WorldWideScience

Sample records for chamber conductive capillary

  1. Highly conductive, printable pastes from capillary suspensions

    Science.gov (United States)

    Schneider, Monica; Koos, Erin; Willenbacher, Norbert

    2016-08-01

    We have used the capillary suspension phenomenon to design conductive pastes for printed electronic applications, such as front side metallization of solar cells, without non-volatile, organic additives that often deteriorate electrical properties. Adding a small amount of a second, immiscible fluid to a suspension creates a network of liquid bridges between the particles. This capillary force-controlled microstructure allows for tuning the flow behavior in a wide range. Yield stress and low-shear viscosity can be adjusted such that long-term stability is provided by inhibiting sedimentation, and, even more importantly, narrow line widths and high aspect ratios are accessible. These ternary mixtures, called capillary suspensions, exhibit a strong degree of shear thinning that allows for conventional coating or printing equipment to be used. Finally, the secondary fluid, beneficial for stability and processing of the wet paste, completely evaporates during drying and sintering. Thus, we obtained high purity silver and nickel layers with a conductivity two times greater than could be obtained with state-of-the-art, commercial materials. This revolutionary concept can be easily applied to other systems using inorganic or even organic conductive particles and represents a fundamental paradigm change to the formulation of pastes for printed electronics.

  2. RAPID COMMUNICATION: Conducting triangular chambers for EMC measurements

    Science.gov (United States)

    Huang, Yi

    1999-03-01

    Conducting rectangular chambers have been used extensively for electromagnetic compatibility (EMC) shielding and measurement applications. In this communication, conducting triangular chambers are investigated as an alternative structure for rectangular EMC reverberation chambers, which are becoming an increasingly important and powerful tool for both radiated immunity and emission tests. A prime consideration of designing such a system is the total possible number of modes inside the chamber. A new approach is introduced to obtain this parameter for three different triangular chambers. The initial study has demonstrated that triangular chambers may offer better performance in some cases than their rectangular counterparts.

  3. Monitoring of enzymatic reactions using capillary electrophoresis with conductivity detection

    OpenAIRE

    Schuchert-Shi, Aiping

    2009-01-01

    Capillary electrophoresis combined with contactless conductivity detection allows to separate and detect the ionic species, which are neither UV absorbing nor fluorescent. This thesis focuses on the applications of this method on enzymatic reactions in different analytical tasks. First, the non-ionic species ethanol, glucose, ethyl acetate and ethyl butyrate were made accessible for analysis by capillary electrophoresis via charged products or byproducts obtained in enzymati...

  4. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman

    2015-01-01

    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  5. Pump effect of a capillary discharge in electrically conductive liquids

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Leys, C.; Verstraete, W.

    2007-01-01

    Roč. 27, č. 4 (2007), s. 473-485 ISSN 0272-4324 R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water * conductive * capillary * AC discharge * pump Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.747, year: 2007 http://www.springerlink.com/content/w802073563282272/fulltext.pdf

  6. Soft tissue movement and stress shielding do not affect bone ingrowth in the bone conduction chamber.

    NARCIS (Netherlands)

    Donk, S. van der; Verdonschot, N.J.J.; Schreurs, B.W.; Buma, P.

    2002-01-01

    A variety of bone chambers are used in orthopedic research to study bone and tissue ingrowth in small and large animals. If different bone chambers are placed in one species, differences in bone ingrowth are observed. For instance, bone ingrowth in the bone conduction chamber (BCC) is high, but is

  7. Capillary tone: cyclooxygenase, shear stress, luminal glycocalyx, and hydraulic conductivity (Lp).

    Science.gov (United States)

    Williams, Donna A; Flood, Mary H

    2015-04-01

    Control of capillary hydraulic conductivity (Lp) is the physiological mechanism that underpins systemic hydration. Capillaries form the largest surface of endothelial cells in any species with a cardiovascular system and all capillaries are exposed to the flow-induced force, shear stress (τ). Vasoactive molecules such as prostacyclin (cyclooxygenase product, COX) are released from endothelial cells in response to τ. Little is known about how COX activity impacts capillary Lp. The purpose here was to assess Lp in situ following an acute Δτ stimulus and during COX1/COX2 inhibition. Mesenteric true capillaries (TC) of Rana pipiens (pithed) were cannulated for Lp assessment using the modified Landis technique. Rana were randomized into Control and Test groups. Two capillaries per animal were used (perfusate, 10 mg·mL(-1) BSA/frog Ringer's; superfusate, frog Ringer's or indomethacin (10(-5) mol·L(-1)) mixed in frog Ringer's solution). Three distinct responses of Lp to indomethacin (TC2) were demonstrated (TC1 and TC2 medians: Test Subgroup 1, 3.0 vs. 1.8; Test Subgroup 2, 18.2 vs. 2.2; Test Subgroup 3, 4.2 vs. 10.2 × 10(-7) cm·sec(-1)·cm H2O(-1)). Multiple regression analysis revealed a relationship between capillary Lp and systemic red blood cell concentration or hematocrit, plasma protein concentration, and Δτ (Test Subgroup 1, R(2) = 0.59, P healthy state. Recovering barrier function may be an unrecognized benefit of transfusions during blood loss or edema formation. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection

    NARCIS (Netherlands)

    Guijt, Rosanne M.; Baltussen, Erik; van der Steen, Gert; Schasfoort, Richardus B.M.; Schlautmann, Stefan; Billiet, Hugo A.H.; Frank, Johannes; van Dedem, Gijs W.K.; van den Berg, Albert

    2001-01-01

    In practice, microfluidic systems are based on the principles of capillary electrophoresis (CE), for a large part due to the simplicity of electroosmotic pumping. In this contribution, a universal conductivity detector is presented that allows detection of charged species down to the µM level.

  9. Moisture Transfer in Concrete: Numerical Determination of the Capillary Conductivity Coefficient

    Directory of Open Access Journals (Sweden)

    Simo Elie

    2017-03-01

    Full Text Available We numerically investigated moisture transfer in buildings made of concrete. We considered three types of concrete: normal concrete, pumice concrete and cellular concrete. We present the results of a 1-D liquid water flow in such materials. We evaluated the moisture distribution in building materials using the Runge-Kutta fourth-and-fifth-order method. The DOPRI5 code was used as an integrator. The model calculated the resulting moisture content and other moisture-dependent physical parameters. The moisture curves were plotted. The dampness data obtained was utilized for the numerical computation of the coefficient of the capillary conductivity of moisture. Different profiles of this coefficient are represented. Calculations were performed for four different values of the outdoor temperature: -5°C, 0°C, 5°C and 10°C. We determined that the curves corresponding to small time intervals of wetting are associated with great amplitudes of the capillary conductivity . The amplitudes of the coefficient of the capillary conductivity decrease as the time interval increases. High outdoor temperatures induce high amplitudes of the coefficient of the capillary conductivity.

  10. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  11. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter [Vanderbilt Univ., Nashville, TN (United States)

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  12. Determination of mono- and disaccharides by capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Carvalho, Alexandre Zatkovskis; da Silva, José A F; do Lago, Claudimir L

    2003-06-01

    The separation and detection of common mono- and disaccharides by capillary electrophoresis (CE) with contactless conductivity detection (CCD) is presented. At high values of pH, the sugars are converted to anionic species that can be separated by CE and indirectly detected by CCD. The main anionic species present in the running electrolytes are hydroxide and phosphate, which have greater mobility than the ionized sugars, and, thus, the indirect detection is possible. The method was applied to analysis of glucose, fructose, and sucrose in soft drinks, isotonic beverages, fruit juice, and sugarcane spirits. Galactose was used as internal standard in all cases. Plate numbers range from ca. 70,700 to 168,200 and the limits of detection from 13 to 31 microM.

  13. Characterisation of Crevice and Pit Solution Chemistries Using Capillary Electrophoresis with Contactless Conductivity Detector.

    Science.gov (United States)

    Nie, Mengyan; Wharton, Julian A; Cranny, Andy; Harris, Nick R; Wood, Robert J K; Stokes, Keith R

    2013-09-30

    The ability to predict structural degradation in-service is often limited by a lack of understanding of the evolving chemical species occurring within a range of different microenvironments associated with corrosion sites. Capillary electrophoresis (CE) is capable of analysing nanolitre solution volumes with widely disparate concentrations of ionic species, thereby producing accurate and reliable results for the analysis of the chemical compositions found within microenvironment corrosion solutions, such as those found at crevice and pit corrosion sites. In this study, CE with contactless conductivity detection (CCD) has been used to characterize pitting and crevice corrosion solution chemistries for the first time. By using the capillary electrophoresis with contactless conductivity detection (CE-CCD) system, direct and simultaneous detection of seven metal cations (Cu2+, Ni2+, Fe3+, Fe2+, Cr3+, Mn2+, and Al3+) and chloride anions was achieved with a buffer solution of 10 mM 2,6-pyridinedicarboxylic acid and 0.5 mM cetyltrimethylammonium hydroxide at pH 4 using a pre-column complexation method. The detection limits obtained for the metal cations and chloride anions were 100 and 10 ppb, respectively. The CE-CCD methodology has been demonstrated to be a versatile technique capable of speciation and quantifying the ionic species generated within artificial pit (a pencil electrode) and crevice corrosion geometries for carbon steels and nickel-aluminium bronze, thus allowing the evolution of the solution chemistry to be assessed with time and the identification of the key corrosion analyte targets for structural health monitoring.

  14. Characterisation of Crevice and Pit Solution Chemistries Using Capillary Electrophoresis with Contactless Conductivity Detector

    Directory of Open Access Journals (Sweden)

    Robert J.K. Wood

    2013-09-01

    Full Text Available The ability to predict structural degradation in-service is often limited by a lack of understanding of the evolving chemical species occurring within a range of different microenvironments associated with corrosion sites. Capillary electrophoresis (CE is capable of analysing nanolitre solution volumes with widely disparate concentrations of ionic species, thereby producing accurate and reliable results for the analysis of the chemical compositions found within microenvironment corrosion solutions, such as those found at crevice and pit corrosion sites. In this study, CE with contactless conductivity detection (CCD has been used to characterize pitting and crevice corrosion solution chemistries for the first time. By using the capillary electrophoresis with contactless conductivity detection (CE-CCD system, direct and simultaneous detection of seven metal cations (Cu2+, Ni2+, Fe3+, Fe2+, Cr3+, Mn2+, and Al3+ and chloride anions was achieved with a buffer solution of 10 mM 2,6-pyridinedicarboxylic acid and 0.5 mM cetyltrimethylammonium hydroxide at pH 4 using a pre-column complexation method. The detection limits obtained for the metal cations and chloride anions were 100 and 10 ppb, respectively. The CE-CCD methodology has been demonstrated to be a versatile technique capable of speciation and quantifying the ionic species generated within artificial pit (a pencil electrode and crevice corrosion geometries for carbon steels and nickel-aluminium bronze, thus allowing the evolution of the solution chemistry to be assessed with time and the identification of the key corrosion analyte targets for structural health monitoring.

  15. Long-Term Outcome of Single-Chamber Atrial Pacing Compared with Dual-Chamber Pacing in Patients with Sinus-Node Dysfunction and Intact Atrioventricular Node Conduction

    OpenAIRE

    Kim, Won Ho; Joung, Boyoung; Shim, Jaemin; Park, Jong Sung; Hwang, Eui-Seock; Pak, Hui-Nam; Kim, Sungsoon; Lee, Moonhyoung

    2010-01-01

    Purpose The optimal pacing mode with either single chamber atrial pacemaker (AAI or AAIR) or dual chamber pacemaker (DDD or DDDR) is still not clear in sinus-node dysfunction (SND) and intact atrioventricular (AV) conduction. Materials and Methods Patients who were implanted with permanent pacemaker using AAI(R) (n = 73) or DDD(R) (n = 113) were compared. Results The baseline characteristics were comparable between the two groups, with a mean follow-up duration of 69 months. The incidence of ...

  16. Calculation of hydraulic conductivities and capillary rise in peat soils from bulk density and solid matter volume

    NARCIS (Netherlands)

    Bloemen, G.W.

    1981-01-01

    Recently it was demonstrated how unsaturated hydraulic conductivities of soils can be calculated from granular composition and organic matter content (BLOEMEN, 1980a). This type of calculations has to be restricted to mineral soils because the capillary properties of organic soils will not be

  17. Probing gunshot residue, sweat and latent human fingerprints with capillary-scale ion chromatography and suppressed conductivity detection.

    Science.gov (United States)

    Gilchrist, Elizabeth; Smith, Norman; Barron, Leon

    2012-04-07

    An investigation into capillary-scale ion chromatography with suppressed conductivity detection is presented for the identification of low molecular weight anions in samples of limited size. Both particle-packed and polymer monolith capillary ion exchange resins were compared with respect to their chromatographic efficiencies, operating back-pressures and thermal selectivities. Using a multistep hydroxide gradient, it was possible to separate a large selection of inorganic and organic anions in gunshot residue into fingerprints of a firer. Similarly, identification of direct contact with a black powder substitute is presented via analysis of latent fingermarks. To the best of our knowledge, this represents the first study of sweat and fingerprints using capillary-scale suppressed ion chromatography.

  18. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells

    KAUST Repository

    Nam, Joo-Youn

    2010-01-15

    Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pKa of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. © 2009 Elsevier B.V. All rights reserved.

  19. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells.

    Science.gov (United States)

    Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E

    2010-01-15

    Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Capillary origami of micro-machined micro-objects: Bi-layer conductive hinges

    NARCIS (Netherlands)

    Legrain, A.B.H.; Berenschot, Johan W.; Tas, Niels Roelof; Abelmann, Leon

    2015-01-01

    Recently, we demonstrated controllable 3D self-folding by means of capillary forces of silicon-nitride micro-objects made of rigid plates connected to each other by flexible hinges (Legrain et al., 2014). In this paper, we introduce platinum electrodes running from the substrate to the plates over

  1. Frequency-tuned contactless conductivity detector for the electrophoretic separation of clinical samples in capillaries with very small internal dimensions.

    Science.gov (United States)

    Tůma, Petr

    2017-02-01

    An axial design of a capacitively coupled contactless conductivity detector was tested in combination with fused-silica capillaries with internal diameters of 10, 15, and 25 μm, which are used for high-efficiency electrophoretic separation. The transmission of the signal in the detection probe dependent on the specific conductivity of the solution in the capillary in the range 0-278 mS.m-1 has a complex character and a minimum appears on the curve at very low conductivities. The position of the minimum of the calibration dependence gradually shifts with decreasing frequency of the exciting signal from 1.0 to 0.25 MHz toward lower specific conductivity values. The presence of a minimum on the calibration curves is a natural property of the axial design of contactless conductivity detector, demonstrated by solution of the equivalent electrical circuit of the detection probe, and is specifically caused by the use of shielding foil. The behavior of contactless conductivity detector in the vicinity of the minimum was documented for practical separations of amino acids in solutions of 3.2 M acetic acid with addition of 0-50% v/v methanol. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Use of contactless conductivity detection for non-invasive characterisation of monolithic stationary-phase coatings for application in capillary ion chromatography.

    Science.gov (United States)

    Gillespie, Eoin; Connolly, Damian; Macka, Miroslav; Nesterenko, Pavel N; Paull, Brett

    2007-12-01

    A capacitively-coupled contactless conductivity detector (C4D) has been utilised as an on-capillary detector within a capillary ion chromatograph, incorporating a reversed-phase monolithic silica capillary column semi-permanently modified with a suitable ionic surfactant. The monolithic capillary column (150 x 0.1 mm i.d.) was modified using sodium dioctyl sulfosuccinate (DOSS), an anionic surfactant, for the separation of small inorganic and organic cations. With the use of the on-capillary conductivity detector, the longitudinal homogeneity and temporal stability of the coating were investigated. The approach allowed a detailed non-invasive observation of the nature of the ion-exchange coating over time, and an example of an application of the technique to produce a longitudinal stationary-phase charge gradient is shown. An investigation of the basis of the measured on-capillary conductivity was carried out with a counter ion study, clearly showing the on-capillary detection technique could also distinguish between chemical forms of the immobilised ion exchanger. The above method was used to produce a stable and homogeneously-modified monolithic ion-exchange capillary column, for application to the separation of inorganic alkaline earth cations and amino acids.

  3. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  4. Capillary infiltration and estimation of unsaturated hydraulic conductivity of concrete by the unsteady method; Concrete no mokan shinto to hiteijoho ni yoru fuhowa tosui keisu no santei

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, T. [Fukui University, Fukui (Japan). Faculty of Engineering; Matsuoka, S.; Yanagi, H. [Tekken Corp., Tokyo (Japan)

    1997-05-20

    The unsaturated infiltration process in concrete was investigated to propose the method for obtaining unsaturated hydraulic conductivity and show its validity. In an experiment, the relation between the volume water content and capillary head was given by an isothermal moisture absorption experiment. Moreover, the infiltration height and weight of a specimen based on a capillary infiltration pressure, and the change in volume water content with the passage of time were measured by a capillary infiltration experiment. The conclusion below was given. With the change in concrete water content, the change in capillary force indicates the distribution similar to the change in soil. A capillary infiltration experiment is made for the moisture movement caused by only the gradient of a capillary head. Therefore, it is effective for obtaining the unsaturated hydraulic conductivity if the unsaturated infiltration process of concrete is given. The unsaturated hydraulic conductivity can be easily calculated by an unsteady method. An unsaturated infiltration analysis well reproduced the capillary infiltration process of the concrete obtained by an experiment. As a result, the validity of the unsteady method and the reliability of the unsaturated hydraulic conductivity value were confirmed. 13 refs., 12 figs., 1 tab.

  5. Biomimetic Unidirectional Capillary Action

    Science.gov (United States)

    Rupert, Eric; Moran, Patrick; Dahl, Jason

    2017-11-01

    In arid environments animals require specialized adaptations to collect adequate water. The Texas horned lizard (P. cornutum) has superhydrophylic skin which draws water out of moist soil or directly from water sources. The water then makes its way into the lizard's unidirectional capillary system, made of overlapping scales, which serves to channel water to its mouth. Testing different channel geometries, repeated ``D'' shaped chambers as in Commans et al. (2015) and truncated isosceles triangle chambers, as found in P. cornutum, we show the ability to have passive, unidirectional, fluid transport. Tests were carried out with the capillaries in a horizontal configuration. While both capillary geometries produced the desired traits, the triangular chambers showed superior unidirectionality, with no observed back flow, while ``D'' chambers showed back flow under testing conditions. The chambers provided similar flow rates. These types of channel systems will find use in microfluidics, notably in medical, printing, and lab-on-chip applications.

  6. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  7. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    1999-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  8. Long-term outcome of single-chamber atrial pacing compared with dual-chamber pacing in patients with sinus-node dysfunction and intact atrioventricular node conduction.

    Science.gov (United States)

    Kim, Won Ho; Joung, Boyoung; Shim, Jaemin; Park, Jong Sung; Hwang, Eui-Seock; Pak, Hui-Nam; Kim, Sungsoon; Lee, Moonhyoung

    2010-11-01

    The optimal pacing mode with either single chamber atrial pacemaker (AAI or AAIR) or dual chamber pacemaker (DDD or DDDR) is still not clear in sinus-node dysfunction (SND) and intact atrioventricular (AV) conduction. Patients who were implanted with permanent pacemaker using AAI(R) (n = 73) or DDD(R) (n = 113) were compared. The baseline characteristics were comparable between the two groups, with a mean follow-up duration of 69 months. The incidence of death did not show statistical difference. However, the incidence of hospitalization for congestive heart failure (CHF) was significantly lower in the AAI(R) group (0%) than the DDD(R) group (8.8%, p = 0.03). Also, atrial fibrillation (AF) was found in 2.8% in the AAI(R) group, which was statistically different from 15.2% of patients in the DDD(R) group (p = 0.01). Four patients (5.5%) with AAI(R) developed AV block, and subsequently switched to DDD(R) pacing. The risk of AF was lower in the patients implanted with AAI(R) than those with DDD(R) [hazard ratio (HR), 0.84; 95% confidence interval, 0.72 to 0.97, p = 0.02]. In patients with SND and intact AV conduction, AAI(R) pacing can achieve a better clinical outcome in terms of occurrence of CHF and AF than DDD(R) pacing. These findings support AAI(R) pacing as the preferred pacing mode in patients with SND and intact AV conduction.

  9. Lung membrane conductance and capillary volume derived from the NO and CO transfer in high-altitude newcomers.

    Science.gov (United States)

    Martinot, Jean-Benoît; Mulè, Massimiliano; de Bisschop, Claire; Overbeek, Maria J; Le-Dong, Nhat-Nam; Naeije, Robert; Guénard, Hervé

    2013-07-15

    Acute exposure to high altitude may induce changes in carbon monoxide (CO) membrane conductance (DmCO) and capillary lung volume (Vc). Measurements were performed in 25 lowlanders at Brussels (D0), at 4,300 m after a 2- or 3-day exposure (D2,3) without preceding climbing, and 5 days later (D7,8), before and after an exercise test, under a trial with two arterial pulmonary vasodilators or a placebo. The nitric oxide (NO)/CO transfer method was used, assuming both infinite and finite values to the NO blood conductance (θNO). Doppler echocardiography provided hemodynamic data. Compared with sea level, lung diffusing capacity for CO increased by 24% at D2,3 and is returned to control at D7,8. The acute increase in lung diffusing capacity for CO resulted from increases in DmCO and Vc with finite and infinite θNO assumptions. The alveolar volume increased by 16% at D2,3 and normalized at D7,8. The mean increase in systolic arterial pulmonary pressure at rest at D2,3 was minimal. In conclusion, the acute increase in Vc may be related to the increase in alveolar volume and to the increase in capillary pressure. Compared with the infinite θNO value, the use of a finite θNO value led to about a twofold increase in DmCO value and to a persistent increase in DmCO at D7,8 compared with D0. After exercise, DmCO decreased slightly less in subjects treated by the vasodilators, suggesting a beneficial effect on interstitial edema.

  10. Determination of tetrakis(hydroxymethyl)phosphonium sulfate in commercial formulations and cooling water by capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Marques, Thaís Tamye; Shiroma, Letícia Sayuri; de Jesus, Dosil Pereira

    2015-03-01

    A novel capillary electrophoresis method using capacitively coupled contactless conductivity detection is proposed for the determination of the biocide tetrakis(hydroxymethyl)phosphonium sulfate. The feasibility of the electrophoretic separation of this biocide was attributed to the formation of an anionic complex between the biocide and borate ions in the background electrolyte. Evidence of this complex formation was provided by (11) B NMR spectroscopy. A linear relationship (R(2) = 0.9990) between the peak area of the complex and the biocide concentration (50-900 μmol/L) was found. The limit of detection and limit of quantification were 15.0 and 50.1 μmol/L, respectively. The proposed method was applied to the determination of tetrakis(hydroxymethyl)phosphonium sulfate in commercial formulations, and the results were in good agreement with those obtained by the standard iodometric titration method. The method was also evaluated for the analysis of tap water and cooling water samples treated with the biocide. The results of the recovery tests at three concentration levels (300, 400, and 600 μmol/L) varied from 75 to 99%, with a relative standard deviation no higher than 9%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Real-Time Gas Identification by Analyzing the Transient Response of Capillary-Attached Conductive Gas Sensor

    Directory of Open Access Journals (Sweden)

    Behzad Bahraminejad

    2010-05-01

    Full Text Available In this study, the ability of the Capillary-attached conductive gas sensor (CGS in real-time gas identification was investigated. The structure of the prototype fabricated CGS is presented. Portions were selected from the beginning of the CGS transient response including the first 11 samples to the first 100 samples. Different feature extraction and classification methods were applied on the selected portions. Validation of methods was evaluated to study the ability of an early portion of the CGS transient response in target gas (TG identification. Experimental results proved that applying extracted features from an early part of the CGS transient response along with a classifier can distinguish short-chain alcohols from each other perfectly. Decreasing time of exposition in the interaction between target gas and sensing element improved the reliability of the sensor. Classification rate was also improved and time of identification was decreased. Moreover, the results indicated the optimum interval of the early transient response of the CGS for selecting portions to achieve the best classification rates.

  12. Online preconcentration in capillary electrophoresis with contactless conductivity detection for sensitive determination of sorbic and benzoic acids in soy sauce.

    Science.gov (United States)

    Wei, Ruixia; Li, Wenhua; Yang, Lirong; Jiang, Yixiu; Xie, Tianyao

    2011-02-15

    A sensitive method of online preconcentration followed by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D) is evaluated as a novel approach for the determination of benzoic acid and sorbic acid in soy sauce. The online preconcentration technique, namely field-enhanced sample injection, coupled with CE-C(4)D were successfully developed and optimized. In order to reduce the complex matrix interference resulting from the constituents of soy sauce, a suitable sample clean-up procedure was also investigated for real sample pretreatment. Under optimized conditions, sorbic acid and benzoic acid were well separated within 10 min, and the detection limits were 0.05 μM (5.6 μg L(-1)) and 0.08 μM (9.8 μg L(-1)), respectively. The accuracy was tested by spiking 10.0 mg L(-1) and 100.0 mg L(-1) of standards in the soy sauce samples, and the recoveries were 95-99%, respectively. Results of this study show a great potential for the proposed method as a tool for the fast screening of benzoic acid and sorbic acid in a complex matrix. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Simultaneous determination of caffeine, paracetamol, and ibuprofen in pharmaceutical formulations by high-performance liquid chromatography with UV detection and by capillary electrophoresis with conductivity detection.

    Science.gov (United States)

    Cunha, Rafael R; Chaves, Sandro C; Ribeiro, Michelle M A C; Torres, Lívia M F C; Muñoz, Rodrigo A A; Dos Santos, Wallans T P; Richter, Eduardo M

    2015-05-01

    Paracetamol, caffeine and ibuprofen are found in over-the-counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high-performance liquid chromatography with diode-array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high-performance liquid chromatography with diode-array detection was achieved on a C18 column (250×4.6 mm(2), 5 μm) with a gradient mobile phase comprising 20-100% acetonitrile in 40 mmol L(-1) phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused-silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L(-1) 3,4-dimethoxycinnamate and 10 mmol L(-1) β-alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L(-1) by liquid chromatography and 39, 32, and 49 μmol L(-1) by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92-107% for both proposed methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Power of Flash Mob Research Conducting a Nationwide Observational Clinical Study on Capillary Refill Time in a Single Day

    NARCIS (Netherlands)

    Alsma, Jelmer; van Saase, Jan L. C. M.; Nanayakkara, Prabath W. B.; Schouten, W. E. M. Ineke; Baten, Anique; Bauer, Martijn P.; Holleman, Frits; Ligtenberg, Jack J. M.; Stassen, Patricia M.; Kaasjager, Karin H. A. H.; Haak, Harm R.; Bosch, Frank H.; Schuit, Stephanie C. E.

    BACKGROUND: Capillary refill time (CRT) is a clinical test used to evaluate the circulatory status of patients; various methods are available to assess CRT. Conventional clinical research often demands large numbers of patients, making it costly, labor-intensive, and time-consuming. We studied the

  15. Ultra-fast determination of caffeine, dipyrone, and acetylsalicylic acid by capillary electrophoresis with capacitively coupled contactless conductivity detection and identification of degradation products.

    Science.gov (United States)

    Marra, Mariana Cardoso; Cunha, Rafael Rodrigues; Vidal, Denis Tadeu Rajh; Munoz, Rodrigo Alejandro Abarza; do Lago, Claudimir Lucio; Richter, Eduardo Mathias

    2014-01-31

    Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D) was used for fast, simultaneous determination of dipyrone (DIP), caffeine (CAF), and acetylsalicylic acid (ASA). In the same run and in less than 1min, the degradation products from DIP and ASA were also detected. In addition, the usage of the CE-C(4)D system allowed, for the first time, the detection of methylamine as a degradation product of DIP. Capillary electrophoresis with electrospray mass spectrometry experiments were carried out in order to confirm the formation of methylamine. The limits of detection by CE-C(4)D were 5, 5, and 6μmolL(-1) for CAF, DIP, and ASA, respectively. The proposed method was applied to the analysis of these compounds in pharmaceutical formulations with similar results to those achieved by HPLC (p<0.05). Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Determination of pyruvate and lactate as potential biomarkers of embryo viability in assisted reproduction by capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Mádr, Aleš; Celá, Andrea; Klejdus, Bořivoj; Pelcová, Marta; Crha, Igor; Žáková, Jana; Glatz, Zdeněk

    2015-06-01

    Human-assisted reproduction is increasing in importance due to the constantly rising number of couples suffering from infertility issue. A key step in in vitro fertilization is the proper assessment of embryo viability in order to select the embryo with the highest likelihood of resulting in a pregnancy. This study proposes a method based on CE with contactless conductivity detection for the determination of pyruvate and lactate in spent culture media used in human-assisted reproduction. A fused-silica capillary of 64.0 cm total length and 50 μm inner diameter was used. The inner capillary wall was modified by the coating of successive layers of the ionic polymers polybrene and dextran sulfate to reverse EOF. The BGE was composed of 10 mM MES/lithium hydroxide, pH 6.50. The sample was injected by pressure 50 mbar for 18 s, separation voltage was set to -24 kV, and capillary temperature to 15°C. The presented method requires only 2 μL of the culture medium, with LODs for pyruvate and lactate of 0.03 and 0.02 μM, respectively. The results demonstrated the method's suitability for the analysis of spent culture media to support embryo viability assessment by light microscopy, providing information about key metabolites of the energy metabolism of a developing embryo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Large volume sample stacking for rapid and sensitive determination of antidiabetic drug metformin in human urine and serum by capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Tůma, Petr

    2014-06-06

    Two CE methods with contactless conductivity detection have been developed for determining the oral antidiabetic drug metformin in human urine and blood. The determination of metformin is performed on a separation capillary with an effective length of 14 cm, using a maximum voltage of 30 kV and with a small injection of 50-fold diluted urine into the capillary. Under these conditions, the migration time of metformin is 35s and the LOD is 0.3 μM. Large-volume sample stacking was used to determine low metformin levels in serum. The injection of a sample of serum deproteinized with acetonitrile was 10 times greater compared to the injected amount of urine. This enabled reduction of the LOD to 0.03 μM and the metformin migration time equalled 86 s. The undesirable solvent from sample zone was forced out of the capillary to ensure rapidity and good repeatability of the determination. The RSD values for the migration time are 0.1% for urine and 0.7% for serum; RSD for the peak areas equalled 1.4% for urine and 2.6% for serum. The developed CE technique was tested on performance of routine analyses of metformin in the urine and serum of patients suffering from type II diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Direct determination of oleic acid in soybean oil by capacitively coupled contactless conductivity detection capillary electrophoresis in an oil-miscible KOH/1-propanol/methanol medium

    OpenAIRE

    Böckel, Wolmir José; Silva, Yara Patrícia da; Mendonça, Carla R. B.; Simó-Alfonso, Ernesto F.; Ramis-Ramos, Guillermo; Piatnicki,Clarisse M. S.

    2014-01-01

    The aim of this work was to develop a quick direct analytical technique for the determination of oleic acid content in soybean oil by non-aqueous capillary electrophoresis with capacitively coupled contactless conductivity detection. The oil-miscible background electrolyte was a mixture of methanol/1-propanol (1:6 v/v) containing 4 × 10-2 mol L-1 KOH and 10% (v/v) ethylene glycol. Samples of 50 g L-1 soybean oil were prepared directly in the background electrolyte added with 1.33 × 10-3 g L-1...

  19. Inexpensive and versatile measurement tools using purpose-made capillary electrophoresis devices coupled with contactless conductivity detection: A view from the case study in Vietnam

    Directory of Open Access Journals (Sweden)

    Hong Anh Duong

    2016-09-01

    Full Text Available In this study, the development of purpose-made capillary electrophoresis (CE devices with capacitively coupled contactless conductivity detection (C4D as a simple and inexpensive measurement tool and its applications for water monitoring, food control and pharmaceutical analyses in Vietnam are reviewed. The combination of CE and C4D, both relying on the control of the movements of ions in an electrical field, can be realizable even with a modest financial budget and limited experimental skills and expertise. Different CE-C4D configurations designed and developed for various applications were highlighted. Some perspectives for a wider recognition of its potential in Vietnam and for rendering this technique as an analytical tool for the population are discussed.

  20. Analysis of Methanol in the Presence of Ethanol, Using a Hybrid Capillary Electrophoresis Device with Electrochemical Derivatization and Conductivity Detection.

    Science.gov (United States)

    Santos, Mauro Sérgio Ferreira; da Costa, Eric Tavares; Gutz, Ivano Gebhardt Rolf; Garcia, Carlos D

    2017-01-17

    Concurrently with ethanol, many other compounds can be formed during the fermentation of grains and fruits. Among those, methanol is particularly important (because of its toxicity) and is typically formed at concentrations much lower than ethanol, presenting a particular challenge that demands the implementation of separation techniques. Aiming to provide an alternative to traditional chromatographic approaches, a hybrid electrophoresis device with electrochemical preprocessing and contactless conductivity detection (hybrid EC-CE-C(4)D) is herein described. The device was applied to perform the electro-oxidation of primary alcohols, followed by the separation and detection of the respective carboxylates. According to the presented results, the optimum conditions were obtained when the sample was diluted with 2 mmol L(-1) HNO3 and then electro-oxidized by applying a potential of 1.4 V for 60 s. The oxidation products were then electrokinetically injected by applying a potential of 3 kV for 4 s and separated using a potential of 3 kV and a background running electrolyte (BGE) consisting of 10 mmol L(-1) N-cyclohexyl-2-aminoethanesulfonic acid (CHES) and 5 mmol L(-1) sodium hydroxide (NaOH). n-Propanol was used as an internal standard and the three carboxylate peaks were resolved with baseline separation within moonshine) was used. Aliquots collected along the beginning of the fractional distillation presented a decreasing methanol ratio (from 4% to <0.5%) and a growing ethanol ratio (from 80% to 100%) in the collected volume.

  1. Simultaneous separation and detection of anions and thiophilic cations using capillary-size anion exchange chromatography with suppressed conductivity detection.

    Science.gov (United States)

    Sötz, Veronika Anna; Kochmann, Sven

    2015-05-01

    In this fundamental study, the simultaneous separation and detection of anions and thiophilic cations in anion exchange chromatography with suppressed conductivity detection is investigated. Mercury(II) and cadmium(II) served as model analytes. Separation and detection was performed by introducing 2-mercaptoethanesulfonate, which forms complexes with both mercury and cadmium with a strong metal-sulfur bond, into the KOH eluent. Additional to the separation on the column, these complexes were able to pass the suppressor. Subsequently, they could be detected as negative peaks. A simple model for the separation mechanism was developed based on these results. Furthermore, the effect of the eluent concentration on the retention factors of both cation complexes and standard anions was examined and quantified. It revealed that the concentration of 2-mercaptoethanesulfonate has more influence on the cations than the KOH concentration. Also, 2.0 mM of 2-mercaptoethanesulfonate had about the same effect on the anion separation as 60 mM KOH. Finally, selectivity and detection limits were investigated. The detection limits were 4.9 μM for mercury and 2.2 μM for cadmium. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Transient isotachophoresis-capillary zone electrophoresis with contactless conductivity and ultraviolet detection for the analysis of paralytic shellfish toxins in mussel samples.

    Science.gov (United States)

    Abdul Keyon, Aemi S; Guijt, Rosanne M; Bolch, Christopher J S; Breadmore, Michael C

    2014-10-17

    The accumulation of paralytic shellfish toxins (PSTs) in contaminated shellfish is a serious health risk making early detection important to improve shellfish safety and biotoxin management. Capillary electrophoresis (CE) has been proven as a high resolution separation technique compatible with miniaturization, making it an attractive choice in the development of portable instrumentation for early, on-site detection of PSTs. In this work, capillary zone electrophoresis (CZE) with capacitively coupled contactless conductivity detector (C(4)D) and UV detection were examined with counter-flow transient isotachophoresis (tITP) to improve the sensitivity and deal with the high conductivity sample matrix. The high sodium concentration in the sample was used as the leading ion while l-alanine was used as the terminating electrolyte (TE) and background electrolyte (BGE) in which the toxins were separated. Careful optimization of the injected sample volume and duration of the counter-flow resulted in limit of detections (LODs) ranging from 74.2 to 1020 ng/mL for tITP-CZE-C(4)D and 141 to 461 ng/mL for tITP-CZE-UV, an 8-97 fold reduction compared to conventional CZE. The LODs were adequate for the analysis of PSTs in shellfish samples close to the regulatory limit. Intra-day and inter-day repeatability values (percentage relative standard deviation, n=3) of tITP-CZE-C(4)D and tITP-CZE-UV methods for both migration time and peak height were in the range of 0.82-11% and 0.76-10%, respectively. The developed method was applied to the analysis of a contaminated mussel sample and validated against an Association of Official Analytical Chemists (AOAC)-approved method for PSTs analysis by high performance liquid chromatography (HPLC) with fluorescence detection (FLD) after pre-column oxidation of the sample. The method presented has potential for incorporation in to field-deployable devices for the early detection of PSTs on-site. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection.

    Science.gov (United States)

    Nguyen, Thi Anh Huong; Nguyen, Van Ri; Le, Duc Dung; Nguyen, Thi Thanh Binh; Cao, Van Hoang; Nguyen, Thi Kim Dung; Sáiz, Jorge; Hauser, Peter C; Mai, Thanh Duc

    2016-07-29

    The employment of an in-house-made capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) as a simple and inexpensive solution for simultaneous determination of many rare earth elements (REEs) in ore samples from Vietnam, as well as in anti-corrosion coating samples is reported. 14 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) were determined using an electrolyte composed of 20mM arginine and 10mM α-hydroxyisobutyric acid adjusted to pH 4.2 with acetic acid. The best detection limit achieved was 0.24mg/L using the developed CE-C(4)D method. Good agreement between results from CE-C(4)D and the confirmation method (ICP-MS) was achieved, with a coefficient of determination (r(2)) for the two pairs of data of 0.998. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Capillary electrophoresis procedure for the simultaneous analysis and stoichiometry determination of a drug and its counter-ion by using dual-opposite end injection and contactless conductivity detection: application to labetalol hydrochloride.

    Science.gov (United States)

    Nehmé, Reine; Lascaux, Adrien; Delépée, Raphaël; Claude, Bérengère; Morin, Philippe

    2010-03-24

    In this work, a capillary electrophoresis (CE) procedure was developed for the simultaneous determination of a pharmaceutical drug and its counter-ion, namely labetalol hydrochloride. For this purpose, an uncoated fused-silica capillary, a low conductivity background electrolyte (BGE) and a capacitively coupled contactless conductivity detector (C(4)D) were employed. This detection system is highly sensitive and enables detection of inorganic as well as organic ions unlike with direct UV detection. Moreover, to be able to simultaneously analyze the cationic drug (labetalol(+)) and its anionic counter-ion (Cl(-)) in the same electrophoretic run without the need of a coated capillary, a dual-opposite end injection was performed. In this technique, the sample is hydrodynamically injected into both ends of the capillary. This method is simple and easy to perform since the different injection steps are automated by the CE software. This novel CE-C(4)D procedure with dual-opposite end injection has been successfully validated and applied for the analysis of chloride content in an adrenergic antagonist (labetalol hydrochloride). Thus, the hereby developed method has been shown to enable fast (analysis time<10 min), precise (repeatability of migration times<0.7% and of corrected-peak areas < 3.3%; n=6) and rugged analyses for the simultaneous determination of a pharmaceutical drug and its counter-ion. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Capillary origami

    OpenAIRE

    Py, Charlotte; Reverdy, Paul; Doppler, L.; Bico, J.; Roman, B.; Baroud, Charles,

    2007-01-01

    International audience; The hairs of a wet dog rushing out from a pond assemble into bundles; this is a common example of the effect of capillary forces on flexible structures. From a practical point of the deformation and adhesion of compliant structures induced by interfacial forces may lead to disastrous effects in mechanical microsystems.

  6. Determination of the plasma effective charge from the soft X-ray spectrum and plasma conductivity at the L-2M stellarator after boronization of the vacuum chamber

    Energy Technology Data Exchange (ETDEWEB)

    Meshcheryakov, A. I., E-mail: meshch@fpl.gpi.ru; Vafin, I. Yu., E-mail: ildar@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-07-15

    Boronization of the vacuum chamber wall results in a considerable change in the composition of the plasma generated in working pulses of the L-2M stellarator and, accordingly, in the plasma effective charge. The paper presents results of measurements of the plasma effective charge carried out by two methods in the ohmic heating mode: from the data on the plasma conductivity and from the soft X-ray spectrum of plasma emission. Comparison of the values of the plasma effective charge obtained by these two methods makes it possible to determine the conditions in which the two values are in good agreement. Under these conditions, the plasma effective charge can be correctly estimated from spectral measurements.

  7. On hydraulics of capillary tubes

    Directory of Open Access Journals (Sweden)

    N.G. Aloyan

    2016-03-01

    Full Text Available The article considers the laws of motion of water in the capillary tubes, taken as a model for flowing well, on the analogical net count device. For capillary tube the lower limit value of flow rate is empirically determined above which the total hydraulic resistance of the capillary is practically constant. The specificity of the phenomenon is that the regime of motion, by a Reynolds number, for a given flow rate still remains laminar. This circumstance can perplex the specialists, so the author invites them to the scientific debate on the subject of study. Obviously, to identify the resulting puzzle it is necessary to conduct a series of experiments using capillaries of different lengths and diameters and with different values of overpressure. The article states that in tubes with very small diameter the preliminary magnitude of capillary rise of water in the presence of flow plays no role and can be neglected.

  8. Ussing Chamber

    NARCIS (Netherlands)

    Westerhout, J.; Wortelboer, H.; Verhoeckx, K.

    2015-01-01

    The Ussing chamber system is named after the Danish zoologist Hans Ussing, who invented the device in the 1950s to measure the short-circuit current as an indicator of net ion transport taking place across frog skin (Ussing and Zerahn, Acta Physiol Scand 23:110-127, 1951). Ussing chambers are

  9. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  10. Simultaneous and rapid determination of caffeine and taurine in energy drinks by MEKC in a short capillary with dual contactless conductivity/photometry detection.

