WorldWideScience

Sample records for chalcopyrite

  1. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  2. Wide-Gap Chalcopyrites

    CERN Document Server

    Siebentritt, Susanne

    2006-01-01

    Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping and phase behavior and to extremely benign grain boundaries. This book collects articles on a number of those basic material properties of wide-gap chalcopyrites, comparing them to their low-gap cousins. They explore the doping of the materials, the electronic structure and the transport through interfaces and grain boundaries, the formation of the electric field in a solar cell, the mechanisms and suppression of recombination, the role of inhomogeneities, and the technological role of wide-gap chalcopyrites.

  3. Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Dong, Ying-bo; Lin, Hai; Fu, Kai-bin; Xu, Xiao-fang; Zhou, Shan-shan

    2013-02-01

    Two different types of chalcopyrite (pyritic chalcopyrite and porphyry chalcopyrite) were bioleached with Acidithiobacillus ferrooxidans ATF6. The bioleaching of the pyritic chalcopyrite and porphyry chalcopyrite is quite different. The copper extraction reaches 46.96% for the pyritic chalcopyrite after 48-d leaching, but it is only 14.50% for the porphyry chalcopyrite. Proper amounts of initial ferrous ions can improve the efficiency of copper extraction for the two different types of chalcopyrite. The optimum dosage of ferrous ions for the pyritic chalcopyrite and porphyry chalcopyrite is different. The adsorption of ATF6 on the pyritic chalcopyrite and porphyry chalcopyrite was also studied in this paper. It is found that ATF6 is selectively adsorbed by the two different types of chalcopyrite; the higher adsorption onto the pyritic chalcopyrite than the porphyry chalcopyrite leads to the higher copper dissolution rate of the pyritic chalcopyrite. In addition, the zeta-potential of chalcopyrite before and after bioleaching further confirms that ATF6 is more easily adsorbed onto the pyritic chalcopyrite.

  4. Influences of silver sulfide on the bioleaching of chalcopyrite, pyrite and chalcopyrite-containing ore

    Institute of Scientific and Technical Information of China (English)

    胡岳华; 王军; 邱冠周; 王淀佐

    2002-01-01

    The effects of silver sulfide (Ag2S) on the bioleaching of chalcopyrite and pyrite were investigated in this paper. It has been shown that Ag2S enhanced the yields of bioleaching of chalcopyrite but inhibited the bio-oxidation of pyrite. The addition of Ag2S selectively increased the copper dissolution from the chalcopyrite-containing ores in shake flasks with a recovery of 85.3% compared with 24.3% without Ag2S, while slightly decreased the iron yields from 51% to 41.8%. The copper extraction of the chalcoopyrite-containing waste rock in column leaching charged with 18 kg mass increased up to 21.7% in the presence of Ag2S, while only 3.4% in the absence of the catalyst. The mechanism of Ag2S catalysis could be explained well by the "Mixed potential model".

  5. Electrochemistry of a semiconductor chalcopyrite concentrate leaching by Thiobacillus ferrooxidans

    Science.gov (United States)

    Torma, A. E.

    1991-05-01

    Using carbon-paste-CuFeS2 electrodes and a cyclic voltammetric technique, it was found that a large number of intermediate electrochemical oxidation reactions were associated with the dissolution of chalcopyrite in presence and absence of bacteria. The effects of concentrations of copper, ferrous and ferric ions, as well as of agitation on the peaks of cyclic voltammograms were measured. It was established that chalcopyrite oxidation was solid-state controlled as suggested by the data of chronopotentiometric and chronoamperometric measurements. The activation energy of solid state diffusion of chalcopyrite leaching was determined by the Sand's method to be delta E(sub a) = 20.5 kJ. The leaching mechanism is discussed in terms of solid-state properties (energy bonding) of the n-type semiconductor chalcopyrite and energy density states of redox systems of acidic bacterial leach media. A generalized model for the mechanism of chalcopyrite leaching in presence and absence of bacteria is presented.

  6. Bioleaching of chalcopyrite by mixed culture of moderately thermophilic microorganisms

    Institute of Scientific and Technical Information of China (English)

    WU Chang-bin; ZENG Wei-min; ZHOU Hong-bo; FU Bo; HUANG Ju-fang; QIU Guan-zhou; WANG Dian-zuo

    2007-01-01

    A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages(AMDs) samples collected from several sulphide mines in China, and the bioleaching of chalcopyrite was conducted both in shake flask and bioreactor.The results show that in the shake flask, the mixture can tolerate 50 g/L chalcopyrite after being acclimated to gradually increased concentrations of chalcopyrite. The copper extraction increases obviously in bioleaching of chalcopyrite with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min, 74% copper can be extracted in the pulp of 50 g/L chalcopyrite after 20 d. Compared with copper extractions of mesophilic culture, unacclimated culture and acclimated culture without addition of yeast extract, that of accliniated culture with addition of yeast extract is increased by 53%, 44% and 16%,respectively. In a completely stirred tank reactor, the mass fraction of copper and total iron extraction reach up to 81% and 56%,respectively. The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from chalcopyrite effectively.

  7. Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid

    Institute of Scientific and Technical Information of China (English)

    Sina Hejazi; Jalil Vahdati khaki; Abolfazl Babakhani

    2016-01-01

    This study aimed to introduce a new cost-effective methodology for increasing the leaching efficiency of chalcopyrite concentrates at ambient temperature and pressure. Mechanical activation was employed during the leaching (mechanochemical leaching) of chalcopyrite concentrates in a sulfuric acid medium at room temperature and atmospheric pressure. High energy ball milling process was used during the leaching to provide the mechanochemical leaching condition, and atomic absorption spectroscopy and cyclic voltammetry were used to de-termine the leaching behavior of chalcopyrite. Moreover, X-ray diffraction and scanning electron microscopy were used to characterize the chalcopyrite powder before and after leaching. The results demonstrated that mechanochemical leaching was effective; the extraction of copper increased significantly and continuously. Although the leaching efficiency of chalcopyrite was very low at ambient temperature, the percentages of copper dissolved in the presence of hydrogen peroxide (H2O2) and ferric sulfate (Fe2(SO4)3) after 20 h of mechanochemical leaching reached 28%and 33%, respectively. Given the efficiency of the developed method and the facts that it does not require the use of an autoclave and can be conducted at room temperature and atmospheric pressure, it represents an economical and easy-to-use method for the leaching industry.

  8. Catalytic effect of light illumination on bioleaching of chalcopyrite.

    Science.gov (United States)

    Zhou, Shuang; Gan, Min; Zhu, Jianyu; Li, Qian; Jie, Shiqi; Yang, Baojun; Liu, Xueduan

    2015-04-01

    The influence of visible light exposure on chalcopyrite bioleaching was investigated using Acidithiobacillus ferrooxidans. The results indicated, in both shake-flasks and aerated reactors with 8500-lux light, the dissolved Cu was 91.80% and 23.71% higher, respectively, than that in the controls without light. The catalytic effect was found to increase bioleaching to a certain limit, then plateaued as the initial chalcopyrite concentration increased from 2% to 4.5%. Thus a balanced mineral concentration is highly amenable to bioleaching via offering increased available active sites for light adsorption while eschewing mineral aggregation and screening effects. Using semiconducting chalcopyrite, the light facilitated the reduction of Fe(3+) to Fe(2+) as metabolic substrates for A.ferrooxidans, leading to better biomass, lower pH and redox potential, which are conducive to chalcopyrite leaching. The light exposure on iron redox cycling was further confirmed by chemical leaching tests using Fe(3+), which exhibited higher Fe(2+) levels in the light-induced system. PMID:25722073

  9. Leaching of Bornite Produced from the Sulfurization of Chalcopyrite

    Science.gov (United States)

    Veloso, T. C.; Paiva, P. R. P.; Silva, C. A.; Leão, V. A.

    2016-06-01

    The pyrometallurgical route accounts for 80 pct of world metallic copper production, because chalcopyrite, the most abundant copper sulfide, is refractory to hydrometallurgical treatment. However, pyrometallurgical routes are quite restrictive as far as copper concentrates are concerned mainly owing to limits on the concentration of impurities, such as fluorine, chlorine, and arsenic that can be tolerated. Such concentrates require innovative processing solutions because their market value is greatly reduced. A potential alternative is the transformation of chalcopyrite to a sulfide amenable to leaching, such as chalcocite, covellite, or bornite, through treatment in either aqueous or gaseous environments. In this study, the sulfurization of a chalcopyrite concentrate containing 78 pct CuFeS2 in the presence of gaseous sulfur was investigated, with the goal of demonstrating its conversion to the leachable phases, i.e., bornite and covellite. The concentrate was reacted with elemental sulfur in a tubular furnace at temperatures ranging from 573 K to 723 K (300 °C to 450 °C), followed by atmospheric leaching in an Fe(III)-bearing solution. The mineral phases in the sample were quantified using the Rietveld method, and it was shown that at temperatures below 673 K (400 °C) chalcopyrite was converted to covellite (41 pct) and pyrite (34 pct), whereas at temperatures above these, the reaction products were bornite (45 pct) and pyrite (31 pct). Leaching tests [6 hours at 353 K (80 °C)] showed significantly higher copper extraction rates after sulfurization (90 pct) than those using the raw chalcopyrite concentrate (15 pct).

  10. EPS-contact-leaching mechanism of chalcopyrite concentrates by A. ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    YU Run-lan; TAN Jian-xi; YANG Peng; SUN Jing; OU Yang; XIONG Jing; DAI Yun-jie

    2008-01-01

    The effect of extracelluar polymeric substances(EPS) on the bioleaching chalcopyrite concentrates in the presence of iron- and sulphur-oxidizing bacteria (A.ferrooxidans) was studied.The bacterial number,pH,redox potential,and the concentrations of Fe2+and Cu2+ ions were investigated.The leached residues were analyzed by the X-ray diffraction and FT-IR.The results indicate that the EPS makes the bacteria adhere to the chalcopyrite surface easily and it is helpful for bacteria in disadvantageous environment.At the same time,EPS film layer with Fe3+ deposits on the surface of chalcopyrite and becomes a barrier of oxygen transfer to chalcopyrite to passivate chalcopyrite,and creates the high redox potential space through concentrating Fe3+ ions to accelerate bioleaching pyrite in chalcopyrite concentrates.The results suggest that EPS formation promotes bioleaching pyrite and inhibits bioleaching chalcopyrite,especially under high potential condition.

  11. Kesterites and Chalcopyrites: A Comparison of Close Cousins; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Repins, I.; Vora, N.; Beall, C.; Wei, S. H.; Yan, Y.; Romero, M.; Teeter, G.; Du, H.; To, B.; Young, M.; Noufi, R.

    2011-05-01

    Chalcopyrite solar cells based on CuInSe2 and associated alloys have demonstrated high efficiencies, with current annual shipments in the hundreds of megawatts (MW) range and increasing. Largely due to concern over possible indium (In) scarcity, a related set of materials, the kesterites, which comprise Cu2ZnSnS4 and associated alloys, has received increasing attention. Similarities and differences between kesterites and chalcopyrites are discussed as drawn from theory, depositions, and materials characterization. In particular, we discuss predictions from density functional theory, results from vacuum co-evaporation, and characterization via x-ray diffraction, scanning electron microscopy, electron beam-induced current, quantum efficiency, secondary ion mass spectroscopy, and luminescence.

  12. Bacterial leaching of chalcopyrite and bornite with native bioleaching microorganism

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; QIN Wen-qing; ZHANG Yan-sheng; YANG Cong-ren; ZHANG Jian-wen; NAI Shao-shi; SHANG He; QIU Guan-zhou

    2008-01-01

    A native mesophilic iron-oxidizing bacterium,Acidithiobacillus ferrooxidans,has been isolated (30 ℃) from a typical,lead-zinc concentrate of Dachang Mine in the region of Liuzhou located in the southwest of China.Two typical copper sulfide minerals,chalcopyrite and bornite,were from Meizhou Copper Mine in the region of Guangdong Province,China.Variation of pH and cell growth on time and effects of some factors such as temperature,inoculation cell number,and pulp density on the bioleaching of chalcopyrite and bornite were investigated.The results obtained from the bioleaching experiments indicate that the efficiency of copper extraction depends on all of the mentioned variables,especially the pulp density has more effect than the other factors on the microorganism.In addition,the results show that the maximum copper recovery was achieved using a mesophilic culture.The copper dissolution reached 51.34% for the chalcopyrite while it was 72.35% for the bornite at pH 2.0,initial Fe(Ⅱ) concentration 9 g/L and pulp density 5%,after 30 d.

  13. Bioleaching of chalcopyrite by pure and mixed culture

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-sheng; QIN Wen-qing; WANG Jun; ZHEN Shi-jie; YANG Cong-ren; ZHANG Jian-wen; NAI Shao-shi; QIU Guan-zhou

    2008-01-01

    The bioleaching of chalcopyrite in shake flasks was investigated by using pure Acidithiobacillus ferrooxidans and mixed culture isolated from the acid mine drainage in Yushui and Dabaoshan Copper Mine in China,marked as YS and DB,respectively.The mixed culture consisted mainly of Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans,and Leptospirillum spp.(Leptospirillum ferriphilum and Leptospirillum ferrooxians).The results show that the mixed culture is more efficient than the pure Acidithiobacillus ferrooxidans because of the presence of the sulfur-oxidizing cultures that positively increase the dissolution rate and the recovery of copper from chalcopyrite.The pH value decreases with the decrease of chalcopyrite leaching rate,because of the formation of jarosite as a passivation layer on the mineral surface during bioleaching.In the bioleaching using the mixed culture,low pH is got from the sulfur oxidizing inhibiting,the formation of jarosite.The copper extraction reaches 46.27% in mixed culture and 30.37% in pure Acidithiobacillus ferrooxidans after leaching for 75 d.

  14. Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum.

    Science.gov (United States)

    Zhao, Hongbo; Wang, Jun; Gan, Xiaowen; Zheng, Xihua; Tao, Lang; Hu, Minghao; Li, Yini; Qin, Wenqing; Qiu, Guanzhou

    2015-10-01

    The effects of pyrite and bornite on bioleaching of two different chalcopyrite samples by Leptospirillum ferriphilum were studied for the first time. Results showed that bioleaching behaviors of the two chalcopyrite samples were extremely different. Bornite decreased the redox potential (ORP) and maintained it at an appropriate range (380-480 mV vs. Ag/AgCl) to promote chalcopyrite (A) dissolution, but caused the redox potential out of the optimum range and inhibited chalcopyrite (B) dissolution. Large amount of pyrite decreased the redox potential and maintained it at an optimum range to promote chalcopyrite (A) dissolution, while increased the redox potential and kept it at appropriate range for a longer period of time to enhance the dissolution rate of chalcopyrite (B). Chalcopyrite (B) had significantly higher values of conductivity and oxidation-reduction rate when compared with those of chalcopyrite (A). The work is potentially useful in interpreting the inconsistence of the researches of chalcopyrite hydrometallurgy. PMID:26183922

  15. The dissolution of chalcopyrite in chloride media; Lixiviacion de la calcopirita en medios clorurados

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, T.; Velasquez, L.

    2013-06-01

    The aim of this investigation is to determinate the effects of parameters and additives on the kinetics of dissolution of chalcopyrite on moderated conditions by means of dissolutions test with chalcopyrite concentrate and pure chalcopyrite in shake flasks and instrumented stirred reactors. A study of the dissolution of chalcopyrite in chloride solutions has demonstrated that the rate of dissolution of chalcopyrite is strongly dependent on the potential of the solution within a range of 540 to 630 mV (versus SHE). Leaching at pH around 2.5 results in increased rates of copper dissolution suggesting the possibility to keep the solution potential within the range. Both pyrite and silver ions enhance the dissolution of chalcopyrite and this effect increases when both species are present. The MnO{sub 2} has a negative effect on the dissolution increasing the solution potential to values where the rate decreases considerably. (Author)

  16. Kinetic process of oxidative leaching of chalcopyrite under low oxygen pressure and low temperature

    Institute of Scientific and Technical Information of China (English)

    QIU Ting-sheng; NIE Guang-hua; WANG Jun-feng; CUI Li-feng

    2007-01-01

    Kinetic process of oxidative leaching of chalcopyrite in chloride acid hydroxide medium under oxygen pressure and low temperature was investigated. The effect on leaching rate of chalcopyrite caused by these factors such as ore granularity, vitriol concentration, sodium chloride concentration, oxygen pressure and temperature was discussed. The results show that the leaching rate of chalcopyrite increases with decreasing the ore granularity. At the early stage of oxidative reaction, the copper leaching rate increases with increasing the oxygen pressure and dosage of vitriol concentration, while oxygen pressure affects leaching less at the later stage. At low temperature, the earlier oxidative leaching process of chalcopyrite is controlled by chemical reactions while the later one by diffusion. The chalcopyrite oxidative leaching rate has close relation with ion concentration in the leaching solution. The higher ion concentration is propitious for chalcopyrite leaching.

  17. STUDY ON BIOLEACHING OF PRIMARY CHALCOPYRITE ORE WITH THERMOACIDOPHLIC ARCHAE

    Institute of Scientific and Technical Information of China (English)

    P. Zou; W.B. Zhang; T. Lei; J.K. Wang

    2006-01-01

    A high temperature-tolerating thermoacidophilic archae (TA) was isolated from water samples collected from a hot sulfur-containing spring in the Yunnan Province, China, and was used in bioleaching experiments of a low-grade chalcopyrite ore. The TA grow at temperatures ranging from 40 to 80℃, with 65℃ being the optimum temperature, and at pH values of 1.5 to 4.0, with an optimum pH value of 2.0. The bioleaching experiments of the chalcopyrite ore were conducted in both laboratory batch bioreactors and leaching columns. The results obtained from the bioreactor experiments showed that the TA bioleaching rate of copper reached 97% for a 12-day leaching period, while the bioleaching rate was 32.43% for thiobacillus ferrooxidans (Tf) leaching for the same leaching time. In the case of column leaching, tests of a two-phase leaching (196 days), that is,a two-month (56 days) Tf leaching in the first phase, followed by a 140-day TA leaching in the second phase were performed. The average leaching rate of copper achieved for the 140-day TA leaching was 195mg/(L· d), while for the control experiments, it was as low as 78mg/(L· d) for the Tf leaching, indicating that the TA possesses a more powerful oxidizing ability to the chalcopyrite than Tf. Therefore, it is suggested that the two-phase leaching process be applied to for the heap leaching operations, whereas, the TA can be used in the second phase when the temperature inside the heap has increased, and the primary copper sulfide minerals have already been partially oxidized with Tf beforehand in the first phase.

  18. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Zhu, Jianyu; Wang, Qianfen; Zhou, Shuang; Li, Qian; Gan, Min; Jiang, Hao; Qin, Wenqing; Liu, Xueduan; Hu, Yuehua; Qiu, Guanzhou

    2015-02-01

    This paper presents a study on the relation between bacterial adhesion force and bioleaching rate of chalcopyrite, which sheds light on the influence of interfacial interaction on bioleaching behavior. In our research, Acidithiobacillus ferrooxidans (A. ferrooxidans) were adapted to grow with FeSO4 · 7H2O, element sulfur or chalcopyrite. Then, surface properties of Acidithiobacillus ferrooxidans and chalcopyrite were analyzed by contact angle, zeta potential and Fourier transform infrared spectroscopy (FTIR). Adhesion force between bacteria and chalcopyrite was measured by atomic force microscopy (AFM). Attachment and bioleaching behaviors were also monitored. The results showed that A. ferrooxidans adapted with chalcopyrite exhibited the strongest adhesion force to chalcopyrite and the highest bioleaching rate. Culture adapted with sulfur bacteria took second place and FeSO4 · 7H2O-adapted bacteria were the lowest. Bioleaching rate and bacterial attachment capacity were positively related to bacterial adhesion force, which is affected by the nature of energy source. According to this work, the attachment of bacteria to chalcopyrite surface is one of the most important aspects that influence the bioleaching process of chalcopyrite. PMID:25511439

  19. Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite from pyrite

    Institute of Scientific and Technical Information of China (English)

    LIU Run-qing; SUN Wei; HU Yue-hua; WANG Dian-zuo

    2009-01-01

    In order to selectively separate chalcopyrite from pyrite, the effect of organic depressant lignosulfonate calcium (LSC) on the flotation separation of chalcopyrite from pyrite was investigated by flotation tests. The depression mechanism was studied by Fourier-transform-infrared (FTIR) analysis. The flotation tests of single mineral show that LSC can depress the flotation of pyrite in a certain pH range, but it has little effect on chalcopyrite flotation. Flotation separation of a mixture of chalcopyrite and pyrite can be completed to obtain a copper concentrate grade up to 24.73% with a recovery of 80.36%. IR analysis shows that LSC and butyl xanthate compete in absorption on pyrite surface, and there exists an LSC characteristic peak on pyrite surface. There is little adsorption of LSC on chalcopyrite.

  20. The Influence of Impurity Monovalent Cations Adsorption on Reconstructed Chalcopyrite (001-S Surface in Leaching Process

    Directory of Open Access Journals (Sweden)

    Zhenlun Wei

    2016-08-01

    Full Text Available Hydrometallurgical processing of chalcopyrite is hindered predominantly due to the passivation layers formed on the chalcopyrite surface. However, the effects of impurity cations released from the gangue are not yet well understood. Density functional theory (DFT calculations were carried out to investigate monovalent cations of Na+ and K+ on chalcopyrite (001-S surface using Materials Studio. The results show that the 3d orbital of Fe and 3p orbital of S predominantly contribute to their activities during chalcopyrite oxidation and dissolution processes. In addition, SO42− is more likely to be adsorbed on one Fe site in the presence of Na+, while it is preferentially adsorbed on two Fe sites in the presence of K+. However, the adsorption of both Na2SO4 and K2SO4 on the chalcopyrite (001-S surface contributes to the breakage of S–S bonds, indicating that the impurity cations of Na+ and K+ are beneficial to chalcopyrite leaching in a sulfuric environment. The adsorption energy and partial density of states (PDOS analyses further indicate that the adsorption of Na2SO4 on chalcopyrite (001-S surface is favored in both -BB (bidentate binuclear and -BM (bidentate mononuclear modes, compared to the adsorption of K2SO4.

  1. Optimization of the use of carbon paste electrodes (CPE for electrochemical study of the chalcopyrite

    Directory of Open Access Journals (Sweden)

    Daniela G. Horta

    2009-01-01

    Full Text Available The use of carbon paste electrodes (CPE of mineral sulfides can be useful for electrochemical studies to overcome problems by using massive ones. Using CPE-chalcopyrite some variables were electrochemically evaluated. These variables were: (i the atmosphere of preparation (air or argon of CPE and elapsed time till its use; (ii scan rate for voltammetric measurements and (iii chalcopyrite concentration in the CPE. Based on cyclic voltammetry, open-circuit potential and electrochemical impedance results the recommendations are: oxygen-free atmosphere to prepare and kept the CPE until around two ours, scan rates from 10 to 40 mV s-1, and chalcopyrite concentrations > 20%.

