mirror surfaces on...

  8. Grating-Coupled Waveguide Cloaking

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Fu; QU Shao-Bo; XU Zhuo; MA Hua; WANG Cong-Min; XIA Song; WANG Xin-Hua; ZHOU Hang

    2012-01-01

    Based on the concept of a grating-coupled waveguide (GCW),a new strategy for realizing EM cloaking is presented.Using metallic grating,incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind,enabling EM waves to pass around the obstacle.Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged.Circular,rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking.Electric field animations and radar cross section (RCS)comparisons convincingly demonstrate the cloaking effect.

  9. Fabrication of Polymer Optical Fibre (POF Gratings

    Directory of Open Access Journals (Sweden)

    Yanhua Luo

    2017-03-01

    Full Text Available Gratings inscribed in polymer optical fibre (POF have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings.

  10. A Composite Grating for Moire Interferometry.

    Science.gov (United States)

    1987-07-01

    shown in Figure 7 in which two virtual reference gratings of frequencies 2400 and 600 lines/mm were used. This arrangement corresponds to a fringe...fields at the two virtual reference grating frequencies of 2400/600 lines/mm. The light paths of the two virtual reference gratings are controlled by...frequencies were selectively recorded. Figure 10 and 11 shows two moire fringe patterns for virtual reference grating frequencies of 2400 lines/mm and 600

  11. Hybrid grating reflectors: Origin of ultrabroad stopband

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well...

  12. 3D Printed Terahertz Focusing Grating Couplers

    Science.gov (United States)

    Jahn, David; Weidenbach, Marcel; Lehr, Jannik; Becker, Leonard; Beltrán-Mejía, Felipe; Busch, Stefan F.; Balzer, Jan C.; Koch, Martin

    2017-02-01

    We have designed, constructed and characterized a grating that focuses electromagnetic radiation at specific frequencies out of a dielectric waveguide. A simple theoretical model predicts the focusing behaviour of these chirped gratings, along with numerical results that support our assumptions and improved the grating geometry. The leaky waveguide was 3D printed and characterized at 120 GHz demonstrating its potential for manipulating terahertz waves.

  13. Cosmological constraints from Chandra observations of galaxy clusters.

    Science.gov (United States)

    Allen, Steven W

    2002-09-15

    Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.

  14. Chandra: Ten Years of Amazing Science with a Great Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2009-01-01

    We review briefly review the history of the development of the Chandra X-Ray Observatory, highlighting certain details that many attendees of this Conference might not be aware of. We then present a selection of scientific highlights of the first 10 years of this remarkable and unique mission.

  15. The Chandra X-Ray Observatory Radiation Environmental Model Update

    Science.gov (United States)

    Blackwell, William C.; Minow, Joseph I.; ODell, Stephen L.; Cameron, Robert A.; Virani, Shanil N.

    2003-01-01

    CRMFLX (Chandra Radiation Model of ion FLUX) is a radiation environment risk mitigation tool for use as a decision aid in planning the operation times for Chandra's Advanced CCD Imaging Spectrometer (ACIS) detector. The accurate prediction of the proton flux environment with energies of 100 - 200 keV is needed in order to protect the ACIS detector against proton degradation. Unfortunately, protons of this energy are abundant in the region of space where Chandra must operate. In addition, on-board particle detectors do not measure proton flux levels of the required energy range. CRMFLX is an engineering environment model developed to predict the proton flux in the solar wind, magnetosheath, and magnetosphere phenomenological regions of geospace. This paper describes the upgrades to the ion flux databases for the magnetosphere, magnetosheath, and solar wind regions. These data files were created by using Geotail and Polar spacecraft flux measurements only when the Advanced Composition Explorer (ACE) spacecraft's 0.14 MeV particle flux was below a threshold value. This new database allows for CRMFLX output to be correlated with both the geomagnetic activity level, as represented by the Kp index, as well as with solar proton events. Also, reported in this paper are results of analysis leading to a change in Chandra operations that successfully mitigates the false trigger rate for autonomous radiation events caused by relativistic electron flux contamination of proton channels.

  16. Romanticism or Reality? An Exploration of Frances Mary Hendry's "Chandra."

    Science.gov (United States)

    Johnson, Jilaine

    This paper singles out a novel written for children about India, "Chandra" (1995) by Frances Mary Hendry, as a powerful and useful novel to present to today's 11 to 14 year old students. The paper contends that the novel allows students to explore and consider different value systems, challenges them to become aware of prejudice and the…

  17. An Introduction to the Chandra Carina Complex Project

    CERN Document Server

    Townsley, Leisa K; Corcoran, Michael F; Feigelson, Eric D; Gagné, Marc; Montmerle, Thierry; Oey, M S; Smith, Nathan; Garmire, Gordon P; Getman, Konstantin V; Povich, Matthew S; Evans, Nancy Remage; Nazé, Yaël; Parkin, E R; Preibisch, Thomas; Wang, Junfeng; Wolk, Scott J; Chu, You-Hua; Cohen, David H; Gruendl, Robert A; Hamaguchi, Kenji; King, Robert R; Mac Low, Mordecai-Mark; McCaughrean, Mark J; Moffat, Anthony F J; Oskinova, L M; Pittard, Julian M; Stassun, Keivan G; ud-Doula, Asif; Walborn, Nolan R; Waldron, Wayne L; Churchwell, Ed; Nichols, J S; Owocki, Stanley P; Schulz, N S

    2011-01-01

    The Great Nebula in Carina provides an exceptional view into the violent massive star formation and feedback that typifies giant HII regions and starburst galaxies. We have mapped the Carina star-forming complex in X-rays, using archival Chandra data and a mosaic of 20 new 60ks pointings using the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer, as a testbed for understanding recent and ongoing star formation and to probe Carina's regions of bright diffuse X-ray emission. This study has yielded a catalog of properties of >14,000 X-ray point sources; >9800 of them have multiwavelength counterparts. Using Chandra's unsurpassed X-ray spatial resolution, we have separated these point sources from the extensive, spatially-complex diffuse emission that pervades the region; X-ray properties of this diffuse emission suggest that it traces feedback from Carina's massive stars. In this introductory paper, we motivate the survey design, describe the Chandra observations, and present some simple results, pr...

  18. Highlights and Discoveries from the Chandra X-ray Observatory

    CERN Document Server

    Tananbaum, H; Tucker, W; Wilkes, B; Edmonds, P

    2014-01-01

    Within 40 years of the detection of the first extrasolar X-ray source in 1962,NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding ...

  19. Highlights and discoveries from the Chandra X-ray Observatory

    Science.gov (United States)

    Tananbaum, H.; Weisskopf, M. C.; Tucker, W.; Wilkes, B.; Edmonds, P.

    2014-06-01

    Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over timescales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.

  20. Grating light reflection spectroelectrochemistry for detection of trace amounts of aromatic hydrocarbons in water

    Energy Technology Data Exchange (ETDEWEB)

    KELLY,MICHAEL J.; SWEATT,WILLIAM C.; KEMME,SHANALYN A.; KASUNIC,K.J.; BLAIR,DIANNA S.; ZAIDI,S.H.; MCNEIL,J.R.; BURGESS,L.W.; BRODSKY,A.M.; SMITH,S.A.

    2000-04-01

    Grating light reflection spectroscopy (GLRS) is an emerging technique for spectroscopic analysis and sensing. A transmission diffraction grating is placed in contact with the sample to be analyzed, and an incident light beam is directed onto the grating. At certain angles of incidence, some of the diffracted orders are transformed from traveling waves to evanescent waves. This occurs at a specific wavelength that is a function of the grating period and the complex index of refraction of the sample. The intensities of diffracted orders are also dependent on the sample's complex index of refraction. The authors describe the use of GLRS, in combination with electrochemical modulation of the grating, for the detection of trace amounts of aromatic hydrocarbons. The diffraction grating consisted of chromium lines on a fused silica substrate. The depth of the grating lines was 1 {micro}m, the grating period was 1 {micro}m, and the duty cycle was 50%. Since chromium was not suitable for electrochemical modulation of the analyte concentration, a 200 nm gold layer was deposited over the entire grating. This gold layer slightly degraded the transmission of the grating, but provided satisfactory optical transparency for the spectroelectrochemical experiments. The grating was configured as the working electrode in an electrochemical cell containing water plus trace amounts of the aromatic hydrocarbon analytes. The grating was then electrochemically modulated via cyclic voltammetry waveforms, and the normalized intensity of the zero order reflection was simultaneously measured. The authors discuss the lower limits of detection (LLD) for two analytes, 7-dimethylamino-1,2-benzophenoxazine (Meldola's Blue dye) and 2,4,6-trinitrotoluene (TNT), probed with an incident HeNe laser beam ({lambda} = 543.5 nm) at an incident angle of 52.5{degree}. The LLD for 7-dimethylamino-1,2-benzophenoxazine is approximately 50 parts per billion (ppb), while the LLD for TNT is approximately

  1. Reproducibility of splicer-based long-period fiber gratings for gain equalization

    Institute of Scientific and Technical Information of China (English)

    I. Cacciari; M. Brenci; R. Falclai; G. Nunzi Conti; S. Pelli; G. C. Righini

    2007-01-01

    We fabricated long-period fiber gratings (LPFGs) using electric arc discharges. We observed that the fiber becomes slightly tapered due to longitudinal tension during the arc: this effect depends on the arc current and time length. We experimentally investigated how these characteristics can influence grating' s performances, especially in view of employing the LPFG as gain equalizer for an erbium-doped optical amplifier. As expected, we found that the spectral response of the grating depends on the period A, the intensity of the perturbation, the grating length and the type of mode-coupling induced. Since this last parameter cannot be estimated directly from the transmission spectra, we propose a method to determine the modecoupling occurring in the device and to assess the index modulation induced by the electric arcs. This method combines both experimental and simulated data, and can be used to characterize LPFGs made-up by any method.

  2. All-reflective Michelson, Sagnac, and Fabry-Perot interferometers based on grating beam splitters.

    Science.gov (United States)

    Sun, K X; Byer, R L

    1998-04-15

    All-reflective Michelson, Sagnac, and Fabry-Perot interferometers based on grating beam splitters are experimentally demonstrated at a wavelength of 1064 nm. A 1200-groove/mm grating diffracting 0 and -1 orders with an efficiency of 48.2% for each order was used as a near-50/50 beam splitter. The all-reflective Sagnac and Michelson interferometers were formed by reintroducing both of the diffracted beams back to the grating. The Fabry-Perot interferometer was formed in a Littrow configuration by using a 1700-groove/mm grating with a blazing efficiency of 91% as a cavity coupler. These interferometers encompass all the fundamental configurations of all-reflective laser interferometric gravitational-wave detectors, promising improved wave-front quality by avoiding volume thermal effects in transmissive optics under high-power laser illumination.

  3. Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings

    CERN Document Server

    Spaleniak, Izabela; Jovanovic, Nemanja; Williams, Robert J; Lawrence, Jon S; Ireland, Michael J; Withford, Michael J

    2013-01-01

    The first demonstration of narrowband spectral filtering of multimode light on a 3D integrated photonic chip using photonic lanterns and waveguide Bragg gratings is reported. The photonic lanterns with multi-notch waveguide Bragg gratings were fabricated using the femtosecond direct-write technique in boro-aluminosilicate glass (Corning, Eagle 2000). Transmission dips of up to 5 dB were measured in both photonic lanterns and reference single-mode waveguides with 10.4-mm-long gratings. The result demonstrates efficient and symmetrical performance of each of the gratings in the photonic lantern. Such devices will be beneficial to space-division multiplexed communication systems as well as for units for astronomical instrumentation for suppression of the atmospheric telluric emission from OH lines.

  4. Super-Period Gold Nanodisc Grating-Enabled Surface Plasmon Resonance Spectrometer Sensor.

    Science.gov (United States)

    Tian, Xueli; Guo, Hong; Bhatt, Ketan H; Zhao, Song Q; Wang, Yi; Guo, Junpeng

    2015-10-01

    We experimentally demonstrate a surface plasmon resonance spectrometer sensor by using an e-beam-patterned super-period gold nanodisc grating on a glass substrate. The super-period gold nanodisc grating has a small subwavelength period and a large diffraction grating period. The small subwavelength period enhances localized surface plasmon resonance, and the large diffraction grating period diffracts surface plasmon resonance radiation into different directions corresponding to different wavelengths. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD) in addition to the traditional way of measurement using an external optical spectrometer in the zeroth order transmission. A surface plasmon resonance sensor for the bovine serum albumin protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  5. Design and development of long-period grating sensors for temperature monitoring

    Indian Academy of Sciences (India)

    Smita Chaubey; Purushottam Joshi; Manoj Kumar; Rajesh Arya; A K Nath; Sanjay Kher

    2007-10-01

    Long Period Gratings (LPGs) have been developed using carbon dioxide laser in a standard optical fibre. LPGs with a periodicity of 600 m and grating length of 24 mm have been inscribed on standard single mode fibre. Such gratings have been used in designing temperature sensors and temperature is monitored up to 80°C. The sensitivity of such type of sensor is 0·06 nm/° C where as for standard Fibre Bragg Grating (FBG) it is 0·011 nm/°C. The LPG performance is also evaluated after -ray irradiation for total dose of 5 KGy and has not shown any effect on transmission spectrum.

  6. Running gratings in photoconductive materials

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Lyuksyutov, S. F.

    2005-01-01

    gratings at small-contrast approximation and also are applicable for the description of space-charge wave domains. We discuss spatial domain and subharmonic beam formation in bismuth silicon oxide (BSO) crystals in the framework of the small-contrast approximation of STPM. The experimental results...

  7. Calculation of thermal noise in grating reflectors

    CERN Document Server

    Heinert, Daniel; Friedrich, Daniel; Hild, Stefan; Kley, Ernst-Bernhard; Leavey, Sean; Martin, Iain W; Nawrodt, Ronny; Tünnermann, Andreas; Vyatchanin, Sergey P; Yamamoto, Kazuhiro

    2013-01-01

    Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflective structures exists. In this work we present a theoretical calculation of a grating reflector's noise. We further apply it to a proposed 3rd generation gravitational wave detector. Depending on the grating geometry, the grating material and the temperature we obtain a thermal noise decrease by up to a factor of ten compared to conventional dielectric mirrors. Thus the use of grating reflectors can substantially improve the noise performance in metrological applications.

  8. Real-time holographic recording of high efficient reflective gratings on photopolymer composite

    Science.gov (United States)

    Tikhonov, Eugene A.; Smirnova, Tatiana N.; Sorbaev, T. A.

    1994-06-01

    Some years ago we had elaborated the new photopolymer composite to record in real time (or quasi real time) the various volume phase transmission-transmission holographical devices: gratings, lenses, beam-multiplicators, narrow-band filters. The nonreversible real-time recording on the photopolymers was based on the chain radical polymerication reaction and resulted in phase transition from liquid monomer/olygomer mixture to a solid with spatially modulated surface and volume. Unfortunately, in most cases the polymerizing recording is followed simultaneously by the shrinkage and the variation of the bulk index reaction. Unlike the transmission holograms the recording of the reflection holograms in real-time mode becomes impossible until these effects can be limited or aborted. The present paper contains the corresponding results of investigation of the photopolymer recording real-time modes of the reflection holographic gratings: (1) photopolymer composites with the smallest variation of the bulk refraction index during the real-time recording, (2) effect of a shrinkage on the diffraction efficiency of gratings, (3) limitations of the post-polymerized amplification of a holographic recording for the reflection gratings, and (4) the capillary-induced filling of the phase plates of the reflective hologram gratings as the tentative explanation of the positive results.

  9. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  10. Grating light modulator for projection display

    Institute of Scientific and Technical Information of China (English)

    Jiyong Sun; Shanglian Huang; Jie Zhang; Zhihai Zhang; Yong Zhu

    2009-01-01

    A novel grating light modulator for projection display is introduced. It consists of an upper moveable grat-ing, a bottom mirror, and four supporting posts between them. The moveable grating and the bottom mir-ror compose a phase grating whose phase difference is controlled by the actuating voltage. When the phase difference is 2kπ, the grating light modulator will switch the incident light to zero-order diffraction; when the phase difference is (2k - 1)π, the grating light modulator will diffract light to first-order diffraction. A 16 × 16 modulator array is fabricated by the surface micromachining technology. The device works well when it is actuated by a voltage with 1-kHz frequency and 10-V amplitude. The fabricated grating light modulator can show blackness and brightness when controlled by the voltage. This modulator has potential applications in projection display system.

  11. A CHANDRA OBSERVATION OF THE BURSTING MILLISECOND X-RAY PULSAR IGR J17511-3057

    Energy Technology Data Exchange (ETDEWEB)

    Paizis, A. [Istituto Nazionale di Astrofisica, INAF-IASF, Via Bassini 15, 20133 Milano (Italy); Nowak, M. A. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Rodriguez, J.; Chaty, S. [Astrophysique, Instrumentation et Modelisation (AIM, UMR-E 9005 CEA/DSM-CNRS-Universite Paris Diderot) Irfu/Service d' Astrophysique, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Wilms, J. [Dr. Karl Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universitaet Erlangen-Nuernberg, Sternwartstr. 7, 96049 Bamberg (Germany); Del Santo, M.; Ubertini, P., E-mail: ada@iasf-milano.inaf.it, E-mail: mnowak@space.mit.edu [IAPS, INAF, Via Fosso del Cavaliere 100, 00133 Rome (Italy)

    2012-08-10

    IGR J17511-3057 is a low-mass X-ray binary hosting a neutron star and is one of the few accreting millisecond X-ray pulsars with X-ray bursts. We report on a 20 ks Chandra grating observation of IGR J17511-3057, performed on 2009 September 22. We determine the most accurate X-ray position of IGR J17511-3057, {alpha}{sub J2000} = 17{sup h}51{sup m}08.{sup s}66, {delta}{sub J2000} = -30 Degree-Sign 57'41.''0 (90% uncertainty of 0.''6). During the observation, a {approx}54 s long type-I X-ray burst is detected. The persistent (non-burst) emission has an absorbed 0.5-8 keV luminosity of 1.7 Multiplication-Sign 10{sup 36} erg s{sup -1} (at 6.9 kpc) and can be well described by a thermal Comptonization model of soft, {approx}0.6 keV, seed photons upscattered by a hot corona. The type-I X-ray burst spectrum, with average luminosity over the 54 s duration L{sub 0.5-8{sub keV}} = 1.6 Multiplication-Sign 10{sup 37} erg s{sup -1}, can be well described by a blackbody with kT{sub bb} {approx} 1.6 keV and R{sub bb} {approx} 5 km. While an evolution in temperature of the blackbody can be appreciated throughout the burst (average peak kT{sub bb} = 2.5{sup +0.8}{sub -0.4} keV to tail kT{sub bb} = 1.3{sup +0.2}{sub -0.1} keV), the relative emitting surface shows no evolution. The overall persistent and type-I burst properties observed during the Chandra observation are consistent with what was previously reported during the 2009 outburst of IGR J17511-3057.

  12. Chandra Opens New Line of Investigation on Dark Energy

    Science.gov (United States)

    2004-05-01

    Astronomers have detected and probed dark energy by applying a powerful, new method that uses images of galaxy clusters made by NASA's Chandra X-ray Observatory. The results trace the transition of the expansion of the Universe from a decelerating to an accelerating phase several billion years ago, and give intriguing clues about the nature of dark energy and the fate of the Universe. "Dark energy is perhaps the biggest mystery in physics," said Steve Allen of the Institute of Astronomy (IoA) at the University of Cambridge in England, and leader of the study. "As such, it is extremely important to make an independent test of its existence and properties." Abell 2029 Chandra X-ray Image of Abell 2029 Allen and his colleagues used Chandra to study 26 clusters of galaxies at distances corresponding to light travel times of between one and eight billion years. These data span the time when the Universe slowed from its original expansion, before speeding up again because of the repulsive effect of dark energy. "We're directly seeing that the expansion of the Universe is accelerating by measuring the distances to these galaxy clusters," said Andy Fabian also of the IoA, a co-author on the study. The new Chandra results suggest that the dark energy density does not change quickly with time and may even be constant, consistent with the "cosmological constant" concept first introduced by Albert Einstein. If so, the Universe is expected to continue expanding forever, so that in many billions of years only a tiny fraction of the known galaxies will be observable. More Animations Animation of the "Big Rip" If the dark energy density is constant, more dramatic fates for the Universe would be avoided. These include the "Big Rip," where dark energy increases until galaxies, stars, planets and eventually atoms are eventually torn apart. The "Big Crunch," where the Universe eventually collapses on itself, would also be ruled out. Chandra's probe of dark energy relies on the unique

  13. Asymmetric acoustic transmission in multiple frequency bands

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong-xiang, E-mail: jsdxshx@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Zhang, Shu-yi [Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  14. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography

    Science.gov (United States)

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  15. Effective grating theory for resonance domain surface-relief diffraction gratings.

    Science.gov (United States)

    Golub, Michael A; Friesem, Asher A

    2005-06-01

    An effective grating model, which generalizes effective-medium theory to the case of resonance domain surface-relief gratings, is presented. In addition to the zero order, it takes into account the first diffraction order, which obeys the Bragg condition. Modeling the surface-relief grating as an effective grating with two diffraction orders provides closed-form analytical relationships between efficiency and grating parameters. The aspect ratio, the grating period, and the required incidence angle that would lead to high diffraction efficiencies are predicted for TE and TM polarization and verified by rigorous numerical calculations.

  16. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    Science.gov (United States)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  17. Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating

    CERN Document Server

    Zhu, Xiaolong; Jepsen, Peter Uhd; Hansen, Ole; Mortensen, N Asger; Xiao, Sanshui

    2013-01-01

    We experimentally demonstrate graphene-plasmon polariton excitation in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The subwavelength silicon grating is fabricated by a nanosphere lithography technique with a self-assembled nanosphere array as a template. Measured transmission spectra illustrate the excitation of graphene-plasmon polaritons, which is further supported by numerical simulations and theoretical prediction of plasmonband diagrams. Our grating-assisted coupling to graphene-plasmon polaritons forms an important platform for graphene-based opto-electronics applications.

  18. Chandra and Swift Observations of Unidentified Fermi-LAT Objects

    Science.gov (United States)

    Donato, Davide; Cheung, T.; Gehrels, N.

    2010-03-01

    In the last year we targeted some of the unidentified Fermi-LAT objects (UFOs) at high Galactic latitude with Chandra and Swift in order to determine the basic properties (positions, fluxes, hardness ratios) of all X-ray sources within the Fermi-LAT localization circles. These satellites enable us to detect the X-ray conterparts with a flux limit that is at least an order of magnitude lower than achieved in extant RASS data and to further follow-up at other wavelengths, with the ultimate goal to reveal the nature of these enigmatic gamma-ray sources. Here we present the results obtained with 5 Chandra pointings of high Galactic latitude UFOs in the Fermi-LAT 3-months bright source list. The association of detected X-ray sources within the improved 11-months Fermi-LAT localization circles with available optical and radio observations is discussed.

  19. Adapative software solutions: lessons learned from Chandra flight operations

    Science.gov (United States)

    Shropshire, Daniel P.; Bucher, Sabina; Rose, Joseph

    2006-06-01

    After over 6 highly successful years on orbit, the Chandra X-ray Observatory continues to deliver world class science to members of the X-ray community. Much of this success can be attributed to an excellent space vehicle, however; the creation of several unique software tools has allowed for extremely efficient and smooth running operations. The Chandra Flight Operations Team, staffed by members of Northrop Grumman Space Technology, has created a suite of software tools designed to help optimize on-console operations, mission planning and scheduling, and spacecraft engineering and trending. Many of these tools leverage COTS products and Web based technologies. We describe the original mission concepts, need for supplemental software tools, development and implementation, use of these tools in the current operations scenario, and efficiency improvements due to their use.

  20. Dark Matter Reality Check: Chandra Casts Cloud On Alternative Theory

    Science.gov (United States)

    2002-10-01

    New evidence from NASA's Chandra X-ray Observatory challenges an alternative theory of gravity that eliminates the need for dark matter. The observation also narrows the field for competing forms of dark matter, the elusive material thought to be the dominant form of matter in the universe. An observation of the galaxy NGC 720 shows it is enveloped in a slightly flattened, or ellipsoidal cloud of hot gas that has an orientation different from that of the optical image of the galaxy. The flattening is too large to be explained by theories in which stars and gas are assumed to contain most of the mass in the galaxy. "The shape and orientation of the hot gas cloud require it to be confined by an egg-shaped dark matter halo," said David Buote of the University of California, Irvine, and lead author of a report on this research in the 2002 September 20 issue of The Astrophysical Journal. "This means that dark matter is not just an illusion due to a shortcoming of the standard theory of gravity - it is real." According to the generally accepted standard theory of gravity, the hot X-ray cloud would need an additional source of gravity - a halo of dark matter - to keep the hot gas from expanding away. The mass of dark matter required would be about five to ten times the mass of the stars in the galaxy. If the dark matter tracked the optical light from the stars in the galaxy, the hot X-ray cloud would be more round than it is. The flattened shape of the hot gas cloud requires a flattened dark matter halo. An alternative theory of gravity called MOND, for Modified Newtonian Dynamics, was proposed in 1983 by Mordecai Milgrom of the Weizmann Institute in Israel, and has remained viable over the years. MOND does away with the need for dark matter by modifying the theory where the acceleration produced by gravity is very small, such as the outskirts of galaxies. However, MOND cannot explain the Chandra observation of NGC 720. This is apparently the first dynamical evidence that

  1. Variability of Optical Counterparts in the Chandra Galactic Bulge Survey

    CERN Document Server

    Britt, Christopher T; Johnson, C B; Baldwin, A; Jonker, P G; Nelemans, G; Torres, M A P; Maccarone, T; Steeghs, D; Greiss, S; Heinke, C; Bassa, C G; Collazzi, A; Villar, A; Gabb, M; Gossen, L

    2014-01-01

    We present optical lightcurves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey. Using data from the Mosaic-II instrument on the Blanco 4m Telescope at CTIO, we gathered time-resolved photometric data on timescales from $\\sim2$ hr to 8 days over the $\\frac{3}{4}$ of the X-ray survey containing sources from the initial GBS catalog. Among the lightcurve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. $87\\%$ of X-ray sources have at least one potential optical counterpart. $24\\%$ of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and di...

  2. Highlights and discoveries from the Chandra X-ray Observatory.

    Science.gov (United States)

    Tananbaum, H; Weisskopf, M C; Tucker, W; Wilkes, B; Edmonds, P

    2014-06-01

    Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.

  3. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    Energy Technology Data Exchange (ETDEWEB)

    Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.; Gruzintsev, A. N.; Il’in, A. I.; Trofimov, O. V. [Russian Academy of Sciences, Institute of Microelectronics Technology and High-Purity Materials (Russian Federation)

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  4. Resonant Effects of FPL and SPP for Light Transmitting through Subwavelength Metallic Gratings

    Institute of Scientific and Technical Information of China (English)

    马佑桥; 周骏; 何苗; P. Mormile

    2011-01-01

    A new model is proposed to explain the physical mechanism of the extraordinary transmission enhancement in subwavelength metallic grating. The extraordinary transmission enhancement is described by the co-operation of Fabry Perot-like (FPL) resonance and the surface plasmon polariton (SPP) resonance. The rigorous coupled-wave analysis (RCWA) and the finite difference time domain (FDTD) method are employed to illustrate the model by calcu- lating the transmission and the field distributions in the subwavelength metallic grating, respectively. And the numerical calculations show that transmission enhancement is achieved when the coupling resonance of the incident light, the surface plasmon polariton mode and the Fabry-Perot-Like mode is happened, which are in good agreement with the proposed model.

  5. Theoretical analysis of ridge gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2006-01-01

    , and the length of the grating. Particular attention is paid to the fraction of the LRSPP power lost due to the OUPS. We find an asymmetry in the OUPS spectra in the vicinity of the band gap and relate this asymmetry to that observed in the transmission spectra. It is found that in order to maximize a reflection...