    Science.gov (United States)

    Vochyánová, Blanka; Opekar, František; Tůma, Petr

    2014-06-01

    A method has been developed for the simultaneous determination of taurine and caffeine using a laboratory-made instrument enabling separation analysis in a short 10.5 cm capillary. The substances are detected using a contactless conductometry/ultraviolet (UV) photometry detector that enables recording both signals at one place in the capillary. The separation of caffeine and taurine was performed using the MEKC technique in a BGE with the composition 40 mM CHES, 15 mM NaOH, and 50 mM SDS, pH 9.36. Under these conditions, the migration time of caffeine is 43 s and of taurine 60 s; LOD for caffeine is 4 mg/L using photometric detection and LOD for taurine is 24 mg/L using contactless conductometric detection. The standard addition method was used for determination in Red Bull energy drink of caffeine 317 mg/L and taurine 3860 mg/L; the contents in Kamikaze drink were 468 mg/L caffeine and 4110 mg/L taurine. The determined values are in good agreement with the declared contents of these substances. RSD does not exceed 3%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  13. Generation of intense soft X-rays from capillary discharge plasmas

    Indian Academy of Sciences (India)

    At Laser Plasma Division, RRCAT, a program on high voltage capillary discharge had been started. The system consists of a 400 kV Marx bank, water line capacitor, spark gap and capillary chamber. The initial results of the emission of intense short soft X-ray pulses (5–10 ns) from the capillary discharge are reported.

  14. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. The Power of Flash Mob Research: Conducting a Nationwide Observational Clinical Study on Capillary Refill Time in a Single Day.

    Science.gov (United States)

    Alsma, Jelmer; van Saase, Jan L C M; Nanayakkara, Prabath W B; Schouten, W E M Ineke; Baten, Anique; Bauer, Martijn P; Holleman, Frits; Ligtenberg, Jack J M; Stassen, Patricia M; Kaasjager, Karin H A H; Haak, Harm R; Bosch, Frank H; Schuit, Stephanie C E

    2017-05-01

    Capillary refill time (CRT) is a clinical test used to evaluate the circulatory status of patients; various methods are available to assess CRT. Conventional clinical research often demands large numbers of patients, making it costly, labor-intensive, and time-consuming. We studied the interobserver agreement on CRT in a nationwide study by using a novel method of research called flash mob research (FMR). Physicians in the Netherlands were recruited by using word-of-mouth referrals, conventional media, and social media to participate in a nationwide, single-day, "nine-to-five," multicenter, cross-sectional, observational study to evaluate CRT. Patients aged ≥ 18 years presenting to the ED or who were hospitalized were eligible for inclusion. CRT was measured independently (by two investigators) at the patient's sternum and distal phalanx after application of pressure for 5 s (5s) and 15 s (15s). On October 29, 2014, a total of 458 investigators in 38 Dutch hospitals enrolled 1,734 patients. The mean CRT measured at the distal phalanx were 2.3 s (5s, SD 1.1) and 2.4 s (15s, SD 1.3). The mean CRT measured at the sternum was 2.6 s (5s, SD 1.1) and 2.7 s (15s, SD 1.1). Interobserver agreement was higher for the distal phalanx (κ value, 0.40) than for the sternum (κ value, 0.30). Interobserver agreement on CRT is, at best, moderate. CRT measured at the distal phalanx yielded higher interobserver agreement compared with sternal CRT measurements. FMR proved a valuable instrument to investigate a relatively simple clinical question in an inexpensive, quick, and reliable manner. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  19. Use of high-conductivity sample solution with sweeping-micellar electrokinetic capillary chromatography for trace-level quantification of paliperidone in human plasma.

    Science.gov (United States)

    Liu, Hsiang-Yin; Hwang, Tzung-Jeng; Tsai, I-Lin; Kuo, Ching-Hua

    2015-02-01

    Paliperidone is a new antipsychotic drug with a relatively low therapeutic concentration of 20-60 ng/mL. We established an accurate and sensitive CE method for the determination of paliperidone concentrations in human plasma in this study. To minimize matrix effect caused by quantification errors, paliperidone was extracted from human plasma using Oasis HLB SPE cartridges with three-step washing procedure. To achieve sensitive quantification of paliperidone in human plasma, a high-conductivity sample solution with sweeping-MEKC method was applied for analysis. The separation is performed in a BGE composed of 75 mM phosphoric acid, 100 mM SDS, 12% acetonitrile, and 15% tetrahydrofuran. Sample solution consisted of 10% methanol in 250 mM phosphoric acid and the conductivity ratio between sample matrix and BGE was 2.0 (γ, sample/BGE). The results showed it able to detect paliperidone in plasma samples at concentration as low as 10 ng/mL (S/N = 3) with a linear range between 20 and 200 ng/mL. Compared to the conventional MEKC method, the sensitivity enhancement factor of the developed sweeping-MEKC method was 100. Intra- and interday precision of peak area ratios were less than 6.03%; the method accuracy was between 93.4 and 97.9%. This method was successfully applied to the analysis of plasma samples of patients undergoing paliperidone treatment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Intramedullary capillary haemangioma.

    LENUS (Irish Health Repository)

    Kelleher, T

    2012-02-03

    Intramedullary capillary haemangioma is extremely rare and only four cases have been previously reported. We describe a further case, outlining the clinical, radiological, surgical and pathological features.

  1. Capillary electrophoresis with contactless conductivity detection for the quantification of fluoride in lithium ion battery electrolytes and in ionic liquids-A comparison to the results gained with a fluoride ion-selective electrode.

    Science.gov (United States)

    Pyschik, Marcelina; Klein-Hitpaß, Marcel; Girod, Sabrina; Winter, Martin; Nowak, Sascha

    2017-02-01

    In this study, an optimized method using capillary electrophoresis (CE) with a direct contactless conductivity detector (C(4) D) for a new application field is presented for the quantification of fluoride in common used lithium ion battery (LIB) electrolyte using LiPF6 in organic carbonate solvents and in ionic liquids (ILs) after contacted to Li metal. The method development for finding the right buffer and the suitable CE conditions for the quantification of fluoride was investigated. The results of the concentration of fluoride in different LIB electrolyte samples were compared to the results from the ion-selective electrode (ISE). The relative standard deviations (RSDs) and recovery rates for fluoride were obtained with a very high accuracy in both methods. The results of the fluoride concentration in the LIB electrolytes were in very good agreement for both methods. In addition, the limit of detection (LOD) and limit of quantification (LOQ) values were determined for the CE method. The CE method has been applied also for the quantification of fluoride in ILs. In the fresh IL sample, the concentration of fluoride was under the LOD. Another sample of the IL mixed with Li metal has been investigated as well. It was possible to quantify the fluoride concentration in this sample. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Doriot Climatic Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers are two, 60-feet long, 11-feet high, 15-feet wide chambers that are owned and operated by NSRDEC. The Doriot Climatic Chambers are among...

  3. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  4. Capillary breakup of fluid threads within confinement

    Science.gov (United States)

    Hu, Guoqing; Xue, Chundong; Chen, Xiaodong

    2016-11-01

    Fluid thread breakup is a widespread phenomenon in nature, industry, and daily life. Driven by surface tension (or capillarity) at low flow-rate condition, the breakup scenario is usually called capillary instability or Plateau-Rayleigh instability. Fluid thread deforms under confinement of ambient fluid to form a fluid neck. Thinning of the neck at low flow-rate condition is quasistatic until the interface becomes unstable and collapses to breakup. Underlying mechanisms and universalities of both the stable and unstable thinning remain, however, unclear and even contradictory. Here we conduct new numerical and experimental studies to show that confined interfaces are not only stabilized but also destabilized by capillarity at low flow-rate condition. Capillary stabilization is attributed to confinement-determined internal pressure that is higher than capillary pressure along the neck. Two origins of capillary destabilization are identified: one is confinement-induced gradient of capillary pressure along the interface; the other is the competition between local capillary pressure and internal pressure. This work was supported by National Natural Science Foundation of China (Grant No. 11402274, 11272321, and 11572334).

  5. Gravimetric capillary method for kinematic viscosity measurements

    Science.gov (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  6. Gas-Filled Capillary Model

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2006-11-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration — Laser Wakefield (STELLA-LW) experiment.

  7. Chiral separation by capillary electrochromatography.

    Science.gov (United States)

    Gübitz, G; Schmid, M G

    2000-01-01

    The state of art in chiral capillary electrochromatography is reviewed. Chiral separations by capillary electrochromatography were carried out using capillaries packed with chiral stationary phases or achiral stationary phases in combination with a chiral selector added to the mobile phase. Furthermore, the use of open tubular capillaries containing the chiral selector coated to the capillary wall was also reported. Among other separation principles moleculary imprinted polymers represent a challenging approach for chiral capillary electrochromatography. A recent trend is the use of polymeric continuous beds with a chiral selector incorporated.

  8. How Capillary Rafts Sink

    CERN Document Server

    Protiere, S; Aristoff, J; Stone, H

    2010-01-01

    We present a fluid dynamics video showing how capillary rafts sink. Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. Thanks to Archimedes principle we can easily predict whether an object sinks or floats. But what happens when several small particles are placed at an interface between two fluids. In this case surface tension also plays an important role. These particles self-assemble by capillarity and thus form what we call a "capillary raft". We show how such capillary rafts sink for varying sizes of particles and define how this parameter affects the sinking process.

  9. Capillary zone electrophoresis-mass spectrometer interface

    Science.gov (United States)

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  10. Capillary electrophoresis of diuretics.

    Science.gov (United States)

    Riekkola, M L; Jumppanen, J H

    1996-05-31

    The review surveys the application of capillary electrophoresis to the screening, identification and determination of diuretics and probenecid. The number of publications is still limited, but the studies already published clearly show that capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography are excellent alternatives for the investigation of diuretics. High accuracy identifications of diuretics and probenecid, even in urine samples, can be obtained when CZE is used with the marker techniques. This review paper has been written from the viewpoint of practical use and some hints are given for future CE studies on diuretics.

  11. Biases in methane chamber measurements in peatlands

    Science.gov (United States)

    Juszczak, R.

    2013-03-01

    The paper presents results of CH4 emission measurements at peatland with the application of the dynamic chamber technique. The measurements were conducted in two types of chambers differing in shape, height, volume and technology used to assure their tightness. The study tested how the following factors: 1) forced chamber headspace mixing or its absence, 2) mistakes of the person conducting measurements, 3) improper application of linear technique for calculating CH4 fluxes, and 4) simulated air sampling typical for static chambers, influence the significance of errors and the underestimation rate of CH4 fluxes measured in situ. It was indicated that chamber headspace mixing allows estimating methane fluxes with a smaller error than in the case of measurements conducted without mixing, and CH4 fluxes in such conditions can be 47 to 58% higher (depending on the chamber type) than in a chamber without fans. Using dynamic chambers and a fast analyzer to measure methane fluxes allows shortening the methane measurement process to a few minutes. On the other hand, using static chambers for methane flux measurements may lead to 70% underestimation of the calculated flux.

  12. Posterior chamber pseudophakia.

    Science.gov (United States)

    Simcoe, C W

    1982-01-01

    Anatomically, the most physiological type of implant is that of the posterior chamber of the eye. After a brief historical review of these implants, two models differing by their loops are compared, these being either in the form of a J with narrow extremities or in the form of a C. The latter model possesses definite advantages. Firstly, the point of pressure on the lens capsule is less concentrated, reducing the pressure exerted by the loops and thus avoiding rupture of the zonular ciliaris, Secondly, contact in the form of an are prevents movement of the implant around its axis, a factor favorizing capsule slipping. Thirdly, the improved pressure distribution of the loops resulting from their greater flexibility also prevents the "windscreen wiper syndrome", providing improved stability of the implant. The technique employed avoids all contact taking place with the endothelium. The upper loop is placed in position after closure of the incision. Results in 1532 cases were very positive, and studies are currently being conducted with an implant with four loops in which the optic is within the posterior chamber, and which could be positioned after intracapsular extraction. A system of irrigation-aspiration is described which employs a fine curved canula that is easier to manage and permits improved cleaning of the capsule. Emphasis is placed on the need for narrow, deep, corneal sutures to reduce postoperative astigmatism.

  13. Practical capillary electrophoresis

    CERN Document Server

    Weinberger, Robert

    2000-01-01

    In the 1980s, capillary electrophoresis (CE) joined high-performance liquid chromatography (HPLC) as the most powerful separation technique available to analytical chemists and biochemists. Published research using CE grew from 48 papers in the year of commercial introduction (1988) to 1200 in 1997. While only a dozen major pharmaceutical and biotech companies have reduced CE to routine practice, the applications market is showing real or potential growth in key areas, particularly in the DNA marketplace for genomic mapping and forensic identification. For drug development involving small molecules (including chiral separations), one CE instrument can replace 10 liquid chromatographs in terms of speed of analysis. CE also uses aqueous rather than organic solvents and is thus environmentally friendlier than HPLC. The second edition of Practical Capillary Electrophoresis has been extensively reorganized and rewritten to reflect modern usage in the field, with an emphasis on commercially available apparatus and ...

  14. MAN-IN-SIMULANT TEST (MIST) CHAMBER

    Data.gov (United States)

    Federal Laboratory Consortium — The MIST chamber uses methyl salicylate (oil of wintergreen) vapor as a simulant for HD agent to conduct system level evaluations of chemical protective ensembles....

  15. Anechoic chamber for VHF and UHF bands

    Science.gov (United States)

    Morikawa, Takao; Sugiura, Akira; Harima, Katsushige; Masuzawa, Hiroshi

    1995-06-01

    Built in 1969, the anechoic chamber of CRL has been used to the fullest by researchers in many fields such as EMI, EMC, antenna design, standard of electric field intensity, and type approval testing. In particular, in the early days of space development in Japan, many satellite-born antennas were developed in this anechoic chamber. However, a quarter of a century has passed since its construction and deteriorated performance due to superannuation sometimes caused difficulties in experiments conducted in the chamber. In 1993, CRL constructed a Measuring Facility for Radio Research (MFRR) and the anechoic chamber for VHF-UHF bands was remodeled as one of the sub-facilities of MFRR. The remodeling work included full replacement of the electromagnetic shielding, absorbers and measurement system. Since the remodeled anechoic chamber is being used not only for EMI tests but also for other purposes, a full-anechoic chamber has been adopted. In addition the chamber has been designed for the frequency range between 30 MHz and 10 GHz. After the remodeling work, the performance of the chamber is greatly improved. The average shielding factor is better than 85 dB for all frequency ranges and the unwanted reflection characteristic is -30 dB for frequencies above 1 GHZ. This paper summarizes the remodeling work, and the specifications and performance of the remodeled anechoic chamber.

  16. Prototype multiwire proportional chamber

    CERN Multimedia

    1975-01-01

    Chambers of this type were initially developed within the Alpha project (finally not approved). They were designed such to minimize the radiation length with a view to a mass spectrometer of high resolution meant to replace the Omega detector. The chambers were clearly forerunners for the (drift) chambers later built for R606 with the novel technique of crimping the wires. See also photo 7510039X.

  17. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  18. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  19. Refrigeration Test Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The enclosed and environmentally controlled chamber is able to test four units (single-phase) simultaneously at conditions ranging from tundra to desert temperatures...

  20. DORIOT CLIMATIC CHAMBERS

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers reproduce environmental conditions occurring anywhere around the world. They provide an invaluable service by significantly reducing the...

  1. Numerical simulations of capillary barrier field tests

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-12-31

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  2. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.

    2009-01-01

    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...... focus our attention to the measurements with the MCP array. The alumina capillaries were prepared by electro-chemical oxidation of aluminium foils. For the present experiments guiding of 3-6 keV Ne ions has been studied in two samples with capillary diameter of about 140 nm and 260 nm and with capillary...

  3. The Mobile Chamber

    Science.gov (United States)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  4. DELPHI time projection chamber

    CERN Multimedia

    1989-01-01

    The time projection chamber is inserted inside the central detector of the DELPHI experiment. Gas is ionised in the chamber as a charged particle passes through, producing an electric signal from which the path of the particle can be found. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  5. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  6. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  7. Alcohols and wide-bore capillaries in nonaqueous capillary electrophoresis.

    Science.gov (United States)

    Porras, S P; Jussila, M; Sinervo, K; Riekkola, M L

    1999-09-01

    The feasibility of using C1-C5 alcohols as electrolyte solutions in nonaqueous capillary zone electrophoresis was investigated. The separation of basic narcotic analgesics and acidic diuretics was modified by changing the alcohol in an electrolyte solution containing alcohol-acetonitrile-acetic acid (50:49:1, v/v) and 20 mM ammonium acetate while other experimental conditions were kept constant. The alcohols studied were methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol. The results indicate that even longer-chain alcohols can be used in nonaqueous capillary zone electrophoresis and, because of the lower currents they allow, they are especially advantageous in wider capillaries. Basic analytes were separated in 200 microm and 320 microm ID capillaries with 1-butanol-acetonitrile-acetic acid (50:49:1, v/v) containing 20 mM ammonium acetate as electrolyte solution. Problems related to the use of wide-bore capillaries are discussed.

  8. Vacuum scanning capillary photoemission microscopy

    DEFF Research Database (Denmark)

    Aseyev, S.A.; Cherkun, A P; Mironov, B N

    2017-01-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting...

  9. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  10. Development of Large Area Emulsion Chamber Methods with a Super Conducting Magnet for Observation of Cosmic Ray Nuclei from 1 GeV to 1,000 TeV (Emulsion Techniques)

    Science.gov (United States)

    Takahashi, Yoshiyuki; Gregory, John C.; Tominaga, Taka; Dong, Bei Lei

    1997-01-01

    The research developed the fundamental techniques of the emulsion chamber methods that permit measurements of the composition and energy spectra of cosmic rays at energies ranging from 1 GeV/n to over 1,000 TeV/n. The research program consisted of exploring new principles and techniques in measuring very high energy cosmic nuclei with large-area emulsion chambers for high statistics experiments. These tasks have been accomplished and their use was essential in successful analysis of the balloon-borne emulsion chamber experiments up to 10(exp 14) eV. It also provided the fundamental technologies for designing large-area detectors that are aimed at measuring the composition at above 1015 eV region. The latter is now partially succeeded by a NASA Mission Concept, Advanced Cosmic Composition Experiments on the Space Station (ACCESS). The cosmic ray group at the University of Alabama in Huntsville has performed technological R & D as well as contributing to the Japanese-American-Emulsion-Chamber-Experiments (JACEE) Collaboration with the regular data analysis. While primary research support for other institutions' efforts in the JACEE experiments came from NSF and DOE, primary support for the University of Alabama in Huntsville was this contract. Supplemental tasks to standardize the data base and hardware upgrades (automatized microscope) had this institutions cooperation. Investigation of new techniques in this program consisted of development of a fast calorimetry, magnetic/scattering selection of high momentum tracks for a pairmeter, and high statistics momentum measurements for low energy nuclei (E < 1 TeV/n). The highest energy calorimetry and a pairmeter have been considered as strawman instruments by the GOAL (Galactic Origin and Acceleration Limit) proposal of the NASA Cosmic Ray Working Group for long- duration balloon flights. We accomplished the objectives of the GOAL program with three circumpolar, Antarctic JACEE balloon flights during 1992 - 1994.

  11. Investigation Deviation Flame in Micro-Turbine's Combustion Chamber with Numerical Simulation

    OpenAIRE

    Sedighi. Mohammad; Aghnia. Mehdi; Neisi. Walid; Hosseini. Hiwa

    2016-01-01

    This study is conducted regarding the investigation of the reasons causing defects in GTCP85-180 combustion chamber. The combustion chamber in this micro-turbine is single can side type. In spite of geometric symmetry in air inlets of the combustion chamber, the air inlet path to the combustion chamber is not symmetrical. Also, in the secondary zone of this combustion chamber, there is an igniter with considerable size. Investigations on several defected combustion chambers show burnings and ...

  12. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, Artaches A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Sanz Rodriguez, Estrella; Deverell, Jeremy A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); McCord, James; Muddiman, David C. [W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Paull, Brett, E-mail: Brett.Paull@utas.edu.au [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia)

    2016-01-28

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L{sup −1} levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min{sup −1}, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L{sup −1} for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  13. Student Design Challenges in Capillary Flow

    Science.gov (United States)

    Stocker, Dennis P.; Wollman, Andrew; Hall, Nancy R.; Weislogel, Mark; DeLombard, Richard

    2016-01-01

    For some grade 8-12 students, capillary flow has bridged the gap between the classroom and research facility, from normal gravity to microgravity. In the past four years, NASA and the Portland State University (PSU) have jointly challenged students to design test cells, using Computer-Aided Design (CAD), to study capillary action in microgravity as PSU has done on the International Space Station (ISS). Using the student-submitted CAD drawings, the test cells were manufactured by PSU and tested in their 2.1-second drop tower. The microgravity results were made available online for student analysis and reporting. Over 100 such experiments have been conducted, where there has been participation from 15 states plus a German school for the children of U.S. military personnel. In 2016, a related NASA challenge was held in partnership with the ASGSR, again, based on the research conducted by PSU. In this challenge, grade 9-12 students designed and built devices using capillary action to launch droplets as far as possible in NASAs 2.2 Second Drop Tower. Example results will be presented by students at this conference. The challenges engage students in ISS science and technology and can inspire them to pursue technical careers.

  14. ALICE Time Projection Chamber

    CERN Multimedia

    Lippmann, C

    2013-01-01

    The Time Projection Chamber (TPC) is the main device in the ALICE 'central barrel' for the tracking and identification (PID) of charged particles. It has to cope with unprecedented densities of charges particles.

  15. Obelix Wire Chamber

    CERN Multimedia

    1986-01-01

    Two wire chambers made originally for the R807 Experiment at CERN's Intersecting Storage Rings. In 1986 they were used for the PS 201 experiment (Obelix Experiment) at LEAR, the Low Energy Antiproton Ring. The group of researchers from Turin, using the chambers at that time, changed the acquisition system using for the first time 8 bit (10 bit non linear) analog to digital conversion for incoming signals from the chambers. The acquisition system was controlled by 54 CPU and 80 digital signal processors. The power required for all the electronics was 40 kW. For the period, this system was one of the most powerful on-line apparatus in the world. The Obelix Experiment was closed in 1996. To find more about how a wire chamber works, see the description for object CERN-OBJ-DE-038.

  16. Vacuum chamber 'bicone'

    CERN Multimedia

    1977-01-01

    This chamber is now in the National Museum of History and Technology, Smithsonian Institution, Washington, DC, USA, where it was exposed in an exhibit on the History of High Energy Accelerators (1977).

  17. 20 Years of Fatty Acid Analysis by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Marcone Augusto Leal de Oliveira

    2014-09-01

    Full Text Available A review taking into account the literature reports covering 20 years of fatty acid analysis by capillary electrophoresis is presented. This paper describes the evolution of fatty acid analysis using different CE modes such as capillary zone electrophoresis, non-aqueous capillary electrophoresis, micellar electrokinetic capillary chromatography and microemulsion electrokinetic chromatography employing different detection systems, such as ultraviolet-visible, capacitively coupled contactless conductivity, laser-induced fluorescence and mass spectrometry. In summary, the present review signals that CE seems to be an interesting analytical separation technique that is very useful for screening analysis or quantification of the usual fatty acids present in different matrices, offering short analysis times and a simple sample preparation step as inherent advantages in comparison with the classical methodology, making it a separation technique that is very attractive for quality control in industry and government agencies.

  18. NASA Teams With Army in Vortex Combustion Chamber Engine Test

    Science.gov (United States)

    2003-01-01

    This photograph depicts one of over thirty tests conducted on the Vortex Combustion Chamber Engine at Marshall Space Flight Center's (MSFC) test stand 115, a joint effort between NASA's MSFC and the U.S. Army AMCOM of Redstone Arsenal. The engine tests were conducted to evaluate an irnovative, 'self-cooled', vortex combustion chamber, which relies on tangentially injected propellants from the chamber wall producing centrifugal forces that keep the relatively cold liquid propellants near the wall.

  19. Target Chamber Manipulator

    Science.gov (United States)

    Tantillo, Anthony; Watson, Matthew

    2015-11-01

    A system has been developed to allow remote actuation of sensors in a high vacuum target chamber used with a particle accelerator. Typically, sensors of various types are placed into the target chamber at specific radial and angular positions relative to the beam line and target. The chamber is then evacuated and the experiments are performed for those sensor positions. Then, the chamber is opened, the sensors are repositioned to new angles or radii, and the process is repeated, with a separate pump-down cycle for each set of sensor positions. The new sensor positioning system allows scientists to pre-set the radii of up to a dozen sensors, and then remotely actuate their angular positions without breaking the vacuum of the target chamber. This reduces the time required to reposition sensors from 6 hours to 1 minute. The sensors are placed into one of two tracks that are separately actuated using vacuum-grade stepping motors. The positions of the sensors are verified using absolute optical rotary encoders, and the positions are accurate to 0.5 degrees. The positions of the sensors are electronically recorded and time-stamped after every change. User control is through a GUI using LabVIEW.

  20. Microfab-less Microfluidic Capillary Electrophoresis Devices.

    Science.gov (United States)

    Segato, Thiago P; Bhakta, Samir A; Gordon, Matthew; Carrilho, Emanuel; Willis, Peter A; Jiao, Hong; Garcia, Carlos D

    2013-04-07

    Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C(4)D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 5(2)-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert.

  1. Surface Tension and Capillary Rise

    Science.gov (United States)

    Walton, Alan J.

    1972-01-01

    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  2. Selectivity in capillary electrokinetic separations

    NARCIS (Netherlands)

    de Zeeuw, R.A; de Jong, G.J.; Ensing, K

    1999-01-01

    This review gives a survey of selectivity modes in capillary electrophoresis separations in pharmaceutical analysis and bioanalysis. Despite the high efficiencies of these separation techniques, good selectivity is required to allow quantitation or identification of a Chemistry and Toxicology,

  3. The KLOE drift chamber

    CERN Document Server

    Adinolfi, M; Ambrosino, F; Andryakov, A; Antonelli, A; Antonelli, M; Anulli, F; Bacci, C; Bankamp, A; Barbiellini, G; Bellini, F; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Bulychjov, S A; Cabibbo, G; Calcaterra, A; Caloi, R; Campana, P; Capon, G; Carboni, G; Cardini, A; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Cevenini, F; Chiefari, G; Ciambrone, P; Conetti, S; Conticelli, S; Lucia, E D; Robertis, G D; Sangro, R D; Simone, P D; Zorzi, G D; Dell'Agnello, S; Denig, A; Domenico, A D; Donato, C D; Falco, S D; Doria, A; Drago, E; Elia, V; Erriquez, O; Farilla, A; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giovannella, S; Golovatyuk, V; Gorini, E; Grancagnolo, F; Grandegger, W; Graziani, E; Guarnaccia, P; Von Hagel, U; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Jang, Y Y; Kim, W; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Lomtadze, F; Luisi, C; Mao Chen Sheng; Martemyanov, M; Matsyuk, M; Mei, W; Merola, L; Messi, R; Miscetti, S; Moalem, A; Moccia, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nedosekin, A; Panareo, M; Pacciani, L; Pagès, P; Palutan, M; Paoluzi, L; Pasqualucci, E; Passalacqua, L; Passaseo, M; Passeri, A; Patera, V; Petrolo, E; Petrucci, Guido; Picca, D; Pirozzi, G; Pistillo, C; Pollack, M; Pontecorvo, L; Primavera, M; Ruggieri, F; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Schwick, C; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Shan, J; Silano, P; Spadaro, T; Spagnolo, S; Spiriti, E; Stanescu, C; Tong, G L; Tortora, L; Valente, E; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Wu, Y; Xie, Y G; Zhao, P P; Zhou, Y

    2001-01-01

    The tracking detector of the KLOE experiment is 4 m diameter, 3.3 m length drift chamber, designed to contain a large fraction of the decays of low-energy K sub L produced at the Frascati DAPHINE phi-factory. The chamber is made by a thin carbon fiber structure and operated with a helium-based gas mixture in order to minimise conversion of low-energy photons and multiple scattering inside the sensitive volume. The tracking information is provided by 58 layers of stereo wires defing 12,582 cells, 2x2 cm sup 2 in size in the 12 innermost layers and 3x3 cm sup 2 in the outer ones. Details of the chamber design, calibration procedure and tracking performances are presented.

  4. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  5. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  7. Evaluation of poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) cationic polymer capillary coating for capillary electrophoresis and electrokinetic chromatography separations.

    Science.gov (United States)

    McGettrick, Julie R; Palmer, Christopher P

    2017-10-01

    Capillary electrophoresis and electrokinetic chromatography are typically carried out in unmodified fused-silica capillaries under conditions that result in a strong negative zeta potential at the capillary wall and a robust cathodic electroosmotic flow. Modification of the capillary wall to reverse the zeta potential and mask silanol sites can improve separation performance by reducing or eliminating analyte adsorption, and is essential when conducting electrokinetic chromatography separations with cationic latex nanoparticle pseudo-stationary phases. Semipermanent modification of the capillary walls by coating with cationic polymers has proven to be facile and effective. In this study, poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) polymers were synthesized by reversible addition-fragmentation chain transfer polymerization and used as physically adsorbed semipermanent coatings for capillary electrophoresis and electrokinetic chromatography separations. An initial synthesis of poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) polymer coating produced strong and stable anodic electroosmotic flow of -5.7 to -5.4 × 10-4 cm2 /V⋅s over the pH range of 4-7. Significant differences in the magnitude of the electroosmotic flow and effectiveness were observed between synthetic batches, however. For electrokinetic chromatography separations, the best performing batches of poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) polymer performed as well as the commercially available cationic polymer polyethyleneimine, whereas polydiallylammonium chloride and hexadimethrine bromide did not perform well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  9. Scanning bubble chamber pictures

    CERN Multimedia

    1974-01-01

    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  10. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  11. Rocket Combustion Chamber Coating

    Science.gov (United States)

    Holmes, Richard R. (Inventor); McKechnie, Timothy N. (Inventor)

    2001-01-01

    A coating with the ability to protect (1) the inside wall (i.e., lining) of a rocket engine combustion chamber and (2) parts of other apparatuses that utilize or are exposed to combustive or high temperature environments. The novelty of this invention lies in the manner a protective coating is embedded into the lining.

  12. Chamber Profile Measurement System.

    Science.gov (United States)

    1980-10-01

    travel with the proper electronics. Other features of tihe gage assembly are: 1. Micrometer controlled down chamber positioning of the master template to...pressure sensitive "stiff stick" for infinitely varying the rate of travel from zero to maximum. A manual vernier control is incorporated to permit fine

  13. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  14. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas

    2008-07-01

    The main conclusions drawn from this thesis are; 7 scientific papers are published on a broad variety of subjects, and describes in detail the experiments and research treated in this thesis. Scientific research has been performed, investigating the subjects of capillary pressure and capillary heterogeneities from different angles. This thesis discusses the findings in this study and aims to illustrate the benefits of the results obtained for further development of other experiments, and/or even the industrial benefits in field development. The methods for wettability alteration have developed throughout the work. From producing heterogeneous wettability alterations, the methods have improved to giving both radial and lateral uniform wettability alterations, which also remains unaltered throughout the duration of the experimental work. The alteration of wettability is dependent on initial water saturation, flow rate, aging time and crude oil composition. Capillary pressure and relative permeability curves have been measured for core plugs at different wettabilities using conventional centrifuge methods. The trends observed are mostly consistent with theory. The production mechanisms of strongly and moderately water wet chalk has been investigated. At strongly water wet conditions in fractured chalk; the flow is governed by capillary forces, showing strong impact from the fractures. At moderately water wet conditions, the impact of the fractures are absent, and a dispersed water front is observed during the displacement. The oil recovery is about the same, at the two wettabilities. Fracture crossing mechanisms at the same wettability conditions have been mapped. And the observations are consistent with those of the water floods. During strongly water wet displacement, the fracture crossing is occurring once the inlet core has reached endpoint of spontaneous imbibition. At moderately water wet conditions the fracture crossing is less abrupt, and creation of wetting

  15. Optothermally actuated capillary burst valve

    Science.gov (United States)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders; Marie, Rodolphe

    2017-04-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett. 10, 826-832 (2010)]. An individual valve is burst by focusing the laser in its vicinity. We demonstrate the capture of single polystyrene 7 μm beads in the constriction triggered by the bursting of the valve.

  16. Extreme ultraviolet capillary discharge lasers

    Science.gov (United States)

    Wilson, Sarah; West, Andrew; Tallents, Greg

    2017-10-01

    An extreme ultraviolet capillary discharge laser has recently been installed at the University of York. The laser produces EUV radiation of wavelength 46.9nm, with pulse durations of approximately 1.2ns and energies of up to 50 μJ. A population inversion is produced by a high voltage electrical discharge passing through an argon filled capillary tube. Within the capillary, radial pinching of the argon plasma through JxB force causes the pressure and temperature of the plasma to increase which causes amplification between 3p -3s (J = 0-1) transitions producing EUV radiation. Laser optimisation, calibration of detectors and designs for initial experiments to produce warm dense matter by focusing onto solid targets are presented. The plasmas formed by the EUV laser irradiation of solid targets can be shown to produce warm dense matter in a regime where the ionization equilibrium is dominated by radiative ionization.

  17. Lifetime tests for MAC vertex chamber

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.N.

    1986-07-01

    A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions. (LEW)

  18. GRCop-84 Development for Combustion Chamber Liners

    Science.gov (United States)

    Ellis, David; Nathal, Michael; Yun, Hee Man; Lerch, Bradley; Greenbauer-Seng, Leslie; Thomas-Ogbuji, Linus; Holmes, Richard

    2000-01-01

    The development, test, and thermophysical & mechanical properties of a GRCop-84 alloy for combustion chamber liners is discussed. Topics discussed include: History of GRCop-84 development, GRCop-84 thermal expansion, thermal conductivity of GRCop-84, yield strength of GRCop-84, GRCop-84 creep lives, GrCop-84 low cycle fatigue (LCF) lives, and hot fire testing of GRCop-84 spool pieces.

  19. Multiwire proportional chamber development

    Science.gov (United States)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  20. Anechoic Radio Frequency Test Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — This chamber is used for characterization test of such systems as communications gear, tanks, radar, missiles, and helicopters. The dimensions of the chamber are 114...

  1. Genetic variability of Artemisia capillaris (Wormwood capillary) by ...

    African Journals Online (AJOL)

    The genetic variability among individuals of Artemisia capillaris from state of Terengganu, Malaysia was examined by using the random amplified polymorphic DNA (RAPD) technique. The samples were collected from differences regional in Terengganu State. The genomic DNA was extracted from the samples leaves.

  2. Early regimes of water capillary flow in slit silica nanochannels.

    Science.gov (United States)

    Oyarzua, Elton; Walther, Jens H; Mejía, Andrés; Zambrano, Harvey A

    2015-06-14

    Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes: an initial regime where the capillary force is balanced only by the inertial drag and characterized by a constant velocity and a plug flow profile. In this regime, the meniscus formation process plays a central role in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance has significant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscous forces dominate the capillary force balance is attained. Flow velocity profiles identify the passage from an inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicate a transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling rates computed for higher air pressures reveal a significant retarding effect of the gas displaced by the advancing meniscus.

  3. Development of Graphene Ion-Chamber for Radiation Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaegi; Ye, Sung-Joon [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Graphene is an exciting material due to its high electrical and thermal conductivity. Recently, scientific research using graphene has been divided by two types of graphene. One is a pure graphene, and the other is graphene oxide (GO), which is chemically synthesized from graphite. A pure graphene is a single layer of graphite, and its physical characteristics are very exciting. However, making process and cost are quite complex and expensive to apply an industry. On the other hand, graphene oxide is easy to make and apply a real device. Until now, radiation dosimetry using an ion-chamber has been a standard protocol. For its high electrical conductivity, graphite is usually used as a wall material of ion-chamber. Graphene can be a possible alternative to graphite due to its superior electrical conductivity and mechanical integrity. In this study, Monte Carlo simulations for graphene-walled and graphite-walled ion-chambers were performed to characterize their dosimetric properties. A world-first prototype of a graphene ion-chamber was fabricated. A graphene ion-chamber was designed and its prototype was successfully fabricated. The percent depth dose curve calculated by Monte Carlo simulations for a graphene ion-chamber was compatible to the curve using a conventional graphite ion-chamber. Therefore, due to its superior electric conductivity and mechanical integrity, graphene can be a promising alternative to graphite as a wall material of ion-chamber for radiation dosimetry.

  4. Influence of counting chamber type on CASA outcomes of equine semen analysis.

    Science.gov (United States)

    Hoogewijs, M K; de Vliegher, S P; Govaere, J L; de Schauwer, C; de Kruif, A; van Soom, A

    2012-09-01

    Sperm motility is considered to be one of the key features of semen analysis. Assessment of motility is frequently performed using computer-assisted sperm analysis (CASA). Nevertheless, no uniform standards are present to analyse a semen sample using CASA. We hypothesised that the type of counting chamber used might influence the results of analysis and aimed to study the effect of chamber type on estimated concentration and motility of an equine semen sample assessed using CASA. Commonly used disposable Leja chambers of different depths were compared with disposable and reusable ISAS chambers, a Makler chamber and a World Health Organization (WHO) motility slide. Motility parameters and concentrations obtained with CASA using these different chambers were analysed. The NucleoCounter was used as gold standard for determining concentration. Concentration and motility parameters were significantly influenced by the chamber type used. Using the NucleoCounter as the gold standard for determining concentration, the correlation coefficients were low for all of the various chambers evaluated, with the exception of the 12 µm deep Leja chamber. Filling a chamber by capillary forces resulted in a lower observed concentration and reduced motility parameters. All chambers evaluated in this study resulted in significant lower progressive motility than the WHO prepared slide, with the exception of the Makler chamber, which resulted in a slight, but statistically significant, increase in progressive motility estimates. Computer-assisted sperm analysis can only provide a rough estimate of sperm concentration and overestimation is likely when drop-filled slides with a coverslip are used. Motility estimates using CASA are highly influenced by the counting chamber; therefore, a complete description of the chamber type used should be provided in semen reports and in scientific articles. © 2011 EVJ Ltd.

  5. An Optical Fiber Viscometer Based on Long-Period Fiber Grating Technology and Capillary Tube Mechanism

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2010-12-01

    Full Text Available This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15–213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer.

  6. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  7. Gradient elution in capillary electrochromatography

    Energy Technology Data Exchange (ETDEWEB)

    Anex, D.; Rakestraw, D.J. [Sandia National Labs., Livermore, CA (United States); Yan, Chao; Dadoo, R.; Zare, R.N. [Stanford Univ., CA (United States). Dept. of Chemistry

    1997-08-01

    In analogy to pressure-driven gradient techniques in high-performance liquid chromatography, a system has been developed for delivering electroosmotically-driven solvent gradients for capillary electrochromatography (CEC). Dynamic gradients with sub-mL/min flow rates are generated by merging two electroosmotic flows that are regulated by computer-controlled voltages. These flows are delivered by two fused-silica capillary arms attached to a T-connector, where they mix and then flow into a capillary column that has been electrokinetically packed with 3-mm reversed-phase particles. The inlet of one capillary arm is placed in a solution reservoir containing one mobile phase and the inlet of the other is placed in a second reservoir containing a second mobile phase. Two independent computer-controlled programmable high-voltage power supplies (0-50 kV)--one providing an increasing ramp and the other providing a decreasing ramp--are used to apply variable high-voltage potentials to the mobile phase reservoirs to regulate the electroosmotic flow in each arm. The ratio of the electroosmotic flow rates between the two arms is changed with time according to the computer-controlled voltages to deliver the required gradient profile to the separation column. Experiments were performed to confirm the composition of the mobile phase during a gradient run and to determine the change of the composition in response to the programmed voltage profile. To demonstrate the performance of electroosmotically-driven gradient elution in CEC, a mixture of 16 polycyclic aromatic hydrocarbons (PAHs) was separated in less than 90 minutes. This gradient technique is expected to be well-suited for generating not only solvent gradients in CEC, but also other types of gradients such as pH- and ionic-strength gradients in capillary electrokinetic separations and analyses.

  8. Wire chambers revisited.

    Science.gov (United States)

    Ott, R J

    1993-04-01

    Detectors used for radioisotope imaging have, historically, been based on scintillating crystal/photomultiplier combinations in various forms. From the rectilinear scanner through to modern gamma cameras and positron cameras, the basic technology has remained much the same. Efforts to overcome the limitations of this form of technology have foundered on the inability to reproduce the required sensitivity, spatial resolution and sensitive area at acceptable cost. Multiwire proportional chambers (MWPCs) have long been used as position-sensitive charged particle detectors in nuclear and high-energy physics. MWPCs are large-area gas-filled ionisation chambers in which large arrays of fine wires are used to measure the position of ionisation produced in the gas by the passage of charged particles. The important properties of MWPCs are high-spatial-resolution, large-area, high-count-rate performance at low cost. For research applications, detectors several metres square have been built and small-area detectors have a charged particle resolution of 0.4 mm at a count rate of several million per second. Modification is required to MWPCs for nuclear medicine imaging. As gamma rays or X-rays cannot be detected directly, they must be converted into photo- or Compton scatter electrons. Photon-electron conversion requires the use of high atomic number materials in the body of the chamber. Pressurised xenon is the most useful form of "gas only" photon-electron convertor and has been used successfully in a gamma camera for the detection of gamma rays at energies below 100 keV. This camera has been developed specifically for high-count-rate first-pass cardiac imaging. This high-pressure xenon gas MWPC is the key to a highly competitive system which can outperform scintillator-based systems. The count rate performance is close to a million counts per second and the intrinsic spatial resolution is better than the best scintillator-based camera. The MWPC camera produces quantitative

  9. Review of wire chamber aging

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.

  10. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  11. Michigan ATLAS MDT Chamber Mass Production

    CERN Document Server

    Diehl, E; Levin, D; McKee, S; Neal, H; Schick, H; Tarle, G; Thun, R; Weaverdyck, C; Xu, Q; Zhao, Z; Zhou, B

    2001-01-01

    This paper describes the ATLAS MDT precision muon chamber construction at the University of Michigan. The chamber assembly facilities, the jigging set up, alignment procedures, and other measurements necessary for chamber assembly are described. The chamber quality assurance monitoring procedures and data for the first year mass production are presented. The chamber gas system assembly facilities, and the chamber leak test procedure together with data also reported. The chamber production database, which monitors chamber production, is also discussed.