  2. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria.

    Science.gov (United States)

    Romano, P; Blázquez, M L; Alguacil, F J; Muñoz, J A; Ballester, A; González, F

    2001-03-01

    This study evaluates different bioleaching treatments of a molybdenite concentrate using mesophilic and thermophilic bacterial cultures. Further studies on the chemical leaching and the electrochemical behavior of the MoS(2) concentrate were carried out. Bioleaching tests showed a progressive removal of chalcopyrite from the molybdenite concentrate with an increase in temperature. Chemical leaching tests support the idea of an indirect attack of the concentrate. Electrochemical tests indicate that chalcopyrite dissolution is favored when molybdenite is present. Therefore, this type of bioleaching treatment could be applied to purify molybdenite flotation concentrates by selectively dissolving chalcopyrite. PMID:11257551

  3. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria:an emphasis on their interactions

    Institute of Scientific and Technical Information of China (English)

    Hong-bo Zhao; Jun Wang; Xiao-wen Gan; Wen-qing Qin; Ming-hao Hu; Guan-zhou Qiu

    2015-01-01

    Interactions between chalcopyrite and bornite during bioleaching by moderately thermophilic bacteria were investigated mainly by X-ray diffraction, scanning electron microscopy, and electrochemical measurements performed in conjunction with bioleaching experiments. The results showed that a synergistic effect existed between chalcopyrite and bornite during bioleaching by bothAcidithiobacillus caldus and Leptospirillum ferriphilum and that extremely high copper extraction could be achieved when chalcopyrite and bornite coexisted in a bioleaching system. Bornite dissolved preferentially because of its lower corrosion potential, and its dissolution was accelerated by the gal-vanic current during the initial stage of bioleaching. The galvanic current and optimum redox potential of 390−480 mV vs. Ag/AgCl pro-moted the reduction of chalcopyrite to chalcocite (Cu2S), thus accelerating its dissolution.

  4. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria: an emphasis on their interactions

    Science.gov (United States)

    Zhao, Hong-bo; Wang, Jun; Gan, Xiao-wen; Qin, Wen-qing; Hu, Ming-hao; Qiu, Guan-zhou

    2015-08-01

    Interactions between chalcopyrite and bornite during bioleaching by moderately thermophilic bacteria were investigated mainly by X-ray diffraction, scanning electron microscopy, and electrochemical measurements performed in conjunction with bioleaching experiments. The results showed that a synergistic effect existed between chalcopyrite and bornite during bioleaching by both Acidithiobacillus caldus and Leptospirillum ferriphilum and that extremely high copper extraction could be achieved when chalcopyrite and bornite coexisted in a bioleaching system. Bornite dissolved preferentially because of its lower corrosion potential, and its dissolution was accelerated by the galvanic current during the initial stage of bioleaching. The galvanic current and optimum redox potential of 390-480 mV vs. Ag/AgCl promoted the reduction of chalcopyrite to chalcocite (Cu2S), thus accelerating its dissolution.

  5. Chalcopyrite CuGaTe{sub 2}: a high-efficiency bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Plirdpring, Theerayuth; Harnwunggmoung, Adul [Graduate School of Engineering, Osaka University, Suita (Japan); Thermoelectric and Nanotechnology Research Center, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Huntra Phranakhon Si Ayutthaya (Thailand); Kurosaki, Ken; Sugahara, Tohru; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita (Japan); Kosuga, Atsuko [Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, Osaka (Japan); Day, Tristan; Snyder, G. Jeffrey [Department of Materials Science, California Institute of Technology, Pasadena, CA (United States); Firdosy, Samad [Jet Propulsion Laboratory, Pasadena, CA (United States); Ravi, Vilupanur [Jet Propulsion Laboratory, Pasadena, CA (United States); California State Polytechnic University, Pomona, CA (United States); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2012-07-17

    CuGaTe{sub 2} with a chalcopyrite structure demonstrates promising thermoelectric properties. The maximum figure of merit ZT is 1.4 at 950 K. CuGaTe{sub 2} and related chalcopyrites are a new class of high-efficiency bulk thermoelectric material for high-temperature applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy – a presentation

    OpenAIRE

    Huang Tao; Li Dongwei

    2014-01-01

    This review outlines classic and current research, scientific documents and research achievements in bioleaching, particularly in respect of the bioleaching of chalcopyrite and pyrite. The diversity and commonality of the microbial leaching process can be easily studied through comparing the bioleaching mechanism and the application of these two metal sulfides. The crystal, electronic and surface structures of chalcopyrite and pyrite are summarized in detail in this paper. It determines the s...

  7. Current scenario of chalcopyrite bioleaching: a review on the recent advances to its heap-leach technology.

    Science.gov (United States)

    Panda, Sandeep; Akcil, Ata; Pradhan, Nilotpala; Deveci, Haci

    2015-11-01

    Chalcopyrite is the primary copper mineral used for production of copper metal. Today, as a result of rapid industrialization, there has been enormous demand to profitably process the low grade chalcopyrite and "dirty" concentrates through bioleaching. In the current scenario, heap bioleaching is the most advanced and preferred eco-friendly technology for processing of low grade, uneconomic/difficult-to-enrich ores for copper extraction. This paper reviews the current status of chalcopyrite bioleaching. Advanced information with the attempts made for understanding the diversity of bioleaching microorganisms; role of OMICs based research for future applications to industrial sectors and chemical/microbial aspects of chalcopyrite bioleaching is discussed. Additionally, the current progress made to overcome the problems of passivation as seen in chalcopyrite bioleaching systems have been conversed. Furthermore, advances in the designing of heap bioleaching plant along with microbial and environmental factors of importance have been reviewed with conclusions into the future prospects of chalcopyrite bioleaching. PMID:26318845

  8. Electrochemical behavior of chalcopyrite in presence of Thiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    LI Hong-xu; QIU Guan-zhou; HU Yue-hua; CANG Da-qiang; WANG Dian-zuo

    2006-01-01

    The chalcopyrite anode dissolution behavior in the presence or absence of bacteria in 9 K media using bacteria modified powder microelectrode at 30 ℃ was studied. It is found that during the anode dissolution, many intermediate transient reactions occur accompanying with the production of chalcocite and covellite at potential between -0.075 V and -0.025 V (vs SCE). At low scanning potential between -0.1 and -0.250 V, the iron ion is released in ferrous form, but at the relative high potential up to 0.7 V, it is the ferric one. The presence of Thiobacillus ferrooxidans makes peak current increase and the initial peak potential negatively move, hinting the decomposed oxidation reaction easily occurred and especially the iron ion released and ferrous oxidation reaction enhanced. The characteristic at potential between -0.75 and -0.5 V demonstrates the Thiobacillus ferrooxidans also contributes to the element sulfur formed on the oxidation surface and removed during anode process. The added ferric in the cell could enhance the dissolution reaction, while the increased acid under pH=2 might slightly hamper the process. The anode dissolution kinetics studies show that the presence of bacteria could decease corrosion potential from 0.238 V to 0.184 V and increase the corrosion current density from 1.632 14×10-8 A/cm2 to 2.374 11×10-7A/cm2.

  9. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Lara, René H; García-Meza, J Viridiana; González, Ignacio; Cruz, Roel

    2013-03-01

    Surfaces of massive chalcopyrite (CuFeS2) electrodes were modified by applying variable oxidation potential pulses under growth media in order to induce the formation of different secondary phases (e.g., copper-rich polysulfides, S n(2-); elemental sulfur, S(0); and covellite, CuS). The evolution of reactivity (oxidation capacity) of the resulting chalcopyrite surfaces considers a transition from passive or inactive (containing CuS and S n(2-)) to active (containing increasing amounts of S(0)) phases. Modified surfaces were incubated with cells of sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the density of cells attached to chalcopyrite surfaces, the structure of the formed biofilm, and their exopolysaccharides and nucleic acids were analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy coupled to dispersive X-ray analysis (SEM-EDS). Additionally, CuS and S n(2-)/S(0) speciation, as well as secondary phase evolution, was carried out on biooxidized and abiotic chalcopyrite surfaces using Raman spectroscopy and SEM-EDS. Our results indicate that oxidized chalcopyrite surfaces initially containing inactive S n(2-) and S n(2-)/CuS phases were less colonized by A. thiooxidans as compared with surfaces containing active phases (mainly S(0)). Furthermore, it was observed that cells were partially covered by CuS and S(0) phases during biooxidation, especially at highly oxidized chalcopyrite surfaces, suggesting the innocuous effect of CuS phases during A. thiooxidans performance. These results may contribute to understanding the effect of the concomitant formation of refractory secondary phases (as CuS and inactive S n(2-)) during the biooxidation of chalcopyrite by sulfur-oxidizing microorganisms in bioleaching systems.

  10. Chalcopyrite semimagnetic semiconductors: From nanocomposite to homogeneous material

    Directory of Open Access Journals (Sweden)

    Kilanski L.

    2014-01-01

    Full Text Available Currently, complex ferromagnetic semiconductor systems are of significant interest due to their potential applicability in spintronics. A key feature in order to use semiconductor materials in spintronics is the presence of room temperature ferromagnetism. This feature was recently observed and is intensively studied in several Mn-alloyed II-IV-V2 group diluted magnetic semiconductor systems. The paper reviews the origin of room temperature ferromagnetism in II-IV-V2 compounds. In view of our recent reports the room temperature ferromagnetism in Mn-alloyed chalcopyrite semiconductors with more than 5 molar % of Mn is due to the presence of MnAs clusters. The solubility of magnetic impurities in bulk II-IV-V2 materials is of the order of a few percent, depending on the alloy composition. High values of the conducting hole - Mn ion exchange constant Jpd have significant value equal to 0.75 eV for Zn0.997Mn0.003GeAs2. The sample quality has significant effect on the magnetotransport of the alloy. The magnetoresistance of the alloy change main physical mechanism from spin-disorder scattering and weak localization for homogeneous samples to cluster-related geometrical effect observed for nanocomposite samples. The magnetoresistance of the II-IV-V2 alloys can be then tuned up to a few hundreds of percent via changes of the chemical composition of the alloy as well as a degree of disorder present in a material. [Projekat Ministarstva nauke Republike Srbije, br. III45003

  11. Chalcopyrite Thin Film Materials for Photoelectrochemical Hydrogen Evolution from Water under Sunlight

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kaneko

    2015-07-01

    Full Text Available Copper chalcopyrite is a promising candidate for a photocathode material for photoelectrochemical (PEC water splitting because of its high half-cell solar-to-hydrogen conversion efficiency (HC-STH, relatively simple and low-cost preparation process, and chemical stability. This paper reviews recent advances in copper chalcopyrite photocathodes. The PEC properties of copper chalcopyrite photocathodes have improved fairly rapidly: HC-STH values of 0.25% and 8.5% in 2012 and 2015, respectively. On the other hand, the onset potential remains insufficient, owing to the shallow valence band maximum mainly consisting of Cu 3d orbitals. In order to improve the onset potential, we explored substituting Cu for Ag and investigate the PEC properties of silver gallium selenide (AGSe thin film photocathodes for varying compositions, film growth atmospheres, and surfaces. The modified AGSe photocathodes showed a higher onset potential than copper chalcopyrite photocathodes. It was demonstrated that element substitution of copper chalcopyrite can help to achieve more efficient PEC water splitting.

  12. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  13. Structural, microstructural, and thermal characterizations of a chalcopyrite concentrate from the Singhbhum shear zone, India

    Institute of Scientific and Technical Information of China (English)

    Ritayan Chatterjee; Shamik Chaudhuri; Saikat Kumar Kuila; Dinabandhu Ghosh

    2015-01-01

    The structural and morphological characterizations of a chalcopyrite concentrate, collected from the Indian Copper Complex, Ghatshila, India, were carried out by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The con-centrate powder was composed mainly of free chalcopyrite and low quartz in about 3:1 weight ratio. The particle size was about 100 µm. Spectroscopic studies (FTIR, Raman, UV-visible) of the concentrate supported the XRD findings, and also revealed a marginal oxidation of the sulfide phase. The energy band gap of the sulfide was found to be 3.4 eV. Differential thermal analysis and thermogravimetry of the con-centrate showed a decomposition of chalcopyrite at 658 K with an activation energy of 208 kJ⋅mol−1, and two successive structural changes of silica at 848 K and 1145 K.

  14. The influence of mechanical activation of chalcopyrite on the selective leaching of copper by sulphuric acid

    Directory of Open Access Journals (Sweden)

    Achimovičová, M.

    2006-01-01

    Full Text Available In this paper chalcopyrite, CuFeS2, has been selective leached by H2SO4 as leaching agent (170 g/dm3 in procedure of hydrometallurgical production of copper. Mechanical activation of the chalcopyrite resulted in mechanochemical surface oxidation as well as in the mineral surface and bulk disordering. Furthermore, the formation of agglomerates during grinding was also occured. Surface changes of the samples using infrared spectroscopy and scanning electron microscopy methods were investigated before and after leaching. The leaching rate, specific surface area, structural disorder as well as copper extraction increased with the mechanical activation of mineral.

  15. Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.G.; Bo, F.; Bo, Z.H.; Xi, L.; Jian, G.; Fei, L.F.; Hua, C.X. [Central South University of Technology, Changsha (China)

    2007-09-15

    A moderately thermophilic and acidophilic sulfur-oxidizing bacterium named S-2, was isolated from coal heap drainage. The bacterium was motile, Gramnegative, rod-shaped, measured 0.4 to 0.6 by 1 to 2 gm, and grew optimally at 42-45{sup o}C and an initial pH of 2.5. The strain S-2 grew autotrophically by using elemental sulfur, sodium thiosulfate and potassium tetrathionate as energy sources. The strain did not use organic matter and inorganic minerals including ferrous sulfate, pyrite and chalcopyrite as energy sources. The morphological, biochemical, physiological characterization and analysis based on 16S rRNA gene sequence indicated that the strain S2 is most closely related to Acidithiobacillus caldus (> 99% similarity in gene sequence). The combination of the strain S-2 with Leptospirillum ferriphilum or Acidithiobacillus ferrooxidans in chalcopyrite bioleaching improved the copper-leaching efficiency. Scanning electron microscope (SEM) analysis revealed that the chalcopyrite surface in a mixed culture of Leptospirillum ferriphilum and Acidithiobacillus caldus was heavily etched. The energy dispersive X-ray (EDX) analysis indicated that Acidithiobacillus caldus has the potential role to enhance the recovery of copper from chalcopyrite by oxidizing the sulfur formed during the bioleaching progress.

  16. Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation

    Science.gov (United States)

    Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C., III

    2010-01-01

    Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.

  17. Biofilm forming and leaching mechanism during bioleaching chalcopyrite by Thiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    傅建华; 胡岳华; 邱冠周; 柳建设; 徐竞

    2004-01-01

    The mechanism of attachment and leaching of thiobacillus ferrooxcidans (T. f. ) on chalcopyrite were studied. The shaking flasks with bacteria were observed by SEM. The process of T. f attached to the surface of the mineral sample and the biofilm forming were described. The promoting role of the biofilm for bioleaching was discussed. The existence of Fe2+ in the exopolysaccharide layer of T. f was demonstrated by EM(electronic microscope)cell-chemistry analysis. These results show that under the proper growth condition of bacteria, bioleaching of chalcopyrite results in the formation of complete biofilm after 2 - 3 weeks. There are iron ions in the outer layer polymer of T. f. , which provides the micro-environment for themselves, and can guaruntee the energy needed for the bacteria growth in the biofilm. At the same time, Fe3+ ions produced oxidize sulfide which brings about the increase of both growth rate of the bacterial and leaching rate of sulfide minerals.

  18. Fabrication of chalcopyrite light-absorbing layers based on nanoparticle and nanowire networks

    Science.gov (United States)

    Ren, Yuhang; Luo, Paifeng; Gao, Bo; Cevher, Zehra; Sun, Chivin

    2013-03-01

    We report on a method of preparing chalcopyrite, CuInGaSe2 (CIGS) light-absorbing layers using low cost air stable ink based on semiconductor nanoparticle and nanowires. The nanoparticles and nanowires are prepared from metal salts such as metal chloride and acetate at room temperature without inert gas protection. A uniform and non-aggregation CIGS precursor layer is fabricated with the formation of nanoparticle and nanowire networks utilizing ultrasonic spaying technique. We obtain a high quality CIGS absorber by cleaning the residue salts and carbon agents at an increased temperature and through selenizing the pretreated CIGS precursors. Our results offer an opportunity for the low-cost deposition of chalcopyrite absorber materials at large scale with high throughput. This work was partially sponsored by Sun Harmonics Ltd. and by NYSTAR through the Photonics Center for Applied Technology at the City University of New York.

  19. Efficacy of chalcopyrite bioleaching using a pure and a mixed bacterium

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To determine the efficacy of chalcopyrite bioleaching using pure cultures of Thiobacillus ferrooxidans or Thiobacillus thiooxidans and a mixed culture composed of Thiobacillus ferrooxidans and Thiobacillus thiooxidans, experiments were carried out mixed culture composed of Thiobacillusferrooxidans and Thiobacillus thiooxidans is higher than that in a pure culture. On the other hand, an important potential of Thiobacillus thiooxidans to leaching chalcopyrite was indicated. Thiobacillus thiooxidans can prevent jarosites accumulating on the substrate and allow further copper to dissolute through the action of ferric ion. The selection of the suitable pH in a leaching solution would be significant. Thiobacillus thiooxidans and Thiobacillus ferrooxidans play an important role in the bioleaching process. Finally, the mechanism and the reason for iron precipitation were also discussed in detail.

  20. Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite.

    Science.gov (United States)

    Zhu, Jianyu; Li, Qian; Jiao, Weifeng; Jiang, Hao; Sand, Wolfgang; Xia, Jinlan; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan

    2012-06-01

    The efficiency of copper leaching is improved by bacteria attached to chalcopyrite. Therefore, the study of the attachment mechanism to control leaching is important. The adhesion of three species of leaching microorganisms including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans to chalcopyrite was investigated by using atomic force microscopy (AFM). The forces were measured with tip-immobilized cells approached to and retracted from the mineral. The results show that both the surface charge and the hydrophobicity of bacteria cells influence the adhesion force. Furthermore, the adhesion force decreased in case the extracellular polymeric substances (EPS) had been removed. In addition, the data indicate that the amount of attached cells increased with increasing adhesion force.

  1. Microrespirometry as an effective technique for monitoring biomass growth and activity in chalcopyrite bioleaching processes

    OpenAIRE

    Benzal Montes, Eva; Morral Moltó, Eloi; Guimerà Villalba, Xavier; Gamisans Noguera, Javier; Solé Sardans, Maria Montserrat; Dorado Castaño, Antonio David

    2014-01-01

    Bioleaching is a technology that uses specific bacteria to extract valuable metals from minerals. The advantages of this technique over traditional methods (chemical leaching) include low cost, high efficiency and environment friendliness. Bioleaching allows to recovers metals from low grade ores at conditions where traditional techniques are not efficient and then, mining waste can be valorized and the impact on the environment is reduced. Chalcopyrite (CuFeS2) is the most abundant ...

  2. Study of the Dissolution of Chalcopyrite in Sulfuric Acid Solutions Containing Alcohols and Organic Acids

    International Nuclear Information System (INIS)

    Chalcopyrite dissolution under environmental conditions has been one of the major challenges facing researchers. The current processes for obtaining copper have pollution issues, which will severely limit their application as environmental controls become stricter. Faced with this problem, a number of eco-friendlier methods, such as GALVANOX and HydroCopper (Outokumpu), have been proposed, although they have not been industrialized, mainly due to their high operating costs. The authors previously proposed an alternative system to leach chalcopyrite, which is based on the use of aqueous polar organic solutions. In the process, copper extraction increases in mixtures of acetone or ethylene glycol with aqueous sulfuric acid solutions. The drawback is the large concentration of oxidizing agents needed to obtain high percentages of chalcopyrite dissolution, which can make the process lose viability. In this investigation, the effect of acetic acid, formic acid, methanol and ethanol, whose chemical characteristics are similar to those previously proposed, were evaluated by cyclic voltammetry. It was found that, in the presence of these organic solvents, higher electrochemical responses were obtained compared with those found with sulfuric acid alone, a similar behavior to that obtained with acetone. Leaching experiments results coincided with the corresponding findings of the electrochemical study and X-ray diffraction results provided evidence to support the proposed reactions

  3. Interface characterization of nanometer scale CdS buffer layer in chalcopyrite solar cell

    Science.gov (United States)

    Lin, Shih-Hung; Cheng, Tzu-Huan

    2016-06-01

    The buffer layer of a chalcopyrite solar cell plays an important role in optical responses of open circuit voltage (V oc) and short circuit current (J sc). A CdS buffer layer is applicable on the nanometer scale owing to its high carrier concentration and n-type semiconductor behavior in chalcopyrite solar cells. The thin buffer layer also contributes to the passivation of the absorber surface to reduce defect recombination loss. Non-destructive metrological parameters such as photoluminescence (PL) intensity, external quantum efficiency (EQE), and depth-resolved photovoltage are used to characterize the interface quality of CdS/chalcopyrite. The defects and dangling bonds at the absorber surface will cause interface recombination and reduce the cell performance in build-in voltage distribution. Post annealing can improve Cd ion diffusion from the buffer layer to the absorber surface and reduce the density of defects and dangling bonds. After thermal annealing, the EQE, PL intensity, and minority carrier lifetime are improved.

  4. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching.

    Science.gov (United States)

    Zhu, Jianyu; Jiao, Weifeng; Li, Qian; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan

    2012-12-01

    In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.