  6. On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Weirich, Johannes; Alkeskjold, Thomas Tanggaard;

    2009-01-01

    We design and fabricate an on-chip tunable long-period grating device by integrating a liquid crystal photonic bandgap fiber on silicon structures. The transmission axis of the device can be electrically rotated in steps of 45° as well as switched on and off with the response time in the millisec...

  7. On-chip tunable long-period gratings in liquid crystal infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Weirich, Johannes; Alkeskjold, Thomas Tanggaard;

    2009-01-01

    An on-chip tunable long-period grating device in a liquid crystal infiltrated photonic crystal fiber is experimentally demonstrated. The depth and position of the notch are tuned electrically and thermally. The transmission axis can be electrically controlled as well as switched on and off....

  8. Coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks.

    Science.gov (United States)

    Fan, Ren-Hao; Qi, Dong-Xiang; Hu, Qing; Qin, Ling; Peng, Ru-Wen; Wang, Mu

    2013-02-01

    In this work, we investigate the coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks theoretically and experimentally. We have observed three kinds of modes in these structures: the cavity mode, the propagated surface plasmon (PSP) mode and the localized surface plasmon (LSP) mode, which can enhance the optical transmission. Firstly, it is shown that the cavity mode is excited in the grating stacks. And the cavity mode has redshift if we enhance the thickness of metal layers, while it has blueshift when we increase the thickness of dielectric layers. The redshift of the cavity mode also occurs when the number of repeating layers is increased. Secondly, the PSP mode is also excited, which can be described by the effective permittivity method. It is found that the PSP modes are coupled with each other, which leads to a modified dispersion relation of surface plasmon polaritons (SPP). The theoretical analysis is in good agreement with the observed transmission enhancement in the grating stacks. And the coupling of PSPs also leads to a blueshift when the number of metal layers is increased. Thirdly, the LSP mode, generated in single metal strip, can also enhance the optical transmission of the grating stacks. Yet the transmission intensity induced by LSP decreases rapidly with increasing the number of metal layers. The investigations here may have potential applications in designing plasmonic metamaterials and subwavelength optical devices.

  9. Studying the Evolving Universe with XMM-Newton and Chandra

    CERN Document Server

    Hasinger, G

    2003-01-01

    First indications of the warm/hot intergalactic medium, tracing out the large scale structure of the universe, have been obtained in sensitive Chandra and XMM-Newton high resolution absorption line spectroscopy of bright blazars. High resolution X-ray spectroscopy and imaging also provides important new constraints on the physical condition of the cooling matter in the centers of clusters, requiring major modifications to the standard cooling flow models. XMM-Newton and Chandra low resolution spectroscopy detected significant Fe K_alpha absorption features in the spectrum of the ultraluminous, high redshift lensed broad absorption line QSO APM 08279+5255, yielding new insights in the outflow geometry indicating a supersolar Fe/O ratio. Chandra high resolution imaging spectroscopy of the nearby ULIRG/obscured QSO NGC 6240 for the first time gave evidence of two active supermassive black holes in the same galaxy, likely bound to coalesce in the course of the ongoing major merger in this galaxy. Deep X-ray surve...

  10. Unveiling obscured accretion in the Chandra Deep Field South

    CERN Document Server

    Fiore, F; Santini, P; Puccetti, S; Brusa, M; Feruglio, C; Fontana, A; Giallongo, E; Comastri, A; Gruppioni, C; Pozzi, F; Zamorani, G; Vignali, C

    2007-01-01

    A large population of heavily obscured, Compton Thick AGNs is predicted by models of galaxy formation, models of Cosmic X-ray Background and by the ``relic'' super-massive black-hole mass function measured from local bulges. However, so far only a handful of Compton thick AGNs have been possibly detected using even the deepest Chandra and XMM surveys. Compton-thick AGNs can be recovered thanks to the reprocessing of the AGN UV emission in the infrared by selecting sources with AGN luminosity's in the mid-infrared and faint near-infrared and optical emission. To this purpose, we make use of deep HST, VLT, Spitzer and Chandra data on the Chandra Deep Field South to constrain the number of Compton thick AGN in this field. We show that sources with high 24micron to optical flux ratios and red colors form a distinct source population, and that their infrared luminosity is dominated by AGN emission. Analysis of the X-ray properties of these extreme sources shows that most of them are indeed likely to be highly obsc...

  11. Cross-matching within the Chandra Source Catalog

    Science.gov (United States)

    Rots, Arnold H.; Burke, Douglas J.; Civano, Francesca; Hain, Roger; Nguyen, Dan

    2017-01-01

    Cross-matching among overlapping source detections in the development of the Chandra Source Catalog (CSC) presents considerable challenges, since the Point Spread Function (PSF) of the Chandra X-ray Observatory varies significantly over the field of view. For the production of the second release of the CSC we have developed a cross-match tool that is based on the Bayesian algorithms by Budavari, Heinis, and Szalay (ApJ 679, 301 and 705, 739), making use of the error ellipses for the derived positions of the detections.However, calculating match probabilities only on the basis of error ellipses breaks down when the PSFs are significantly different. This is an issue that is not commonly addressed in cross-match tools. We have applied a satisfactory modification to the algorithm that, although not perfect, ameliorates the issue for the vast majority of such cases.A separate issue is that as the number of overlapping detections increases, the number of matches to be considered increases at an alarming rate, requiring procedural adjustments to ensure that the cross-matching finishes within a Hubble time.We intend to make the tool available as a general purpose cross-match engine for calculating match probabilities between sources in multiple catalogs simultaneously.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  12. The spectral combination characteristic of grating and the bi-grating diffraction imaging effect

    Institute of Scientific and Technical Information of China (English)

    ZHANG WeiPing; HE XiaoRong

    2007-01-01

    This paper reports on a new property of grating,namely spectral combination,and on bi-grating diffraction imaging that is based on spectral combination.The spectral combination characteristic of a grating is the capability of combining multiple light beams of different wavelengths incident from specific angles into a single beam.The bi-grating diffraction imaging is the formation of the image of an object with two gratings: the first grating disperses the multi-color light beams from the object and the second combines the dispersed light beams to form the image.We gave the conditions necessary for obtaining the spectral combination.We also presented the equations that relate the two gratings' spatial frequencies,diffraction orders and positions necessary for obtaining the bi-grating diffraction imaging.

  13. Polarization-Controlled Broad Color Palette Based on an Ultrathin One-Dimensional Resonant Grating Structure

    Science.gov (United States)

    Koirala, Ishwor; Shrestha, Vivek Raj; Park, Chul-Soon; Lee, Sang-Shin; Choi, Duk-Yong

    2017-01-01

    Highly efficient polarization-tuned structural color filters, which are based on a one- dimensional resonant aluminum grating that is integrated with a silicon nitride waveguide, are proposed and demonstrated to feature a broad color palette. For such a metallic grating structure, transmissive color filtering is only feasible for the incident transverse-magnetic (TM) polarization due to its high reflection regarding the transverse-electric (TE) case; however, polarization-tuned customized colors can be efficiently achieved by optimizing the structural parameters like the duty ratio of the metallic grating. For the fabricated color filters, the transmission peaks, which are imputed to the resonance between the incident light and the guided modes that are supported by the dielectric waveguide, provided efficiencies as high as 90% and 70% for the TM and TE polarizations, respectively, as intended. Through the tailoring of the polarization, a group of filters with different grating periods were successfully exploited to produce a broad color palette spanning the entire visible band. Lastly, a nanoscale alphabetic pattern featuring a flexible combination of colorations was practically constructed via an arrangement of horizontal and vertical gratings.

  14. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  15. Silicon waveguide polarization rotation Bragg grating with resonator cavity section

    Science.gov (United States)

    Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori

    2017-04-01

    Bragg grating with resonator cavity that converts the input polarization to orthogonal polarization is reported. The device works similar to a Fabry–Pérot or ring resonators and very narrow polarization independent wavelength peak can be generated. The transfer matrix methods are used to examine the device characteristics. A 0.2-nm-wide polarization independent transmission wavelength peak was obtained by experiment. We also show theoretically using finite-difference-time-domain method that a flat-top response can be obtained by a two cavity structure.

  16. Label-free biosensor based on long period grating

    Science.gov (United States)

    Baldini, Francesco; Chiavaioli, Francesco; Giannetti, Ambra; Brenci, Massimo; Trono, Cosimo

    2013-03-01

    Long period gratings have been recently proposed as label-free optical devices for biochemical sensing. A biochemical interaction along the grating region changes the biolayer refractive index and a change in the fiber transmission spectrum occurs. The fiber biofunctionalization was performed with a novel chemistry using Eudragit L100 copolymer as opposed to the commonly-used silanization procedure. An IgG/anti-IgG bioassay was carried out for studying the antigen/antibody interaction. The biosensor was fully characterized, monitoring the kinetics during the antibody immobilization and achieving the calibration curve of the assay. To compare the biosensor performance, two LPG-based biosensors with distinct grating periods were characterized following the same bioassay protocol. Experimental results demonstrated an enhancement of the biosensor performance when the fundamental core mode of a single-mode fiber couples with a higher order cladding mode. Considering an LPG manufactured on a bare optical fiber, in which the coupling occurs with the 7-th cladding mode, a dynamic signal range of 0.33 nm, a working range of 1.7 - 1450 mg L-1 and a LOD of 500 μg L-1 were achieved

  17. XMM-Newton and Chandra Observations of the Galaxy Group NGC 5044. 1; Evidence for Limited Multiphase Hot Gas

    Science.gov (United States)

    Buote, David A.; Lewis, Aaron D.; Brighenti, Fabrizio; Mathews, William G.

    2003-01-01

    Using new XMM and Chandra observations, we present an analysis of the temperature structure of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. A spectral deprojection analysis of data extracted from circular annuli reveals that a two-temperature model (2T) of the hot gas is favored over single-phase or cooling flow (M = 4.5 +/- 0.2 solar mass/yr) models within the central approx.30 kpc. Alternatively, the data can be fitted equally well if the temperature within each spherical shell varies continuously from approx.T(sub h) to T(sub c) approx. T(sub h)/2, but no lower. The high spatial resolution of the Chandra data allows us to determine that the temperature excursion T(sub h) approaches T(sub c) required in each shell exceeds the temperature range between the boundaries of the same shell in the best-fitting single-phase model. This is strong evidence for a multiphase gas having a limited temperature range. We do not find any evidence that azimuthal temperature variations within each annulus on the sky can account for the range in temperatures within each shell. We provide a detailed investigation of the systematic errors on the derived spectral models considering the effects of calibration, plasma codes, bandwidth, variable NH, and background rate. We find that the RGS gratings and the EPIC and ACIS CCDs give fully consistent results when the same models are fitted over the same energy ranges for each instrument. The cooler component of the 2T model has a temperature (T(sub c) approx. 0.7 keV) similar to the kinetic temperature of the stars. The hot phase has a temperature (T(sub h) approx. 1.4 keV) characteristic of the virial temperature of the solar mass halo expected in the NGC 5044 group. However, in view of the morphological disturbances and X-ray holes visible in the Chandra image within R approx. equals 10 kpc, bubbles of gas heated to approx.T(sub h) in this region may be formed by intermittent AGN feedback. Some

  18. Chandra Reviews Black Hole Musical: Epic But Off-Key

    Science.gov (United States)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also

  19. Dark Energy, Black Holes and Exploding Stars: NASA's Chandra Observatory Marks Five Years of Scientific Achievement

    Science.gov (United States)

    2004-08-01

    On Aug. 12, 1999, NASA's Chandra X-ray Observatory opened its sunshade doors for the first time, allowing celestial X-ray light to reach the observatory's mirrors. This one small step for the observatory proved to be a giant leap for science as Chandra began its mission to shed new light on a violent, mysterious universe invisible to the human eye. The Marshall Center manages the Chandra program. On August 12, 1999, NASA's Chandra X-ray Observatory opened its sunshade doors for the first time, allowing celestial X-ray light to reach the observatory's mirrors. This one small step for the observatory proved to be a giant leap for science as Chandra began its mission to shed new light on a violent, mysterious universe invisible to the human eye. "Humans cannot see X-rays, but Chandra can," said Chandra project scientist Dr. Martin C. Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "And what the observatory has revealed in five short years has been nothing short of amazing. Thanks to Chandra, we've gleaned new information on dark energy, black holes, exploding stars and all other categories of astronomical objects." "Chandra's resolving power is equivalent to the ability to read a newspaper headline a half-mile away," said Chandra Program Manager Keith Hefner of the Marshall Center. "It's an engineering marvel that has performed nearly flawlessly and provided major science discoveries over the past five years." A Chandra timeline reveals some of its most noteworthy discoveries: * Chandra finds a ring around the Crab Nebula. After only two months in space, the observatory reveals a brilliant ring around the heart of the Crab Pulsar in the Crab Nebula - the remains of a stellar explosion - providing clues about how the nebula is energized by a pulsing neutron, or collapsed, star. (Sept. 28, 1999) * Chandra reveals a possible black hole in the Milky Way. Culminating 25 years of searching by astronomers, researchers say that a faint X-ray source, newly

  20. The Chandra X-ray Observatory is prepped for solar panel deployment

    Science.gov (United States)

    1999-01-01

    In the Vertical Processing Facility, a TRW technician checks the attachment of the solar panel array (out of sight to the right) to the Chandra X-ray Observatory, at left. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93.

  1. Dynamic fiber Bragg grating sensing method

    Science.gov (United States)

    Ho, Siu Chun Michael; Ren, Liang; Li, Hongnan; Song, Gangbing

    2016-02-01

    The measurement of high frequency vibrations is important in many scientific and engineering problems. This paper presents a novel, cost effective method using fiber optic fiber Bragg gratings (FBGs) for the measurement of high frequency vibrations. The method uses wavelength matched FBG sensors, with the first sensor acting as a transmission filter and the second sensor acting as the sensing portion. Energy fluctuations in the reflection spectrum of the second FBG due to wavelength mismatch between the sensors are captured by a photodiode. An in-depth analysis of the optical circuit is provided to predict the behavior of the method as well as identify ways to optimize the method. Simple demonstrations of the method were performed with the FBG sensing system installed on a piezoelectric transducer and on a wind turbine blade. Vibrations were measured with sampling frequencies up to 1 MHz for demonstrative purposes. The sensing method can be multiplexed for use with multiple sensors, and with care, can be retrofitted to work with FBG sensors already installed on a structure.

  2. Alternative technique for biodiesel quality control using an optical fiber long-period grating sensor

    Directory of Open Access Journals (Sweden)

    Rosane Falate

    2007-01-01

    Full Text Available We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method.

  3. Alternative technique for biodiesel quality control using an optical fiber long-period grating sensor

    Energy Technology Data Exchange (ETDEWEB)

    Falate, Rosane [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Informatica; Nike, Karen; Costa Neto, Pedro Ramos da [Universidade Tecnologica Federal do Parana, Curitiba (Brazil). Dept. de Quimica; Cacao Junior, Eduardo; Muller, Marcia; Kalinowski, Hypolito Jose; Fabris, Jose Luis [Universidade Tecnologica Federal do Parana, Curitiba (Brazil). Dept. de Fisica]. E-mail: fabris@utfpr.edu.br

    2007-07-01

    We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method. (author)

  4. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.

    Science.gov (United States)

    Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J

    2012-11-09

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.

  5. Recording multiple holographic gratings in silver-doped photopolymer using peristrophic multiplexing

    Indian Academy of Sciences (India)

    V Pramitha; Rani Joseph; K Sreekumar; C Sudha Kartha

    2010-12-01

    Plane-wave transmission gratings were stored in the same location of silver-doped photopolymer film using peristrophic multiplexing techniques. Constant and variable exposure scheduling methods were adopted for storing gratings in the film using He–Ne laser (632.8 nm). The role of recording geometry on the dynamic range of the material was studied by comparing the results obtained from both techniques. Peristrophic multiplexing with rotation of the film in a plane normal to the bisector of the incident beams resulted in better homogenization of diffraction efficiencies and larger /# value.

  6. Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings

    Science.gov (United States)

    Cui, Xuan; Tian, Hao; Du, Yan; Shi, Guang; Zhou, Zhongxiang

    2016-11-01

    We investigate narrowband transmission filters based on subwavelength-grating reflectors at normal incidence. Computational results show that the filtering is realized through symmetry-protected mode coupling. The guided mode resonances introduced by the slab layer allow flexible control of the filter frequencies. The quality factor of the filters could exceed 106. Dielectric gratings can be used over the entire range of electromagnetic waves, owing to their scale-invariant operations. Owing to the high refraction index and low index dispersion of semiconductors in the infrared range, these filters can be applied over a broad range from near infrared to terahertz frequencies.

  7. Interrogating a Fiber Bragg Grating Vibration Sensor by Narrow Line Width Light

    Institute of Scientific and Technical Information of China (English)

    Jun Chang; Dian-Heng Huo; Liang-Zhu Ma; Xiao-Hui Liu; Tong-Yu Liu; Chang Wang

    2008-01-01

    A method to interrogate fiber Bragg grating vibration sensor by narrow line width light is demonstrated. The interrogation scheme takes advantage of the intensity modulation of narrow spectral bandwidth light, such as distributed feedback laser, when a reflection or transmission spectrum curve of an fiber Bragg grating (FBG) moves due to the strain which is applied on the sensor. The sensor's response to accelerating frequency and amplitude is measured by experiment. The factors which have impacts on the sensitivity of the interrogation system are also discussed.

  8. A New Idea and Technique of Fiber Gratings and Photodetectors in Broad-band Fiber Communication Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Contents of this thesis are supported by the National Natural Foudation of China under Contract No.69625101, and the item is named “Tunable Optical Technology in Wavelength Division Multiplexing (WDM)” and is under charge of Professor Ren Xiaomin. They are also supported by subject 307 in National Program “863”: i.e., RCE photodetectors (PDs) used in Wavelength Division Multiplexing. Fiber Bragg Gratings (FBGs) have emerged as important optical fiber passive components in a variety of light-wave applications. It is expected that FBGs will play a key role in the next generation of optical fiber communication systems and sensor fileds. Most of these applications are based on the narrow-band reflection of FBGs. In this thesis, transmission dispersion, nonlinearity and tunability of FBGs are studied. The main contents are as follows: Transmission dispersion of FBGs is studied and the capability of dispersion compensation of FBGs is calculated theoretically. In the experiments, the dispersions of 10 Gb/s at 11.1 km and 22.22 km are compensated successfully by an unchirped fiber grating for the first time in China and the tunable compensation is achieved for the first time internationally. The scheme of tunable dispersion compensation using cascaded fiber gratings in WDM is analyzed and designed. It is indicated that the dispersion compensation in transmission using uniform fiber gratings is a better and more effective compensation scheme compared with the tradifitonal dispersion compensation using chirped fiber gratings. It is originally proposed that people can simulate characteristics of a long distance optical fiber by a short uniform fiber grating. This is verified for the first time experimentally. In the experiment, a short grating (about 1 cm) operated in transmission is used to simulate pulse broadening of 11.1 km optical fiber. This method can be used to detect performance of long distance transmission of communication systems. It is originally proposed

  9. The spectral combination characteristic of grating and the bi-grating diffraction imaging effect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper reports on a new property of grating, namely spectral combination, and on bi-grating diffraction imaging that is based on spectral combination. The spectral combination characteristic of a grating is the capability of combining multiple light beams of different wavelengths incident from specific angles into a single beam. The bi-grating diffraction imaging is the formation of the image of an object with two gratings: the first grating disperses the multi-color light beams from the object and the second combines the dispersed light beams to form the image. We gave the conditions necessary for obtaining the spectral combination. We also presented the equations that relate the two gratings’ spatial frequencies, diffraction orders and positions necessary for obtaining the bi-grating diffraction imaging.

  10. Development of tilted fibre Bragg gratings using highly coherent 255 nm radiation

    Indian Academy of Sciences (India)

    O Prakash; J Kumar; R Mahakud; U Kumbhkar; S V Nakhe; S K Dixit

    2014-02-01

    This paper reports the study on development of tilted fibre Bragg gratings using highly coherent 255 nm radiation, obtained from the second harmonic generation (SHG) of copper vapour laser (CVL). The transmission and reflection spectra of the tilted fibre Bragg gratings (TFBG) were studied for the tilt angles of 0° (normal FBG), 1°, 3° and 4° between the fibre axis and the interference fringe plane. It was observed that as the angle of fibre axis and phase mask increased, the main Bragg peak shifted towards the higher wavelength and transmission dip decreased. The transmission dip of the cladding mode first increased and then decreased after reaching a maximum with the increase in the tilt angle.

  11. Yes, High School Students Can Analyze Chandra Data

    Science.gov (United States)

    Keohane, J. W.; Clearfield, C. R.; Olbert, C. M.

    2002-12-01

    For the past two years, high school students at the North Carolina School of Science and Math (NCSSM) have worked with new and archival Chandra data, and have produced interesting scientific results. These results have included one refereed paper in the Ap.J., and about a dozen presentations at scientific meetings (including three at this meeting). The students were selected, based on interest, from the junior class at NCSSM, to stay on campus and work intensively for 2 to 4 weeks over the summer. Each team of students selected an object with public Chandra ACIS data, and were taught how to produce data products such as images and spectra, as well as conduct a literature search. In most cases, a paper had already been published using those data, and the students were usually able to reproduce the results. As the students waded through the literature, they would search for a theory to test or an interesting new phenomenon. Often the students would request an image in another wavelength to compare in detail to the Chandra data. After the summer, many students continued to work throughout the following fall semester, producing a paper for submission to the Siemens Westinghouse Science and Technology Competition by the beginning of October. In the process of conducting research, the students learn to apply many physics concepts, and learn valuable scientific research and writing skills. Those students that choose to continue with astrophysics can often dive directly into a high-level research project immediately when they arrive at college. These programs have been funded by NASA, through E/PO grants attached to parent research grants.

  12. Grating droplets with a mesh

    Science.gov (United States)

    Soto, Dan; Le Helloco, Antoine; Clanet, Cristophe; Quere, David; Varanasi, Kripa

    2016-11-01

    A drop thrown against a mesh can pass through its holes if impacting with enough inertia. As a result, although part of the droplet may remain on one side of the sieve, the rest will end up grated through the other side. This inexpensive method to break up millimetric droplets into micrometric ones may be of particular interest in a wide variety of applications: enhancing evaporation of droplets launched from the top of an evaporative cooling tower or preventing drift of pesticides sprayed above crops by increasing their initial size and atomizing them at the very last moment with a mesh. In order to understand how much liquid will be grated we propose in this presentation to start first by studying a simpler situation: a drop impacting a plate pierced with a single off centered hole. The study of the role of natural parameters such as the radius drop and speed or the hole position, size and thickness allows us to discuss then the more general situation of a plate pierced with multiple holes: the mesh.

  13. Alignment free characterization of 2D gratings

    CERN Document Server

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis

    2015-01-01

    Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.

  14. Reflectivity-modulated grating-mirror

    DEFF Research Database (Denmark)

    2012-01-01

    The invention relates to vertical cavity lasers (VCL) incorporating a reflectivity-modulated grating mirror (1) for modulating the laser output. A cavity is formed by a bottom mirror (4), an active region (3), and an outcoupling top grating mirror (1) formed by a periodic refractive index grating...... to the oscillation axis. A modulated voltage (91) is applied in reverse bias between the n- and p-doped layers to modulate the refractive index of the electrooptic material layer (12) and thereby the reflectivity spectrum of the grating mirror (1). The reflectivity of the grating mirror (1) can be modulated between...... a reflectivity with little or no out coupling and a reflectivity with normal out coupling, wherein lasing in the VCL is supported at both the first and the second reflectivity. As the out coupling mirror modulates the output, the lasing does not need to be modulated, and the invention provides the advantage...

  15. Lessons Learned Designing and Building the Chandra Telescope

    Science.gov (United States)

    Arenberg, Jonathan

    2016-04-01

    This poster offers some of the major lessons learned by key members of the Chandra Telescope team. These lessons are gleaned from our experiences developing, designing, building and testing the telescope and its subsystems, with 15 years of hindsight. Among the topics to be discussed are the early developmental tests, known as VETA-I and VETA-II, requirements derivation, the impact of late requirements and reflection on the conservatism in the design process. This poster offers some opinions on how these lessons can affect future missions.

  16. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.;

    2009-01-01

    function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with langzrang = 0.55 derived from 400 deg2 ROSAT serendipitous survey and 49 brightest z ≈ 0.05 clusters...... detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires ΩΛ > 0 with a ~5σ significance, and constrains the dark energy equation-of-state parameter to w 0 = –1.14 ± 0.21, assuming a constant w and a flat universe. Cluster information also significantly improves...

  17. Chandra Observations of Tycho’s Supernova Remnant

    Indian Academy of Sciences (India)

    U. Hwang; R. Petre; A. E. Szymkowiak; S. S. Holt

    2002-03-01

    We present a new Chandra observation of Tycho’s supernova remnant with the Advanced CCD Imaging Spectrometer. Multicolor X-ray imaging reveals new details of the outer shock and ejecta. At energies between 4 and 6 keV, the outline of the outer shock is clearly revealed in X-rays for the first time. The distribution of the emission from lines of Si and Fe are confirmed to have a different morphology from each other, and the Si ejecta are shown to extend to the blast shock at several locations. Characteristic spectra of the outer shock and ejecta are also presented.

  18. A Million-Second Chandra View of Cassiopeia A

    CERN Document Server

    Hwang, U; Badenes, C; Berends, F A; Blondin, J M; Cioffi, D; Delaney, T A; Dewey, D; Fesen, R A; Flanagan, K A; Fryer, C L; Ghavamian, P; Hughes, J P; Morse, J A; Plucinsky, P P; Petre, R; Pohl, M; Rudnick, L; Sankrit, R; Slane, P O; Smith, R K; Vink, J; Warren, J S; Hwang, Una; Badenes, Carles; Berendse, Fred; Blondin, John; Cioffi, Denis; Laney, Tracey De; Dewey, Daniel; Fesen, Robert; Flanagan, Kathryn A.; Fryer, Christopher L.; Ghavamian, Parviz; Hughes, John P.; Morse, Jon A.; Plucinsky, Paul P.; Petre, Robert; Pohl, Martin; Rudnick, Lawrence; Sankrit, Ravi; Slane, Patrick O.; Smith, Randall K.; Vink, Jacco; Warren, Jessica S.

    2004-01-01

    We introduce a million-second observation of the supernova remnant Cassiopeia A with the Chandra X-ray Observatory. The bipolar structure of the Si-rich ejecta (NE jet and SW counterpart) is clearly evident in the new images, and their chemical similarity is confirmed by their spectra. These are most likely due to jets of ejecta as opposed to cavities in the circumstellar medium, since we can reject simple models for the latter. The properties of these jets and the Fe-rich ejecta will provide clues to the explosion of Cas A.

  19. Chandra Discovers Eruption and Pulsation in Nova Outburst

    Science.gov (United States)

    2001-09-01

    NASA's Chandra X-ray Observatory has discovered a giant outburst of X-rays and unusual cyclical pulsing from a white dwarf star that is closely orbiting another star -- the first time either of these phenomena has been seen in X-rays. The observations are helping scientists better understand the thermonuclear explosions that occur in certain binary star systems. The observations of Nova Aquilae were reported today at the "Two Years of Science with Chandra" symposium by an international team led by Sumner Starrfield of Arizona State University. "We found two important results in our Chandra observations. The first was an underlying pulsation every 40 minutes in the X-ray brightness, which we believe comes from the cyclical expansion and contraction of the outer layers of the white dwarf," said Starrfield. "The other result was an enormous flare of X-rays that lasted for 15 minutes. Nothing like this has been seen before from a nova, and we don't know how to explain it." Novas occur on a white dwarf (a star which used up all its nuclear fuel and shrank to roughly the size of the Earth) that is orbiting a normal size star. Strong gravity tides drag hydrogen gas off the normal star and onto the white dwarf, where it can take more than 100,000 years for enough hydrogen to accumulate to ignite nuclear fusion reactions. Gradually, these reactions intensify until a cosmic-sized hydrogen bomb blast results. The outer layers of the white dwarf are then blown away, producing a nova outburst that can be observed for a period of months to years as the material expands into space. "Chandra has allowed us to see deep into the gases ejected by this giant explosion and extract unparalleled information on the evolution of the white dwarf whose surface is exploding," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics. The brightening of Nova Aquilae was first detected by optical astronomers in December 1999. "Although this star is at a distance of more than 6

  20. Chandra ACIS Observations of the Nearby Spiral Galaxy NGC 300

    Science.gov (United States)

    Bobar, Dale; Turner, Kevin; Schlegel, Eric M.