  12. Atomic-force-controlled capillary electrophoretic nanoprinting of proteins.

    Science.gov (United States)

    Lovsky, Yulia; Lewis, Aaron; Sukenik, Chaim; Grushka, Eli

    2010-01-01

    The general nanoprinting and nanoinjection of proteins on non-conducting or conducting substrates with a high degree of control both in terms of positional and timing accuracy is an important goal that could impact diverse fields from biotechnology (protein chips) to molecular electronics and from fundamental studies in cell biology to nanophotonics. In this paper, we combine capillary electrophoresis (CE), a separation method with considerable control of protein movement, with the unparalleled positional accuracy of an atomic force microscope (AFM). This combination provides the ability to electrophoretically or electroosmotically correlate the timing of protein migration with AFM control of the protein deposition at a high concentration in defined locations and highly confined volumes estimated to be 2 al. Electrical control of bovine serum albumin printing on standard protein-spotting glass substrates is demonstrated. For this advance, fountain pen nanolithography (FPN) that uses cantilevered glass-tapered capillaries is amended with the placement of electrodes on the nanopipette itself. This results in imposed voltages that are three orders of magnitude less than what is normally used in capillary electrophoresis. The development of atomic-force-controlled capillary electrophoretic printing (ACCEP) has the potential for electrophoretic separation, with high resolution, both in time and in space. The large voltage drop at the tip of the tapered nanopipettes allows for significant increases in concentration of protein in the small printed volumes. All of these attributes combine to suggest that this methodology should have a significant impact in science and technology.

  13. Condensation nucleation light scattering detection for capillary electrophoresis.

    Science.gov (United States)

    Szostek, B; Koropchak, J A

    1996-09-01

    We describe two means for interfacing condensation nucleation light scattering detection to capillary electrophoresis (CE). With the first method, a fused-silica capillary was used for the separation and the CE was grounded through a Nafion membrane that also connected the system to a microconcentric pneumatic nebulizer. Limits of detection (LODs) for underivatized amino acids were at the low microgram per milliliter level, and separation efficiencies were ∼9 times lower than the optimum predicted for these species based on the injection plug width and axial dispersion by diffusion. LODs were limited by background nonvolatiles resulting from dissolution of fused silica at the high pHs used for the separations. An alternate system employed PEEK capillaries which acted as the separation capillary and also as the inner nebulizer capillary. In this case, the exit end of the capillary was coated with conductive paint which extended to the tip of the nebulizer, was in contact with the CE buffer, and was grounded to complete the CE circuit. Response was nonlinear and the separation efficiency of this system was somewhat lower than that for the Nafion membrane system. Response as peak heights for all of the amino acids and peptides studied was nearly identical on a mass basis. With this system, much lower background signals were obtained, and as a result, LODs for underivatized amino acids and peptides were below the 1 μg/mL level, corresponding to less than 10 pg or less than 100 fmol injected. Both systems were fairly simple, effective means to generate aerosols with the low flows of CE and should be applicable to interfacing of other aerosol-based detectors with CE.

  14. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    Science.gov (United States)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  15. Capillary waves with surface viscosity

    Science.gov (United States)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  16. Mush Column Magma Chambers

    Science.gov (United States)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  17. Centrifuge modelling of capillary rise

    OpenAIRE

    Depountis, N.; DAVIES, MCR; Harris, C; Burkhart, S; THOREL, L; A. Rezzoug; Konig, D; Merrifield, C; CRAIG, WH

    2001-01-01

    This paper reports results from centrifuge tests designed to investigate capillary rise in soils subjected to different gravitational fields. The experimental programme is part of the EU-funded NECER project (Network of European Centrifuges for Environmental Geotechnic Research), whose objective is to investigate the appropriateness of geotechnical centrifuge modelling for the investigation of geoenvironmental problems, particularly with reference to partially saturated soils. The tests were ...

  18. The ALICE time projection chamber

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    This time projection chamber is part of the ALICE detector on the new LHC accelerator at CERN. Particles produced in collisions at the core of the detector will follow paths outward through the various sub-detector layers. If these particles carry a charge, they will ionise the gas contained within this chamber producing an electric signal as the ions drift in the chamber's electric field.

  19. Capillary Electrophoresis - Optical Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  20. Capillary stretching of elastic fibers

    Science.gov (United States)

    Protiere, Suzie; Stone, Howard A.; Duprat, Camille

    2014-11-01

    Fibrous media consisting of constrained flexible fibers can be found in many engineered systems (membranes in filters, woven textile, matted paper). When such materials interact with a liquid, the presence of liquid/air interfaces induces capillary forces that deform the fibers. To model this interaction we study the behaviour of a finite volume of liquid deposited on two parallel flexible fibers clamped at both ends. A tension along the fibers is imposed and may be varied. We show that the system undergoes various morphological changes as the interfiber distance, the elasticity and the tension of the fibers are varied. For a certain range of parameters, the liquid spreads along the fibers and pulls them together, leading to the ``zipping'' of the fibers. This capillary adhesion can then be enhanced or reduced by changing the tension within the fibers. We will show that balancing stretching and capillary forces allows the prediction of this transition as well as the conditions for which detachment of the fibers occurs. These results may be used to prevent the clogging of fibrous membranes or to optimize the capture of liquids.

  1. Vacuum chamber for containing particle beams

    Science.gov (United States)

    Harvey, A.

    1985-11-26

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

  2. Portable electron beam weld chamber

    Science.gov (United States)

    Lewis, J. R.; Dimino, J. M.

    1972-01-01

    Development and characteristics of portable vacuum chamber for skate type electron beam welding are discussed. Construction and operational details of equipment are presented. Illustrations of equipment are provided.

  3. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida

    2014-01-01

    Rare sequence variants in "high-risk" disease genes, often referred as unclassified variants (UVs), pose a serious challenge to genetic testing. However, UVs resulting in splicing alterations can be readily assessed by in vitro assays. Unfortunately, analytical and clinical interpretation...... of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...... International Agency for Research on Cancer guidelines), we performed qPCR and/or minigene assays. The latter were performed with a new splicing vector (pSAD) developed by authors of the present manuscript (patent #P201231427 CSIC). We have identified three clinically relevant Class-5 variants (c.682-2A>G, c...

  4. Multiple Coronary Chamber Microfistulas or Persistent Thebesian Vessels?

    Directory of Open Access Journals (Sweden)

    Cernica Daniel

    2017-09-01

    Full Text Available Coronary fistulas are rare, not gender-specific congenital conditions, consisting of communications between the coronary arteries and either another coronary vessel or a cardiac chamber. In contrast to large fistulas, small fistulas, named “minimae cordis veneae” or the Thebesius venous system, are draining into heart chambers and form a vascular network in the cardiac lumen. In this article, we present the case of a 72-year-old female with a significant history of cardiovascular disease, admitted to our clinic because of rest dyspnea, fatigue, and minimal chest pain. The 12-lead electrocardiogram showed a trifascicular block (a second-degree atrioventricular block Mobitz II, associated with a right bundle branch block and left anterior fascicle block and negative T waves in DII, DIII, aVF, V4–V6 leads. An invasive coronary angiography was performed, which revealed no significant atherosclerotic lesions. However, a persistent capillary blush was present at the apex site of the left ventricular chamber, draining from the distal segments of both the anterior descending coronary artery and the posterior interventricular coronary artery. The intramural vascular network generating a left ventricle angiogram image of this kind was suggestive for persistent Thebesian vessels connecting the two coronaries with the left ventricular chamber.

  5. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  6. The Big European Bubble Chamber

    CERN Multimedia

    1977-01-01

    The 3.70 metre Big European Bubble Chamber (BEBC), dismantled on 9 August 1984. During operation it was one of the biggest detectors in the world, producing direct visual recordings of particle tracks. 6.3 million photos of interactions were taken with the chamber in the course of its existence.

  7. Characterization of a Reverberation Chamber

    Science.gov (United States)

    2015-10-01

    applied to the same device inside another facility, such as a gigahertz transverse electromagnetic (GTEM) or fully- anechoic chamber for further...and found to be consistent; reflections measured from inside the chamber yielded heavy spiking. The antenna used to transmit power into the room was

  8. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  9. Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash

    Directory of Open Access Journals (Sweden)

    Anik Keller

    2013-09-01

    Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.

  10. National Ignition Facility Target Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This

  11. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  12. Polydopamine coated capillaries for CE separations

    OpenAIRE

    Partyka, Jan

    2013-01-01

    We have tested CE separation of selected samples in capillaries with polydopamine modified surface. The capillaries were modified by polydopamine or polydopamine with an additive. The polydopamine coating with additive represents a simple and effective procedure for capillary alteration by another modificator such as hydroxyethyl cellulose, hydroxypropyl cellulose etc. In this work, we represent separation data from PrinCE system with UV detection for peptides, proteins and oligosaccha...

  13. Oxygen exchange in silicone rubber capillaries.

    Science.gov (United States)

    Heineken, F G; Predecki, P K; Filley, G F

    1978-06-01

    Capillaries of 7 and 12.5 mu diameter have been fabricated in silicone rubber. Whole blood treated with heparin has been perfused through these capillaries. Under flowing conditions, no clotting or other clumping effects have been observed and red cells appear to maintain a constant velocity. Oxygen transfer data to and from saline perfusing the 12.5 mu diameter capillaries have been obtained in order to determine how rapidly O2 will permeate the silicone rubber film. The data indicate that the capillaries simulate lung tissue oxygen exchange and will allow for the first time the experimental determination of oxygen exchange kinetics in flowing whole blood.

  14. Application of Chaboche Model in Rocket Thrust Chamber Analysis

    Science.gov (United States)

    Asraff, Ahmedul Kabir; Suresh Babu, Sheela; Babu, Aneena; Eapen, Reeba

    2017-06-01

    Liquid Propellant Rocket Engines are commonly used in space technology. Thrust chamber is one of the most important subsystems of a rocket engine. The thrust chamber generates propulsive thrust force for flight of the rocket by ejection of combustion products at supersonic speeds. Often double walled construction is employed for these chambers. The thrust chamber investigated here has its hot inner wall fabricated out of a high thermal conductive material like copper alloy and outer wall made of stainless steel. Inner wall is subjected to high thermal and pressure loads during operation of engine due to which it will be in the plastic regime. Main reasons for the failure of such chambers are fatigue in the plastic range (called as low cycle fatigue since the number of cycles to failure will be low in plastic range), creep and thermal ratcheting. Elasto plastic material models are required to simulate the above effects through a cyclic stress analysis. This paper gives the details of cyclic stress analysis carried out for the thrust chamber using different plasticity model combinations available in ANSYS (Version 15) FE code. The best model among the above is applied in the cyclic stress analysis of two dimensional (plane strain and axisymmetric) and three dimensional finite element models of thrust chamber. Cyclic life of the chamber is calculated from stress-strain graph obtained from above analyses.

  15. Capillary rafts and their destabilization

    Science.gov (United States)

    Protiere, Suzie; Abkarian, Manouk; Aristoff, Jeffrey; Stone, Howard

    2010-11-01

    Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. The study of such particle-laden interfaces is therefore of practical as well as fundamental importance. Here we report experiments on the self-assembly of spherical particles into capillary rafts at an oil-water interface and elucidate how such rafts sink. We characterize different types of sinking behavior and show that it is possible to obtain "armored droplets," whereby the sinking oil is encapsulated within a shell of particles.

  16. Capillary electrophoresis theory and practice

    CERN Document Server

    Grossman, Paul D

    1992-01-01

    This book is designed to be a practical guide, used by wide audience, including those new to CE, those more experienced, routine users, those interested in technology development, and those involved with applications research. References have been emphasized to allow the reader to explore the detailed specifics and theoretical foundations.This book draws together the rapidly evolving, diverse, and multidisciplinary subject of capillary electrophoresis (CE). It is designed as a practical guide to be used by a wide audience, including those new to CE as well as more experienced users. T

  17. Optical coherence tomography angiography-based capillary velocimetry

    Science.gov (United States)

    Wang, Ruikang K.; Zhang, Qinqin; Li, Yuandong; Song, Shaozhen

    2017-06-01

    Challenge persists in the field of optical coherence tomography (OCT) when it is required to quantify capillary blood flow within tissue beds in vivo. We propose a useful approach to statistically estimate the mean capillary flow velocity using a model-based statistical method of eigendecomposition (ED) analysis of the complex OCT signals obtained with the OCT angiography (OCTA) scanning protocol. ED-based analysis is achieved by the covariance matrix of the ensemble complex OCT signals, upon which the eigenvalues and eigenvectors that represent the subsets of the signal makeup are calculated. From this analysis, the signals due to moving particles can be isolated by employing an adaptive regression filter to remove the eigencomponents that represent static tissue signals. The mean frequency (MF) of moving particles can be estimated by the first lag-one autocorrelation of the corresponding eigenvectors. Three important parameters are introduced, including the blood flow signal power representing the presence of blood flow (i.e., OCTA signals), the MF indicating the mean velocity of blood flow, and the frequency bandwidth describing the temporal flow heterogeneity within a scanned tissue volume. The proposed approach is tested using scattering phantoms, in which microfluidic channels are used to simulate the functional capillary vessels that are perfused with the scattering intralipid solution. The results indicate a linear relationship between the MF and mean flow velocity. In vivo animal experiments are also conducted by imaging mouse brain with distal middle cerebral artery ligation to test the capability of the method to image the changes in capillary flows in response to an ischemic insult, demonstrating the practical usefulness of the proposed method for providing important quantifiable information about capillary tissue beds in the investigations of neurological conditions in vivo.

  18. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  19. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  20. The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy.

    Science.gov (United States)

    Østergaard, Leif; Finnerup, Nanna B; Terkelsen, Astrid J; Olesen, Rasmus A; Drasbek, Kim R; Knudsen, Lone; Jespersen, Sune N; Frystyk, Jan; Charles, Morten; Thomsen, Reimar W; Christiansen, Jens S; Beck-Nielsen, Henning; Jensen, Troels S; Andersen, Henning

    2015-04-01

    Diabetic neuropathy is associated with disturbances in endoneurial metabolism and microvascular morphology, but the roles of these factors in the aetiopathogenesis of diabetic neuropathy remain unclear. Changes in endoneurial capillary morphology and vascular reactivity apparently predate the development of diabetic neuropathy in humans, and in manifest neuropathy, reductions in nerve conduction velocity correlate with the level of endoneurial hypoxia. The idea that microvascular changes cause diabetic neuropathy is contradicted, however, by reports of elevated endoneurial blood flow in early experimental diabetes, and of unaffected blood flow when early histological signs of neuropathy first develop in humans. We recently showed that disturbances in capillary flow patterns, so-called capillary dysfunction, can reduce the amount of oxygen and glucose that can be extracted by the tissue for a given blood flow. In fact, tissue blood flow must be adjusted to ensure sufficient oxygen extraction as capillary dysfunction becomes more severe, thereby changing the normal relationship between tissue oxygenation and blood flow. This review examines the evidence of capillary dysfunction in diabetic neuropathy, and whether the observed relation between endoneurial blood flow and nerve function is consistent with increasingly disturbed capillary flow patterns. The analysis suggests testable relations between capillary dysfunction, tissue hypoxia, aldose reductase activity, oxidative stress, tissue inflammation and glucose clearance from blood. We discuss the implications of these predictions in relation to the prevention and management of diabetic complications in type 1 and type 2 diabetes, and suggest ways of testing these hypotheses in experimental and clinical settings.

  1. Purging device for suppression chamber

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Koichi.

    1987-11-14

    Purpose: To completely drive out air or the like in the suppression chamber in a short period of time thereby protect bent pipes from embrittled rupture. Constitution: Nitrogen gases, etc. entering through the inlet penetration to the inside of a reactor container are guided downwardly through communication pipeways, and the released downwardly in a stable manner while the blowing speed being retained by blowing mechanisms. Released nitrogen gases, etc. diffuse along the water surface of the suppression chamber and fill the inside of the chamber from below. Air, etc. in the suppression chamber prior to the supply of nitrogen gas, etc. is discharged through the exit penetration from the purging discharge pipe smoothly to the outside. In this way, air is replaced with nitrogen gas, etc., the released nitrogen is not directly blown to bent pipe, the operation is simplified, and the charge/discharge operation can be made in a short time efficiently. (Kamimura, M.).

  2. Vaporization chambers and associated methods

    Science.gov (United States)

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Shunn, Lee P.

    2017-02-21

    A vaporization chamber may include at least one conduit and a shell. The at least one conduit may have an inlet at a first end, an outlet at a second end and a flow path therebetween. The shell may surround a portion of each conduit and define a chamber surrounding the portion of each conduit. Additionally, a plurality of discrete apertures may be positioned at longitudinal intervals in a wall of each conduit, each discrete aperture of the plurality of discrete apertures sized and configured to direct a jet of fluid into each conduit from the chamber. A liquid may be vaporized by directing a first fluid comprising a liquid into the inlet at the first end of each conduit, directing jets of a second fluid into each conduit from the chamber through discrete apertures in a wall of each conduit and transferring heat from the second fluid to the first fluid.

  3. The multigap resistive plate chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zeballos, E. Cerron [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Crotty, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Hatzifotiadou, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Valverde, J. Lamas [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Univ. Louis Pasteur, Strasbourg (France); Neupane, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Williams, M. C. S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zichichi, A. [Univ. of Bologna, Bologna (Italy)

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  4. BEBC Big European Bubble Chamber

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    A view of the dismantling of the magnet of BEBC, the 3.7 m European Bubble Chamber : iron magnetic shielding ; lower and upper parts of the vacuum enclosure of the magnet; turbo-molecular vacuum pumps for the "fish-eye" windows; the two superconducting coils; a handling platform; the two cryostats suspended from the bar of the travelling crane which has a 170 ton carrying capacity. The chamber proper, not dismantled, is inside the shielding.

  5. Anterior chamber depth during hemodialysis

    Directory of Open Access Journals (Sweden)

    Gracitelli CPB

    2013-08-01

    Full Text Available Carolina Pelegrini Barbosa Gracitelli,1 Francisco Rosa Stefanini,1 Fernando Penha,1 Miguel Ângelo Góes,2 Sérgio Antonio Draibe,2 Maria Eugênia Canziani,2 Augusto Paranhos Junior1 1Ophthalmology Department, 2Division of Nephrology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil Background: Exacerbation of chronic glaucoma or acute glaucoma is occasionally observed in patients undergoing hemodialysis (HD because of anterior chamber depth changes during this therapy. Purpose: To evaluate anterior chamber depth and axial length in patients during HD sessions. Methods: A total of 67 eyes of 35 patients were prospectively enrolled. Axial length and anterior chamber depth were measured using ultrasonic biometry, and these measures were evaluated at three different times during HD sessions. Body weight and blood pressure pre- and post-HD were also measured. Results: There was no difference in the axial length between the three measurements (P = 0.241. We observed a significantly decreased anterior chamber depth (P = 0.002 during HD sessions. Conclusion: Our results support the idea that there is a change in anterior chamber depth in HD sessions. Keywords: anterior chamber, hemodialysis, axial length, acute angle-closure glaucoma

  6. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente

    2001-01-01

    capillaries was (4.9+/-0.1) x 10(-4) cm2V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire...... pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2...

  7. The Capillary Fluidics of Espresso

    Science.gov (United States)

    Ott, Nathan; Wollman, Drew; Graf, John; Weislogel, Mark

    2014-11-01

    Espresso is enjoyed by tens of millions of people daily. The coffee is distinguished by a complex low density colloid of emulsified oils. Due to gravity, these oils rise to the surface forming a foam lid called the crema. In this work we present a variety of large length scale capillary fluidic effects for espresso in a gravity-free environment. Drop tower tests are performed to establish brief microgravity conditions under which spontaneous capillarity-driven behavior is observed. Because the variety of espresso drinks is extensive, specific property measurements are made to assess the effects of wetting and surface tension for `Italian' espresso, caffe latte, and caffe Americano. To some, the texture and aromatics of the crema play a critical role in the overall espresso experience. We show how in the low-g environment this may not be possible. We also suggest alternate methods for enjoying espresso aboard spacecraft. NASA NNX09AP66A, Glenn Research Center.

  8. Capillary Discharge XUV Radiation Source

    Directory of Open Access Journals (Sweden)

    M. Nevrkla

    2009-01-01

    Full Text Available A device producing Z-pinching plasma as a source of XUV radiation is described. Here a ceramic capacitor bank pulse-charged up to 100 kV is discharged through a pre-ionized gas-filled ceramic tube 3.2 mm in diameter and 21 cm in length. The discharge current has amplitude of 20 kA and a rise-time of 65 ns. The apparatus will serve as experimental device for studying of capillary discharge plasma, for testing X-ray optics elements and for investigating the interaction of water-window radiation with biological samples. After optimization it will be able to produce 46.9 nm laser radiation with collision pumped Ne-like argon ions active medium. 

  9. Capillary electrophoresis/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.D.; Wahl, J.H.; Goodlett, D.R.; Hofstadler, S.A. (Pacific Northwest Lab., Richland, WA (United States))

    1993-07-01

    The hallmarks of GC/MS are its speed, selectivity, and sensitivity. Unfortunately, however, both GC and the conventional ionization methods used in MS require sample volatilization. The 1980's saw the genesis and rapid development of a high-resolution separation method, capillary electrophoresis (CE). The ability to manipulate and inject extremely small sample volumes, steps that are generally problematic with LC, provides a basis for using CE to confront extreme analytical challenges. In addition, CE has the flexibility provided by a range of formats and a plethora of methods for manipulating injection conditions and separation specificity. Currently at least a dozen laboratories are actively involved in developing and applying CE/MS techniques. Although the focus here is on CE/MS using electrospray ionization interfaces, other methods have been reported. 51 refs., 9 figs., 1 tab.

  10. Paramecium swimming in capillary tube

    CERN Document Server

    Jana, Saikat; Jung, Sunghwan

    2010-01-01

    Swimming organisms in their natural habitat navigate through a wide array of geometries and chemical environments. Interaction with the boundaries is ubiquitous and can significantly modify the swimming characteristics of the organism as observed under ideal conditions. We study the dynamics of ciliary locomotion in Paramecium multimicronucleatum and observe the effect of the solid boundaries on the velocities in the near field of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight line motion as the diameter of the capillary tubes decrease. Theoretically this system is modeled as an undulating cylinder with pressure gradient and compared with experiments; showing that such considerations are necessary for modeling finite sized organisms in the restrictive geometries.

  11. Measurements of capillary system degradation. [liquid hydrogen propellant retention capability

    Science.gov (United States)

    Warren, R. P.; Butz, J. R.; Maytum, C. D.; Fester, D. A.; Young, G. M.

    1975-01-01

    The effects of vibration, flow transients, and warm gas pressurization on capillary acquisition system performance were evaluated. The degradation observed under wide band random and high frequency sinusoidal vibration was of a substantially different nature from that obtained under low frequency sinusoidal vibration. With the former, ingestion of small gas bubbles into the liquid region was correlated by a hydrostatic model, while the capillary stability was destroyed and liquid was lost from the liquid region with the latter. No degradation was observed as a result of flow transients in a flight-type multichannel screen device, but it was observed in a transparent laboratory device. Liquid hydrogen outflow tests were conducted with a multilayer dual-screen-liner system with both helium and hydrogen pressurant gases. The tendency towards dryout of the device with hydrogen pressurant was found to increase with increasing pressurant temperature and length of prepressurization period. Dryout did not occur with helium pressurant.

  12. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  13. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    Science.gov (United States)

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  14. Electrically Conductive Porous Membrane

    Science.gov (United States)

    Burke, Kenneth Alan (Inventor)

    2014-01-01

    The present invention relates to an electrically conductive membrane that can be configured to be used in fuel cell systems to act as a hydrophilic water separator internal to the fuel cell, or as a water separator used with water vapor fed electrolysis cells, or as a water separator used with water vapor fed electrolysis cells, or as a capillary structure in a thin head pipe evaporator, or as a hydrophobic gas diffusion layer covering the fuel cell electrode surface in a fuel cell.

  15. Emulsion Chamber Technology Experiment (ECT)

    Science.gov (United States)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  16. Plasma chemistry in wire chambers

    Energy Technology Data Exchange (ETDEWEB)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  17. Capillary condensation between disks in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial...... capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characterized by the analysis of the coverage of the condensed phase, its stability, and asymptotic behaviors...

  18. Effects of Aggregation on Blood Sedimentation and Conductivity.

    Science.gov (United States)

    Zhbanov, Alexander; Yang, Sung

    2015-01-01

    The erythrocyte sedimentation rate (ESR) test has been used for over a century. The Westergren method is routinely used in a variety of clinics. However, the mechanism of erythrocyte sedimentation remains unclear, and the 60 min required for the test seems excessive. We investigated the effects of cell aggregation during blood sedimentation and electrical conductivity at different hematocrits. A sample of blood was drop cast into a small chamber with two planar electrodes placed on the bottom. The measured blood conductivity increased slightly during the first minute and decreased thereafter. We explored various methods of enhancing or retarding the erythrocyte aggregation. Using experimental measurements and theoretical calculations, we show that the initial increase in blood conductivity was indeed caused by aggregation, while the subsequent decrease in conductivity resulted from the deposition of erythrocytes. We present a method for calculating blood conductivity based on effective medium theory. Erythrocytes are modeled as conducting spheroids surrounded by a thin insulating membrane. A digital camera was used to investigate the erythrocyte sedimentation behavior and the distribution of the cell volume fraction in a capillary tube. Experimental observations and theoretical estimations of the settling velocity are provided. We experimentally demonstrate that the disaggregated cells settle much slower than the aggregated cells. We show that our method of measuring the electrical conductivity credibly reflected the ESR. The method was very sensitive to the initial stage of aggregation and sedimentation, while the sedimentation curve for the Westergren ESR test has a very mild slope in the initial time. We tested our method for rapid estimation of the Westergren ESR. We show a correlation between our method of measuring changes in blood conductivity and standard Westergren ESR method. In the future, our method could be examined as a potential means of accelerating

  19. Effects of Aggregation on Blood Sedimentation and Conductivity

    Science.gov (United States)

    Zhbanov, Alexander; Yang, Sung

    2015-01-01

    The erythrocyte sedimentation rate (ESR) test has been used for over a century. The Westergren method is routinely used in a variety of clinics. However, the mechanism of erythrocyte sedimentation remains unclear, and the 60 min required for the test seems excessive. We investigated the effects of cell aggregation during blood sedimentation and electrical conductivity at different hematocrits. A sample of blood was drop cast into a small chamber with two planar electrodes placed on the bottom. The measured blood conductivity increased slightly during the first minute and decreased thereafter. We explored various methods of enhancing or retarding the erythrocyte aggregation. Using experimental measurements and theoretical calculations, we show that the initial increase in blood conductivity was indeed caused by aggregation, while the subsequent decrease in conductivity resulted from the deposition of erythrocytes. We present a method for calculating blood conductivity based on effective medium theory. Erythrocytes are modeled as conducting spheroids surrounded by a thin insulating membrane. A digital camera was used to investigate the erythrocyte sedimentation behavior and the distribution of the cell volume fraction in a capillary tube. Experimental observations and theoretical estimations of the settling velocity are provided. We experimentally demonstrate that the disaggregated cells settle much slower than the aggregated cells. We show that our method of measuring the electrical conductivity credibly reflected the ESR. The method was very sensitive to the initial stage of aggregation and sedimentation, while the sedimentation curve for the Westergren ESR test has a very mild slope in the initial time. We tested our method for rapid estimation of the Westergren ESR. We show a correlation between our method of measuring changes in blood conductivity and standard Westergren ESR method. In the future, our method could be examined as a potential means of accelerating

  20. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  1. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  2. Capillary electrochromatography using fibers as stationary phases.

    Science.gov (United States)

    Jinno, K; Watanabe, H; Saito, Y; Takeichi, T

    2001-10-01

    Fiber-packed capillary columns have been evaluated in chromatographic performance in capillary electrochromatography (CEC). The change of electroosmotic flow (EOF) velocity and selectivity using different kinds of fiber materials was examined. Although the EOF velocity among the different fiber packed columns was almost the same, retention of parabens was larger on the Kevlar-packed column than on the Zylon-packed one, and was larger on the as-span-type fiber-packed column than on the high-modulus-type packed one. Using 200 microm ID x 5 cm Kevlar packed column combined with a 100 microm ID x 20 cm precolumn capillary and a 530 microm ID x 45 cm postcolumn capillary, the separation of three parabens within 30 s was achieved. Other compounds were also separated in a few minutes by the fiber-packed CEC method.

  3. Capillary-composited microfluidic device for heat shock transformation of Escherichia coli.

    Science.gov (United States)

    Sha, Jun; Wang, Yaolei; Wang, Jianchun; Ren, Li; Tu, Qin; Liu, Wenming; Wang, Xueqin; Liu, Ajing; Wang, Lei; Wang, Jinyi

    2011-10-01

    This work describes chemical heat shock transformation of foreign plasmid DNA into bacterial host Escherichia coli cells using a capillary-composited microfluidic device. Transformation processes of the loading, mixing, heat shock and recovery of the transformation mixture were carried out automatically in a linear fashion. In addition, by utilizing the capillary with a hollow cylindrical chamber as heating source, simple, low cost local heat shock with accurate heat shock time to transformation mixture was obtained on the microdevice. Results demonstrated that plasmid DNA could be effectively transformed into E. coli, and the transformation efficiency and frequency were as the same level or better than conventional tube-based method. This work complements other microfluidic technologies for potential gene cloning and functional genomics studies. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Pediatric Nasal Lobular Capillary Hemangioma

    Directory of Open Access Journals (Sweden)

    Jordan M. Virbalas

    2012-01-01

    Full Text Available Background. LCH is a benign vascular growth of the skin and mucous membranes commonly affecting the head and neck. Since it was first described in the nineteenth century, this entity has been variously known as “human botryomycosis” and “pyogenic granuloma.” The shifting nomenclature reflects an evolving understanding of the underlying pathogenesis. We review the histopathology of and current epidemiological data pertaining to LCH which suggests that the development of these lesions may involve a hyperactive inflammatory response influenced by endocrine factors. We report two new cases of pediatric lobular capillary hemangioma (LCH of the nasal cavity and review current theories regarding the etiology, diagnosis, and treatment of nasal LCH. Methods. Retrospective case series. Case Series. Two adolescent females presented with symptoms of recurrent epistaxis, nasal obstruction, and epiphora. Both patients underwent computed tomography imaging and biopsy of their intranasal mass. The tumors were excised using image-guided transnasal endoscopic technique. Seven other cases of nasal LCH have been reported to date in the pediatric population. Conclusion. Nasal LCH is a rare cause of an intranasal mass and is associated with unilateral epistaxis, nasal obstruction, and epiphora. We advocate for image-guided endoscopic excision of LCH in the adolescent population.

  5. Nonlinear waves in capillary electrophoresis

    Science.gov (United States)

    Ghosal, Sandip; Chen, Zhen

    2011-01-01

    Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care and forensics. In capillary electrophoresis the sample migrates in a microcapillary in the presence of a background electrolyte. When the ionic concentration of the sample is sufficiently high, the signal is known to exhibit features reminiscent of nonlinear waves including sharp concentration ‘shocks’. In this paper we consider a simplified model consisting of a single sample ion and a background electrolyte consisting of a single co-ion and a counterion in the absence of any processes that might change the ionization states of the constituents. If the ionic diffusivities are assumed to be the same for all constituents the concentration of sample ion is shown to obey a one dimensional advection diffusion equation with a concentration dependent advection velocity. If the analyte concentration is sufficiently low in a suitable non-dimensional sense, Burgers’ equation is recovered, and thus, the time dependent problem is exactly solvable with arbitrary initial conditions. In the case of small diffusivity either a leading edge or trailing edge shock is formed depending on the electrophoretic mobility of the sample ion relative to the background ions. Analytical formulas are presented for the shape, width and migration velocity of the sample peak and it is shown that axial dispersion at long times may be characterized by an effective diffusivity that is exactly calculated. These results are consistent with known observations from physical and numerical simulation experiments. PMID:20238181

  6. Monoclonal gammopathy missed by capillary zone electrophoresis

    OpenAIRE

    Schild, Christof; Egger, Florence; Kaelin-Lang, Alain; Nuoffer, Jean-Marc

    2017-01-01

    Background: Serum protein electrophoresis is used as a screening test for monoclonal gammopathies. Here, we present a case of a high-concentration monoclonal immunoglobulin (M-protein) that was missed by serum protein electrophoresis on a Capillarys 2 capillary zone electrophoresis system. The aim of our study was to identify the reason for the failure of the system to detect the M-protein. Methods: M-protein solubility was examined in response to temperature, pH, ionic strength, the chaotrop...

  7. Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1993--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M.J.

    1993-10-01

    This program seeks the development of capillary electrokinetic separation techniques and associated optical methods of detection. Fundamental studies of pertinent separation and band broadening mechanisms are being conducted, with the emphasis on understanding systems that include highly-ordered assemblies as running buffer additives. The additives include cyclodextrins, affinity reagents, and soluble (entangled) polymers and are employed with capillary electrophoresis, CE and/or micellar electrokinetic capillary chromatography, MECC modes of separation. The utility of molecular modeling techniques for predicting the effects of highly ordered assemblies on the retention behavior of isomeric compounds is under investigation. The feasibility of performing separations using a non-aqueous solvent/fullerene electrochromatographic system is being explored. The analytical methodologies associated with these capillary separation techniques are being advanced through the development of retention programming instumentation/techniques and new strategies for performing optical detection. The advantages of laser fluorimetry are extended through the inclusion of fluorogenic, reagents in the running buffer. These reagents include oligonucleotide intercalation reagents for detecting DNA fragments. Chemiluminescence detection using post-capillary reactors/flow cells is also in progress. Successful development of these separation and detection systems will fill current voids in the capabilities of capillary separation techniques.

  8. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    Science.gov (United States)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  9. A dual deformable reverberation chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    There is disclosed an arrangement for measuring the effectiveness of a shielding material against electromagnetic fields. The arrangement comprises a first and a second reverberation chamber sharing a common wall. The common wall is partly made of the shielding material. A first antenna is arranged

  10. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The same vacuum chamber as in 7810256, read the detailed description there. Here, the 4 strip-shaped ion-getter pumps are poised at the entrance to their slots. Ion-getter pumps were not retained, thermal getter pumps were chosen instead (see 8301153 and 8305170).

  11. Bubble chamber: colour enhanced tracks

    CERN Multimedia

    1998-01-01

    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  12. Testing an hydrogen streamer chamber

    CERN Multimedia

    1975-01-01

    A 2x10 cm gap streamer chamber, 35x55 cm2 in surface, was built and tested at CERN. Good tracks of cosmic rays were obtained up to atmospheric pressure, see F. Rohrbach et al, CERN-LAL (Orsay) Collaboration, Nucl. Instr. Methods 141 (1977) 229. Michel Cathenoz stand on the center.

  13. DELPHI's Ring Imaging Cherenkov Chamber

    CERN Multimedia

    1989-01-01

    The hundreds of mirrors around this Ring Imaging Cherenkov Chamber reflect cones of light created by fast moving particles to a detector. The velocity of a particle can be measured by the size of the ring produced on the detector. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  14. Pharmacological effects of various venoms on cutaneous capillary leakage.

    Science.gov (United States)

    Burnett, J W; Calton, G J

    1986-01-01

    Studies to counteract the cutaneous vasopermeability actions of a wasp (Vespa orientalis), an anemone (Bolocera tuediae) and three jellyfish (Chironex fleckeri, Chrysaora quinquecirrha and Physalia physalis) venoms were conducted by using various pharmacological antagonists. Piripost (a leukotriene inhibitor) reduced vasopermeability if administered 5 min prior to challenge with the jellyfish venoms. Methysergide counteracted the vasopermeability of three of four coelenterate venoms, whereas indomethacin was effective against capillary leakage induced by Chironex venom. These studies indicate that anti-dermonecrotic therapy against various venoms will have to be species-specific.

  15. Metal explosion chambers: designing, manufacturing, application

    Science.gov (United States)

    Stoyanovskii, O. I.; Zlobin, B. S.; Shtertser, A. A.; Meshcheryakov, Y. P.

    2017-10-01

    Designing of explosion chambers is based on research investigations of the chamber body stress-strain state, which is determined by numerical computation and experimentally by the strain gage technique. Studies show that chamber bottoms are the most loaded elements, and maximal stresses arise in chamber poles. Increasing the shell thickness around poles by welding-in an insert is a simple and saving way to solve this problem. There are structural solutions, enabling reliable hermetic closure and preventing leakage of detonation products from the chamber. Explosion chambers are employed in scientific research and in different industrial applications: explosive welding and hardening, synthesis of new materials, disposal of expired ammunition, and etc.

  16. Growing and Analyzing Biofilms in Flow Chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic...... conditions, and the environment can be carefully controlled and easily changed. The protocols in this unit include construction of the flow chamber and the bubble trap, assembly and sterilization of the flow chamber system, inoculation of the flow chambers, running of the system, image capture and analysis...

  17. A Fast Finite-Difference Time Domain Simulation Method for the Source-Stirring Reverberation Chamber

    OpenAIRE

    Wenxing Li; Chongyi Yue; Atef Elsherbeni

    2017-01-01

    Numerical analysis methods are often employed to improve the efficiency of the design and application of the source-stirring reverberation chamber. However, the state of equilibrium of the field inside the chamber is hard to reach. In this paper, we present a fast simulation method, which is able to significantly decrease the simulation time of the source-stirring reverberation chamber. The mathematical model of this method is given in detail and home-made FDTD code is employed to conduct the...

  18. Dynamic consideration of smog chamber experiments

    Directory of Open Access Journals (Sweden)

    W. K. Chuang

    2017-08-01

    Full Text Available Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU. We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.

  19. Dynamic consideration of smog chamber experiments

    Science.gov (United States)

    Chuang, Wayne K.; Donahue, Neil M.

    2017-08-01

    Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA) mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS) model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU). We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.

  20. Droplet coalescence at microchannel intersection chambers with different shapes.

    Science.gov (United States)

    Liu, Zhaomiao; Wang, Xiang; Cao, Rentuo; Pang, Yan

    2016-06-29

    The influence of microchannel intersection chamber shape on the droplet coalescence process is investigated in this study. Three kinds of chamber shapes (half-round, triangle and camber) are designed to realize head-on droplet coalescence. The coalescence processes are visualized using a high-speed camera system and the internal flow patterns are resolved using a micro-PIV system. Experimental analyses on the coalescence position and coalescence time of droplets and the critical conditions are discussed. Both direct coalescence and late coalescence can be observed in the camber junction while only the late coalescence is present for the half-round and the triangle junction. The critical capillary number Ca* varies for different working systems or intersection shapes. Ca* in the camber junction is larger than that in the other two junctions for each working system and it decreases with the increase of the viscosity ratio for each intersection shape. Moreover, the characteristics of the velocity fields for different coalescence cases are analyzed for an in-depth understanding of the process.

  1. Droplets coalescence at microchannel intersection chambers with different shapes

    Science.gov (United States)

    Liu, Zhaomiao; Wang, Xiang; Cao, Rentuo; Pang, Yan

    2016-11-01

    The influence of microchannel intersection chamber shape on droplets coalescence process is investigated in this study. Three kinds of chamber shapes (half-round, triangle and camber) are designed to realize head-on droplets coalescence. The coalescence processes are visualized with high-speed camera system and the internal flow patterns are resolved with micro-PIV system. Experimental analyses on droplets coalescence position, coalescence time and the critical conditions are discussed. Both direct coalescence and late coalescence can be observed in the camber junction while only the late coalescence is present for the half-round and the triangle junction. The critical capillary number Ca* varies for different working systems or intersection shapes. Ca* in the camber junction is larger than that in the other two junctions for each working system and it decreases with the increase of the viscosity ratios for each intersection shape. Moreover, the characteristics of the velocity fields for different coalescence cases are analyzed for in-depth understanding of the process. The authors do appreciate the financial support of No.11572013 of National Nature Scicence Funding of China.

  2. Methods of conducting simultaneous exothermic and endothermic reactions

    Science.gov (United States)

    Tonkovich, Anna Lee [Marysville, OH; Roberts, Gary L [West Richland, WA; Perry, Steven T [Galloway, OH; Fitzgerald, Sean P [Columbus, OH

    2005-11-29

    Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.

  3. Designing an oscillating CO2 concentration experiment for field chambers

    Science.gov (United States)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  4. Designing an oscillating CO2 concentration experiment for fild chambers

    Science.gov (United States)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  5. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  6. Development of multiwire proportional chambers

    CERN Multimedia

    Charpak, G

    1969-01-01

    It has happened quite often in the history of science that theoreticians, confronted with some major difficulty, have successfully gone back thirty years to look at ideas that had then been thrown overboard. But it is rare that experimentalists go back thirty years to look again at equipment which had become out-dated. This is what Charpak and his colleagues did to emerge with the 'multiwire proportional chamber' which has several new features making it a very useful addition to the armoury of particle detectors. In the 1930s, ion-chambers, Geiger- Muller counters and proportional counters, were vital pieces of equipment in nuclear physics research. Other types of detectors have since largely replaced them but now the proportional counter, in new array, is making a comeback.

  7. Restructuring and aging in a capillary suspension.

    Science.gov (United States)

    Koos, Erin; Kannowade, Wolfgang; Willenbacher, Norbert

    2014-12-01

    The rheological properties of capillary suspensions, suspensions with small amounts of an added immiscible fluid, are dramatically altered with the addition of the secondary fluid. We investigate a capillary suspension to determine how the network ages and restructures at rest and under applied external shear deformation. The present work uses calcium carbonate suspended in silicone oil (11 % solids) with added water as a model system. Aging of capillary suspensions and their response to applied oscillatory shear is distinctly different from particulate gels dominated by the van der Waals forces. The suspensions dominated by the capillary force are very sensitive to oscillatory flow, with the linear viscoelastic regime ending at a deformation of only 0.1% and demonstrating power-law aging behavior. This aging persists for long times at low deformations or for shorter times with a sudden decrease in the strength at higher deformations. This aging behavior suggests that the network is able to rearrange and even rupture. This same sensitivity is not demonstrated in shear flow where very high shear rates are required to rupture the agglomerates returning the apparent viscosity of capillary suspensions to the same viscosity as for the pure vdW suspension. A transitional region is also present at intermediate water contents wherein the material response depends very strongly on the type, strength, and duration of the external forcing.