  5. Magnetic exchange interactions in Mn doped ZnSnAs{sub 2} chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Bouhani-Benziane, H.; Sahnoun, O. [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Sahnoun, M., E-mail: sahnoun_cum@yahoo.fr [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Department of Chemistry, University of Fribourg (Switzerland); Driz, M. [Laboratoire de Sciences des Matériaux (LSM), University of Sidi Bel Abbes (Algeria); Daul, C. [Department of Chemistry, University of Fribourg (Switzerland)

    2015-12-15

    Accurate ab initio full-potential augmented plane wave (FP-LAPW) electronic calculations within generalized gradient approximation have been performed for Mn doped ZnSnAs{sub 2} chalcopyrites, focusing on their electronic and magnetic properties as a function of the geometry related to low Mn-impurity concentration and the spin magnetic alignment (i.e., ferromagnetic vs antiferromagnetic). As expected, Mn is found to be a source of holes and localized magnetic moments of about 4 µ{sub B} per Mn atom are calculated which are sufficiently large. The defect calculations are firstly performed by replacing a single cation (namely Zn and Sn) with a single Mn atom in the pure chalcopyrite ZnSnAs{sub 2} supercell, and their corresponding formation energies show that the substitution of a Sn atom (rather than Zn) by Mn is strongly favored. Thereafter, a comparison of total energy differences between ferromagnetic (FM) and antiferromagnetic (AFM) are given. Surprisingly, the exchange interaction between a Mn pairs is found to oscillate with the distance between them. Consequently, the AFM alignment is energetically favored in Mn-doped ZnSnAs{sub 2} compounds, except for low impurity concentration associated with lower distances between neighboring Mn impurities, in this case the stabilization of FM increases. Moreover, the ferromagnetic alignment in the Mn-doped ZnSnAs{sub 2} systems behaves half-metallic; the valence band for majority spin orientation is partially filled while there is a gap in the density of states for the minority spin orientation. This semiconducting gap of ~1 eV opened up in the minority channel and is due to the large bonding–antibonding splitting from the p–d hybridization. Our findings suggest that the Mn-doped ZnSnAs{sub 2} chalcopyrites could be a different class of ferromagnetic semiconductors. - Highlights: • ab initio calculations were performed on Mn doped ZnSnAs{sub 2} chalcopyrite. • Substitution of a Sn atom (rather than Zn) by Mn

  6. Electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy

    Science.gov (United States)

    Jiang, F. D.; Feng, J. Y.

    2008-02-01

    Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed.

  7. Electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy

    International Nuclear Information System (INIS)

    Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed

  8. Structural and thermal properties of Cu1-xAgxInS2 chalcopyrite solid solutions

    International Nuclear Information System (INIS)

    The roentgenographic study on the concentration, and temperature dependences of the elementary cell parameters a and c and the thermal expansion coefficients along various directions in the CuInS2-AgInS2 system crystals with the chalcopyrite structure is carried out within the temperature range of 80-650 K. It is shown, that by replacement of copper ions by silver both parameters of the elementary cell a and c, its volume, bond length monotonously increase at all temperatures. It is established, that thermal expansion in the solid solutions under study is anisotropic one

  9. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, P. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM. Ciudad Universitaria s/n, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica, CSIC. Marie Curie 2, Cantoblanco, 28049 Madrid (Spain)], E-mail: pablop@etsit.upm.es; Aguilera, I.; Wahnon, P. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM. Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2008-08-30

    In this work, we present frozen phonon and linear response ab-initio research into the vibrational properties of the CuGaS{sub 2} chalcopyrite and transition metal substituted (CuGaS{sub 2})M alloys. These systems are potential candidates for developing a novel solar-cell material with enhanced optoelectronic properties based in the implementation of the intermediate-band concept. We have previously carried out ab-initio calculations of the electronic properties of these kinds of chalcopyrite metal alloys showing a narrow transition metal band isolated in the semiconductor band gap. The substitutes used in the present work are the 3d metal elements, Titanium and Chromium. For the theoretical calculations we use standard density functional theory at local density and generalized gradient approximation levels. We found that the optical phonon branches of the transition metal chalcopyrite, are very sensitive to the specific bonding geometry and small changes in the transition metal environment.

  10. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2016-01-01

    The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching.

  11. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2016-01-01

    The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching. PMID:26492170

  12. Electrochemical and spectroscopic study of interfacial interactions between chalcopyrite and typical flotation process reagents

    Science.gov (United States)

    Urbano, Gustavo; Lázaro, Isabel; Rodríguez, Israel; Reyes, Juan Luis; Larios, Roxana; Cruz, Roel

    2016-02-01

    Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between chalcopyrite (CuFeS2) and n-isopropyl xanthate (X) in the presence of ammonium bisulfite/39wt% SO2 and caustic starch at different pH values. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study. The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S0, whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity. A conditioning of the mineral surface with ammonium bisulfite/39wt% SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption. However, this effect is diminished at pH ≥ 8, when an excess of starch is added during the preconditioning step.

  13. Probing the whole ore chalcopyrite-bacteria interactions and jarosite biosynthesis by Raman and FTIR microspectroscopies.

    Science.gov (United States)

    Adamou, Anastasia; Manos, Giorgos; Messios, Nicholas; Georgiou, Lazaros; Xydas, Constantinos; Varotsis, Constantinos

    2016-08-01

    The whole ore chalcopyrite-bacteria interaction and the formation of the extracellular polymeric substances (EPS) during the bioleaching process by microorganisms found in the mine of Hellenic Copper Mines in Cyprus were investigated. Raman and FTIR microspectroscopies have been applied towards establishing a direct method for monitoring the formation of secondary minerals and the newly found vibrational marker bands were used to monitor the time evolution of the formation of covellite, and the K(+) and NH4(+)-jarosites from the chalcopyrite surfaces. The Raman data indicate that the formation of K(+)-jarosite is followed by the formation of NH4(+)-jarosite. The variation in color in the FTIR imaging data and the observation of the amide I vibration at 1637cm(-1) indicate that the microorganisms are attached on the mineral surface and the changes in the frequency/intensity of the biofilm marker bands in the 900-1140cm(-1) frequency range with time demonstrate the existence of biofilm conformations. PMID:27233839

  14. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  15. Structural and Thermoelectronic Properties of Chalcopyrite MgSiX2 (X = P, As, Sb)

    Science.gov (United States)

    Kocak, B.; Ciftci, Y. O.; Surucu, G.

    2016-08-01

    We have explored the structural, electronic, optical, and mechanical properties of the magnesium-based chalcopyrites MgSiP2, MgSiAs2, and MgSiSb2 using density functional theory with five different generalized gradient approximation (GGA) functionals: Perdew-Wang (1991), Perdew-Burke-Ernzerhof, revised Perdew-Burke-Ernzerhof, modified Perdew-Burke-Ernzerhof for solids, and Armiento-Mattson (2005) as well as the local density approximation. Change of the constituent element from P to Sb significantly affected the lattice constants, elastic constants, and thermal and dielectric properties. Our theoretically computed results are in reasonable agreement with experiments and other theoretical calculations. The electronic band structure results imply that all three considered compounds are semiconductors. MgSiP2 has the highest value of elastic constants, and bulk and shear moduli compared with the other two binary chalcopyrites. Furthermore, the optical response in terms of the dielectric functions, optical reflectivity, refractive index, extinction coefficient, and electron energy loss of the compounds were also investigated in the energy range from 0 eV to 15 eV. The calculated optical results reveal optical polarization anisotropy for all three compounds, making them useful for optoelectronic device applications. Moreover, specific focus is also given to quantify the dependence of various thermal properties on finite pressure/temperature within the quasiharmonic approximation.

  16. An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals

    Directory of Open Access Journals (Sweden)

    Parul Chawla

    2014-08-01

    Full Text Available In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO and tri-n-octylphosphine (TOP and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern–Volmer quenching constant (KSV and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor–acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe. Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications.

  17. An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals.

    Science.gov (United States)

    Chawla, Parul; Singh, Son; Sharma, Shailesh Narain

    2014-01-01

    In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe) chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO) and tri-n-octylphosphine (TOP) and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene) polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern-Volmer quenching constant (K SV) and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor-acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe). Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications. PMID:25161859

  18. Characterization of products emanating from conventional and microwave energy roasting of chalcopyrite (CuFeS{sub 2}) concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Mulaba-Bafubiandi, Antoine F., E-mail: Mulaba@twr.ac.za [University of Johannesburg, Extraction Metallurgy Department, Faculty of Engineering and the Built Environment (South Africa)

    2006-02-15

    Chalcopyrite concentrate (83% CuFeS{sub 2}, 3% FeS{sub 2} and 14% ZnS) which is a typical feed to the matte smelting process for copper extraction via pyro metallurgical route has been roasted with microwaves. Comparison of mineralogical phases obtained was made with the case of conventional roasting. Resulting calcines were characterised with Moessbauer spectroscopy and XRD. It was observed that complete oxidation (dead roasting) of the chalcopyrite was achieved after 10 min with microwaves while 20 min were required in the conventional route. The mineralogical phases found in the dead-roasted calcines produced from microwave roasting of this chalcopyrite concentrate were the hematite (Fe{sub 2}O{sub 3}), franklinite (ZnFe{sub 2}O{sub 4}), copper-rich ferrite (Cu{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4}, x {<=} 0.5), and copper ferrite (CuFe{sub 2}O{sub 4}). The findings of this work indicated that it was technologically feasible to oxidize the chalcopyrite with microwaves using a 2.45 GHz multimode applicator.

  19. Characterization of products emanating from conventional and microwave energy roasting of chalcopyrite (CuFeS2) concentrate

    International Nuclear Information System (INIS)

    Chalcopyrite concentrate (83% CuFeS2, 3% FeS2 and 14% ZnS) which is a typical feed to the matte smelting process for copper extraction via pyro metallurgical route has been roasted with microwaves. Comparison of mineralogical phases obtained was made with the case of conventional roasting. Resulting calcines were characterised with Moessbauer spectroscopy and XRD. It was observed that complete oxidation (dead roasting) of the chalcopyrite was achieved after 10 min with microwaves while 20 min were required in the conventional route. The mineralogical phases found in the dead-roasted calcines produced from microwave roasting of this chalcopyrite concentrate were the hematite (Fe2O3), franklinite (ZnFe2O4), copper-rich ferrite (Cu1-xZnxFe2O4, x ≤ 0.5), and copper ferrite (CuFe2O4). The findings of this work indicated that it was technologically feasible to oxidize the chalcopyrite with microwaves using a 2.45 GHz multimode applicator.

  20. Mechanism of electro-generating leaching of chalcopyrite-MnO2 in presence of Acidithiobacillus thiooxidans

    Institute of Scientific and Technical Information of China (English)

    XIAO Li; LIU Jian-she; FANG Zheng; QIU Guan-zhou

    2008-01-01

    A dual cell system with chalcopyrite anode and MnO2 cathode was used to study the relations between time and such data as the electric quantity and the dissolution rates of the two minerals in the electro-generating leaching(EGL) and the bio-electro-generating leaching(BEGL),respectively.The results showed that the dissolution rates for Cu2+ and Fe2+ in BEGL were almost 2 times faster than those in EGL,and nearly 3 times for Mn2+; the electric output increased nearly by 3 times.The oxidation residue of chalcopyrite was represented by TEM and XRD,whose pattern was similar to that of the raw ore in EGL.The mechanism for leaching of CuFeS2-MnO2 in the presence of Acidithiobacillus thiooxidans was proposed as a successive reaction of two independent sub-processes for the anode.The first stage,common to both processes,is dissolution of chalcopyrite to produce Cu2+,Fe2+ and sulfur.The second stage is subsequent oxidization of sulfur only in BEGL,which is the controlling step of the process.However,the dissolution of MnO2 lasts until the reaction of chalcopyrite stops or the ores exhaust in two types of leaching.

  1. Kinetics and Mechanisms of Chalcopyrite Dissolution at Controlled Redox Potential of 750 mV in Sulfuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Yubiao Li

    2016-08-01

    Full Text Available To better understand chalcopyrite leach mechanisms and kinetics, for improved Cu extraction during hydrometallurgical processing, chalcopyrite leaching has been conducted at solution redox potential 750 mV, 35–75 °C, and pH 1.0 with and without aqueous iron addition, and pH 1.5 and 2.0 without aqueous iron addition. The activation energy (Ea values derived indicate chalcopyrite dissolution is initially surface chemical reaction controlled, which is associated with the activities of Fe3+ and H+ with reaction orders of 0.12 and −0.28, respectively. A surface diffusion controlled mechanism is proposed for the later leaching stage with correspondingly low Ea values. Surface analyses indicate surface products (predominantly Sn2− and S0 did not inhibit chalcopyrite dissolution, consistent with the increased surface area normalised leach rate during the later stage. The addition of aqueous iron plays an important role in accelerating Cu leaching rates, especially at lower temperature, primarily by reducing the length of time of the initial surface chemical reaction controlled stage.

  2. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite

    Science.gov (United States)

    Edelbro, R.; Sandström, Å.; Paul, J.

    2003-02-01

    The bulk electronic structures of Sphalerite, Pyrite and Chalcopyrite have been calculated within an ab initio, full potential, density functional approach. The exchange term was approximated with the Dirac exchange functional, the Vosko-Wilk-Nusair parameterization of the Cepler-Alder free electron gas was used for correlation and linear combinations of Gaussian type orbitals were used as basis functions. The Sphalerite (zinc blende) band gap was calculated to be direct with a width of 2.23 eV. The Sphalerite valence band was 5.2 eV wide and composed of a mixture of sulfur and zinc orbitals. The band below the valence band located around -6.2 eV was mainly composed of Zn 3d orbitals. The S 3s orbitals gave rise to a band located around -12.3 eV. Pyrite was calculated to be a semiconductor with an indirect band gap of 0.51 eV, and a direct gap of 0.55 eV. The valence band was 1.25 eV wide and mainly composed of non-bonding Fe 3d orbitals. The band below the valence band was 4.9 eV wide and composed of a mixture of sulfur and iron orbitals. Due to the short inter-atomic distance between the sulfur dumbbells, the S 3s orbitals in Pyrite were split into a bonding and an anti-bonding range. Chalcopyrite was predicted to be a conductor, with no band-crossings at the Fermi level. The bands at -13.2 eV originate from the sulfur 3s orbitals and were quite similar to the sulfur 3s bands in Sphalerite, though somewhat shifted to lower energy. The top of the valence band consisted of a mixture of orbitals from all the atoms. The lower part of the same band showed metal character. Computational modeling as a tool for illuminating the flotation and leaching processes of Pyrite and Chalcopyrite, in connection with surface science experiments, is discussed.

  3. X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: Effect of pulp potential

    Science.gov (United States)

    Kalegowda, Yogesh; Chan, Yuet-Loy; Wei, Der-Hsin; Harmer, Sarah L.

    2015-05-01

    Synchrotron-based X-ray photoemission electron microscopy (X-PEEM), X-ray photo-electron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and ultraviolet visible spectroscopy were used to characterize the flotation behaviour of chalcopyrite with xanthate at different processing conditions. The flotation recovery of chalcopyrite decreased from 97% under oxidative conditions (Eh ~ 385 mV SHE, pH 4) to 41% at a reductive potential of - 100 mV SHE (at pH 9). X-PEEM images constructed from the metal L3 absorption edges were used to produce near-edge X-ray absorption fine structure (NEXAFS) spectra from regions of interest, allowing the variability in mineral surface chemistry of each mineral particle to be analysed, and the effect of pulp potential (Eh) on the flotation of chalcopyrite to be determined. XPS, ToF-SIMS and NEXAFS analyses of chalcopyrite particles at oxidative conditions show that the surface was mildly oxidised and covered with adsorbed molecular CuEX. The Cu 2p XPS and Cu L2,3 NEXAFS spectra were dominated by CuI species attributed to bulk chalcopyrite and adsorbed CuEX. At a reductive potential of - 100 mV SHE, an increase in concentration of CuI and FeIII oxides and hydroxides was observed. X-PEEM analysis was able to show the presence of a low percentage of CuII oxides (CuO or Cu(OH)2) with predominantly CuI oxide (Cu2O) which is not evident in Cu 2p XPS spectra.

  4. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Directory of Open Access Journals (Sweden)

    Wang Lan

    2016-01-01

    Full Text Available We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  5. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    Science.gov (United States)

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  6. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    Directory of Open Access Journals (Sweden)

    E. Romo

    2013-01-01

    Full Text Available The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control.

  7. Adiabatic bond charge model for lattice dynamics of ternary chalcopyrite semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Guerel, T.; Eryigit, R. [Department of Physics, Abant Izzet Baysal University, Bolu, 14280 (Turkey)

    2006-01-01

    The adiabatic bond charge model of Rustagi and Weber is extended to study lattice dynamical properties of ternary chalcopyrite semiconductors AgGaS{sub 2}, AgGaSe{sub 2}, CuInS{sub 2}, CuInSe{sub 2}, CuGaS{sub 2}, CuGaSe{sub 2}, CuAlS{sub 2} and CuAlSe{sub 2}. The new model calculations agree well with the results of Raman/IR and neutron measurements of Brillouin zone center phonon frequencies for both low and high frequency modes which was difficult for other phenomenological lattice dynamical models. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Simulation of Bioleaching Heat Effects for Enhancement of Copper Recovery from Sarcheshmeh Chalcopyrite

    Science.gov (United States)

    Mahmoudian, Ali Reza; Sadrnezhaad, S. K.; Manafi, Zahra

    2014-08-01

    A heat-transfer model was formulated to determine the distribution of temperature within a bioheap of chalcopyrite of Sarcheshmeh copper mine. Bioleaching employs mixed mesophilic and thermophilic microbes for Cu extraction. Thermophiles are better than mesophiles to dissolve CuFeS2. The solution irrigation and aeration rates were taken into account as the main operational factors. The model was validated by comparing the temperature profiles of test columns with those of bioheap. The model was used to find the optimal ratio of irrigation to aeration. It was found that when the solution was fed at a flow rate of 5 kg/m2 h and air was blown at a flow rate of 7.5 kg/m2 h, the transition from a mesophilic to thermophilic state inside the heap was possible. In this situation, the maximum temperature rise inside the heap was about 332 K (59 °C) after 60 days.

  9. Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    García-Meza, J V; Fernández, J J; Lara, R H; González, I

    2013-07-01

    Biofilms of Acidithiobacillus thiooxidans were grown on the surface of massive chalcopyrite electrodes (MCE) where different secondary sulfur phases were previously formed by potentiostatic oxidation of MCE at 0.780≤Ean≤0.965 V (electrooxidized MCE, eMCE). The formation of mainly S⁰ and minor amounts of CuS and Sn²⁻ were detected on eMCEs. The eMCEs were incubated with A. thiooxidans cells for 1, 12, 24, 48, and 120 h in order to temporally monitor changes in eMCE's secondary phases, biofilm structure, and extracellular polymeric substance (EPS) composition (lipids, proteins, and polysaccharides) using microscopic, spectroscopic, electrochemical, and biochemical techniques. The results show significant cell attachments with stratified biofilm structure since the first hour of incubation and EPS composition changes, the most important being production after 48-120 h when the highest amount of lipids and proteins were registered. During 120 h, periodic oxidation/formation of S⁰/Sn²⁻ was recorded on biooxidized eMCEs, until a stable CuS composition was formed. In contrast, no evidence of CuS formation was observed on the eMCEs of the abiotic control, confirming that CuS formation results from microbial activity. The surface transformation of eMCE induces a structural transformation of the biofilm, evolving directly to a multilayered biofilm with more hydrophobic EPS and proteins after 120 h. Our results suggest that A. thiooxidans responded to the spatial and temporal distribution and chemical reactivity of the Sn²⁻/S⁰/CuS phases throughout 120 h. These results suggested a strong correlation between surface speciation, hydrophobic domains in EPS, and biofilm organization during chalcopyrite biooxidation by A. thiooxidans.

  10. Assessment of the flotability of chalcopyrite, molybdenite and pyrite using biosolids and their main components as collectors for greening the froth flotation of copper sulphide ores.

    OpenAIRE

    Sobarzo, Francisco; Herrera Urbina, Ronaldo; Higueras Higueras, Pablo Leon; SÁez Navarrete, CÉsar; Godoy FaÚndez, Alex; Reyes Bozo, Lorenzo; VÁsquez Bestagno, Jorge

    2014-01-01

    Biosolids and representative compounds of their main components ? humic acids, sugars, and proteins ? have been tested as possible environment-friendly collectors and frothers for the flotation of copper sulphide ores. The floatability of chalcopyrite and molybdenite ? both valuable sulphide minerals present in these ores ? as well as non-valuable pyrite was assessed through Hallimond tube flotation tests. Humic acids exhibit similar collector ability for chalcopyrite and molybdenite as that ...

  11. Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching

    Institute of Scientific and Technical Information of China (English)

    Run-lan Yu; Jing Liu; Jian-xi Tan; Wei-min Zeng; Li-juan Shi; Guo-hua Gu; Wen-qing Qin; Guan-zhou Qiu

    2014-01-01

    The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular poly-saccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleach-ing. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.

  12. Community dynamics of attached and free cells and the effects of attached cells on chalcopyrite bioleaching by Acidithiobacillus sp.

    Science.gov (United States)

    Yang, Hailin; Feng, Shoushuai; Xin, Yu; Wang, Wu

    2014-02-01

    The community dynamics of attached and free cells of Acidithiobacillus sp. were investigated and compared during chalcopyrite bioleaching process. In the mixed strains system, Acidithiobacillus ferrooxidans was the dominant species at the early stage while Acidithiobacillus thiooxidans owned competitive advantage from the middle stage to the end of bioprocess. Meanwhile, compared to A. ferrooxidans, more significant effects of attached cells on free biomass with A. thiooxidans were shown in either the pure or mixed strains systems. Moreover, the effects of attached cells on key chemical parameters were also studied in different adsorption-deficient systems. Consistently, the greatest reduction of key chemical ion was shown with A. thiooxidans and the loss of bioleaching efficiency was high to 50.5%. These results all demonstrated the bioleaching function of attached cells was more efficient than the free cells, especially with A. thiooxidans. These notable results would help us to further understand the chalcopyrite bioleaching.

  13. Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching

    Science.gov (United States)

    Yu, Run-lan; Liu, Jing; Tan, Jian-xi; Zeng, Wei-min; Shi, Li-juan; Gu, Guo-hua; Qin, Wen-qing; Qiu, Guan-zhou

    2014-04-01

    The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleaching. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.

  14. The presentation of the selectivity indexes and techno-economical efficiences in selective flotation from domestic chalcopyrite and galenasphalerite ores

    OpenAIRE

    Gocev, Zivko; Krstev, Aleksandar; Krstev, Boris; Golomeova, Mirjana; Zendelska, Afrodita; Vuckovski, Zoran; Golomeov, Blagoj

    2013-01-01

    The presentation and comparative analysis and the tabular and figurative shown of the techno indicators of the concentration, techno efficiency and economic efficiency for the treated ores in mineral processing technologies for copper-chalcopyrite ores in Bucim mine and lead/zinc-galena/sphalerite ores in Sasa mine in the Republic of Macedonia, their correlation and other characteristics using descriptive statistics of experimental/industrial results with Microsoft Excel 2010. The pr...

  15. Dependence of Ionicity and Thermal Expansion Coefficient on Valence Electron Density in AIIBIVC2V Chalcopyrite Semiconductors

    Directory of Open Access Journals (Sweden)

    Amar BAHADUR

    2013-06-01

    Full Text Available A striking correlation has been found to exist between the free electron density parameter, average bond length, homoplar energy gap, heteropolar energy gap, ionicity and thermal expansion coefficient for AIIBIVC2V chalcopyrite semiconductors. The estimated values of these parameters are in good agreement with the available experimental values and theoretical findings. The electron density parameter data is the only one input data to estimate all above properties.