    2017-01-01

    The ACIS detector (Advanced CCD Imaging Spectrometer) onboard the Chandra X-ray Observatory has imaged the nearby spiral NGC 300 over three epochs for a total exposure of 1.885x102 ksec. We describe each observation as well as the merged data set. Each exposure contains 132 individual sources. We focus on the time variability and luminosity distributions of the sources. Initial results show no diffuse emissions in the galaxy. Finally, we compare the merged data set and the detected sources with other wavebands.

  1. Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method

    Science.gov (United States)

    Wu, Shun-Der; Glytsis, Elias N.

    2002-10-01

    The effects of finite number of periods (FNP) and finite incident beams on the diffraction efficiencies of holographic gratings are investigated by the finite-difference frequency-domain (FDFD) method. Gratings comprising 20, 15, 10, 5, and 3 periods illuminated by TE and TM incident light with various beam sizes are analyzed with the FDFD method and compared with the rigorous coupled-wave analysis (RCWA). Both unslanted and slanted gratings are treated in transmission as well as in reflection configurations. In general, the effect of the FNP is a decrease in the diffraction efficiency with a decrease in the number of periods of the grating. Similarly, a decrease in incident-beam width causes a decrease in the diffraction efficiency. Exceptions appear in off-Bragg incidence in which a smaller beam width could result in higher diffraction efficiency. For beam widths greater than 10 grating periods and for gratings with more than 20 periods in width, the diffraction efficiencies slowly converge to the values predicted by the RCWA (infinite incident beam and infinite-number-of-periods grating) for both TE and TM polarizations. Furthermore, the effects of FNP holographic gratings on their diffraction performance are found to be comparable to their counterparts of FNP surface-relief gratings. 2002 Optical Society of America

  2. Long-period grating and its cascaded counterpart in photonic crystal fiber for gas phase measurement.

    Science.gov (United States)

    Tian, Fei; Kanka, Jiri; Du, Henry

    2012-09-10

    Regular and cascaded long period gratings (LPG, C-LPG) of periods ranging from 460 to 590 μm were inscribed in an endlessly single mode photonic crystal fiber (PCF) using CO(2) laser for sensing measurements of helium, argon and acetylene. High index sensitivities in excess of 1700 nm/RIU were achieved in both grating schemes with a period of 460 μm. The sharp interference fringes in the transmission spectrum of C-PCF-LPG afforded not only greatly enhanced sensing resolution, but also accuracy when the phase-shift of the fringe pattern is determined through spectral processing. Comparative numerical and experimental studies indicated LP(01) to LP(03) mode coupling as the principal coupling step for both PCF-LPG and C-PCF-LPG with emergence of multi-mode coupling at shorter grating periods or longer resonance wavelengths.

  3. Spectrometer sensor using patterned nano-structure plasmon resonance grating (Conference Presentation)

    Science.gov (United States)

    Guo, Hong; Tian, Xueli; Guo, Junpeng

    2016-03-01

    Localized surface plasmon resonance has been extensively investigated for biochemical sensor applications. In traditional localized surface plasmon resonance biosensors, resonance spectra were measured in the reflection or transmission from the nanostructure devices. In this work, we demonstrate a new surface plasmon resonance sensor platform with which the localized surface plasmon resonance and shift were measured by using a CCD imager instead of using an optical spectrometer. In additional to the metal nanostructures which support localized plasmon resonance, we pattern the nanostructures into diffraction gratings with super-wavelength grating periods. The nanostructure diffraction gratings support localized plasmon resonance and also diffract localized plasmon resonance radiations into non-zeroth order diffractions. Plasmon resonance spectrum and shift are measured with a CCD imager in one of the diffraction orders. The new plasmon resonance spectrometer sensor combines the functions of sensing and spectral analysis into one apparatus and is capable of real-time visualization of the biochemical bonding process with an imager.

  4. Asymmetric mode coupling in arc-induced long-period fiber gratings

    Science.gov (United States)

    Martinez-Rios, A.; Torres-Gomez, I.; Anzueto-Sanchez, G.; Selvas-Aguilar, R.; Duran-Ramirez, V. M.; Guerrero-Viramontes, J. A.; Toral-Acosta, D.; Salceda Delgado, G.; Castillo-Guzman, A.

    2016-04-01

    An extensive experimental study of the transverse modal field characteristics of mircrobend arc-induced long-period fiber gratings is presented. A wavelength scanning of the near-field intensity pattern inside each loss band in the transmission spectrum, shows a clear asymmetry in the transverse intensity distribution resulting from the fabrication method. This asymmetry reflects as a 10.7 dB difference in the notch depths for two orthogonal polarizations. Though a one year study, it was found that that environmental conditions during fabrication strongly affects the gratings characteristics. The best performance was obtained during the autumn season, where microbend arc-induced long-period fiber gratings produce wavelength filters with short lengths (between 10 and 30 periods for depths in excess of 20 dB) and the insertion loss may be as low as 0.12 dB.

  5. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    Science.gov (United States)

    Liu, Peng; Yan, Feng-Ping; Li, Jian; Wang, Lin; Ning, Ti-Gang; Gong, Tao-Rong; Jian, Shui-Sheng

    2008-12-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate.

  6. Low Driving Voltage and Analysis of Azobenzene Polymer Doped Liquid Crystal Grating

    Institute of Scientific and Technical Information of China (English)

    SONG Jing; LIU Yong-Gang; MA Ji; XUAN Li

    2006-01-01

    We mix azobenzene polymer and liquid crystal in certain ratio. Then the mixture is injected into cells. Nonlinearly photoinduced birefringence takes place when linearly polarized ultraviolet is applied with the pattern photomask covering on the cells, which results in the formation of azobenzene polymer doped liquid crystalgrating. The obtained grating is characterized by an optical microscope and a He-Ne laser. The results indicate that the samples have clear grating structure, and the diffraction efficiencies can be modulated by electric field. The sample driving voltage is 0.6 V/μm. It is lower than the driving voltage of holographic polymer dispersed liquid crystal transmission grating and could be matched with the driving integrated circuit.

  7. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk 348

    Indian Academy of Sciences (India)

    J. Wang; J. S. Zhang; Q. Guo

    2014-09-01

    For H2O megamaser galaxy Mrk 348, Chandra and XMM–Newton data are analysed. The nuclear fitting results of XMM–Newton data suggest the possible existence of a heavily obscured AGN. But the nuclear spectrum extracted from Chandra cannot be well-fitted by the best fitting model for XMM–Newton. Further optimal fitting and discussions are needed.

  8. Historical Remembrances of the Chandra X-ray Observatory: How Partnerships Created Success

    Science.gov (United States)

    Burke, Robert

    2009-09-01

    As the astronomy community plans for new ventures in space, we're forced to find creative solutions to operate within the ever increasing fiscal constraints of the current economic environment. The Chandra X-ray Observatory program offers an example of how missions can be successfully developed within manageable budget constraints. The ten year anniversary offers us the chance to look back at the Chandra team's special partnership between scientists, managers, and industry that led to our success.Chandra experienced many of the challenges common to major observatories: state-of-the-art technical requirements, budget-induced slips, and restructurings. Yet the Chandra team achieved excellent performance for dramatically lower cost. In fact, Chandra completed its prime mission for billions of dollars less than originally planned. In 1992, NASA MSFC and Northrop Grumman (then TRW) together led a major restructure that saved approximately 3.4B in program cost, while we improved the imaging capability and observing efficiency of Chandra. This was accomplished by a combination of team-work, systems engineering, advanced technology insertion, and effective approaches for program implementation, combined with a high performance culture that aligned goals and focused on mission success. Northrop Grumman is proud of our role in supporting the NASA Marshall Space Flight Center and our academic partners in advancing the frontiers of x-ray astronomy and scientific discovery with Chandra. As Chandra continues its extended mission, the observatory continues to provide superb scientific performance.

  9. High-Resolution X-ray Spectroscopy of SNR 1987A: Chandra LETG and HETG Observations in 2007

    CERN Document Server

    Zhekov, Svetozar A; Dewey, Daniel; Canizares, Claude R; Borkowski, Kazimierz J; Burrows, David N; Park, Sangwook

    2008-01-01

    We present an extended analysis of the deep Chandra LETG and HETG observations of the supernova remnant 1987A (SNR 1987A) carried out in 2007. The global fits to the grating spectra show that the temperature of the X-ray emitting plasma in the slower shocks in this system has remained stable for the last three years, while that in the faster shocks has decreased. This temperature evolution is confirmed by the first light curves of strong X-ray emission lines and their ratios. On the other hand, bulk gas velocities inferred from the X-ray line profiles are too low to account for the post-shock plasma temperatures inferred from spectral fits. This suggests that the X-ray emission comes from gas that has been shocked twice, first by the blast wave and again by shocks reflected from the inner ring of SNR 1987A. A new model that takes these considerations into account gives support to this physical picture.

  10. Chandra X-ray Observations of the Young Stellar Cluster NGC 6193 in the Ara OB1 Association

    CERN Document Server

    Skinner, S L; Palla, F; Barbosa, C L D R

    2005-01-01

    A 90 ks Chandra HETG observation of the young stellar cluster NGC 6193 in the southern Ara OB1 association detected 43 X-ray sources in a 2' x 2' core region centered on the young O stars HD 150135 (O6.5V) and HD 150136 (O3+O6V). The cluster is dominated by exceptionally bright X-ray emission from the two O stars, which are separated by only 10 arcsecs. The X-ray luminosity of HD 150136 is log Lx = 33.39 (ergs/s), making it one of the most luminous O-star X-ray sources known. All of the fainter X-ray sources in the core region have near-IR counterparts, but JHK photometry provides little evidence for near-IR excesses. These core sources have typical mean photon energies of 2 keV and about one-third are variable. It is likely that some are young low-mass stars in the cluster, but cluster membership remains to be determined. Grating spectra show that the X-ray properties of HD 150135 and HD 150136 are similar, but not identical. Both have moderately broadened unshifted emission lines and their emission is domin...

  11. A Chandra Study of the Galactic Globular Cluster Omega Centauri

    CERN Document Server

    Haggard, Daryl; Davies, Melvyn B

    2009-01-01

    We analyze a ~70 ksec Chandra ACIS-I exposure of the globular cluster Omega Centauri (NGC 5139). The ~17 amin x 17 amin field of view fully encompasses three core radii and almost twice the half-mass radius. We detect 180 sources to a limiting flux of ~4.3x10^-16 erg/cm^2/s (Lx = 1.2x10^30 erg/s at 4.9 kpc). After accounting for the number of active galactic nuclei and possible foreground stars, we estimate that 45-70 of the sources are cluster members. Four of the X-ray sources have previously been identified as compact accreting binaries in the cluster--three cataclysmic variables (CVs) and one quiescent neutron star. Correlating the Chandra positions with known variable stars yields eight matches, of which five are probable cluster members that are likely to be binary stars with active coronae. Extrapolating these optical identifications to the remaining unidentified X-ray source population, we estimate that 20-35 of the sources are CVs and a similar number are active binaries. This likely represents most ...

  12. The Chandra COSMOS Legacy survey: optical/IR identifications

    CERN Document Server

    Marchesi, S; Elvis, M; Salvato, M; Brusa, M; Comastri, A; Gilli, R; Hasinger, G; Lanzuisi, G; Miyaji, T; Treister, E; Urry, C M; Vignali, C; Zamorani, G; Allevato, V; Cappelluti, N; Cardamone, C; Finoguenov, A; Griffiths, R E; Karim, A; Laigle, C; LaMassa, S M; Jahnke, K; Ranalli, P; Schawinski, K; Schinnerer, E; Silverman, J D; Smolcic, V; Suh, H; Trakhtenbrot, B

    2015-01-01

    We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 square degrees of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 micron identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 micron information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while 54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is availa...

  13. Chandra Multiwavelength Project X-ray Point Source Catalog

    CERN Document Server

    Kim, M; Wilkes, B J; Green, P J; Kim, E; Anderson, C S; Barkhouse, W A; Evans, N R; Ivezic, Z; Karovska, M; Kashyap, V L; Lee, M G; Maksym, P; Mossman, A E; Silverman, J D; Tananbaum, H D; Kim, Minsun; Kim, Dong-Woo; Wilkes, Belinda J.; Green, Paul J.; Kim, Eunhyeuk; Anderson, Craig S.; Barkhouse, Wayne A.; Evans, Nancy R.; Ivezic, Zeljko; Karovska, Margarita; Kashyap, Vinay L.; Lee, Myung Gyoon; Maksym, Peter; Mossman, Amy E.; Silverman, John D.; Tananbaum, Harvey D.

    2006-01-01

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6,800 X-ray sources detected in 149 Chandra observations covering \\~10 deg^2. The full ChaMP catalog sample is seven times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124 ksec, corresponding to a deepest X-ray flux limit of f_{0.5-8.0} = 9 x 10^{-16} erg/cm2/sec. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines, and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in 8 different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability and positional uncertainty. To quantitatively assess those parameters, we performed extensive simulations. In particular, we present a set of empirical equations: the flux limit as a function of effective exposure time, and the p...

  14. The BMW-Chandra survey. Serendipitous Source Catalogue

    CERN Document Server

    Romano, P; Campana, S; Moretti, A; Panzera, M R; Tagliaferri, G; Mottini, M

    2009-01-01

    We present the BMW-Chandra source catalogue derived from Chandra ACIS-I observations (exposure time >10ks) public as of March 2003 by using a wavelet detection algorithm (Lazzati et al. 1999; Campana et al. 1999). The catalogue contains a total of 21325 sources, 16758 of which are serendipitous. Our sky coverage in the soft band (0.5-2 keV, S/N =3) is ~8 deg^2 for F_X > 10^-13 erg cm^-2 s-1, and ~2 deg^2 for F_X >10^-15 erg cm^-2 s^-1. The catalogue contains information on positions, count rates (and errors) in three energy bands. (total, 0.5-7 keV; soft, 0.5-2 keV; and hard, 2-7keV), and in four additional energy bands, SB1 (0.5-1keV), SB2 (1-2 keV), HB1 (2-4 keV), and HB2 (4-7keV), as well as information on the source extension, and cross-matches with the FIRST, IRAS, 2MASS, and GSC-2 catalogues.

  15. The BMW-Chandra survey. Serendipitous Source Catalogue

    Science.gov (United States)

    Romano, P.; Mignani, R. P.; Campana, S.; Moretti, A.; Panzera, M. R.; Tagliaferri, G.; Mottini, M.

    2009-07-01

    We present the BMW-Chandra source catalogue derived from Chandra ACIS-I observations (exposure time > 10ks) public as of March 2003 by using a wavelet detection algorithm (Lazzati et al. 1999; Campana et al. 1999). The catalogue contains a total of 21325 sources, 16758 of which are serendipitous. Our sky coverage in the soft band (0.5-2keV, S/N=3) is ~ 8 deg2 for FX ≥ 10-13 erg cm-2 s-1, and ~ 2 deg2 for FX ≥ 10-15 erg cm-2 s-1. The catalogue contains information on positions, count rates (and errors) in three energy bands (total, 0.5-7keV; soft, 0.5-2keV; and hard, 2-7keV), and in four additional energy bands, SB1 (0.5-1keV), SB2 (1-2keV), HB1 (2-4keV), and HB2 (4-7keV), as well as information on the source extension, and cross-matches with the FIRST, IRAS, 2MASS, and GSC-2 catalogues.

  16. The Chandra Deep Field South the 1 Million Second

    CERN Document Server

    Rosati, P; Giacconi, R; Gilli, R; Hasinger, G; Kewley, L J; Mainieri, V; Nonino, M; Norman, C; Szokoly, G; Wang, J X; Zirm, A W; Bergeron, J; Borgani, S; Gilmozzi, R; Grogin, N A; Koekemoer, A M; Schreier, E J; Zheng, W

    2002-01-01

    We present the main results from our 940 ksec observation of the Chandra Deep Field South (CDFS), using the source catalog described in an accompanying paper (Giacconi et al. 2001). We extend the measurement of source number counts to 5.5e-17 erg/cm^2/s in the soft 0.5-2 keV band and 4.5e-16 erg/cm^2/s in the hard 2-10 keV band. The hard band LogN-LogS shows a significant flattening (slope~=0.6) below ~1e-14 erg/cm^2/s, leaving at most 10-15% of the X-ray background (XRB) to be resolved, the main uncertainty lying in the measurement of the total flux of the XRB. On the other hand, the analysis in the very hard 5-10 keV band reveals a relatively steep LogN-LogS (slope ~=1.3) down to 1e-15 erg/cm^2/s. Together with the evidence of a progressive flattening of the average X-ray spectrum near the flux limit, this indicates that there is still a non negligible population of faint hard sources to be discovered at energies not well probed by Chandra, which possibly contribute to the 30 keV bump in the spectrum of the...

  17. A Deep Chandra ACIS Survey of M51

    Science.gov (United States)

    Kuntz, K. D.; Long, Knox S.; Kilgard, Roy E.

    2016-08-01

    We have obtained a deep X-ray image of the nearby galaxy M51 using Chandra. Here we present the catalog of X-ray sources detected in these observations and provide an overview of the properties of the point-source population. We find 298 sources within the D 25 radii of NGC 5194/5, of which 20% are variable, a dozen are classical transients, and another half dozen are transient-like sources. The typical number of active ultraluminous X-ray sources in any given observation is ˜5, and only two of those sources persist in an ultraluminous state over the 12 yr of observations. Given reasonable assumptions about the supernova remnant population, the luminosity function is well described by a power law with an index between 1.55 and 1.7, only slightly shallower than that found for populations dominated by high-mass X-ray binaries (HMXBs), which suggests that the binary population in NGC 5194 is also dominated by HMXBs. The luminosity function of NGC 5195 is more consistent with a low-mass X-ray binary dominated population. Based on observations made with NASA's Chandra X-ray Observatory, which is operated by the Smithsonian Astrophysical Observatory under contract #NAS83060, and the data were obtained through program GO1-12115.

  18. Chandra Observation of the Starburst Galaxy NGC 2146

    CERN Document Server

    Inui, T; Tsuru, T G; Koyama, K; Matsushita, S; Peck, A B; Tarchi, A; Inui, Tatsuya; Matsumoto, Hironori; Tsuru, Takeshi Go; Koyama, Katsuji; Matsushita, Satoki; Peck, Alison B.; Tarchi, Andrea

    2004-01-01

    We present six monitoring observations of the starburst galaxy NGC 2146 using the Chandra X-ray Observatory. We have detected 67 point sources in the 8'.7 x 8'.7 field of view of the ACIS-S detector. Six of these sources were Ultra-Luminous X-ray Sources, the brightest of which has a luminosity of 5 x 10^{39} ergs s^{-1}. One of the source, with a luminosity of ~1 x 10^{39} ergs s^{-1}, is coincident with the dynamical center location, as derived from the ^{12}CO rotation curve. We suggest that this source may be a low-luminosity active galactic nucleus. We have produced a table where the positions and main characteristics of the Chandra-detected sources are reported. The comparison between the positions of the X-ray sources and those of compact sources detected in NIR or radio does not indicate any definite counterpart. Taking profit of the relatively large number of sources detected, we have derived a logN-logS relation and a luminosity function. The former shows a break at \\~10^{-15} ergs cm^{-2} s^{-1}, t...

  19. Chandra Observes the End of an Era SN 1987A

    CERN Document Server

    Frank, Kari A; Park, Sangwook; McCray, Richard; Dwek, Eli; Burrows, David N

    2016-01-01

    Updated imaging and photometric results from Chandra observations of SN 1987A, covering the last 16 years, are presented. We find that the 0.5-2 keV light curve has remained constant at ~8x10^-12 erg s^-1 cm^-2 since 9500 days, with the 3-8 keV light curve continuing to increase until at least 10000 days. The expansion rate of the ring is found to be energy dependent, such that after day 6000 the ring expands faster in the 2-10 keV band than it does at energies <2 keV. Images show a reversal of the east-west asymmetry between 7000 and 8000 days after the explosion. The latest images suggest the southeastern side of the equatorial ring is beginning to fade. Consistent with the latest optical and infrared results, our Chandra analysis indicates the blast wave is now leaving the dense equatorial ring, which marks the beginning of a major change in the evolutionary phase of the supernova remnant 1987A.

  20. VARIABILITY OF OPTICAL COUNTERPARTS IN THE CHANDRA GALACTIC BULGE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Britt, C. T.; Hynes, R. I.; Johnson, C. B.; Baldwin, A.; Collazzi, A.; Gossen, L. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Jonker, P. G.; Torres, M. A. P. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Nelemans, G. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Maccarone, T. [Department of Physics, Texas Tech University, Box 41051, Science Building, Lubbock, TX 79409-1051 (United States); Steeghs, D.; Greiss, S. [Astronomy and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Heinke, C. [Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1 (Canada); Bassa, C. G. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Villar, A. [Department of Physics, Massachussettes Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Gabb, M. [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2014-09-01

    We present optical light curves of variable stars consistent with the positions of X-ray sources identified with the Chandra X-ray Observatory for the Chandra Galactic Bulge Survey (GBS). Using data from the Mosaic-II instrument on the Blanco 4 m Telescope at CTIO, we gathered time-resolved photometric data on timescales from ∼2 hr to 8 days over the 3/4 of the X-ray survey containing sources from the initial GBS catalog. Among the light curve morphologies we identify are flickering in interacting binaries, eclipsing sources, dwarf nova outbursts, ellipsoidal variations, long period variables, spotted stars, and flare stars. Eighty-seven percent of X-ray sources have at least one potential optical counterpart. Twenty-seven percent of these candidate counterparts are detectably variable; a much greater fraction than expected for randomly selected field stars, which suggests that most of these variables are real counterparts. We discuss individual sources of interest, provide variability information on candidate counterparts, and discuss the characteristics of the variable population.

  1. Molecularly imprinted polymer diffraction grating as label-free optical bio(mimetic)sensor.

    Science.gov (United States)

    Barrios, C A; Zhenhe, C; Navarro-Villoslada, F; López-Romero, D; Moreno-Bondi, M C

    2011-01-15

    Micropatterned molecularly imprinted polymer (MIP) transmissive 2D diffraction gratings (DGs) are fabricated and evaluated as label-free antibiotic bio(mimetic)sensors. Polymeric gratings are prepared by using microtransfer molding based on SiO(2)/Si molds. The morphology of the MIP gratings is studied by optical and atomic force microscopes. MIP 2D-DGs exhibit 2D optical diffraction patterns, and measurement of changes in diffraction efficiency is used as sensor response. The refractive index of the micropatterned MIP material was estimated, via solvent index matching experiments, to be 1.486. Immersion of a MIP 2D-DG in different solutions of target-antibiotic enrofloxacin leads to significant variations in diffraction efficiency, demonstrating target-molecule detection. On the other hand, no significant response is observed for both control experiments: MIP grating exposed to a non-retained analyte and an equivalent non-imprinted polymer grating exposed to the target analyte, showing highly specific antibiotic label-free optical recognition.

  2. Application of Metallic Strip Gratings for Enhancement of Electromagnetic Performance of A-sandwich Radome

    Directory of Open Access Journals (Sweden)

    Raveendranath U. Nair

    2013-09-01

    Full Text Available Enhancement of the electromagnetic (EM performance characteristics of A-sandwich radome wall over X-band using metallic strip gratings is presented in this work. Equivalent transmission line method in conjunction with equivalent circuit model (ECM is used for modeling the A-sandwich radome panel with metallic strip gratings and the computation of radome performance parameters. Metallic strip grating embedded in the mid-plane of the core and those in the skin-core interface are the configurations considered in the present work. For a given thickness of metallic strip grating, its width and pitch are optimized at different angles of incidence such that the new radome wall configuration offers superior EM performance over the entire X-band as compared to the conventional A-sandwich wall. The EM analysis shows that the superior EM performance of A-sandwich with metallic strip gratings makes it suitable for the design of normal incidence and streamlined airborne radomes.Defence Science Journal, 2013, 63(5, pp.508-514, DOI:http://dx.doi.org/10.14429/dsj.63.2458

  3. 21 CFR 133.147 - Grated American cheese food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Grated American cheese food. 133.147 Section 133... Cheese and Related Products § 133.147 Grated American cheese food. (a)(1) Grated American cheese food is... granular mixture. (2) Grated American cheese food contains not less than 23 percent of milkfat,...

  4. Automated magnification calibration in transmission electron microscopy using Fourier analysis of replica images.

    NARCIS (Netherlands)

    Laak, J.A.W.M. van der; Dijkman, H.B.P.M.; Pahlplatz, M.M.M.

    2006-01-01

    The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the pre

  5. Fiber Bragg Grating Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Stephen J. Mihailov

    2012-02-01

    Full Text Available Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments.

  6. Large size metallic glass gratings by embossing

    Science.gov (United States)

    Ma, J.; Yi, J.; Zhao, D. Q.; Pan, M. X.; Wang, W. H.

    2012-09-01

    Bulk metallic glasses have excellent thermoforming ability in their wide supercooled liquid region. We show that large-size metallic glass grating (˜8 × 8 mm2) with fine periodicity and ultra smooth surface feature can be readily fabricated by hot embossing. The method for fabrication of gratings is proved to be much cheaper, and requires low pressure and short time (less than 30 s). The metallic glass gratings exhibit comparable optical properties such as rainbow-like spectrum when shone by fluorescent lamp light.

  7. Influence of grating thickness in low-contrast subwavelength grating concentrating lenses

    Science.gov (United States)

    Ye, Mao; Yi, Ya Sha

    2016-07-01

    Conventional subwavelength grating concentrating lenses are designed based on calculated phase overlap, wherein the phase change is fixed by the grating thickness, bar-width, and airgap, and therefore the focus. We found that certain concentration effects can still be maintained by changing the grating thickness with the same bar-widths and airgap dimensions. Following that, we discovered the existence of the grating thickness threshold; light concentration intensity spikes upon exceeding this limit. However, the light concentration property does not change continuously with respect to a steady increase in grating thickness. This observation indicates that there exists a concentration mode self-interference effect along the light propagation direction inside the gratings. Our results may provide guidance in designing and fabricating microlenses in a potentially more easy and controllable manner. Such approaches can be utilized in various integrated nanophotonics applications ranging from optical cavities and read/write heads to concentrating photovoltaics.

  8. New transfer matrix method for long-period fiber gratings with coupled multiple cladding modes

    Institute of Scientific and Technical Information of China (English)

    Guodong Wang; Yunjian Wang

    2011-01-01

    A new transfer matrix method for long-period fiber gratings with coupled multiple cladding modes is proposed and numerically characterized. The transmission spectra of uniform and non-uniform long-period fiber gratings are numerically characterized. The theoretical results excellently agree with the experimental measurements. Compared with commonly used methods, such as using the fourth-order adaptive step size control of the Runge-Kutta algorithm in solving the coupled mode equation, the new transfer matrix method exhibits a faster calculation speed.%@@ A new transfer matrix method for long-period fiber gratings with coupled multiple cladding modes is proposed and numerically characterized.The transmission spectra of uniform and non-uniform longperiod fiber gratings are numerically characterized.The theoretical results excellently agree with the experimental measurements.Compared with commonly used methods,such as using the fourth-order adaptive step size control of the Runge-Kutta algorithm in solving the coupled mode equation,the new transfer matrix method exhibits a faster calculation speed.