  8. Influence of local capillary trapping on containment system effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven [University Of Texas At Austin, Austin, TX (United States). Center for Petroleum and Geosystems Engineering

    2014-03-31

    Immobilization of CO2 injected into deep subsurface storage reservoirs is a critical component of risk assessment for geologic CO2 storage (GCS). Local capillary trapping (LCT) is a recently established mode of immobilization that arises when CO2 migrates due to buoyancy through heterogeneous storage reservoirs. This project sought to assess the amount and extent of LCT expected in storage formations under a range of injection conditions, and to confirm the persistence of LCT if the seal overlying the reservoir were to lose its integrity. Numerical simulation using commercial reservoir simulation software was conducted to assess the influence of injection. Laboratory experiments, modeling and numerical simulation were conducted to assess the effect of compromised seal integrity. Bench-scale (0.6 m by 0.6 m by 0.03 m) experiments with surrogate fluids provided the first empirical confirmation of the key concepts underlying LCT: accumulation of buoyant nonwetting phase at above residual saturations beneath capillary barriers in a variety of structures, which remains immobile under normal capillary pressure gradients. Immobilization of above-residual saturations is a critical distinction between LCT and the more familiar “residual saturation trapping.” To estimate the possible extent of LCT in a storage reservoir an algorithm was developed to identify all potential local traps, given the spatial distribution of capillary entry pressure in the reservoir. The algorithm assumes that the driving force for CO2 migration can be represented as a single value of “critical capillary entry pressure” Pc,entrycrit, such that cells with capillary entry pressure greater/less than Pc,entrycrit act as barriers/potential traps during CO2 migration. At intermediate values of Pc,entrycrit, the barrier regions become more laterally extensive in the reservoir

  9. GBO RF Anechoic Chamber & Antenna Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — A shielded anechoic chamber measuring 15 by 15 by 37 feet is located in the Jansky Laboratory at Green Bank. This chamber has been outfitted as a far-field antenna...

  10. Operation of high rate microstrip gas chambers

    CERN Document Server

    Barr, A J; Bouclier, Roger; Capéans-Garrido, M; Dominik, Wojciech; Manzin, G; Million, Gilbert; Hoch, M; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1996-01-01

    We describe recent measurements carried out in well controlled and reproducible conditions to help understanding the factors affecting the short and long term behaviour of Microstrip Gas Chambers. Special care has been taken concerning the gas purity and choice of materials used in the system and for the detectors construction. Detectors built on glasses with surface resistivity in the range $10^{13}-10^{15} \\Omega/\\Box$ have shown satisfactory performance as they do not show charging-up process at high rate and stand the large doses required for the future high luminosity experiments (~10 mC·cm-1·yr-1). Concerning the lifetime measurements, it has been observed that chambers manufactured on high-resistivity glass are far more susceptible of suffering ageing than detectors made on low resistivity, electron-conducting supports, independently of the metal used for the artwork (chromium or gold) at least in clean gas conditions. The successfully operation in the laboratory of detectors manufactured on diamond-...

  11. On the design and implementation of a novel impedance chamber based variable temperature regulator at liquid helium temperatures.

    Science.gov (United States)

    Nagendran, R; Thirumurugan, N; Chinnasamy, N; Janawadkar, M P; Sundar, C S

    2010-04-01

    A novel variable temperature regulator (VTR) based on the use of a fine impedance capillary to control the flow rate of cold helium gas into the VTR chamber is described. The capillary has a diameter of just 200 microm and the flow rate of cold helium gas through the capillary can be effectively controlled to the desired value by heating the capillary to a preset temperature and by controlling the pressure in the VTR chamber to a preset pressure using automated control circuits. Excellent temperature stability (about +/-1 mK at 10 K and +/-2 mK at 100 K) has been demonstrated in this setup with uniform rates of heating or cooling by an optimal choice of parameters. Compared to the more conventional VTR designs based on the use of mechanical long stem valves in the liquid helium reservoir to control the flow rate of liquid helium into the VTR chamber, and the use of a needle valve at the top of the cryostat to control the exchange gas pressure in the thermal isolation chamber, the present design enables temperature stability at any user desired temperature to be attained with uniform rates of cooling/heating with minimum consumption of liquid helium. The VTR has been successfully incorporated in the high field superconducting quantum interference device magnetometer setup developed in-house. It can also be incorporated in any low temperature physical property measurement system in which the temperature has to be varied in a controlled manner from 4.2 to 300 K and vice versa with uniform rates of heating and cooling.

  12. Design of a Fully Anechoic Chamber

    OpenAIRE

    Rusz, Roman

    2015-01-01

    This thesis deals with fully anechoic chamber design. The main aim of this thesis is to design fully anechoic chamber according to acoustics laws and customers (Honeywell’s) requirements. The fully anechoic chamber will be used for measuring sound and vibration quantities. This work is divided into two main parts. The first part deals with the general anechoic chamber theory and all its related design aspects. The second part, practical part, focus on specific design according to requirements...

  13. An Experimental Examination of the Relationship between Fluid Properties and Dynamic Capillary Effects During Drainage and Imbibition

    Science.gov (United States)

    Hou, L.; Chen, L.; Kibbey, T. C.

    2011-12-01

    Reported measurements have long observed an apparent flow-rate dependence of capillary pressure at a given saturation during dynamic drainage or imbibition. This phenomenon is often referred to as a dynamic capillary effect. While the existence of dynamic capillary effects may have significant implications for the movement of immiscible fluids in porous media across a wide range of practical problems, experiment-based quantitative information about the magnitude of dynamic capillary effects is sparse, and proposed dependencies on system properties reported to date have been contradictory. The purpose of the work conducted here was to study how the dynamic capillary coefficient, τ (a ratio of the difference between dynamic and static capillary pressures and the negative change of saturation with time), is influenced by changes in fluid properties in unconsolidated porous media. Experiments were conducted with a device designed specifically for the measurements. The device is based on an automated method previously developed by the authors for rapid measurement of capillary pressure-saturation (Pc-S) relationships, but adds custom-designed membrane-based fluid-selective pore pressure micro-sensors for direct measurement of pore pressures. The micro-sensors were developed to have extremely fast response times compared with traditional pore pressure tensiometers, reducing the potential for sensor-response artifacts which can mimic dynamic capillary effects. For this work, experiments were conducted to quantify τ and corresponding confidence intervals at hundreds of individual saturation values during both dynamic secondary drainage and imbibition. Experiments have been conducted with different fluids selected to vary surface tension and viscosity, both together and independently. Implications for multiphase and unsaturated flow in porous media will be discussed.

  14. A dual-chamber pacing mode to minimize ventricular pacing

    Directory of Open Access Journals (Sweden)

    Peter Rakovec

    2005-12-01

    Full Text Available Background: Though patients with sick sinus syndrome theoretically need an atrial pacemaker only, they usually receive a ventricular or a dual-chamber pacemaker because of possible developement of atrioventricular conduction abnormalities. Right ventricular pacing produces left bundle branch block (i.e. pacing-induced ventricular desynchronization, promoting heart failure and atrial fibrillation. This problem can be solved by a special pacing mode which on one hand preserves the safety of dual-chamber pacing and on the other hand minimizes right ventricular pacing.

  15. Dynamics of colloidal particles with capillary interactions.

    Science.gov (United States)

    Domínguez, Alvaro; Oettel, Martin; Dietrich, S

    2010-07-01

    We investigate the dynamics of colloids at a fluid interface driven by attractive capillary interactions. At submillimeter length scales, the capillary attraction is formally analogous to two-dimensional gravity. In particular it is a nonintegrable interaction and it can be actually relevant for collective phenomena in spite of its weakness at the level of the pair potential. We introduce a mean-field model for the dynamical evolution of the particle number density at the interface. For generic values of the physical parameters the homogeneous distribution is found to be unstable against large-scale clustering driven by the capillary attraction. We also show that for the instability to be observable, the appropriate values for the relevant parameters (colloid radius, surface charge, external electric field, etc.) are experimentally well accessible. Our analysis contributes to current studies of the structure and dynamics of systems governed by long-ranged interactions and points toward their experimental realizations via colloidal suspensions.

  16. Novel absorption detection techniques for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yongjun [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  17. Vacuum chamber at intersection I-6

    CERN Multimedia

    1971-01-01

    The vacuum chamber at intersection region I-6, one of these where experiments in colliding-beam physics will be taking place. The "wheels" prevent the thin wall (1.5 mm) of the chamber from collapsing. The chamber is equipped with heating tapes and its wrapped in thermal insulation. Residual gas pressure at this and other similar regions is around 10_11.

  18. Making a Fish Tank Cloud Chamber

    Science.gov (United States)

    Green, Frances

    2012-01-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…

  19. A Sensitive Cloud Chamber without Radioactive Sources

    Science.gov (United States)

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  20. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...

  1. Growing and analyzing biofilms in flow chambers

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic cond...

  2. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    Science.gov (United States)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  3. Passive recruitment of circulating leukocytes into capillary sprouts from existing capillaries in a microfluidic system.

    Science.gov (United States)

    Forouzan, Omid; Burns, Jennie M; Robichaux, Jennifer L; Murfee, Walter L; Shevkoplyas, Sergey S

    2011-06-07

    Recent evidence implicating leukocytes in angiogenesis raises the question of whether leukocytes and other cells circulating with the blood in microvascular networks can home to capillary sprouts intraluminally. This study describes an investigation of leukocyte trafficking in sprouting capillaries fabricated using soft lithography. The leukocytes passing with whole blood through existing capillaries were able to enter microfabricated capillary sprouts of variable length and sprouting angle due to the mechanical interaction with red blood cells (RBCs) at the sprouting bifurcation, in spite of the complete absence of blood flow through the blind-ended sprouts or any chemoattractants. The RBCs formed "comet tails" (the densely packed cellular trains forming behind leukocytes as they move through narrow capillaries) and effectively pushed leukocytes into the microfabricated sprouts while bypassing them at the sprouting bifurcation. Individual sprouts filled with several leukocytes, as wells as RBCs and platelets, were observed. The results of this study suggest that (i) blood cells are likely present in capillary sprouts throughout their development, (ii) leukocytes and other circulating cells may use this mechanism to home to capillary sprouts intraluminally for direct engraftment, and (iii) tissues may use this phenomenon as another mechanism for local recruitment of leukocytes from the blood stream.

  4. Visualizing and quantifying the crossover from capillary fingering to viscous fingering in a rough fracture

    Science.gov (United States)

    Chen, Yi-Feng; Fang, Shu; Wu, Dong-Sheng; Hu, Ran

    2017-09-01

    Immiscible fluid-fluid displacement in permeable media is important in many subsurface processes, including enhanced oil recovery and geological CO2 sequestration. Controlled by capillary and viscous forces, displacement patterns of one fluid displacing another more viscous one exhibit capillary and viscous fingering, and crossover between the two. Although extensive studies investigated viscous and capillary fingering in porous media, a few studies focused on the crossover in rough fractures, and how viscous and capillary forces affect the crossover remains unclear. Using a transparent fracture-visualization system, we studied how the two forces impact the crossover in a horizontal rough fracture. Drainage experiments of water displacing oil were conducted at seven flow rates (capillary number log10Ca ranging from -7.07 to -3.07) and four viscosity ratios (M=1/1000,1/500,1/100 and 1/50). We consistently observed lower invading fluid saturations in the crossover zone. We also proposed a phase diagram for the displacement patterns in a rough fracture that is consistent with similar studies in porous media. Based on real-time imaging and statistical analysis of the invasion morphology, we showed that the competition between capillary and viscous forces is responsible for the saturation reduction in the crossover zone. In this zone, finger propagation toward the outlet (characteristic of viscous fingering) as well as void-filling in the transverse/backward directions (characteristic of capillary fingering), are both suppressed. Therefore, the invading fluid tends to occupy larger apertures with higher characteristic front velocity, promoting void-filling toward the outlet with thinner finger growth and resulting in a larger volume of defending fluid left behind.

  5. Construction of an anechoic chamber for aeroacoustic experiments and examination of its acoustic parameters

    Science.gov (United States)

    Kopiev, V. F.; Palchikovskiy, V. V.; Belyaev, I. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Khramtsov, I. V.; Korin, I. A.; Sorokin, E. V.; Kustov, O. Yu.

    2017-01-01

    The acoustic parameters of a new anechoic chamber constructed at Perm National Research Polytechnic University (PNRPU) are presented. This chamber is designed to be used, among other things, for measuring noise from aerodynamic sources. Sound-absorbing wedges lining the walls of the chamber were studied in an interferometer with normal wave incidence. The results are compared to the characteristics of sound-absorbing wedges of existing anechoic facilities. Metrological examination of the acoustic parameters of the PNRPU anechoic chamber demonstrates that free field conditions are established in it, which will make it possible to conduct quantitative acoustic experiments.

  6. Intracerebral Capillary Hemangioma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Young; Kim, Jae Kyun; Byun, Jun Soo [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of); Park, Eon Sub [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of)

    2012-01-15

    Intracerebral capillary hemangiomas are very rare benign vascular tumors that mostly occur during infancy. We described a 69-year-old man with generalized tonic-clonic seizures who was diagnosed with an intracranial mass. Multidetector computed tomography, magnetic resonance imaging and digital subtraction angiography studies were performed for evaluation of brain, and there was a well-enhancing mass found in the right temporal lobe without a definite feeding vessel. The patient underwent surgery and the pathologic examination demonstrated marked proliferation of small vessels with a lobular pattern in the brain parenchyma, which was confirmed to be capillary hemangioma.

  7. Validation of capillary blood analysis and capillary testing mode on the epoc Point of Care system

    Directory of Open Access Journals (Sweden)

    Jing Cao

    2017-12-01

    Full Text Available Background: Laboratory test in transport is a critical component of patient care, and capillary blood is a preferred sample type particularly in children. This study evaluated the performance of capillary blood testing on the epoc Point of Care Blood Analysis System (Alere Inc. Methods: Ten fresh venous blood samples was tested on the epoc system under the capillary mode. Correlation with GEM 4000 (Instrumentation Laboratory was examined for Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pO2, pCO2, and pH, and correlation with serum tested on Vitros 5600 (Ortho Clinical Diagnostics was examined for creatinine. Eight paired capillary and venous blood was tested on epoc and ABL800 (Radiometer for the correlation of Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Capillary blood from 23 apparently healthy volunteers was tested on the epoc system to assess the concordance to reference ranges used locally. Results: Deming regression correlation coefficients for all the comparisons were above 0.65 except for ionized Ca2+. Accordance of greater than 85% to the local reference ranges were found in all assays with the exception of pO2 and Cl-. Conclusion: Data from this study indicates that capillary blood tests on the epoc system provide comparable results to reference method for these assays, Na+, K+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Further validation in critically ill patients is needed to implement the epoc system in patient transport. Impact of the study: This study demonstrated that capillary blood tests on the epoc Point of Care Blood Analysis System give comparable results to other chemistry analyzers for major blood gas and critical tests. The results are informative to institutions where pre-hospital and inter-hospital laboratory testing on capillary blood is a critical component of patient point of care testing. Keywords: Epoc, Capillary, Transport, Blood gas, Point of care

  8. Evaluation of phytic acid as a buffer additive for the separation of proteins in capillary electrophoresis.

    NARCIS (Netherlands)

    Veraart, J.R.; Schouten, Y.; Gooijer, C.; Lingeman, H.

    1997-01-01

    The use of phytic acid to improve protein analysis by capillary electrophoresis (CE) is becoming more and more popular. Due to its size and number of negative charges (up to 12) it provides a high ionic strength combined with a low conductance resulting in an efficient decrease of wall adsorption

  9. Capillary pressure as a unique function of electric permittivity and water saturation

    NARCIS (Netherlands)

    Plug, W.J.; Slob, E.; Van Turnhout, J.; Bruining, J.

    2007-01-01

    The relation between capillary pressure (Pc) and interfacial area has been investigated by measuring Pc and the electric permittivity at 100 kHz simultaneously as function of the water saturation, (Sw). Drainage and imbibition experiments have been conducted for sand-distilled water-gas (CO2/N2)

  10. Capillary electrochromatography/nanoelectrospray mass spectrometry for attomole characterization of peptides

    NARCIS (Netherlands)

    Gucek, M.; Gaspari, M.; Walhagen, K.; Vreeken, R.J.; Verheij, E.R.; Greef, J. van der

    2000-01-01

    The successful coupling of capillary electrochromatography (CEC) to an ion trap mass spectrometer via a nanoelectrospray interface (nESI) is described. Using a conductively coated tip butted to the end of a CEC column, it was possible to obtain a stable spray without any sheath liquid being

  11. Development and validation of inexpensive, automated, dynamic flux chambers

    Directory of Open Access Journals (Sweden)

    B. B. Almand-Hunter

    2015-01-01

    Full Text Available We developed and validated an automated, inexpensive, and continuous multiple-species gas-flux monitoring system that can provide data for a variety of relevant atmospheric pollutants, including O3, CO2, and NOx. Validation consisted of conducting concurrent gas-phase dry-deposition experiments, using both dynamic flux chambers and an eddy-covariance system, in a grassy clearing in the Duke Forest (Chapel Hill, NC. Experiments were carried out in June and September under a variety of meteorological conditions. Ozone-deposition measurements from the two methods matched very well (4–10% difference in mean flux rate when the leaf-area index (LAI inside the chambers was representative of the average LAI in the field. The dynamic flux chambers can be considered an accurate measurement system under these conditions.

  12. Low-Dead-Volume Inlet for Vacuum Chamber

    Science.gov (United States)

    Naylor, Guy; Arkin, C.

    2011-01-01

    Gas introduction from near-ambient pressures to high vacuum traditionally is accomplished either by multi-stage differential pumping that allows for very rapid response, or by a capillary method that allows for a simple, single-stage introduction, but which often has a delayed response. Another means to introduce the gas sample is to use the multi-stage design with only a single stage. This is accomplished by using a very small conductance limit. The problem with this method is that a small conductance limit will amplify issues associated with dead-volume. As a result, a high-vacuum gas inlet was developed with low dead-volume, allowing the use of a very low conductance limit interface. Gas flows through the ConFlat flange at a relatively high flow rate at orders of magnitude greater than through the conductance limit. The small flow goes through a conductance limit that is a double-sided ConFlat.

  13. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  14. Development of a Capillary-driven, Microfluidic, Nucleic Acid Biosensor

    Directory of Open Access Journals (Sweden)

    Fei HE

    2011-12-01

    Full Text Available An ideal point-of-care device would incorporate the simplicity and reliability of a lateral flow assay with a microfluidic device. Our system consists of self-priming microfluidics with sealed conjugate pads of reagent delivery and an absorbent pad for additional fluid draw. Using poly (methyl methacrylate (PMMA as a substrate, we have developed a single-step surface modification method which allows strong capillary flow within a sealed microchannel. Conjugate pads within the device held trapped complex consisting of the magnetic beads and nucleic-acid-probe-conjugated horseradish peroxidase (HRP. Magnetic beads were released when sample entered the chamber and hybridized with the complex. The complex was immobilized over a magnet while a luminol co-reactant stream containing H2O2 was merged with the channel. A plate reader was able to quantify the chemiluminescence signal. This new format of biosensor will allow for a smaller and more sensitive biosensor, as well as commercial-scale manufacturing and low materials cost.

  15. Perturbations of the flow induced by a microcapsule in a capillary tube

    Science.gov (United States)

    Gubspun, J.; de Loubens, C.; Trozzo, R.; Deschamps, J.; Georgelin, M.; Edwards-Levy, F.; Leonetti, M.

    2017-06-01

    Soft microcapsules moving in a cylindrical capillary deform from quasi-spherical shapes to elongated shapes with an inversion of curvature at the rear. We investigated the perturbation of the flow by particle tracking velocimetry around deformed microcapsules in confined flow. These experiments are completed by numerical simulations. Microcapsules are made of a thin membrane of polymerized human albumin and their shear elastic moduli are previously characterized in a cross flow chamber. Firstly, the velocity of the microcapsule can be calculated by theoretical predictions for rigid spheres, even for large deformations as ‘parachute-like’ shapes, if a relevant definition of the ratio of confinement is chosen. Secondly, at the rear and the front of the microcapsule, the existence of multiple recirculation regions is governed by the local curvature of the membrane. The amplitudes of these perturbations increase with the microcapsule deformation, whereas their axial extents are comparable to the radius of the capillary whatever the confinement and the capillary number. We conclude that whereas the motion of microcapsules in confined flow has quantitative similitudes with rigid spheres in terms of velocity and axial extent of the perturbation, their presence induces variations in the flow field that are related to the local deformation of the membrane as in droplets.

  16. A silicon microstrip gas chamber

    Energy Technology Data Exchange (ETDEWEB)

    Van der Marel, J. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Van den Bogaard, A. (Delft Inst. of Microelectronics and Submicrotechnology, Delft Univ. of Tech. (Netherlands)); Van Eijk, C.W.E. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Hollander, R.W. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Okx, W.J.C. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Sarro, P.M. (Delft Inst. of Microelectronics and Submicrotechnology, Delft Univ. of Tech. (Netherlands))

    1994-09-01

    We are manufacturing microstrip gas chambers (MSGC) on silicon with an insulating SiO[sub 2] layer. To study the effect of the sheet resistance of the SiO[sub 2] on the operation of the detector several processes to modify the SiO[sub 2] layer have been investigated: ion implantation, boron and phosphorus diffusion, phosphosilicate glass evaporation and polycrystalline silicon deposition. The dependence of the gas gain on the potentials of the different electrodes and the long term stability have been studied. ((orig.))

  17. Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1994--January 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M.J.

    1995-05-01

    This multifarious research program is dedicated to the development of capillary electrokinetic separation techniques and associated optical methods of detection. Currently, research is directed at three general objectives. First, fundamental studies of pertinent separation and band broadening mechanisms are being conducted, with the emphasis on achieving rapid separations and understanding separation systems that include highly-ordered assemblies as running buffer additives. Second, instrumentation and methodologies associated with these capillary separation techniques are being advanced. Third, applications of these separation and detection systems should fill current voids in the capabilities of capillary separation techniques. In particular, it should be possible to perform rapid, highly efficient, and selective separations of hydrophobic compounds (e.g., higher MW polycyclic aromatic hydrocarbons (PAHs) and fullerenes), certain optical isomers, DNA fragments, and various pollutants including certain heavy metals.

  18. Pupillary block glaucoma following implantation of a posterior chamber pseudophakos in the anterior chamber.

    Directory of Open Access Journals (Sweden)

    Mandal Anil

    2002-01-01

    Full Text Available Pupillary block glaucoma is a common complication of cataract surgery, especially following anterior chamber intraocular lens implantation. We report a case of pupillary block glaucoma with a posterior chamber IOL that was implanted in the anterior chamber following a complicated extracapsular cataract extraction. The case was successfully managed by explantation of the posterior chamber lens, anterior vitrectomy, peripheral iridectomy and secondary anterior chamber intraocular lens implantation. The intraocular pressure was controlled with a single topical antiglaucoma medication.

  19. Elastic deformation due to tangential capillary forces

    NARCIS (Netherlands)

    Das, S.; Marchand, Antonin; Andreotti, Bruno; Snoeijer, Jacobus Hendrikus

    2011-01-01

    A sessile liquid drop can deform the substrate on which it rests if the solid is sufficiently “soft.” In this paper we compute the detailed spatial structure of the capillary forces exerted by the drop on the solid substrate using a model based on Density Functional Theory. We show that, in addition

  20. Ameliorative potential of Artemisia Capillaris Formula on ...

    African Journals Online (AJOL)

    Background: Artemisia Capillaris Formula (ACF), a traditional Chinese medicinal therapy, has been used clinically in China to treat Nonalcoholic Fatty Liver Disease (NAFLD) for many years. However, the mechanism of action of this treatment on NAFLD is still unknown. The goal of the present study is to test whether ...

  1. Capillary-Patterns for Biometric Authentication

    NARCIS (Netherlands)

    Paloma Benedicto, J.; Bruekers, A.A.M.; Presura, C.N.; Garcia Molina, G.

    2007-01-01

    In this report, we present a method using the capillary structuresunder the "distal interphalangeal joint" (DIP joint), which is located between the second and third (distal) phalanges of the finger, for achieving secure biometric authentication. Images of the DIPjoint are acquired using a

  2. Monoclonal gammopathy missed by capillary zone electrophoresis.

    Science.gov (United States)

    Schild, Christof; Egger, Florence; Kaelin-Lang, Alain; Nuoffer, Jean-Marc

    2011-07-01

    Serum protein electrophoresis is used as a screening test for monoclonal gammopathies. Here, we present a case of a high-concentration monoclonal immunoglobulin (M-protein) that was missed by serum protein electrophoresis on a Capillarys 2 capillary zone electrophoresis system. The aim of our study was to identify the reason for the failure of the system to detect the M-protein. M-protein solubility was examined in response to temperature, pH, ionic strength, the chaotropic agent urea and the reducing agent 2-mercaptoethanol. Precipitation of the M-protein was not cold-induced, but solubility decreased at pH 8.5 or higher, when the pH approached the apparent isoelectric point. The M-protein also precipitated in alkaline Capillarys 2 electrophoresis buffer (pH 10), which was the reason for the false-negative electrophoresis result. Precipitation of the M-protein was not related to the ionic strength of the buffer. Solubility improved in presence of urea. Pre-treatment of serum with 2-mercaptoethanol revealed the missing M-protein peak of 36 g/L on the electropherogram. This case shows that insolubility of M-proteins in alkaline buffer is one possible cause of false-negative results on capillary zone electrophoresis systems. False-negative results should be considered, especially when accompanying laboratory results are inconsistent with the electropherogram.

  3. Imbibition of ``Open Capillary'': Fundamentals and Applications

    Science.gov (United States)

    Tani, Marie; Kawano, Ryuji; Kamiya, Koki; Okumura, Ko

    2015-11-01

    Control or transportation of small amount of liquid is one of the most important issues in various contexts including medical sciences or pharmaceutical industries to fuel delivery. We studied imbibition of ``open capillary'' both experimentally and theoretically, and found simple scaling laws for both statics and dynamics of the imbibition, similarly as that of imbibition of capillary tubes. Furthermore, we revealed the existence of ``precursor film,'' which developed ahead of the imbibing front, and the dynamics of it is described well by another scaling law for capillary rise in a corner. Then, to show capabilities of open capillaries, we demonstrated two experiments by fabricating micro mixing devices to achieve (1) simultaneous multi-color change of the Bromothymol blue (BTB) solution and (2) expression of the green florescent protein (GFP). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). M. T. is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.

  4. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.

    2010-01-01

    of nanoparticles, i.e. in CE mode, the protein samples adsorbed completely to the capillary walls and could not be recovered. In contrast, nanoparticle-based capillary electroseparation resolved green fluorescent protein from several of its impurities within I min. Furthermore, a mixture of native green...... fluorescent protein and two of its single-amino-acid-substituted variants was separated within 2.5 min with efficiencies of 400 000 plates/m. The nanoparticles prevent adsorption by introducing a large interacting surface and by obstructing the attachment of the protein to the capillary wall. A one...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  5. Limits to Drift Chamber Resolution

    CERN Document Server

    Riegler, Werner

    1998-01-01

    ATLAS (A Large Toroidal LHC Apparatus) will be a general-purpose experiment at the Large Hadron Collider that will be operational at CERN in the year 2004. The ATLAS muon spectrometer aims for a momentum resolution of 10% for a transverse momentum of pT=1TeV. The precision tracking devices in the muon system will be high pressure drift tubes (MDTs) with a single wire resolution of 1100 chambers covering an area of ≈ 2500m2. The high counting rates in the spectrometer as well as the aim for excellent spatial resolution and high efficiency put severe constraints on the MDT operating parameters. This work describes a detailed study of all the resolution limiting factors in the ATLAS environment. A ’full chain’ simulation of the MDT response to photons and charged particles as well as quantitative comparisons with measurements was performed. The good agreement between simulation and measurements resulted in a profound understanding of the drift chamber processes and the individual contributions to the spat...

  6. Physicist makes muon chamber sing

    CERN Document Server

    2007-01-01

    This Monitored Drift Tube detector, consisting of argon-CO2-filled aluminium tubes with a wire down the centre of each, will track muons in ATLAS; Tiecke used a single tube from one of these detectors to create the pipes in his organ. Particle physicists can make good musicians; but did you know particle detectors can make good music? That's what NIKHEF physicist Henk Tiecke learned when he used pipes cut from the ATLAS Monitored Drift Tube detector (MDT) to build his own working Dutch-style barrel organ in the autumn of 2005. 'I like to work with my hands,' said Tiecke, who worked as a senior physicist at NIKHEF, Amsterdam, on ZEUS until his retirement last summer. Tiecke had already constructed his barrel organ when he visited some colleagues in the ATLAS muon chambers production area at Nikhef in 2005. He noticed that the aluminium tubes they were using to build the chambers were about three centimetres in diameter-just the right size for a pipe in a barrel organ. 'The sound is not as nice as from wooden...

  7. Validation of capillary blood analysis and capillary testing mode on the epoc Point of Care system.

    Science.gov (United States)

    Cao, Jing; Edwards, Rachel; Chairez, Janette; Devaraj, Sridevi

    2017-12-01

    Laboratory test in transport is a critical component of patient care, and capillary blood is a preferred sample type particularly in children. This study evaluated the performance of capillary blood testing on the epoc Point of Care Blood Analysis System (Alere Inc). Ten fresh venous blood samples was tested on the epoc system under the capillary mode. Correlation with GEM 4000 (Instrumentation Laboratory) was examined for Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pO2, pCO2, and pH, and correlation with serum tested on Vitros 5600 (Ortho Clinical Diagnostics) was examined for creatinine. Eight paired capillary and venous blood was tested on epoc and ABL800 (Radiometer) for the correlation of Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Capillary blood from 23 apparently healthy volunteers was tested on the epoc system to assess the concordance to reference ranges used locally. Deming regression correlation coefficients for all the comparisons were above 0.65 except for ionized Ca2+. Accordance of greater than 85% to the local reference ranges were found in all assays with the exception of pO2 and Cl-. Data from this study indicates that capillary blood tests on the epoc system provide comparable results to reference method for these assays, Na+, K+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Further validation in critically ill patients is needed to implement the epoc system in patient transport. This study demonstrated that capillary blood tests on the epoc Point of Care Blood Analysis System give comparable results to other chemistry analyzers for major blood gas and critical tests. The results are informative to institutions where pre-hospital and inter-hospital laboratory testing on capillary blood is a critical component of patient point of care testing.

  8. Transferring calibration coefficients from ionisation chambers used for diagnostic radiology to transmission chambers.

    Science.gov (United States)

    Yoshizumi, Maíra T; Caldas, Linda V E

    2012-07-01

    In this work, the response of a double volume transmission ionisation chamber, developed at the Instituto de Pesquisas Energéticas e Nucleares, was compared to that of a commercial transmission chamber. Both ionisation chambers were tested in different X-ray beam qualities using secondary standard ionisation chambers as reference dosimeters. These standard ionisation chambers were a parallel-plate and a cylindrical ionisation chambers, used for diagnostic radiology and mammography beam qualities, respectively. The response of both transmission chambers was compared to that of the secondary standard chambers to obtain coefficients of equivalence. These coefficients allow the transmission chambers to be used as reference equipment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A Numerical Study of Combined Convective and Radiative Heat Transfer in a Rocket Engine Combustion Chamber

    National Research Council Canada - National Science Library

    Savur, Mehmet

    2002-01-01

    A numerical study was conducted to predict the combined convective and radiative heat transfer rates on the walls of a small aspect ratio cylinder representative of the scaled model of a rocket engine combustion chamber...

  10. Tests of anechoic chamber for aeroacoustics investigations

    Science.gov (United States)

    Palchikovskiy, V. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Belyaev, I. V.; Korin, I. A.; Sorokin, E. V.; Khramtsov, I. V.; Kustov, O. Yu.

    2016-10-01

    The paper presents the results of qualification tests in the new anechoic chamber of Perm National Research Polytechnic University (PNRPU) built in 2014-2015 and evaluation of the chamber quality in aeroacoustic experiments. It describes design features of the chamber and its sound-absorption lining. The qualification tests were carried out with tonal and broadband noise sources in the frequency range 100 Hz - 20 kHz for two different cases of the source arrangement. In every case, measurements were performed in three directions by traverse microphones. Qualification tests have determined that in the chamber there is a free acoustic field within radius of 2 m for tonal noise and 3 m for broadband noise. There was also evaluated acoustic quality of the chamber by measurements of the jet noise and vortex ring noise. The results of the experiments demonstrate that PNRPU anechoic chamber allows the aeroacoustic measurements to be performed to obtain quantitative results.

  11. The CAST Time Projection Chamber

    CERN Document Server

    Autiero, D.; Carmona, J.M.; Cebrian, S.; Chesi, E.; Davenport, M.; Delattre, M.; Di Lella, L.; Formenti, F.; Irastorza, I.G.; Gomez, H.; Hasinoff, M.; Lakic, B.; Luzon, G.; Morales, J.; Musa, L.; Ortiz, A.; Placci, A.; Rodriguez, A.; Ruz, J.; Villar, J.A.; Zioutas, K.

    2007-01-01

    One of the three X-ray detectors of the CAST experiment searching for solar axions is a Time Projection Chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity X-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is safely set during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62 %. Shielding has been installed around the detector, lowering the background level to 4.10 x 10^-5 counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass.

  12. Time Projection Chamber at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.; Leitch, M.; Navon, I.; Numao, T.; Schlatter, P.; Dixit, M.S.; Hargrove, C.K.; Mes, H.; Bennett, A.; Macdonald, J.A.

    1984-01-01

    The Time Projection Chamber at TRIUMF is being used to search for muon-electron conversion. The best spatial resolution in the TPC, sigma approx. = 200 ..mu..m, occurs at the minimum drift length and for an optimum track-to-anode crossing angle determined by the magnetic field. The observed resolution is dependent on the diffusion of the drifting electrons, the track-to-anode crossing angle, vector E X vector B effects near the anode wire and the discrete nature of the ionization process. Distortion due to positive ions leaking back into the drift volume from the anode wire region have been nearly eliminated by the use of a pulsed dual grid system.

  13. A High Position Resolution X-ray Detector: an Edge on Illuminated Capillary Plate Combined with a Gas Amplification Structure

    CERN Document Server

    Iacobaeus, C.; Lund-Jensen, B.; Ostling, J.; Pavlopoulos, P.; Peskov, V.; Tokanai, F.

    2006-01-01

    We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber filled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibil...

  14. Vacuum Chamber for the Booster Bending Magnets

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    To minimize eddy currents, induced by the rising magnetic field, the chamber was made from thin stainless steel of high specific electric resistance. For mechanical stength, it was corrugated in a hydro-forming process. The chamber is curved, to follow the beam's orbital path. Under vacuum, the chamber tends to staighten, the ceramic spacer along half of its length keeps it in place (see also 7402458).

  15. Drift chamber tracking with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  16. A novel method of creation capillary structures in metal parts based on using selective laser melting methid of 3D printing technology and surface roughness

    Science.gov (United States)

    Ivanov, Roman A.; Melkikh, Alexey V.

    2017-09-01

    It has been experimentally proved that it is possible to produce a metal capillary structure with significant capillary action and free shape configuration using selective laser melting. Capillaries are created by dividing the solid detail volume into micro-sized parallel walls with roughness as a result of SLM 3D printing. Experiments are conducted on aluminum powder with particle size in the range of 10-40 µm (,) and distances in 3D model between surfaces incapillary generation zone in the range of 50-200 µm. It is showed that products produced from model with 100 µm gaps have the greatest efficiency of fluid lifting as a result of obtaining stable arrays of capillaries of 20-40 µm in size. Change in the direction of (growing) printingthe product doesn't significantly influence on capillary geometry, but it affects on safety of the structure.

  17. Bicone vacuum chamber for ISR intersection

    CERN Multimedia

    1975-01-01

    This is one of the bicone chambers made of titanium for experiment R 702. The central corrugated part had a very thin titanium wall (0.28 mm). The first of these chambers collapsed in its central part when baked at 300 C (August 1975). After an intensive effort to develop better quality and reproducible welds for this special material, the ISR workshop was able to build two new chambers of this type. One of them was installed at I 7 for R 702 in 1976 and worked perfectly. It was at that time the most "transparent" intersection vacuum chamber. See also 7609219, 7609221.

  18. Precision Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs measurements and calibration of antennas for satellites and aircraft or groundbased systems. The chamber is primarily used for optimizing antenna...

  19. D0 Central Tracking Chamber Performance Studies

    Energy Technology Data Exchange (ETDEWEB)

    Pizzuto, Domenico [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-01-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an $R\\Phi$ tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against $\\gamma \\to e^+ e^-$ events.

  20. The Mark II Vertex Drift Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Baggs, R.; Fujino, D.; Hayes, K.; Hoard, C.; Hower, N.; Hutchinson, D.; Jaros, J.A.; Koetke, D.; Kowalski, L.A.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 {mu}m spatial resolution and <1000 {mu}m track-pair resolution in pressurized CO{sub 2} gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO{sub 2} mixtures are presented. 10 refs., 12 figs., 1 tab.

  1. D0 central tracking chamber performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Pizzuto, Domenico [State Univ. of New York, Stony Brook, NY (United States)

    1991-12-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an RΦ tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against γ → e + e- events.

  2. Automated dual capillary electrophoresis system with hydrodynamic injection for the concurrent determination of cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thanh Thuy; Mai, Thanh Duc [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland); Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Nguyen, Thanh Dam [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering – University of Alcalá, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares, Madrid 28871 (Spain); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland)

    2014-09-02

    Highlights: • Concurrent determination of cations and anions was carried out by electrophoretic separation. • Optimized conditions for each class of analystes was possible by using separate capillaries. • Simultaneous hydrodynamic injection was carried out. • Pneumatic actuation was used for flushing and sample handling. • The denitrification of drinking water was successfully demonstrated. - Abstract: The capillary electrophoresis instrument developed for the concurrent determination of cations and anions features two separate capillaries and individual detectors to allow independent optimization for each group of ions. The capillaries are joined in a common injector block. The sample is drawn into the injector with a small membrane pump and automated simultaneous injection into both capillaries is achieved by pressurization of the fluid with compressed air. Flushing of the injector and of the capillaries with the background electrolyte is also carried out automatically by the same means. The buffer consisted of 12 mM histidine and 2 mM 18-crown-6 adjusted to pH 4 with acetic acid and was suitable for the contactless conductivity detection employed. The system was optimized for the determination of cationic NH{sub 4}{sup +} and anionic NO{sub 3}{sup −} and NO{sub 2}{sup −}, and linear calibration curves from about 20 μM up to about 1.5 mM were obtained for these ions. In a test run over 8 h, the reproducibility for the peak areas was within ±7%. For demonstration, the instrument was successfully applied to the concurrent monitoring of the concentrations of the three ions during the biological removal of ammonium from contaminated groundwater in a sequencing batch reactor, where NO{sub 3}{sup −} and NO{sub 2}{sup −} are formed as intermediate products.

  3. X-ray optics of tapered capillaries.

    Science.gov (United States)

    Balaic, D X; Nugent, K A

    1995-11-01

    The optics of x-ray concentration by tapered glass capillaries is analyzed in terms of a phase-space construction describing their transmission efficiency. The parameters defining the intensity gain are given in terms of parameters describing the x-ray source used, the capillary taper profile, and glass characteristics. We introduce some key concepts in understanding these devices: the extreme ray and a phase-space description of sources and optics. They are used to develop an analytical formulation for the optimum gain characteristics of generalized tapers for use with synchrotrons and other low-divergence sources. This general solution is solved further for the case of conical taper profile. The predictions of this theory are compared with the results of three-dimensional, ray-tracing simulations of x-ray concentration efficiency for conical and paraboloidal tapers.

  4. Intraoral capillary haemangioma: A rare case report

    Directory of Open Access Journals (Sweden)

    Sushma Parimi

    2016-01-01

    Full Text Available Hemangiomas are common benign vascular tumors of the head and neck region which account for 7% of all benign tumors of infancy and childhood. Adults are rarely affected, and they have a female predilection. Based on the microscopic appearance, they are classified into capillary, cavernous, mixed, and sclerosing variety. Incidence of intraoral capillary hemangioma (CH is infrequent, and its topographical presentation on the palatal mucosa and gingiva marks extreme rarity. They are uncommonly encountered by the dentists. The aim of this article is to present a case of CH in a 46-year-old male who presented with a swelling on the posterior hard palate on the left side involving the palatal gingiva and palatal mucosa.

  5. Transversally periodic solitary gravity–capillary waves

    Science.gov (United States)

    Milewski, Paul A.; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  6. High-performance capillary electrophoresis of glycoconjugates.

    Science.gov (United States)

    Novotny, M V; Sudor, J

    1993-01-01

    Capillary electrophoresis (CE) has recently emerged as a highly promising technique for the analysis and structural study of glycoconjugates. This article reviews the current status of CE and its potential in glycobiology. The separation media suitable for the analysis of monosaccharides, oligosaccharides and very large carbohydrate-based biomolecules are discussed. The detection aspects emphasize chemical derivatization approaches to tagging the glycoconjugates of interest for enhanced response in absorption and fluorescence spectroscopy.

  7. Capillary blood collecting system for glucose determination.

    OpenAIRE

    Wiles, P G; Watkins, P J

    1983-01-01

    A method of self collection of blood is described for use by diabetic patients unable, or unwilling, to determine their own blood glucose, and for when accurate results are required for research purposes. A commercially available 'flask' capillary blood collecting system can be used to collect 50 microliters blood for glucose determination on a Yellow Springs analyser. The results are accurate when compared to Auto Analyzer (r = 0.988) and are unaffected by storage at 4 degrees C for up to 28...