  16. Adsorption of biosolids and their main components on chalcopyrite, molybdenite and pyrite: Zeta potential and FTIR spectroscopy studies

    OpenAIRE

    Reyes Bozo, Lorenzo; Escudey, Mauricio; Vyhmeister, Eduardo; Higueras Higueras, Pablo Leon; Godoy FaÚndez, Alex; Salazar, José Luis; ValdÉs GonzÁlez, HÉctor; Wolf Sepúlveda, Germán; Herrera Urbina, Ronaldo

    2015-01-01

    Zeta potential measurements were used to assess the electrokinetic characteristics of chalcopyrite, molybdenite and pyrite in the presence of biosolids and their main components (humic acids, glucose and serum albumin) as well as a commercial collector (Aero 6697). Fourier transform infrared spectroscopy (FTIR) was then used to gain a deeper understanding of the interaction of these compounds with these sulfide minerals. It aims to achieve a better understanding of the surface che...

  17. Valence band gaps and plasma energies for galena, sphalerite, and chalcopyrite natural minerals using differential optical reflectance spectroscopy

    Science.gov (United States)

    Todoran, R.; Todoran, D.; Szakacs, Zs.

    2015-12-01

    The paper presents the determinations of the valence band gaps and plasma energies of the galena, sphalerite and chalcopyrite natural minerals. The work was carried out using differential optical reflectance spectroscopy of the clean mineral surfaces. The determination of the optical properties such as refractive index, real part of the complex dielectric constant and the location of certain van Hove singularities, was carried out using the Kramers-Kronig formalism.

  18. A High Yield Synthesis of Chalcopyrite CuInS2 Nanoparticles with Exceptional Size Control

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chivin; Gardner, Joseph S.; Shurdha, Endrit; Margulieux, Kelsey R.; Westover, Richard D.; Lau, Lisa D.; Long, Gary; Bajracharya, Cyril; Wang, Chong M.; Thurber, Aaron P.; Punnoose, Alex; Rodriguez, Rene G.; Pak, Joshua J.

    2009-12-29

    with radii smaller than 8 nm exhibit bandgaps greater than 1.45 eV [20]. Our group has recently reported the synthesis of CuInS2 nanoparticles using SSPs via microwave irradiation with 1-hexanethiol as a surface pacifying ligand to afford nanoparticle sizes ranging from 3 to 5 nm [16]. Herein, we report efficient size controlled syntheses of Chalcopyrite CuInS2 nanoparticles by decomposition of SSPs in the presence of 1,2-ethanedithiol with extraordinarily high yields. The titration studies by 1H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan are conducted to elucidate the formation of Chalcopyrite CuInS2 nanoparticles.

  19. Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Nava, Dora [Universidad Autonoma Metropolitana - Iztapalapa, Departamento de Quimica, Area de Electroquimica, A.P. 55-534, C.P. 09340, Mexico, D.F. (Mexico); Gonzalez, Ignacio [Universidad Autonoma Metropolitana - Iztapalapa, Departamento de Quimica, Area de Electroquimica, A.P. 55-534, C.P. 09340, Mexico, D.F. (Mexico)], E-mail: igm@xanum.uam.mx; Leinen, Dietmar; Ramos-Barrado, Jose R. [Departamento de Fisica Aplicada, Laboratorio de Materiales y Superficie, Unidad asociada al CSIC, Universidad de Malaga, Campus Teatinos, Malaga, C.P. 29071 (Spain)

    2008-05-30

    Surface characterization of the transient products that precede chalcocite formation during chalcopyrite reduction was carried out. The experimental strategy employed in the present work consisted of the application of different potential pulses (fixed energetic conditions) on the surface of chalcopyrite electrodes in 1.7 M H{sub 2}SO{sub 4}. The chemical products formed at different potential pulses were characterized by cyclic voltammetry (CV) and XPS. Each electrogenerated species presented a specific voltammetric behavior and an XPS spectrum, in which the values of principal photoelectronic peak bond energies for Cu 2p{sub 3/2}, Fe 2p{sub 3/2} and S 2p{sub 3/2} and the atomic concentrations were considered. Several potential intervals could be identified: in 0.115 {>=} E{sub cat} {>=} -0.085 V vs. SHE, an intermediate copper sulfide is formed whose composition is between those of chalcopyrite and bornite, such as talnakhite. The reduction of this product occurs slowly, giving bornite at potentials less than -0.085 V. In the applied potential region -0.085 {>=} E{sub cat} > -0.185 V, the bornite gradually decomposes causing the incomplete conversion to chalcocite. In the potential interval -0.185 > E{sub cat} {>=} -0.285 V, energetic conditions are large enough to allow the immediate decomposition of bornite, forming chalcocite in a more quantitative manner.

  20. Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS{sub 2}) reacted in acidic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mikhlin, Yuri L.; Tomashevich, Yevgeny V.; Asanov, Igor P.; Okotrub, Alexander V.; Varnek, Vladimir A.; Vyalikh, Denis V

    2004-03-30

    XPS, Fe L{alpha},{beta} and Cu L{alpha},{beta} X-ray emission and Fe L-, Cu L-, S L-edge and O K-edge absorption spectroscopies, Moessbauer spectroscopy and cyclic voltammetry were applied to study reacted surface layers of natural chalcopyrite, CuFeS{sub 2}. The surfaces became metal-depleted after the anodic oxidation in 1 M HCl and the leaching in 1 M H{sub 2}SO{sub 4}+0.2 M Fe{sub 2}(SO{sub 4}){sub 3} or 1 M HCl+0.4 M FeCl{sub 3} solutions, with the sulfur excess and iron/copper ratio been higher in the last instance, and were enriched in copper after the electrochemical reduction. The electronic structures of the metal-deficient layers up to several tenths of micrometer thick were similar to that of chalcopyrite, except that the density of the highest occupied states depended on sulfur anions formed (predominant S{sub 3}-anions after the ferric sulfate treatment, S{sub 4}-anions after the ferric chloride leaching or the potential sweep to 0.9 V, etc.). The layers created by the preliminary oxidation had only a small effect on the chalcopyrite voltammetry. We suggest a new reaction mechanism considering a role of the surface changes, including disordering and Anderson localization of the electronic states.

  1. Conducting behavior of chalcopyrite-type CuGaS₂ crystals under visible light.

    Science.gov (United States)

    Cholula-Díaz, Jorge L; Barzola-Quiquia, José; Kranert, Christian; Michalsky, Tom; Esquinazi, Pablo; Grundmann, Marius; Krautscheid, Harald

    2014-10-21

    Millimeter size high quality crystals of CuGaS2 were grown by chemical vapor transport. The highly ordered chalcopyrite structure is confirmed by X-ray diffraction and Raman spectroscopy. According to energy dispersive X-ray spectroscopy the composition of the crystals is very close to the formula CuGaS2. Room temperature photoluminescence measurements indicate the presence of an emission peak at about 2.36 eV that can be related to a donor-acceptor pair transition. The electrical resistance as a function of temperature is very well described by the Mott variable range hopping mechanism. Room temperature complex impedance spectroscopy measurements were performed in the alternating current frequency range from 40 to 10(7) Hz in the dark and under normal light. According to the impedance spectroscopy data the experimental results can be well described by two circuits in series, corresponding to bulk and grain boundary contributions. An unusual positive photoresistance effect is observed in the frequency range between 3 and 30 kHz, which we suggest to be due to intrinsic defects present in the CuGaS2 crystal.

  2. Investigation of thermodynamics properties of chalcopyrite compound CdGeAs2

    Science.gov (United States)

    Huang, Wei; Zhao, Beijun; Zhu, Shifu; He, Zhiyu; Chen, Baojun; Zhen, Zhen; Pu, Yunxiao; Liu, Weijia

    2016-06-01

    Chalcopyrite of CdGeAs2 single crystal was grown by a modified vertical Bridgman method with sufficient size and quality, and its optical, electrical and thermodynamic properties are characterized. The transmission is recorded in the 2.3-18 μm range, and the band-gap at room temperature is at 0.56 eV. Non-ideal transparency near 5.5 μm which limited its application severely exists in the front of the crystal. The crystal is p type at room temperature with hole concentrations varying from 1014 to 1016 cm-3. From the results of X-ray diffraction measurements carried out over the range 25-450 °C and thermal dilatometer tests, the thermal expansion coefficients are evaluated. And on this basis the Grüneisen parameters at different temperatures are evaluated and also exhibit anisotropic behavior (γa>γc). It is found that γa, γc, and γV have some difference between these two kinds of test methods. Using these Grüneisen parameters, lattice thermal conductivities have been deduced by two correction formulas. Meanwhile, specific heat capacity and thermal conductivity of [204] have been obtained as a function of temperature by experiment.

  3. Raman spectroscopy for quality control and process optimization of chalcopyrite thin films and devices

    International Nuclear Information System (INIS)

    We will demonstrate in this paper that Raman scattering of visible light is a versatile tool both for research and industrial process monitoring of thin chalcopyrite films for solar cells. Thin films of Cu(In, Ga)(S,Se)2 (CIGSSe) are produced by rapid thermal processing of stacked elemental Cu-In-Ga-Se layers. The Raman investigations are accompanied by grazing incidence X-ray diffraction (GI-XRD) and X-ray florescence (XRF) measurements. GI-XRD measurements confirm that the films show a two-fold elemental gradient: a sulfur gradient from the top and a Ga gradient from the CIGSSe/Mo interface. By Rietveld refinement of the GI-XRD spectra of the surface-near (∼ 100nm) ratio of sulfur to selenium can be obtained which corresponds well to the intensity ratio of the two Raman A1 modes of CuInS2 and CuInSe2. The asymmetric line shape of both XRD diffractograms and Raman spectra is attributed to the sulfur gradient. In addition we show that the intensity ratio of the satellite Raman B and E modes shows a correlation with the Cu to In + Ga ratio obtained by XRF

  4. An optimized In–CuGa metallic precursors for chalcopyrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun-feng, E-mail: junfeng.han@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Department of Physics, Peking University, Beijing 100871 (China); Liao, Cheng [Department of Physics, Peking University, Beijing 100871 (China); Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan Province 601207 (China); Jiang, Tao; Xie, Hua-mu; Zhao, Kui [Department of Physics, Peking University, Beijing 100871 (China); Besland, M.-P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-10-31

    We report a study of CuGa–In metallic precursors for chalcopyrite thin film. CuGa and In thin films were prepared by DC sputtering at room temperature. Due to low melting point of indium, the sputtering power on indium target was optimized. Then, CuGa and In multilayers were annealed at low temperature. At 120 °C, the annealing treatment could enhance diffusion and alloying of CuGa and In layers; however, at 160 °C, it caused a cohesion and crystalline of indium from the alloy which consequently formed irregular nodules on the film surface. The precursors were selenized to form copper indium gallium selenide (CIGS) thin films. The morphological and structural properties were investigated by scanning electron microscopy, X-ray diffraction and Raman spectra. The relationships between metallic precursors and CIGS films were discussed in the paper. A smooth precursor layer was the key factor to obtain a homogeneous and compact CIGS film. - Highlights: • An optimized sputtered indium film • An optimized alloying process of metallic precursor • An observation of nodules forming on the indium film and precursor surface • An observation of cauliflower structure in copper indium gallium selenide film • The relationship between precursor and CIGS film surface morphology.

  5. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    Directory of Open Access Journals (Sweden)

    Robert J. Lovelett

    2016-04-01

    Full Text Available Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstrate the modeling approach with the example of chalcopyrite Cu(InGa(SeS2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa(SeS2 thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.

  6. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate.

    Science.gov (United States)

    Bobadilla Fazzini, Roberto A; Levican, Gloria; Parada, Pilar

    2011-02-01

    The nature of the mineral-bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743-2747, 1998). On this respect, despite Acidithiobacilli-a ubiquitous bacterial genera in bioleaching processes (Rawlings, Microb Cell Fact 4(1):13, 2005)-has long been recognized as secreting bacteria (Jones and Starkey, J Bacteriol 82:788-789, 1961; Schaeffer and Umbreit, J Bacteriol 85:492-493, 1963), few studies have been carried out in order to clarify the nature and the role of the secreted protein component: the secretome. This work characterizes for the first time the sulfur (meta)secretome of Acidithiobacillus thiooxidans strain DSM 17318 in pure and mixed cultures with Acidithiobacillus ferrooxidans DSM 16786, identifying the major component of these secreted fractions as a single lipoprotein named here as Licanantase. Bioleaching assays with the addition of Licanantase-enriched concentrated secretome fractions show that this newly found lipoprotein as an active protein additive exerts an increasing effect on chalcopyrite bioleaching rate.

  7. Improved chalcopyrite bioleaching by Acidithiobacillus sp. via direct step-wise regulation of microbial community structure.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    A direct step-wise regulation strategy of microbial community structure was developed for improving chalcopyrite bioleaching by Acidithiobacillus sp. Specially, the initial microbial proportion between Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was controlled at 3:1 with additional 2 g/L Fe(2+) for faster initiating iron metabolism. A. thiooxidans biomass was fed via a step-wise strategy (8-12th d) with the microbial proportion 1:1 for balancing community structure and promoting sulfur metabolism in the stationary phase. A. thiooxidans proportion was further improved via another step-wise feeding strategy (14-18th d) with the microbial proportion 1:2 for enhancing sulfur metabolism and weakening jarosite passivation in the later phase. With the community structure-shift control strategy, biochemical reaction was directly regulated for creating a better balance in different phases. Moreover, the final copper ion was increased from 57.1 to 93.2 mg/L, with the productivity 2.33 mg/(Ld). The novel strategy may be valuable in optimization of similar bioleaching process.

  8. Improved chalcopyrite bioleaching by Acidithiobacillus sp. via direct step-wise regulation of microbial community structure.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    A direct step-wise regulation strategy of microbial community structure was developed for improving chalcopyrite bioleaching by Acidithiobacillus sp. Specially, the initial microbial proportion between Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was controlled at 3:1 with additional 2 g/L Fe(2+) for faster initiating iron metabolism. A. thiooxidans biomass was fed via a step-wise strategy (8-12th d) with the microbial proportion 1:1 for balancing community structure and promoting sulfur metabolism in the stationary phase. A. thiooxidans proportion was further improved via another step-wise feeding strategy (14-18th d) with the microbial proportion 1:2 for enhancing sulfur metabolism and weakening jarosite passivation in the later phase. With the community structure-shift control strategy, biochemical reaction was directly regulated for creating a better balance in different phases. Moreover, the final copper ion was increased from 57.1 to 93.2 mg/L, with the productivity 2.33 mg/(Ld). The novel strategy may be valuable in optimization of similar bioleaching process. PMID:26011694

  9. Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pistor, P., E-mail: paul.pistor@physik.uni-halle.de [Martin-Luther-Universität Halle, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Greiner, D.; Kaufmann, C. A.; Brunken, S.; Gorgoi, M.; Steigert, A.; Calvet, W.; Lauermann, I.; Klenk, R.; Unold, T.; Lux-Steiner, M.-C. [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2014-08-11

    The implementation of potassium fluoride treatments as a doping and surface modification procedure in chalcopyrite absorber preparation has recently gained much interest since it led to new record efficiencies for this kind of solar cells. In the present work, Cu(In,Ga)Se{sub 2} absorbers have been evaporated on alkali containing Mo/soda-lime glass substrates. We report on compositional and electronic changes of the Cu(In,Ga)Se{sub 2} absorber surface as a result of a post deposition treatment with KF (KF PDT). In particular, by comparing standard X-ray photoelectron spectroscopy and synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES), we are able to confirm a strong Cu depletion in the absorbers after the KF PDT which is limited to the very near surface region. As a result of the Cu depletion, we find a change of the valence band structure and a shift of the valence band onset by approximately 0.4 eV to lower binding energies which is tentatively explained by a band gap widening as expected for Cu deficient compounds. The KF PDT increased the open circuit voltage by 60–70 mV compared to the untreated absorbers, while the fill factor deteriorated.

  10. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    Science.gov (United States)

    Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.; Shafarman, William N.; Birkmire, Robert W.; Ogunnaike, Babatunde A.

    2016-04-01

    Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstrate the modeling approach with the example of chalcopyrite Cu(InGa)(SeS)2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS)2 thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.

  11. Fe and Cu isotope fractionation between chalcopyrite and dissolved metal species during hydrothermal recrystallization: An experimental study at 350°C and 500 bars

    Science.gov (United States)

    Syverson, D. D.; Luhmann, A. J.; Tan, C.; Borrok, D. M.; Ding, K.; Seyfried, W. E., Jr.

    2015-12-01

    The equilibrium Fe and Cu isotope fractionation factor between chalcopyrite and dissolved metal species was determined under hydrothermal conditions at 350°C and 500 bars. The experiments took advantage of gold-cell reaction technology, allowing time-series sampling of solution during the hydrothermal recrystallization of chalcopyrite over 3000 hours. One of the recrystallization experiments utilized an anomalous 57Fe spike in solution to quantify the degree and rate of isotopic exchange towards equilibrium between mineral and fluid reservoirs. The time-series 57Fe spike data suggests that chalcopyrite exchanges rapidly with dissolved Fe and Cu in solution and the isotopic fractionation between each metal-bearing reservoir throughout reaction progress, upon dissolution and recrystallization, represents close to equilibrium conditions. The isotope data indicate that the equilibrium fractionation between chalcopyrite and dissolved Fe and Cu at 350°C, Δ56FeCpy-Fe(aq), is 0.129±0.171‰ and Δ65CuCpy-Fe(aq), is -0.201±0.341‰ (2σ), and are in good agreement with recent theoretical equilibrium predictions. Comparison of the experimental data from this study with conjugate chalcopyrite and dissolved Fe and Cu pairs from a variety of hydrothermal systems along the mid-ocean ridge system indicates that chalcopyrite precipitates and recrystallizes at isotopic equilibrium with the fluid during cooling upon ascent to the seafloor. The rapid exchange between the mineral and fluid metal-reservoirs suggests that chalcopyrite effectively records the isotopic composition of the coexisting hydrothermal fluid during the evolution of hydrothermal systems. In addition, the pyrite-chalcopyrite equilibrium Fe isotope fractionation, Δ56FePyr-Cpy, at 350°C is quantified by combination of pyrite-Fe2+(aq) equilibrium fractionation data from Syverson et al., [2013] with chalcopyrite-Fe2+(aq) from this study, resulting in a fractionation of 0.861±0.337‰ (2σ). The empirical

  12. Electronic structure of semiconductor thin films (chalcopyrites) as absorbermaterials for thin film solar cells

    International Nuclear Information System (INIS)

    The objective of this work was to determine for the first time the band structure of CuInS2. For this purpose a new GSMBE process with TBDS as sulphur precursor was established to prevent the use of elemental sulphur in an UHV system. Additionally to the deposited films a cleave surface was prepared. The samples were characterized in situ by XPS/UPS and LEED. XRD and SEM were used for further ex situ investigations. The band structure was determined by ARUPS using synchrotron light. CuInS(001) and CuInS2(112) were deposited on Si and GaAs. The deposition of CuInS2 on GaAs showed a strong dependence on the existing surface reconstruction. A 2 x 1 reconstruction of GaAs(001) yielded CuInS2(001) films featuring terraces. A deposition on 2 x 2 reconstructed GaAs(111)A surfaces led to a facetted CuInS2 surface. On sulphur-passivated non-reconstructed GaAs(111)B a deposition of chalcopyrite ordered CuInS2 free of facets was possible. On the surface of Cu-rich CuInS2 films CuS crystallites formed. This yields ARUPS spectra showing the electronic stucture of CuInS2 superimposed by non-dispergative states of the polycrystalline CuS segregations. The effective hole masses were derived from the k verticalstrokeverticalstroke measurements. Finally the results of this work showed that the use of a (111) substrate leads to domain formation of the deposited CuInS2(112) films. Thus ARUPS spectra of such films show a superposition of the band structures along different directions. (orig.)

  13. Effect of pH and Fe(III) ions on chalcopyrite bioleaching by an adapted consortium from biogas sweetening

    OpenAIRE

    Dorado Castaño, Antonio David; Solé Sardans, Maria Montserrat; Lao Luque, Concepción; Alfonso Abella, María Pura; Gamisans Noguera, Javier

    2012-01-01

    Particle size, pH and Fe(III) ions affect the process of bioleaching of copper from chalcopyrite ores. In the study presented herein a copper sulfide ore was subjected to bioleaching process using a mixed microbial consortium obtained from a biotrickling filter treating high loads of H2S at different mineral particle size, distinct medium pH and various additional Fe(III) ion concentrations as leaching agent. After 1300 h of operation, the total copper recovery achieved a value of 50% in the ...

  14. Mathematical model of the chemistry of the dump leaching of chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Liddell, K.C.

    1980-03-01

    In a leach dump, chalcopyrite is dissolved by Fe/sup 3 +/ and by O/sub 2/ and H/sup +/. Neither reaction is at equilibrium under operational conditions. The solution contains Fe(III), Fe(II) and Cu(II) in an aqueous sulfate medium with a pH of about 2. The equilibrium concentrations of H/sup +/, OH/sup -/, SO/sub 4//sup 2 -/, HSO/sub 4//sup -/, Fe/sup 3 +/, FeOH/sup 2 +/, Fe(OH)/sub 2//sup +/, Fe/sub 2/(OH)/sub 2//sup 4 +/, FeSO/sub 4//sup +/, Fe(SO/sub 4/)/sub 2//sup -/, FeHSO/sub 4//sup 2 +/, Fe/sup 2 +/, FeSO/sub 4//sup 0/, FeHSO/sub 4//sup +/, Cu/sup 2 +/ and CuSO/sub 4//sup 0/ were calculated for different Fe/sub 2/(SO/sub 4/)/sub 3/, FeSO/sub 4/, CuSO/sub 4/ and H/sub 2/SO/sub 4/ analytical concentrations using both ideal solution and high ionic strength apparent equilibrium constants. Conditions under which Fe/sup 3 +/ precipitates have been investigated by including K/sub Sp/ values as constraints in the computer program. Jarosite, KFe/sub 3/(SO/sub 4/)/sub 2/(OH)/sub 6/, precipitates except when the K/sup +/ concentration is very small. Formation of goethite, ..cap alpha..-FeOOH, occurs through aging of amorphous Fe(OH)/sub 3/; ferric hydroxide precipitation is favored by high Fe/sup 3 +/ concentrations and high pH. With both dissolution reactions occurring, it was found that the H/sup +/ consumed was partially restored by dissociation of HSO/sub 4//sup -/, FEHSO/sub 4//sup 2 +/ and FeHSO/sub 4//sup +/. With no O/sub 2/ reacting, there were only slight changes in the H/sup +/ and HSO/sub 4//sup -/ concentrations and FeHSO/sub 4//sup +/ was a product. The maximum copper concentration was obtained with high starting Fe/sub 2/(SO/sub 4/)/sub 3/ concentrations and little or no O/sub 2/ consumption. Too large an amount of O/sub 2/ reacting led to pH increases that caused precipitation of Fe(OH)/sub 3/.