  9. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of

  10. Chandra Looks Over a Cosmic Four-Leaf Clover

    Science.gov (United States)

    2004-07-01

    A careful analysis of observations by NASA's Chandra X-ray Observatory of a rare quadruple quasar has uncovered evidence that possibly a single star in a foreground galaxy magnified X-rays coming from the quasar. This discovery gives astronomers a new and extremely precise probe of the gas flow around the supermassive black hole that powers the quasar. "If our interpretation is correct, then we are seeing details around this black hole that are 50,000 times smaller than either the Hubble Space Telescope or Chandra could see under ordinary circumstances," said George Chartas of Penn State University in University Park, and lead author of a recent article on the Cloverleaf quasar in The Astrophysical Journal. The Cloverleaf quasar is a single object about 11 billion light years from Earth that appears as four images produced by a process known as gravitational lensing. If one or more galaxies lie along the line of sight to a more distant quasar, the gravitational field of the intervening galaxies can bend and magnify the light from the quasar and produce multiple images of it. The four images of the Cloverleaf quasar have been produced by one or more intervening galaxies. Cloverleaf Quasar Chandra X-ray Image of the Cloverleaf quasar One of the images (A), in the Cloverleaf is brighter than the others in both optical and X-ray light. Chartas and his colleagues found the relative brightness of this image was greater in X-ray than in optical light. The X-rays from iron atoms were also enhanced relative to X-rays at lower energies. Since the amount of brightening due to gravitational lensing does not vary with the wavelength, this means that an additional object has magnified the X-rays. The increased magnification of the X-ray light can be explained by gravitational microlensing, an effect which has been used to search for compact stars and planets in our galaxy. Microlensing occurs when a star or a multiple star system passes in front of light from a background object

  11. Chandra's Find of Lonely Halo Raises Questions About Dark Matter

    Science.gov (United States)

    2004-10-01

    Dark matter continues to confound astronomers, as NASA's Chandra X-ray Observatory demonstrated with the detection of an extensive envelope of dark matter around an isolated elliptical galaxy. This discovery conflicts with optical data that suggest a dearth of dark matter around similar galaxies, and raises questions about how galaxies acquire and keep such dark matter halos. The observed galaxy, known as NGC 4555, is unusual in that it is a fairly large, elliptical galaxy that is not part of a group or cluster of galaxies. In a paper to be published in the November 1, 2004 issue of the Monthly Notices of the Royal Astronomical Society, Ewan O'Sullivan of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA and Trevor Ponman of the University of Birmingham, United Kingdom, use the Chandra data to show that the galaxy is embedded in a cloud of 10-million-degree-Celsius gas. X-ray/Optical Composite of NGC 4555 X-ray/Optical Composite of NGC 4555 This hot gas cloud has a diameter of about 400,000 light years, about twice that of the visible galaxy. An enormous envelope, or halo, of dark matter is needed to confine the hot cloud to the galaxy. The total mass of the dark matter halo is about ten times the combined mass of the stars in the galaxy, and 300 times the mass of the hot gas cloud. A growing body of evidence indicates that dark matter - which interacts with itself and "normal" matter only through gravity - is the dominant form of matter in the universe. According to the popular "cold dark matter" theory, dark matter consists of mysterious particles left over from the dense early universe that were moving slowly when galaxies and galaxy clusters began to form. "The observed properties of NGC 4555 confirm that elliptical galaxies can posses dark matter halos of their own, regardless of their environment," said O'Sullivan. "This raises an important question: what determines whether elliptical galaxies have dark matter halos?" DSS Optical Image of NGC

  12. Chandra Locates Mother Lode of Planetary Ore in Colliding Galaxies

    Science.gov (United States)

    2004-01-01

    NASA's Chandra X-ray Observatory has discovered rich deposits of neon, magnesium, and silicon in a pair of colliding galaxies known as The Antennae. When the clouds in which these elements are present cool, an exceptionally high number of stars with planets should form. These results may foreshadow the fate of the Milky Way and its future collision with the Andromeda Galaxy. "The amount of enrichment of elements in The Antennae is phenomenal," said Giuseppina Fabbiano of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. at a press conference at a meeting of the American Astronomical Society in Atlanta, Ga. "This must be due to a very high rate of supernova explosions in these colliding galaxies." Fabbiano is lead author of a paper on this discovery by a team of U.S. and U.K. scientists that will appear in an upcoming issue of The Astrophysical Journal Letters. When galaxies collide, direct hits between stars are extremely rare, but collisions between huge gas clouds in the galaxies can trigger a stellar baby boom. The most massive of these stars race through their evolution in a few million years and explode as supernovas. Heavy elements manufactured inside these stars are blown away by the explosions and enrich the surrounding gas for thousands of light years. "The amount of heavy elements supports earlier studies that indicate there was a very high rate of relatively recent supernovas, 30 times that of the Milky Way," according to collaborator Andreas Zezas of the CfA. Animation of Colliding Galaxies Animation of Colliding Galaxies The supernova violence also heats the gas to millions of degrees Celsius. This makes much of the matter in the clouds invisible to optical telescopes, but it can be observed by an X-ray telescope. Chandra data revealed for the first time regions of varying enrichment in the galaxies – in one cloud magnesium and silicon are 16 and 24 times as abundant as in the Sun. "These are the kinds of elements that

  13. Gear Transmission Error Measurement System Made Operational

    Science.gov (United States)

    Oswald, Fred B.

    2002-01-01

    A system directly measuring the transmission error between the meshing spur or helical gears was installed at the NASA Glenn Research Center and made operational in August 2001. This system employs light beams directed by lenses and prisms through gratings mounted on the two gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. The device is capable of resolution better than 0.1 mm (one thousandth the thickness of a human hair). The measured transmission error can be displayed in a "map" that shows how the transmission error varies with the gear rotation or it can be converted to spectra to show the components at the meshing frequencies. Accurate transmission error data will help researchers better understand the mechanisms that cause gear noise and vibration and will lead to The Design Unit at the University of Newcastle in England specifically designed the new system for NASA. It is the only device in the United States that can measure dynamic transmission error at high rotational speeds. The new system will be used to develop new techniques to reduce dynamic transmission error along with the resulting noise and vibration of aeronautical transmissions.

  14. Access Platforms for Offshore Wind Turbines Using Gratings

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.

    2008-01-01

    The paper deals with forces generated by a stationary jet on different types of gratings and a solid plate. The force reduction factors for the different gratings compared to the solid plate mainly depend on the porosity of the gratings, but the geometry of the grating is also of some importance........ The derived reduction factors are expected to be applicable to design of offshore wind turbine access platforms with gratings where slamming also is an important factor....

  15. Long period fiber gratings induced by mechanical resonance

    CERN Document Server

    Shahal, Shir; Duadi, Hamootal; Fridman, Moti

    2015-01-01

    We present a simple, and robust method for writing long period fiber gratings with low polarization dependent losses. Our method is based on utilizing mechanical vibrations of the tapered fiber while pooling it. Our method enables real-time tunability of the periodicity, efficiency and length of the grating. We also demonstrate complex grating by writing multiple gratings simultaneously. Finally, we utilized the formation of the gratings in different fiber diameters to investigate the Young's modulus of the fiber.

  16. Liquid crystal on subwavelength metal gratings

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V. [Shubnikov Institute of Crystallography of Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation)

    2015-06-14

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  17. Theory of photorefractive dynamic grating formulation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The photorefractive holographic recording and two-beam coupling are both dynamic grating formulation process. The interference light intensity of the two coherent beams induces a phase grating though photo-induced refractive index variation and the phase grating changing the intensities of the two beams through beam-coupling take place at the same time. By solving simultaneously the band transport equations and wave-coupled equations, and using the light intensity modulation as the main variable, the analytic solution is obtained, which is valid for any light intensity modulation and constant light excitation efficiency. Here all the mechanics of drift, diffusion and photovoltaic effect are considered. The result shows that the modulation of the dynamic grating varies more slowly compared with that of the linear modulation approximation.

  18. Hydraulic Capacity of an ADA Compliant Street Drain Grate

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, Steven A. [Argonne National Lab. (ANL), Argonne, IL (United States); Bojanowski, Cezary [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Resurfacing of urban roads with concurrent repairs and replacement of sections of curb and sidewalk may require pedestrian ramps that are compliant with the American Disabilities Act (ADA), and when street drains are in close proximity to the walkway, ADA compliant street grates may also be required. The Minnesota Department of Transportation ADA Operations Unit identified a foundry with an available grate that meets ADA requirements. Argonne National Laboratory’s Transportation Research and Analysis Computing Center used full scale three dimensional computational fluid dynamics to determine the performance of the ADA compliant grate and compared it to that of a standard vane grate. Analysis of a parametric set of cases was carried out, including variation in longitudinal, gutter, and cross street slopes and the water spread from the curb. The performance of the grates was characterized by the fraction of the total volume flow approaching the grate from the upstream that was captured by the grate and diverted into the catch basin. The fraction of the total flow entering over the grate from the side and the fraction of flow directly over a grate diverted into the catch basin were also quantities of interest that aid in understanding the differences in performance of the grates. The ADA compliant grate performance lagged that of the vane grate, increasingly so as upstream Reynolds number increased. The major factor leading to the performance difference between the two grates was the fraction of flow directly over the grates that is captured by the grates.

  19. Spatial heterodyne interferometry with polarization gratings.

    Science.gov (United States)

    Kudenov, Michael W; Miskiewicz, Matthew N; Escuti, Michael J; Dereniak, Eustace L

    2012-11-01

    The implementation of a polarization-based spatial heterodyne interferometer (SHI) is described. While a conventional SHI uses a Michelson interferometer and diffraction gratings, our SHI exploits mechanically robust Wollaston prisms and polarization gratings. A theoretical model for the polarization SHI is provided and validated with data from our proof of concept experiments. This device is expected to provide a compact monolithic sensor for subangstrom resolution spectroscopy in remote sensing, biomedical imaging, and machine vision applications.

  20. Chandra Observations of Shock Kinematics in Supernova Remnant 1987A

    CERN Document Server

    Zhekov, S A; Borkowski, K J; Burrows, D N; Park, S

    2005-01-01

    We report the first results from deep X-ray observations of the SNR 1987A with the Chandra LETG. Temperatures inferred from line ratios range from 0.1 - 2 keV and increase with ionization potential. Expansion velocities inferred from X-ray line profiles range from 300 - 1700 km/s, much less than the velocities inferred from the radial expansion of the radio and X-ray images. We can account for these observations with a scenario in which the X-rays are emitted by shocks produced where the supernova blast wave strikes dense protrusions of the inner circumstellar ring, which are also responsible for the optical hot spots.

  1. Chandra LETG Observations of Supernova Remnant 1987A

    CERN Document Server

    Zhekov, S A; Burrows, D N; McCray, R; Park, S; Borkowski, Kazimierz J.; Burrows, David N.; Cray, Richard Mc; Park, Sangwook; Zhekov, Svetozar A.

    2006-01-01

    We discuss the results from deep Chandra LETG observations of the supernova remnant 1987A (SNR 1987A). We find that a distribution of shocks, spanning the same range of velocities (from 300 to 1700 km/s) as deduced in the first part of our analysis (Zhekov et al. 2005, ApJL, 628, L127), can account for the entire X-ray spectrum of this object. The post-shock temperature distribution is bimodal, peaking at kT 0.5 and 3 keV. Abundances inferred from the X-ray spectrum have values similar to those for the inner circumstellar ring, except that the abundances of nitrogen and oxygen are approximately a factor of two lower than those inferred from the optical/UV spectrum. The velocity of the X-ray emitting plasma has decreased since 1999, apparently because the blast wave has entered the main body of the inner circumstellar ring.

  2. X-ray Mass Profiles from Chandra Galaxy Atlas

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra

    2016-04-01

    We present preliminary results of a Chandra/XMM-Newton joint analysis on a sample of three Early Type Galaxies (ETGs, namely NGC4649, NGC4636 and NGC5846). X-ray observations of the hot ISM is used to measure the total enclosed mass assuming hydrostatic equilibrium, and compasion with mass distributions obtained through optical kinematics data of globular clusters and planetary nebulae yields informations about disturbances in the ISM distribution due to nuclear activity, merging history, etc. Our analysis makes use of the Chandra Galaxy Atlas (CGA) data products - exploiting the unmatched spatial resolution of the ACIS detectors to reveal fine ISM features and disturbances in the inner galactic regions - and XMM-Newton data - relying on the large field of view of EPIC detector to extend the mass profiles to larger radii. We then measured the mass profiles in various pie sectors to separate different gas features (e.g., discontinuity and extended tail) and compared them with GCs/PNe based mass profiles. The X-ray mass profiles of NGC4649 show a generally relaxed morphology and, in agreement with previous analysis, the comparison with the optical mass profiles shows a significant deviations on parsec scale likely due to non-thermal pressure linked to nuclear activity. In significantly disturbed cases (NGC4648 and NGC5846) where we found discontinuities and extended tails, we found that the mass profiles are over-estimated toward the compressed discontinuity and under-estimated toward the extended tails, similar to inflow and outflow cases. These preliminary results are promising toward an extended analysis of the whole CGA sample in order to study the distribution of gas temperature and metal abundances in the ISM, and to investigate scaling relations between ETG global quantities like ISM temperature, luminosity and total mass.

  3. THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Civano, F.; Urry, C. M. [Yale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520 (United States); Elvis, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Salvato, M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Brusa, M.; Lanzuisi, G.; Vignali, C. [Dipartimento di Fisica e Astronomia, Università di Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy); Comastri, A.; Gilli, R.; Zamorani, G.; Cappelluti, N. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hasinger, G. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomía sede Ensenada, Universidad Nacional Autónoma de México, Km. 103, Carret. Tijunana-Ensenada, Ensenada, BC (Mexico); Treister, E. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile); Allevato, V.; Finoguenov, A. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland); Cardamone, C. [Department of Science, Wheelock College, Boston, MA 02215 (United States); Griffiths, R. E. [Physics and Astronomy Dept., Natural Sciences Division, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, HI 96720 (United States); Karim, A. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); and others

    2016-01-20

    We present the catalog of optical and infrared counterparts of the Chandra  COSMOS-Legacy  Survey, a 4.6 Ms Chandra  program on the 2.2 deg{sup 2} of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.

  4. Automated classification of Chandra X-ray sources

    Science.gov (United States)

    Brehm, Derek; Kargaltsev, O.; Rangelov, B.; Volkov, I.; Pavlov, G. G.

    2014-01-01

    With the advent of the latest generation X-ray telescopes there has been a major influx of data associated with the detection of hundreds of thousands X-ray sources. As one can rarely tell a source type from its X-ray properties alone, the full potential of the X-ray catalogs can only be unlocked by correlating multiwavelength (MW) properties via cross-identification with other surveys. However, one would spend an enormous amount of time classifying these objects by their physical nature if the classification was to be done on a source-by-source basis by humans. Therefore, we are using a supervised learning algorithm to classify sources detected by the Chandra X-ray Observatory. The classifications are based on a training dataset which currently includes about 7,000 X-ray sources of known nature (main sequence stars, Wolf-Rayet stars, young stars, active galactic nuclei, low mass X-ray binaries, high mass x-ray binaries, and neutron stars). For each source, the training dataset includes up to 24 multiwavelength properties. The efficiency and accuracy of the classification is verified by dividing the training dataset in two and performing cross-validation. The results are also inspected by plotting source properties in 2D slices of the parameter space. As an application of our automated procedure we classified unidentified sources in the supernova remnant (SNR) G352.7-0.1, in the field of HESS J1809-193, and in part of the Chandra Source Catalog 1.0. We present the results of the verification tests and the classification results. This research was partially supported by NASA/SAO grant AR3-14017X.

  5. Characterization of notched long-period fiber gratings: effects of periods, cladding thicknesses, and etching depths.

    Science.gov (United States)

    Chiang, Chia-Chin; Tseng, Chien-Chia

    2014-07-10

    This study proposes using an inductively coupled plasma etching process to fabricate notched long-period fiber grating (NLPFG) for sensor applications. The effects of the designed parameters (i.e., different fiber cladding thicknesses, grating periods, and etching depths) are studied to explore the characterization of NLPFG. The characterization as indicated by tests of the NLPF showed that the wavelength of NLPFG produced a redshift with decreases in cladding thickness. The drift rate of the wavelength following changes in thickness was -2.801  nm/μm. In addition, a redshift also was exhibited in the increased period, with a wavelength drift rate corresponding to the size of the period of 1.466  nm/μm. Moreover, the results showed that the transmission loss in the spectra increased with etching depth. The variation rate of transmission loss based on etching depth was -0.458  dB/μm.

  6. Polarization-resolved sensing with tilted fiber Bragg gratings: theory and limits of detection

    CERN Document Server

    Bialiayeu, Aliaksandr; Albert, Jacques

    2015-01-01

    Polarization based sensing with tilted fiber Bragg grating (TFBG) sensors is analysed theoretically by two alternative approaches. The first method is based on tracking the grating transmission for two orthogonal states of linear polarized light that are extracted from the measured Jones matrix or Stokes vectors of the TFBG transmission spectra. The second method is based on the measurements along the system principle axes and polarization dependent loss (PDL) parameter, also calculated from measured data. It is shown that the frequent crossing of the Jones matrix eigenvalues as a function of wavelength leads to a non-physical interchange of the calculated principal axes; a method to remove this unwanted mathematical artefact and to restore the order of the system eigenvalues and the corresponding principal axes is provided. A comparison of the two approaches reveals that the PDL method provides a smaller standard deviation and therefore lower limit of detection in refractometric sensing. Furthermore, the pol...

  7. A novel oil level monitoring sensor based on string tilted fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    JIANG Qi

    2011-01-01

    In this paper, we present a novel oil level monitoring sensor based on string tilted fiber Bragg grating (TFBG). The mea- surement range and sensitivity of oil level monitoring can be modulated via changing the length and number of string tilted fiber gratings. The transmission spectrum of string TFBGs immersed in oil changes obviously with the oil level variation. Experiments are conducted on three 2 crn-length serial TFBGs with the same tilted angle of 10°. A sensitivity of 3.28 dB/cm in the string TFBG sensor is achieved with good linearity by means of TFBG spectrum characteristic with peak-low value. The cladding mode transmission power and the amplitude of high order cladding mode resonance are nearly linear to the oil level variation. This kind of sensor is insensitive to temperature and attributed to be employed in extremely harsh environ- ment oil monitoring.

  8. An investigation into a half page from Newton's Principia in the wake of Chandra

    CERN Document Server

    Snow, W M

    2002-01-01

    There is a section in Chandrashekar's ''Newton's Principia for the Common Reader '', (Clarendon Press, Oxford, 1995) in which he claims to find a small error in the Principia. . However we believe that there is a mistake of interpretation underlying Chandra's claim and that the Principia is correct as it stands. This short paper describes Chandra's misinterpretation of a geometric construction of Newton and gives an outline of Newton's demonstration by following the standard English version of the Principia line by line and converting it into modern mathematical notation in the spirit of Chandra's book.

  9. Searching for bulk motions in the ICM of massive, merging clusters with Chandra CCD data

    CERN Document Server

    Liu, Ang; Tozzi, Paolo; Zhu, Zong-Hong

    2016-01-01

    We search for bulk motions in the Intra Cluster Medium (ICM) of massive clusters showing evidence of an ongoing or a recent major merger, with spatially resolved spectroscopy in {\\sl Chandra} CCD data. We identify a sample of 6 merging clusters with >150 ks {\\sl Chandra} exposure in the redshift range 0.1 1000$ km/s in the ICM of massive merging clusters at 0.1 < z < 0.3. Despite the CCD spectral resolution is not sufficient for a detailed analysis of the ICM dynamics, {\\sl Chandra} CCD data constitute a key diagnostic tool complementary to X-ray bolometers onboard future X-ray missions.

  10. NASA'S Chandra Finds New Evidence on Origin of Supernovas

    Science.gov (United States)

    2011-04-01

    CAMBRIDGE, Ma. -- Astronomers may now know the cause of an historic supernova explosion that is an important type of object for investigating dark energy in the universe. The discovery, made using NASA's Chandra X-ray Observatory, also provides strong evidence that a star can survive the explosive impact generated when a companion star goes supernova. The new study examined the remnant of a supernova observed by the Danish astronomer Tycho Brahe in 1572. The object, dubbed Tycho for short, was formed by a Type Ia supernova, a category of stellar explosion useful in measuring astronomical distances because of their reliable brightness. Type Ia supernovas have been used to determine that the universe is expanding at an accelerating rate, an effect attributed to the prevalence of an invisible, repulsive force throughout space called dark energy. A team of researchers analyzed a deep Chandra observation of Tycho and found an arc of X-ray emission in the supernova remnant. Evidence supports the conclusion that a shock wave created the arc when a white dwarf exploded and blew material off the surface of a nearby companion star. "There has been a long-standing question about what causes Type Ia supernovas," said Fangjun Lu of the Institute of High Energy Physics, Chinese Academy of Sciences in Beijing. "Because they are used as steady beacons of light across vast distances, it is critical to understand what triggers them." One popular scenario for Type Ia supernovas involves the merger of two white dwarfs. In this case, no companion star or evidence for material blasted off a companion should exist. In the other main competing theory, a white dwarf pulls material from a "normal," or sun-like, companion star until a thermonuclear explosion occurs. Both scenarios may actually occur under different conditions, but the latest Chandra result from Tycho supports the latter one. n addition, the Tycho study seems to show the remarkable resiliency of stars, as the supernova

  11. Chandra Finds Well-Established Black Holes In Distant Quasars

    Science.gov (United States)

    2002-03-01

    Pushing further back toward the first generation of objects to form in the universe, NASA's Chandra X-ray Observatory has observed the three most distant known quasars and found them to be prodigious producers of X-rays. This indicates that the supermassive black holes powering them were already in place when the Universe was only about one billion years old. "Chandra's superb sensitivity has allowed the detection of X-rays from the dawn of the modern universe, when the first massive black holes and galaxies were forming," said Niel Brandt of Penn State University, leader of one the teams involved. "These results indicate that future X-ray surveys should be able to detect the first black holes to form in the Universe." The three quasars were recently discovered at optical wavelengths by the Sloan Digital Sky Survey and are 13 billion light years from Earth, making them the most distant known quasars. The X-rays Chandra detected were emitted when the universe was only a billion years old, about 7 percent of the present age of the Universe. Since X-rays reveal conditions in the immediate vicinity of supermassive black holes, Brandt proposed that Chandra look at these objects in three snapshots of about two hours each to see if they were different from their older counterparts. The observations on January 29, 2002 were made public immediately and the four different teams quickly went to work on them. Brandt's team concluded that the quasars looked similar to ones that were at least twice as old, so the conditions around the central black hole had not changed much in that time, contrary to some theoretical expectations. A team led by Smita Mathur of Ohio State University reached a similar conclusion. "These young quasars do not appear to be any different from their older cousins, based upon our current understanding and assumptions," said Mathur. "Perhaps the most remarkable thing about them may be that they are so absolutely unremarkable." Jill Bechtold of the

  12. Volume Phase Holographic Gratings: Polarization Properties and Diffraction Efficiency

    CERN Document Server

    Baldry, I K; Robertson, J G

    2004-01-01

    We discuss the polarization properties and first-order diffraction efficiencies of volume phase holographic (VPH) transmission gratings, which can be exploited to improve the throughput of modern spectrographs. The wavelength of peak efficiency can be tuned by adjustment of the incidence angle. We show that the variation of the Kogelnik efficiency versus Bragg angle depends only on one parameter, given by $P_{tune} = (\\Delta n d)/(n \\Lambda)$, where: $\\Delta n$ is semi-amplitude of the refractive index modulation; $n$ is the average index; $d$ is the thickness of the active layer; and $\\Lambda$ is the grating period. The efficiency has a well defined dependence on polarization. In particular, it is possible to obtain theoretical 100% diffraction efficiency with one linear polarization at any angle or to obtain 100% efficiency with unpolarized light at specific angles. In the latter case, high efficiency is the result of aligning the peaks of the s- and p-polarization efficiency-versus-thickness curves. The fi...

  13. Optical nonlinearity of organic dyes as studied by Z-scan and transient grating techniques

    Indian Academy of Sciences (India)

    Umakanta Tripathy; R Justin Rajesh; Prem B Bisht; A Subrahamanyam

    2002-12-01

    The excited state absorption cross-section of 5,5′-dichloro-11-diphenylamino- 3,3′-diethyl-10,12-ethylinethiatricarbocyanine perchlorate (IR140) have been measured by using a single beam transmission technique. Z-scan experiments have been used to find out a few nonlinear parameters. The excited state relaxation times have also been measured by using laser induced transient grating (LITG) technique.

  14. Inverse-Gaussian-Apodized Fiber Bragg Grating for Dual Wavelength Lasing

    CERN Document Server

    Lin, Bo; Tjin, Swee Chuan; Tang, Dingyuan; Hao, Jianzhong; Tay, Chia Meng; Liang, Sheng

    2010-01-01

    A fiber Bragg grating (FBG) with an inverse-Gaussian apodization function is proposed and fabricated. It is shown that such a FBG possesses easily controllable dual-wavelength narrow transmission peaks. Incorporating such a FBG filter in a fiber laser with a linear cavity, stable dual-wavelength emission with 0.146 nm wavelength spacing is obtained. It provides a simple and low cost approach of achieving the dual-wavelength fiber laser operation.

  15. A new method for analyzing the characteristics of sampled chirped fiber grating

    Institute of Scientific and Technical Information of China (English)

    孙成城; 李春赟; 于小宇

    2002-01-01

    On the basis of the coherence theory a new method is presented to analyze the sampled chirped fiber gratings (SCFG). With this method, more results on the SCFG are obtained, including not only the characteristics of reflectivity, transmission and time delay, but also the simplified reflectivity formula, the channel's number, wavelength spacing and channel's bandwidth. Therefore, this method is more systematic and perfect than the usual transfer matrix method and can well guide the design of the SCFG.

  16. Magneto-Optic Fiber Bragg Gratings with Application to High-Resolution Magnetic Field Sensors

    Institute of Scientific and Technical Information of China (English)

    Bao-Jian Wu; Ying Yang; Kun Qiu

    2008-01-01

    Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.

  17. Analytical and numerical study on grating depth effects in grating coupled waveguide sensors

    DEFF Research Database (Denmark)

    Horvath, R.; Wilcox, L.C.; Pedersen, H.C.;

    2005-01-01

    The in-coupling process for grating-coupled planar optical waveguide sensors is investigated in the case of TE waves. A simple analytical model based on the Rayleigh-Fourier-Kiselev method is applied to take into account the depth of the grating coupler, which is usually neglected in the modeling...

  18. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    Science.gov (United States)

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-05

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles.

  19. A novel single-order diffraction grating: Random position rectangle grating

    Science.gov (United States)

    Zuhua, Yang; Qiangqiang, Zhang; Jing, Wang; Quanping, Fan; Yuwei, Liu; Lai, Wei; Leifeng, Cao

    2016-05-01

    Spectral diagnosis of radiation from laser plasma interaction and monochromation of radiation source are hot and important topics recently. Grating is one of the primary optical elements to do this job. Although easy to fabricate, traditional diffraction grating suffers from multi-order diffraction contamination. On the other hand, sinusoidal amplitude grating has the nonharmonic diffraction property, but it is too difficult to fabricate, especially for x-ray application. A novel nonharmonic diffraction grating named random position rectangle grating (RPRG) is proposed in this paper. Theoretical analysis and experiment results show that the RPRG is both higher order diffraction suppressing and not difficult to fabricate. Additionally, it is highly efficient; its first order absolute theoretical diffraction efficiency reaches 4.1%. Our result shows that RPRG is a novel tool for radiation diagnosis and monochromation. Project supported by the National Natural Science Foundation of China (Grant No. 11375160) and the National Science Instruments Major Project of China (Grant No. 2012YQ130125).