  8. a Comprehensive Model for Capillary Pressure Difference across a Drop/bubble Flowing Through a Constricted Capillary

    Science.gov (United States)

    Liang, Mingchao; Wei, Junhong; Han, Hongmei; Fu, Chengguo; Liu, Jianjun

    2015-09-01

    The capillary pressure is one of the crucial parameters in many science and engineering applications such as composite materials, interface science, chemical engineering, oil exploration, etc. The drop/bubble formation and its mechanisms that affect the permeability of porous media have steadily attracted much attention in the past. When a drop/bubble moves from a larger capillary to a smaller one, it is often obstructed by an additional pressure difference caused by the capillary force. In this paper, a comprehensive model is derived for the capillary pressure difference when a drop/bubble flows through a constricted capillary, i.e. a geometrically constricted passage with an abrupt change in radius. The proposed model is expressed as a function of the smaller capillary radius, pore-throat ratio, contact angle, surface tension and length of the drop/bubble in the smaller capillary. The model predictions are compared with the available experimental data, and good agreement is found between them.

  9. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  10. The order of condensation in capillary grooves.

    Science.gov (United States)

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-05-15

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p(co)(L) described, for large widths, by the Kelvin equation p(sat) - p(co)(L) = 2σ cosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σ sinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented.

  11. Drinking in Space: The Capillary Beverage Experiment

    Science.gov (United States)

    Wollman, Andrew; Weislogel, Mark; Jenson, Ryan; Graf, John; Pettit, Donald; Kelly, Scott; Lindgren, Kjell; Yui, Kimiya

    2015-11-01

    A selection from as many as 50 different drinks including coffees, teas, and fruit smoothies are consumed daily by astronauts aboard the International Space Station. For practical reasons, the drinks are generally sipped through straws inserted in sealed bags. We present the performance of a special cup designed to allow the drinking operation in much the same manner as on earth, only with the role of gravity replaced by the combined effects of surface tension, wetting, and special container geometry. One can finally `smell the coffee.' Six so-called Space Cups are currently in orbit as part of the Capillary Beverage Experiment which aims to demonstrate specific passive control of poorly wetting aqueous capillary systems through a fun mealtime activity. The mathematical fluid mechanical design process with full numerical simulations is presented alongside experimental results acquired using a drop tower and low-g aircraft before complete characterization aboard the Space Station. Astronaut commentary is both humorous and informative, but the insightful experimental results of the potable space experiment testify to the prospects of new no-moving-parts capillary solutions for certain water-based life support operations aboard spacecraft.

  12. Capillary instability on a hydrophilic stripe

    Science.gov (United States)

    Speth, Raymond L.; Lauga, Eric

    2009-07-01

    A recent experiment showed that cylindrical segments of water filling a hydrophilic stripe on an otherwise hydrophobic surface display a capillary instability when their volume is increased beyond the critical volume at which their apparent contact angle on the surface reaches 90° (Gau et al 1999 Science 283 46-9). Surprisingly, the fluid segments did not break up into droplets—as would be expected for a classical Rayleigh-Plateau instability—but instead displayed a long-wavelength instability where all excess fluid gathered in a single bulge along each stripe. We consider here the dynamics of the flow instability associated with this setup. We perform a linear stability analysis of the capillary flow problem in the inviscid limit. We first confirm previous work showing that all cylindrical segments are linearly unstable if (and only if) their apparent contact angle is larger than 90°. We then demonstrate that the most unstable wavenumber for the surface perturbation decreases to zero as the apparent contact angle of the fluid on the surface approaches 90°, allowing us to re-interpret the creation of bulges in the experiment as a zero-wavenumber capillary instability. A variation of the stability calculation is also considered for the case of a hydrophilic stripe located on a wedge-like geometry.

  13. Capillary instability on a hydrophilic stripe

    Energy Technology Data Exchange (ETDEWEB)

    Speth, Raymond L [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Lauga, Eric [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0411 (United States)], E-mail: elauga@ucsd.edu

    2009-07-15

    A recent experiment showed that cylindrical segments of water filling a hydrophilic stripe on an otherwise hydrophobic surface display a capillary instability when their volume is increased beyond the critical volume at which their apparent contact angle on the surface reaches 90 deg. (Gau et al 1999 Science 283 46-9). Surprisingly, the fluid segments did not break up into droplets-as would be expected for a classical Rayleigh-Plateau instability-but instead displayed a long-wavelength instability where all excess fluid gathered in a single bulge along each stripe. We consider here the dynamics of the flow instability associated with this setup. We perform a linear stability analysis of the capillary flow problem in the inviscid limit. We first confirm previous work showing that all cylindrical segments are linearly unstable if (and only if) their apparent contact angle is larger than 90 deg. We then demonstrate that the most unstable wavenumber for the surface perturbation decreases to zero as the apparent contact angle of the fluid on the surface approaches 90 deg, allowing us to re-interpret the creation of bulges in the experiment as a zero-wavenumber capillary instability. A variation of the stability calculation is also considered for the case of a hydrophilic stripe located on a wedge-like geometry.

  14. Intravital microscopy of the capillary perfusion in the corium limbi of the third toe of the minipig.

    Science.gov (United States)

    Hiebl, B; Mrowietz, C; Braune, S; Franke, R P; Plendl, J; Jung, F

    2009-01-01

    Several methods are available today for the investigation of microcirculation in animal models, but they can be invasive and time-consuming depending on the area investigated. In particular, non-invasive methods that can be conducted rapidly and without dye or tracer injections are in demand. The cutaneous microcirculation can be easily studied in the dorsal corium limbi of the third toe of the porcine forelimb using intravital microscopy - analogous to nail fold capillary microscopy in humans. The capillary microscopy system consists of a reflected-light microscope with a cold light source, green and infrared filters and a video camera. The video sequences were recorded using the image capture system Framegrabber (Imagenation PXC-200) and a PC (with an Intel Core 2 Duo processor, 1024 MB RAM, 160 GB hard disk, Windows XP Pro), and stored via a DVD recorder (Panasonic LQ-MD800). Quantification of capillary erythrocyte flow velocities was performed using the computer-assisted image analysis system Cap Image Version 8.5 which includes a movie tool as a video sequence storage medium. The method allows estimation of capillary density and tortuosity as well as capillary circulation in the anesthetized pig within a few minutes. First measurements were made after anesthesia induction followed by further measurements during anesthesia maintenance (3 minutes each). No differences in capillary circulation were found. The present method is thus very well suited for long-term microcirculation measurements in pigs, e.g., to evaluate therapeutic interventions in the ischemic limb model.

  15. Proper Use of Capillary Number in Chemical Flooding

    Directory of Open Access Journals (Sweden)

    Hu Guo

    2017-01-01

    Full Text Available Capillary number theory is very important for chemical flooding enhanced oil recovery. The difference between microscopic capillary number and the microscopic one is easy to confuse. After decades of development, great progress has been made in capillary number theory and it has important but sometimes incorrect application in EOR. The capillary number theory was based on capillary tube bundles and Darcy’s law hypothesis, and this should always be kept in mind when used in chemical flooding EOR. The flow in low permeability porous media often shows obvious non-Darcy effects, which is beyond Darcy’s law. Experiments data from ASP flooding and SP flooding showed that remaining oil saturation was not always decreasing as capillary number kept on increasing. Relative permeability was proved function of capillary number; its rate dependence was affected by capillary end effects. The mobility control should be given priority rather than lowering IFT. The displacement efficiency was not increased as displacement velocity increased as expected in heavy oil chemical flooding. Largest capillary number does not always make highest recovery in chemical flooding in heterogeneous reservoir. Misuse of CDC in EOR included the ignorance of mobility ratio, Darcy linear flow hypothesis, difference between microscopic capillary number and the microscopic one, and heterogeneity caused flow regime alteration. Displacement of continuous oil or remobilization of discontinuous oil was quite different.

  16. Polydopamine as an adhesive coating for open tubular capillary electrochromatography.

    Science.gov (United States)

    Martma, Kert; Habicht, Kaia-Liisa; Ramirez, Xochitl M; Tepp, Kersti; Käämbre, Tuuli; Volobujeva, Olga; Shimmo, Ruth

    2011-04-01

    Polydopamine (PolyD) coating was used as an adhesive layer in the preparation of biological stationary phases for open tubular capillary electrochromatography (OT-CEC). The influence of coating solution freshness, coating time, temperature and dopamine hydrochloride concentration on the PolyD layer formation was studied. The performance of the polyD coating was monitored by measuring the electro-osmotic flow in coated capillaries. Following polyD coating of the capillary, secondary layer material (e.g. cell membrane solutions, phospholipid mixtures or mitochondria) was inserted into the capillary for at least 1 h. The performance of these double-coated capillaries (a polyD layer+a biological material layer) was compared with capillaries containing the respective biological material directly attached to the capillary wall. The study reveals that the presence of polyD layer in fused silica capillaries improves the performance of lipid and membrane fragment coatings in capillaries. At the same time, the thickness of the polyD layer does not have marked impact on the secondary coatings. Analysis with test analytes demonstrated that double-coated capillaries can be applied to study membrane-drug interactions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Fast Finite-Difference Time Domain Simulation Method for the Source-Stirring Reverberation Chamber

    Directory of Open Access Journals (Sweden)

    Wenxing Li

    2017-01-01

    Full Text Available Numerical analysis methods are often employed to improve the efficiency of the design and application of the source-stirring reverberation chamber. However, the state of equilibrium of the field inside the chamber is hard to reach. In this paper, we present a fast simulation method, which is able to significantly decrease the simulation time of the source-stirring reverberation chamber. The mathematical model of this method is given in detail and home-made FDTD code is employed to conduct the simulations and optimizations as well. The results show that the implementation of the method can give us the accurate frequency response of the source-stirring chamber and make the simulation of source-stirring chamber more efficient.

  18. Wide-band antennas for reverberation chambers

    NARCIS (Netherlands)

    Vogt-Ardatjew, R.A.; van de Beek, G.S.; Leferink, Frank Bernardus Johannes

    2012-01-01

    Shielding effectiveness measurements in a dual vibrating intrinsic reverberation chamber results in very repeatable results for a large frequency range and large dynamic range. Antennas in reverberation chambers do not need any gain, but the losses should be low and the dimensions should be small.

  19. Shielding Effectiveness Measurements using a Reverberation Chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes; Bergsma, J.G.; Bergsma, Hans; van Etten, Wim

    2006-01-01

    Shielding effectiveness measurements have been performed using a reverberation chamber. The reverberation chamber methodology as we1l as the measurement setup is described and some results are given. Samples include glass reinforced plastic panels, aluminum panels with many holes, wire mesh, among

  20. 21 CFR 866.2120 - Anaerobic chamber.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a) Identification. An anaerobic chamber is a device intended for medical purposes to maintain an anaerobic (oxygen...

  1. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  2. Results from the MAC Vertex chamber

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.N.

    1987-05-01

    The design, construction, and performance characteristics of a high precision gaseous drift chamber made of thin walled proportional tubes are described. The device achieved an average spatial resolution of 45 ..mu..m in use for physics analysis with the MAC detector. The B-lifetime result obtained with this chamber is discussed.

  3. Validation of a fully anechoic chamber

    NARCIS (Netherlands)

    Mandaris, Dwi; Moonen, Dominicus Johannes Guilielmus; van de Beek, G.S.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2016-01-01

    This paper describes a technique to characterize the performance of a Fully Anechoic Chamber (FAC) from 500 MHz to 3 GHz based on S-Parameter analysis with antennas and a Vector Network Analyzer (VNA. The measurements have been performed by placing one antenna inside the chamber and performing S11

  4. HVAC&R Equipment Environmental Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — Description:Large "Truck" ChamberThe large "truck" chamber provides controlled air conditions from -7 °C (20 °F) to 65 °C (150 °F).Air-Conditioner and Heat Pump Test...

  5. The HARP Time Projection Chamber

    CERN Document Server

    Vidal-Sitjes, G

    2003-01-01

    A novel apparatus for the calibration of the HARP Time Projection Chamber has been designed, developed and built. The apparatus consists of a large number of point-like photo-electron sources located at precise positions inside the detector volume. The photo-electron sources are optical quartz fibers on which one end is coated with an aluminum layer of $\\sim$80{\\AA} thickness and are held in place on the High Voltage membrane. The fibers are used to guide UV laser light pulses that generate photoelectrons on the fiber tips and these act as photo-electron emitters. The photoelectrons drift inside the detector and produce the calibration signals. The technique allows to asses $E\\times B$ distortions and to measure drift velocity, ion feedback and time stability in real time. The analog signals generated by the TPC front-end electronics have been characterized. Different methods to extract the amplitude and time of occurrence from the digitized signals have been studied and compared. Fast estimators, like the su...

  6. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    Science.gov (United States)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  7. An axial approach to detection in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, John Aaron [Iowa State Univ., Ames, IA (United States)

    1993-05-01

    Our approach involves on-axis illumination of the compounds inside the capillary detection region and is applied to absorbance and fluorescence detection. Absorbance measurements were made by focussing an incident laser beam into one capillary end; by using signals collected over the entire length of analyte band, this enhances the analytical path length of conventional absorbance detection 60x. This instrument offers a 15x improvement in detection limits. Three fluorescence detection experiments are discussed, all of which involve insertion of an optical fiber into capillary. The first uses a high refractive index liquid phase to obtain total internal reflectance along capillary axis, this reducing light scatter. The second uses a charge-coupled device camera for simultaneous imaging of a capillary array (this may be useful in genome sequencing, etc.). The third is a study of fluid motion inside the capillary under pressure-driven and electroosmotic flow. The thesis is divided into four parts. Figs, tabs.

  8. Experimental study on nonmonotonicity of capillary desaturation curves in a 2-D pore-network

    Energy Technology Data Exchange (ETDEWEB)

    Rodriquez de Castro, Antonio [Univ. of Manchester (United Kingdom); Shokri, Nima [Univ. of Manchester (United Kingdom); Karadimitriou, Nikolaos [Univ. of Manchester (United Kingdom); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joekar-Niasar, Vahid [Univ. of Manchester (United Kingdom)

    2015-10-28

    Immiscible displacement in a porous medium is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oils saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigate the CDC as influenced by the viscosity ratio. A comprehensive series of experiments using a high-resolution microscope and state-of-the-art micromodels were conducted. The CDCs were calculated and the effects of Ca and M on phase entrapments were quantified. The results show that CDCs are not necessarily monotonic for all M.

  9. Monitored Drift Chambers in the ATLAS Detector

    CERN Document Server

    Herten, G

    Monitored Drift Chambers (MDT) are used in the ATLAS Detector to measure the momentum of high energy muons. They consist of drift tubes, which are filled with an Ar-CO2 gas mixture at 3 bar gas pressure. About 1200 drift chambers are required for ATLAS. They are up to 6 m long. Nevertheless the position of every wire needs to be known with a precision of 20 µm within a chamber. In addition, optical alignment sensors are required to measure the relative position of adjacent chambers with a precision of 30µm. This gigantic task seems impossible at first instance. Indeed it took many years of R&D to invent the right tools and methods before the first chamber could be built according to specifications. Today, at the time when 50% of the chambers have been produced, we are confident that the goal for ATLAS can be reached. The mechanical precision of the chambers could be verified with the x-ray tomograph at CERN. This ingenious device, developed for the MDT system, is able to measure the wire position insid...

  10. High Performance Wafer-Based Capillary Electrochromatography Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II research comprises designing, constructing, and testing a chip-based capillary electrochromatography (CEC) prototype for separation and analysis of...

  11. Simulation of collagen solution flow in rectangular capillary

    Science.gov (United States)

    Kysela, Bohus; Skocilas, Jan; Zitny, Rudolf; Stancl, Jaromir; Houska, Milan; Landfeld, Ales

    The viscoelastic properties of foods and polymers can be evaluated from flow of the material in capillary with specified dimension and shape. The extrusion rheometer equipped by capillary with rectangular cross-section was used for determination of the rheological behaviour of water collagen solution. The measurements of the axial profiles in longitudinal direction of the total stresses at capillary wall were performed for various shear rates. The linear viscoelastic model of Oldroyd B type: White-Metzner model was used for simulation of fluid flow in OpenFOAM software package. The simulations describe the effect of relaxation time on wall total stress in convergent-divergent capillary.

  12. Capillary Rarefaction Associates with Albuminuria: The Maastricht Study.

    Science.gov (United States)

    Martens, Remy J H; Henry, Ronald M A; Houben, Alfons J H M; van der Kallen, Carla J H; Kroon, Abraham A; Schalkwijk, Casper G; Schram, Miranda T; Sep, Simone J S; Schaper, Nicolaas C; Dagnelie, Pieter C; Muris, Dennis M J; Gronenschild, Ed H B M; van der Sande, Frank M; Leunissen, Karel M L; Kooman, Jeroen P; Stehouwer, Coen D A

    2016-12-01

    Albuminuria may be a biomarker of generalized (i.e., microvascular and macrovascular) endothelial dysfunction. According to this concept, endothelial dysfunction of the renal microcirculation causes albuminuria by increasing glomerular capillary wall permeability and intraglomerular pressure, the latter eventually leading to glomerular capillary dropout (rarefaction) and further increases in intraglomerular pressure. However, direct evidence for an association between capillary rarefaction and albuminuria is lacking. Therefore, we examined the cross-sectional association between the recruitment of capillaries after arterial occlusion (capillary density during postocclusive peak reactive hyperemia) and during venous occlusion (venous congestion), as assessed with skin capillaroscopy, and albuminuria in 741 participants of the Maastricht Study, including 211 participants with type 2 diabetes. Overall, 57 participants had albuminuria, which was defined as a urinary albumin excretion ≥30 mg/24 h. After adjustment for potential confounders, participants in the lowest tertile of skin capillary recruitment during postocclusive peak reactive hyperemia had an odds ratio for albuminuria of 2.27 (95% confidence interval, 1.07 to 4.80) compared with those in the highest tertile. Similarly, a comparison between the lowest and the highest tertiles of capillary recruitment during venous congestion yielded an odds ratio of 2.89 (95% confidence interval, 1.27 to 6.61) for participants in the lowest tertile. In conclusion, lower capillary density of the skin microcirculation independently associated with albuminuria, providing direct support for a role of capillary rarefaction in the pathogenesis of albuminuria. Copyright © 2016 by the American Society of Nephrology.

  13. Taylor dispersion analysis in coiled capillaries at high flow rates.

    Science.gov (United States)

    Lewandrowska, Anna; Majcher, Aldona; Ochab-Marcinek, Anna; Tabaka, Marcin; Hołyst, Robert

    2013-04-16

    Taylor Dispersion Analysis (TDA) has been performed for analytes moving at high flow rates in long, coiled capillaries. A thin injection zone of the analyte is stretched by the flow and final distribution of concentration of the analyte at the end of the capillary has the gaussian shape. The high flow rates in coiled capillary generate vortices. They convectively mix the analyte across the capillary. This mixing reduces the width of the gaussian distribution several times in comparison to the width obtained in a straight capillary in standard TDA. We have determined an empirical, scaling equation for the width as a function of the flow rate, molecular diffusion coefficient of the analyte, viscosity of the carrier phase, internal radius of the cylindrical capillary, and external radius of the coiled capillary. This equation can be used for different sizes of capillaries in a wide range of parameters without an additional calibration procedure. Our experimental results of flow in the coiled capillary could not be explained by current models based on approximate solutions of the Navier-Stokes equation. We applied the technique to determine the diffusion coefficients of the following analytes: salts, drugs, single amino acids, peptides (from dipeptides to hexapeptides), and proteins.

  14. Novel Micro-Capillary Electrochromatography for Mars Organic Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a powerful new technology - next generation Micro-Capillary Electrochromatography - a high performance and low power...

  15. Novel Micro-Capillary Electrochromatography for Mars Organic Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a powerful new technology - next generation Micro-Capillary Electrochromatography ? a high performance and low power...

  16. A computational model of hemodynamic parameters in cortical capillary networks.

    Science.gov (United States)

    Safaeian, Navid; Sellier, Mathieu; David, Tim

    2011-02-21

    The analysis of hemodynamic parameters and functional reactivity of cerebral capillaries is still controversial. To assess the hemodynamic parameters in the cortical capillary network, a generic model was created using 2D voronoi tessellation in which each edge represents a capillary segment. This method is capable of creating an appropriate generic model of cerebral capillary network relating to each part of the brain cortex because the geometric model is able to vary the capillary density. The modeling presented here is based on morphometric parameters extracted from physiological data of the human cortex. The pertinent hemodynamic parameters were obtained by numerical simulation based on effective blood viscosity as a function of hematocrit and microvessel diameter, phase separation and plasma skimming effects. The hemodynamic parameters of capillary networks with two different densities (consistent with the variation of the morphometric data in the human cortical capillary network) were analyzed. The results show pertinent hemodynamic parameters for each model. The heterogeneity (coefficient variation) and the mean value of hematocrits, flow rates and velocities of the both network models were specified. The distributions of blood flow throughout the both models seem to confirm the hypothesis in which all capillaries in a cortical network are recruited at rest (normal condition). The results also demonstrate a discrepancy of the network resistance between two models, which are derived from the difference in the number density of capillary segments between the models. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  18. Elimination of High-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    Science.gov (United States)

    Rocker, Marvin; Nesman, Tomas E.

    1999-01-01

    A series of tests were conducted to stabilize the combustion of the Fastrac engine thrust chamber. The first few stability tests resulted in unstable combustion due ineffective acoustic cavity designs. The thrust chamber exhibited unstable combustion in the first-tangential mode and its harmonics. Combustion was stabilized by increasing the volume of the acoustic cavities and by plugging the dump-cooling orifices so that the cavities were uncooled. Although the first few stability tests resulted in unstable combustion, prior and subsequent long-duration performance tests of the Fastrac thrust chamber were spontaneously stable. Stability considerations during the injector faceplate design were based on the Hewitt correlation.

  19. Capillary depth measurement for process control

    Science.gov (United States)

    Dorsch, F.; Dubitzky, W.; Effing, L.; Haug, P.; Hermani, J.-P.; Plasswich, S.

    2017-02-01

    In laser welding applications optical coherence tomography (OCT) is used to measure the capillary depth for process monitoring and process control. A controlled constant weld depth is expected to run applications closer to their process limits and reduce the number of destructive sample inspections. An essential premise is a reliable weld depth measurement independent from influencing factors. This work analyzes the influence of laser power, beam diameter, feed rate, and work piece material on the weld depth measured using the OCT technology. The results obtained by using fixed laser optics are compared to the corresponding results from scanner optics.

  20. Electroviscous effects in capillary filling of nanochannels

    DEFF Research Database (Denmark)

    Mortensen, Asger; Kristensen, Anders

    2008-01-01

    a maximum in the mesoscopic regime where the channel height (or more generally the hydraulic radius) is comparable to the screening length. However, for realistic estimates of central parameters, we find that the electroviscous contribution to the apparent viscosity is at most a 1% effect.......We theoretically examine the widespread hypothesis of an electroviscous origin of the increase in apparent viscosity observed in recent experiments on capillary filling of nanochannels. Including Debye-layer corrections to the hydraulic resistance, we find that the apparent viscosity reaches...

  1. Capillary electrophoresis-mass spectrometry of carbohydrates

    Science.gov (United States)

    Zaia, Joseph

    2014-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This review summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications. PMID:23386333

  2. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  3. Weld Development for Aluminum Fission Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Carl Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Jesse Norris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-16

    The Sigma welding team was approached to help fabricate a small fission chamber (roughly ½ inch dia. x ½ inch tall cylinder). These chambers are used as radiation sensors that contain small traces of radionuclides (Cf 252, U 235, and U 238) that serve to ionize gas atoms in addition to external radiation. When a voltage is applied within the chamber, the resulting ion flow can be calibrated and monitored. Aluminum has the advantage of not forming radioactive compounds when exposed to high external radiation (except from minor Na alloy content). Since aluminum has not been used before in this application, this presented an unexplored challenge.

  4. Cloud chamber photographs of the cosmic radiation

    CERN Document Server

    Rochester, George Dixon

    1952-01-01

    Cloud Chamber Photographs of the Cosmic Radiation focuses on cloud chamber and photographic emulsion wherein the tracks of individual subatomic particles of high energy are studied. The publication first offers information on the technical features of operation and electrons and cascade showers. Discussions focus on the relationship in time and space of counter-controlled tracks; techniques of internal control of the cloud chamber; cascade processes with artificially-produced electrons and photons; and nuclear interaction associated with an extensive shower. The manuscript then elaborates on

  5. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations.

    Science.gov (United States)

    Moreno-Gordaliza, Estefanía; Stigter, Edwin C A; Lindenburg, Petrus W; Hankemeier, Thomas

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10(-9) m(2) V(-1) s(-1)) when compared with unmodified fused silica (5.9 ± 0.1 10(-8) m(2) V(-1) s(-1)). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1-1.8% coefficient-of-variation (CV) within a day) and 2-3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Multiphase CFD Simulation of Solid Propellant Combustion in a Small Gun Chamber

    OpenAIRE

    Ahmed Bougamra; Huilin Lu

    2014-01-01

    The interior ballistics simulations in 9 mm small gun chamber were conducted by implementing the process into the mixture multiphase model of Fluent V6.3 platform. The pressure of the combustion chamber, the velocity, and the travel of the projectile were investigated. The performance of the process, namely, the maximum pressure, the muzzle velocity, and the duration of the process was assessed. The calculation method is validated by the comparison of the numerical simulations results in the ...

  7. Conduct disorder

    Science.gov (United States)

    ... involve defiant or impulsive behavior, drug use, or criminal activity. Causes Conduct disorder has been linked to: ... 2nd ed. Philadelphia, PA: Elsevier; 2016:chap 23. Review Date 2/21/2017 Updated by: Timothy Rogge, ...

  8. Observations of gravity-capillary lump interactions

    CERN Document Server

    Masnadi, Naeem

    2016-01-01

    In this experimental study, we investigate the interaction of gravity-capillary solitary waves generated by two surface pressure sources moving side by side at constant speed. The nonlinear response of a water surface to a single source moving at a speed just below the minimum phase speed of linear gravity-capillary waves in deep water ($c_{min}\\approx23$ cm s$^{-1}$) consists of periodic generation of pairs of three-dimensional solitary waves (or lumps) in a V-shaped pattern downstream of the source. In the reference frame of the laboratory, these unsteady lumps propagate in a direction oblique to the motion of the source. In the present experiments, the strength of the two sources is adjusted to produce nearly identical responses and the free surface deformations are visualized using photography-based techniques. The first lumps generated by the two sources move in intersecting directions that make a half angle of approximately 15 degrees and collide in the center-plane between the sources. A steep depressi...

  9. Capillary wrinkling of thin bilayer polymeric sheets

    Science.gov (United States)

    Chang, Jooyoung; Menon, Narayanan; Russell, Thomas

    We have investigated capillary force induced wrinkling on a floated polymeric bilayer thin sheet. The origin of the wrinkle pattern is compressional hoop stress caused by the capillary force of a water droplet placed on the floated polymeric thin sheet afore investigated. Herein, we study the effect of the differences of surface energy arising from the hydrophobicity of Polystyrene (PS Mw: 97 K, Contact Angle: 88 º) and the hydrophilicity of Poly(methylmethacrylate) (PMMA Mw: 99K, Contact Angle: 68 º) on two sides of a bilayer film. We measure the number and the length of the wrinkles by broadly varying the range of thicknesses of top (9 nm to 550 nm) and bottom layer (25 nm to 330 nm). At the same, there is only a small contrast in mechanical properties of the two layers (PS E = 3.4 GPa, and PMMA E = 3 GPa). The number of the wrinkles is not strongly affected by the composition (PS(Top)/PMMA(Bottom) or PMMA(Top)/PS(Bottom)) and the thickness of each and overall bilayer system. However, the length of the wrinkle is governed by the contact angle of the drop on the top layer of bilayer system. We also compare this to the wrinkle pattern obtained in monolayer systems over a wide range of thickness from PS and PMMA (7 nm to 1 μm). W.M. Keck Foundation.

  10. Reflectivity level of radio anechoic chambers

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1973-01-01

    A comparison between the antenna-pattern comparison technique and the free-space voltage standing-wave ratio technique for evaluating the reflectivity level of radio anechoic chambers is presented. Based on an analysis of the two techniques, it is pointed out which parameters influence the measured...... be used to measure the improvements. This work is inspired by the current discussion of finding a figure of merit for anechoic chambers. Based on the results, an evaluation procedure for anechoic chambers is indicated. However, it is pointed out and illustrated by examples that further investigations...... value of the reflectivity level. The comparison is illustrated with experimental results and it is explained why inconsistent and uncorrelated results may be found when the two methods are used. Furthermore, it is demonstrated, by introducing improvements in a chamber, how the reflectivity level can...

  11. RADAR Anechoic Chamber/RCS Measurements Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The RF Anechoic Chamber is 56 feet long by 12 feet high by 13.5 feet wide, with an adjoining electronic computer control room. A double door entrance at one end of...

  12. Developing cloud chambers with high school students

    CERN Document Server

    Ishizuka, Ryo; Sato, Shoma; Zeze, Syoji

    2013-01-01

    The result and outcome of the cloud chamber project, which aims to develop a cloud chamber useful for science education is reported in detail. A project includes both three high school students and a teacher as a part of Super Science High School (SSH) program in our school. We develop a dry ice free cloud chamber using salt and ice (or snow). Technical detail of the chamber is presented. We also argue how the project affects student's cognition, motivation, academic skills and behavior. The research project had been done in very similar way to those of professional researchers, i.e., planning research, applying fund, writing a paper and giving a talk in conferences. From interviews with students, we learn that such style of scientific activity is very effective in promoting student's motivation for learning science.

  13. High Performance Methane Thrust Chamber (HPMTC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a High-Performance Methane Thrust Chamber (HPMRE) to meet the demands of advanced chemical propulsion systems for deep-space mission...

  14. Chamber Core Structures for Fairing Acoustic Mitigation

    National Research Council Canada - National Science Library

    Lane, Steven A; Henderson, Kyle; Williams, Andrew; Ardelean, Emil

    2007-01-01

    .... A composite chamber core fairing consists of many axial tubes sandwiched between face sheets, tubes that can be used as acoustic dampers to reduce low-frequency interior noise with virtually no added mass...

  15. Developing Cloud Chambers with High School Students

    Science.gov (United States)

    Ishizuka, Ryo; Tan, Nobuaki; Sato, Shoma; Zeze, Syoji

    The result and outcome of the cloud chamber project, which aims to develop a cloud chamber useful for science education is reported in detail. A project includes both three high school students and a teacher as a part of Super Science High School (SSH) program in our school. We develop a dry-ice-free cloud chamber using salt and ice (or snow). Technical details of the chamber are described. We also argue how the project have affected student's cognition, motivation, academic skills and behavior. The research project has taken steps of professional researchers, i.e., in planning research, applying fund, writing a paper and giving a talk in conferences. From interviews with students, we have learnt that such style of scientific activity is very effective in promoting student's motivation for learning science.

  16. Fabrication of Monolithic Bridge Structures by Vacuum-Assisted Capillary-Force Lithography

    KAUST Repository

    Kwak, Rhokyun

    2009-04-06

    Monolithic bridge structures were fabricated by using capillary-force lithography (CFL), which was developed for patterning polymers over a large area by combining essential features of nanoimprint lithography and capillarity. A patterned soft mold was placed on a spin-coated UV-curable resin on a substrate. The polymer then moved into the cavity of the mold by capillary action and then solidified after exposure to UV radiation. The uncured resin was forced to migrate into the cavity of a micropatterned PDMS mold by capillarity, and then exposed to UV radiation under a high-energy mercury lamp with intensity. A rotary pump was then turned on, decreasing the air pressure in the chamber. SEM images were taken with a high-resolution SEM at an acceleration voltage greater than 15 kV. It was observed that when the air pressure was rapidly reduced to a low vacuum, the top layer moved into the nanochannels with a meniscus at the interface between the nanoscale PUA and the base structure.

  17. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  18. New measurement methods for anechoic chamber characterization

    OpenAIRE

    Gómez Alfageme, Juan José; Sanchez Bote, José Luis; Blanco Martín, Elena

    2008-01-01

    As a continuation of the work presented in 122nd AES Convention, this paper tries to study in depth the anechoic chambers qualification. The purpose of this paper is to find parameters that allow the characterization of this type of enclosures. The proposal that becomes in this work is trying to obtain data of the anechoic chambers absorption by means of the transfer functions between pairs of microphones, or by means of the impulse response between pairs of microphones. Based on the results ...

  19. Signal shapes in a TPC wire chamber

    Science.gov (United States)

    Rossegger, S.; Riegler, W.

    2010-11-01

    We study signal shapes in Multi Wire Proportional Chambers (MWPCs) and the influence of the electron distribution around the wire on the ion tail characteristics. Simulations of the ion tail for two different geometries, different voltages and therefore gas gains were performed. These simulations are compared to measurements carried out with the ALICE TPC wire chambers for a Ne/CO 2/N 2 gas mixture, which allows to extract the avalanche spread around the anode wires of the MWPC.

  20. Georges Charpak and his multiwire chamber

    CERN Multimedia

    1970-01-01

    In 1968, Georges Charpak developed the 'multiwire proportional chamber', a gas-filled box with a large number of parallel detector wires, each connected to individual amplifiers. Linked to a computer, it could achieve a counting rate a thousand times better than existing techniques - without a camera in sight. From left to right, Georges Charpak, Fabio Sauli and Jean-Claude Santiard working on a multiwire chamber in 1970.

  1. The Gargamelle heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    This image shows the Gargamelle heavy liquid bubble chamber. It was used to detect particles in experiments at the PS between 1970 and 1976 before being moved to the SPS. In 1973, while working on the PS, it detected the first neutral current, an interaction vital to the electroweak theory. In 1978 a large fissure appeared in the body of the chamber and Gargamelle was stopped in 1979.

  2. The world's largest time projection chamber

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Peter Glassel, the technical coordinator for the ALICE time projection chamber, is seen sitting inside the detector; the largest in the world at nearly 100 cubic metres. Thousands of wires are connected to read out electronic data produced as particles are created in lead-lead collisions at the centre of the detector. These particles will cause the medium within the time projection chamber to ionise along their tracks allowing the particle paths to be recreated.

  3. Laser peripheral iridotomy changes anterior chamber architecture.

    Science.gov (United States)

    Theinert, Christian; Wiedemann, Peter; Unterlauft, Jan D

    2017-01-19

    The pressure gradient between anterior and posterior chamber in acute angle closure (AAC) and primary angle closure suspects is balanced by a sufficient laser peripheral iridotomy (LPI). The anterior chamber changes induced by LPI in patients with unilateral AAC were examined and compared to healthy eyes to define threshold values, which may help to discriminate between healthy and diseased eyes. Using Scheimpflug photography, anterior chamber depth (ACD), anterior chamber volume (ACV), anterior chamber angle (ACA), and central corneal thickness (CCT) were measured before and after LPI in both eyes of unilateral AAC cases. These measurements were compared to a group of healthy control eyes to determine threshold values for ACD, ACV, and ACA. The ACD, ACV, and ACA increased significantly in the 25 AAC eyes after LPI. The ACD, ACV, ACA, and CCT values in the AAC eyes obtained before LPI were compared to a control group of 59 healthy eyes with wide open chamber angles. The cutoff values revealed by receiver operating characteristic analysis were 2.1 mm for ACD, 90.5 mm2 for ACV, and 27.25° for ACA. Our results confirm the significant changes of the anterior segments architecture induced by LPI in AAC eyes. The found threshold values for ACD, ACV, and ACA may help in daily clinical routine to discriminate between healthy eyes and those in need for a prophylactic LPI.

  4. On-line simultaneous and rapid separation of anions and cations from a single sample using dual-capillary sequential injection-capillary electrophoresis.

    Science.gov (United States)

    Gaudry, Adam J; Guijt, Rosanne M; Macka, Mirek; Hutchinson, Joseph P; Johns, Cameron; Hilder, Emily F; Dicinoski, Greg W; Nesterenko, Pavel N; Haddad, Paul R; Breadmore, Michael C

    2013-06-05

    A novel capillary electrophoresis (CE) approach has been developed for the simultaneous rapid separation and identification of common environmental inorganic anions and cations from a single sample injection. The method utilised a sequential injection-capillary electrophoresis instrument (SI-CE) with capacitively-coupled contactless conductivity detection (C(4)D) constructed in-house from commercial-off-the-shelf components. Oppositely charged analytes from a single sample plug were simultaneously injected electrokinetically onto two separate capillaries for independent separation and detection. Injection was automated and may occur from a syringe or be directly coupled to an external source in a continuous manner. Software control enabled high sample throughput (17 runs per hour for the target analyte set) and the inclusion of an isolation valve allowed the separation capillaries to be flushed, increasing throughput by removing slow migrating species as well as improving repeatability. Various environmental and industrial samples (subjected only to filtering) were analysed in the laboratory with a 3 min analysis time which allowed the separation of 23 inorganic and small organic anions and cations. Finally, the system was applied to an extended automated analysis of Hobart Southern Water tap water for a period of 48 h. The overall repeatability of the migration times of a 14 analyte standard sample was less than 0.74% under laboratory conditions. LODs ranged from 5 to 61 μg L(-1). The combination of automation, high confidence of peak identification, and low limits of detection make this a useful system for the simultaneous identification of a range of common inorganic anions and cations for discrete or continuous monitoring applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Characterization of Microdialysis Acidification for Capillary Isoelectric Focusing Microelectrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liyu (ASSOC WESTERN UNIVERSITY); Lee, Cheng S.(UNIVERSITY OF MARYLAND); Hofstadler, Steven A.(BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    1998-01-01

    A microdialysis junction, based on a microdialysis membrane connecting a separate capillary and a short, sharply tapered microelectrospray emitter capillary, is demonstrated for on-line combination of capillary isoelectric focusing (CIEF) with electrospray ionization mass spectrometry (ESI-MS).

  6. In vitro penetration of bleaching agents into the pulp chamber

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Valera, M C; Mancini, M N G

    2004-01-01

    To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures.......To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures....

  7. Two classes of capillary optical fibers: refractive and photonic

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2008-11-01

    This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.

  8. Pre-, on- and post-column derivatization in capillary electrophoresis.

    NARCIS (Netherlands)

    Bardelmeijer, H.A.; Waterval, J.C.M.; Lingeman, H.; van 't Hof, R.; Bult, A.; Underberg, W.J.M.

    1997-01-01

    This survey gives a short overview of the various reagents and procedures that can be used for pre-, post- and on-column derivatization in capillary electrophoresis. First there is an introduction about capillary electrophoresis as an analytical technique; this is followed by a discussion of the

  9. CD105 expression in oral capillary hemangiomas and cavernous hemangiomas.

    Science.gov (United States)

    Matsumoto, Naoyuki; Tsuchiya, Motomi; Nomoto, Shouta; Matsue, Yasuyoshi; Nishikawa, Yohichi; Takamura, Tsuyoshi; Oki, Hidero; Komiyama, Kazuo

    2015-03-01

    Capillary hemangioma (capillary lobular hemangioma) and cavernous hemangioma (venous malformation) are relatively common oral tumors/malformations and are characterized by increased numbers of normal and abnormal blood vessels. However, the causes of these lesions are not well understood. CD105 (endoglin) is predominantly expressed in proliferating blood endothelial cells (ECs). We analyzed expressions of CD105, CD34, von Willebrand factor, Ki-67, cyclooxygenase-2 (COX-2), and vascular endothelial growth factor (VEGF)-A in 31 capillary hemangiomas and 34 cavernous hemangiomas. Staining scores were calculated as the product of the proportion score and intensity score. Morphologically normal oral mucosa specimens (n = 10) were simultaneously evaluated as normal controls. As compared with cavernous hemangiomas and normal controls, capillary hemangiomas had higher staining scores for CD105, VEGF-A, and COX-2. The Ki-67 labeling index was significantly higher in capillary hemangiomas than in cavernous hemangiomas and normal controls (P characteristics of capillary and cavernous hemangiomas are quite different. The ECs of capillary hemangiomas actively proliferated and were generally regulated by VEGF-A. In contrast, the ECs of cavernous hemangiomas lacked proliferative activity. These results suggest that angiogenesis and vasodilatation of pre-existing blood vessels are important in the development of capillary hemangioma and cavernous hemangioma, respectively.

  10. Ultrastructure of skeletal muscle capillaries under conditions of space mission.

    Science.gov (United States)

    Volodina, A V; Pozdnyakov, O M

    2006-06-01

    Capillaries of the rat forepaw skeletal muscles were examined on day 14 of space mission and on days 1 and 14 after landing. Ultrastructural studies revealed apoptosis caused by muscle fiber atrophy and necrobiotic changes eventuating in coagulation or monocellular necrosis of endothelial cells. Formation of capillaries was detected, which can be regarded as an adaptive reaction to injuries caused by space mission factors.

  11. Potential of capillary electrophoresis for the profiling of propolis

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.

    1998-01-01

    The usefulness of capillary electrophoresis (CE) with diode array detection for the profiling of Propolis, a hive product, is investigated. Water extracts of Propolis were analyzed with both capillary zone electrophoresis (CZE) at pH 7.0 and 9.3, and micellar electrokinetic chromatography (MEKC)

  12. Comparison of monolithic silica and polymethacrylate capillary columns for LC.

    Science.gov (United States)

    Moravcová, Dana; Jandera, Pavel; Urban, Jiri; Planeta, Josef

    2004-07-01

    Organic polymer monolithic capillary columns were prepared in fused-silica capillaries by radical co-polymerization of ethylene dimethacrylate and butyl methacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in the presence of various amounts of porogenic solvent mixtures and different concentration ratios of monomers and 1-propanol, 1,4-butanediol, and water. The chromatographic properties of the organic polymer monolithic columns were compared with those of commercial silica-based particulate and monolithic capillary and analytical HPLC columns. The tests included the determination of H-u curves, column permeabilities, pore distribution by inversed-SEC measurements, methylene and polar selectivities, and polar interactions with naphthalenesulphonic acid test samples. Organic polymer monolithic capillary columns show similar retention behaviour to chemically bonded alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have lower methylene selectivities and do not show polar interactions with sulphonic acids. The commercial capillary and analytical silica gel-based monolithic columns showed similar selectivities and provided symmetrical peaks, indicating no significant surface heterogeneities. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra-column contributions. With 0.3 mm ID capillary columns, corrections for extra-column volume contributions are sufficient, but to obtain true information on the efficiency of 0.1 mm ID capillary columns, the experimental bandwidths should be corrected for extra-column contributions to peak broadening.