  15. A High-Yield Synthesis of Chalcopyrite CuInS2 Nanoparticles with Exceptional Size Control

    Directory of Open Access Journals (Sweden)

    Chivin Sun

    2009-01-01

    Full Text Available We report high-yield and efficient size-controlled syntheses of Chalcopyrite CuInS2 nanoparticles by decomposing molecular single source precursors (SSPs via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100°C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100°C to 200°C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%. The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuInS2 nanoparticles.

  16. Chalcopyrite Intergrowths in sphalerite in the Meixian Lead—Zine Deposit,Fujian Province and their Metallogenic Significance

    Institute of Scientific and Technical Information of China (English)

    顾连兴; 周兵; 等

    1998-01-01

    Ore textures and electron microprobe analyses show that in addition to highly scattered blebs in sphalerite grains,intergrown chalcopyrite also occurs as rods,myrmekites and lamellae aligned along cleavages and twin boundaries of the host sphalerite.The majority of the intergrowths could have been formed by replacement of sphalerite by chalcopyrite,albeit part of them may have resulted from exsolution,Not only copper,but also iron were introduced into the sphalerite by replacive fluids.While the front of the replacing fluid was moving forward through a sulphide orebody,Zn and Pb were dissolved and Cu was precipitated,resulting in zonal refining of the sulphide ores,The remobilized zinc and lead were precipitated at favourable sites with changed physico-chemical conditions .This is a possible mechanism for the formation of copper-poor zinc and lead ores above or lateral to the copper orebodies in some of the massive sulphide deposits reworked and overprinted by late-stage granites and their hydrothermal fluids.

  17. Spray Chemical Vapor Deposition of Single-Source Precursors for Chalcopyrite I-III-VI2 Thin-Film Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.

    2008-01-01

    Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.

  18. Bioleaching of chalcopyrite concentrate using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in a continuous bubble column reactor.

    Science.gov (United States)

    Xia, Lexian; Yin, Chu; Dai, Songlin; Qiu, Guanzhou; Chen, Xinhua; Liu, Jianshe

    2010-03-01

    To estimate the bioleaching performance of chalcopyrite for various hydraulic residence times (HRTs), laboratory-scale bioleaching of chalcopyrite concentrate was carried out in a continuous bubble column reactor with three different HRTs of 120, 80 and 40 h, respectively. An extraction rate and ratio of 0.578 g Cu l(-1) h(-1) and 39.7%, respectively, were achieved for an HRT of 80 h at a solids concentration of 10% (w/v). Lower bioleaching performances than this were obtained for a longer HRT of 120 h and a shorter HRT of 40 h. In addition, there was obvious competition between Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans to oxidize ferrous iron, causing large compositional differences between the microbial communities obtained for the different HRTs. Leptospirillum ferriphilum and Acidithiobacillus thiooxidans were found to be the dominant microbes for the longer HRT (120 h). Acidithiobacillus ferrooxidans became the dominant species when the HRT was decreased. The proportion of Acidithiobacillus thiooxidans was comparatively constant in the microbial community throughout the three process stages.

  19. Comparison of microbial communities in three different mine drainages and their bioleaching efficiencies to low grade of chalcopyrite

    Institute of Scientific and Technical Information of China (English)

    YIN Hua-qun; QIU Guan-zhou; WANG Dian-zuo; CAO Lin-hui; DAI Zhi-min; WANG Jie-wei; LIU Xue-duan

    2007-01-01

    Microbial community diversities in the drainage from three mines (Dexing Copper Mine, Qibaoshan Copper Mine and Yaogangxian Tungsten Mine, China) were analyzed using 16S rDNA PCR-RFLP approach. The efficiencies of chalcopyrite bioleaching were compared using enrichment of the three cultures. Phylogenetic analysis indicates that the dominant microorganisms are clustered with the Proteobacteria, the remaining is affiliated with Nitrospira, Acidobacteria and Actinobacteria.At the genus level, Acidithiobacillus is the dominant group in both YTW and QBS samples, while Spingomonas is dominant in YGX sample. Moreover, the principal component analysis (PCA) reveals that QBS and YTW have similar geochemical character and microbial communities. The results also show that pH value and tungsten concentration play a key role in microbial community distribution and relative abundance. The bioleaching efficiency of the enrichment cultures from YTW and QBS is similar. After 15 d,the bioleaching rates of low grade chalcopyrite (0.99%) are both up to 99.5% when using 10 g/L pulp density due to the similar microbial composition of YTW and QBS. Moreover, the leaching efficiencies of enrichment cultures containing multiple bioleaching microorganisms are higher than that of pure culture Acidithiobacillus ferrooxidans.

  20. Electrochemical oxidation of the chalcopyrite surface: an XPS and AFM study in solution at pH 4

    Energy Technology Data Exchange (ETDEWEB)

    Farquhar, Morag L.; Wincott, Paul L.; Wogelius, Roy A.; Vaughan, David J

    2003-09-30

    The electrochemical oxidation of chalcopyrite (CuFeS{sub 2}) has been studied at pH 4 using voltammetry, coulometry, X-ray photoelectron spectroscopy (XPS) and both ex situ and in situ atomic force microscopy (AFM). Between 500 and 650 mV an anodic oxidation peak is observed, prior to the onset of the main decomposition reactions. Chalcopyrite electrodes in contact with electrolyte show some release of Cu into solution even without an applied potential. At 500 and 650 mV, the loss of Cu from the surface increases by a factor of 2 and 6, respectively. Oxidation at 500 mV results in the formation of a mixed oxide or hydroxide of iron, coincident with islands (<0.15 {mu}m wide) of reaction products observed on the surface using AFM. The surface coverage of these islands increases with amount of charge passed. Oxidation at 650 mV shows similar processes have occurred, but with a greater island surface coverage and a more deeply altered surface. XPS depth profiling suggests iron oxide or hydroxide is now a major phase in the top {approx}40 A, with significant sulphate also formed. Observation of islands (alteration products) using in situ AFM under potential control shows that these features are not an artefact of the preparation methods.

  1. Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4)

    Science.gov (United States)

    Robie, R.A.; Wiggins, L.B.; Barton, P.B., Jr.; Hemingway, B.S.

    1985-01-01

    The heat capacity of CuFeS2 (chalcopyrite) was measured between 6.3 and 303.5 K. At 298.15 K, Cp,mo and Smo(T) are (95.67??0.14) J??K-1??mol-1 and (124.9??0.2) J??K-1??mol-1, respectively. From a consideration of the results of two sets of equilibrium measurements we conclude that ??fHmo(CuFeS2, cr, 298.15 K) = -(193.6??1.6) kJ??mol-1 and that the recent bomb-calorimetric determination by Johnson and Steele (J. Chem. Thermodynamics 1981, 13, 991) is in error. The standard molar Gibbs free energy of formation of bornite (Cu5FeS4) is -(444.9??2.1) kJ??mol-1 at 748 K. ?? 1985.

  2. Terahertz electro-optic detection using a ⟨012⟩-cut chalcopyrite ZnGeP2 crystal

    Science.gov (United States)

    Carnio, B. N.; Greig, S. R.; Firby, C. J.; Zawilski, K. T.; Schunemann, P. G.; Elezzabi, A. Y.

    2016-06-01

    The electro-optic detection capabilities of a -cut chalcopyrite ZnGeP2 (ZGP) crystal is investigated in the terahertz (THz) frequency regime. Our experiments attest that ZGP exhibits low THz losses and dispersion, and that phonon-polariton effects are too weak to perturb the THz pulse. Additionally, ZGP is shown to have excellent phase matching between an optical probe pulse and a THz pulse. For a 1080 μm thick ZGP crystal, this phase matching yields a detection bandwidth 1.3 times greater than ZnTe and 4.8 times greater than ZnSe and GaP. Thus, ZGP has promising applications in THz time-domain spectroscopy.

  3. Defect formation energies and homogeneity ranges of rock salt-, pyrite-, chalcopyrite- and molybdenite-type compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, S. [Hahn-Meitner-Institut, Glienicker Strasse 100, Berlin D-14109 (Germany)

    2004-07-01

    Employing the generalisation of Van Vechten's cavity model, formation energies of neutral point defects in pyrites (FeS{sub 2}, RuS{sub 2}), chalcopyrites (II-IV-V{sub 2} and I-III-VI{sub 2}) as well as molybdenites (MoS{sub 2}, WS{sub 2}) have been estimated. As input parameters the fundamental band gaps, work functions, electron affinities, surface energies, coordination numbers, covalent or ionic radii and unit cell parameters were used. The values calculated for tetrahedrally and octahedrally coordinated compounds agreed well with measured values. The data obtained can be used to calculate point defect concentrations and homogeneity ranges as a function of partial pressure and temperature. Introducing charged vacancies, the conductivity type can be predicted.

  4. Microwave heating synthesis and formation mechanism of chalcopyrite structured CuInS{sub 2} nanorods in deep eutectic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianjun, E-mail: zhangjianjun7110@163.com; Chen, Jun; Li, Qiang

    2015-03-15

    Graphical abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. Results show that microwave heating time plays an important role in the formation of CuInS{sub 2} nanostructure phase. The SEM results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The UV–vis spectrum results indicated that the CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. The possible growth mechanism of CuInS{sub 2} nanorods was discussed. - Abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. The as-synthesized CuInS{sub 2} nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The influences of microwave heating time on the formation of CuInS{sub 2} phase were discussed. Ultraviolet–visible (UV–vis) and photoluminescence (PL) spectra were utilized to investigate the optical properties of CuInS{sub 2} nanorods. The results showed that the as-synthesized CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. PL spectrum of the as-synthesized CuInS{sub 2} nanorods displays an emission peak centered at 580 nm under excitation wavelength of 366 nm at room temperature. The possible growth mechanism of CuInS{sub 2} nanorods was discussed.

  5. Microwave heating synthesis and formation mechanism of chalcopyrite structured CuInS2 nanorods in deep eutectic solvent

    International Nuclear Information System (INIS)

    Graphical abstract: Chalcopyrite structured CuInS2 nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. Results show that microwave heating time plays an important role in the formation of CuInS2 nanostructure phase. The SEM results indicated that the obtained CuInS2 nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The UV–vis spectrum results indicated that the CuInS2 nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. The possible growth mechanism of CuInS2 nanorods was discussed. - Abstract: Chalcopyrite structured CuInS2 nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. The as-synthesized CuInS2 nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The results indicated that the obtained CuInS2 nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The influences of microwave heating time on the formation of CuInS2 phase were discussed. Ultraviolet–visible (UV–vis) and photoluminescence (PL) spectra were utilized to investigate the optical properties of CuInS2 nanorods. The results showed that the as-synthesized CuInS2 nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. PL spectrum of the as-synthesized CuInS2 nanorods displays an emission peak centered at 580 nm under excitation wavelength of 366 nm at room temperature. The possible growth mechanism of CuInS2 nanorods was discussed

  6. Structural and elastic properties of defect chalcopyrite HgGa{sub 2}S{sub 4} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, O., E-mail: osgohi@fis.upv.es [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Santamaría-Pérez, D. [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universitat de València, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 València (Spain); Departamento de Química Física I, Universidad Complutense de Madrid, MALTA Consolider Team, Avenida Complutense s/n, 28040 Madrid (Spain); Vilaplana, R.; Luna, R. [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Sans, J.A.; Manjón, F.J. [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Errandonea, D. [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universitat de València, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 València (Spain); and others

    2014-01-15

    Highlights: • Single crystals of HgGa{sub 2}S{sub 4} with defect-chalcopyrite (DC) structure were synthesized. • High-pressure X-ray diffraction in DC-HgGa{sub 2}S{sub 4} was performed. • Equation of state of DC-HgGa{sub 2}S{sub 4} determined (bulk modulus of 48.4 GPa). • Calculated elastic constants of DC-HgGa{sub 2}S{sub 4} reported at different pressures. • DC-HgGa{sub 2}S{sub 4} becomes mechanically unstable above 13.8 GPa. -- Abstract: In this work, we focus on the study of the structural and elastic properties of mercury digallium sulfide (HgGa{sub 2}S{sub 4}) at high pressures. This compound belongs to the family of AB{sub 2}X{sub 4} ordered-vacancy compounds and exhibits a tetragonal defect chalcopyrite structure. X-ray diffraction measurements at room temperature have been performed under compression up to 15.1 GPa in a diamond anvil cell. Our measurements have been complemented and compared with ab initio total energy calculations. The axial compressibility and the equation of state of the low-pressure phase of HgGa{sub 2}S{sub 4} have been experimentally and theoretically determined and compared to other related ordered-vacancy compounds. The pressure dependence of the theoretical cation–anion and vacancy-anion distances and compressibilities in HgGa{sub 2}S{sub 4} are reported and discussed in comparison to other related ordered-vacancy compounds. Finally, the pressure dependence of the theoretical elastic constants and elastic moduli of HgGa{sub 2}S{sub 4} has been studied. Our calculations indicate that the low-pressure phase of HgGa{sub 2}S{sub 4} becomes mechanically unstable above 13.8 GPa.

  7. Electronic structure of epitaxial chalcopyrite surfaces and interfaces for photovoltaics; Elektronische Struktur epitaktischer Chalkopyrite und deren Heterokontakte fuer die Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Andreas

    2012-02-14

    This thesis constitutes a comprehensive study of the surface physics of epitaxial CuInSe{sub 2} films. It comprises analyses of the surface morphology and reconstruction, electronic band structure as well as hetero-junctions relevant to photovoltaic applications. Therefore, especially the aspect of stoichiometry variation from the CuInSe{sub 2} to the copper-deficient defect phases was considered. Preparation and analysis was completely performed under ultra-high vacuum conditions in order to ensure the investigation of well-defined samples free of contaminants. For some of the analysis techniques, single-crystalline samples are indispensable: They allow for the determination of surface periodicity by low-energy electron diffraction (LEED). In combination with concentration depth profiling by angle-resolved x-ray photoemission, to types of surface reconstructions could be distinguished for the near-stoichiometric CuInSe{sub 2}(112) surface. In the copper-rich case, it is stabilized by Cu{sub In} anti-site defects and on the indium-rich side by 2 V{sub Cu} defects, as predicted by surface total energy calculations by Jaffe and Zunger. Both configurations correspond to a c(4 x 2) reconstruction of the zinc blende type (111) surface. For the defect compound CuIn{sub 3}Se{sub 5}, a sphalerite order of the surface was found, which points at a weakening or absence of the chalcopyrite order in the bulk of the material. The unusual stability of the (112) surface could also be proven by comparison with the reconstruction and surface order of (001) and (220) surfaces. The results from surface analysis were used to measure the valence band structure of the epitaxial samples by synchrotron-based angle-resolved photoelectron spectroscopy. The CuInSe{sub 2}(001) surface gives access to the high symmetry directions {Gamma}-T and {Gamma}-N of momentum space. By contrasting the data obtained for the stoichiometric surface with the copper-poor defect compound, a reduction of the

  8. Evidence for the existence of two electronic states in the chalcopyrite-type alloys CuFe(S1-zSez)2

    International Nuclear Information System (INIS)

    Results of Moessbauer spectroscopy for the chalcopyrite-type of alloys CuFe(S1-zSez)2 in the range of composition 0 ≤ z ≤ 0.45 are presented. Room temperature spectra show two contributions: one is a magnetic spectrum (six lines) with a value of the hyperfine field near to that of chalcopyrite (z = 0, in which an antiferromagnetic order occurs below T = 823 K), the other having only one line. The relative area of the single-line contribution increases as z increases. For z = 0.2, we also made Moessbauer measurements as a function of temperature. The ratio of the two contributions evolves according to a Boltzmann law, in which the single line corresponds to the excited state at 81 K above the antiferromagnetic ground state. (orig.)

  9. Defect chalcopyrite Cu(In{sub 1-x}Ga{sub x}){sub 3}Se{sub 5} (0

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, M.A.; Wiesner, H.; Niles, D.; Ramanathan, K.; Matson, R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Crystallographic, optical, and electrical properties of defect chalcopyrite Cu(In{sub 1{minus}x}Ga{sub x}){sub 3}Se{sub 5} (0chalcopyrite CuIn{sub 1 {minus}x}Ga{sub x}Se{sub 2} absorber materials is presented. Considering the chalcopyrite/defect chalcopyrite junction model, the authors postulate that the traditionally poor device performance of uniform high-Ga-content absorbers (x>0.3) is due to a relatively inferior character - both structural and electrical - at the very chalcopyrite/defect chalcopyrite interface. They demonstrate that this situation can be circumvented (for absorbers with x>0.3) by properly engineering such an interface by reducing Ga content in the region near the surface of the absorber.

  10. Synthesis and Characterization of the First Liquid Single Source Precursors for the Deposition of Ternary Chalcopyrite (CuInS2) Thin Film Materials

    Science.gov (United States)

    Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius

    2002-01-01

    Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.

  11. Scientific communications: Re-Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at ruby creek, southern brooks range, Alaska

    Science.gov (United States)

    Selby, D.; Kelley, K.D.; Hitzman, M.W.; Zieg, J.

    2009-01-01

    New Re-Os data for chalcopyrite, bornite, and pyrite from the carbonate-hosted Cu deposit at Ruby Creek (Bornite), Alaska, show extremely high Re abundances (hundreds of ppb, low ppm) and contain essentially no common Os. The Re-Os data provide the first absolute ages of ore formation for the carbonate-hosted Ruby Creek Cu-(Co) deposit and demonstrate that the Re-Os systematics of pyrite, chalcopyrite, and bornite are unaffected by greenschist metamorphism. The Re-Os data show that the main phase of Cu mineralization pre dominantly occurred at 384 ?? 4.2 Ma, with an earlier phase possibly at ???400 Ma. The Re-Os data are consistent with the observed paragenetic sequence and coincide with zircon U-Pb ages from igneous rocks within the Ambler metallogenic belt, some of which are spatially and genetically associated with regional volcanogenic massive sulfide deposits. The latter may suggest a temporal link between regional magmatism and hydrothermal mineralization in the Ambler district. The utility of bornite and chalcopyrite, in addition to pyrite, contributes to a new understanding of Re-Os geochronology and permits a refinement of the genetic model for the Ruby Creek deposit. ?? 2009 Society of Economices Geologists, Inc.

  12. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor.

    Science.gov (United States)

    Africa, Cindy-Jade; van Hille, Robert P; Harrison, Susan T L

    2013-02-01

    The attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum spp. grown on ferrous medium or adapted to a pyrite mineral concentrate to four mineral substrata, namely, chalcopyrite and pyrite concentrates, a low-grade chalcopyrite ore (0.5 wt%) and quartzite, was investigated. The quartzite represented a typical gangue mineral and served as a control. The attachment studies were carried out in a novel particle-coated column reactor. The saturated reactor containing glass beads, which were coated with fine mineral concentrates, provided a quantifiable surface area of mineral concentrate and maintained good fluid flow. A. ferrooxidans and Leptospirillum spp. had similar attachment characteristics. Enhanced attachment efficiency occurred with bacteria grown on sulphide minerals relative to those grown on ferrous sulphate in an ore-free environment. Selective attachment to sulphide minerals relative to gangue materials occurred, with mineral adapted cultures attaching to the minerals more efficiently than ferrous grown cultures. Mineral-adapted cultures showed highest levels of attachment to pyrite (74% and 79% attachment for A. ferrooxidans and L. ferriphilum, respectively). This was followed by attachment of mineral-adapted cultures to chalcopyrite (63% and 58% for A. ferrooxidans and L. ferriphilum, respectively). A. ferrooxidans and L. ferriphilum exhibited lower levels of attachment to low-grade ore and quartz relative to the sulphide minerals. PMID:22410741

  13. Spectroscopic ellipsometry studies of In2S3 top window and Mo back contacts in chalcopyrite photovoltaics technology

    International Nuclear Information System (INIS)

    Spectroscopic ellipsometry (SE) was used to characterize the conventional back contact layer (Mo) as well as a novel top window layer (In2S3) for use in chalcopyrite photovoltaics technology. For the Mo back contact, in-situ SE measurements of thin films magnetron sputtered onto glass enabled determination of ε at different thicknesses during growth. The observed strong variations could be understood on the basis of a Drude relaxation time that varies with the Mo film thickness. For the In2S3 window layer, ex-situ SE measurements showed critical point structures at 2.77±0.08 eV, 4.92±0.005 eV, and 5.64±0.005 eV, as well as an absorption tail with an onset near 1.9 eV. A comparison of the solar cell performance in simulations using either In2S3 or conventional CdS revealed similar quantum efficiencies irrespective of the selected window layer. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. 黄铜矿硫化焙烧及氧压酸浸研究%Research on Oxygen Pressure Acid Leaching of Sulfidized Chalcopyrite

    Institute of Scientific and Technical Information of China (English)

    叶钟林; 施哲; 史谊峰; 张邦琪; 代红坤

    2014-01-01

    The special crystal structure of chalcopyrite makes it difficult to be leached in sulfuric acid system. Sulfidation roast process is studied in the present paper which transforms the chemical composition and structure of chalcopyrite into simple sulfides,which are more amenable to leaching.Both of the chalcopyrite and its sulfi-dation products are then leached for the extraction of copper in an appropriate leaching system.The results show that only covellite and pyrite could be found in the sulfidation product after being roasted for 60 min at 350 ℃which suggests nearly complete conversion of chalcopyrite.The leaching rate of copper from chalcopyrite and its sulfidation product,with leaching temperature of 150 ℃,time 120 min,oxygen partial pressure 0.5 MPa,stir-ring speed 700 r/min,and sulfuric acid 0.1 M,is 45% and 98%,respectively.The dissolve performance of chalcopyrite can be greatly improved by sulfidation roast.The results will provide theoretical instruction and tech-nological supports for industrializing application of chalcopyrite hydrometallurgy.%黄铜矿因其特殊的晶体结构在硫酸体系中较难溶解,采用硫化焙烧法使黄铜矿(CuFeS2)由复杂矿物组成及结构转变为易酸溶的简单硫化物(CuS,FeS2),并对黄铜矿及其硫化焙烧产物进行氧压酸浸对比实验研究.研究结果表明:350℃下黄铜矿与硫磺硫化焙烧60 min后,硫化焙烧反应进行的比较完全,焙烧产物中只有铜蓝CuS 和黄铁矿FeS2;当浸出温度为150℃、时间为120 min、氧分压为0.5 MPa、搅拌转速为700 r/min、木质磺酸钠为5 g/kg,液固比为7∶1,硫酸浓度为0.1 mol/L时,黄铜矿及硫化焙烧产物中铜的浸出率分别为45%和98%,经硫化焙烧后可显著改善黄铜矿在氧压酸浸过程中的溶解性能,为黄铜矿湿法冶炼工艺的工业化生产提供理论指导和技术支撑.