  20. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    This thesis deals with theoretical investigations of a newly proposed grating structure, referred to as hybrid grating (HG) as well as vertical cavity lasers based on the grating reflectors. The HG consists of a near-subwavelength grating layer and an unpatterned high-refractive-index cap layer...... behind these reflector and resonator properties are studied thoroughly. A HG structure comprising a III-V cap layer with a gain material and a Si grating layer enables the realization of a compact vertical cavity laser integrated on Si platform, which has a superior thermal property and fabrication...... directions, which is analogous to electronic quantum wells in conduction or valence bands. Several interesting configurations of heterostructures have been investigated and their potential in fundamental physics study and applications are discussed. For numerical and theoretical studies, a three...

  1. Wide band polarizer with suspended germanium resonant grating

    Institute of Scientific and Technical Information of China (English)

    Wugang Cao; Jianyong Ma; Changhe Zhou

    2012-01-01

    An ultra broad band polarizer that operates in the telecommunication wavelength band is proposed.This device,which consists of a single suspended germanium resonant grating layer,is designed using the inverse mathematical method and the rigorous vector diffraction theory.Calculated results indicate that the ultra broad band polarizer exhibits extremely high reflection (R > 99%) for TE polarization light and high transmission (T > 99%) for TM polarization at the wavelength range greater than 300 nm,and it has an extinction ratio of approximately 1 000 at the 1 550-nm central wavelength.The results of the rigorous coupled wave analysis indicate that the extremely wide band property of the TE polarization is caused by the excitation of strong modulation guided modes in the design wavelength range.

  2. Femtosecond soliton diode on heterojunction Bragg-grating structure

    CERN Document Server

    Deng, Zhigui; Li, Hongji; Fu, Shenhe; Liu, Yikun; Xiang, Ying; Li, Yongyao

    2016-01-01

    We numerically propose a scheme for realizing an all-optical femtosecond soliton diode based on a tailored heterojunction Bragg grating, which is designed by two spatially asymmetric chirped cholesteric liquid crystals. Our simulations demonstrate that with the consideration of optical nonlinearity, not only the femtosecond diode effect with nonreciprocal transmission ratio up to 120 can be achieved, but also the optical pulse evolving into soliton which maintains its shape during propagation through the sample is observed. Further, the influence of pulse width and the carrier wavelength to the femtosecond diode effect is also discussed in detail. Our demonstrations might suggest a new direction for experimentally realizing the femtosecond soliton diode based on the cholesteric liquid crystals.

  3. Phase effects due to beam misalignment on diffraction gratings

    CERN Document Server

    Lodhia, Deepali; Brueckner, Frank; Carbone, Ludovico; Fulda, Paul; Kokeyama, Keiko; Freise, Andreas

    2013-01-01

    All-reflective interferometer configurations have been proposed for the next generation of gravitational wave detectors, with diffractive elements replacing transmissive optics. However, an additional phase noise creates more stringent conditions for alignment stability. A framework for alignment stability with the use of diffractive elements was required using a Gaussian model. We successfully create such a framework involving modal decomposition to replicate small displacements of the beam (or grating) and show that the modal model does not contain the phase changes seen in an otherwise geometric planewave approach. The modal decomposition description is justified by verifying experimentally that the phase of a diffracted Gaussian beam is independent of the beam shape, achieved by comparing the phase change between a zero-order and first-order mode beam. To interpret our findings we employ a rigorous time-domain simulation to demonstrate that the phase changes resulting from a modal decomposition are correc...

  4. The Making of the Chandra X-ray Observatory: the Project Scientist's Perspective

    CERN Document Server

    Weisskopf, Martin C

    2010-01-01

    We review the history of the development of the Chandra X-ray Observatory from our personal perspective. This review is necessarily biased and limited by space since it attempts to cover a time span approaching 5 decades.

  5. Encoded cell grating array in anti-counterfeit technology

    Institute of Scientific and Technical Information of China (English)

    Zhongyu Chen; N. K. Bao; Po S. Chung

    2005-01-01

    @@ The dot matrix hologram (DMH) has been widely used in anti-counterfeiting label. With the same technology and cell array configuration, we can encode to the incidence beam. These codes can be some image matrix grating with different grating gap and different grating orientation. When the multi-level phase diffractive grating is etched, the incidence beam on the cell appears as an encoding image. When the encoded grating and DMH are used in the same label synchronously, the technology of multi-encoded grating array enhances the anti-counterfeit ability.

  6. Tri-band color transmission filter for white LED-based visible light communication

    Science.gov (United States)

    Wang, Qixia; Gu, Huarong; Tan, Qiaofeng

    2016-10-01

    Visible light communication (VLC) based on light emitting diodes has been regarded as an effective complement to radio frequency signal transmission. The color filter in VLC system plays the pivotal role for boosting signal-noise-ratio. In this paper, a tri-band color transmission filter with bandwidths consisting with LED's 30nm is designed based on guided mode resonance, incorporating a sub-wavelength aluminum grating on slab dielectric waveguide made of titanium dioxide on silica substrate. Parameters of grating structure, including the grating period, duty cycle, grating thickness, and waveguide thickness, are optimized by employing particle swarm optimization toolbox. The far field spectrum is calculated by rigorous coupled-wave analysis to verify the effectiveness of the designed filter. Three center-wavelength of transmission bands are 440nm, 530 and 630 nm. The full-width-at-half-maximum (FWHM) bandwidths of three bands are about 30nm which consist with LED's bandwidth.

  7. Chandra position of IGR J17454-2919 and discovery of a possible NIR counterpart

    DEFF Research Database (Denmark)

    Paizis, A.; Nowak, M.; Chati, S.;

    2015-01-01

    On 2014 November 3, we observed the recently discovered INTEGRAL source IGR J17454-2919 (ATels #6530, #6574 and #6602) with Chandra HETGS for 20ks. The J2000.0 Chandra position we obtain is RA: 17 45 27.689 DEC: -29 19 53.83 (90% uncertainty of 0.6") This position (2.4" away from the Swift positi...

  8. Iridescence in Meat Caused by Surface Gratings

    Directory of Open Access Journals (Sweden)

    Ali Kemal Yetisen

    2013-11-01

    Full Text Available The photonic structure of cut muscle tissues reveals that the well-ordered gratings diffract light, producing iridescent colours. Cut fibrils protruding from the muscle surface create a two-dimensional periodic array, which diffract light at specific wavelengths upon illumination. However, this photonic effect misleads consumers in a negative way to relate the optical phenomenon with the quality of the product. Here we discuss the fundamentals of this optical phenomenon and demonstrate a methodology for quantitatively measuring iridescence caused by diffraction gratings of muscle tissue surface of pork (Sus scrofa domesticus using reflection spectrophotometry. Iridescence was discussed theoretically as a light phenomenon and spectral measurements were taken from the gratings and monitored in real time during controlled drying. The findings show that the intensity of diffraction diminishes as the surface grating was dried with an air flow at 50 °C for 2 min while the diffracted light wavelength was at 585 ± 9 nm. Our findings indicate that the diffraction may be caused by a blazed surface grating. The implications of the study include providing guidelines to minimise the iridescence by altering the surface microstructure, and in consequence, removing the optical effect.

  9. Arc-Induced Long Period Fiber Gratings

    Directory of Open Access Journals (Sweden)

    Gaspar Rego

    2016-01-01

    Full Text Available Long period fiber gratings produced by the electric arc technique have found an increasing interest by the scientific community due to their ease to fabricate, virtually enabling the inscription in any kind of fiber, low cost, and flexibility. In 2005 we have presented the first review on this subject. Since then, important achievements have been reached such as the identification of the mechanisms responsible for gratings formation, the type of symmetry, the conditions to increase fabrication reproducibility, and their inscription in the turning points with grating periods below 200 μm. Several interesting applications in the sensing area, including those sensors working in reflection, have been demonstrated and others are expected, namely, related to the monitoring of extreme temperatures, cryogenic and high temperatures, and high sensitivity refractometric sensors resulting from combining arc-induced gratings in the turning points and the deposition of thin films in the transition region. Therefore, due to its pertinence, in this paper we review the main achievements obtained concerning arc-induced long period fiber gratings, with special focus on the past ten years.

  10. Refractometric sensor based on a phase-shifted long-period fiber grating.

    Science.gov (United States)

    Falate, Rosane; Frazão, Orlando; Rego, Gaspar; Fabris, José Luís; Santos, José Luís

    2006-07-20

    A refractometric sensor based on a phase-shifted long-period fiber grating written by electric-arc discharges is presented. Transmission and reflective configurations for refractive index measurements are studied. It is observed that the reflective topology permits better performance compared with the transmission one, which is the approach normally utilized in the context of long-period fiber sensing. The resolution achieved in the measurement of refractive index enables the application of this sensing head structure in demanding situations, such as the measurement of the level of salinity of water.

  11. Resolving galaxy cluster gas properties at z~1 with XMM-Newton and Chandra

    CERN Document Server

    Bartalucci, I; Pratt, G W; Démoclès, J; van der Burg, R F J; Mazzotta, P

    2016-01-01

    We present a pilot X-ray study of the five most massive ($M_{500}>5 \\times 10^{14} M_{\\odot}$), distant (z~1), galaxy clusters detected via the Sunyaev-Zeldovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the throughput of XMM to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, constrained in the centre by Chandra and in the outskirts by XMM. We show that the Chandra-XMM combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM sensitivity allowing higher significance detection of faint substructures. The sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM density profiles and spatially-resolved temperature prof...

  12. Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei

    Science.gov (United States)

    Yang, Y.; Mushotzky, R. F.; Barger, A. J.; Cowie, L. L.

    2006-01-01

    We present the spatial correlation function analysis of non-stellar X-ray point sources in the Chandra Large Area Synoptic X-ray Survey of Lockman Hole Northwest (CLASXS). Our 9 ACIS-I fields cover a contiguous solid angle of 0.4 deg(exp 2) and reach a depth of 3 x 10(exp -15) erg/square cm/s in the 2-8 keV band. We supplement our analysis with data from the Chandra Deep Field North (CDFN). The addition of this field allows better probe of the correlation function at small scales. A total of 233 and 252 sources with spectroscopic information are used in the study of the CLASXS and CDFN fields respectively. We calculate both redshift-space and projected correlation functions in co-moving coordinates, averaged over the redshift range of 0.1 tau(sub 0 = 8.1(sup +1.2 sub -2.2) Mpc, and gamma = 2.1 +/- 0.5 for the CLASXS field, and tau(sub 0) = 5.8(sup +.1.0 sub -1.5) Mpc, gamma = 1.38(sup +0.12 sub -0.14 for the CDFN field. By comparing the real- and redshift-space correlation functions in the combined CLASXS and CDFN samples, we are able to estimate the redshift distortion parameter Beta = 0.4 +/- 0.2 at an effective redshift z = 0.94. We compare the correlation functions for hard and soft spectra sources in the CLASXS field and find no significant difference between the two groups. We have also found that the correlation between X-ray luminosity and clustering amplitude is weak, which, however, is fully consistent with the expectation using the simplest relations between X-ray luminosity, black hole mass, and dark halo mass. We study the evolution of the AGN clustering by dividing the samples into 4 redshift bins over 0.1 Mpcestimate the evolution of the bias, and find that the bias increases rapidly with redshift (b(z = 0.45) = 0.95 +/- 0.15 and b(z = 2.07) = 3.03 +/- 0.83): The typical mass of the dark matter halo derived from the bias estimates show little change with redshift. The average halo mass is found to be log (M(sub halo)/M(sun))approximates 12.1. Subject

  13. Fabrication of grating-like polystyrene latex monolayer structure as three-dimensional calibration standards for scanning probe microscope

    Institute of Scientific and Technical Information of China (English)

    Zhu Guo-Dong; Zeng Zhi-Gang; Guo Zhang; Du Qiang-Guo; Yan Xue-Jian

    2009-01-01

    This paper illuminates the preparation of grating-like polystyrene latex monolayer structure, which can minimize the effects of the size deviation of spheres and the defect transfer on the accuracy as calibration samples for micro-scopes. The latex films are grown on freshly cleaved mica substrates by vertical deposition method. The concentration dependence of the structure and the topography of latex films is characterized by optical microscope, ultraviolet-visible transmission spectrum and scanning probe microscope. The origination of such a grating-like structure is also discussed.

  14. Hyperbranched-polymer dispersed nanocomposite volume gratings for holography and diffractive optics

    Science.gov (United States)

    Tomita, Yasuo; Takeuchi, Shinsuke; Oyaizu, Satoko; Urano, Hiroshi; Fukamizu, Taka-aki; Nishimura, Naoya; Odoi, Keisuke

    2016-10-01

    We review our experimental investigations of photopolymerizable nanoparticle-polymer composites (NPCs) for holography and diffractive optics. Various types of hyperbranched polymer (HBP) were systhesized and used as transporting organic nanoparticles. These HBPs include hyperbranched poly(ethyl methacrylate) (HPEMA), hyperbranched polystyrene (HPS) and hyperbranched triazine/aromatic polymer units (HTA) whose refractive indices are 1.51, 1.61 and 1.82, respectively. Each HBP was dispersed in (meth)acrylate monomer whose refractive index was so chosen that a refractive index difference between HBP and the formed polymer was large. Such monomer-HBP syrup was mixed with a titanocene photoinitiator for volume holographic recording in the green. We used a two-beam interference setup to write an unslanted transmission volume grating at grating spacing of 1 μm and at a wavelength of 532 nm. It is shown that NPC volume gratings with the saturated refractive index modulation amplitudes as large as 0.008, 0.004 and 0.02 can be recorded in NPCs incorporated with HPEMA, HPS and HTA at their optimum concentrations of 34, 34 and 25 vol.%, respectively. We show the usefulness of HBP-dispersed NPC volume gratings for holographic applications such as holographic data storage and diffractive optical devices.

  15. Novel algorithm for synthesis of fiber gratings

    Institute of Scientific and Technical Information of China (English)

    Bo LV; Ming CHEN; Dan LU; Taorong GONG; Tangjun LI; Shuisheng JIAN

    2009-01-01

    A novel algorithm for the synthesis of fiber gratings is presented.For the first time we propose an effective optimal approach to construct a coupling coefficient function by employing 4th-order Runge-Kutta (R-K) analysis method for calculating the reflection spectra of fiber gratings.The numerical results show that with this proposed method, some required optical filters have been yielded with better features compared with other methods such as Gel'Fand-Levitan-Marchenko (GLM) algorithm.In addition, the performance of different interpolation functions particularly utilized in our algorithm, including linear-type, spline-type, and Hermit-type, are discussed in detail.

  16. Multiwavelength optical scatterometry of dielectric gratings

    KAUST Repository

    Yashina, Nataliya P.

    2012-08-01

    Modern scatterometry problems arising in the lithography production of periodic gratings are in the focus of the work. The performance capabilities of a novel theoretical and numerical modeling oriented to these problems are considered. The approach is based on rigorous solutions of 2-D initial boundary value problems of the gratings theory. The quintessence and advantage of the method is the possibility to perform an efficient analysis simultaneously and interactively both for steady state and transient processes of the resonant scattering of electromagnetic waves by the infinite and compact periodic structures. © 2012 IEEE.

  17. LOFAR, VLA, and Chandra observations of the Toothbrush galaxy cluster

    CERN Document Server

    van Weeren, R J; Brüggen, M; Andrade-Santos, F; Ogrean, G A; Williams, W L; Röttgering, H J A; Dawson, W A; Forman, W R; de Gasperin, F; Hardcastle, M J; Jones, C; Miley, G K; Rafferty, D A; Rudnick, L; Sabater, J; Sarazin, C L; Shimwell, T W; Bonafede, A; Best, P N; Bîrzan, L; Cassano, R; Chyży, K T; Croston, J H; Dijkema, T J; Ensslin, T; Ferrari, C; Heald, G; Hoeft, M; Horellou, C; Jarvis, M J; Kraft, R P; Mevius, M; Intema, H T; Murray, S S; Orrú, E; Pizzo, R; Sridhar, S S; Simionescu, A; Stroe, A; van der Tol, S; White, G J

    2016-01-01

    We present deep LOFAR observations between 120-181 MHz of the "Toothbrush" (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of $\\alpha = -0.8 \\pm 0.1$ at the northern edge of the main radio relic, steepening towards the south to $\\alpha \\approx - 2$. The spectral index of the radio halo is remarkably uniform ($\\alpha = -1.16$, with an intrinsic scatter of $\\leq 0.04$). The observed radio relic spectral index gives a Mach number of $\\mathcal{M} = 2.8^{+0.5}_{-0.3}$, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio r...

  18. AEGIS: Chandra Observation of DEEP2 Galaxy Groups and Clusters

    CERN Document Server

    Fang, T; Davis, D; Newman, J; Davis, M; Nandra, K; Laird, E; Koo, D; Coil, A; Cooper, M; Croton, D; Yan, R

    2006-01-01

    We present a 200 ksec Chandra observation of seven spectroscopically selected, high redshift (0.75 < z < 1.03) galaxy groups and clusters discovered by the DEEP2 Galaxy Redshift Survey in the Extended Groth Strip (EGS). X-ray emission at the locations of these systems is consistent with background. The 3-sigma upper limits on the bolometric X-ray luminosities (L_X) of these systems put a strong constraint on the relation between L_X and the velocity dispersion of member galaxies sigma_gal at z~1; the DEEP2 systems have lower luminosity than would be predicted by the local relation. Our result is consistent with recent findings that at high redshift, optically selected clusters tend to be X-ray underluminous. A comparison with mock catalogs indicates that it is unlikely that this effect is entirely caused by a measurement bias between sigma_gal and the dark matter velocity dispersion. Physically, the DEEP2 systems may still be in the process of forming and hence not fully virialized, or they may be defic...

  19. Chandra Phase-Resolved Spectroscopy of the Crab Pulsar

    CERN Document Server

    Weisskopf, M C; Paerels, F; Becker, W; Tennant, A F; Swartz, D A; Weisskopf, Martin C.; Dell, Stephen L. O'; Paerels, Frits; Becker, Werner; Tennant, Allyn F.; Swartz, Douglas A.

    2004-01-01

    We present the first phase-resolved study of the X-ray spectral properties of the Crab Pulsar that covers all pulse phases. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity, even at pulse minimum. Analysis of the pulse-averaged spectrum measures interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We confirm previous findings that the line-of-sight to the Crab is underabundant in oxygen, although more-so than recently measured. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = (3.33 +/-0.25) x 10**-4. Analysis of the spectrum as a function of pulse phase measures the low-energy X-ray spectral index even at pulse minimum -- albeit with large statistical uncertainty -- and we find marginal evidence for variations of the spectral index. The data are also used to set a new (3-sigma) upper lim...

  20. Echoes of multiple outbursts of Sagittarius A* revealed by Chandra

    CERN Document Server

    Clavel, Maïca; Goldwurm, A; Morris, M R; Ponti, G; Soldi, S; Trap, G

    2013-01-01

    The relatively rapid spatial and temporal variability of the X-ray radiation from some molecular clouds near the Galactic center shows that this emission component is due to the reflection of X-rays generated by a source that was luminous in the past, most likely the central supermassive black hole, Sagittarius A*. Studying the evolution of the molecular cloud reflection features is therefore a key element to reconstruct Sgr A*'s past activity. The aim of the present work is to study this emission on small angular scales in order to characterize the source outburst on short time scales. We use Chandra high-resolution data collected from 1999 to 2011 to study the most rapid variations detected so far, those of clouds between 5' and 20' from Sgr A* towards positive longitudes. Our systematic spectral-imaging analysis of the reflection emission, notably of the Fe Kalpha line at 6.4 keV and its associated 4-8 keV continuum, allows us to characterize the variations down to 15" angular scale and 1-year time scale. ...

  1. Chandra Multiwavelength Project: Normal Galaxies at Intermediate Redshift

    CERN Document Server

    Kim, D W; Colmenero, E R; Green, P J; Kim, M; Mossman, A; Schlegel, E M; Silverman, J D; Aldcroft, T; Ivezic, Z; Anderson, C; Kashyap, V; Tananbaum, H; Wilkes, B J

    2005-01-01

    (abridged) We have investigated 136 Chandra extragalactic sources without broad optical emission lines, including 93 galaxies with narrow emission lines (NELG) and 43 with only absorption lines (ALG). Based on fx/fo, Lx, X-ray spectral hardness and optical emission line diagnostics, we have conservatively classified 36 normal galaxies (20 spirals and 16 ellipticals) and 71 AGNs. We found no statistically significant evolution in Lx/LB, within the limited z range. We have built log(N)-log(S), after correcting for completeness based on a series of simulations. The best-fit slope is -1.5 for both S and B energy bands, which is considerably steeper than that of the AGN-dominated cosmic background sources, but slightly flatter than the previous estimate, indicating normal galaxies will not exceed the AGN population until fx ~ 2 x 10-18 erg s-1 cm-2 (a factor of ~5 lower than the previous estimate). A group of NELGs appear to be heavily obscured in X-rays, i.e., a typical type 2 AGN. After correcting for intrinsic ...

  2. Coronal physics and the chandra emission line project

    Directory of Open Access Journals (Sweden)

    N. S. Brickhouse

    2000-01-01

    Full Text Available Con el lanzamiento del observatorio de rayos-X Chandra se ha iniciado la espectroscop a de alta resoluci on en rayos-X de las fuentes c osmicas. Observa- ciones profundas de tres fuentes estelares con emisi on coronal|Capela, Proci on y HR 1099|est an dando no s olo datos de calibraci on invaluables sino tambi en medios de comparaci on para los modelos de emisi on de plasmas. Estos modelos, que han sido cuestionados por los problemas para entender los datos de baja y moderada re- soluci on de ASCA y del EUVE, son necesarios para interpretar los datos de coronas estelares, galaxias y c umulos de galaxias, remanentes de supernova y otras fuentes. El Proyecto de L neas de Emisi on es una colaboraci on para mejorar los modelos y su primera fase es la comparaci on de los modelos con los espectros observados de Capela, Proci on y HR 1099. Las metas de la comparaci on son (1 determinar y veri car la precisi on y fortaleza de los diagn osticos y (2 identi car y priorizar los elementos de la espectroscop a que requieran m as trabajo tanto te orico como de laboratorio. Uno de los puntos cr ticos de esta labor es entender hasta que punto se pueden aplicar las hip otesis simpli cadoras comunmente usadas (equilibrio coro- nal, baja opacidad. Discutimos, en este contexto, los avances m as recientes en el entendimiento de las coronas estelares.

  3. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    CERN Document Server

    Arzoumanian, Z; Landecker, T L; Kothes, R; Camilo, F

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nonthermal nebula 40'' in diameter exhibiting a power-law spectrum with photon index Gamma = 1.6+/-0.3, typical of a pulsar wind nebula. The implied spin-down luminosity of the neutron star, assuming a conversion efficiency to nebular flux appropriate to Vela-like pulsars, is ~10^{35} ergs/s, again typical of objects a few tens of kyr old. Morphologically, the nebular flux is slightly enhanced along a direction, in projection on the sky, independently demonstrated to be of significance in radio polarization observations; we argue that this represents the orientation o...

  4. Chandra counterparts of CANDELS GOODS-S sources

    CERN Document Server

    Cappelluti, N; Fontana, A; Zamorani, G; Amorin, R; Castellano, M; Merlin, E; Santini, P; Elbaz, D; Schreiber, C; Shu, X; Wang, T; Dunlop, J S; Bourne, N; Bruce, V A; Buitrago, F; Michałowski, Michał J; Derriere, S; Ferguson, H C; Faber, S M; Vito, F

    2015-01-01

    Improving the capabilities of detecting faint X-ray sources is fundamental to increase the statistics on faint high-z AGN and star-forming galaxies.We performed a simultaneous Maximum Likelihood PSF fit in the [0.5-2] keV and [2-7] keV energy bands of the 4 Ms {\\em Chandra} Deep Field South (CDFS) data at the position of the 34930 CANDELS H-band selected galaxies. For each detected source we provide X-ray photometry and optical counterpart validation. We validated this technique by means of a raytracing simulation. We detected a total of 698 X-ray point-sources with a likelihood $\\mathcal{L}$$>$4.98 (i.e. $>$2.7$\\sigma$). We show that the prior knowledge of a deep sample of Optical-NIR galaxies leads to a significant increase of the detection of faint (i.e. $\\sim$10$^{-17}$ cgs in the [0.5-2] keV band) sources with respect to "blind" X-ray detections. By including previous catalogs, this work increases the total number of X-ray sources detected in the 4 Ms CDFS, CANDELS area to 793, which represents the large...

  5. Chandra observation of the supernova remnant N11L

    Science.gov (United States)

    Sun, Wei; Chen, Yang; Chu, You-Hua; Williams, Rosa M.

    2016-06-01

    We performed a Chandra X-ray study of the supernova remnant (SNR) N11L in the Large Magellanic Cloud (LMC). The X-ray emission is predominantly distributed within the main shell and the northern loop-like filaments traced by the optical narrow band images, with an indistinct extension along the north area. The brightest emission comes from a northeast-southwest ridge, and peaks at two patches at center and southwest. Spectral analysis indicates that the blast wave is propagating in a inhomogenous environment, and the X-ray emission overall is dominated by thermal gas whose composition is consistent with the LMC average abundance. The ionization time of the hot plasma implied by the X-ray spectral analysis is consistent with the Sedov age of the SNR derived from the best-fit parameters and the apparent radius of the SNR based on the optical images, however, the consequent explosion energy is no only at least one order of magnitude less than the canonical value of 10^{51} ergs, but also takes a small portion of the thermal energy of the hot gas. That discrepancy supports the blown-out scenario.

  6. Investigating the cores of fossil systems with Chandra

    CERN Document Server

    Bharadwaj, V; Sanders, J S; Schellenberger, G

    2016-01-01

    We investigate the cores of fossil galaxy groups and clusters (`fossil systems') using archival Chandra data for a sample of 17 fossil systems. We determined the cool-core fraction for fossils via three observable diagnostics, the central cooling time, cuspiness, and concentration parameter. We quantified the dynamical state of the fossils by the X-ray peak/brightest cluster galaxy (BCG), and the X-ray peak/emission weighted centre separations. We studied the X-ray emission coincident with the BCG to detect the presence of potential thermal coronae. A deprojection analysis was performed for z < 0.05 fossils to obtain cooling time and entropy profiles, and to resolve subtle temperature structures. We investigated the Lx-T relation for fossils from the 400d catalogue to see if the scaling relation deviates from that of other groups. Most fossils are identified as cool-core objects via at least two cool-core diagnostics. All fossils have their dominant elliptical galaxy within 50 kpc of the X-ray peak, and mo...

  7. Chandra Observations of Outflows from PSR J1509-5850

    CERN Document Server

    Klingler, Noel; Rangelov, Blagoy; Pavlov, George G; Posselt, Bettina; Ng, C -Y

    2016-01-01

    PSR J1509-5850 is a middle-aged pulsar with the period P ~ 89 ms, spin-down power Edot = 5.1 x 10^35 erg/s, at a distance of about 3.8 kpc. We report on deep Chandra X-ray Observatory observations of this pulsar and its pulsar wind nebula (PWN). In addition to the previously detected tail extending up to 7' southwest from the pulsar (the southern outflow), the deep images reveal a similarly long, faint diffuse emission stretched toward the north (the northern outflow) and the fine structure of the compact nebula (CN) in the pulsar vicinity. The CN is resolved into two lateral tails and one axial tail pointing southwest (a morphology remarkably similar to that of the Geminga PWN), which supports the assumption that the pulsar moves towards the northeast. The luminosities of the southern and northern outflows are about 1 x 10^33 and 4 x 10^32 erg/s, respectively. The spectra extracted from four regions of the southern outflow do not show any softening with increasing distance from the pulsar. The lack of synchr...