  13. A Simple Double-Source Model for Interference of Capillaries

    Science.gov (United States)

    Hou, Zhibo; Zhao, Xiaohong; Xiao, Jinghua

    2012-01-01

    A simple but physically intuitive double-source model is proposed to explain the interferogram of a laser-capillary system, where two effective virtual sources are used to describe the rays reflected by and transmitted through the capillary. The locations of the two virtual sources are functions of the observing positions on the target screen. An…

  14. Optical carbon dioxide sensor based on fluorescent capillary array

    Science.gov (United States)

    Wang, Jian; Wen, Zhihui; Yang, Bo; Yang, Xuefeng

    A novel carbon dioxide (CO2) gas sensor based on capillary array is presented. The capillary array is composed of 51 capillaries and modified by fluorescent dye 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS, PTS-) and tetraoctylammonium cation (TOA+) doped porous ethyl cellulose. A Y-fiber is used to transmit exciting light and fluorescence. A fiber optic pigtail-contained spectrophotometer is used to collect and deal with optical signals. Due to its structural features, each capillary has the two rolling-up layers of inner and outer sensing films, which make the 2 cm long capillary array has large sensing area about 12.81 cm2 and the fluorescence signal easily be collected. The sensing probe has advantages such as small volume, compact structure and large sensing area. The results demonstrate that the sensor has a linear response in the CO2 volume ratio range from 0 to 10%.

  15. MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR

    Science.gov (United States)

    Landis, Geoffrey A. (Inventor)

    2005-01-01

    A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.

  16. Conducting Polymers

    Indian Academy of Sciences (India)

    polymer backbone), exhibit semiconducting behavior. The discovery of dopingl led to a further dramatic increase in the conductivity of such conjugated polymers to values as ..... CERF's Comments on Modem Science. • If it's incomprehensible, it's mathematics. • If it doesn't make sense, it's either economics or psychology.

  17. Conducting Polymers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Conducting Polymers - From a Laboratory Curiosity to the Market Place. S Ramakrishnan. Volume 16 Issue 12 December 2011 pp 1254-1265. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography.

    Science.gov (United States)

    Bao, Tao; Zhang, Juan; Zhang, Wenpeng; Chen, Zilin

    2015-02-13

    Much attention is being paid to applying metal-organic frameworks (MOFs) as stationary phases in chromatography because of their fascinating properties, such as large surface-to-volume ratios, high levels of porosity, and selective adsorption. HKUST-1 is one of the best-studied face-centered-cubic MOF containing nano-sized channels and side pockets for film growth. However, growth of HKUST-1 framework inside capillary column as stationary phase for capillary electrochromatography is a challenge work. In this work, we carry out the growth of HKUST-1 on the inner wall of capillary by using liquid-phase epitaxy process at room temperature. The fabricated HKUST-1@capillary can be successfully used for the separation of substituted benzene including methylbenzene, ethylbenzene, styrene, chlorobenzene, bromobenzene, o-dichlorobenzene, benzene series, phenolic acids, and benzoic acids derivates. High column efficiency of 1.5×10(5) N/m for methylbenzene was achieved. The formation of HKUST-1 grown in the capillary was confirmed and characterized by scanning electron microscopy images, Fourier transform infrared spectra and X-ray diffraction. The column showed long lifetime and excellent stability. The relative standard deviations for intra-day and inter-day repeatability of the HKUST-1@capillary were lower than 7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Gut microbiota - architects of small intestinal capillaries.

    Science.gov (United States)

    Khandagale, Avinash; Reinhardt, Christoph

    2018-01-01

    The commensal gut microbiota is an environmental factor that exerts manifold effects on host physiology. One obvious trait is the impact of this densely colonized ecosystem on small intestinal mucosal vascularization. At present, the microbiota-triggered signaling pathways influencing small intestinal renewal, angiogenesis, and vascular remodeling are largely unexplored. While the interplay of gut microbial communities with pattern recognition receptors, such as Toll-like receptors, in intestinal homeostasis is increasingly understood, it is unresolved how commensal microbiota affect the signaling pathways responsible for the formation of capillary networks in the intestinal mucosa. It is evident that intestinal vascular remodeling and renewal is disturbed in case of dysbiosis of this densely colonized microbial ecosystem, in particular under conditions of intestinal inflammation, but the effects of individual components of the gut microbiota are elusive. This review article provides an overview on the revealed microbiota-host interactions, influencing angiogenesis and vascular remodeling processes in the small intestine.

  20. Microfluidic schemes using electrical and capillary forces

    Science.gov (United States)

    Jones, T. B.

    2008-12-01

    The laboratory-on-a-chip (LOC) and indeed virtually all the technology of microTAS (micro-total-analysis systems) rely upon some microfluidic subsystem to control, transport, and manipulate small liquid masses. The most promising of these subsystems use electrical forces, which have the advantages of voltage-based control and dominance over gravity and capillarity in the 10 to 103 micron diameter range. Gravity is usually ignorable on this scale, but the interactions of electrical and capillary forces are more complex. In particular, microstructures can be designed to exploit this interplay for the cases of electrowetting on dielectric-coated electrodes (EWOD) and liquid dielectrophoresis (DEP). The complementary nature of the two effects explains the operation of droplet-based microfluidic systems in general, and the so-called DEP droplet dispenser in particular.

  1. Capillary electrophoresis mass spectrometry based metabolomics

    Directory of Open Access Journals (Sweden)

    Alexander M. Buko

    2017-03-01

    Full Text Available Capillary electrophoresis–mass spectrometry (CE-MS is a powerful orthogonal technique capable of filling in gaps in the identification, quantitation and isomeric resolution of many small hydrophilic and charged metabolites. The metabolome is a large complex mixture of molecules for which not one technique nor a combination of techniques can optimally identify and measure it in it’s entirety. LC-MS, GC-MS and NMR have been the widely used for metabolomics for the past 20 years for a wide range of applications, each technique having shown uniqueness and advantages, for specific applications or target metabolic chemical space. CE-MS captures a unique metabolic chemical space beyond these standard methods providing another window into metabolomics profiling. This review will focus on the recent publications published within 2016 focusing on biotechnology and pharmaceutical applications of CE-MS.

  2. Gravity-capillary free-surface flows

    CERN Document Server

    Vanden-Broeck, Jean-Marc

    2010-01-01

    Free surface problems occur in many aspects of science and of everyday life such as the waves on a beach, bubbles rising in a glass of champagne, melting ice, pouring flows from a container and sails billowing in the wind. Consequently, the effect of surface tension on gravity-capillary flows continues to be a fertile field of research in applied mathematics and engineering. Concentrating on applications arising from fluid dynamics, Vanden-Broeck draws upon his years of experience in the field to address the many challenges involved in attempting to describe such flows mathematically. Whilst careful numerical techniques are implemented to solve the basic equations, an emphasis is placed upon the reader developing a deep understanding of the structure of the resulting solutions. The author also reviews relevant concepts in fluid mechanics to help readers from other scientific fields who are interested in free boundary problems.

  3. Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals.

    Science.gov (United States)

    Haselberg, R; Brinks, V; Hawe, A; de Jong, G J; Somsen, G W

    2011-04-01

    In this work, the usefulness of capillary electrophoresis-electrospray ionization time-of-flight-mass spectrometry for the analysis of biopharmaceuticals was studied. Noncovalently bound capillary coatings consisting of Polybrene-poly(vinyl sulfonic acid) or Polybrene-dextran sulfate-Polybrene were used to minimize protein and peptide adsorption, and achieve good separation efficiencies. The potential of the capillary electrophoresis-mass spectrometry (CE-MS) system to characterize degradation products was investigated by analyzing samples of the drugs, recombinant human growth hormone (rhGH) and oxytocin, which had been subjected to prolonged storage, heat exposure, and/or different pH values. Modifications could be assigned based on accurate masses as obtained with time-of-flight-mass spectrometry (TOF-MS) and migration times with respect to the parent compound. For heat-exposed rhGH, oxidations, sulfonate formation, and deamidations were observed. Oxytocin showed strong deamidation (up to 40%) upon heat exposure at low pH, whereas at medium and high pH, mainly dimer (>10%) and trisulfide formation (6-7%) occurred. Recombinant human interferon-β-1a (rhIFN-β) was used to evaluate the capability of the CE-MS method to assess glycan heterogeneity of pharmaceutical proteins. Analysis of this N-glycosylated protein revealed a cluster of resolved peaks which appeared to be caused by at least ten glycoforms differing merely in sialic acid and hexose N-acetylhexosamine composition. Based on the relative peak area (assuming an equimolar response per glycoform), a quantitative profile could be derived with the disialytated biantennary glycoform as most abundant (52%). Such a profile may be useful for in-process and quality control of rhIFN-β batches. It is concluded that the separation power provided by combined capillary electrophoresis and TOF-MS allows discrimination of highly related protein species.

  4. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    Science.gov (United States)

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Conduction apraxia.

    OpenAIRE

    Ochipa, C; Rothi, L J; Heilman, K M

    1994-01-01

    A left hemisphere damaged patient with ideomotor apraxia is described, whose performance on pantomime to verbal command was superior to pantomime imitation. His reception of these same gestures (gesture naming) was spared. This syndrome has been named conduction apraxia. To account for this selective impaired performance on gesture imitation, a separation of the representations for gesture production and reception is proposed and a non-lexical gesture processing route for gesture imitation is...

  6. Bakelite chambers for time-of-flight measurements

    CERN Document Server

    Cwiok, M; Górski, M; Królikowski, J

    1999-01-01

    We report on the search of composite organic materials with the volume resistivity ranging from 10 sup 8 to 10 sup 1 sup 1 OMEGA cm. Materials having resistivity in this range may be used for electrodes of thin gap Parallel Plate Avalanche Chambers. Gas detectors of such structure and operated at increased gas pressure allow, potentially, a sub-nanosecond time resolution. Using bakelite-like material with electrical properties well tuned during manufacturing opens the possibility to overcome limitations related to the semi-conductive glass employed usually for ultrafast gas detectors of parallel plate structure for time-of-flight technique.

  7. Carbon wire chamber at sub-atmospheric pressure

    Science.gov (United States)

    Charles, G.; Audouin, L.; Bettane, J.; Dupre, R.; Genolini, B.; Hammoudi, N.; Imre, M.; Le Ven, V.; Maroni, A.; Mathon, B.; Nguyen Trung, T.; Rauly, E.

    2017-05-01

    Present in many experiments, wire and drift chambers have been used in a large variety of shapes and configurations during the last decades. Nevertheless, their readout elements has not evolved much: tungsten, sometimes gold-plated or aluminum, wires. By taking advantage of the developments in the manufacture of conducting carbon fiber, we could obtain interesting improvements for wire detectors. In this article, we present recent tests and simulations using carbon fibers to readout signal in place of traditional tungsten wires. Unlike metallic wires, their low weight guaranties a reduced quantity of material in the active area.

  8. Repair of isolated double-chambered right ventricle | El Kouache ...

    African Journals Online (AJOL)

    The finding of a double-chambered right ventricle (DCRV) is exceptionally rare as an isolated anomaly. It is a congenital cardiac anomaly in which the right ventricle is separated into two chambers, a proximal highpressure chamber and a distal low-pressure chamber, by anomalous muscles or fibrous tissues in the right ...

  9. Pulmonary surfactant surface tension influences alveolar capillary shape and oxygenation.

    Science.gov (United States)

    Ikegami, Machiko; Weaver, Timothy E; Grant, Shawn N; Whitsett, Jeffrey A

    2009-10-01

    Alveolar capillaries are located in close proximity to the alveolar epithelium and beneath the surfactant film. We hypothesized that the shape of alveolar capillaries and accompanying oxygenation are influenced by surfactant surface tension in the alveolus. To prove our hypothesis, surfactant surface tension was regulated by conditional expression of surfactant protein (SP)-B in Sftpb(-/-) mice, thereby inhibiting surface tension-lowering properties of surfactant in vivo within 24 hours after depletion of Sftpb. Minimum surface tension of isolated surfactant was increased and oxygen saturation was significantly reduced after 2 days of SP-B deficiency in association with deformation of alveolar capillaries. Intravascularly injected 3.2-mum-diameter microbeads through jugular vein were retained within narrowed pulmonary capillaries after reduction of SP-B. Ultrastructure studies demonstrated that the capillary protrusion typical of the normal alveolar-capillary unit was reduced in size, consistent with altered pulmonary blood flow. Pulmonary hypertension and intrapulmonary shunting are commonly associated with surfactant deficiency and dysfunction in neonates and adults with respiratory distress syndromes. Increased surfactant surface tension caused by reduction in SP-B induced narrowing of alveolar capillaries and oxygen desaturation, demonstrating an important role of surface tension-lowering properties of surfactant in the regulation of pulmonary vascular perfusion.

  10. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  11. Guiding of charged particles through capillaries in insulating materials

    Science.gov (United States)

    Stolterfoht, Nikolaus; Yamazaki, Yasunori

    2016-04-01

    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  12. Assessing vitamin D nutritional status: Is capillary blood adequate?

    Science.gov (United States)

    Jensen, M E; Ducharme, F M; Théorêt, Y; Bélanger, A-S; Delvin, E

    2016-06-01

    Venous blood is the usual sample for measuring various biomarkers, including 25-hydroxyvitamin D (25OHD). However, it can prove challenging in infants and young children. Hence the finger-prick capillary collection is an alternative, being a relatively simple procedure perceived to be less invasive. We elected to validate the use of capillary blood sampling for 25OHD quantification by liquid chromatography tandem-mass spectrometry (LC/MS-MS). Venous and capillary blood samples were simultaneously collected from 15 preschool-aged children with asthma 10days after receiving 100,000IU of vitamin-D3 or placebo and 20 apparently healthy adult volunteers. 25OHD was measured by an in-house LC/MS-MS method. The venous 25OHD values varied between 23 and 255nmol/l. The venous and capillary blood total 25OHD concentrations highly correlated (r(2)=0.9963). The mean difference (bias) of capillary blood 25OHD compared to venous blood was 2.0 (95% CI: -7.5, 11.5) nmol/l. Our study demonstrates excellent agreement with no evidence of a clinically important bias between venous and capillary serum 25OHD concentrations measured by LC/MS-MS over a wide range of values. Under those conditions, capillary blood is therefore adequate for the measurement of 25OHD. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Change of Pressing Chamber Conicalness at Briquetting Process in Briquetting Machine Pressing Chamber

    Directory of Open Access Journals (Sweden)

    Peter Križan

    2012-01-01

    Full Text Available In this paper, we will present the impact of the conical shape of a pressing chamber, an important structural parameter. Besides the known impact of the technological parameters of pressing chambers, it is also very important to pay attention to their structural parameters. In the introduction, we present a theoretical analysis of pressing chamber conicalness. An experiment aimed at detecting this impact was performed at our institute, and it showed that increasing the conicalness of a pressing chamber improves the quality of the final briquettes. The conicalness of the pressing chamber has a significanteffect on the final briquette quality and on the construction of briquetting machines. The experimental findings presented here show the importance of this parameter in the briquetting process.

  14. Commissioning of SLAC SLD 45-Degree Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Eschenburg, Vance O.

    2002-07-19

    The SLD experiment at the Stanford Linear Accelerator Center had a significant gap in its muon tracking coverage, provided by the Warm Iron Calorimeter. Supplemental planes of limited streamer tube chambers were added to improve the coverage in the vicinity of the gap at 0.65 < |cos{theta}| < 0.85. A software effort to upgrade the tracking software for this system is detailed. The commissioning of the forty-five degree chamber region of the SLAC SLD Warm Iron Calorimeter is presented. This task involved the completion of the forty-five degree chamber region geometry for the Warm Iron Calorimeter's fitter and swimmer and the changing of the way multiple scattering effects are treated in the fitter algorithm.

  15. Rapid-Cycling Bubble-Chamber, details

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Parts of the hydraulic expansion system of the Rapid-Cycling Bubble-Chamber (RCBC). RCBC was the largest of 3 rapid-cycling bubble-chambers (the others were LEBC and HOLEBC), used as target- and vertex-detectors within the European Hybrid Spectrometer (EHS) in the SPS North Area (EHN1). RCBC contained 250 l of liquid hydrogen and was located inside a 3 T superconducting magnet. It was designed for 30 expansions/s (100 times faster than BEBC), the system shown here allowed 50 expansions/s. RCBC operated from 1981 to 1983 for experiments NA21, NA22 and NA23 at a rate of 15 expansions/s, clocking up a total of over 4 million. In the rear, at left, is bearded Lucien Veillet; Augustin Didona is at the right. See also 8001009. The installation of the piston assembly in the RCBC chamber body is shown in the Annual Report 1980, p.65.

  16. Thermal Vacuum Chamber Repressurization with Instrument Purging

    Science.gov (United States)

    Woronowicz, Michael

    2017-01-01

    At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  17. High temperature thrust chamber for spacecraft

    Science.gov (United States)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  18. Anterior chamber collapse syndrome in a koala.

    Science.gov (United States)

    Liddle, Vl; Naranjo, C; Bernays, Me

    2014-05-01

    Anterior chamber collapse syndrome has been recognised in various species and is associated with early-life ocular disease or trauma. It is important to differentiate this acquired condition from a congenital malformation. An adult female koala (Phascolarctos cinereus) was referred for assessment of buphthalmos and severe keratitis of the right eye. The degree of keratitis obstructed examination of intraocular structures. Enucleation of the affected eye was performed and the histopathological diagnosis was anterior chamber collapse syndrome and secondary glaucoma. This case contributes to the limited information available in the literature on anterior chamber collapse syndrome, a disease unique in having secondary glaucoma with minimal or no inflammation. The case also expands the literature available on ocular disease in koalas. More specifically, this is the only reported case of glaucoma, of any aetiology, in the koala. © 2014 Australian Veterinary Association.

  19. Swirl chamber for vitrification of fly ashes

    Directory of Open Access Journals (Sweden)

    Zarzycki Robert

    2017-01-01

    Full Text Available The study presents the concept of a swirl chamber used for vitrification of fly ashes. It assumes the use of coal dust in the process of fly ash melting. The coal dust supplied to the swirl chamber and gasified in the atmosphere of O2, CO2 and H2O allows for obtaining combustible gases composed of CO and H2, which are burnt with the pneumatically supplied fly ash. The above process allows for obtaining a product in the form of a molten slag which does not contain coal grains. The study presents numerical calculations for the process of combustion and gasification of coal dust and opportunities for ensuring adequate parameters in the fly ash melting zone. The combustible gases obtained during the process of gasification can be supplied to the chamber of a pulverized-bed boiler.

  20. Emulsion chamber experiments for the Space Station

    Science.gov (United States)

    Wilkes, R. J.

    Emulsion chambers offer several unique features for the study of ultrahigh-energy cosmic-ray interactions and spectra aboard a permanent manned Space Station. Emulsion-chamber experiments provide the highest acceptance/weight ratio of any current experimental technique, are invulnerable to mechanical shocks and temperature excursions associated with space flight, do not employ volatile or explosive components or materials, and are not dependent upon data communications or recording systems. Space-Station personnel would be employed to replace track-sensitive materials as required by background accumulation. Several emulsion-chamber designs are proposed, including both conventional passive calorimetric detectors and a hybrid superconducting-magnetic-spectrometer system. Results of preliminary simulation studies are presented. Operational logistics are discussed.

  1. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Conducted Vasoreactivity

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A Y; Sosnovtseva, Olga

    2015-01-01

    Conducted vasodilation is part of the physiological response to increasing metabolic demand of the tissue. Similar responses can be elicited by focal electrical or chemical stimulation. Some evidence suggests an endothelial pathway for nondecremental transmission of hyperpolarizing pulses. However...... a theoretical analysis as well as numerical simulations of both single- and multiunit bistable systems mimicking endothelial cells to investigate the self-consistence and stability of the proposed mechanism. We find that the individual cell may switch readily between two stable potentials. An array of coupled...

  3. Almond Test Body. [for microwave anechoic chambers

    Science.gov (United States)

    Dominek, Allen K. (Inventor); Wood, Richard M. (Inventor); Gilreath, Melvin C. (Inventor)

    1989-01-01

    The invention is an almond shaped test body for use in measuring the performance characteristics of microwave anechoic chambers and for use as a support for components undergoing radar cross-section measurements. The novel aspect of this invention is its shape, which produces a large dynamic scattered field over large angular regions making the almond valuable for verifying the performance of microwave anechoic chambers. As a component mount, the almond exhibits a low return that does not perturb the measurement of the component and it simulates the backscatter characteristics of the component as if over an infinite ground plane.

  4. Sealed Plant-Growth Chamber For Clinostat

    Science.gov (United States)

    Brown, Christopher S.; Dreschel, Thomas W.

    1993-01-01

    Laboratory chamber for growing plants used to measure photosynthesis and respiration in simulated microgravity. Holds plant specimens while rotated on clinostat, see article, "Clinostat Delivers Power To Plant-Growth Cabinets" (KSC-11537). Provides way of comparing gas-exchange rates of plants rotated horizontally on clinostat with those of stationary or vertically rotated plants. Gas extracted for analysis without stopping clinostat. Chamber includes potlike base and cylindrical cover, both made of transparent acrylic pipe. Gasket forms seal between cover and bottom plate of base. Cover bolted to pot baseplate, which in turn bolted to clinostat.

  5. Permeability of MDT chambers to water vapor

    CERN Document Server

    Palestini, S

    2003-01-01

    Tests of MDT chambers performed at the GIF facility and in the H8 test-beam area have shown relative high levels of water vapor contamination in the gas-mixture at the detector output. This effects significantly the drift properties of the MDTs. This note shows that amount of water observed is compatible with approximate estimates based on the permeability of Noryl, used in the tube end-plugs, and of EPDM, used in the O-rings of the on-chamber gas distribution.

  6. A view inside the Gargamelle bubble chamber

    CERN Multimedia

    1970-01-01

    Gargamelle was the name given to a big bubble chamber built at the Saclay Laboratory in France during the late 1960s. It was designed principally for the detection at CERN of the elusive particles called neutrinos. A bubble chamber contains a liquid under pressure, which reveals the tracks of electrically charged particles as trails of tiny bubbles when the pressure is reduced. Neutrinos have no charge, and so leave no tracks, but the aim with Gargamelle was "see neutrinos" by making visible any charged particles set in motion by the interaction of neutrinos in the liquid

  7. Almond test body. [for microwave anechoic chambers

    Science.gov (United States)

    Dominek, Allen K. (Inventor); Wood, Richard M. (Inventor); Gilreath, Melvin C. (Inventor)

    1989-01-01

    The invention is an almond shaped test body for use in measuring the performance characteristics of microwave anechoic chambers and for use as a support for components undergoing radar cross-section measurements. The novel aspect of this invention is its shape, which produces a large dynamic scattered field over large angular regions making the almond valuable for verifying the performance of microwave anechoic chambers. As a component mount, the almond exhibits a low return that does not perturb the measurement of the component and it simulates the backscatter characteristics of the component as if over an infinite ground plane.

  8. Optimization of micro-strip gas chamber as two-dimensional neutron detector using gadolinium converter

    Energy Technology Data Exchange (ETDEWEB)

    Masaoka, Sei; Nakamura, Tatsuya; Yamagishi, Hideshi; Soyama, Kazuhiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    A micro-strip gas chamber (MSGC) has been developing as a two-dimensional position sensitive neutron detector for neutron scattering experiments using high-intensity pulsed-neutron source in a high-intensity proton accelerator facility. MSGC is required for the high count rate, high detective efficiency, high positional resolution, stabilization and covering large area. Our purpose in this paper is to verify the proper of Gadolinium as MSGC converter. First, the basic property of Gadolinium converter was examined by simple experiments using a zero-dimensional neutron detector on the purpose of deriving the detective efficiency. Second, the optimization of the arrangement of a capillary plate in MSGC has been done by simulation on the MSGC using Gadolinium converter. As a result of that, it has been proved that Gadolinium can be theoretically used as a converter of MSGC. (author)

  9. Creeping motion of long bubbles and drops in capillary tubes

    DEFF Research Database (Denmark)

    Westborg, Henrik; Hassager, Ole

    1989-01-01

    at high capillary numbers. Furthermore the flow of a viscous drop through a doughnut shaped constriction in a capillary tube has been simulated. The simulations show that snap-off may be initiated by a sudden drop in the flow rate after the drops have protruded for some distance beyond the throat...... and the snap-off time increases with increasing capillary number. Snap-off without a sudden decrease of the flow rate does not seem to occur in constrictions of circular cross section....

  10. Dual-opposite injection capillary electrophoresis: Principles and misconceptions.

    Science.gov (United States)

    Blackney, Donna M; Foley, Joe P

    2017-03-01

    Dual-opposite injection capillary electrophoresis (DOI-CE) is a separation technique that utilizes both ends of the capillary for sample introduction. The electroosmotic flow (EOF) is suppressed to allow all ions to reach the detector quickly. Depending on the individual electrophoretic mobilities of the analytes of interest and the effective length that each analyte travels to the detection window, the elution order of analytes in a DOI-CE separation can vary widely. This review discusses the principles, applications, and limitations of dual-opposite injection capillary electrophoresis. Common misconceptions regarding DOI-CE are clarified. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of the Capillary Blood Glucose Self-monitoring Program

    Directory of Open Access Journals (Sweden)

    Mariana Cristina Augusto

    2014-10-01

    Full Text Available OBJECTIVE: to evaluate the structure, process and results of the Capillary Blood Glucose Self-monitoring Program in a Brazilian city.METHOD: epidemiological, cross-sectional study. The methodological framework of Donabedian was used to construct indicators of structure, process and outcome. A random sample (n = 288 of users enrolled and 96 health professionals who worked in the program was studied. Two questionnaires were used that were constructed for this study, one for professionals and one for users, both containing data for the evaluation of structure, process and outcome. Anthropometric measures and laboratory results were collected by consulting the patients' health records. The analysis involved descriptive statistics.RESULTS: most of the professionals were not qualified to work in the program and were not knowledgeable about the set of criteria for patient registration. None of the patients received complete and correct orientations about the program and the percentage with skills to perform conducts autonomously was 10%. As regards the result indicators, 86.4% of the patients and 81.3% of the professionals evaluated the program positively.CONCLUSION: the evaluation indicators designed revealed that one of the main objectives of the program, self-care skills, has not been achieved.

  12. A simplified MHD model of capillary Z-Pinch compared with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shapolov, A.A.; Kiss, M.; Kukhlevsky, S.V. [Institute of Physics, University of Pecs (Hungary)

    2016-11-15

    The most accurate models of the capillary Z-pinches used for excitation of soft X-ray lasers and photolithography XUV sources currently are based on the magnetohydrodynamics theory (MHD). The output of MHD-based models greatly depends on details in the mathematical description, such as initial and boundary conditions, approximations of plasma parameters, etc. Small experimental groups who develop soft X-ray/XUV sources often use the simplest Z-pinch models for analysis of their experimental results, despite of these models are inconsistent with the MHD equations. In the present study, keeping only the essential terms in the MHD equations, we obtained a simplified MHD model of cylindrically symmetric capillary Z-pinch. The model gives accurate results compared to experiments with argon plasmas, and provides simple analysis of temporal evolution of main plasma parameters. The results clarify the influence of viscosity, heat flux and approximations of plasma conductivity on the dynamics of capillary Z-pinch plasmas. The model can be useful for researchers, especially experimentalists, who develop the soft X-ray/XUV sources. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Validated Method for the Determination of Piroxicam by Capillary Zone Electrophoresis and Its Application to Tablets

    Directory of Open Access Journals (Sweden)

    Arın Gül Dal

    2014-01-01

    piroxicam in tablets. The separation of piroxicam was conducted in a fused-silica capillary by using 10 mM borate buffer (pH 9.0 containing 10% (v/v methanol as background electrolyte. The optimum conditions determined were 25 kV for separation voltage and 1 s for injection time. Analysis was carried out with UV detection at 204 nm. Naproxen sodium was used as an internal standard. The method was linear over the range of 0.23–28.79 µg/mL. The accuracy and precision were found to be satisfied within the acceptable limits (<2%. The LOD and LOQ were found to be 0.07 and 0.19 µg/mL, respectively. The method described here was applied to tablet dosage forms and the content of a tablet was found in the limits of USP-24 suggestions. To compare the results of capillary electrophoretic method, UV spectrophotometric method was developed and the difference between two methods was found to be insignificant. The capillary zone electrophoretic method developed in this study is rapid, simple, and suitable for routine analysis of piroxicam in pharmaceutical tablets.

  14. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  15. Vacuum chamber for intersection I-4

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Vacuum chamber for intersection I-4 of the ISR being assembled inside a wooden mock-up of the gap of the split-field magnet. The central round-cylinder section is provisional and is to be replaced by an elliptic-cylinder section to give more space vertically for installation of detectors. Supports for the central section are of carbon fibre composite.

  16. Using reverberation chambers for em measurements

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2010-01-01

    Reverberation chambers (RC) are being used for several decades. The main advantage is the high field strength which can be generated, with only modest power. In the last few years the use of RCs became much popular, for testing multi-path propagation for communication links, or testing the coupling

  17. Spark chambers in the Microcosm museum

    CERN Multimedia

    Patrice Loiez

    1990-01-01

    These spark chambers were displayed in CERN's permanent exhibition, Microcosm. These were particle detectors in which the tracks of particles would be seen by sparks created along the particle's path. While touring Microcosm, visitors can learn more about this and other detector methods both past and present.

  18. Intracapsular cataract extraction with anterior chamber intraocular ...

    African Journals Online (AJOL)

    Aim: To assess the visual outcome of cataract extraction with ACIOL implantation in a Nigerian hospital. Methods: The visual outcome of 50 eyes of 42 patients aged 40 years and above, out of 212 eyes that underwent intracapsular cataract extraction (ICCE) and anterior chamber intraocular lens (ACIOL) implantation, were ...

  19. Readout system for proportional wire chambers

    CERN Document Server

    Berst, J D; Metzger, G; Meyer, J M; Schultz, G

    1974-01-01

    The authors describe a MWPC read-out system intended for the hyperon experiments at CERN. Its structure is like the familiar CAMAC branch highway, but driven by a spark chamber readout module placed in CAMAC. The different parts of the equipment, which may read up to 4096 wires, and the test system are described. (5 refs).

  20. IKAR, a ionization chamber for WA9

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    This ionization chamber arrived at CERN from Leningrad for a high precision study of hadron elastic scattering by a CERN-Clermont-Ferrand-Leningrad-Lyon-Uppsala Collaboration in the H3 beam (WA9). G.A. Korolev (third from right) looks at the drawings.

  1. Presenting Chamber Music to Young Children

    Science.gov (United States)

    Smith, Terry Fonda

    2011-01-01

    The number of professional ensembles and organizations with dedicated outreach concerts has been steadily increasing over the past decade. More recently, educational concerts pairing chamber music with young children have been documented. The work presented in this article is a study in the efficacy and feasibility of this format. Various music…

  2. The arrival of the CLOUD chamber

    CERN Multimedia

    CERN AVC

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D; and design, and the start of preparations for data taking later this year.

  3. Prototype vacuum chamber for ISR intersection region

    CERN Multimedia

    1974-01-01

    The vacuum chambers at the ISR interaction regions had to be as transparent as possible to the secondary particles emerging from the collision points. Made from stainless steel or titanium, only a fraction of a millimeter thick, they were most delicate to handle.

  4. Prototype Vacuum Chamber for ISR Intersection Region

    CERN Multimedia

    1974-01-01

    The vacuum chambers at the ISR interaction region had to be as transparent as possible to the secondary particles emerging from the collision points. Made from stainless steel or titanium, only a fraction of a millimeter thick, they were most delicate to handle.

  5. Reproducibility of the chamber scarification test

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner

    1996-01-01

    The chamber scarification test is a predictive human skin irritation test developed to rank the irritation potential of products and ingredients meant for repeated use on normal and diseased skin. 12 products or ingredients can be tested simultaneously on the forearm skin of each volunteer. The t...

  6. The use of microholography in bubble chambers

    CERN Document Server

    Royer, H

    1981-01-01

    In-line holography has been used for the first time in a bubble chamber for the account of the CERN (Geneva, CH). The holograms were recorded with the help of a single-mode pulse laser. Bubble tracks of 25 microns in diameter have been reconstructed with a resolution of 2 microns. (12 refs).

  7. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya

    2009-03-11

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  8. Design of Nano- and Microfibrous Channels for Fast Capillary Flow.

    Science.gov (United States)

    Shou, Dahua; Fan, Jintu

    2017-12-17

    The speed of capillary flow is a key bottleneck in improving the performance of nano- and microfluidic devices for various applications including microfluidic diagnostics, thermal management heat pipes, micro-molding devices, functional fabrics, and oil-water separators. Here we present a novel nano- or microfibrous hollow wedged channel (named as W-Channel) which can significantly speed up the capillary flow. The capillary flow in the initial 100 seconds in the nanofibrous W-Channel was shown to be 8 times faster than that in the single-layer strip of the same material when placed vertically and over 20 times faster when placed horizontally. The enhanced flow under gravity is attributed to the adaptive interplay of capillary pressure and flow resistance within the triangular hollow wedge between the fibrous layers. The W-Channel can be fabricated following a simple procedure using inexpensive materials such as electrospun nanofibers or microfibrous filter papers.

  9. Transverse vertical dispersion in groundwater and the capillary fringe.

    Science.gov (United States)

    Klenk, I D; Grathwohl, P

    2002-09-01

    Transverse dispersion is the most relevant process in mass transfer of contaminants across the capillary fringe (both directions), dilution of contaminants, and mixing of electron acceptors and electron donors in biodegrading groundwater plumes. This paper gives an overview on literature values of transverse vertical dispersivities alpha(tv) measured at different flow velocities and compares them to results from well-controlled laboratory-tank experiments on mass transfer of trichloroethene (TCE) across the capillary fringe. The measured values of transverse vertical dispersion in the capillary fringe region were larger than in fully saturated media, which is credited to enhanced tortuosity of the flow paths due to entrapped air within the capillary fringe. In all cases, the values observed for alpha(tv) were model, based on the mean square displacement and the pore size accounting for only partial diffusive mixing at increasing flow velocities, shows very good agreement with measured and published data.

  10. High Performance Wafer-Based Capillary Electrochromatography Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop wafer-based capillary electrochromatography for lab-on-a-chip (LOC) applications. These microfluidic devices will be...

  11. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil

    2014-01-01

    Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate...... blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood......-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke....

  12. Omphalocele and alveolar capillary dysplasia: a new association.

    NARCIS (Netherlands)

    Gerrits, L.C.; Mol, A.C. de; Bulten, J.; Staak, F.H.J.M. van der; Heijst, A.F.J. van

    2010-01-01

    OBJECTIVE: First report of an infant with coexistent omphalocele and alveolar capillary dysplasia. DESIGN: Descriptive case report. SETTING: Neonatal intensive care unit of a tertiary care children's hospital. PATIENT: We describe a term infant with omphalocele and respiratory insufficiency

  13. Enantiomeric purity determination of tamsulosin by capillary electrophoresis using cyclodextrins and a polyacrylamide-coated capillary.

    Science.gov (United States)

    Kavalírová, Andrea; Pospísilová, Marie; Karlícek, Rolf

    2005-10-01

    The chiral separation of racemic tamsulosin hydrochloride (TH) was carried out using cyclodextrin (CD)-mediated capillary electrophoresis (CE) with DAD at 200 nm. The best separation of enantiomers of the studied compound was achieved at 20 kV with 30 cm x 50 microm I.D. polyacrylamide (PAA)-coated fused-silica capillary (effective length 20 cm) and running buffer with sulfated-beta-CD (S-beta-CD) as chiral selector. Other selected native or derivatized CDs were also tested: beta-CD (5, 15 mmol l(-1)), carboxymethyl-beta-CD (5, 30 mmol l(-1)), dimethyl-beta-CD (15 mmol l(-1)) and hydroxypropyl-beta-CD (5, 30 mmol l(-1)). Several parameters such as capillary pretreatment, buffer type and concentration, pH of background electrolyte, methanol content, separation temperature and voltage, were optimized. The excellent baseline separation of chiral TH was successfully achieved within 12 min using 100 mmol l(-1) phosphate buffer with pH 2.5 containing 1.7 mmol l(-1) S-beta-CD. Rectilinear calibration range was 50.0-500.0 mumol l(-1) of each enantiomer (r = 0.9993-0.9996). The method was applied to the assay of R-TH in Omnic, capsules (nominal content 0.4 mg per capsule) with R.S.D. 2.75% (n = 6), recovery 99.3-101.7% and it was suitable for the chiral purity control of the active enantiomer in the pharmaceutical.

  14. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth

    Science.gov (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-01-01

    Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an

  15. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    Science.gov (United States)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-09-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  16. Possibilities of testing capillary absorption on microcores

    Directory of Open Access Journals (Sweden)

    Čeh Arpad

    2016-01-01

    Full Text Available During inspection of reinforced concrete structures from the aspect of durability evaluation of concrete, the present methods generally use the test results obtained by the sophisticated and expensive equipment, which are usually not universal purpose, ie. they can be used only for one segment of durability evaluation of the concrete. This way any additional information about the condition of concrete is valuable, especially if it is not require an additional testing with special equipment. Tests of concrete and reinforced concrete with microcore drilling is considered to be a semi- destructive method, which slightly damages the structure itself, and it is primarily used for testing carbonation, density and absorption of concrete. The paper presents the results of capillary absorption according to SRPS EN 480-5 on standard-size samples and on the microcores extracted from cube form samples with edge length of 20 cm. In the article the testing results of penetration of water under pressure are also presented on the same samples, on which we previously gained microcores. These tests were carried out on with concrete mixtures designed for the most demanding exposure classes according to EN 206-1 and using a variety of additives that are known to affect the structure of pores and consequently also the durability of a hardened concrete.

  17. Footprinting with an automated capillary DNA sequencer.

    Science.gov (United States)

    Yindeeyoungyeon, W; Schell, M A

    2000-11-01

    Footprinting is a valuable tool for studying DNA-protein contacts. However, it usually involves expensive, tedious and hazardous steps such as radioactive labeling and analyses on polyacrylamide sequencing gels. We have developed an easy four-step footprinting method involving (i) the generation and purification of a PCR fragment that is fluorescently labeled at one end with 6-carboxyfluorescein; (ii) brief exposure of the fragment to a DNA-binding protein and then DNase I; (iii) spin-column purification; and (iv) analysis of partial digestion products on the ABI Prism 310 capillary DNA sequencer/genetic analyzer. Very detailed and sensitive footprints of large (> 400 bp) DNA fragments can be easily obtained, as illustrated by our use of this method to characterize binding of PhcA, a LysR-type activator, to two sites greater than 100 bp apart in the 5' untranslated region of xpsR, one of its regulated target genes. The advantages of this new method are that it (i) uses long-lived, safe and easy-to-make fluorescently labeled target fragments; (ii) uses sensitive, robust and highly reproducible fragment analysis using an automated DNA sequencer, instead of gel electrophoresis and autoradiography; and (iii) is cost effective.

  18. Fabricating PFPE Membranes for Capillary Electrophoresis

    Science.gov (United States)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  19. Optimization of metallic X-ray capillary production

    Energy Technology Data Exchange (ETDEWEB)

    Mroczka, R.; Bartosik, P. [Department of Chemistry, KUL - John Paul II Catholic University of Lublin, Al. Krasnicka 102, 20-718 Lublin (Poland); Sawlowicz, Z. [Institute of Geological Sciences, Jagiellonian University, Cracow (Poland); Skrzypiec, K. [Marie Curie-Sklodowska University, Lublin (Poland); Falkenberg, G. [HASYLAB (Germany); Wojcik, J.; Zukocinski, G. [Marie Curie-Sklodowska University, Lublin (Poland); Kuczumow, A. [Department of Chemistry, KUL - John Paul II Catholic University of Lublin, Al. Krasnicka 102, 20-718 Lublin (Poland)], E-mail: kuczon@kul.lublin.pl

    2008-09-30

    Among all of X-ray capillaries, those produced from metals attract special attention due to their specific advantages: less severe limitations on the value of the critical reflection angle, better control of the capillary shape, the maintenance of the straight main axis. The metallic, single bounce capillaries with gold and rhodium internal surfaces described in this paper are produced according to the original method invented at KUL. The production of the capillaries started from the formation of the internal steel mandrel of a designed shape that was later covered with another metal and finally pressed with the epoxy-resin. Then the mandrel was removed by the combination of mechanical and chemical actions. The shape of capillaries was controlled with the laser scan micrometer. The long-distance shape distortions, obeying so-called waviness correlation length were pointed out. The capillaries produced in our laboratory were characterized by the waviness amplitudes reaching 40-80 nm with correlation length about 300 {mu}m. The symmetry of the opening and the straight shape of the main axis were investigated with the optical microscope and laser light transmitted through the capillary and registered with the CCD camera. The symmetry was found close to circular. The internal surface of the capillary was studied on the longitudinal cross-sections by means of the field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The surface roughness (rms) was determined, the parameter defining the ability of the surface to reflect X-rays efficiently in the total reflection mode. The best gold surfaces produced up-to-now had the rms {approx} 2 nm, as measured on 1 {mu}m x 1 {mu}m areas. The results of preliminary exercises with synchrotron radiation were demonstrated.

  20. General representation of capillary flow dynamics under microgravity condition

    Energy Technology Data Exchange (ETDEWEB)

    Stange, M.; Dreyer, M.; Rath, H.J. [Bremen Univ. (Germany). Zentrum fuer Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

    1998-12-31

    The flow of liquid through circular cylindrical tubes driven by the capillary force is studied. The equation for the meniscus acceleration is derived from an integral relation for linear momentum for an arbitrary moving and deformable control volume. Scaling this equation with the capillary force yields a dimensionless description of the meniscus motion. It is found that the process is subdivided into three domains which are separated by two characteristic times that are derived from the dominating forces. (orig.)

  1. General representation of capillary flow dynamics under microgravity condition

    Energy Technology Data Exchange (ETDEWEB)

    Stange, M.; Dreyer, M.; Rath, H.J. (Bremen Univ. (Germany). Zentrum fuer Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM))

    1998-01-01

    The flow of liquid through circular cylindrical tubes driven by the capillary force is studied. The equation for the meniscus acceleration is derived from an integral relation for linear momentum for an arbitrary moving and deformable control volume. Scaling this equation with the capillary force yields a dimensionless description of the meniscus motion. It is found that the process is subdivided into three domains which are separated by two characteristic times that are derived from the dominating forces. (orig.)