  15. A Study of the Effect of Djurliete, Bornite and Chalcopyrite during the Dissolution of Gold with a Solution of Ammonia-Cyanide

    Directory of Open Access Journals (Sweden)

    Mike Fulton

    2012-11-01

    Full Text Available The high solubility of copper sulphide minerals is an issue in the cyanidation of gold ores. The objective of this study was to quantify the effect of individual copper sulphide minerals on the Hunt process, which showed advantages over cyanidation. High purity djurleite, bornite and chalcopyrite, with a P70 of 70–74 microns, were mixed with fine quartz and gold powder (3–8 micron to obtain a copper concentration of 0.3%. The ammonia-cyanide leaching of slurry with djurleite proved to be more effective than cyanidation; producing comparable extraction of gold (99%, while reducing the cyanide consumption from 5.8 to 1.2 kg/t NaCN. Lead nitrate improved the Hunt leaching. The lower cyanide consumption is associated to a significant reduction of copper dissolved. XPS surface analysis of djurleite showed that lead nitrate favored the formation of Cu(OH2 species. Lead was also detected on the surface (oxide or hydroxide. Sulphide and copper compounds (cyanide and sulphide were reaction products responsible for inhibiting the dissolution of gold. Lead nitrate added in the Hunt leaching of bornite produced 99% gold extraction. Surface reaction products were similar to djurleite. The cyanide consumption (~4.4 kg/t NaCN was not reduced by the addition of ammonia. Cyanidation of chalcopyrite showed a lower consumption of cyanide 0.33 kg/t NaCN compared to 0.21 kg/t NaCN for Hunt. No significant interferences were observed in gold leaching with a slurry containing chalcopyrite.

  16. A Study of the Effect of Djurliete, Bornite and Chalcopyrite during the Dissolution of Gold with a Solution of Ammonia-Cyanide

    OpenAIRE

    Mike Fulton; Judith Price; Yeonuk Choi; Allen Pratt; Hai Guo; Chen Xia; Guy Deschênes

    2012-01-01

    The high solubility of copper sulphide minerals is an issue in the cyanidation of gold ores. The objective of this study was to quantify the effect of individual copper sulphide minerals on the Hunt process, which showed advantages over cyanidation. High purity djurleite, bornite and chalcopyrite, with a P70 of 70–74 microns, were mixed with fine quartz and gold powder (3–8 micron) to obtain a copper concentration of 0.3%. The ammonia-cyanide leaching of slurry with djurle...

  17. In situ monitoring the growth of thin-film ZnS/Zn (S,O) bilayer on Cu-chalcopyrite for high performance thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saez-Araoz, R.; Abou-Ras, D. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienicker Strasse 100, 14109 Berlin (Germany); Niesen, T.P. [AVANCIS GmbH and Co KG Otto-Hahn-Ring 6, 81739 Munich (Germany); Neisser, A.; Wilchelmi, K. [SULFURCELL Solartechnik GmbH Barbara-McClintock-Strasse 11, 12489 Berlin (Germany); Lux-Steiner, M.Ch. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienicker Strasse 100, 14109 Berlin (Germany); Ennaoui, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienicker Strasse 100, 14109 Berlin (Germany)], E-mail: ennaoui@helmholtz-berlin.de

    2009-02-02

    This paper highlights the crucial role that the control of the chemical bath deposition (CBD) process plays for buffer production of Cu-chalcopyrite solar-cell devices. ZnS/Zn (S,O) bilayer was deposited on CuInS{sub 2} (CIS) and Cu(In,Ga)(SSe){sub 2} (CIGSSe) and monitored using turbidity measurements of the solution. The results were correlated to the X-ray photoemission spectra of the samples obtained by interruption of the process at sequential stages. Two different feature regimes were distinguished: In the first stage, a heterogeneous reaction takes place on the absorber resulting in the formation of pure ZnS. The second stage of the process is homogeneous, and the in-situ turbidity measurement shows a loss in the transmission of light through the CBD solution. The measured ZnL3M45M45 Auger-peaks, during this second stage of the process, show a shift of the kinetic energy from pure ZnS to a solid-solution ZnS/ZnO ('Zn (S,O)') with decreasing amount of sulfur. These results are supported by the observations from Energy-filtered transmission electron microscopy. This paper also demonstrates that monitoring of the CBD process combined with the basic understanding using surface and interface analysis have contributed to improve the reproducibility and to enhance the photovoltaic performance of Cu-chalcopyrite thin-film solar modules.

  18. In situ monitoring the growth of thin-film ZnS/Zn (S,O) bilayer on Cu-chalcopyrite for high performance thin film solar cells

    International Nuclear Information System (INIS)

    This paper highlights the crucial role that the control of the chemical bath deposition (CBD) process plays for buffer production of Cu-chalcopyrite solar-cell devices. ZnS/Zn (S,O) bilayer was deposited on CuInS2 (CIS) and Cu(In,Ga)(SSe)2 (CIGSSe) and monitored using turbidity measurements of the solution. The results were correlated to the X-ray photoemission spectra of the samples obtained by interruption of the process at sequential stages. Two different feature regimes were distinguished: In the first stage, a heterogeneous reaction takes place on the absorber resulting in the formation of pure ZnS. The second stage of the process is homogeneous, and the in-situ turbidity measurement shows a loss in the transmission of light through the CBD solution. The measured ZnL3M45M45 Auger-peaks, during this second stage of the process, show a shift of the kinetic energy from pure ZnS to a solid-solution ZnS/ZnO ('Zn (S,O)') with decreasing amount of sulfur. These results are supported by the observations from Energy-filtered transmission electron microscopy. This paper also demonstrates that monitoring of the CBD process combined with the basic understanding using surface and interface analysis have contributed to improve the reproducibility and to enhance the photovoltaic performance of Cu-chalcopyrite thin-film solar modules

  19. Expression of Critical Sulfur- and Iron-Oxidation Genes and the Community Dynamics During Bioleaching of Chalcopyrite Concentrate by Moderate Thermophiles.

    Science.gov (United States)

    Zhou, Dan; Peng, Tangjian; Zhou, Hongbo; Liu, Xueduan; Gu, Guohua; Chen, Miao; Qiu, Guanzhou; Zeng, Weimin

    2015-07-01

    Sulfate adenylyltransferase gene and 4Fe-4S ferredoxin gene are the key genes related to sulfur and iron oxidations during bioleaching system, respectively. In order to better understand the bioleaching and microorganism synergistic mechanism in chalcopyrite bioleaching by mixed culture of moderate thermophiles, expressions of the two energy metabolism genes and community dynamics of free and attached microorganisms were investigated. Specific primers were designed for real-time quantitative PCR to study the expression of these genes. Real-time PCR results showed that sulfate adenylyltransferase gene was more highly expressed in Sulfobacillus thermosulfidooxidans than that in Acidithiobacillus caldus, and expression of 4Fe-4S ferredoxin gene was higher in Ferroplasma thermophilum than that in S. thermosulfidooxidans and Leptospirillum ferriphilum. The results indicated that in the bioleaching system of chalcopyrite concentrate, sulfur and iron oxidations were mainly performed by S. thermosulfidooxidans and F. thermophilum, respectively. The community dynamics results revealed that S. thermosulfidooxidans took up the largest proportion during the whole period, followed by F. thermophilum, A. caldus, and L. ferriphilum. The CCA analysis showed that 4Fe-4S ferredoxin gene expression was mainly affected (positively correlated) by high pH and elevated concentration of ferrous ion, while no factor was observed to prominently influence the expression of sulfate adenylyltransferase gene. PMID:25941022

  20. Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation.

    Science.gov (United States)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Naseri, Ali; Ranjbar, Mohammad; Manafi, Zahra

    2016-07-01

    In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride-sulfate system. PMID:27000968

  1. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China

    Science.gov (United States)

    Liu, Jun; Wu, Guang; Li, Yuan; Zhu, Mingtian; Zhong, Wei

    2012-04-01

    The Duobaoshan porphyry deposit, located in the northwestern part of the Lesser Hinggan Range, is one of the biggest porphyry Cu (Mo) deposits in the Central Asian orogenic belt in China. The Duobaoshan porphyry deposit occurs in granodiorite and volcanic rocks of the Middle Ordovician Duobaoshan Formation. Six types of veins have been identified in three ore-forming stages as follows: a quartz-potassic feldspar vein in the early ore-forming stage, an early stage quartz-molybdenite vein, late stage quartz-molybdenite and quartz-chalcopyrite-pyrite veins in the middle ore-forming stage, and quartz-pyrite and calcite-quartz veins in the late ore-forming stage. The following four types of fluid inclusions are distinguished from various quartz veins: two-phase aqueous, pure gas phase, CO2-bearing and daughter mineral-bearing inclusions. The ore-forming fluid for the early ore-forming stage belongs to the H2O-CO2-NaCl system, which is characterized by high temperatures (>550 °C), intermediate salinities (16.2-18.1 wt% NaCl eqv.) and high CO2 content. The ore-forming fluid from the middle ore-forming stage evolved to the H2O-CO2-NaCl system, which is characterized by intermediate to high temperatures (230-450 °C) and high/low salinities (0.8 to >65.3 wt% NaCl eqv.) and is also rich in CO2 and metals. The ore-forming fluid finally reached cool temperatures (110-200 °C), low salinities (3.9-8.4 wt% NaCl eqv.) and was CO2-poor. Intensive fluid immiscibility or boiling occurred when the ore-forming fluid with temperatures of 230-450 °C and pressures of 10-41 MPa ascended to 4.1 km, inducing the escape of CO2, depressing the solubility of fluid, and depositing abundant metal sulfides. The total Re and Os concentrations of chalcopyrite and pyrite range from 0.15 to 2.95 μg/g and 0.74 to 15.01 ng/g, respectively. Analyses of seven chalcopyrite and pyrite samples yielded isochron ages of 482-486 Ma, and the model age of one molybdenite sample is 485.6 ± 3.7 Ma. The

  2. Half-metallic ferromagnetism in chalcopyrite type compounds ZnMX{sub 2} (M=Sc, V, Mn, Fe; X = P, As)

    Energy Technology Data Exchange (ETDEWEB)

    Vijayalakshmi, D.; Kalpana, G., E-mail: g-kalpa@yahoo.com, E-mail: g-kalpa@annauniv.edu [Department of Physics, Anna University, Chennai – 600025 (India)

    2015-06-24

    Electronic structure and magnetic properties of ZnMX{sub 2} (M=Sc, V, Mn and Fe; X= As and P) compounds in body centred tetragonal chalcopyrite structure have been investigated using first-principles calculations based on density functional theory (DFT) within the local spin density approximation (LSDA). The spin-polarized electronic band structure and density of states of all these compounds show that the spin-up electrons have metallic and the spin-down electrons have a semiconducting gap and the magnetic moment mainly originates from the strong spin polarization of 3d states of transition metal (M=Sc, V, Mn and Fe) atoms and p-like states of anion X (P and As) atoms.

  3. Ideal Weyl Semimetals in the Chalcopyrites CuTlSe_{2}, AgTlTe_{2}, AuTlTe_{2}, and ZnPbAs_{2}.

    Science.gov (United States)

    Ruan, Jiawei; Jian, Shao-Kai; Zhang, Dongqin; Yao, Hong; Zhang, Haijun; Zhang, Shou-Cheng; Xing, Dingyu

    2016-06-01

    Weyl semimetals are new states of matter which feature novel Fermi arcs and exotic transport phenomena. Based on first-principles calculations, we report that the chalcopyrites CuTlSe_{2}, AgTlTe_{2}, AuTlTe_{2}, and ZnPbAs_{2} are ideal Weyl semimetals, having largely separated Weyl points (∼0.05  Å^{-1}) and uncovered Fermi arcs that are amenable to experimental detections. We also construct a minimal effective model to capture the low-energy physics of this class of Weyl semimetals. Our discovery is a major step toward a perfect playground of intriguing Weyl semimetals and potential applications for low-power and high-speed electronics. PMID:27314733

  4. First and second harmonic generation of the XAl{sub 2}Se{sub 4} (X=Zn,Cd,Hg) defect chalcopyrite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, Tarik, E-mail: tarik_ouahrani@yahoo.fr [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P.230,13000 Tlemcen (Algeria); Ecole Preparatoire en Sciences et Techniques, Depertement de Physique EPST-T, Tlemcen 13000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Universite de Mascara, 29000 Mascara (Algeria); Lasri, B. [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P.230,13000 Tlemcen (Algeria); Universite Dr Tahar Moulay de Saida, B.P. 138, Cite el Nasr, Saida 20000 (Algeria); Reshak, Ali H. [School of Complex systems, FFPW- South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Bouhemadou, A. [Department of Physics, Faculty of Sciences, University of Setif, 19000 Setif (Algeria); Bin-Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-09-15

    The chemical bonding of the ZnAl{sub 2}Se{sub 4}, CdAl{sub 2}Se{sub 4} and HgAl{sub 2}Se{sub 4} defect chalcopyrites has been studied in the framework of the quantum theory of atoms in molecules (AIM). The GW quasi-particle approximation is used to correct the DFT-underestimation of energy gap, and as a consequence the linear and nonlinear optical properties are significantly enhanced. The second harmonic generation (SHG) displays certain dependence with the ionicity degree decrease through the dependency of the SHG on the band gap. The occurrence of the AIM saddle point is characterized and some clarifying features in relationship with the density topology are exposed, which enable to understand the relation with the second harmonic generation effect.

  5. Lattice dynamics of chalcopyrite semiconductors LiAlTe{sub 2},LiGaTe{sub 2} and LiInTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kosobutsky, A.V.; Basalaev, Yu.M.; Poplavnoi, A.S. [Physics Faculty, Kemerovo State University (Russian Federation)

    2009-02-15

    Within density functional perturbation theory using norm-conserving pseudopotentials and a plane-wave basis set calculations of phonon dispersion relations and densities of states of LiAlTe{sub 2}, LiGaTe{sub 2} and LiInTe{sub 2} compounds being crystallized into the tetragonal chalcopyrite structure have been performed. Theoretical values of phonon mode frequencies in LiGaTe{sub 2} and LiInTe{sub 2} are in good agreement with the experimental data available for these crystals obtained by the methods of Raman and infrared spectroscopies. The similarity of the physical and chemical properties of the crystals concerned manifests itself in the similarity of their phonon spectra that are especially close to each other in low- and high-frequency ranges. Phonon modes of the upper phonon band are predominantly caused by the lithium sublattice vibrations and have an upper bound of 350-370 cm{sup -1}. In a mid-frequency range a significant downshift of the vibrational frequencies is observed on going from LiAlTe{sub 2} to LiGaTe{sub 2} and LiInTe{sub 2} that is a consequence of the third group cation mass reduction. From calculated electron density maps it follows that Li-containing chalcopyrites are characterized by a less pronounced bond between the first group cation and anion as compared with the Cu- and Ag-based analogs due to the absence of pd-hybridization. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Synthesis of AgInSnS4 thin films by adding tin (Sn) into the chalcopyrite structure of AgInS2 using spray pyrolysis

    International Nuclear Information System (INIS)

    AgInSnS4 thin films were prepared by adding a tin salt to the starting solution used for preparing chalcopyrite AgInS2 thin films by spray pyrolysis The AgInSnS4 films were grown at substrate temperatures in the 300-400 oC range, using an alcoholic solution comprised of silver acetate, indium chloride, tin chloride and thiourea. The tin chloride content in the starting solution was gradually varied in terms of the molar ratio x = [Sn]/([S] + [Ag]) from 0 to 0.5 to obtain Sn-doped chalcopyrite AgInS2 (x 4 (x = 0.2-0.4). X-ray diffraction studies indicated that AgInSnS4 has a cubic spinel-like structure with lattice parameter of 10.77 A. All AgInSnS4 thin films exhibited p-type conduction, and their room temperature conductivity ranged from 10-1 to 10-2 S/cm. The conductivity versus 1/T plots for this material showed an Arrhenius-like behavior, from which two activation energies of Ea1 = 0.23-0.40 eV and Ea2 = 0.07-0.20 eV were determined. These results suggest that the grain boundary scattering and the ionization of shallow acceptors dominate the charge carrier transport in the sprayed AgInSnS4 thin films. The AgInSnS4 absorption spectrum revealed an energy gap around Eg = 1.89 eV, which was associated to direct-allowed transitions. To our knowledge, the quaternary compound has been prepared for the first time using spray pyrolysis.

  7. An electrochemical study of the oxidation of chalcopyrite in acidic mediums with ferric iron (Fe3+)%黄铜矿在含铁酸性介质中氧化过程的电化学研究

    Institute of Scientific and Technical Information of China (English)

    赵晋宁; 易筱筠; 党志

    2013-01-01

    以天然黄铜矿为研究对象,运用开路电位,循环伏安曲线,Tafel极化曲线和交流阻抗(EIS)等电化学手段,对在硫酸介质中三价铁离子对黄铜矿的氧化过程的电化学行为进行了研究.结果表明,黄铜矿在酸性介质中的氧化可能通过两步反应完成,第一步中电极表面形成了一层主要成分是含硫中间产物的钝化膜,第二步则是黄铜矿主体的氧化.Fe3+离子有助于黄铁矿的直接氧化,在黄铜矿的溶解过程中起到了重要作用.极化曲线测量的结果显示随着溶液中Fe3+离子浓度的增加,黄铜矿的极化电流也在增加,黄铜矿也更容易进入钝化阶段.同时,交流阻抗对Fe3+离子浓度改变的响应也很敏感.%The electrochemical behavior of the effect of ferric iron ( Fe3+ ) on the solution of chalcopyrite was investigated using electrochemical techniques including measurements of open circuit potential, cyclic voltammetry, Tafel polarization curves and electrochemical impedance spectroscopy (EIS). The results show that the chalcopyrite oxidation process in acidic mediums takes place via a two - step reaction. A passivation film composed of intermediate product mixed with sulfur is formed during the first step, and the bulk of chalcopyrite is oxidized in the second step. Ferric iron plays an important role in the dissolution of chalcopyrite by enhancing the direct oxidation. The Tafel polarization curves indicate that the polarization current of the chalcopyrite electrode increases with an increase of Fe3+ concentration. It has also been shown that the higher concentration of Fe 3+ is, the more easily the chalcopyrite can be transformed into the passivation region. In addition, the EIS response is found to be sensitive to changes in Fe3+ concentration.

  8. Influence of temperature on the fixation and penetration of silver during the chalcopyrite leaching using moderate thermophilic microorganisms; Influencia de la temperatura en la fijacion y penetracion de la plata durante la lixiviacion de calcopirita con microorganismos termofilos moderados

    Energy Technology Data Exchange (ETDEWEB)

    Cancho, L.; Blazquez, M. L.; Munoz, J. A.; Gonzalez, F.; Ballester, A.

    2004-07-01

    Bio leaching of chalcopyrite using mesophilic microorganisms considerable improves in the presence of silver. However, the studies carried out with moderate thermophilic microorganisms do not show a significant improvement with regard to the use of mesophilic bacteria. The main objective of the present work has been to study the silver fixation on chalcopyrite ar 35 and 45 degree centigree and its influence on the microbiological attack. Different observations using SEM, EDS microanalysis and concentration profiles using electron microprobe have been carried out. The study of the different samples showed that silver fixation was more favourable at 35 degree centigree than at 45 degree centigree. In addition, bacterial action improved silver penetration through attack cracks. (Author)

  9. Re-Os molybdenite, pyrite and chalcopyrite geochronology, Lupa Goldfield, SW Tanzania: Implications for metallogenic time scales and shear zone reactivation

    Science.gov (United States)

    Lawley, Christopher; Selby, David; Imber, Jonathan

    2013-04-01

    Fault zone reactivation is a well-documented deformation processes that is related, in part, to long-term fault weakening induced by fluid-rock interaction. However, the dearth of suitable geochronometers means very little data has been available to constrain the absolute timing of fault reactivation. Thus the time scales of fault processes remain unclear for most ancient fault networks. Gold occurrences in the western portion of the Lupa goldfield, SW Tanzania are associated with pyrite ± chalcopyrite ± molybdenite bearing quartz veins and a brittle-ductile shear zone network at the Tanzanian cratonic margin. The laminated appearance of auriferous quartz veins records evidence for a complex hydrothermal history which, coupled with complex relative-timing relationships between brittle and ductile deformation mechanisms within the mylonitic shear zones, suggests that these gold occurrences are best interpreted within a progressive deformation context characterized by repeated shear zone reactivation events. As a result, Au occurrences from the western Lupa goldfield are typical of the orogenic gold deposit type and represent an ideal natural laboratory to investigate the time scale of metallogenesis and shear zone processes operating at mid-crustal levels. Re-Os molybdenite, pyrite and chalcopyrite ages from five gold occurrences record a protracted hydrothermal history (1.95-1.87 Ga) comprising at least three temporally distinct sulphidation events (ca. 1.95, 1.94 and 1.88 Ga), which are each represented in detail by a complex vein history that occurred at a time scale less than the resolution of the Re-Os method. Together these Re-Os ages provide the first constraints on the absolute age of mineralization for gold occurrences in the western Lupa goldfield and also record a broad period of deformation and mineralization spanning ca. 70 Myr. This time period is also concurrent with felsic-mafic magmatic activity (1.96-1.88 Ga) and suggests mineralization

  10. The dry and damp heat stability of chalcopyrite solar cells prepared with an indium sulfide buffer deposited by the spray-ILGAR technique

    International Nuclear Information System (INIS)

    Cadmium free chalcopyrite solar cells based upon industrial Cu(In,Ga)(S,Se)2 absorber films with indium sulfide buffer layers deposited by the Spray-ILGAR technique have recently achieved certified efficiencies of 14.7%. Here we report for the first time on the stability of these cells. The cells were subjected to dry and damp heat conditions of 85 deg. C and 85% humidity for 100 h without encapsulation. The resulting cell parameters are measured and compared to cells prepared using a standard cadmium sulfide layer deposited by chemical bath deposition. Two different zinc oxide window processes were used for both buffers and the effect of changing the zinc oxide process is discussed. Before the damp heat tests, using an rf-sputtered zinc oxide process the indium sulfide buffers have an efficiency equal to the cadmium sulfide buffered cells and when using a second rf/dc-sputtered zinc oxide process a superior efficiency is obtained with the indium sulfide. The biggest loss in efficiency after damp heat testing is shown to arise from shunt paths at the scribe lines. The indium sulfide buffered cells degrade by only 11% under damp heat conditions when measured after rescribing. A difference between the cell efficiencies using two different zinc oxide windows highlights the interdependence of the process steps

  11. X-ray photoelectron spectrum and electronic properties of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4): LDA, GGA, and EV-GGA.