  8. Stellar X-ray sources in the Chandra COSMOS survey

    CERN Document Server

    Wright, Nicholas J; Civano, Francesca

    2010-01-01

    We present an analysis of the X-ray properties of a sample of solar- and late-type field stars identified in the Chandra Cosmic Evolution Survey (COSMOS), a deep (160ks) and wide (0.9 deg2) extragalactic survey. The sample of 60 sources was identified using both morphological and photometric star/galaxy separation methods. We determine X-ray count rates, extract spectra and light curves and perform spectral fits to determine fluxes and plasma temperatures. Complementary optical and near-IR photometry is also presented and combined with spectroscopy for 48 of the sources to determine spectral types and distances for the sample. We find distances ranging from 30pc to ~12kpc, including a number of the most distant and highly active stellar X-ray sources ever detected. This stellar sample extends the known coverage of the L_X-distance plane to greater distances and higher luminosities, but we do not detect as many intrinsically faint X-ray sources compared to previous surveys. Overall the sample is typically more...

  9. Invisible Giant: Chandra's Limits on X-rays from Betelgeuse

    CERN Document Server

    Posson-Brown, J; Pease, D O; Drake, J J; Posson-Brown, Jennifer; Kashyap, Vinay L.; Pease, Deron O.; Drake, Jeremy J.

    2006-01-01

    We have analyzed Chandra calibration observations of Betelgeuse ($\\alpha$ Ori, M2 Iab, $m_{V} = 0.58$, 131 pc) obtained at the aimpoint locations of the HRC-I (8 ks), HRC-S (8 ks), and ACIS-I (5 ks). Betelgeuse is undetected in all the individual observations as well as cumulatively. We derive $3\\sigma$ upper limits to its X-ray count rates and compute the corresponding X-ray flux upper limits for isothermal coronal plasma over a range of temperatures, $T=0.3-10$~MK. We place a flux limit at the telescope of $\\fx\\approx4\\times10^{-15}$~ergs~s$^{-1}$ cm$^{-2}$ at T=1~MK. The upper limit is lowered by a factor of $\\approx3$ at higher temperatures, roughly an order of magnitude lower than that obtained previously. Assuming that the entire stellar surface is active, these fluxes correspond to a surface flux limit that ranges from 30-7000~ergs~s$^{-1}$ cm$^{-2}$ at T=1~MK, to $\\approx 1$~ergs~s$^{-1}$ cm$^{-2}$ at higher temperatures, five orders of magnitude lower than the quiet Sun X-ray surface flux. We discuss...

  10. The Chandra COSMOS Legacy survey: overview and point source catalog

    CERN Document Server

    Civano, F; Comastri, A; Urry, M C; Elvis, M; Cappelluti, N; Puccetti, S; Brusa, M; Zamorani, G; Hasinger, G; Aldcroft, T; Alexander, D M; Allevato, V; Brunner, H; Capak, P; Finoguenov, A; Fiore, F; Fruscione, A; Gilli, R; Glotfelty, K; Griffiths, R E; Hao, H; Harrison, F A; Jahnke, K; Kartaltepe, J; Karim, A; LaMassa, S M; Lanzuisi, G; Miyaji, T; Ranalli, P; Salvato, M; Sargent, M; Scoville, N J; Schawinski, K; Schinnerer, E; Silverman, J; Smolcic, V; Stern, D; Toft, S; Trakhenbrot, B; Treister, E; Vignali, C

    2016-01-01

    The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg$^2$ of the COSMOS field with an effective exposure of $\\simeq$160 ks over the central 1.5 deg$^2$ and of $\\simeq$80 ks in the remaining area. The survey is the combination of 56 new observations, obtained as an X-ray Visionary Project, with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2$\\times 10^{-5}$. We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft and hard band). The limiting depths are 2.2 $\\times$ 10$^{-16}$, 1.5 $\\times$ 10$^{-15}$ and 8.9$\\times$ 10$^{-16}$ ${\\rm erg~cm}^{-2}~{\\rm s}^{-1}$ in the 0.5-2, 2-10 and 0.5-10 keV bands, respectively. The observed fraction of obscured AGN with column density $> 10^{22}$ cm$^{-2}$ from the hardness ratio (HR) is $\\sim$50$^{+17}_{-16}$%...

  11. Chandra's Darkest Bright Star: not so Dark after All?

    Science.gov (United States)

    Ayres, Thomas R.

    2008-11-01

    The Chandra High Resolution camera (HRC) has obtained numerous short exposures of the ultraviolet (UV)-bright star Vega (α Lyrae; HD 172167: A0 V), to calibrate the response of the detector to out-of-band (non-X-ray) radiation. A new analysis uncovered a stronger "blue leak" in the imaging section (HRC-I) than reported in an earlier study of Vega based on a subset of the pointings. The higher count rate—a factor of nearly 2 above prelaunch estimates—raised the possibility that genuine coronal X-rays might lurk among the out-of-band events. Exploiting the broader point-spread function of the UV leak compared with soft X-rays identified an excess of counts centered on the target, technically at 3σ significance. A number of uncertainties, however, prevent a clear declaration of a Vegan corona. A more secure result would be within reach of a deep uninterrupted HRC-I pointing.

  12. Imaging the Circumnuclear Region of NGC 1365 with Chandra

    CERN Document Server

    Wang, Junfeng; Elvis, M; Risaliti, G; Mazzarella, J M; Howell, J H; Lord, S

    2009-01-01

    We present the first Chandra/ACIS imaging study of the circumnuclear region of the nearby Seyfert galaxy NGC 1365. The X-ray emission is resolved into point-like sources and complex, extended emission. The X-ray morphology of the extended emission shows a biconical soft X-ray emission region extending ~5 kpc in projection from the nucleus, coincident with the high excitation outflow cones seen in optical emission lines particularly to the northwest. Harder X-ray emission is detected from a kpc-diameter circumnuclear ring, coincident with the star-forming ring prominent in the Spitzer mid-infrared images; this X-ray emission is partially obscured by the central dust lane of NGC 1365. Spectral fitting of spatially separated components indicates a thermal plasma origin for the soft extended X-ray emission (kT=0.57 keV). Only a small amount of this emission can be due to photoionization by the nuclear source. Detailed comparison with [OIII]5007 observations shows the hot interstellar medium (ISM) is spatially ant...

  13. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    Science.gov (United States)

    Arzoumanian, Z.; Safi-Harb, S.; Landecker, T.L.; Kothes, R.; Camilo, F.

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nontherma1 nebula 40" in diameter exhibiting a power-law spectrum with photon index Gamma = 1.63, typical of a pulsar wind nebula. Morphologically, the nebula appears to be slightly extended along a direction, in projection on the sky, previously demonstrated to be of significance in radio and ASCA observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5" from the point source, but energetic arguments suggest that it is not the resolved termination shock of the pulsar wind against the ambient medium. Finally, we argue based on synchrotron lifetimes in the nebular magnetic field that DA 495 represents the first example of a pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind.

  14. Polymeric waveguide Bragg grating filter using soft lithography

    Science.gov (United States)

    Kocabas, Askin; Aydinli, Atilla

    2006-10-01

    We use the soft lithography technique to fabricate a polymeric waveguide Bragg grating filter. Master grating structure is patterned by e-beam lithography. Using an elastomeric stamp and capillary action, uniform grating structures with very thin residual layers are transferred to the UV curable polymer without the use of an imprint machine. The waveguide layer based on BCB optical polymer is fabricated by conventional optical lithography. This approach provides processing simplicity to fabricate Bragg grating filters.

  15. Laser Trimming for Adjustment of Grating Offset in Phase-Shifted Fiber Grating Coupler for All-Optical Switching Application

    Institute of Scientific and Technical Information of China (English)

    Hirohisa; Yokota; Yutaka; Sasaki

    2003-01-01

    We theoretically investigated laser trimming to adjust grating offset in phase-shifted fiber grating coupler (FGC) for all-optical switching application. It was clarified that the trimming made the extinction ratio higher in all-optical FGC switch.

  16. Light scanner based on a viscoelastic stretchable grating

    NARCIS (Netherlands)

    Simonov, A.N.; Akhzar-Mehr, O.; Vdovine, G.V.

    2005-01-01

    We present a new technique for light scanning by use of viscoelastic-based deformable phase diffraction gratings. Mechanical stretching of the grating permits control of its spatial period, and thus the orders of diffraction can be spatially deflected. In the experiments the viscoelastic gratings wi

  17. Fabrication of Dammann Gratings Inside Glasses by a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    NAKAYA Takayuki; QIU Jian-Rong; ZHOU Chang-He; HIRAO Kazuyuki

    2004-01-01

    @@ Dammann grating is useful in information technology as an optical splitter. It is usually fabricated through complicated processes. Here we report on the direct fabrication of a 6 × 6 Dammann grating in a silica glass by an 800nm femtosecond laser. We also discuss the relationship between diffraction efficiency of 1 × 2 Dammann grating and laser irradiation conditions.

  18. Grate Firing of Biomass: Measurements, Validation and Demonstration

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    , they are not yet totally problem-free. More efforts are required to further improve and optimize biomass grate-firing technology. This part of the project focuses on the CFD modelling of two industrial biomass grate-fired furnaces (AVV2 & EV3). The grate fired furnace is an overfeed stoker and can be interpreted...

  19. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper;

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  20. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  1. The Chandra X-ray Observatory is prepped for solar panel deployment copy form; photos beginning with

    Science.gov (United States)

    1999-01-01

    TRW workers in the Vertical Processing Facility check equipment after deployment of the solar panel array above them, attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93.

  2. Shelter from the Storm: Protecting the Chandra X-ray Observatory from Radiation

    Science.gov (United States)

    Cameron, Robert A.; Morris, David C.; Virani, Shanil N.; Wolk, Scott J.; Blackwell, William C.; Minow, Joseph I.; O'dell, Stephen L.

    NASA's Chandra X-ray Observatory was launched in July 1999, and the first images were recorded by the ACIS x-ray detector in August 1999. Shortly after first light, degradation of the energy resolution and charge transfer efficiency in the ACIS CCD detectors was observed, and this was quickly attributed to cumulative particle radiation damage in the CCD's, in particular from 100 keV to 200 keV protons. Since the onset of this radiation damage to ACIS, several improvements have been made to autonomous Chandra operation and ground-based operations and mission planning, to limit the effects of radiation while preserving optimum observing efficiency for the Observatory. These changes include implementing an automatic science instrument radiation protection system on Chandra, implementing a real-time radiation monitoring and alert system by the Science Operations Team, and improving the radiation prediction models used in mission planning for the Observatory. These satellite- and ground-based systems provide protection for Chandra from passages through the Earth's trapped radiation belts and outer magnetosphere and from flares and coronal mass ejections from the Sun. We describe the design and performance of the automatic on-board radiation protection system on Chandra, and the ground-based software systems and data products for real-time radiation monitoring. We also describe the development and characterize the performance of the Chandra Radiation Model (CRM), which provides predictions of the solar wind and magnetospheric proton fluxes along Chandra's orbit, indexed by the geomagnetic activity index, Kp. We compare the observed and predicted damage rates to ACIS based on net mission proton fluence, and outline planned enhancements to the CRM.

  3. Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.

    Science.gov (United States)

    Ye, Qing; Qu, Ronghui; Fang, Zujie

    2007-04-10

    A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.

  4. Electromagnetic Transmission Through Resonant Structures

    Science.gov (United States)

    Young, Steven M.

    Electromagnetic resonators store energy in the form of oscillatory electric and magnetic fields and gradually exchange that energy by coupling with their environment. This coupling process can have profound effects on the transmission and reflection properties of nearby interfaces, with rapid transitions from high transmittance to high reflectance over narrow frequency ranges, and has been exploited to design useful optical components such as spectral filters and dielectric mirrors. This dissertation includes analytic, numeric, and experimental investigations of three different electromagnetic resonators, each based on a different method of confining electromagnetic fields near the region of interest. First, we show that a structure with two parallel conducting plates, each containing a subwavelength slit, supports a localized resonant mode bound to the slits and therefore exhibits (in the absence of nonradiative losses), perfect resonant transmission over a narrow frequency range. In practice, the transmission is limited by conduction losses in the sidewalls; nevertheless, experimental results at 10 GHz show a narrowband transmission enhancement by a factor of 104 compared to the non-resonant transmission, with quality factor (ratio of frequency to peak width) Q ~ 3000. Second, we describe a narrowband transmission filter based on a single-layer dielectric grating. We use a group theory analysis to show that, due to their symmetry, several of the grating modes cannot couple to light at normal incidence, while several others have extremely large coupling. We then show how selectively breaking the system symmetry using off-normal light incidence can produce transmission peaks by enabling weak coupling to some of the previously protected modes. The narrowband filtering capabilities are validated by an experimental demonstration in the long wavelength infrared, showing transmission peaks of quality factor Q ~ 100 within a free-spectral range of 8-15 mum. Third, we

  5. Femtosecond laser writing of Bragg grating waveguide bundles in bulk glass.

    Science.gov (United States)

    Thiel, Markus; Flachenecker, Günter; Schade, Wolfgang

    2015-04-01

    Waveguide bundles in bulk glass materials, consisting of several parallel scans of refractive index modifications, have been generated with a low-repetition femtosecond laser. Additionally, Bragg grating (BG) structures for 840 and 1550 nm have been introduced by segmentation of the central scan. A spectral loss in the transmission signal of >36  dB was achieved at 1550 nm with a second-order Bragg grating waveguide (BGW) in fused silica, which corresponds to an intrinsic grating efficiency of >16  dB/cm. This is to our knowledge the strongest BG structure realized in glass with a femtosecond laser. The BGW were proven to be stable up to a temperature of 250°C in fused silica. The diameter of the waveguide bundles can be adapted very easily for a broad range of wavelengths and have been demonstrated for diameters between 1 and 50 μm. The transmission properties of the waveguide bundles are affected minorly by the insertion of BG structures, which opens the ability for adjusting the BGW for a broad range of wavelength in single-mode or multimode optical circuits. BGW have been realized successfully in fused silica, borosilicate glass (BOROFLOAT 33), and AF 32 eco Thin Glass from Schott.

  6. The End of Days -- Chandra Catches X-ray Glow From Supernova

    Science.gov (United States)

    1999-12-01

    Through a combination of serendipity and skill, scientists have used NASA's Chandra X-ray Observatory to capture a rare glimpse of X-radiation from the early phases of a supernova, one of the most violent events in nature. Although more than a thousand supernovas have been observed by optical astronomers, the early X-ray glow from the explosions has been detected in less than a dozen cases. The Chandra observations were made under the direction of a team of scientists from the Massachusetts Institute of Technology (MIT) in Cambridge, led by Walter Lewin and his graduate student, Derek Fox. When combined with simultaneous observations by radio and optical telescopes, the X-ray observations tell about the thickness of the shell that was blown off, its density, its speed, and how much material was shed by the star before it exploded. Chandra observed an X-ray glow from SN1999em with the total power of 50,000 suns. Ten days later it observed the supernova for another nine hours, and found that the X rays had faded to half their previous intensity. The optical luminosity, which had the brightness of 200 million suns, had faded somewhat less. No radio emission was detected at any time. With this information, the MIT group and their colleagues are already piecing together a picture of the catastrophic explosion. Observations by optical astronomers showed that SN1999em was a Type II supernova produced by the collapse of the core of a star ten or more times as massive as the Sun. The intense heat generated in the collapse produces a cataclysmic rebound that sends high speed debris flying outward at speeds in excess of 20 million miles per hour. The debris crashes into matter shed by the former star before the explosion. This awesome collision generates shock waves that heat expanding debris to three million degrees. The X-ray glow from this hot gas was detected by Chandra and gives astrophysicists a better understanding of the dynamics of the explosion, as well as the

  7. Smart photogalvanic running-grating interferometer

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.

    2005-01-01

    Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating interferometer usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration of...

  8. Gratings in plasmonic V-groove waveguides

    DEFF Research Database (Denmark)

    Smith, Cameron; Cuesta, Irene Fernandez; Kristensen, Anders

    2011-01-01

    We introduce visible light optical gratings to surface plasmon V-groove waveguides. Gradient e-beam dosage onto silicon stamp enables structuring V-grooves of varying depth. Nanoimprint lithography maintains a Λ=265 nm corrugation for gold surface devices....

  9. Speed enhancement in VCSELs employing grating mirrors

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2013-01-01

    In recent years, various approaches to improve the speed of directly modulated vertical-cavity surface-emitting lasers (VCSELs) have been reported and demonstrated good improvement. In this paper, we propose and numerically investigate a new possibility of using high-index-contrast grating (HCG...

  10. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  11. Asymmetric transmission: a generic property of lossy periodic interfaces

    CERN Document Server

    Plum, E; Zheludev, N I

    2010-01-01

    Asymmetric transmission of circularly polarized waves is a well-established property of lossy, anisotropic, two-dimensionally chiral patterns. Here we show that asymmetric transmission can be observed for oblique incidence onto any lossy periodically structured plane. Our results greatly expand the range of natural and artificial materials in which directionally asymmetric transmission can be expected making it a cornerstone electromagnetic effect rather than a curiosity of planar chiral metamaterials. Prime candidates for asymmetric transmission at oblique incidence are rectangular arrays of plasmonic spheres or semiconductor quantum dots, lossy double-periodic gratings and planar metamaterial structures.

  12. Field analysis of two-dimensional integrated optical gratings

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A rigorous technique to determine the field scattered by a two-dimensional rectangular grating made up of many corrugations was developed. In this method, the grating was deemed as a sequence of two types of waveguide sections, alternatingly connected by step discontinuities. A matrix was derived that described the entire rectangular grating by integrating the separate steps and waveguide sections. With the proposed technique, several configuration were analyzed. The obtained results showed good consistency with the consequences of previous studies. Furthermore, to examine the numerical stability of the proposed method, the length of the grating was increased and obtained results for a grating with 100 periods.

  13. Field analysis of two-dimensional focusing grating couplers

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.

  14. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  15. Fundamental limit of light trapping in grating structures

    KAUST Repository

    Yu, Zongfu

    2010-08-11

    We use a rigorous electromagnetic approach to analyze the fundamental limit of light-trapping enhancement in grating structures. This limit can exceed the bulk limit of 4n 2, but has significant angular dependency. We explicitly show that 2D gratings provide more enhancement than 1D gratings. We also show the effects of the grating profile’s symmetry on the absorption enhancement limit. Numerical simulations are applied to support the theory. Our findings provide general guidance for the design of grating structures for light-trapping solar cells.

  16. First Images From Chandra X-Ray Observatory to be Released

    Science.gov (United States)

    1999-08-01

    The first images from the world's most powerful X-ray telescope, NASA's Chandra X-ray Observatory, will be unveiled at a media briefing at 1 p.m. EDT, Thursday, Aug. 26. The briefing will be held in the James E. Webb Auditorium at NASA Headquarters, 300 E St. SW, Washington, DC. The images include the spectacular remnants of a supernova and other astronomical objects. Panelists will be: - Dr. Edward Weiler, Associate Administrator for Space Science, NASA Headquarters, Washington, DC; - Dr. Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X-ray Center, Cambridge, MA; - Dr. Martin Weisskopf, NASA's Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL; and - Dr. Robert Kirshner, astrophysicist, Harvard University, Cambridge, MA. The event will be carried live on NASA Television with question-and-answer capability for reporters covering the briefing from participating NASA centers and from the Chandra Operations Control Center in Cambridge. NASA Television is available on transponder 9C, satellite GE-2 at 85 degrees West longitude, vertical polarization, frequency 3880 MHz, audio of 6.8 MHz. Chandra has been undergoing activation and checkout since it was placed into orbit during Space Shuttle mission STS-93 in July. Chandra will examine exploding stars, black holes, colliding galaxies and other high-energy cosmic phenomena to help scientists gain a better understanding of the structure and evolution of the universe. Chandra images and additional information will be available following the briefing on the Internet at: http://chandra.nasa.gov and http://chandra.harvard.edu NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second

  17. LOFAR, VLA, and Chandra Observations of the Toothbrush Galaxy Cluster

    Science.gov (United States)

    van Weeren, R. J.; Brunetti, G.; Brüggen, M.; Andrade-Santos, F.; Ogrean, G. A.; Williams, W. L.; Röttgering, H. J. A.; Dawson, W. A.; Forman, W. R.; de Gasperin, F.; Hardcastle, M. J.; Jones, C.; Miley, G. K.; Rafferty, D. A.; Rudnick, L.; Sabater, J.; Sarazin, C. L.; Shimwell, T. W.; Bonafede, A.; Best, P. N.; Bîrzan, L.; Cassano, R.; Chyży, K. T.; Croston, J. H.; Dijkema, T. J.; Enßlin, T.; Ferrari, C.; Heald, G.; Hoeft, M.; Horellou, C.; Jarvis, M. J.; Kraft, R. P.; Mevius, M.; Intema, H. T.; Murray, S. S.; Orrú, E.; Pizzo, R.; Sridhar, S. S.; Simionescu, A.; Stroe, A.; van der Tol, S.; White, G. J.

    2016-02-01

    We present deep LOFAR observations between 120 and 181 MHz of the “Toothbrush” (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of α =-0.8+/- 0.1 at the northern edge of the main radio relic, steepening toward the south to α ≈ -2. The spectral index of the radio halo is remarkably uniform (α =-1.16, with an intrinsic scatter of ≤slant 0.04). The observed radio relic spectral index gives a Mach number of { M }={2.8}-0.3+0.5, assuming diffusive shock acceleration. However, the gas density jump at the northern edge of the large radio relic implies a much weaker shock ({ M }≈ 1.2, with an upper limit of { M }≈ 1.5). The discrepancy between the Mach numbers calculated from the radio and X-rays can be explained if either (i) the relic traces a complex shock surface along the line of sight, or (ii) if the radio relic emission is produced by a re-accelerated population of fossil particles from a radio galaxy. Our results highlight the need for additional theoretical work and numerical simulations of particle acceleration and re-acceleration at cluster merger shocks.

  18. Chandra Counterparts of CANDELS GOODS-S Sources

    Science.gov (United States)

    Cappelluti, N.; Comastri, A.; Fontana, A.; Zamorani, G.; Amorin, R.; Castellano, M.; Merlin, E.; Santini, P.; Elbaz, D.; Schreiber, C.; Shu, X.; Wang, T.; Dunlop, J. S.; Bourne, N.; Bruce, V. A.; Buitrago, F.; Michałowski, Michał J.; Derriere, S.; Ferguson, H. C.; Faber, S. M.; Vito, F.

    2016-06-01

    Improving the capabilities of detecting faint X-ray sources is fundamental for increasing the statistics on faint high-z active galactic nuclei (AGNs) and star-forming galaxies (SFGs). We performed a simultaneous maximum likelihood point-spread function fit in the [0.5-2] keV and [2-7] keV energy bands of the 4 Ms Chandra Deep Field South (CDFS) data at the position of the 34,930 CANDELS H-band selected galaxies. For each detected source we provide X-ray photometry and optical counterpart validation. We validated this technique by means of a ray-tracing simulation. We detected a total of 698 X-ray point sources with a likelihood { L }\\gt 4.98 (i.e., >2.7σ). We show that prior knowledge of a deep sample of optical-NIR galaxies leads to a significant increase in the detection of faint (i.e., ˜10-17 cgs in the [0.5-2] keV band) sources with respect to “blind” X-ray detections. By including previous X-ray catalogs, this work increases the total number of X-ray sources detected in the 4 Ms CDFS, CANDELS area to 793, which represents the largest sample of extremely faint X-ray sources assembled to date. Our results suggest that a large fraction of the optical counterparts of our X-ray sources determined by likelihood ratio actually coincides with the priors used for the source detection. Most of the new detected sources are likely SFGs or faint, absorbed AGNs. We identified a few sources with putative photometric redshift z > 4. Despite the low number statistics and the uncertainties on the photo z, this sample significantly increases the number of X-ray-selected candidate high-z AGNs.

  19. Digital monitoring for heavy duty mechanical equipment based on fiber Bragg grating sensor

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The digital monitoring principle and technologies for heavy duty mechanical equipment based on fiber Bragg grating (FBG) technology are introduced in this paper. The fundamentals of new-style FBG sensing technology, including the photorefractive effect of FBG, the physical formation, and the relation between optical properties and grating parameters, are investigated. The plaster, encapsulation and distribution planning of FBG sensor (FBGS), which is used to monitor heavy duty mechanical equipment under abominable environment and extreme conditions, are also studied. In addition, theoretical and experimental researches on the strain, temperature, displacement, and stress transmission characteristics between FBGS and detection interface are presented. The principle and method for temperature compensation in non-uniformity temperature field are described in detail as well. Comparing with the traditional sensing monitoring techniques, the application of FBGS technology on digital monitoring and diagnosis for heavy duty mechanical equipment has a number of significant technical advantages and will make a new breakthrough in this field.

  20. Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures

    Science.gov (United States)

    Muravjov, A. V.; Veksler, D. B.; Hu, X.; Gaska, R.; Pala, N.; Saxena, H.; Peale, R. E.; Shur, M. S.

    2009-05-01

    Pronounced resonant absorption and frequency dispersion associated with an excitation of collective 2D plasmons have been observed in terahertz (0.5-4THz) transmission spectra of grating-gate 2D electron gas AlGaN/GaN HEMT (high electron mobility transistor) structures at cryogenic temperatures. The resonance frequencies correspond to plasmons with wavevectors equal to the reciprocal-lattice vectors of the metal grating, which serves both as a gate electrode for the HEMT and a coupler between plasmons and incident terahertz radiation. The resonances are tunable by changing the applied gate voltage, which controls 2D electron gas concentration in the channel. The effect can be used for resonant detection of terahertz radiation and for "on-chip" terahertz spectroscopy.

  1. Elastomeric 2D Grating and Hemispherical Optofluidic Chamber for Multifunctional Fluidic Sensing

    CERN Document Server

    Xu, Zhida

    2014-01-01

    We present an optofluidic sensor based on an elastomeric two-dimensional (2D) grating integrated inside a hemispherical fluid chamber. Laser beam is diffracted before (reflection) and after (transmission) going through the grating and liquid in the dome chamber. The sensing mechanism is investigated and simulated with a finite difference time domain (FDTD) based electromagnetic (EM) method. For experiment, by analyzing the size, power and shape of the 2D diffraction patterns, we can retrieve multiple parameters of the liquid including the refractive index, pressure and opacity with high sensitivity. We demonstrate that glucose concentration can be monitored when mixed in different concentrated phosphate buffered saline (PBS) solution. The free-solution binding of bovine serum albumin (BSA) and anti-BSA IgG is detected with this optical sensor. This low-cost, multifunctional and reliable optofluidic sensor has the potential to be used as monitor of biofluid such as blood in hemodialysis.

  2. Compound grating structures in photonic crystals for resonant excitation of azobenzene

    DEFF Research Database (Denmark)

    Jahns, Sabrina; Kallweit, Christine; Adam, Jost;

    -difference time-domain (FDTD) calculations for determination of resonance positions and electric field strengths in compound grating structures. By superimposing two single-period gratings a photonic crystal can be designed supporting multiple guided mode resonances suitable to switch azobenzenes between...... is small and thus a high excitation light intensity is required. We investigate the enhancement of the local energy density using periodically nanostructured surfaces in a high refractive index material. Such photonic crystals support quasi-guided modes visible as resonances in the reflection as well...... as in the transmission light spectrum. These guided modes have field contributions decaying exponentially in the near field of the photonic crystal. Azobenzene immobilized on the photonic crystal surface will experience a significantly increased light intensity compared to non-resonant surfaces. We performed finite...

  3. NASA's High Energy Vision: Chandra and the X-Ray Universe

    Science.gov (United States)

    Mais, D. E.; Stencel, R. E.; Richards, D.

    2004-05-01

    The Chandra X-Ray Observatory is the most sophisticated X-ray observatory launched by NASA. Chandra is designed to observe X-rays from high-energy regions of the universe, such as the remnants of supernovae explosions, col- liding galaxies, black holes, pulsars, neutron stars, quasars, and X-ray bi- nary stars. The spectacular results from the first five years of Chandra ob- servations are changing and redefining theories with each observation. Every exciting new image shows glimpses of such exotic phenomena as super-massive black holes, surprising black hole activity in old galaxies, rivers of grav- ity that define the cosmic landscape, unexpected x-ray activity in proto- stars and failed stars, puzzling distributions of elements in supernovae remnants, the sound waves from a super-massive black hole, and the even the tantalizing possibility of an entirely new form of matter - the strange quark star. On September 14, 2000, triggered by alerts from amateur astron- omers worldwide, Chandra observed the outburst of the brightest northern dwarf nova SS Cygni. The cooperation of hundreds of amateur variable star astronomers and the Chandra X-Ray scientists and spacecraft specialists pro- vided proof that the collaboration of amateur and professional astronomers is a powerful tool to study cosmic phenomena.