  2. Capillary photoelectrode structures for photoelectrochemical and photocatalytic cells

    Science.gov (United States)

    Wang, Xudong; Li, Zhaodong; Cai, Zhiyong; Yao, Chunhua

    2017-05-02

    Photocatalytic structures having a capillary-force based electrolyte delivery system are provided. Also provided are photoelectrochemical and photocatalytic cells incorporating the structures and methods for using the cells to generate hydrogen and/or oxygen from water. The photocatalytic structures use an electrolyte-transporting strip comprising a porous network of cellulose nanofibers to transport electrolyte from a body of the electrolyte to a porous photoelectrode or a porous photocatalytic substrate via capillary force.

  3. A Cosmic Ray Measurement Facility for ATLAS Muon Chambers

    CERN Document Server

    Biebel, O; Boutemeur, M; Brandt, A; Dubbert, J; Duckeck, G; Elmsheuser, J; Fiedler, F; Hertenberger, R; Kortner, O; Nunnemann, T; Rauscher, F; Schaile, A D; Schieferdecker, P; Staude, A; Stiller, W; Ströhmer, R; Vertesi, R

    2003-01-01

    Monitored Drift Tube (MDT) chambers will constitute the large majority of precision detectors in the Muon Spectrometer of the ATLAS experiment at the Large Hadron Collider at CERN. For commissioning and calibration of MDT chambers, a Cosmic Ray Measurement Facility is in operation at Munich University. The objectives of this facility are to test the chambers and on-chamber electronics, to map the positions of the anode wires within the chambers with the precision needed for standalone muon momentum measurement in ATLAS, and to gain experience in the operation of the chambers and on-line calibration procedures. Until the start of muon chamber installation in ATLAS, 88 chambers built at the Max Planck Institute for Physics in Munich have to be commissioned and calibrated. With a data taking period of one day individual wire positions can be measured with an accuracy of 8.3 micrometers in the chamber plane and 27 micrometers in the direction perpendicular to that plane.

  4. Foreign Experience of Activity of Chambers of Commerce and Industry and Prospects of its Introduction in Ukraine

    Directory of Open Access Journals (Sweden)

    Alexandrova Bohdana V.

    2013-12-01

    Full Text Available The article conducts analysis of foreign experience of activity of chambers of commerce and industry under conditions of market economy. It studies specific features of its formation and establishment in the countries of European Union and Commonwealth of Independent States. In particular, it analyses activity of chambers of commerce and industry of Germany, Denmark, Great Britain, Russia, Moldova and Belarus. It considers continental, anglo-saxon, state and mixed models of activity of a chamber of commerce and industry. It identifies specific features of functioning of the Chamber of Commerce and Industry of Ukraine. Having analysed the progressive experience, it offers measures for improvement of the procedure of interaction of business with the Chamber of Commerce and Industry of Ukraine at the national, regional and branch levels.

  5. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Science.gov (United States)

    Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Árpád

    2013-01-01

    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis. PMID:24312804

  6. Optical carbon dioxide sensor based on fluorescent capillary array

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available A novel carbon dioxide (CO2 gas sensor based on capillary array is presented. The capillary array is composed of 51 capillaries and modified by fluorescent dye 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS, PTS− and tetraoctylammonium cation (TOA+ doped porous ethyl cellulose. A Y-fiber is used to transmit exciting light and fluorescence. A fiber optic pigtail-contained spectrophotometer is used to collect and deal with optical signals. Due to its structural features, each capillary has the two rolling-up layers of inner and outer sensing films, which make the 2 cm long capillary array has large sensing area about 12.81 cm2 and the fluorescence signal easily be collected. The sensing probe has advantages such as small volume, compact structure and large sensing area. The results demonstrate that the sensor has a linear response in the CO2 volume ratio range from 0 to 10%. Keywords: Carbon dioxide chemical sensor, Fluorescence sensor, Capillary array

  7. Coaxial flow-gating interface for capillary electrophoresis.

    Science.gov (United States)

    Opekar, František; Tůma, Petr

    2017-08-01

    A coaxial flow-gating interface is described in which the separation capillary passes through the sampling capillary. Continuous flow of the sample solution flowing out of the sampling capillary is directed away from the injection end of the separation capillary by counter-current flow of the gating solution. During the injection, the flow of the gating solution is interrupted, so that a plug of solution is formed at the inlet into the separation capillary, from which the sample is hydrodynamically injected. Flow-gating interfaces are originally designed for on-line connection of capillary electrophoresis with analytical flow-through methods. The basic properties of the described coaxial flow-gating interface were obtained in a simplified arrangement in which a syringe pump with sample solution has substituted analytical flow-through method. Under the optimized conditions, the properties of the tested interface were determined by separation of K + , Ba 2+ , Na + , Mg 2+ and Li + ions in aqueous solution at equimolar concentrations of 50 μM. The repeatability of the migration times and peak areas evaluated for K + , Ba 2+ and Li + ions and expressed as relative standard deviation did not exceed 1.4%. The interface was used to determine lithium in mineral water and taurine in an energy drink. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Árpád Gyéresi

    2013-02-01

    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  9. Dipyridamole-induced neoformation of capillaries in the rat heart. Quantitative stereological study on papillary muscles.

    Science.gov (United States)

    Mall, G; Schikora, I; Mattfeldt, T; Bodle, R

    1987-07-01

    Eighteen young male Wistar rats were randomly divided into two groups of equal size. Each experimental animal was treated with the powerful vasodilating drug dipyridamole (4 mg kg-1 intraperitoneally twice daily) for a period of 6 weeks. The control animals received sham injections with saline. The rats were fixed by retrograde vascular perfusion. Seven transverse and two longitudinal sections per animal were randomly selected from the left ventricular papillary muscles for stereological investigation. Length density of capillaries (length of capillaries per unit of tissue volume), surface density of capillaries (surface area of capillaries per unit of tissue volume) and the "true" three-dimensional capillary-fiber ratio (length of capillaries per unit length of myocardial fibers) were estimated by means of the Dimroth-Watson distribution, a mathematical model of directional statistics which assumes that the capillary directions scatter around the longitudinal axis of the muscle. This model was recently introduced into the stereology of myocardial capillaries and leads to a more accurate quantitation of the capillary network than parameters used hitherto, such as the "capillary density" (number of capillary profiles per mm2 of cross sectional area) and the "capillary-fiber ratio" (number of capillary profiles per number of myofiber profiles in cross sections). After chronic dipyridamole treatment, the length density of myocardial capillaries (+5%; p less than 0.02), the surface density of capillaries (+8%, p less than 0.01) and the three-dimensional capillary-fiber ratio (+6%, p less than 0.05) were increased. It is therefore concluded that the vasodilating drug dipyridamole evokes capillary growth in the heart which may be induced by mechanical factors via the enhanced myocardial blood flow. Investigation of the frequency distribution of capillary directions in space in both groups provided evidence that the capillary growth resulted from neoformation of

  10. Anterior chamber fixation of a posterior chamber intraocular lens: A novel technique

    Directory of Open Access Journals (Sweden)

    A Sahap Kükner

    2014-01-01

    Full Text Available We aimed to evaluate the implantation of a posterior chamber intraocular lens (IOL in the anterior chamber (AC with the haptics passing through two iridectomies to the posterior chamber. A total of 33 eyes of 33 patients with inadequate posterior capsular support due to either previous aphakia or posterior capsular rupture during cataract extraction were included in the study. A double iridectomy was performed on all patients using a vitrectomy probe on the midperiphery of the iris. IOLs were implanted in the AC, and the haptics were passed through the iridectomies to the posterior chamber. The mean follow-up time was 25.3 months. AC hemorrhage occurred in five patients during the iridectomy procedure. Corneal edema was detected in eight of 14 patients with primary IOL insertions. Haptic dislocation was detected in only one patient. This technique may be a good alternative to scleral-fixated IOL implantation in eyes with aphakia.

  11. Achievable field strength in reverberation chambers

    Directory of Open Access Journals (Sweden)

    N. Eulig

    2003-01-01

    Full Text Available Feldvariable Kammern (FVK, engl.: modestirred- chamber werden unter anderem für EMV-Störfestigkeitsprüfungen verwendet. Ein häufig genanntes Argument, das die Einführung dieser Kammern als normgerechte Prüfumgebung vorantreiben soll, ist eine hohe Feldstärke, die im Vergleich zu anderen Testumgebungen mit relativ moderaten HF-Leistungen erreicht werden kann. Besonders für sicherheitskritische Geräte, wie Komponenten aus der Avionik- oder KFZ-Industrie, sind heutzutage Testfeldstärken von mehreren 100 V/m notwendig. Derart hohe Feldstärken können in Umgebungen, die ein ebenes Wellenfeld erzeugen oder nachbilden, nur mit großen HFLeistungen generiert werden. Durch die Resonanzeigenschaften einer FVK können demgegenüber mit sehr viel weniger Leistung und damit Verstärkeraufwand vergleichbare Werte der Feldstärke erzeugt werden. Allerdings sinkt mit zunehmendem Volumen die erreichbare Feldstärke bei gleicher Speiseleistung. Idealerweise sollen Feldvariable Kammern bei möglichst niedrigen Frequenzen für EMVTests nutzbar sein, was jedoch ein großes Kammervolumen erfordert. Das Problem, bei niedrigen Frequenzen hohe Feldstärken erzeugen zu können, relativiert deshalb den Vorteil von FVKn gegenüber bekannten Testumgebungen bei niedrigen Testfrequenzen. Der Posterbeitrag erläutert, welche Feldstärken in verschieden großen Feldvariablen Kammern beim Einspeisen einer bestimmten hochfrequenten Leistung erreicht werden können. Anhand dieser Ergebnisse wird aufgezeigt, oberhalb welcher Grenzfrequenz eine Anwendung von FVKn nur sinnvoll erscheint. Mode-stirred chambers (MSCs can be used for radiated immunity tests in EMC testing. Advantageous compared to conventional test methods is the high field strength which can here be generated with less RF-Power. This point is often the main argument for pushing the standardization of MSCs as an other EMC testing environment. Especially for safety-critical electronic equipment like avionic or

  12. Metallic spherical anechoic chamber for antenna pattern measurement

    Science.gov (United States)

    Farahbakhsh, Ali; Khalaj-Amirhosseini, Mohammad

    2016-08-01

    Anechoic chambers are used for indoor antenna measurements. The common method of constructing an anechoic chamber is to cover all inside walls by the electromagnetic absorbers. In this paper, a fully metallic spherical chamber structure is presented in which the propagation of the electromagnetic waves inside the chamber is controlled and they are guided to an absorber. In the proposed method, an appropriate quiet zone is obtained, and unlike ordinary anechoic chambers, the absorber usage amount is reduced greatly. The performance of the chamber is evaluated by simulation. The results show that the proposed method could provide a useful technique for the indoor antenna measurements.

  13. Characterization of air temperature in modern ion chambers due to phantom geometry and ambient temperature changes.

    Science.gov (United States)

    Saenz, Daniel L; Kirby, Neil; Gutiérrez, Alonso N

    2016-07-01

    Temperature and pressure corrections are necessary to account for the varying mass of air in the sensitive volume of a vented ionization chamber (IC) when performing absolute dose measurements. Locations commonly used to measure the presumed IC air temperature may not accurately represent the chamber cavity air temperature, and phantoms undergoing temperature changes further compound the problem. Prior studies have characterized thermal equilibrium in separate phantoms for Farmer chambers alone. However, the purpose of this study was to characterize the cavity air temperature dependence on changes in the ambient temperature and phantom geometry configuration for a wider and more modern variety of chambers to determine if previously published wait times apply to these chambers as well. Thermal conduction properties were experimentally investigated by modifying a PTW 0.3 cm(3) Semiflex IC with a thermocouple replacing the central electrode. Air cavity temperature versus time was recorded in three phantom geometries characteristic of common absolute dose measurements. The phantoms were (15 ± 1) °C before measurement with an IC at the treatment vault temperature of (21 ± 1) °C. Simulations were conducted to provide a theoretical basis for the measurements and to simulate temperature response of a PTW PinPoint® and Farmer chamber. The simulation methods were first validated by comparison with measured Semiflex chamber thermal response curves before extension to the other chambers. Two thermal equilibria curves were recorded on different time scales. IC temperature initially dropped to the colder phantom temperature but subsequently increased as the phantom itself equilibrated with the warmer room temperature. In a large phantom of dimensions (25.5 × 25.5 × 23.4) cm(3), 3 min was required before the IC temperature reached within 0.5 °C of its equilibrium within the phantom. Similarly, wait times of 2 min were needed for 7.5 and 2 cm slab phantoms. Recording

  14. Transparent conducting oxides and production thereof

    Science.gov (United States)

    Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

    2014-05-27

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  15. An uncommon variant of double-chambered right ventricle masquerading as double-chambered left ventricle.

    Science.gov (United States)

    Baritakis, Nikolaos; Grapsas, Nikolaos; Kotsalos, Andreas; Davlouros, Periklis

    2018-02-01

    We present a rare case of a double-chambered right ventricle masquerading as a double-chambered left ventricle, which was found incidentally on cardiac imaging in an adult female patient with atypical chest pain. The most common form of double-chambered right ventricle is characterized by compartmentalization of the right ventricle by muscular bands into 2 distinct chambers. The main features of this malformation are a pressure gradient between the 2 compartments, and the frequent (up to 90%) association with a membranous ventricular septal defect. In our case, the muscular band dividing the right ventricle was located in the inferoseptal part of the latter, creating a diminutive cavity that had no communication with the main right ventricle but communicated with the left ventricle creating the false impression of a double-chambered left ventricle. This constitutes a rare variant of double-chambered right ventricle with unknown clinical implications. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Ozone deposition to an oat crop ( Avena sativa L.) grown in open-top chambers and in the ambient air

    Science.gov (United States)

    Pleijel, H.; Wallin, G.; Karlsson, P. E.; Skarby, L.; Sellden, G.

    Fluxes and deposition velocities for ozone were determined for open-top chambers with and without an oat crop, and for the adjacent field, using a resistance analogue model and the aerodynamic wind-profile method, respectively. During a period when the canopy was green and the ambient wind speeds modest, the fluxes and deposition velocities were higher in the chamber with plants than in the field crop. The deposition to chamber walls and soil in the chamber only accounted for part of that difference. The deposition velocity for ozone to the crop was light-dependent both in the chamber with plants and in the ambient air. With increasing plant senescence, the deposition velocity declined and the light dependence disappeared. Fluctuations in deposition velocity superimposed on the overall declining trend followed the same temporal pattern in the chambers with and without plants. These fluctuations in deposition velocity may partly be explained by variations in surface wetness. Differences in boundary layer conductance between chamber and ambient, which under certain conditions may significantly influence the validity of the chamber as a test system, were observed.

  17. Salt Sensitivity Determined From Capillary Blood

    Directory of Open Access Journals (Sweden)

    Hans Oberleithner

    2016-06-01

    Full Text Available Background/Aims: A significant rise of blood pressure in response to a given salt load is a weak indication of high salt sensitivity, supposed to foster the development of arterial hypertension and related diseases in later life. In search of an alternative method we recently developed the salt blood test (SBT, a new concept for quantifying salt sensitivity (SS. Based on this concept, namely that red blood cells (RBC report on salt sensitivity, the SBT-mini was developed. Methods: The SBT-mini utilizes a droplet of capillary blood mixed with a ‘smart' Na+ cocktail. Red blood cells (RBC of this mixture are allowed to sediment by gravity in a glass tube. SS is quantified by measuring RBC sedimentation rate. 90 healthy volunteers (39 males, 51 females; mean age: 23±0.5 years were evaluated and ‘standard values' for males and females were derived. Results: Sodium buffer capacity of female blood is about 20 % smaller as compared to male blood due to the lower hematocrit of females. SS of an individual is related to the mean standard value (set to 100 % of the respective male/female cohort. High SS (> 120 % has been found in 31 % of males and 28 % of females. Conclusions: SS can be estimated derived from the individual RBC sodium buffer capacity as measured by the SBT-mini. About one third of a healthy test cohort exhibits a high sensitivity to salt. Reduction of sodium consumption to at least two grams per day (equals five grams of NaCl per day as suggested by the WHO is recommended, particularly for individuals with high salt sensitivity.

  18. Bioassay chamber for angiogenesis with perfused explanted arteries and electrospun scaffolding.

    Science.gov (United States)

    Rubenstein, David; Han, Dong; Goldgraben, Sara; El-Gendi, Hebah; Gouma, Pelagia-Irene; Frame, Mary D

    2007-01-01

    The purpose of this study was to test the hypothesis that explanted perfused arteries can serve as the initial endothelial cell culture source to evaluate the onset of angiogenesis in a cellulose acetate electrospun scaffold. Electrospun scaffolds with fiber diameters roughly controlled in three broad ranges: 0.01 to 0.2, 0.2 to 1, and 1 to 5 microm (Nanomed Nanotechnol Biol Med 2:37-41, 2006), were used in cell culture to determine which provides the best culture topology. This scaffold was then tested in a bioassay chamber whose cellular source was an explanted abdominal aorta from donated euthanized mice. Scaffolds were draped over a cannulated vessel perfused for 24 h. Cell viability, density, and morphology were quantified. The largest fiber diameter group provided the best culture topology for human umbilical vein endothelial cells, showing high cell viability and density, and enhanced elongated cell morphology. Addition of single-walled carbon nanotubes decreased cell density significantly but chitosan heightened cell density and promoted spontaneous capillary tube like structure. Viability of endothelial cells increased with higher flow in the bioassay chamber. Endothelial cells showed a growth preference towards larger diameter fibers. Addition of chitosan improved culture conditions. Thus, this study provides a proof of principle for the possibility of co-culturing tissue engineered vascular networks from a perfused explant.

  19. Improved Sensitivity of Spectroscopic Quantification of Stable Isotope Content Using Capillary Absorption Spectroscopy

    Science.gov (United States)

    Moran, J.; Wilcox Freeburg, E.; Kriesel, J.; Linley, T. J.; Kelly, J.; Coleman, M. L.; Christensen, L. E.; Vance, S.

    2016-12-01

    Spectroscopy-based platforms have recently risen to the forefront for making stable isotope measurements of methane, carbon dioxide, water, or other analytes. These spectroscopy systems can be relatively straightforward to operate (versus a mass spectrometry platform), largely relieve the analyst of mass interference artifacts, and many can be used in the field. Despite these significant advantages, however, existing spectroscopy techniques suffer from a lack of measurement sensitivity that can ultimately limit select applications including spatially resolved and compound-specific measurements. Here we present a capillary absorption spectroscopy (CAS) system that is designed to mitigate sensitivity issues in spectroscopy-based stable isotope evaluation. The system uses mid-wave infrared excitation generated from a continuous wave quantum cascade laser. Importantly, the sample `chamber' is a flexible capillary with a total volume of less than one cc. Proprietary coatings on the internal surface of the fiber improve optical performance, guiding the light to a detector and facilitating high levels of interaction between the laser beam and gaseous analytes. We present data demonstrating that a tapered hollow fiber cell, with an internal diameter that broadens toward the detector, reduces optical feedback to further improve measurement sensitivity. Sensitivity of current hollow fiber / CAS systems enable measurements of only 10's of picomoles CO2 while theoretical improvements should enable measurements of as little as 10's of femtomoles. Continued optimization of sample introduction and improvements to optical feedback are being explored. Software is being designed to provide rapid integration of data and generation of processed isotope measurements using a graphical user interface. Taken together, the sensitivity improvements of the CAS system under development could, when coupled to a laser ablation sampling device, enable up to 2 µm spatial resolution (roughly the

  20. FULL-SCALE CHAMBER INVESTIGATION AND SIMULATION OF AIR FRESHENER EMISSIONS IN THE PRESENCE OF OZONE

    Science.gov (United States)

    The paper discusses results of tests, conducted in the EPA large chamber facility, determining emissions and chemical degradation of volatile organic compounds (VOCs) from one electrical plug-in type pine-scented air freshener in the presence of ozone supplied by a device markete...

  1. The physics of Resistive Plate Chambers

    CERN Document Server

    Riegler, Werner

    2004-01-01

    Over the last 3 years we investigated theoretical aspects of Resistive Plate Chambers (RPC) in order to clarify some of the outstanding questions on space charge effects, high efficiency of small gap RPCs, charge spectra, signal shape and time resolution. In a series of reports we analyzed RPC performance including all detector aspects covering primary ionization, avalanche multiplication, space charge effects, signal induction in presence of resistive materials, crosstalk along detectors with long strips and front-end electronics. Using detector gas parameters entirely based on theoretical predictions and physical models for avalanche development and space charge effects we are able to reproduce measurements for 2 and 0.3 mm RPCs to very high accuracy without any additional assumptions. This fact gives a profound insight into the workings of RPCs and also underlines the striking difference in operation regime when compared to wire chambers. A summary of this work as well as recent results on three-dimensiona...

  2. Introduction for Diffusion Chamber Culture Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Carsten, A. L.

    1979-01-01

    The diffusion-chamber system has been applied to studies of cell kinetics, progenitor cell quantitation, humoral effects, immunological effects, cytogenetics, organogenesis, and the cellular effects of drugs and physical factors such as radiation, hypoxia, etc. Chamber contents have been analyzed by clot dissolution with measuring of cell content, limiting dilution evaluation, radionuclide utilization (tritiated thymidine labeling), growth of colony number, size and type, CFU-S or CFU-C content, or proliferation by secondary culture in mice or in vitro systems, and chromosome changes. Cell types ranging from embryonal tissues to adult normal and neoplastic tissues have been grown in hosts across species barriers. Advantages and disadvantages of this system are discussed.

  3. The KLOE drift chamber VCI 2001

    CERN Document Server

    Adinolfi, M; Ambrosino, F; Andryakov, A; Antonelli, A; Antonelli, M; Anulli, F; Bacci, C; Bankamp, A; Barbiellini, G; Bellini, F; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Bulychjov, S A; Cabibbo, G; Calcaterra, A; Caloi, R; Campana, P; Capon, G; Carboni, G; Cardini, A; Casarsa, M; Cataldi, G; Ceradini, F; Cervell, F; Cevenini, F; Chiefari, G; Ciambrone, P; Conetti, S; Conticelli, S; De Lucia, E; De Robertis, G; De Simone, P; De Zorzi, G; De Sangro, R; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Doria, A; Drago, E; Elia, V; Erriquez, O; Farilla, A; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giovannella, S; Golovatyuk, V; Gorini, E; Grancagnolo, F; Grandegger, W; Graziani, E; Guarnaccia, P; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Jang, Y Y; Kim, W; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Lomtadze, F; Luisi, C; Mao Chen Sheng; Martemyanov, M; Matsyuk, M; Mei, W; Merola, L; Messi, R; Miscetti, S; Moalem, A; Moccia, S; Moulson, M; Murtas, F; Müller, S; Napolitano, M; Nedosekin, A; Pacciani, L; Pagès, P; Palutan, M; Panareo, M; Paoluzi, L; Pasqualucci, E; Passalacqua, L; Passaseo, M; Passeri, A; Patera, V; Petrolo, E; Petrucci, Guido; Picca, D; Pirozzi, G; Pistillo, C; Pollack, M; Pontecorvo, L; Primavera, M; Ruggieri, F; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Schwick, C; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Shan, J; Silano, P; Spadaro, T; Spagnolo, S; Spiriti, E; Stanescu, C; Tong, G L; Tortora, L; Valente, E; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Von Hagel, U; Wu, Y; Xie, Y G; Zhao, P P; Zhou, Y

    2002-01-01

    The main goal of the KLOE experiment at the Frascati DAPHINE phi-factory is the study CP violation in kaon decays. The tracking device of the experiment is a drift chamber whose dimensions, 4 m of diameter and 3.3 m length, provide a large acceptance volume for the decay products of low momentum K sub L (lambda sub L =3.4 m). A complete stereo geometry with 12.582 cells arranged in 58 layers guarantees a high and uniform efficiency in the reconstruction of the charged K sub L decays. Very light materials have been chosen both for the drift medium, a helium-based gas mixture, and for the mechanical structure, made of carbon fiber, to minimize multiple scattering and conversion of low-energy photons. The design requirements, the adopted solutions together with the calibration procedure and the tracking performances of the drift chamber are discussed.

  4. Diurnal variations in a sealed radon chamber

    Science.gov (United States)

    Gilboy, W. B.; James, P. R.; Farmer, C. P.; Beard, J. E.

    1990-12-01

    During experiments to calibrate a radon-in-air counter, some unexpected diurnal variations have been observed. Inside the sealed stainless-steel chamber of a nominal volume of 3 litres, ionised 218Po atoms from the alpha-decay of 222Rn are attracted by an electric field to a ZnS(Ag) scintillation screen via which subsequent α-decay events are detected. Results for this configuration are presented and also for a modified version in which the scintillation screen is replaced by a high-resolution α-detector. Ambient temperature changes were suspected to be responsible for the observed counting-efficiency variation and this has been confirmed by operating the wall of the chamber at various temperatures between 0°C and about 40°C, which revealed a positive temperature coefficient of ˜1%/°C at 25°C. Possible reasons for this effect are considered.

  5. Miscible displacement of a non-Newtonian fluid in a capillary tube

    Science.gov (United States)

    Soori, Tejaswi; Ward, Thomas

    2017-11-01

    This talk focuses on experiments conducted to further our understanding of how to displace an aqueous polymer within a capillary tube (diameter range of shear rates and fit the data obtained to the Carreau fluid parameters. Separately we measure the average bulk diffusion coefficient of the aqueous polymer and water in water and aqueous polymer phases respectively. Previous studies on the immiscible displacement of polymers have shown residual film thickness to be dependent on the tube diameter. We will investigate if this is true when the two fluids are miscible in nature. American Chemical Society Petroleum Research Fund.

  6. Wire chambers with their magnetostrictive readout

    CERN Multimedia

    1974-01-01

    This set of wire chamber planes shaped as a cylinder sector was installed inside the magnet of a polarized spin target modified to allow as well momentum analysis of the produced particles. The experiment (S126) was set up by the CERN-Trieste Collaboration in the PS beam m9 to measure spin effects in the associated production of of a positive kaon and a positive Sigma by interaction of a positive pion with polarized protons.

  7. The Bern Infinitesimal Bubble Chamber (BIBC)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The chamber body was machined from a block of aluminium. The visible volume was cylindrical with 65 mm diameter and 35 mm depth. It was filled with propane or freon. It was meant as vertex detector in the search of short-lived particles. It was also used with in-line holography resulting in 8 µm bubble size and 9 cm depth of the field. See E. Ramseyer, B. Hahn and E. Hugentobler, Nucl. Instrum. Methods 201 (1982) 335.

  8. Efficient Determination of Reverberation Chamber Time Constant

    OpenAIRE

    Zhang, Xiaotian; Robinson, Martin P.; Flintoft, Ian D.; Dawson, John F.

    2017-01-01

    Determination of the rate of energy loss in a reverberation chamber is fundamental to many different measurements such as absorption cross-section, antenna efficiency, radiated power, and shielding effectiveness. Determination of the energy decay time-constant in the time domain by linear fitting the power delay profile, rather than using the frequency domain quality-factor, has the advantage of being independent of the radiation efficiency of antennas used in the measurement. However, determ...

  9. Vacuum Chamber for the Booster Bending Magnets

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    To minimise eddy currents, induced by the rising magnetic field, the chamber was made from thin stainless steel of high specific electric resistance. For mechanical strength, it was corrugated in a hydro-forming process. The cross-section was designed for maximum strength and maximum aperture. To accept particles with simultaneous large amplitudes in both planes, the cross-section approaches a rectangular shape (see also 7402463).

  10. Cell seeding chamber for bone graft substitutes

    OpenAIRE

    Hennig, J.; Schieker, Matthias; Seitz, H.

    2012-01-01

    There is an increasing demand for bone graft substitutes that are used as osteoconductive scaffolds in the treatment of bone defects and fractures. Achieving optimal bone regeneration requires initial cell seeding of the scaffolds prior to implantation. The cell seeding chamber is a closed assembly. It works like a sandglass. The position of the scaffold is between two reservoirs containing the fluid (e. g. blood). The fluid at the upper reservoir flows through the scaffold driven by gravity....

  11. Effect of hypothermic pulmonary artery flushing on capillary filtration coefficient.

    Science.gov (United States)

    Andrade, R S; Wangensteen, O D; Jo, J K; Tsai, M Y; Bolman, R M

    2000-07-27

    We previously demonstrated that surfactant dilution and inhibition occur immediately after pulmonary artery flushing with hypothermic modified Euro-Collins solution. Consequently, we speculated that increased capillary permeability contributed to these surfactant changes. To test this hypothesis, we evaluated the effects of hypothermic pulmonary artery flushing on the pulmonary capillary filtration coefficient (Kfc), and additionally performed a biochemical analysis of surfactant. We used a murine isolated, perfused lung model to measure the pulmonary capillary filtration coefficient and hemodynamic parameters, to determine the wet to dry weight ratio, and to evaluate surfactant by biochemical analysis of lung lavage fluid. We defined three study groups. In group I (controls), we harvested lungs without hypothermic pulmonary artery flushing, and measured Kfc immediately. In group II (in situ flush), we harvested lungs after hypothermic pulmonary artery flushing with modified Euro-Collins solution, and then measured Kfc. Experiments in groups I and II were designed to evaluate persistent changes in Kfc after pulmonary artery flushing. In group III (ex vivo flush), we flushed lungs ex vivo to evaluate transient changes in Kfc during hypothermic pulmonary artery flushing. Groups I and II did not differ significantly in capillary filtration coefficient and hemodynamics. Group II showed significant alterations on biochemical surfactant analysis and a significant increase in wet-to-dry weight ratio, when compared with group I. In group III, we observed a significant transient increase in capillary filtration coefficient during pulmonary artery flushing. Hypothermic pulmonary artery flushing transiently increases the capillary filtration coefficient, leads to an increase in the wet to dry weight ratio, and induces biochemical surfactant changes. These findings could be explained by the effects of hypothermic modified Euro-Collins solution on pulmonary capillary

  12. Diurnal Variation of Anterior Chamber Flare

    Directory of Open Access Journals (Sweden)

    Mehmet Adam

    2015-04-01

    Full Text Available Objectives: To investigate the ideal time and reproducibility of anterior chamber flare measurements. Materials and Methods: Anterior chamber flare measurements were performed with laser flaremetre device at 8 am to 45 volunteers and these measurements were repeated on the same day at 12 pm and 4 pm. Results: Twenty-five (55.5% of the volunteers were women and 20 (44.5% were men; mean age was 28.67±7.40 (18-49 years. The mean anterior chamber flare measurements taken following the ophthalmologic examination were 5.94±1.41 foton/msn at 8 am, 5.65±1.45 foton/msn at 12 pm, and 5.79±1.20 foton/msn at 4 pm. No statistical difference was found between the measurements (p=0.08. Subgroup analysis according to eye color, revealed no significant difference between flare measurements in brown, hazel, and green eyes (p=0.21. Correlation analysis demonstrated association between age and all flare measurements within the day (r=0.24, p=0.03; r=0.41, p=0.01, r=0.27, p=0.01. Conclusion: No significant diurnal change was detected in the flare measurements of our study subjects but positive correlation with age was observed. Hence, all flare measurements within a day are reliable and have high repeatability in healthy subjects. (Turk J Ophthalmol 2015; 45: 52-5

  13. Close cathode chamber: Low material budget MWPC

    Science.gov (United States)

    Varga, Dezső; Kiss, Gábor; Hamar, Gergő; Bencédi, Gyula

    2013-01-01

    Performance of asymmetric-type MWPC-s are presented. In this structure, referred to as Close Cathode Chamber in an earlier study, the material budget is significantly reduced on one hand by the elimination of external support frame, on the other hand by thin detector walls. In this paper it is demonstrated that the outline is compatible with large size detectors (1 m wire length), maintaining mechanical and operation stability, with total weight of 3 kg (including support structure) for a half square meter surface. The detection efficiency and response time is shown to be sufficient for L0 triggering in the ALICE VHMPID layout. Reduced sensitivity to cathode deformations (due to internal overpressure as mechanical strain) is directly demonstrated. On small sized chambers, improvement of position resolution with analog readout is evaluated, reaching 0.09 mm RMS with 2 mm wide cathode segments. Simulation results on signal time evolutions are presented. With the above studies, comparison of classical MWPC-s and the Close Cathode Chamber design is performed in all major aspects.

  14. Menstrual history in altitude chamber trainees.

    Science.gov (United States)

    Schirmer, J U; Workman, W T

    1992-07-01

    Previous studies have determined a higher rate of altitude-induced decompression sickness (DCS) in women than in men. Women are reportedly at higher risk for developing DCS during menses. A study of menstrual history in women completing altitude chamber training without developing DCS has never been accomplished. The purpose of this study was to collect and analyze menstrual history in these women. Thirteen U.S. Air Force Aerospace Physiology Units participated in a USAF-approved survey for 1 year. After completing altitude chamber flights, data on age, day of menstrual cycle (DMC), birth control pill use (BCP), and mean durations of menstrual cycle and menses were collected. There were 508 responses analyzed. There was no differences between mean duration of menstrual cycle and menses in the Yes (Y) and No (N) BCP groups. Y and N BCP groups were equally distributed across the menstrual cycle. Women completing altitude chamber training without developing DCS appear to be evenly distributed across their menstrual cycle, with use of BCPs not affecting their susceptibility to DCS.

  15. Wire pad chamber for LHCb muon system

    CERN Document Server

    Botchine, B; Lazarev, V A; Sagidova, N; Vorobev, A P; Vorobyov, A; Vorobyov, Alexei

    2000-01-01

    2000-003 Wire pad chambers (WPC) have been proposed for the outer Region 4 of the LHCb Muon System. These are double gap MWPCs with small wire spacing allowing to obtain 99% detection efficiency in a 20 ns time window. The chambers have a rectangular shape with the vertical dimension from 20 cm in Station 1 to 30 cm in Station 5. The horizontal dimensions will be different with the maximal size of 3 meters in Station 5. The wires are in the vertical direction. The short wire length allows to use small wire spacing needed for high time resolution. Also, this helps to obtain the uniform gas gain over the whole chamber area. The WPC has one row of the wire pads formed by grouping wires in separate readout channels. Four WPC prototypes have been built at PNPI and tested in the PS beam at CERN. Here we report on the results from these tests. Also, the results of simulation of the WPC performance are presented.

  16. Testing fireproof materials in a combustion chamber

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results – i.e. thermal distribution inside and heat release rate that has gone through the sample.

  17. Testing fireproof materials in a combustion chamber

    Science.gov (United States)

    Kulhavy, Petr; Martinec, Tomas; Novak, Ondrej; Petru, Michal; Srb, Pavel

    This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free) and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time). Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results - i.e. thermal distribution inside and heat release rate that has gone through the sample.

  18. RF Anechoic Chambers, Tri-Service Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — In collaboration with the Navy, there are 12 RF Anechoic and static free exposure chambers located at TSRL. These chambers cover the majority of the RF spectrum and...

  19. The Active Target Time Projection Chamber at NSCL

    Science.gov (United States)

    Bazin, D.; Bradt, J.; Ayyad, Y.; Mittig, W.; Ahn, T.; Beceiro-Novo, S.; Carpenter, L.; Cortesi, M.; Fritsch, A.; Kolata, J. J.; Lynch, W.; Watwood, N.

    2017-11-01

    Reactions in inverse kinematics close to the Coulomb barrier offer unique opportunities to study exotic nuclei, but they are plagued by the difficulty to efficiently and precisely measure the characteristics of the emerging particles. The Active Target Time Projection Chamber (AT-TPC) offers an elegant solution to this dilemma. In this device, the detector gas of the time projection chamber is at the same time the target in which nuclear reactions take place. The use of this new paradigm offers several advantages over conventional inert target methods, the most significant being the ability to increase the luminosity of experiments without loss of resolution. The AT-TPC and some results obtained on resonant α scattering to explore the clustering properties of neutron-rich nuclei are presented, as well as fusion cross section results using a 10Be radioactive beam. In addition, the first re-accelerated radioactive beam experiment using the fully commissioned ReA3 linac was conducted recently at the NSCL with the AT-TPC, where proton resonant scattering of a 4.6 MeV/u 46Ar beam was used to measure the neutron single-particle strength in 47Ar.

  20. VPS Process for Copper Components in Thrust Chamber Assemblies

    Science.gov (United States)

    Elam, Sandra; Holmes, Richard; Hickman, Robert; McKechnie, Tim; Thom, George

    2005-01-01

    For several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc., (PPI) to fabricate thrust chamber liners with GRCop-84. Using the vacuum plasma spray (VPS) process, chamber liners of a variety of shapes and sizes have been created. Each has been formed as a functional gradient material (FGM) that creates a unique protective layer of NiCrAlY on the GRCop-84 liner s hot wall surface. Hot-fire testing was successfully conducted on a subscale unit to demonstrate the liner's durability and performance. Similar VPS technology has also been applied to create functional gradient coatings (FGC) on copper injector faceplates. Protective layers of NiCrAlY and zirconia were applied to both coaxial and impinging faceplate designs. Hot-fire testing is planned for these coated injectors in April 2005. The resulting material systems for both copper alloy components allows them to operate at higher temperatures with improved durability and operating margins.

  1. Electrodynamic modeling applied to micro-strip gas chambers

    Energy Technology Data Exchange (ETDEWEB)

    Fang, R

    1998-12-31

    Gas gain variations as functions of time, counting rate and substrate resistivity have been observed with Micro-Strip Gas Chambers (MSGC). Such a chamber is here treated as a system of 2 dielectrics, gas and substrate, with finite resistivities. Electric charging between their interface results in variations of the electric field and the gas gain. The electrodynamic equations (including time dependence) for such a system are proposed. A Rule of Charge Accumulation (RCA) is then derived which allows to determine the quantity and sign of charges accumulated on the surface at equilibrium. In order to apply the equations and the rule to MSGCs, a model of gas conductance induced by ionizing radiation is proposed, and a differential equation and some formulae are derived to calculate the rms dispersion and the spatial distribution of electrons (ions) in inhomogeneous electric fields. RCA coupled with a precise simulation of the electric fields gives the first quantitative explanation of gas gain variations of MSGCs. Finally an electrodynamic simulation program is made to reproduce the dynamic process of gain variation due to surface charging with an uncertainty of at most 15% relative to experimental data. As a consequence, the methods for stabilizing operation of MSGCs are proposed. (author) 18 refs.

  2. Herds of methane chambers grazing bubbles

    Science.gov (United States)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  3. Young capillary vessels rejuvenate aged pancreatic islets

    Science.gov (United States)

    Almaça, Joana; Molina, Judith; Arrojo e Drigo, Rafael; Abdulreda, Midhat H.; Jeon, Won Bae; Berggren, Per-Olof; Caicedo, Alejandro; Nam, Hong Gil

    2014-01-01

    Pancreatic islets secrete hormones that play a key role in regulating blood glucose levels (glycemia). Age-dependent impairment of islet function and concomitant dysregulation of glycemia are major health threats in aged populations. However, the major causes of the age-dependent decline of islet function are still disputed. Here we demonstrate that aging of pancreatic islets in mice and humans is notably associated with inflammation and fibrosis of islet blood vessels but does not affect glucose sensing and the insulin secretory capacity of islet beta cells. Accordingly, when transplanted into the anterior chamber of the eye of young mice with diabetes, islets from old mice are revascularized with healthy blood vessels, show strong islet cell proliferation, and fully restore control of glycemia. Our results indicate that beta cell function does not decline with age and suggest that islet function is threatened by an age-dependent impairment of islet vascular function. Strategies to mitigate age-dependent dysregulation in glycemia should therefore target systemic and/or local inflammation and fibrosis of the aged islet vasculature. PMID:25404292

  4. Response and Monte Carlo evaluation of a reference ionization chamber for radioprotection level at calibration laboratories

    Science.gov (United States)

    Neves, Lucio P.; Vivolo, Vitor; Perini, Ana P.; Caldas, Linda V. E.

    2015-07-01

    A special parallel plate ionization chamber, inserted in a slab phantom for the personal dose equivalent Hp(10) determination, was developed and characterized in this work. This ionization chamber has collecting electrodes and window made of graphite, and the walls and phantom made of PMMA. The tests comprise experimental evaluation following international standards and Monte Carlo simulations, employing the PENELOPE code to evaluate the design of this new dosimeter. The experimental tests were conducted employing the radioprotection level quality N-60 established at the IPEN, and all results were within the recommended standards.

  5. Anechoic chamber in industrial plants. [construction materials and structural design

    Science.gov (United States)

    Halpert, E.; Juncu, O.; Lorian, R.; Marfievici, D.; Mararu, I.

    1974-01-01

    A light anechoic chamber for routine acoustical measurements in the machine building industry is reported. The outer housing of the chamber consists of modules cast in glass fiber reinforced polyester resin; the inner housing consists of pyramidal modules cut out of sound absorbing slates. The parameters of this anechoic chamber facilitate acoustical measurements according to ISO and CAEM recommendations.

  6. The HERMES forward tracking chambers construction, operation, and aging effects

    CERN Document Server

    Brack, J T; Clark, S; Ely, J; Fox, B; Hofman, G J; Kinney, E R; Mercer, D J; Rakness, G; Ristinen, R A; Smythe, W R; Warner, D

    2001-01-01

    The design, construction and operation of the HERMES forward (front) tracking chambers and associated electronics are described. Resolution and limited aging tests have been performed on these drift chambers, which use an Ar/CF sub 4 /CO sub 2 (90 : 5 : 5) gas mixture. No degradation in chamber performance has been observed for a cumulative charge in excess of 9 C/cm.