    Science.gov (United States)

    Reshak, Ali Hussain; Khenata, R; Kityk, I V; Plucinski, K J; Auluck, S

    2009-04-30

    An all electron full potential linearized augmented plane wave method has been applied for a theoretical study of the band structure, density of states, and electron charge density of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4) using three different approximations for the exchange correlation potential. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at Gamma resulting in a direct energy gap of about 2.0, 2.2, and 2.8 eV for local density approximation (LDA), generalized gradient approximation (GGA), and Engel-Vosko (EVGGA) compared to the experimental value of 2.84 eV. We notice that EVGGA shows excellent agreement with the experimental data. This agreement is attributed to the fact that the Engel-Vosko GGA formalism optimizes the corresponding potential for band structure calculations. We make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. We find that there is a strong covalent bond between the Hg and S atoms and Ga and S atoms. The Hg-Hg, Ga-Ga, and S-S bonds are found to be weaker than the Hg-S and Ga-S bonds showing that a covalent bond exists between Hg and S atoms and Ga and S atoms.

  12. Lattice defects and thermoelectric properties: the case of p-type CuInTe2 chalcopyrite on introduction of zinc.

    Science.gov (United States)

    Yang, Jiangfeng; Chen, Shaoping; Du, Zhengliang; Liu, Xianglian; Cui, Jiaolin

    2014-10-28

    I-III-VI2 chalcopyrites have unique inherent crystal structure defects, and hence are potential candidates for thermoelectric materials. Here, we identified mixed polyanionic/polycationic site defects (ZnIn(-), VCu(-), InCu(2+) and/or ZnCu(+)) upon Zn substitution for either Cu or In or both in CuInTe2, with the ZnIn(-) species originating from the preference of Zn for the cation 4b site. Because of the mutual reactions among these charged defects, Zn substitution in CuInTe2 alters the basic conducting mechanism, and simultaneously changes the lattice structure. The alteration of the lattice structure can be embodied in an increased anion position displacement (u) or a reduced bond length difference (Δd) between d(Cu-Te)4a and d(In-Te)4b with increasing Zn content. Because of this, the lattice distortion is diminished and the lattice thermal conductivity (κL) is enhanced. The material with simultaneous Zn substitution for both Cu and In had a low κL, thereby we attained the highest ZT value of 0.69 at 737 K, which is 1.65 times that of Zn-free CuInTe2.

  13. Electronic structure of semiconductor thin films (chalcopyrites) as absorbermaterials for thin film solar cells; Elektronische Struktur duenner Halbleiterfilme (Chalkopyrite) als Absorbermaterialien fuer Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Carsten

    2007-12-11

    The objective of this work was to determine for the first time the band structure of CuInS{sub 2}. For this purpose a new GSMBE process with TBDS as sulphur precursor was established to prevent the use of elemental sulphur in an UHV system. Additionally to the deposited films a cleave surface was prepared. The samples were characterized in situ by XPS/UPS and LEED. XRD and SEM were used for further ex situ investigations. The band structure was determined by ARUPS using synchrotron light. CuInS(001) and CuInS{sub 2}(112) were deposited on Si and GaAs. The deposition of CuInS{sub 2} on GaAs showed a strong dependence on the existing surface reconstruction. A 2 x 1 reconstruction of GaAs(001) yielded CuInS{sub 2}(001) films featuring terraces. A deposition on 2 x 2 reconstructed GaAs(111)A surfaces led to a facetted CuInS{sub 2} surface. On sulphur-passivated non-reconstructed GaAs(111)B a deposition of chalcopyrite ordered CuInS{sub 2} free of facets was possible. On the surface of Cu-rich CuInS{sub 2} films CuS crystallites formed. This yields ARUPS spectra showing the electronic stucture of CuInS{sub 2} superimposed by non-dispergative states of the polycrystalline CuS segregations. The effective hole masses were derived from the k {sub vertical} {sub stroke} {sub vertical} {sub stroke} measurements. Finally the results of this work showed that the use of a (111) substrate leads to domain formation of the deposited CuInS{sub 2}(112) films. Thus ARUPS spectra of such films show a superposition of the band structures along different directions. (orig.)

  14. Structural, elastic, electronic, bonding, and optical properties of BeAZ{sub 2} (A = Si, Ge, Sn; Z = P, As) chalcopyrites

    Energy Technology Data Exchange (ETDEWEB)

    Fahad, Shah [Department of Physics, Hazara University Mansehra, KPK, Mansehra (Pakistan); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 230, Université de Tlemcen, Tlemcen 13000 (Algeria); Ecole Préparatoire en Sciences et Techniques, BP 165 R.P., 13000 Tlemcen (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Yousaf, Masood [Center for Multidimensional Carbon Materials, Institute for Basic Science, Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Omran, S.Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Mohammad, Saleh [Department of Physics, Hazara University Mansehra, KPK, Mansehra (Pakistan)

    2015-10-15

    A first principles density functional theory (DFT) technique is used to study the structural, chemical bonding, electronic and optical properties of BeAZ{sub 2} (A = Si, Ge, Sn; Z = P, As) chalcopyrite materials. The calculated parameters are in good agreement with the available experimental results. The lattice constants and the equilibrium volume increased as we moved from Si to Ge to Sn, whereas the c/a and internal parameters u decreased by shifting the cation from P to As. These compounds are elastically stable. An investigation of the band gap using the WC-GGA, EV-GGA, PBE-GGA and mBJ-metaGGA potentials suggested that BeSiP{sub 2} and BeSiAs{sub 2} are direct band gap compounds, whereas BeGeP{sub 2,} BeGeAs{sub 2,} BeSnP{sub 2,} BeSnAs{sub 2} are indirect band gap compounds. The energy band gaps decreased by changing B from Si to Sn and increased by changing the anion C from P to As. The bonding among the cations and anions is primarily ionic. In the optical properties, the real and imaginary parts of the dielectric functions, reflectivity and optical conductivity have been studied over a wide energy range. - Highlights: • The compounds are studied by FP-LAPW method within mBJ approximation. • All of the studied materials show isotropic behaviour. • All the compounds show direct band gap nature. • Bonding nature is mostly covalent among the studied compounds. • High absorption peaks and reflectivity ensures there utility in optoelectronic devices.

  15. Study of the Al-grading effect in the crystallisation of chalcopyrite CuIn{sub 1−x}Al{sub x}Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martín, S., E-mail: sofia.martin@ciemat.es [CIEMAT, Departamento de Energía, Avda. Complutense, 40, E-28040 Madrid (Spain); Zoppi, G.; Aninat, R.; Forbes, I. [Northumbria Photovoltaics Applications Centre, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Guillén, C. [CIEMAT, Departamento de Energía, Avda. Complutense, 40, E-28040 Madrid (Spain)

    2013-06-15

    Chalcopyrite CuIn{sub 1−x}Al{sub x}Se{sub 2} (CIAS) thin films with an atomic ratio of Al/(In + Al) = 0.4 were grown by a two-stage process onto soda-lime glass substrates. The selenisation was carried out at different temperatures, ranging from 400 °C to 550 °C, for metallic precursors layers evaporated with two different sequences. The first sequence, C1, was evaporated with the Al as the last layer, while in the second one, C2, the In was the last evaporated element. The optical, structural and morphological characterisations led to the conclusion that the precursors sequence determines the crystallisation pathway, resulting in C1 the best option due to the homogeneity of the depth distribution of the elements. The influence of the selenisation temperature was also studied, finding 540 °C as the optimum one, since it allows to achieve the highest band gap value for the C1 sequence and for the given composition. - Highlights: • CIAS chalcopyrite thin films were prepared by a two-stage process. • Different metallic precursors sequences have been evaporated. • The samples have been converted at different selenisation temperatures. • Optical, morphological and structural properties have been studied. • The sequence and the temperatures determine the way towards CIAS formation and crystallization.

  16. 天然黄铜矿矿物晶体的表面弛豫信息与理论分析%Theory analysis and vestigial information of surface relaxation of natural chalcopyrite mineral crystal

    Institute of Scientific and Technical Information of China (English)

    文书明; 邓久帅; 先永骏; 刘丹

    2013-01-01

    X-ray diffraction was used to measure the unit cell parameters of chalcopyrite crystal.The results showed that the chalcopyrite crystal is perfect,and the arrangement of its atoms is regular.A qualitative analysis of molecular mechanics showed that surface relaxation causes the chalcopyrite surface to be sulfur enriched.Atomic force microscope (AFM) was used to obtain both a microscopic three-dimensional topological map of chalcopyrite surface and a two-dimensional topological map of its electron cloud.The AFM results revealed that the horizontal and longitudinal arrangements of atoms on the chalcopyrite surface change dramatically compared with those in the interior of the crystal.Longitudinal shifts occur among the copper,iron and sulfur atoms relative to their original positions,namely,surface relaxation occurs,causing sulfur atoms to appear on the outermost surface.Horizontally,AFM spectrum showed that the interatomic distance is irregular and that a reconstruction occurs on the surface.One result of this reconstruction is that two or more atoms can be positioned sufficiently close so as to form atomic aggregates.The lattice properties of these models were calculated based on DFT theory and compared with the experimental results and those of previous theoretical works.On analyzing the results,the atomic arrangement on the (001) surface of chalcopyrite is observed to become irregular,S atoms move outward along the Z-axis,and the lengths of Cu-S and Fe-S bonds are enlarged after geometry optimization because of the surface relaxation and reconstruction.The sulfur-rich surface and irregular atomic aggregates caused by the surface relaxation and reconstruction greatly influence the bulk flotation properties of chalcopyrite.%通过XRD测定黄铜矿晶体的晶胞参数,表明黄铜矿结晶完整,内部原子排列规则.通过分子力学定性分析,指出黄铜矿表面弛豫出现表面富硫现象.采用AFM获得黄铜矿表面的三维微观结构拓扑图

  17. Enrichment of ferric iron on mineral surface during bioleaching of chalcopyrite%黄铜矿生物浸出过程中三价铁在矿物表面的富集

    Institute of Scientific and Technical Information of China (English)

    彭堂见; 周丹; 刘学端; 余润兰; 姜涛; 顾帼华; 陈淼; 邱冠周; 曾伟民

    2016-01-01

    In order to investigate the enrichment of ferric iron bound by extracellular polymeric substance (EPS) on the mineral surface during bioleaching of chalcopyrite, several methods including sonication, heating and vortexing were used and sonication at 48 °C was shown as a good way to extract ferric iron. Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analysis showed that lots of cracks and pits can be found on the chalcopyrite surface after bioleaching and that iron oxide was filled in these cracks and pits. The variations of contents of ferric iron and EPS on the chalcopyrite surface were investigated. The results indicated that the content of EPS increased rapidly in the first 10 d and then maintained at a stable level, while ferric iron content increased all the time, especially in the later stage of bioleaching.%为探究黄铜矿生物浸出过程中与胞外多聚物结合的三价铁在矿物表面的富集,采用超声、加热和涡旋振荡提取矿物表面的三价铁。结果表明,在48°C条件下超声是一种有效的方法。扫描电镜和能量色散X射线能谱(EDX)分析表明,浸出后黄铜矿表面存在大量裂缝和凹陷,并且铁氧化物填充于这些裂缝和凹陷中。研究浸出过程黄铜矿表面三价铁和胞外多聚物的含量变化。结果表明,胞外多聚物的含量在浸出前10 d迅速上升,之后维持在一个稳定的水平,而三价铁含量随浸出时间的延长而增加,尤其是在浸出后期。

  18. Comparative Study of the Defect Point Physics and Luminescence of the Kesterites Cu2ZnSnS4 and Cu2ZnSnSe4 and Chalcopyrite Cu(In,Ga)Se2: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M. J.; Repins, I.; Teeter, G.; Contreras, M.; Al-Jassim, M.; Noufi, R.

    2012-08-01

    In this contribution, we present a comparative study of the luminescence of the kesterites Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) and their related chalcopyrite Cu(In,Ga)Se2 (CIGSe). Luminescence spectroscopy suggests that the electronic properties of Zn-rich, Cu-poor kesterites (both CZTS and CZTSe) and Cu-poor CIGSe are dictated by fluctuations of the electrostatic and chemical potentials. The large redshift in the luminescence of grain boundaries in CIGSe, associated with the formation of a neutral barrier is clearly observed in CZTSe, and, to some extent, in CZTS. Kesterites can therefore replicate the fundamental electronic properties of CIGSe.

  19. 三株氧化硫硫杆菌的分离与鉴定%Isolation and Characterization of three strains of Acidithiobacillus thiooxidans and its bioleaching of chalcopyrite

    Institute of Scientific and Technical Information of China (English)

    符波; 周洪波; 张倩; 邱冠周

    2008-01-01

    Three strains of mesophilic and acidophilic sulfur-oxidizing bacteria were isolated from coal heap drainage. The bacteria are motile, Gram-negative, rod-shaped, and measures 0.4 to 0.7 by 1 to 2 μm. They grow optimally at 30 ℃ and initial pH 2.0~2.5. The strains grow autotrophically by using elemental sulfur, sodium thiosulfate and potassium tetrathionate as energy sources. The strains can not use organic matter and inorganic minerals including ferrous sulfate, pyrite and chalcopyrite as energy sources. The morphological, biochemical and physiological characterization and analysis based on 16S rRNA gene sequence indicated that the strains are most closely related to Acidithiobacillus thiooxidans (>99% similarity in gene sequence). The presence of sulfur-oxidizing bacteria positively increased the dissolution rate and the percentage recovery of copper from chalcopyrite by producing acid.%从煤堆废水中分离得到3株嗜温嗜酸硫氧化细菌.这3株菌株为革兰氏阴性、菌体大小0.4~0.7 μm×1~2 μm、短杆状运动细菌,其最适生长温度为 30 ℃和最适生长pH 2.0~2.5.它们能够利用元素硫,硫代硫酸钠和连四硫酸钾为能源进行自养生长,不能利用有机物质以及硫酸亚铁、黄铁矿和黄铜矿等无机物质作为能源生长.细菌的形态、生理生化特性研究以及基于16S rRNA序列同源性构建的系统发育树结果表明,这3株细菌初步鉴定为氧化硫硫杆菌.氧化硫硫杆菌能够通过产酸有效促进黄铜矿的浸出速率和浸出率.

  20. Effect of potential on characteristics of surface film on natural chalcopyrite%电位对天然黄铜矿表面膜层性质的影响

    Institute of Scientific and Technical Information of China (English)

    俞娟; 杨洪英; 范有静

    2011-01-01

    Electrochemical behavior of natural chalcopyrite in electrolyte solution containing 5× 10-4 mol/L ethyl xanthate,and the effect of potential on the composition and characteristics of surface film were studied by cyclic voltammetry (CV),scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS).The adsorption of xanthate (X-) occurred on the mineral surface at open-circuit potential (OCP).In the potential range from -0.11 to 0.2 V,the electrochemical reaction related to the formation of the hydrophobic film of dixanthogen (X2) occurred on natural chalcopyrite surface.This surface film had high coverage and large thickness at the potential of 0 V,but it had low coverage and small thickness at the potentials of 0.1 V and 0.2 V.Electrochemical activation started to occur when the potential was higher than 0.2 V,and the film of X2 transformed to plenty of Cu(Ⅱ) and Fe(Ⅲ) oxygen-containing species which had the porous and loose characteristics.%采用循环伏安(CV)、扫描电子显微镜(SEM)和电化学阻抗谱(EIS)研究黄铜矿在含有5×10-4 mol/L乙黄药溶液中的电化学行为以及电位对黄铜矿表面膜层成分和性质的影响.结果表明:在开路电位(OCP)下,天然黄铜矿表面发生黄药阴离子的吸附过程;在阳极电位范围-0.11~0.2 V内,主要发生黄药阴离子氧化形成疏水双黄药膜层的电化学过程.形成的双黄药膜层在电位为0V时具有较高覆盖度和较大的厚度,随着电位的增加表面双黄药膜层的覆盖度和厚度减小.当电位高于0.2 V时,黄铜矿表面发生以自身活化溶解为主的电化学过程,黄铜矿表面由双黄药膜层转化成为大量具有多孔和疏松结构的含有Cu(Ⅱ)和Fe(Ⅲ)的氧化物.

  1. 嗜酸氧化亚铁硫杆菌的高效培养及浸出黄铜矿初探%Efficient culture of Acidithiobacillus ferrooxidans and preliminary study on chalcopyrite bioleaching

    Institute of Scientific and Technical Information of China (English)

    康文亮; 杨海麟; 冯守帅; 张玲; 冷云伟; 王武

    2011-01-01

    By feeding of ferrous sulfate into sulfide m ineralsm edium to maintain the Fe 2+ With in the concentration range from 4 g/L to 8 g/L , the biom ass of A cidith iobacillus ferroox idans could reach 6 .25 ×l08 cells/m L with in 39 hours . At the same time the conversion rate and production in tensity was improved without reducing the special growth rate . The prelim inary study on low-grade chalcopyrite bioleaching at low redox potentials was carried out . The results showed that the leaching rate of copper could reach 28 .5 percent with in 30 days, and the Fe2+ . rather than sulfide minerals , w as utilized as the bacteria growth energy in that leaching period .%采用向硫化矿培养基中补加FeSO4的方式以维持Fe2+ 浓度为4~8 g/L,可使嗜酸氧化亚铁硫杆菌菌浓在培养39 h时达到6.25×108 cells/mL,并在比生长速率几乎不降低的前提下提高了转化率和生产强度.然后对低氧化还原电位下低品位黄铜矿的浸出进行初步研究,结果表明经过30 d浸出,铜的浸出率可达28.5%,且此浸出过程中菌的能源物质是Fe2+而不是硫化矿物.

  2. Chalcopyrite Nanoparticles as a Sustainable Thermoelectric Material

    Directory of Open Access Journals (Sweden)

    Maninder Singh

    2015-10-01

    Full Text Available In this report, copper iron sulfide nanoparticles with various composition were synthesized by a thermolysis based wet chemical method. These inherently sustainable nanoparticles were then fully characterized in terms of composition, structure, and morphology, as well as for suitability as a thermoelectric material. The merits of the material preparation include a straightforward bulk material formation where particles do not require any specialized treatment, such as spark plasma sintering or thermal heating. The Seebeck coefficient of the materials reveals P-type conductivity with a maximum value of 203 µV/K. The results give insight into how to design and create a new class of sustainable nanoparticle material for thermoelectric applications.

  3. Characterizations of Some Semi magnetic Chalcopyrite Compounds

    International Nuclear Information System (INIS)

    Cd1-xZnxSe (x=0, 0.5 and 1) and Cd0.5Zn0.5X0.02Se (X= Mn, Fe and Co) semiconductor and semi magnetic semiconductor compounds were prepared in the bulk form by melt quenching technique in ice water. Thin films of thickness 300 nm have been deposited on ultra cleaned soda lime glass substrates, at room temperature by thermal evaporation technique. The structural, optical and electrical properties of Cd1-xZnxSe (x=0, 0.5 and 1) and Cd0.5Zn0.5X0.02Se (X= Mn, Fe and Co) thin film samples have been studied. ESR and magnetic properties of Cd0.5Zn0.5X0.02Se (X= Mn, Fe and Co) powder samples also have been studied. The structural properties of Cd1-xZnxSe (x=0, 0.5 and 1) and Cd0.5Zn0.5X0.02Se (X= Mn, Fe and Co) thin film and powder samples have been investigated by using X-ray diffraction (XRD) technique. The crystal structure, lattice parameters, grain size, micro strain and dislocation density were determined from the X- ray diffraction patterns of the investigated samples. The optical properties of the investigated thin film samples were studied. Transmittance and reflectance were measured in wavelength range from 400 nm to 2500 nm and used to calculate the optical constants like absorption coefficient, refractive index and optical band gap. The obtained values of the optical band gap illustrated that the films exhibit direct band gap. The analysis of the obtained values of the refractive index yielded the high frequency dielectric constant and other optical dispersion parameters. The photon energy dependence of the relaxation time, dissipation factor and optical conductivity of the investigated thin film samples were studied also. The temperature dependence of dc conductivity for the investigated thin films was studied in temperature range from 300 K to 420 K. The obtained results showed that there are two different conduction mechanisms with two different values of activation energy in the defined temperature range. The temperature dependence of Hall coefficient RH for the thin film samples was studied in temperature range from 300 K to 420 K and in constant applied magnetic field (3.2 kG). The Hall coefficient of all thin film samples decreases with the temperature in opposite to that of the dc conductivity except for Cd0.5Zn0.5Co0.02Se; RH increases in high temperature. All of semiconductor thin films were n-type semiconductors. The Hall mobility increases with increase the temperature this means that the charge carrier mobility within the grains increases with the increase of temperature. The transverse magnetoresistance TMR of the investigated thin film samples was investigated in magnetic field range (0-3.2 k G) and in temperature range (300-420 K). It has been observed from the obtained results that the TMR for all films are negative at high temperatures and positive at lower temperatures. Also TMR magnitude increases with increasing the magnetic field and temperature but it is irregular. The ac conductivity as a function of temperature at different frequencies in temperature range from 300 K to 420 K and frequency range from 80 Hz to 5 MHz for the investigated thin films was studied. It is clear from the obtained results that σac(ω) is slightly temperature and frequency dependant. The temperature dependence decreases as ω increases, while increases at higher temperatures and lower frequencies. AC conductivity increases linearly with frequency according to the power relation . The obtained values of s as a function of temperature for the investigated thin films can be explained on the basis of the CBH model between centers forming IVAP'S proposed by Elliott. The dielectric constant and dielectric loss increase with the temperature and decrease with the frequency. The maximum barrier height was calculated according to Guintini equation at different temperatures. The relaxation time, resistance and σ ac ω = Aω capacitance were calculated from the Nyquist diagram. The behavior can be modeled by an equivalent parallel RC circuit for all investigated thin film samples. The ESR spectra of the Cd0.5Zn0.5X0.02Se (X= Mn, Fe and Co) powder samples were studied at room temperature. The obtained results showed that all samples were paramagnetic materials at the room temperature. The g-factor and concentration of paramagnetic defects were determined. The magnetic properties (hysteresis loops and ZFC/FC curves) were studied in temperature range from 5 K to 200 K. The obtained results indicated the ferromagnetic exchange interaction between the magnetic ions in case of Cd0.5Zn0.5Fe0.02Se and Cd0.5Zn0.5Co0.02Se but did not indicate conventional ferromagnetism, samples exhibit spin-glass behavior and also indicated antiferromagnetic interaction between Mn2+ ions in case of Cd0.5Zn0.5Mn0.02Se sample.