  4. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    Science.gov (United States)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  5. Design and numerical simulation of a silicon-based linear polarizer with double-layered metallic nano-gratings

    Science.gov (United States)

    Lin, Yu; Hu, Jingpei; Wang, Chinhua

    2016-10-01

    With the increasing demand for linearly polarized elements with high performance in many fields and applications, design and fabrication of sub-wavelength metallic linear polarizer have made tremendous progress in recent years. In this paper, we proposed a novel structure of a silicon-based linear polarizer working in the infrared (3-5μm) waveband with a double-layered metallic grating structure. A two-layer metallic grating with a transition layer of low refractive index is fabricated on a silicon substrate. In contrast to those conventional single layer metallic polarizing grating, the multilayer polarizing structure has the advantages of easy fabrication and high performance. Numerical simulation results show that an extinction ratio of linear polarization can be up to 58.5dB and the TM-polarized light transmission is greater than 90%. The behaviors and advantages of the proposed multilayer polarizer are compared with that of a traditional single-layer metallic grating. The proposed silicon-based linear polarizer will have great potential applications in real-time polarization imaging with high extinction ratio and high transmission.

  6. Chandra Observations of the Components of Clusters, Groups, and Galaxies and their Interactions

    CERN Document Server

    Forman, W; Markevitch, M L; Vikhlinin, A A; Churazov, E

    2001-01-01

    We discuss two themes from Chandra observations of galaxies, groups, and clusters. First, we review the merging process as seen through the high angular resolution of Chandra. We present examples of sharp, edge-like surface brightness structures ``cold fronts'', the boundaries of the remaining cores of merger components and the Chandra observations of CL0657, the first clear example of a strong cluster merger shock. In addition to reviewing already published work, we present observations of the cold front around the elliptical galaxy NGC1404 which is infalling into the Fornax cluster and we discuss multiple ``edges'' in ZW3146. Second, we review the effects of relativistic, radio-emitting plasmas or ``bubbles'', inflated by active galactic nuclei, on the hot X-ray emitting gaseous atmospheres in galaxies and clusters. We review published work and also discuss the unusual X-ray structures surrounding the galaxies NGC4636 and NGC507.

  7. Managing radiation degradation of CCDs on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Stephen L.; Aldcroft, Thomas L.; Bissell, Bradley A.; Blackwell, William C.; Cameron, Robert A.; Chappell, Jon II.; DePasquale, Joseph M.; Gage, Kenneth R.; Grant, Catherine E.; Harbison, Christine F.

    2005-01-01

    The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra Team developed, implemented, and maintains a radiation-protection program. This program - involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing - has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 2.9x10^-6 (2.3%) for the front- illuminated CCDs and 0.95x10^-6 (6.5%) for the back-illuminated CCDs. This paper describes the current status of Chandra radiation-management program.

  8. Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor

    CERN Document Server

    Grant, C E; Bautz, M W; O'Dell, S L

    2010-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped soft protons scattering off the x-ray telescope's mirrors. The primary effect of this damage was to increase the charge-transfer inefficiency (CTI) of the ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented procedures to remove the ACIS from the telescope's focus during high-radiation events: planned protection during radiation-belt transits; autonomous protection triggered by an on-board radiation monitor; and manual intervention based upon assessment of space-weather conditions. However, as Chandra's multilayer insulation ages, elevated temperatures have reduced the effectiveness of the on-board radiation monitor for autonomous protection. Here we investigate using the ACIS CCDs themselves as a radiation monitor. We explore the 10-year database to evaluate the CCDs' ...

  9. The Chandra Deep Field-North Survey and the Cosmic X-ray Background

    CERN Document Server

    Brandt, W N; Bauer, F E; Hornschemeier, A E

    2002-01-01

    Chandra has performed a 1.4 Ms survey centred on the Hubble Deep Field-North (HDF-N), probing the X-ray Universe 55-550 times deeper than was possible with pre-Chandra missions. We describe the detected point and extended X-ray sources and discuss their overall multiwavelength (optical, infrared, submillimeter, and radio) properties. Special attention is paid to the HDF-N X-ray sources, luminous infrared starburst galaxies, optically faint X-ray sources, and high-to-extreme redshift AGN. We also describe how stacking analyses have been used to probe the average X-ray emission properties of normal and starburst galaxies at cosmologically interesting distances. Finally, we discuss plans to extend the survey and argue that a 5-10 Ms Chandra survey would lay key groundwork for future missions such as XEUS and Generation-X.

  10. Intrinsic Absorption in the Spectrum of Mrk 279: Simultaneous Chandra, FUSE, and STIS Observations

    OpenAIRE

    Scott, Jennifer E.; Kriss, Gerard A.; Lee, Julia C; Arav, Nahum; Ogle, Patrick; Roraback, Kenneth; Weaver, Kimberly; Alexander, Tal; Brotherton, Michael; Green, Richard F.; Hutchings, John; Kaiser, Mary Elizabeth; Marshall, Herman; Oegerle, William; Zheng, Wei

    2004-01-01

    We present a study of the intrinsic X-ray and far-ultraviolet absorption in the Seyfert 1.5 galaxy Markarian 279 using simultaneous observations from the Chandra X-ray Observatory, the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope, and the Far Ultraviolet Spectroscopic Explorer (FUSE). We also present FUSE observations made at three additional epochs. We detect the Fe K-alpha emission line in the Chandra spectrum, and its flux is consistent with the low X-ray continuu...

  11. The Young Stellar Population in M17 Revealed by Chandra

    Science.gov (United States)

    Broos, Patrick S.; Feigelson, Eric D.; Townsley, Leisa K.; Getman, Konstantin V.; Wang, Junfeng; Garmire, Gordon P.; Jiang, Zhibo; Tsuboi, Yohko

    2007-04-01

    We report here results from a Chandra ACIS observation of the stellar populations in and around the M17 H II region. The field reveals 886 sources with observed X-ray luminosities (uncorrected for absorption) between ˜29.3 ergs s-1tables of X-ray source properties, several results are presented: 1. The X-ray luminosity function is calibrated to that of the Orion Nebula Cluster population to infer a total population of roughly 8000-10,000 stars in M17, one-third lying in the central NGC 6618 cluster. 2. About 40% of the ACIS sources are heavily obscured with AV>10 mag. Some are concentrated around well-studied star-forming regions -- IRS 5/UC1, the Kleinmann-Wright Object, and M17-North -- but most are distributed across the field. As previously shown, star formation appears to be widely distributed in the molecular clouds. X-ray emission is detected from 64 of the hundreds of Class I protostar candidates that can be identified by near- and mid-infrared colors. These constitute the most likely protostar candidates known in M17. 3. The spatial distribution of X-ray stars is complex: in addition to the central NGC 6618 cluster and well-known embedded groups, we find a new embedded cluster (designated M17-X), a 2 pc long arc of young stars along the southwest edge of the M17 H II region, and 0.1 pc substructure within various populations. These structures may indicate that the populations are dynamically young. 4. All (14/14) of the known O stars but only about half (19/34) of the known B0-B3 stars in the M17 field are detected. These stars exhibit the long-reported correlation between X-ray and bolometric luminosities of LX˜10-7Lbol. While many O and early-B stars show the soft X-ray emission expected from microshocks in their winds or moderately hard emission that could be caused by magnetically channeled wind shocks, six of these stars exhibit very hard thermal plasma components (kT>4 keV) that may be due to colliding wind binaries. More than 100 candidate new OB

  12. Chandra Observations of Dying Radio Sources in Galaxy Clusters

    Science.gov (United States)

    Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.

    2012-01-01

    Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions. We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from

  13. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  14. Strong Optical Confinement between Flat Dielectric Gratings

    CERN Document Server

    Li, Jingjing; Fiorentino, Marco; Beausoleil, Raymond G

    2011-01-01

    We present a novel type of optical micro-cavity based on a Fabry-Perot resonance between parallel high contrast gratings with non-periodic patterns. Tight lateral confinement is obtained via the phase front distortion properties of these gratings. In such cavities, energy stored in the optical field resides primarily in free space, therefore is readily accessible to particles (atoms, molecules, nanocrystals, etc.) for sensing, trapping, or spectroscopic applications. We describe the physics of these resonators, and propose a design method based on stochastic optimization. We present numerical simulations of two and three dimensional cavities that have diffraction-limited mode volumes with quality factors in the range of $10^4$--$10^6$. The cavity has a purely planar geometry and can be fabricated in silicon for near-infrared applications using standard CMOS processes. These ideas can be extended to the visible domain using commonly available III-V materials.

  15. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  16. 3D measurement using circular gratings

    Science.gov (United States)

    Harding, Kevin

    2013-09-01

    3D measurement using methods of structured light are well known in the industry. Most such systems use some variation of straight lines, either as simple lines or with some form of encoding. This geometry assumes the lines will be projected from one side and viewed from another to generate the profile information. But what about applications where a wide triangulation angle may not be practical, particularly at longer standoff distances. This paper explores the use of circular grating patterns projected from a center point to achieve 3D information. Originally suggested by John Caulfield around 1990, the method had some interesting potential, particularly if combined with alternate means of measurement from traditional triangulation including depth from focus methods. The possible advantages of a central reference point in the projected pattern may offer some different capabilities not as easily attained with a linear grating pattern. This paper will explore the pros and cons of the method and present some examples of possible applications.

  17. Stationary Light Pulses without Bragg Gratings

    CERN Document Server

    Lin, Yen-Wei; Peters, Thorsten; Liao, Wen-Te; Cho, Hung-Wen; Guan, Pei-Chen; Yu, Ite A

    2008-01-01

    The underlying mechanism of the stationary light pulse (SLP) was identified as a band gap being created by a Bragg grating formed by two counter-propagating coupling fields of similar wavelength. Here we present a more general view of the formation of SLPs, namely several balanced four-wave mixing processes sharing the same ground-state coherence. Utilizing this new concept we report the first experimental observation of a bichromatic SLP at wavelengths for which no Bragg grating can be established. We also demonstrate the production of a SLP directly from a propagating light pulse without prior storage. Being easily controlled externally makes SLPs a very versatile tool for low-light-level nonlinear optics and quantum information manipulation.

  18. High reflection mirrors for pulse compression gratings.

    Science.gov (United States)

    Palmier, S; Neauport, J; Baclet, N; Lavastre, E; Dupuy, G

    2009-10-26

    We report an experimental investigation of high reflection mirrors used to fabricate gratings for pulse compression application at the wavelength of 1.053microm. Two kinds of mirrors are studied: the mixed Metal MultiLayer Dielectric (MMLD) mirrors which combine a gold metal layer with some e-beam evaporated dielectric bilayers on the top and the standard e-beam evaporated MultiLayer Dielectric (MLD) mirrors. Various samples were manufactured, damage tested at a pulse duration of 500fs. Damage sites were subsequently observed by means of Nomarski microscopy and white light interferometer microscopy. The comparison of the results evidences that if MMLD design can offer damage performances rather similar to MLD design, it also exhibits lower stresses; being thus an optimal mirror substrate for a pulse compression grating operating under vacuum.

  19. Diffusion of solid fuelon a vibrating grate

    DEFF Research Database (Denmark)

    Sabelström, Hanna Katarina

    is simplified and the computational time shortened. The vibrations are affecting the transport and mixing of the fuel and incorporated into the model through the diffusion coefficient in the conservation equation of the solid phase. Experimental work has been carried out with the aim to study the behaviour......This work is part of a long term project of developing a bed model, describing the combustion process of straw on a vibrating grate. For a vibrating grate, the mixing and transportation of the fuel are of great significance and the work presented in this report investigates how the effect...... of vibrations can be incorporated into a numerical model. The chosen model approach has been to separate the gas and solid phases into two independent models related to each other through the bed porosity. By treating the bed as a porous media and using Ergun's equation for the gas flow, the numerical work...

  20. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity configurat......We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...... configuration instead of the extended cavity configuration can bring 130-nm tuning range around 1330-nm wavelength. The air-coupled cavity is known to reduce the quantum confinement factor in VCSELs, increasing threshold. In our air-coupled cavity HCG VCSEL case, the very short power penetration length...

  1. The Chandra Survey of Extragalactic Sources in the 3CR Catalog: X-ray Emission from Nuclei, Jets, and Hotspots in the Chandra Archival Observations

    CERN Document Server

    Massaro, F; Liuzzo, E; Orienti, M; Paladino, R; Paggi, A; Tremblay, G R; Wilkes, B J; Kuraszkiewicz, J; Baum, S A; O'Dea, C P

    2016-01-01

    As part of our program to build a complete radio and X-ray database of all the 3CR extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have been already published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the VLA archive. For about 1/3 of the sources in the selected sample a comparison between the Chandra and the radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium of 15 galaxy clusters, two of which were most likely unknown previously.

  2. Detailed Investigations of Load Coefficients on Grates

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Rasmussen, Michael R.; Frigaard, Peter

    In this report is presented the results of model tests carried out at Dept. of Civil Engineering, aalborg University (AAU) on behalf of DONG Energy A/S and Vattenfall A/S, Denmark. The objective of the tests was to investigate the load coefficient on different grates and a solid plate for designi...... offshore windmill access platforms against run-up generated forces with special attention to the influence of air entrainment and the angle of attack....

  3. Theoretical and measured performance of diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, M.A. E-mail: m.bowler@dl.ac.uk; Finetti, P.; Holland, D.M.P.; Humphrey, I.; Quinn, F.M.; Roper, M.D

    2001-07-21

    At the SRS at Daresbury Laboratory, we are undertaking a programme comparing the results from efficiency calculations of diffraction gratings, mainly using the GRADIF code of Neviere, with measured efficiencies. The deviations from the predicted performance are larger for higher orders than for first order. Higher order contamination is important in determining the usability of the beamline for certain types of experiments, particularly at energies below 100 eV.

  4. Theoretical and measured performance of diffraction gratings

    CERN Document Server

    Bowler, M A; Holland, D M P; Humphrey, I; Quinn, F M; Röper, M D

    2001-01-01

    At the SRS at Daresbury Laboratory, we are undertaking a programme comparing the results from efficiency calculations of diffraction gratings, mainly using the GRADIF code of Neviere, with measured efficiencies. The deviations from the predicted performance are larger for higher orders than for first order. Higher order contamination is important in determining the usability of the beamline for certain types of experiments, particularly at energies below 100 eV.

  5. Robust topology design of periodic grating surfaces

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Sigmund, Ole

    2012-01-01

    Modern nanoscale manufacturing techniques allow for a high degree of flexibility in designing surface microstructures and nanostructures. Injection molding of nanosized features allows for mass production of plastic components with a tailored nanostructure producing specific optical effects...... depending on the purpose. This work details the use of topology optimization for designing periodic polymer grating surfaces with complex optical properties. A method based on robust topology optimization is formulated for designing the nanostructure of plastic surfaces with extreme reflection...

  6. Composite cure monitoring with Bragg grating sensors

    Science.gov (United States)

    Slattery, Kerry T.; Corona-Bittick, Kelli; Dorr, Donald J.

    1998-03-01

    Residual stress is induced in fiber composite materials during the cure process because the thermal expansion coefficient of the fiber is generally much lower than that of the polymer matrix. The two materials are 'locked' together at the cure temperature. Then, as they cool, the matrix attempts to contract more than the fiber leading to tension in the matrix and compression in the fiber. This can lead to the formation of microcracks parallel to the fibers in thick composite piles or yarns. The magnitude of residual stress can be reduced by modifying the cure cycle; however, optimizing the cure cycle requires a complete understanding of the state of cure throughout the composite. This is a complex problem -- especially in thick composites. Pilot studies have been performed placing Bragg gratin sensors in glass fabric preforms and monitoring the response of the grating during resin infusion and cure. The typical response shows the initial thermal expansion of the Bragg grating, a rapid contraction of the grating as the resin gels, slower contraction during cure, and thermal contraction at the composite thermal expansion coefficient during cool down. This data is then sued with micromechanical models of the fiber/matrix interaction during cure to establish material parameters for cure simulation. Once verified, these cure simulation methods will be used to optimize tooling design and cure cycles in composite components.

  7. Grating THz laser with optical pumping

    Science.gov (United States)

    Khoury, Jed; Haji-saeed, Bahareh; Woods, Charles; Kierstead, John

    2010-04-01

    In this paper, we present a design for a widely tunable solid-state optically and electrically pumped THz laser based on the Smith-Purcell free-electron laser. In the free-electron laser, an energetic electron beam pumps a metallic grating to generate surface plasmons. Our solid-state optically pumped design consists of a thin layer of dielectic, such as SiNx, sandwiched between a corrugated structure and a thin metal or semiconductor layer. The lower layer is for current streaming, and replaces the electron beam in the original design. The upper layer consists of one micro-grating for coupling the electromagnetic field in, another for coupling out, and a nano-grating for coupling with the current in the lower layer for electromagnetic field generation. The surface plasmon waves generated from the upper layer by an external electromagnetic field, and the lower layer by the applied current, are coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  8. Grating Loaded Cantilevers for Displacement Measurements

    Science.gov (United States)

    Karademir, Ertugrul; Olcum, Selim; Atalar, Abdullah; Aydinli, Atilla

    2010-03-01

    A cantilever with a grating coupler engraved on its tip is used for measuring displacement. The coupled light in the cantilever is guided to a single mode optical waveguide defined at the base of the cantilever. The grating period is 550 nm and is fabricated on a SOI wafer using nanoimprint lithography. The waveguide and the cantilever are defined by an RIE and cantilevers released by KOH and HF solutions. Light with 1550 nm wavelength, is directed onto the grating coupler and detected at the cleaved end of the SOI waveguide. The angle of incidence is controlled by a motorized rotary stage. Light couples into the waveguide at a characteristic angle with a full width at half maximum of approximately 6.9 mrads translating into a Q factor of 87.5. The displacement sensitivity is measured by driving the cantilever with a frequency controlled piezoelectric element. The modulation of the light at the waveguide output is lock-in detected by a biased infrared detector. The resulting 43%mrad-1 sensitivity can be increased with further optimization.

  9. The 2 Ms Chandra Deep Field-North Survey and the 250 ks Extended Chandra Deep Field-South Survey: Improved Point-Source Catalogs

    CERN Document Server

    Xue, Y Q; Brandt, W N; Alexander, D M; Bauer, F E; Lehmer, B D; Yang, G

    2016-01-01

    We present improved point-source catalogs for the 2 Ms Chandra Deep Field-North (CDF-N) and the 250 ks Extended Chandra Deep Field-South (E-CDF-S), implementing a number of recent improvements in Chandra source-cataloging methodology. For the CDF-N/E-CDF-S, we provide a main catalog that contains 683/1003 X-ray sources detected with wavdetect at a false-positive probability threshold of $10^{-5}$ that also satisfy a binomial-probability source-selection criterion of $P<0.004$/$P<0.002$. Such an approach maximizes the number of reliable sources detected: a total of 196/275 main-catalog sources are new compared to the Alexander et al. (2003) CDF-N/Lehmer et al. (2005) E-CDF-S main catalogs. We also provide CDF-N/E-CDF-S supplementary catalogs that consist of 72/56 sources detected at the same wavdetect threshold and having $P$ of $0.004-0.1$/$0.002-0.1$ and $K_s\\le22.9/K_s\\le22.3$ mag counterparts. For all $\\approx1800$ CDF-N and E-CDF-S sources, including the $\\approx500$ newly detected ones (these being...

  10. Transmission of Helicobacter pyori in an animal model.

    Science.gov (United States)

    Cellini, L; Marzio, L; Ferrero, G; Del Vino, A; Di Campli, E; Grossi, L; Toracchio, S; Artese, L

    2001-01-01

    An experimental murine model was studied to evaluate the orogastrointestinal colonization of Helicobacter pylori and the animal-to-animal transmission. Balb/C mice were infected with H. pylori and housed with uninoculated mice in cages with and without a grate on the floor. Mice were killed after 7, 14, 30, and 45 days, and samples from the esophagus, stomach, small intestine, colon, and rectum were analyzed for H. pylori by PCR and immunohistochemistry and for histological changes. Bacterial colonization was assessed also by culture from stomach samples. H. pylori was cultured by stomach samples of infected mice at 7, 14, and 30 days. Using PCR and immunohistochemistry, H. pylori was detected in inoculated and uninoculated mice in all areas examined, with an high percentage of positive samples in the esophagus and stomach. Moreover transmission was detected, without differences, regardless of whether mice were housed with or without a grate on the floor, supporting an orooral animal transmission.

  11. Measuring vibration by using fiber Bragg grating and demodulating it by blazed grating

    Institute of Scientific and Technical Information of China (English)

    Xiaojin Guo(郭晓金); Zongmin Yin(殷宗敏); Ning Song(宋宁)

    2004-01-01

    A method of measuring vibration by using fiber Bragg grating (FBG) and demodulating the spectrum by blazed grating is introduced. The sensor system is made of a simple supported beam with a FBG adhered to its upper surface. A blazed grating is used to demodulate the changing spectrum that is got from the sensor system, and a line charge-coupled device (CCD) is used to accept the diffraction spectrum.Through analyzing the number of the CCD's pixels, we can get the amplitude of vibration and the change of the temperature. The experimental results show that the vibration amplitude of the exciter matches the detected signal under the stable frequency. The temperature shift and vibration signal are also successfully separated.

  12. Phasor analysis of binary diffraction gratings with different fill factors

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Antonio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain); Sanchez-Lopez, Ma del Mar [Instituto de BioingenierIa y Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, 03202 Elche (Spain); Moreno, Ignacio [Departamento de Ciencia de Materiales, Optica y TecnologIa Electronica, Universidad Miguel Hernandez, 03202 Elche (Spain)

    2007-09-11

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving power can be easily obtained without applying the usual Fourier transform operations required for these calculations. The proposed phasor technique is mathematically equivalent to the Fourier transform calculation of the diffraction order amplitude, and it can be useful to explain binary diffraction gratings in a simple manner in introductory physics courses. This theoretical analysis is illustrated with experimental results using a liquid crystal device to display diffraction gratings with different fill factors.

  13. Towards freeform curved blazed gratings using diamond machining

    Science.gov (United States)

    Bourgenot, C.; Robertson, D. J.; Stelter, D.; Eikenberry, S.

    2016-07-01

    Concave blazed gratings greatly simplify the architecture of spectrographs by reducing the number of optical components. The production of these gratings using diamond-machining offers practically no limits in the design of the grating substrate shape, with the possibility of making large sag freeform surfaces unlike the alternative and traditional method of holography and ion etching. In this paper, we report on the technological challenges and progress in the making of these curved blazed gratings using an ultra-high precision 5 axes Moore-Nanotech machine. We describe their implementation in an integral field unit prototype called IGIS (Integrated Grating Imaging Spectrograph) where freeform curved gratings are used as pupil mirrors. The goal is to develop the technologies for the production of the next generation of low-cost, compact, high performance integral field unit spectrometers.

  14. VCSELs with a high-index-contrast grating for mode-division multiplexing

    DEFF Research Database (Denmark)

    Ran, Qijiang; Mørk, Jesper

    2013-01-01

    to excite a specific transverse mode, while its transmission phase is kept spatially constant. This laser can provide the selective excitation of a specific transverse mode, leading to a high coupling efficiency to a few mode fiber. Compared to the phase plate approach in current SDM systems, the HCG-integrated......A novel vertical-cavity surface-emitting laser (VCSEL) structure for space division multiplexing (SDM) is proposed and numerically investigated. This laser structure employs a high-index-contrast grating (HCG) as a light-emitting mirror. The reflectivity of the HCG mirror is spatially modulated...

  15. Sensitive detection of E. Coli cells by long period gratings based optical sensor

    Science.gov (United States)

    Kaushik, Siddharth; Tiwari, Umesh; Kaur, Satinderdeep; Rajesh, Paul, A. K.; Bhatnagar, R.

    2016-04-01

    We present a novel bacterial sensing platform based on long period gratings written in photosensitive single mode optical fiber by UV eximer laser (248 nm). Shift in wavelength with varied concentrations were observed in transmission spectrum. Significant wavelength shifts were noted for all dilutions with Outer Membrane Protein Complex (OMPC) antibody immobilized LPG sensing probe. A considerable shift of 0.55938 nm in wavelength is observed when 10-5 dilution (180 CFU/ ml) of E.Coli is passed over OMPC immobilized sensing probe.

  16. Refractometric sensors based on long period optical fiber gratings

    OpenAIRE

    2006-01-01

    In this work, results of the design of uniform and nonuniform longperiod gratings are presented, with a view to being used as refractometric sensors. We found an optimal combination of the longitudinal variation of the fiber refractive index and the grating period, which increases the sensor linearity in comparison with a uniform grating, without decreasing its average sensitivity within a range of the external refractive index from 1.41 to 1.44.

  17. Simulation of Novel Tunable Nonlinear Chirped Fiber Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-min; YU Zhong-yuan; ZHANG Xiao-guang; YU Li; YANG Bo-jun

    2003-01-01

    A novel tunable chirped fiber Bragg grating technology is proposed and simulated numerically by Matlab. If we adhere a uniform fiber grating with super magnetostrictive film and expose them in a non-uniform magnetic field, the period of the grating can be changed with the strain imposed on it by the magnetostrictive effect .The chirped characteristics can be tuned by changing the magnetic filed which is very flexible in designing.

  18. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    Institute of Scientific and Technical Information of China (English)

    LIU Peng; YAN Feng-Ping; LI Jian; WANG Lin; NING Ti-Gang; GONG Tao-Rong; JIAN Shui-Sheng

    2008-01-01

    @@ A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated.The OC acts as a lO0%-refiective mirror.A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-refiecting mirror is implemented in the linear cavity.By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized.The wavelength tuning range covers approximately 7.0Ohm in C band (from 1543.6161 to 1550.3307nm).The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm.Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50km transmission experiment was performed using our TEDFL at a 10 Gb/s modulation rate.

  19. Development of a large mosaic volume phase holographic (VPH) grating for APOGEE

    Science.gov (United States)

    Arns, James; Wilson, John C.; Skrutskie, Mike; Smee, Steve; Barkhouser, Robert; Eisenstein, Daniel; Gunn, Jim; Hearty, Fred; Harding, Al; Maseman, Paul; Holtzman, Jon; Schiavon, Ricardo; Gillespie, Bruce; Majewski, Steven

    2010-07-01

    Volume phase holographic (VPH) gratings are increasingly being used as diffractive elements in astronomical instruments due to their potential for very high peak diffraction efficiencies and the possibility of a compact instrument design when the gratings are used in transmission. Historically, VPH grating (VPHG) sizes have been limited by the size of manufacturer's holographic recording optics. We report on the design, specification and fabrication of a large, 290 mm × 475 mm elliptically-shaped, mosaic VPHG for the Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph. This high-resolution near-infrared multi-object spectrograph is in construction for the Sloan Digital Sky Survey III (SDSS III). The 1008.6 lines/mm VPHG was designed for optimized performance over a wavelength range from 1.5 to 1.7 μm. A step-and-repeat exposure method was chosen to fabricate a three-segment mosaic on a 305 mm × 508 mm monolithic fused-silica substrate. Specification considerations imposed on the VPHG to assure the mosaic construction will satisfy the end use requirements are discussed. Production issues and test results of the mosaic VPHG are discussed.

  20. Effects of radiation on switchable gratings and CdSe/ZnS nanostructures

    Science.gov (United States)

    Sharma, S. C.; Ramsey, R. A.; Murphree, J.; Chakraborty, T.; Shive, C.