  7. A cylindrical drift chamber with azimuthal and axial position readout

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Shenhav, N.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Brabson, B.B.; Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Adams, T.; Bishop, J.M.; Cason, N.M.; Sanjari, A.H.; LoSecco, J.M.; Manak, J.J.; Shephard, W.D.; Stienike, D.L.; Taegar, S.A.; Thompson, D.R.; Brown, D.S.; Pedlar, T.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M. [Massachusetts Univ., North Dartmouth, MA (United States)]|[Brookhaven National Laboratory, Upton, L.I., NY 11973 (United States)]|[Indiana University, Bloomington, IN 47405 (United States)]|[Institute for High Energy Physics, Protvino (Russian Federation)]|[Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)]|[University of Notre Dame, Notre Dame, IN 46556 (United States)]|[Northwestern University, Evanston, IL 60208 (United States)]|[Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    1997-02-21

    A cylindrical multiwire drift chamber with axial charge-division has been constructed and used in experiment E852 at Brookhaven National Laboratory. It serves as a trigger element and as a tracking device for recoil protons in {pi}{sup -}p interactions. We describe the chamber`s design considerations, details of its construction, electronics, and performance characteristics. (orig.).

  8. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and maintained...

  9. Test of an undulated vacuum chamber for the ISR

    CERN Multimedia

    1975-01-01

    This picture shows mechanical tests of an undulated vacuum chamber for downstream arms of ISR intersections. This chamber, made of 0.3 mm thick inconel, had inner dimensions of 150 mm by 50 mm. The deflection under vacuum is measured by dial gauges. On the left one sees the large vessel where vacuum chambers were tested at pressures above atmospheric pressure.

  10. Bi-cone vacuum chamber in the ISR

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The "bi-cone" vacuum chamber in ISR intersection I-7, for experiment R702. Made from 0.28 mm thick titanium, it was at its time the most transparent chamber ever built. Ian Wilson is standing next to the chamber. See also 7609219.

  11. Central Drift Chamber for rare kaon decay spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Blackmore, E.W.; Bryman, D.A.; Cresswell, J.; Numao, T.

    1986-02-01

    Design of the Central Drift Chamber for BNL experiment 787 and measurement of a rare kaon decay are discussed. A jet chamber type cell with 6 sense wires and no interspersed field wires has been designed to achieve good spatial resolution and efficiency in a 1 T magnetic field. Results of the testing of a prototype chamber are presented.

  12. Installation and Commissioning of the new GLM Implantation Chamber

    CERN Document Server

    Pohl, Christoph

    2016-01-01

    Summer student report about the work with the new implantation chamber for the GLM branch of ISOLDE. In the context of this project an API for the vacuum system of the new chamber was developed and implemented in web application that will be used to control the new implantation chamber at some point.

  13. 30 CFR 56.7807 - Flushing the combustion chamber.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flushing the combustion chamber. 56.7807 Section 56.7807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber...

  14. 30 CFR 57.7807 - Flushing the combustion chamber.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  15. Engineering analyses of large precision cathode strip chambers for GEM

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.; Wuest, C.R. [Lawrence Livermore National Lab., CA (United States); Mitselmakher, G. [Superconducting Super Collider Lab., Dallas, TX (United States); Gordeev, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Johnson, C.V. [Lawrence Livermore National Lab., CA (United States)]|[Superconducting Super Collider Lab., Dallas, TX (United States); Polychronakos, V.A. [Brookhaven National Lab., Upton, NY (United States); Golutvin, I.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1993-10-21

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  16. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2002-09-30

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

  17. Capillary spreading of contact line over a sinking sphere

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jin; Fezzaa, Kamel; An, Jim; Sun, Tao; Jung, Sunghwan

    2017-09-25

    The contact line dynamics over a sinking solid sphere are investigated in comparison with classical spreading theories. Experimentally, high-speed imaging systems with optical light or x-ray illumination are employed to accurately measure the spreading motion and dynamic contact angle of the contact line. Millimetric spheres are controlled to descend with a constant speed ranging from 7.3 × 10-5 to 0.79 m/s. We observed three different spreading stages over a sinking sphere, which depends on the contact line velocity and contact angle. These stages consistently showed the characteristics of capillarity-driven spreading as the contact line spreads faster with a higher contact angle. The contact line velocity is observed to follow a classical capillary-viscous model at a high Ohnesorge number (> 0.02). For the cases with a relatively low Ohnesorge number (< 0.02), the contact line velocity is significantly lower than the speed predicted by the capillary-viscous balance. This indicates the existence of an additional opposing force (inertia) for a decreasing Ohnesorge number. The capillary-inertial balance is only observed at the very beginning of the capillary rise, in which the maximum velocity is independent of the sphere’s sinking speed. Additionally, we observed the linear relation between the contact line velocity and the sphere sinking speed during the second stage, which represents capillary adjustment by dynamic contact angle.

  18. Viscoelastic capillary flow: the case of whole blood

    Directory of Open Access Journals (Sweden)

    David Rabaud

    2016-07-01

    Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.

  19. On the performance of capillary barriers as landfill cover

    Directory of Open Access Journals (Sweden)

    M. Kämpf

    1997-01-01

    Full Text Available Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m. In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  20. Safety observation of applying anterior chamber gas injection for unstable anterior chamber at the end of cataract surgery

    National Research Council Canada - National Science Library

    Yong-Zhi Huang; Tao Sun; Yu-Ting Zhi; Li Li; Lu-Ning Yan

    2015-01-01

    AIM: To observe the surgical effect, complications and assess the safety of applying anterior chamber injection of sterile air to treat instability of anterior chamber occurred at the end of cataract...

  1. A combination drift chamber/pad chamber for very high readout rates

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W. [Fermi National Accelerator Lab., Batavia, IL (United States); Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J. [Wisconsin Univ., Madison, WI (United States); Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P. [Pavia Univ. (Italy)]|[Istituto Nazionale di Fisica Nucleare, Rome (Italy); Arenton, M.; Conetti, S.; Cox, B.; Dukes, E.; Golovatyuk, V.; Hanlet, P.; McManus, A.; Nelson, K.; Recagni, M.; Segal, J.; Sun, J. [Virginia Univ., Charlottesville, VA (United States); Ballagh, C.; Bingham, H.; Kaeding, T.; Lys, J.; Misawa, S. [California Univ., Berkeley, CA (United States); Blankman, A.; Borodin, S.; Kononenko, W.; Newcomer, M.; Selove, W.; Trojak, T.; VanBerg, R.; Zhang, S.N. [Pennsylvania Univ., Philadelphia, PA (United States); Block, M.; Corti, G.; LeCompte, T.; Rosen, J.; Yao, T. [Northwestern Univ., Evanston, IL (United States); Boden, A.; Cline, D.; Ramachandran, S.; Rhoades, J.; Tokar, S. [California Univ., Los Angeles, CA (United States); Budagov, J.; Tsyganov, E. [Joint Inst. for Nuclear Research, Dubna (USSR); Cao, Z.L.; He, M.; Wang, C.; Wei, C.; Zhang, N. [Shandong Univ., Jinan, SD (China); Chen, T.Y.; Yao, N. [Nanjing Univ., JS (China); Clark, K.; Jenkins, M. [University of South Alabama, Mobile, AL (United States); Cooper, M. [Vanier Inst. of the Family, Ottawa, ON (Canada); Creti, P.; Gorini, E.; Grancagnolo, F.; Panareo, M. [Lecce Univ. (Italy)]|[Istituto Nazionale di Fisica Nucleare, Rome (Italy); Fortney, L.; Kowald, W. [Duke Univ., Durham, NC (United States); Haire, M.; Judd, D.; Turnbull, L.; Wagoner, D. [Texas A and M Univ., Prairie View, TX (United States); Lau, K.; Mo, G. [Houston Univ., TX (United States); Trischuk, J. [McGill Univ., Montreal, PQ (Canada)

    1991-11-01

    Six medium-sized ({approx}1 {times} 2 m{sup 2}) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers.

  2. Organic Aerosol Nucleation and Growth at the CERN CLOUD chamber

    Science.gov (United States)

    Tröstl, Jasmin; Lethipalo, Katrianne; Bianchi, Federico; Sipilä, Mikko; Nieminen, Tuomo; Wagner, Robert; Frege, Carla; Simon, Mario; Weingartner, Ernest; Gysel, Martin; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    It is well known that atmospheric aerosols influence the climate by changing Earth's radiation balance (IPCC 2007 and 2013). Recent models have shown (Merikanto et al. 2009) that aerosol nucleation is one of the biggest sources of low level cloud condensation nuclei. Still, aerosol nucleation and growth are not fully understood. The driving force of nucleation and growth is sulfuric acid. However ambient nucleation and growth rates cannot be explained by solely sulfuric acid as precursor. Recent studies have shown that only traces of precursors like ammonia and dimethylamine enhance the nucleation rates dramatically (Kirkby et al. 2011, Almeida et al., 2013). Thus the role of different aerosol precursor needs to be studied not only in ambient but also in very well controlled chamber experiments. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment enables conducting experiments very close to atmospheric conditions and with a very low contaminant background. The latest CLOUD experiments focus on the role of organics in aerosol nucleation and growth. For this purpose, numerous experiments with alpha-pinene have been conducted at the CERN CLOUD chamber. Several state-of-the-art instruments were used to cover the whole complexity of the experiment. Chamber conditions were set to 40% relative humidity and 5° C. Atmospheric concentrations of SO2, O3, HONO, H2O and alpha-pinene were injected to the chamber. Different oxidation conditions were used, yielding different levels of oxidized organics: (1) OH radicals, (2) Ozone with the OH scavenger H2 (pure ozonolysis) and (3) both. SO2 was injected to allow for sulfuric acid production. Optical UV fibers were used to enable photochemical reactions. A high field cage (30 kV) can be turned on to remove all charged particles in the chamber to enable completely neutral conditions. Comparing neutral conditions to the beam conditions using CERN's proton synchrotron, the fraction of ion-induced nucleation can be studied. Using

  3. A novel non invasive measurement of hemodynamic parameters: Comparison of single-chamber ventricular and dual-chamber pacemaker

    Directory of Open Access Journals (Sweden)

    Ingrid M. Pardede

    2008-03-01

    Full Text Available We carried out a cross sectional study to analyze hemodynamic parameters of single-chamber ventricular pacemaker compared with dual-chamber pacemaker by using thoracic electrical bioimpedance monitoring method (Physio Flow™ - a novel simple non-invasive measurement. A total of 48 consecutive outpatients comprised of 27 single chamber pacemaker and 21 dual chamber were analyzed. We measured cardiac parameters: heart rate, stroke volume index, cardiac output index, estimated ejection fraction, end diastolic volume, early diastolic function ratio, thoracic fluid index, and systemic parameters: left cardiac work index and systemic vascular resistance index. Baseline characteristic and pacemaker indication were similar in both groups. Cardiac parameters assessment revealed no significant difference between single-chamber pacemaker and dual-chamber pacemaker in heart rate, stroke volume index, cardiac index, estimated ejection fraction, end-diastolic volume, thoracic fluid index. There was significantly higher early diastolic function ratio in single-chamber pacemaker compared to dual-chamber pacemaker: 92% (10.2-187.7% vs. 100.6% (48.7-403.2%; p=0.006. Systemic parameters assessment revealed significantly higher left cardiac work index in single-chamber group than dual-chamber group 4.9 kg.m/m² (2.8-7.6 kg.m/m² vs. 4.3 kg.m/m² (2.9-7.2 kg.m/m²; p=0.004. There was no significant difference on systemic vascular resistance in single-chamber compared to dual-chamber pacemaker. Single-chamber ventricular pacemaker provides similar stroke volume, cardiac output and left cardiac work, compared to dual-chamber pacemaker. A non-invasive hemodynamic measurement using thoracic electrical bioimpedance is feasible for permanent pacemaker outpatients. (Med J Indones 2008; 17: 25-32Keywords: Permanent pacemaker, single chamber, dual chamber, thoracic electrical bioimpedance, hemodynamic parameter

  4. Development of special ionization chambers for a quality control program in mammography; Desenvolvimento de camaras de ionizacao especiais para controle de qualidade em mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonas Oliveira da

    2013-07-01

    Mammography is an imaging method that uses X-rays. The use of ionization chambers in mammography quality control programs presents an essential role which is to verify whether the parameters of the patient exposure are correct. However, the commercial ionization chambers for dosimetry in mammography represent a high cost for small and medium size clinics that wish to have this equipment or for professionals that work with quality control programs. The innovative feature of this work was to develop ionization chambers for this purpose. In this work ionization chambers for X radiation beams in the mammography energy range were designed, constructed and characterized. The ionization chambers were tested in standard X radiation beams at the LCI/IPEN. The main characterization tests performed with the ionization chambers were: saturation curve, linearity of response, angular and energy dependence. The response stability tests of the ionization chambers were also conducted at the LCI, presenting results within 2.0 % for long-term stability. The results of the remaining tests are in accordance with international standards. These ionization chambers were also submitted to quality control tests of mammography equipment: linearity of the air kerma rates, determination of half-value layers and mean glandular doses. The results for air kerma rate linearity were less than 10 %, as recommended in international standards. The mean glandular dose obtained with the developed chambers presented values comparable to those of commercial ionization chambers tested, with an estimated variation within international standards. (author)

  5. Non-financial Results of Performance Indicators of Trade and Industry Chambers in Ukraine

    Directory of Open Access Journals (Sweden)

    Bogdana V. Aleksandrova

    2014-03-01

    Full Text Available The article deals with non-financial results review of Trade and Industry Chamber, the assessment of competitiveness in the Ukrainian market. To achieve the desired goal we should do the following: 1.\tIdentify categories of research 2.\tSystemize available statistics. 3.\tTo evaluate dynamics of main categories 4.\tConduct an assessment of non-financial indicators of Trade and Industry Chamber 5.\tIdentify the level of competitiveness of Trade and Industry Chamber of Ukraine on domestic market. Methods used by author to address these issues: index-linked, method of correlation analysis, method of expert assessment. As a result of the study, non-financial indicators of organization’s activities have been analyzed, the dynamics of membership base and the scope of delivered services have been identified as well as the level of organization’s competitiveness. The most promising services have been highlighted.

  6. Elimination of Intermediate-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    Science.gov (United States)

    Rocker, Marvin; Nesman, Tomas E.; Turner, Jim E. (Technical Monitor)

    2001-01-01

    A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. The thrust chamber exhibited benign, yet marginally unstable combustion. The marginally unstable combustion was characterized by chamber pressure oscillations with large amplitudes and a frequency that was too low to be identified as acoustic or high-frequency combustion instability and too high to be identified as chug or low-frequency combustion instability. The source of the buzz or intermediate-frequency combustion instability was traced to the fuel venturi whose violently noisy cavitation caused resonance in the feedline downstream. Combustion was stabilized by increasing the throat diameter of the fuel venturi such that the cavitation would occur more quietly.

  7. Progress with diamond over-coated microstrip gas chambers

    CERN Document Server

    Boimska, B; Capéans-Garrido, M; Dominik, Wojciech; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A; Temmel-Ropelewski, T

    1998-01-01

    We describe recent observations and measurements with Micro-Strip Gas Chambers coated, after manufacturing, with a thin diamond-like layer in order to increase their rate capability. Compared to the more widely used solution consisting in coating the insulating support with a conductive layer before photo-lithography (the so-called undercoating), over-coating has the advantage of avoiding possible problems with adherence of metals to the layer, damages during the etching process and reduced quality of the artwork resulting from imperfections or dust inclusions in the layer. Early tests have however indicated that, possibly because of damages to the layer due to electron and ion bombardment during the avalanche process, irreversible structural modifications and fatal breakdown could be encountered at very high integral radiation fluxes. The present paper summarizes these results, and describes recent developments demonstrating that a better choice of the parameters of the over-coat may allow to withstand the r...

  8. Bremstrahlung Detection and Chamber Obstruction Localisation Using Scanning Radiation Detectors

    CERN Document Server

    Naylor, G A; Robinson, D

    2005-01-01

    Radiation monitors consisting of scintillating plastic coupled to photomultipliers are used for diagnostic purposes. By scanning such a detector or a radiation scatterer, two applications are demonstrated: i) Monitoring of vacuum chamber conditioning by monitoring gas Bremstrahlung from residual gas. ii) Localisation of beam interception (beam losses) by longitudinal scanning of a radiation detector. The measurement of gas pressure inside long, small cross section, vacuum vessels is difficult due to the distance between the centre of the vacuum vessel and vacuum gauges (leading to a low vacuum conductance). The narrow beam of gamma Bremstrahlung radiation is intercepted by scanning tungsten blades in the beam line front-end allowing a radiation shower to be detected outside the vacuum vessel proportional to the gas pressure in the corresponding storage ring straight section. A second detector mounted on rails can be moved over a length of 6.5m parallel to the ESRF storage ring so as to localise regions of bea...

  9. Surface tension in microsystems engineering below the capillary length

    CERN Document Server

    Lambert, Pierre

    2014-01-01

    This book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent. The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom. It provides a comprehensive approach to various applications, such as capillary adhesion (axial force), centering force in packaging and micro-assembly (lateral force) and recent developments such as a capillary motor (torque). It devises how surface tension can be used to provide mechanical functions such as actuation (bubble-actuated compliant table), sealing and tightness, energy harvesting, nanodispending.

  10. Pepsin-modified chiral monolithic column for affinity capillary electrochromatography.

    Science.gov (United States)

    Hong, Tingting; Chi, Cuijie; Ji, Yibing

    2014-11-01

    Pepsin-modified affinity monolithic capillary electrochromatography, a novel microanalysis system, was developed by the covalent bonding of pepsin on silica monolith. The column was successfully applied in the chiral separation of (±)-nefopam. Furthermore, the electrochromatographic performance of the pepsin-functionalized monolith for enantiomeric analysis was evaluated in terms of protein content, pH of running buffer, sample volume, buffer concentration, applied voltage, and capillary temperature. The relative standard deviation (%RSD) values of retention time (intraday affinity monolith used in this research opens a new path of exploring particularly versatile class of enzymes to develop enzyme-modified affinity capillary monolith for enantioseparation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of angiogenin receptors on bovine brain capillary endothelial cells.

    Science.gov (United States)

    Chamoux, M; Dehouck, M P; Fruchart, J C; Spik, G; Montreuil, J; Cecchelli, R

    1991-04-30

    The mitogenic effect of bovine milk angiogenin was studied on bovine brain capillary and aortic endothelial cells, smooth muscle cells and fibroblasts. The proliferation of only bovine brain capillary endothelial cells was detected at concentrations ranging from 10 to 1,000 ng/ml, with a maximum effect at 100 ng/ml. This mitogenic activity may be correlated with a specific binding of angiogenin which was demonstrated only to bovine brain capillary endothelial cells. [125I]-labeled angiogenin binding was time and concentration dependent and saturable. Scatchard analyses of binding data showed evidence of a single class of binding sites with an apparent dissociation constant of 5.10(-10)M. The molecular mass of the angiogenin receptor (49 kDa) was determined by ligand blotting.

  12. Systemic Capillary Leak Syndrome: Is Methylene Blue the Silver Bullet?

    Directory of Open Access Journals (Sweden)

    Michele Umbrello

    2014-01-01

    Full Text Available Background. Systemic capillary leak syndrome (SCLS is a rare disorder characterized by unexplained, recurrent episodes of transient, abrupt increase in endothelial permeability, leading to severe hypotension, generalized edema, and hemoconcentration. Case Report. We report the case of a patient suffering from systemic capillary leak syndrome and present a possible interpretation of the pathophysiology of this condition. Besides the classical triad of hypotension, edema, and hemoconcentration, we recorded increased levels of methemoglobin, an index of NO overproduction. We present a possible interpretation of the pathophysiology of this condition based on the fast and complete reversal of symptoms after methylene blue administration (which opposes NO-induced effects and speculate that increased NO levels could be implicated in the pathophysiology of the capillary leak phase. Why should an emergency physician be aware of this? The safety of this treatment and its fluid- and cathecolamine-sparing effect deserve consideration and further research.

  13. The application of capillary microsampling in GLP toxicology studies.

    Science.gov (United States)

    Verhaeghe, Tom; Dillen, Lieve; Stieltjes, Hans; Zwart, Loeckie de; Feyen, Bianca; Diels, Luc; Vroman, Ann; Timmerman, Philip

    2017-04-01

    Capillary microsampling (CMS) to collect microplasma volumes is gradually replacing traditional, larger volume sampling from rats in GLP toxicology studies. About 32 µl of blood is collected with a capillary, processed to plasma and stored in a 10- or 4-µl capillary which is washed out further downstream in the laboratory. CMS has been standardized with respect to materials, assay validation experiments and application for sample analysis. The implementation of CMS has resulted in blood volume reductions in the rat from 300 to 32 µl per time point and the elimination of toxicokinetic satellite groups in the majority of the rat GLP toxicology studies. The technique has been successfully applied in 26 GLP studies for 12 different projects thus far.

  14. Suppressing Crack Formation in Particulate Systems by Utilizing Capillary Forces.

    Science.gov (United States)

    Schneider, Monica; Maurath, Johannes; Fischer, Steffen B; Weiß, Moritz; Willenbacher, Norbert; Koos, Erin

    2017-03-29

    Cracks, formed during the drying of particulate films, can reduce the effectiveness or even render products useless. We present a novel, generic approach to suppress crack formation in thin films made from hard particle suspensions, which are otherwise highly susceptible to cracking, using the capillary force between particles present when a trace amount of an immiscible liquid is added to a suspension. This secondary liquid preserves the particle cohesion, modifying the structure and increasing the drying rate. Crack-free films can be produced at thicknesses much greater than the critical cracking thickness for a suspension without capillary interactions, and even persists after sintering. This capillary suspension strategy is applicable to a broad range of materials, including suspensions of metals, semiconductive and ceramic oxides, or glassy polymeric particles, and can be easily implemented in many industrial processes since it is based on well-established unit operations. Promising fields of application include ceramic foils and printed electronic devices.

  15. Capillary-inertial colloidal catapults upon drop coalescence

    Science.gov (United States)

    Chavez, Roger L.; Liu, Fangjie; Feng, James J.; Chen, Chuan-Hua

    2016-07-01

    Surface energy released upon drop coalescence is known to power the self-propelled jumping of liquid droplets on superhydrophobic solid surfaces, and the jumping droplets can additionally carry colloidal payloads toward self-cleaning. Here, we show that drop coalescence on a spherical particle leads to self-propelled launching of the particle from virtually any solid surface. The main prerequisite is an intermediate wettability of the particle, such that the momentum from the capillary-inertial drop coalescence process can be transferred to the particle. By momentum conservation, the launching velocity of the particle-drop complex is proportional to the capillary-inertial velocity based on the drop radius and to the fraction of the liquid mass in the total mass. The capillary-inertial catapult is not only an alternative mechanism for removing colloidal contaminants, but also a useful model system for studying ballistospore launching.

  16. Analyses of anticancer drugs by capillary electrophoresis: a review.

    Science.gov (United States)

    Ali, Imran; Haque, Ashanul; Wani, Waseem A; Saleem, Kishwar; Al Za'abi, Mohammed

    2013-10-01

    Capillary electrophoresis is a fast, inexpensive and low detection limit technique for the analysis of anticancer drugs. It has been used to analyze various anticancer drugs in biological samples, pharmaceutical preparations and environmental matrices. It has also been used to detect various cancer biomarkers in cancer patients. The present article describes the state-of-the art of capillary electrophoresis for the analyses of anticancer drugs. Various drugs discussed belong to several groups such as antimitotic agents, nucleoside analogs, antibiotics, topoisomerase inhibitors and DNA intercalating agents. In addition, efforts have also been made to discuss sample preparation, applications of capillary electrophoresis in genomic research, optimization and future perspectives. Copyright © 2013 John Wiley & Sons, Ltd.

  17. In-capillary approach to eliminate SDS interferences in antibody analysis by capillary electrophoresis coupled to mass spectrometry.

    Science.gov (United States)

    Sánchez-Hernández, Laura; Montealegre, Cristina; Kiessig, Steffen; Moritz, Bernd; Neusüß, Christian

    2017-04-01

    Capillary electrophoresis is an important technique for the characterization of monoclonal antibodies (mAbs), especially in the pharmaceutical context. However, identification is difficult as upscaling and hyphenation of used methods directly to mass spectrometry is often not possible due to separation medium components that are incompatible with MS detection. Here a CE-MS method for the analysis of mAbs is presented analyzing SDS-complexed samples. To obtain narrow and intensive peaks of SDS-treated antibodies, an in-capillary strategy was developed based on the co-injection of positively charged surfactants and methanol as organic solvent. For samples containing 0.2% (v/v) of SDS, recovered MS peak intensities up to 97 and 95% were achieved using cetyltrimethylammonium bromide or benzalkonium chloride, respectively. Successful removal of SDS was shown in neutral coated capillaries but also in a capillary with a positively charged coating applying reversed polarity. The usefulness of this in-capillary strategy was demonstrated also for other proteins and for antibodies dissolved in up to 10% v/v SDS solution, and in other SDS-containing matrices, including the sieving matrix used in a standard CE-SDS method and gel-buffers applied in SDS-PAGE methods. The developed CE-MS approaches enable fast and reproducible characterization of SDS-complexed antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dual-channel capillary electrophoresis for simultaneous determination of cations and anions.

    Science.gov (United States)

    Opekar, František; Tůma, Petr

    2016-05-13

    An original electrophoresis apparatus for simultaneous rapid determination of cations and anions has been designed and tested. The separation part of the apparatus consists of two identical fused-silica capillaries, each with a length of 10.5cm and inner diameter of 25μm. The injection space is formed by the crossing of four channels in a plexiglass cross-piece. The capillaries pass through two opposing channels and their injection ends are located opposite one another at a distance of approx. 0.5mm in the centre of the crossing point. The exit ends of the capillaries are placed in vessels containing the background electrolyte in which are immersed the electrodes of a high-voltage source. Contactless conductivity detectors with semi-cylindrical electrodes are located 2cm from the exit ends of the capillaries. The injection part of the apparatus consists of two piezoelectric micro-pumps bringing the solution through another channel in the cross-piece to the injection ends of the capillary. During the injection, the sample is brought through one of them and is injected electrokinetically for a defined time. Then the sample zone is forced out of the injection space by a stream of background electrolyte from the second micro-pump. The timing of the injection process is computer-controlled. Thus the equipment can be considered to constitute electrophoresis in one capillary with injection into its centre. The use of short capillaries and miniature micro-pumps without other mechanical components enabled the construction of the apparatus on a board with dimensions of 20×25cm. The proposed equipment was used to test simultaneous separation of a mixture of cations and anions, NH4(+), K(+), Ca(2+), Mg(2+), Sr(2+), Ba(2+), Cl(-), NO3(-), SO4(2-), ClO3(-) and F(-), in BGE with composition 500mM HAc+20mM Tris+2mM 18-crown-6 (pH 3.3). Baseline separation of all the components was achieved in time less than 1min. Quantification of the content of nitrate nitrogen (determined as

  19. Methane fluxes at upland forests in Japan based on the micrometeorological and chamber methods

    Science.gov (United States)

    Ueyama, M.; Yoshikawa, K.; Takahashi, Y.; Takagi, K.; Kominami, Y.

    2016-12-01

    Characterizing methane fluxes at upland forests are important to understand the global methane budget. We continuously measured methane fluxes based on the hyperbolic relaxed eddy accumulation (HREA) and automated dynamic closed chamber methods at three temperature forests: a mature larch plantation on a volcanic soil (FHK) since 2011, a young larch plantation on a Gambisol (TSE) since 2013, and deciduous broadleaf forest on an immature soil (YMS) since 2014. According to the chamber measurements, the three forests acted as a methane sink in the warm periods when the chamber measurements were conducted. In contrast, canopy-scale methane fluxes by the HREA often showed emission signals except FHK; in summer months, canopy-scale methane fluxes showed emissions in TSE and YMS, although those by chambers showed uptake. Consequently, missing sources at the canopy-scale were suggested in the measurements. In FHK at the uniform volcanic dry soil, both the HREA and chamber measurements showed a sink with similar magnitudes; the forest consumed methane except the winter. Canopy-scale annual methane budgets were a sink of 810 mg m-2 yr-1 for FHK, source of 190 mg m-2 yr-1 for TSE, and sink of 90 mg m-2 yr-1 for YMS.

  20. Validation of Contamination Control in Rapid Transfer Port Chambers for Pharmaceutical Manufacturing Processes.

    Science.gov (United States)

    Hu, Shih-Cheng; Shiue, Angus; Liu, Han-Yang; Chiu, Rong-Ben

    2016-11-12

    There is worldwide concern with regard to the adverse effects of drug usage. However, contaminants can gain entry into a drug manufacturing process stream from several sources such as personnel, poor facility design, incoming ventilation air, machinery and other equipment for production, etc. In this validation study, we aimed to determine the impact and evaluate the contamination control in the preparation areas of the rapid transfer port (RTP) chamber during the pharmaceutical manufacturing processes. The RTP chamber is normally tested for airflow velocity, particle counts, pressure decay of leakage, and sterility. The air flow balance of the RTP chamber is affected by the airflow quantity and the height above the platform. It is relatively easy to evaluate the RTP chamber's leakage by the pressure decay, where the system is charged with the air, closed, and the decay of pressure is measured by the time period. We conducted the determination of a vaporized H₂O₂ of a sufficient concentration to complete decontamination. The performance of the RTP chamber will improve safety and can be completely tested at an ISO Class 5 environment.

  1. Changes in labial capillary density on ascent to and descent from high altitude [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Edward Gilbert-Kawai

    2016-08-01

    Full Text Available Present knowledge of how the microcirculation is altered by prolonged exposure to hypoxia at high altitude is incomplete and modification of existing analytical techniques may improve our knowledge considerably. We set out to use a novel simplified method of measuring in vivo capillary density during an expedition to high altitude using a CytoCam incident dark field imaging video-microscope. The simplified method of data capture involved recording one-second images of the mucosal surface of the inner lip to reveal data about microvasculature density in ten individuals. This was done on ascent to, and descent from, high altitude. Analysis was conducted offline by two independent investigators blinded to the participant identity, testing conditions and the imaging site.  Additionally we monitored haemoglobin concentration and haematocrit data to see if we could support or refute mechanisms of altered density relating to vessel recruitment. Repeated sets of paired values were compared using Kruskall Wallis Analysis of Variance tests, whilst comparisons of values between sites was by related samples Wilcoxon Signed Rank Test. Correlation between different variables was performed using Spearman’s rank correlation coefficient, and concordance between analysing investigators using intra-class correlation coefficient. There was a significant increase in capillary density from London on ascent to high altitude; median capillaries per field of view area increased from 22.8 to 25.3 (p=0.021. There was a further increase in vessel density during the six weeks spent at altitude (25.3 to 32.5, p=0.017. Moreover, vessel density remained high on descent to Kathmandu (31.0 capillaries per field of view area, despite a significant decrease in haemoglobin concentration and haematocrit. Using a simplified technique, we have demonstrated an increase in capillary density on early and sustained exposure to hypobaric hypoxia at thigh altitude, and that this remains

  2. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  3. String quartet chamber music : the personal way of music development

    OpenAIRE

    Montant, Laure

    2012-01-01

    The subject of this thesis is about chamber music and more specifically string quartet. How and why chamber music should be a real part of a musician’s life. In the introduction, it is explained why it is important to play chamber music and what qualities a musician needs to be good at it. Then a description of what is chamber music litterally is exposed. The history recounts what was chamber music from its early beginings until our days and why it has so much evolves. About interpretation, t...

  4. Density functional study of condensation in capped capillaries.

    Science.gov (United States)

    Yatsyshin, P; Savva, N; Kalliadasis, S

    2015-07-15

    We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at T≤Tcw) or continuous (at T>Tcw), where Tcw is the capillary wetting temperature. At T>Tcw, the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies.

  5. Effects of patulin on thymus capillary of rats.

    Science.gov (United States)

    Gül, Nursel; Ozsoy, Nesrin; Osmanagaoglu, Ozlem; Selmanoğlu, Güldeniz; Koçkaya, E Arzu

    2006-01-01

    Patulin is a mycotoxin that is produced by species of Penicillum, Aspergillus, and Byssochylamys molds that may grow on a variety of foods including fruit, grains and cheese. Patulin, at a dose of 0.1 mg kg(-1) bw day(-1) was administered orally to growing male rats aged 5-6 weeks for a period of 60 or 90 days. The dose of patulin used in the present study was based on estimated human exposure levels. At the end of these periods, the thymus glands of patulin-treated and control Wistar rats were removed and ultrastructural changes in capillary cells of the thymus of patulin-treated Wistar rats were determined by electron microscopy. The walls of thymus capillaries of the 60-day patulin-treated rat groups (P-60) exhibited degeneration observable in electron microscopic sections. For example, loss of cytoplasm and mitochondrial cristae of cells, swollen endothelial cells, increased thickness of the basement membrane, closed lumen of capillaries, accumulation of fibrous material at the periphery of the capillaries and nuclear anomalies were seen in these sections. Such degeneration and changes were also observed in sections of capillaries of the 90-day patulin-treated rat groups (P-90). The levels of degeneration of endothelial cell nucleus of P-90 were greater than those of P-60. This study demonstrated the ultrastructural degeneration of thymus capillary cells of patulin-treated rats. The results obtained from this study may provide a guide to research dealing with the toxic effects of patulin on tissue and organ ultrastructure. Copyright (c) 2005 John Wiley & Sons, Ltd.

  6. Cost advantage of dual-chamber versus single-chamber cardioverter-defibrillator implantation.

    Science.gov (United States)

    Goldberger, Zachary; Elbel, Brian; McPherson, Craig A; Paltiel, A David; Lampert, Rachel

    2005-09-06

    The purpose of this study was to determine the least expensive strategy for device selection in patients receiving implantable cardioverter-defibrillators (ICDs). Device cost for a single-chamber ICD is less than an atrioventricular (dual-chamber) ICD (AV-ICD); however, some patients without clinical need for AV-ICD at implantation might require a later upgrade, potentially offsetting the initial cost advantage of the single-chamber device. Decision analysis was used to estimate expected resource utilization costs of three alternative implantation strategies: 1) single-chamber device in all, with later upgrade to AV-ICD if needed; 2) initial implantation of an AV-ICD in all; and 3) targeted device selection on the basis of results of electrophysiologic testing (presence or absence of induced bradyarrhythmias or atrial arrhythmias). Clinical base estimates were obtained from retrospective review of all patients receiving ICDs between June 1997 and July 2001 at a single university hospital. Economic inputs were collected from national and single-center sources. In patients without other indications for electrophysiologic study (EPS), the expected per-person cost was least with the strategy of universal initial AV-ICD implantation (36,232 dollars) compared with initial single-chamber ICD/upgrade as needed (39,230 dollars) or EPS-guided selection (41,130 dollars). Sensitivity analyses demonstrated that universal AV-ICD implantation remained least expensive with upgrade rates as low as 10%. At a 5% upgrade rate, AV-ICD remained cheapest if the device cost-differential narrowed to 1,568 dollars. For patients undergoing EPS for risk assessment, EP-guided selection was least expensive. The strategy of universal AV-ICD implantation, which provides the benefits of dual-chamber capability while obviating any potential need for future upgrade, is the least costly strategy for most patient populations receiving ICDs.

  7. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  8. The Evolution and Development of Cephalopod Chambers and Their Shape.

    Science.gov (United States)

    Lemanis, Robert; Korn, Dieter; Zachow, Stefan; Rybacki, Erik; Hoffmann, René

    2016-01-01

    The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth.

  9. Anterior chamber intra ocular lens implantation.

    OpenAIRE

    Raju N

    1989-01-01

    The role of A.C. IOL in modern implant surgery has become somewhat debatable, since, the choice procedure to day is undoubtedly an ECCE with a PC lens implant preferably in the capsular bag. Even so, anterior chamber lens implantation has its definite indications. As such it is necessary for the implant surgeon to be familiar with the latest technique in this modality of surgery as well. Many of the complications of earlier rigid model AC IOLs were mainly due to defective lens design. With th...

  10. Posterior chamber intraocular lens dislocations and malpositions.

    Science.gov (United States)

    Obstbaum, S A; To, K

    1989-08-01

    Decentration and malposition of posterior chamber intraocular lenses (PC IOL) accounts for one of the remaining and unresolved conditions associated with the implantation of these lenses. This condition assumes importance since in approximately 50% of cases where a PC IOL is removed there is an aspect of improper positioning. The common types of malpositions are: pupil capture; sunset syndrome; sunrise syndrome; horizontal decentration; and the windshield wiper syndrome. This paper will explore the causes and management of these conditions and discuss the virtues of capsular bag implantation.

  11. Chamber service module (CSM1) for MDT

    CERN Document Server

    Binchi, P

    2002-01-01

    CSM-1 is the second and latest version of the high speed electronic unit whose primary task is to multiplex serial data from up to 18 ASD /TDC cards located at the ends of the Monitored Drift Tubes. Each CSM will capture data from all 24 channel TDC (AMT-2 units) of a given chamber and transfer it along a single optic fiber to the MROD, the event builder and readout driver. The core of the board is a Xilinx VirtexII FPGA which will use JTAG protocol (IEEE Std. 1149.1) for logic configuration parameter loading.

  12. Microstrip gas chambers on implanted substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pallares, A. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Barthe, S. [Laboratoire PHASE (UPR 292 du CNRS), 23 rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France); Bergtold, A.M. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Brom, J.M. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Cailleret, J. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Christophel, E. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Coffin, J. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Eberle, H. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Fang, R. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Fontaine, J.C. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Geist, W. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Kachelhoffer, T. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Levy, J.M. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Mack, V. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Schunck, J.P. [Laboratoire PHASE (UPR 292 du CNRS), 23 rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France); Sigward, M.H. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires

    1995-12-11

    We have studied the performance of several Microstrip Gas Chamber (MSGC) prototypes made on standard Desag D263 boron implanted glass. The purpose of the implantation is to reduce the surface resistance. The long term stability of this implantation has been measured under applied bias voltage. Comparative tests have been carried out on prototypes made on implanted and unimplanted detectors under electron ({sup 90}Sr) and X-ray (8 keV) irradiation. The total dose was approximately 7 mC/cm. (orig.).

  13. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Physik. 42, 303-344,        1913. [3]    KRAMERS, H.A.: On a modification of Jaffe's theory pf column-ionization. Physica. 10, 18,        665-675, 1952. [4]    CHU, J.C.H., GRANT, WH., ALMOND, P.R.: A liquid Ionization Chamber for neutron        dosimetry. Phys. Med. Biol. 6, 25, 1133-1148, 1980....

  14. Effect of air on water capillary flow in silica nanochannels

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Walther, Jens Honore; Oyarzua, Elton

    2013-01-01

    in sub 10 nm silica channels. The capillary filling speed is computed in channels subjected to different air pressures. In order to describe the interactions between the species, an effective force field is developed, which is calibrated by reproducing the water contact angle. The results show...... that the capillary filling speed qualitatively follows the classical Washburn model, however, quantitatively it is lower than expected. Furthermore, it is observed that the deviations increase as air pressure is higher. We attribute the deviations to amounts of air trapped at the silica-water interface which leads...

  15. Capillary electrophoresis for characterization of low molecular weight heparins.

    Science.gov (United States)

    Ramasamy, I; Kennedy, J; Tan, K

    2003-01-01

    In many instances, low molecular weight heparins (LMWH) have replaced unfractionated heparins for prevention and treatment of venous thromboembolism. Each LMWH is a specific compound with its own physicochemical and pharmacological properties. These properties are critical in determining the therapeutic efficacy of the product. In recent times, capillary electrophoresis (CE) has emerged as a means of analytical separation of biological molecules. There are few reports, however, detailing the separation of whole heparins by capillary electrophoresis. This paper reports the use of CE to characterize LMWH without prior oligosaccharide release, labeling, or derivatization. The paper also focuses on the advantages of CE separation for the monitoring of product consistency.

  16. [De novo growth of a capillary hemangioma of the conjunctiva].

    Science.gov (United States)

    Fernández-Vega Cueto, L; Tresserra, F; de la Paz, M F

    2014-03-01

    A 22-year-old woman patient, diagnosed with an inclusion cyst of the conjunctiva in the nasal sector of the left eye, who after 2 shot/needle injections in the lesion came to our clinic with a dense subconjunctival hemorrhage in four quadrants and with severe pain. After excision biopsy, a capillary hemangioma of the conjunctiva was diagnosed. Conjunctival capillary hemangioma is mainly a benign lesion, asymptomatic and mostly congenital in origin, its progression or de novo growth is rare in adulthood. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  17. Antiresonant hollow core fiber with seven nested capillaries

    DEFF Research Database (Denmark)

    Antonio-Lopez, Jose E.; Habib, Selim; Van Newkirk, Amy

    2016-01-01

    We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth.......We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth....

  18. Intravenous pyogenic granuloma or intravenous lobular capillary hemangioma

    Energy Technology Data Exchange (ETDEWEB)

    Ghekiere, Olivier; Galant, Christine; Berg, Bruno Vande [Cliniques Universitaires St. Luc, Department of Radiology, Brussels (Belgium)

    2005-06-01

    Lobular capillary hemangioma is a vascular neoplasm that commonly occurs as a cutaneous tumor. When it involves the skin and mucosal surfaces, ulceration and suppuration may occur, hence the classic term of pyogenic granuloma. Intravenous pyogenic granuloma is a rare solitary form of lobular capillary hemangioma that usually occurs in the veins of the neck and upper extremities. We report the ultrasonographic and magnetic resonance imaging findings of a pyogenic intravenous granuloma localized in the right cephalic vein. The imaging and pathological findings and the differential diagnoses are discussed. (orig.)

  19. Intralesional bleomycin for the treatment of periocular capillary hemangiomas

    Directory of Open Access Journals (Sweden)

    Derrick P Smit

    2012-01-01

    Full Text Available Periocular infantile capillary hemangiomas do not always respond well to conventional treatment modalities such as systemic or intralesional corticosteroids, radiotherapy or debulking surgery. The authors describe the use of intralesional bleomycin injections (IBIs to treat potentially amblyogenic lesions in two cases where other modalities have failed. In both cases monthly IBIs successfully cleared the visual axis of the affected eye before the age of 1 year thus preventing permanent sensory deprivation amblyopia. A total of five and nine injections, respectively, were used and no significant side effects were noted. IBI appears to be a useful alternative in the treatment of periocular capillary hemangiomas refractory to more conventional modalities.

  20. Investigation on temperature separation and flow behaviour in vortex chamber

    Science.gov (United States)

    Matsuno, Yuhi; Fukushima, Yusuke; Matsuo, Shigeru; Hashimoto, Tokitada; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.