    2008-10-01

    Switchable gratings formed in Polymer-Dispersed Liquid Crystals (PDLCs) and CdSe/ZnS quantum dots are of interest from scientific and technological points of views[1,2].The Bragg reflection and transmission PDLC gratings can be switched on/off by external fields. We present new results on the effects of synthesis parameters and radiation on the forward/reverse-mode gratings and PL spectra of CdSe/ZnS quantum dots. The PL emission from these nanostructures changes as a result of simultaneous irradiation by 532-nm laser and gamma-rays. The results of this study reaffirm the role of radiation-induced charges in modifying thin films, such as the ones studied in this work containing CdSe/ZnS nanostructures and switchable diffractive elements formed in PDLCs[3]. [1] T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, Ann. Rev. Mat. Sci. 30, 83 (2000), [2] R. A. Ramsey and S. C. Sharma, Opt. Lett. 30, 592-594 (2005); S. C. Sharma, J. Murphree, T. Chakraborty, J. Lumin. 128, 1771,(2008); R. A. Ramsey and S. C. Sharma, Appl. Phys. B (in press)., [3] S. C. Sharma, L. Zhang, A. J. Tapiawala, P. C. Jain, Phys. Rev. Letts. 87, 105501 (2001).

  1. Light trapping in amorphous silicon solar cells with periodic grating structures

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Haihua; Wang, Qingkang; Chen, Jian [National Key Laboratory of Micro /Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Krc, J. [University of Ljubljana, Faculty of Electrical Engineering, Trzaska25, 1000 Ljubljana (Slovenia); Soppe, W.J. [Energy research Center of the Netherlands ECN, P. O. Box 1, 1755 ZG Pettern (Netherlands)

    2012-03-15

    We report on the design of amorphous silicon solar cells with the periodic grating structures. It is a combination of an anti-reflection structure and the metallic reflection grating. Optical coupling and light trapping in thin-film solar cells are studied numerically using the Rigorous Coupled Wave Analysis enhanced by the Modal Transmission Line theory. The impact of the structure parameters of the gratings is investigated. The results revealed that within the incident angles of - 40{sup 0} to + 40{sup 0} the reflectivity of the cell with a period of 0.5 {mu}m, a filling factor of 0.1 and a groove depth of 0.4 {mu}m is 4%-22.7% in the wavelength range of 0.3-0.6 {mu}m and 1%-20.8% in the wavelength range of 0.6-0.84 {mu}m, the absorption enhancement of the a-Si layer is 0.4%-10.8% and 20%-385%, respectively.

  2. Analytic parameter dependence of Harish-Chandra modules for real reductive Lie groups - a family affair

    NARCIS (Netherlands)

    van der Noort, V.

    2009-01-01

    This thesis is written in the subfield of mathematics known as representation theory of real reductive Lie groups. Let G be a Lie group in the Harish-Chandra class with maximal compact subgroup K and Lie algebra g. Let Omega be a connected complex manifold. By a family of G-representations parametri

  3. Sharp Chandra View of ROSAT All-Sky Survey Bright Sources: I. Improvement of Positional Accuracy

    CERN Document Server

    Gao, Shuang; Liu, Jifeng

    2016-01-01

    The ROSAT All-Sky Survey (RASS) represents one of the most complete and sensitive soft X-ray all-sky surveys to date. However, the deficient positional accuracy of the RASS Bright Source Catalog (BSC) and subsequent lack of firm optical identifications affect the multi-wavelength studies of X-ray sources. The widely used positional errors $\\sigma_{pos}$ based on the Tycho Stars Catalog (Tycho-1) have previously been applied for identifying objects in the optical band. The considerably sharper Chandra view covers a fraction of RASS sources, whose $\\sigma_{pos}$ could be improved by utilizing the sub-arcsec positional accuracy of Chandra observations. We cross-match X-ray objects between the BSC and \\emph{Chandra} sources extracted from the Advanced CCD Imaging Spectrometer (ACIS) archival observations. A combined counterparts list (BSCxACIS) with \\emph{Chandra} spatial positions weighted by the X-ray flux of multi-counterparts is employed to evaluate and improve the former identifications of BSC with the other...

  4. The Brera Multi-scale Wavelet Chandra Survey. The serendipitous source catalogue

    CERN Document Server

    Romano, P; Mignani, R P; Moretti, A; Panzera, M R; Tagliaferri, G; Mottini, M

    2009-01-01

    We present the Brera Multi-scale Wavelet Chandra (BMW-Chandra) source catalogue drawn from essentially all Chandra ACIS-I pointed observations with an exposure time in excess of 10ks public as of March 2003 (136 observations). Using the wavelet detection algorithm developed by Lazzati et al. (1999) and Campana et al. (1999), which can characterise both point-like and extended sources, we identified 21325 sources. Among them, 16758 are serendipitous, i.e. not associated with the targets of the pointings. This makes our catalogue the largest compilation of Chandra sources to date. The 0.5-10keV absorption corrected fluxes of these sources range from 3E-16 to 9E-12 erg/cm2/s with a median of 7E-15 erg/cm2/s. The catalogue consists of count rates and relative errors in three energy bands (total, 0.5-7keV; soft, 0.5-2keV; and hard, 2-7keV), where the detection was performed, and source positions relative to the highest signal-to-noise detection among the three bands. The wavelet algorithm also provides an estimate...

  5. CHANDRA Observations of V407 Vul: Confirmation of the Spin-up

    CERN Document Server

    Strohmayer, T E

    2004-01-01

    V407 Vul is a candidate double-degenerate binary with a putative 1.756 mHz (9.5 min) orbital frequency. In a previous timing study using archival ROSAT and ASCA data we reported evidence for an increase of this frequency at a rate consistent with expectations for gravitational radiation from a detached ultracompact binary system. Here we report the results of new CHANDRA timing observations which confirm the previous indications of spin-up of the X-ray frequency, and provide much tighter constraints on the frequency derivative. We obtained with CHANDRA a total of 90 ksec of exposure in two epochs separated in time by 11.5 months. The total time span of the archival ROSAT, ASCA and new CHANDRA data is now 10.5 years. This more than doubles the interval spanned by the ROSAT and ASCA data alone, providing much greater sensitivity to a frequency derivative. With the addition of the CHANDRA data an increasing frequency is unavoidable, with a value df/dt = 7.0 x 10-18 Hz/s. Although a long-term spin-up trend is con...

  6. Chandra and XMM–Newton Observations of H2O Maser Galaxy Mrk 266

    Indian Academy of Sciences (India)

    J. Wang; J. S. Zhang; J. H. Fan

    2011-03-01

    For H2O megamaser galaxy Mrk 266, its Chandra and XMM–Newton data are analyzed here. It shows existence of two obscured nuclei (separation is ∼ 5''). Our preferred model, the high energy reflected model can fit the hard component of both nuclei spectra well.

  7. Chandra observations of comet 9P/Tempel 1 during the Deep Impact campaign

    NARCIS (Netherlands)

    Lisse, C. M.; Dennerl, K.; Christian, D. J.; Wolk, S. J.; Bodewits, D.; Zurbuchen, T. H.; Hansen, K. C.; Hoekstra, R.; Combi, M.; Fry, C. D.; Dryer, M.; Maekinen, T.; Sun, W.; Jansen, K.C.; Mäkinen, T.

    2007-01-01

    We present results from the Chandra X-ray Observatory's extensive campaign studying Comet 9P/Tempel 1 (T1) in support of NASA's Deep Impact (DI) mission. T1 was observed for similar to 295 ks between 30th June and 24th July 2005, and continuously for similar to 64 ks on July 4th during the impact ev

  8. X-ray observations of dust obscured galaxies in the Chandra Deep Field South

    CERN Document Server

    Corral, A; Comastri, A; Ranalli, P; Akylas, A; Salvato, M; Lanzuisi, G; Vignali, C; Koutoulidis, L

    2016-01-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra Deep Field South. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields. In that work, we only found a moderate percentage ($<$ 50%) of CT AGN among the DOGs sample, but we were limited by poor photon statistics. In this paper, we use not only a deeper 6 Ms Chandra survey of the Chandra Deep Field South (CDF-S), but combine these data with the 3 Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (but only 3 could be CT AGN), wherea...

  9. Finding Supernova Ia Progenitors with the Chandra X-ray Observatory

    DEFF Research Database (Denmark)

    Nielsen, Mikkel T. B.; Nelemans, Gijs; Voss, Rasmus

    2011-01-01

    We examine pre-supernova Chandra images to find X-ray luminosities of type Ia supernova progenitors. At present, we have one possible direct detection and upper limits for the X-ray luminosities of a number of other supernova progenitors. The method has also yielded a possible detection of a X...

  10. Chandra Data Analysis of H2O Megamaser Galaxy NGC 4258

    Indian Academy of Sciences (India)

    Baisheng Liu; Jiangshui Zhang; Jin Wang

    2011-03-01

    Chandra observations of NGC 4258 were analyzed to investigate the circumnuclear environment of the H2O megamaser galaxy. Its adaptively-smoothed image shows a bright nucleus and another weak source nearby. For the maser host nucleus, our preferred fitting of its spectra gives the absorption of ∼ 7 × 1022cm-2.

  11. A Chandra X-Ray observation of the binary millisecond pulsar PSR J1023+0038

    NARCIS (Netherlands)

    Bogdanov, S.; Archibald, A.M.; Hessels, J.W.T.; Kaspi, V.M.; Lorimer, D.; McLaughlin, M.A.; Ransom, S.M.; Stairs, I.H.

    2011-01-01

    We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5σ) large-amplitude (factor of two to three) orbital variability over the

  12. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NARCIS (Netherlands)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J. -P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J. -F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redsh

  13. Intrinsic Absorption in the Spectrum of Mrk 279: Simultaneous Chandra, FUSE, and STIS Observations

    CERN Document Server

    Scott, J E; Lee, J C; Arav, N; Ogle, P M; Roraback, K; Weaver, K; Alexander, T; Brotherton, M; Green, R F; Hutchings, J B; Kaiser, M E; Marshall, H; Oegerle, W; Zheng, W; Scott, Jennifer E.; Kriss, Gerard A.; Lee, Julia C.; Arav, Nahum; Ogle, Patrick; Roraback, Kenneth; Weaver, Kimberly; Alexander, Tal; Brotherton, Michael; Green, Richard F.; Hutchings, John; Kaiser, Mary Elizabeth; Marshall, Herman; Oegerle, William; Zheng, Wei

    2004-01-01

    We present a study of the intrinsic X-ray and far-ultraviolet absorption in the Seyfert 1.5 galaxy Markarian 279 using simultaneous observations from the Chandra X-ray Observatory, the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope, and the Far Ultraviolet Spectroscopic Explorer (FUSE). We also present FUSE observations made at three additional epochs. We detect the Fe K-alpha emission line in the Chandra spectrum, and its flux is consistent with the low X-ray continuum flux level of Mrk 279 at the time of the observation. Due to low signal-to-noise ratios in the Chandra spectrum, no O VII or O VIII absorption features are observable in the Chandra data, but the UV spectra reveal strong and complex absorption from HI and high-ionization species such as O VI, N V, and C IV, as well as from low-ionization species such as C III, N III, C II, and N II in some velocity components. The far-UV spectral coverage of the FUSE data provides information on high-order Lyman series absorption, which...

  14. Chandra Cluster Cosmology Project. II. Samples and X-Ray Data Reduction

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Burenin, R. A.; Ebeling, H.;

    2009-01-01

    We discuss the measurements of the galaxy cluster mass functions at z ≈ 0.05 and z ≈ 0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg2 surveys. We provide a full reference for the data analysis procedures, present updated calibration of relati...

  15. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    CERN Document Server

    Israel, Gian Luca; Castillo, Guillermo Andres Rodriguez; Sidoli, Lara

    2016-01-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 years of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190,000 lightcurves out of about 430,000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS@BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above about 2,000s resembles that of...

  16. Optical implementation of the Hopfield neural network with matrix gratings

    Science.gov (United States)

    Yeh, Sheng L.; Lo, Rong C.; Shi, Cha Y.

    2004-02-01

    We propose a new method for the optical implementation of the Hopfield neural network with a universal tool. The tool is a matrix grating constituted with a group of element gratings. The algorithms for designing a matrix grating are proposed, and a matrix grating is created to execute recognition experiments by use of the Hopfield neural network. The experimental results demonstrate that the proposed method performs well. The stability of the light efficiencies of different optical components used in optical networks is also considered.

  17. Perambatan Gelombang Optik pada Grating Sinusoidal dengan Chirp dan Taper

    Directory of Open Access Journals (Sweden)

    Isnani Darti

    2009-11-01

    menggunakan MIL, dipelajari perubahan respon optik pada grating sinusoidal akibat variasi amplitudo modulasi indeks (taper dan variasi frekuensi spasial grating (chirp. Hasil simulasi menunjukkan bahwa taper menyebabkan adanya fenomena penghilangan side-lobe pada spektrum transmitansi. Adanya chirp menyebabkan penghalusan side-lobe pada spektrum transmitansi dengan semakin besar parameter chirp menyebabkan peningkatan transmitansi di sekitar pusat band-gap dari grating homogen. Selain implementasi integrasi numerik (Runge-Kutta, MIL merupakan metode eksak sehingga dapat digunakan untuk mengevaluasi validitas metode yang sering digunakan yaitu Persamaan Moda Tergandeng (PMT. Dari hasil perbandingan dapat disimpulkan bahwa secara umum PMT kurang akurat dalam menganalisis struktur grating sinusoidal baik homogen maupun tak-homogen.

  18. Characterization of surface relief gratings of submicron period

    Science.gov (United States)

    Logofătu, P. C.; Apostol, D.; Castex, Marie-Claude; Apostol, Ileana; Damian, V.; Iordache, Iuliana; Müller, Raluca

    2007-08-01

    This paper deals with optical characterization of photo-polymer gratings for parameter control. The gratings were obtained using the photoinduced single step inscription of refractive optical elements technique. The optical characterization was done by measuring the specular and diffracted orders of a laser beam incident on the grating. This technique is specifically known as scatterometry. The laser was a He-Ne with 633 nm wavelength. The measured diffraction efficiencies contain information about the parameters to be determined of the grating, such as pitch, linewidth and shape of the ridges.

  19. Photonic crystal fiber long-period gratings for biochemical sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Jensen, Jesper Bo; Dufva, Hans Martin

    2006-01-01

    We present experimental results showing that long-period gratings in photonic crystal fibers can be used as sensitive biochemical sensors. A layer of biomolecules was immobilized on the sides of the holes of the photonic crystal fiber and by observing the shift in the resonant wavelength of a long......-period grating it was possible to measure the thickness of the layer. The long-period gratings were inscribed in a large-mode area silica photonic crystal fiber with a CO2 laser. The thicknesses of a monolayer of poly-L-lysine and double-stranded DNA was measured using the device. We find that the grating has...

  20. Diffraction Gratings for High-Intensity Laser Applications

    Energy Technology Data Exchange (ETDEWEB)

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  1. Modeling Component-based Bragg gratings Application: tunable lasers

    Directory of Open Access Journals (Sweden)

    Hedara Rachida

    2011-09-01

    Full Text Available The principal function of a grating Bragg is filtering, which can be used in optical fibers based component and active or passive semi conductors based component, as well as telecommunication systems. Their ideal use is with lasers with fiber, amplifiers with fiber or Laser diodes. In this work, we are going to show the principal results obtained during the analysis of various types of grating Bragg by the method of the coupled modes. We then present the operation of DBR are tunable. The use of Bragg gratings in a laser provides single-mode sources, agile wavelength. The use of sampled grating increases the tuning range.

  2. Holographic Grating Formation in Cationic Photopolymers with Dark Reaction

    Institute of Scientific and Technical Information of China (English)

    WEI Hao-Yun; CAO Liang-Cai; GU Claire; XU Zhen-Feng; HE Ming-Zhao; HE Qing-Sheng; HE Shu-Rong; JIN Guo-Fan

    2006-01-01

    @@ We propose a new formula to describe the dynamics of holographic grating formation under low intensity pulse exposures in cationic photopolymers, in which the dark reaction contributes dominantly to the grating strength.The formula is based on the living polymerization mechanism and the diffusion-free approximation. The analytical solution indicates that the grating formation time depends on the termination rate constant, while the final grating strength depends linearly on the total exposure energy. These theoretical predictions are verified experimentally using the Aprilis HMC-400μm photopolymer. The results can provide guidelines for the control and optimization of the holographic recording conditions in practical applications.

  3. Wavelength-conserving grating router for intermediate wavelength density

    Science.gov (United States)

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  4. Improved layer peeling algorithm for strongly reflecting fiber gratings

    Institute of Scientific and Technical Information of China (English)

    Liqun Huang; Weiping Huang; Jinkuan Wang; Guang Yang

    2006-01-01

    @@ An improved algorithm based on the layer peeling (LP) method is proposed and demonstrated.The new method is shown to be effective for mitigating the impact of numerical errors on reconstruction of coupling function for strongly reflecting Bragg gratings.As examples,a flat-top dispersion-free fiber grating and a fiber-grating dispersion compensator are designed by the improved LP method.For a chirp grating,more accurate results are demonstrated in comparison with those obtained by the integral layer peeling (ILP) method.

  5. Spherical grating based x-ray Talbot interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  6. Bragg Fibers with Soliton-like Grating Profiles

    Directory of Open Access Journals (Sweden)

    Bugaychuk S.

    2016-01-01

    Full Text Available Nonlinear dynamical system corresponding to the optical holography in a nonlocal nonlinear medium with dissipation contains stable localized spatio-temporal states, namely the grid dissipative solitons. These solitons display a non-uniform profile of the grating amplitude, which has the form of the dark soliton in the reflection geometry. The transformation of the grating amplitude gives rise many new atypical effects for the beams diffracted on such grating, and they are very suitable for the fiber Brass gratings. The damped nonlinear Schrodinger equation is derived that describes the properties of the grid dissipative soliton.

  7. Higher Order Diffraction Characteristics of Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Sunita P. Ugale

    2013-02-01

    Full Text Available The effect of grating saturation on higher order diffraction characteristic of FBG is investigated by using Coupled mode theory. Grating saturation effects were considered in the index distribution model showing the significant influence on the coupling process and hence on the reflectivity characteristics of FBG. Maximum reflectivity curves for first and higher order diffraction of FBG are plotted for different values of saturation coefficient. The effect of change in length and change in refractive index are studied. The behavior of grating for higher order of diffraction is totally different than first order of diffraction. In saturated gratings, the higher order diffraction can be utilized for multiparameter sensing

  8. UV writing of advanced Bragg gratings in optical waveguides

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm

    2002-01-01

    of the novel polarization control method for UV writing of Bragg gratings with advanced apodization profiles including phase shifts. The principle of the polarization control method relies on a spatial separation of the s- and p-polarized components of a linearly polarized UV beam corresponding to half...... hence loaded at either 100 bar or 1800 bar prior to the UV exposure. Bragg gratings with uniform coupling strength throughout the grating and apodized gratings were realized by scanning the UV beam along the waveguide with a computer controlled velocity profile. The excellent agreement between simulated...

  9. Resolving galaxy cluster gas properties at z ∼ 1 with XMM-Newton and Chandra

    Science.gov (United States)

    Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Démoclès, J.; van der Burg, R. F. J.; Mazzotta, P.

    2017-02-01

    Massive, high-redshift, galaxy clusters are useful laboratories to test cosmological models and to probe structure formation and evolution, but observations are challenging due to cosmological dimming and angular distance effects. Here we present a pilot X-ray study of the five most massive (M500 > 5 × 1014M⊙), distant (z 1), clusters detected via the Sunyaev-Zel'Dovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the throughput of XMM-Newton to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, which are constrained in the centre by Chandra and in the outskirts by XMM-Newton. We show that the Chandra-XMM-Newton combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM-Newton sensitivity allowing higher significance detection of faint substructures. Measuring the morphology using images from both instruments, we found that the sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM-Newton density profiles and spatially-resolved temperature profiles to investigate thermodynamic quantities including entropy and pressure. From comparison of the scaled profiles with the local REXCESS sample, we find no significant departure from standard self-similar evolution, within the dispersion, at any radius, except for the entropy beyond 0.7 R500. The baryon mass fraction tends towards the cosmic value, with a weaker dependence on mass than that observed in the local Universe. We make a comparison with the predictions from numerical simulations. The present pilot study demonstrates the utility and feasibility of spatially-resolved analysis of individual objects at high-redshift through

  10. Chandra Detects Halo Of Hot Gas Around Milky Way-Like Galaxy

    Science.gov (United States)

    2001-07-01

    The first unambiguous evidence for a giant halo of hot gas around a nearby, spiral galaxy much like our own Milky Way was found by astronomers using NASA's Chandra X-ray Observatory. This discovery may lead to a better understanding of our own Galaxy, as well the structure and evolution of galaxies in general. A team of astronomers, led by Professor Daniel Wang of the University of Massachusetts, Amherst, observed NGC 4631, a spiral galaxy approximately 25 million light years from Earth with both Chandra and NASA's Hubble Space Telescope. While previous X-ray satellites have detected extended X-ray emission from this and other spiral galaxies, because of Chandra's exceptional resolution this is the first time that astronomers were able to separate the individual X-ray sources from the diffuse halo. Chandra found the diffuse halo of X-ray gas to be radiating at a temperature of almost 3 million degrees and extending some 25,000 light years from the galactic plane. "Scientists have debated for over 40 years whether the Milky Way has an extended corona, or halo, of hot gas," said Wang, lead author of the paper which appeared this month in The Astrophysical Journal Letters. "Of course since we are within the Milky Way, we can't get outside and take a picture. However, by studying similar galaxies like NGC 4631, we can get an idea of what's going on within our own Galaxy." The Chandra image reveals a halo of hot gas that extends for approximately 25,000 light years above the disk of the galaxy. One important feature of the X-ray emission from NGC 4631 is that it closely resembles the overall size and shape seen in the radio emission from the galaxy. This indicates that there may be a close connection between the outflows of hot gas, seen in X-rays, and the galaxy's magnetic field, revealed by radio emission. The Hubble image of NGC 4631 shows filamentary, loop-like structures enclosing enhanced X-ray-emitting gas and emanating from regions of recent star formation in

  11. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    Science.gov (United States)

    Israel, G. L.; Esposito, P.; Rodríguez Castillo, G. A.; Sidoli, L.

    2016-11-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 yr of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190 000 light curves out of about 430 000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS @ BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above ˜2000 s resembles that of cataclysmic variables, while there is a paucity of sources with shorter period and low fluxes. Since there is not an obvious bias against these detections, a possible interpretation is in terms of a magnetic gating mechanism in accreting neutron stars. Finally, we note that CATS @ BAR is a living project and the detection algorithm will continue to be routinely applied to the new Chandra data as they become public. Based on the results obtained so far, we expect to discover about three new pulsators every year.

  12. WDM hybrid microoptical transceiver with Bragg volume grating

    Science.gov (United States)

    Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav

    2012-02-01

    The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.

  13. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  14. Study on the 4×10 Gb/s, 400 km dispersion compensation by chirped optical fiber grating

    Institute of Scientific and Technical Information of China (English)

    Li Pei(裴丽); Tigang Ning(宁提纲); Wei Jian(简伟); Tangjun Li(李唐军); Shuisheng Jian(简水生)

    2003-01-01

    In this paper, the dispersion compensation for 4×10 Gb/s, 400 km G.652 fiber by chirped optical fiber Bragg grating (FBG) is introduced. For the first time, we have measured and compensated the polarization mode dispersion (PMD) of FBG, which in each channel is less than 1.1 ps. When the bit error rate (BER) is 10-10 and the bit error is zero, the transmission power penalty of each channel is less than 2 dB, and the best result is negative which means that the receiver sensitivity is increased after transmission.

  15. HIV Transmission

    Science.gov (United States)

    ... Abroad Treatment Basic Statistics Get Tested Find an HIV testing site near you. Enter ZIP code or city Follow HIV/AIDS CDC HIV CDC HIV/AIDS See RSS | ... on HIV Syndicated Content Website Feedback HIV/AIDS HIV Transmission Language: English Transmisión del VIH Recommend on ...

  16. An explanation for the non-uniform grating effects during recording of diffraction gratings in photopolymers.

    Science.gov (United States)

    Blaya, S; Acebal, P; Carretero, L; Murciano, A; Madrigal, R F; Fimia, A

    2010-01-18

    The recent results reported in reference 1 have produced an increased interest in explaining deviations from the ideal behavior of the energetic variation of the diffraction efficiency of holographic gratings. This ideal behavior occurs when uniform gratings are recorded, and the index modulation is proportional to the energetic exposure. As a result, a typical sin(2) curve is obtained reaching a maximum diffraction efficiency and saturation at or below this value. However, linear deviations are experimentally observed when the first maximum on the curve is lower than the second. This effect does not correspond to overmodulation and recently in PVA/acrylamide photopolymers of high thickness it has been explained by the dye concentration in the layer and the resulting molecular weight of the polymer chains generated in the polymerization process. In this work, new insights into these deviations are gained from the analysis of the non-uniform gratings recorded. Therefore, we show that deviations from the linear response can be explained by taking into account the energetic evolution of the index modulation as well as the fringe bending in the grating.

  17. New Gear Transmission Error Measurement System Designed

    Science.gov (United States)

    Oswald, Fred B.

    2001-01-01

    The prime source of vibration and noise in a gear system is the transmission error between the meshing gears. Transmission error is caused by manufacturing inaccuracy, mounting errors, and elastic deflections under load. Gear designers often attempt to compensate for transmission error by modifying gear teeth. This is done traditionally by a rough "rule of thumb" or more recently under the guidance of an analytical code. In order for a designer to have confidence in a code, the code must be validated through experiment. NASA Glenn Research Center contracted with the Design Unit of the University of Newcastle in England for a system to measure the transmission error of spur and helical test gears in the NASA Gear Noise Rig. The new system measures transmission error optically by means of light beams directed by lenses and prisms through gratings mounted on the gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. A photodetector circuit converts the light to an analog electrical signal. To increase accuracy and reduce "noise" due to transverse vibration, there are parallel light paths at the top and bottom of the gears. The two signals are subtracted via differential amplifiers in the electronics package. The output of the system is 40 mV/mm, giving a resolution in the time domain of better than 0.1 mm, and discrimination in the frequency domain of better than 0.01 mm. The new system will be used to validate gear analytical codes and to investigate mechanisms that produce vibration and noise in parallel axis gears.

  18. Low-Dispersion Fibre Bragg Gratings Written Using the Polarization Control Method

    DEFF Research Database (Denmark)

    Deyerl, Hans Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm;

    2002-01-01

    We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings.......We present two fibre Bragg gratings with reduced in-band dispersion for DWDM applications. The gratings were designed by the inverse scattering method and fabricated using the novel polarization control method for UV-writing of advanced gratings....

  19. Holographic Recording and Applications of Multiplexed Volume Bragg Gratings in Photo-Thermo-Refractive Glass

    Science.gov (United States)

    2014-10-06

    applications of multiplexed volume bragg gratings in photo- thermo -refractive glass Volume Bragg grating (VBG) structures are capable of diffracting...research in the holographic recording of volume Bragg gratings in photo- thermo -refractive (PTR) glass has shown that these gratings are extremely...ABSTRACT Holographic recording and applications of multiplexed volume bragg gratings in photo- thermo -refractive glass Report Title Volume Bragg grating (VBG

  20. Fractal signatures in the aperiodic Fibonacci grating.

    Science.gov (United States)

    Verma, Rupesh; Banerjee, Varsha; Senthilkumaran, Paramasivam

    2014-05-01

    The Fibonacci grating (FbG) is an archetypal example of aperiodicity and self-similarity. While aperiodicity distinguishes it from a fractal, self-similarity identifies it with a fractal. Our paper investigates the outcome of these complementary features on the FbG diffraction profile (FbGDP). We find that the FbGDP has unique characteristics (e.g., no reduction in intensity with increasing generations), in addition to fractal signatures (e.g., a non-integer fractal dimension). These make the Fibonacci architecture potentially useful in image forming devices and other emerging technologies.