  4. 元素硫对黄铜矿生物浸出行为及群落结构的影响%Relationships among bioleaching performance, additional elemental sulfur,microbial population dynamics and its energy metabolism in bioleaching of chalcopyrite

    Institute of Scientific and Technical Information of China (English)

    夏乐先; 汤露; 夏金兰; 尹礎; 柴立元; 赵小娟; 聂珍媛; 柳建设; 邱冠周

    2012-01-01

    To estimate the relationships among bioleaching performance,additional elemental sulfur (S0),microbial population dynamics and its energy metabolism,bioleaching of chalcopyrite by three typical sulfur- and/or iron-oxidizing bacteria,Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum and Acidithiobacillus thiooxidans with different levels of sulfur were studied in batch shake flask cultures incubated at 30 ℃.Copper dissolution capability (71%) was increased with the addition of 3.193 g/L S0,compared to that (67%) without S0.However,lower copper extraction was obtained in bioleaching with excessive sulfur.Microbial population dynamics during chalcopyrite bioleaching process was monitored by using PCR-restrietion fragment length polymorphism (PCR-RFLP).Additional S0 accelerated the growth of sulfur-oxidizing bacteria,inhibited the iron-oxidizing metabolism and led to the decrease of iron-oxidizing microorganisms,finally affected iron concentration,redox potential and bioleaching performance.It is suggested that mixed iron and sulfur-oxidizing microorganisms with further optimized additional S0 concentration could improve copper recovery from chalcopyrite.%研究3种典型铁/硫代谢菌-Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum及Acidithiobacillus thiooxidans混合浸出黄铜矿过程中铁/硫氧化活性、群落结构(PCR-RFLP)的变化,以及不同浓度的元素硫对其影响.结果发现,加入3.193 g/L元素硫能促进细菌的表观硫氧化活性,改变浸矿体系的群落结构,并进一步影响钝化层的形成、金属离子的溶出,其浸出率(71%)较未添加硫的(67%)有一定程度的提高.而过量的元素硫会抑制铜的浸出(浸出率44%).

  5. Electrochemistry Mechanism of New-type Thiourea Collector CPTU in Collecting Chalcopyrite and Pyrite%新型硫脲类捕收剂CPTU对黄铜矿及黄铁矿浮选的电化学机理研究

    Institute of Scientific and Technical Information of China (English)

    程琍琍; 郑春到; 李啊林; 孙体昌; 张子文

    2014-01-01

    The electrochemical behavior and mechanism of a new type thiourea collector, CPTU, being adsorbed on the surface of chalcopyrite and pyrite were studied by Tafel, CA voltammetry and infrared spectroscopy. For chalcopyrite, an oxidation peak appeared from about 0 V with pH<9. 18, which meant that the hydrophobic entity Cu ( CPTU) and elemental S were formed thereon, and the oxidation peak currents decreased with the increasing of pH value, resulting in a strengthened hydrophobicity and surface passivation, while, its self-oxidation predominated at a pH value over 11.0. With regard to pyrite, the curve shape of CA voltammetry remained unchanged throughout the entire pH range in the presence of CPTU. Furthermore, as the hydroxide product of corrosion reaction was easier to deposit onto pyrite surface and therewith prevented its electrochemistry reaction with CPTU, the selectivity of CPTU in collecting chalcopyrite and pyrite could be explained. Infrared spectroscopy analysis indicated that CPTU is chemisorbed onto chalcopyrite and physisorbed onto pyrite.%采用循环伏安、Tafel法及红外光谱分析研究了新型硫脲类捕收剂CPTU在黄铜矿及黄铁矿表面吸附的电化学行为及机理。试验结果表明,当pH值低于9.18时,黄铜矿电极从0 V左右开始氧化,出现了一个新的氧化峰,CPTU在黄铜矿表面电化学吸附形成疏水性产物Cu( CPTU)和单质S;随着pH值增大,氧化峰电流减小,疏水性增强并产生钝化;当pH值高于11.0时,黄铜矿自身的氧化占据了主导地位。对于黄铁矿而言,在整个pH范围内,捕收剂CPTU的加入并未改变循环伏安曲线的形状。并且,碱性条件下黄铁矿腐蚀反应产物更容易在矿物表面形成氢氧化物沉淀,阻碍了CPTU在其表面电化学反应的进行,证明CPTU对黄铜矿和黄铁矿的捕收有选择性。红外光谱分析表明,CPTU在黄铜矿表面的吸附属于化学吸附,而在黄铁矿

  6. 电感耦合等离子体光谱法测定黄铁矿和黄铜矿中的铁铜硫%Determination of Fe, Cu and S in Pyrite and Chalcopyrite Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry

    Institute of Scientific and Technical Information of China (English)

    马新荣; 王蕾; 温宏利; 巩爱华

    2011-01-01

    The methods of water bath dissolution by aqua regia to open dissolution by acid mixing HC1-HNO3 -HF-HC104 and determine Fe, Cu and S in pyrite and chalcopyrite by Inductively Coupled Plasma-Atomic Emission Spectrometry ( ICP-AES ) are discussed in this paper. By applying a weighting method to prepare standard solutions, the error caused by scale reading can be greatly reduced during the dilution step. The advantages of using the water bath dissolution by aqua regia method include reduced digestion time, reduced amount of reagent addition and simple analytical processing. When Fe combines with Si in sulfide ore, it cannot be dissolved by aqua regia, yet it can when using open dissolution by acid mixing. The optimal spectrum lines were selected to determine high concentration of Fe, Cu and S ( x%-xx% ) with dilution factor of 1000. Both sample preparation methods are simple to operate and attain good accuracy and precision. The method was validated by the national standard materials of GBW 07267 ( pyrite ) and GBW 07268 ( chalcopyrite ). The accuracy ( RE ) and precision ( RSD, n =5 ) of Fe and Cu were less than 2%. However, accuracy and precision for S was lower when using the method of open dissolution by acid mixing, yielding a RE and RSD of -9.48% and - 18% , respectively. The short period stability of GBW 07267 and GBW 07268 was tested by 10 continuous determinations using the method of water bath dissolution with aqua regia; the RSD being less than 2.%样品用王水水浴和HCl-HNO3-HF-HClO4敞开酸溶两种溶矿方式分解,电感耦合等离子体发射光谱法(ICP-AES)测定黄铜矿和黄铁矿中铁、铜、硫.应用称重法配制标准溶液,明显地降低了在标准溶液在逐级稀释过程中由于体积读数等原因产生的误差.样品用王水水浴分解,消解时间短,试剂加入量少,分析步骤简单;由于硫化矿石中Fe的一部分可能与Si结合,王水无法将其全部溶解,对于Fe的测定采用混合酸敞开酸溶.

  7. Re-Os isotopic dating of chalcopyrite from the Abalieke copper-lead deposits in West Kunlun, China%西昆仑阿巴列克铜铅矿床黄铜矿Re-Os定年及地质意义

    Institute of Scientific and Technical Information of China (English)

    张正伟; 漆亮; 沈能平; 游富华; 张中山; 周灵洁

    2011-01-01

    It is a very important and effective method of analyzing the ore-forming processes by taking advantage of geochemistry analytical approaches as well as traditional ways, such as testing the Re-Os, discriminating the paragenetic association of the minerals and the tectonic settings. Seven chalcopyrite and one pyrite samples from the main orebody of Abalieke Cu-Pb deposit are used for Re-Os dating. The chalcopyrite is associated with galenite and dolomite which contain 626 x 10 " ~ 14533 x 10 ~ of Re and 0. 026 x 10 ~0. 36 x 10 "9 of Os respectively, and yield a Hercynina isochron age of 331. 3 ±5. 2Ma. High Re/Os ratio, low Os concentration and highly radiogenic Os isotopic ratios of these samples suggest that they are of crustal origin. The tectonic evolving shows that the southwestern margin of the Tarim block was a passive continental margin in the Late Paleozoic era. Because of the Paleo-Tethys ocean movement during Carboniferous, the depression basin are formed in margin of Tarim craton, comprised lead-zinc deposits in clastic rock-carbonate host stratum that cover up the Devonian. This Re-Os isotopic dating age of chalcopyrite is nearly closed with ore-hosted stratum. Our Re-Os result provides new evidences, showing that Abalieke Cu-Pb deposit experienced the syngenetic ore-forming process in Hercynina Also this study gives important geochemical evidence on such issues; the lead-zinc deposits are mainly sedimentary formation-controlled type; the ore-forming elements mainly came from stratum; mineralization occurred in the joint position between Upper Devonian and Lower Carboniferous, while the rock in which mainly consist of sandstone and carbonatite formation. It can be seen that the metallogenic system of the copper-lead-zinc strata-bound deposits in carbonate rock has a certain complexity and provides wider space for further researches.%除了传统的测试Rb-Sr、Sm-Nd、U-Th-Pb、K-Ar或Ar-Ar等方法来讨论碳酸盐岩层控型铅锌矿的成矿年

  8. Bacterial leaching kinetics for copper dissolution from a lowgrade Indian chalcopyrite ore Cinética de lixiviação por bactéria para a dissolução de cobre de um minério de calcopirita de baixo teor encontrado na Índia

    Directory of Open Access Journals (Sweden)

    Abhilash

    2013-06-01

    Full Text Available Bio-leaching of copper (0.3% from a low grade Indian chalcopyrite ore of Malanjkhand copper mines, using a native mesophilic isolate predominantly Acidithiobacillus ferrooxidans (A.ferrooxidans, is reported. A bio-recovery of 72% Cu was recorded in the presence of this culture (not adapted, which increased to 75% with an ore adapted culture after 35 days at 35ºC and pH 2.0 with Biolixiviação de cobre (0,3% de um minério de calcopirita de baixo teor, extraído em minas de Malanjkhand, usando um isolador mesofílico nativo, predominante Acidithiobacillus ferrooxidans (A.ferrooxidans, é apresentada. Uma biorrecuperação de 72% Cu foi registrada na presença dessa cultura (não adaptada, que aumentou para 75% com a cultura do minério adaptado e cultivado por 35 dias ao 35ºC e pH 2,0, com <50um partículas. Os dados cinemáticos mostraram mais adequados para o modelo básico de encolhimento controlado por difusão, exibindo lotes lineares de [1- 2/3X- (1-X2/3] vs temp (X - fração lixiviada. Parece que o papel da bactéria, no processo, é o de converter o íon ferroso para o estado férrico, que oxida a calcopirita para poder dissolver o cobre, mantendo o alto potencial redoxante. O valor da energia de ativação (E foi calculado em 96 e 108 kJ/mol, para as culturas sem e com adaptação, respectivamente, com temperaturas entre 25-35ºC. Esse mecanismo de lixiviação foi corroborado por identificação fásica XR D e em estudos da resídua da lixiviação.

  9. Defect-related electronic metastabilities in chalcopyrite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Maria S., E-mail: maria.hammer@uni-oldenburg.de [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg, 26111 Oldenburg (Germany); Neugebohrn, Nils; Riediger, Julia; Neerken, Janet; Ohland, Jörg; Riedel, Ingo [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg, 26111 Oldenburg (Germany); Kiowski, Oliver; Wischmann, Wiltraud [Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), Industriestr. 6, 70565 Stuttgart (Germany)

    2014-04-15

    So far, in Cu(In,Ga)Se{sub 2} solar cells the metastable behavior of the key parameters, i.e. open circuit voltage, short circuit current and fill factor, and the corresponding defect physics were typically investigated independently. In order to contribute to this issue, we systematically varied between annealed and light soaked state and investigated the influence of these processes on the solar cell parameters as well as on the defect physics. In this work, we attempt to correlate the key parameters of the solar cells and the defect physics by discussing experimental results obtained from temperature dependent current–voltage measurements (IVT) as well as from capacitance voltage (CV), admittance (AS) and deep-level transient spectroscopy (DLTS). A commonly observed defect contribution in Cu(In,Ga)Se{sub 2} solar cells is the so-called N1 signature. The activation energy of this signature was found to increase upon air-annealing in the dark which goes along with a decrease in the open circuit voltage and the effective doping density. In this paper we will discuss the correlation between annealing-induced shifting of defect energies and the variation of the key parameters.

  10. Structural trends in off stoichiometric chalcopyrite type compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, Christiane

    2011-03-15

    Energy supply is one of the most controversial topics that are currently discussed in our global community. Most of the energy delivered to the customer today has its origin in fossil and nuclear power plants. Indefinable risks and the radioactive waste repository problem of the latter as well as the global scarcity of fossil resources cause the renewable energies to grow more and more important for achieving sustainability. The main renewable energy sources are wind power, hydroelectric power and solar energy. On the photovoltaic (PV) market different materials are competing as part of different kinds of technologies, with the largest contribution still coming from wafer based crystalline silicon solar cells (95 %). Until now thin film solar cells only contribute a small portion to the whole PV market, but large capacities are under construction. Thin film photovoltaic shows a number of advantages in comparison to wafer based crystalline silicon PV. Among these material usage and production cost reduction are two prominent examples. The type of PV materials, which are analyzed in this work, are high potential compounds that are widely used as absorber layer in thin film solar cells. These are compound semiconductors of the type CuB{sup III}C{sup VI}{sub 2} (B{sup III} = In, Ga and C{sup VI} = Se, S). Several years of research have already gone into understanding the efficiency limiting factors for solar cell devices fabricated from this compound. Most of the studies concerning electronic defects are done by spectroscopic methods mostly performed using thin films from different kinds of synthesis, without any real knowledge regarding the structural origin of these defects. This work shows a systematic fundamental structural study of intrinsic point defects that are present within the material at various compositions in CuB{sup III}C{sup VI}{sub 2} compound semiconductors. The study is done on reference powder samples with well determined chemical composition and using advanced diffraction techniques, such as neutron and synchrotron X-ray diffraction. The results show that the main existing defects are found to be copper vacancies and B{sup III}{sub Cu} anti-site defects. Type and concentrations vary with the composition. It is demonstrated that, when assuming spontaneous formation of electrically neutral defect complexes made of these isolated point defects, the density of cationic point defects is reduced by an order of magnitude. This explains why the existence of native cationic point defects may not be the main efficiency limiting factor in thin film solar cells built with a CuB{sup III}C{sup VI}{sub 2} absorber. This pinpoints why the mere presence of native cationic point defects does probably not suffice as main efficiency limiting factor in thin film solar cells based on CuB{sup III}C{sup VI}{sub 2}-type absorbers.

  11. Chalcopyrite semimagnetic semiconductors: From nanocomposite to homogeneous material

    OpenAIRE

    Kilanski L.; Dobrowolski W.; Szymczak R.; Dynowska E.; Wójcik M.; Romčević M.; Romčević N.; Fedorchenko I.V.; Marenkin S.F.

    2014-01-01

    Currently, complex ferromagnetic semiconductor systems are of significant interest due to their potential applicability in spintronics. A key feature in order to use semiconductor materials in spintronics is the presence of room temperature ferromagnetism. This feature was recently observed and is intensively studied in several Mn-alloyed II-IV-V2 group diluted magnetic semiconductor systems. The paper reviews the origin of room temperature ferromagnetism i...

  12. Structural trends in off stoichiometric chalcopyrite type compound semiconductors

    International Nuclear Information System (INIS)

    Energy supply is one of the most controversial topics that are currently discussed in our global community. Most of the energy delivered to the customer today has its origin in fossil and nuclear power plants. Indefinable risks and the radioactive waste repository problem of the latter as well as the global scarcity of fossil resources cause the renewable energies to grow more and more important for achieving sustainability. The main renewable energy sources are wind power, hydroelectric power and solar energy. On the photovoltaic (PV) market different materials are competing as part of different kinds of technologies, with the largest contribution still coming from wafer based crystalline silicon solar cells (95 %). Until now thin film solar cells only contribute a small portion to the whole PV market, but large capacities are under construction. Thin film photovoltaic shows a number of advantages in comparison to wafer based crystalline silicon PV. Among these material usage and production cost reduction are two prominent examples. The type of PV materials, which are analyzed in this work, are high potential compounds that are widely used as absorber layer in thin film solar cells. These are compound semiconductors of the type CuBIIICVI2 (BIII = In, Ga and CVI = Se, S). Several years of research have already gone into understanding the efficiency limiting factors for solar cell devices fabricated from this compound. Most of the studies concerning electronic defects are done by spectroscopic methods mostly performed using thin films from different kinds of synthesis, without any real knowledge regarding the structural origin of these defects. This work shows a systematic fundamental structural study of intrinsic point defects that are present within the material at various compositions in CuBIIICVI2 compound semiconductors. The study is done on reference powder samples with well determined chemical composition and using advanced diffraction techniques, such as neutron and synchrotron X-ray diffraction. The results show that the main existing defects are found to be copper vacancies and BIIICu anti-site defects. Type and concentrations vary with the composition. It is demonstrated that, when assuming spontaneous formation of electrically neutral defect complexes made of these isolated point defects, the density of cationic point defects is reduced by an order of magnitude. This explains why the existence of native cationic point defects may not be the main efficiency limiting factor in thin film solar cells built with a CuBIIICVI2 absorber. This pinpoints why the mere presence of native cationic point defects does probably not suffice as main efficiency limiting factor in thin film solar cells based on CuBIIICVI2-type absorbers.

  13. Desulfurization of chalcopyrite and molybdenite by atomic hydrogen

    International Nuclear Information System (INIS)

    Molybdenite (MoS2) desulfurization by monatomic hydrogen in 625-800 K range was studied using helium as diluent gas. Desulfurization degree at 680 K equals 9%. Temperature growth elevates sulfur content in molybdenite. The effect of initial molybdenite enrichment with temperature growth up to 800 K is probably caused by removal of reduced molybdenum capable to form oxide in the presence of traces of oxygen contained in inert diluent gas

  14. Electrodeposition of chalcopyrite films from ionic liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Shivagan, D.D. [Department of Chemistry, University of Bath, BATH BA2 7AY (United Kingdom)]. E-mail: d.shivagan@bath.ac.uk; Dale, P.J. [Department of Chemistry, University of Bath, BATH BA2 7AY (United Kingdom); Samantilleke, A.P. [Department of Chemistry, University of Bath, BATH BA2 7AY (United Kingdom); Peter, L.M. [Department of Chemistry, University of Bath, BATH BA2 7AY (United Kingdom)]. E-mail: l.m.peter@bath.ac.uk

    2007-05-31

    An air and water stable room-temperature ionic liquid based on choline chloride/urea eutectic mixture has been investigated as a system for the electrodeposition of CuInSe{sub 2} (CIS) and Cu(In,Ga)Se{sub 2} (CIGS) films for photovoltaic applications. Deposition potentials and bath compositions were optimized to obtain Cu-In, Cu-In-Se and Cu-In-Ga-Se precursor films, which were selenized in a tube furnace at 500 deg. C for 30 min to form CIS and CI(G)S films. Photo-electrochemical measurements on these selenized films showed p-type photoconductivity with band gaps of 1.0 eV and 1.09 eV, respectively, for CIS and CIGS. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photocurrent spectroscopy and electrolyte electro-reflectance spectroscopy (EER)

  15. Scanning tunneling spectroscopy on the chalcopyrite solar cell absorber material Cu(In,Ga)Se2

    International Nuclear Information System (INIS)

    Cu(In,Ga)Se2-based thin film solar cells have reached efficiencies close to 20%. Nevertheless, little is known about electronic transport and carrier recombination in this material on a microscopic scale. Especially grain boundaries in these polycrystalline materials are considered to play an important role in the performance of these solar cells. We applied scanning tunneling microscopy and spectroscopy to gain more insight in the electronic microstructure of the material. Our results point to lateral electronic inhomogeneities on the absorber surface and to an enhanced density of states at grain boundaries. The influence of charging effects is discussed

  16. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes.

  17. A Numerical Evaluation on the Viability of Heap Thermophilic Bioleaching of Chalcopyrite

    Science.gov (United States)

    Vilcaez, J.; Suto, K.; Inoue, C.

    2007-03-01

    The present numerical evaluation explores into the interactions among the many variables governing the mass and heat transport processes that take place in a heap thermophilic bioleaching system. The necessity of using mesophiles together with thermophiles is proved by tracing the activity of both microorganisms individually at each point throughout the heap. The role of key variables such as the fraction of FeS2 per CuFeS2 leached was quantified and its importance highlighted. In this evaluation, the heat transfer process plays the main role because of the heat accumulation required to maintain the heap temperature within the range of 60 °C to 80 °C where thermophilic microorganisms are capable of completing the unfinished dissolution of copper started by mesophilic microorganisms at 30 °C. The evaluation was done taking into consideration: biological activity as function of the temperature in the heap, heat loss due to conduction and advection from the top and bottom of the heap, and mass transfer between the gas and liquid phases as a function of temperature. The exothermic nature of the leaching reactions of CuFeS2 and FeS2 makes the system auto-thermal.

  18. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes. PMID:25978855

  19. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate

    OpenAIRE

    Bobadilla Fazzini, Roberto A.; Levican, Gloria; Parada, Pilar

    2010-01-01

    The nature of the mineral–bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743–2747, 1998). On this respect, despite Acidithiobacilli—a ubiquitous bacterial genera in bioleaching processes (Rawlings, Micr...

  20. Impact of Molecular Hydrogen on Chalcopyrite Bioleaching by the Extremely Thermoacidophilic Archaeon Metallosphaera sedula▿

    OpenAIRE

    Auernik, Kathryne S.; Kelly, Robert M.

    2010-01-01

    Hydrogen served as a competitive inorganic energy source, impacting the CuFeS2 bioleaching efficiency of the extremely thermoacidophilic archaeon Metallosphaera sedula. Open reading frames encoding key terminal oxidase and electron transport chain components were triggered by CuFeS2. Evidence of heterotrophic metabolism was noted after extended periods of bioleaching, presumably related to cell lysis.

  1. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, P. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)]. E-mail: pablop@etsit.upm.es; Sanchez, K. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain); Conesa, J.C. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Fernandez, J.J. [Dpt. de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, 28080, Madrid (Spain); Wahnon, P. [Instituto de Energia Solar and Dpt. de Tecnologias Especiales, ETSI de Telecomunicacion, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2007-05-31

    Electronic structure calculations are carried out for CuGaS{sub 2} partially substituted with Ti, V, Cr or Mn to ascertain if some of these systems could provide an intermediate band material able to give a high efficiency photovoltaic cell. Trends in electronic level positions are analyzed and more accurate advanced theory levels (exact exchange or Hubbard-type methods) are used in some cases. The Ti-substituted system seems more likely to yield an intermediate band material with the desired properties, and furthermore seems realizable from the thermodynamic point of view, while those with Cr and Mn might give half-metal structures with applications in spintronics.

  2. Chemical and biological sensors based on optically confined birefringent chalcopyrite heterostructures

    International Nuclear Information System (INIS)

    This paper introduces and discusses the design and application(s) of a new and unique integrated solid-state molecular sensor (SSMS) system. The SSMS is based on optically confined birefringent heterostructure technology, which has the capability of recognizing target chemicals and biological molecules in an ambient environment. The SSMS technology is applicable for miniaturized sensor devices that can be used for quick, remote screening and recognition of chemical hazards in the environment. For example, trace impurities related to air/water pollution can be continuously monitored. Just as important, however, the SSMS technology will have a worldwide impact--economically as well as technologically--when used in the detection of chemical and biological agents, as well as for a variety of medical sensing applications, such as to identify and monitor complex biological structures, test for allergic reactions and screen for common diseases. Moreover, it could hasten the time of development and introduction into the marketplace of critically needed new drugs by the monitoring of biochemical and molecular cellular responses to the candidate drugs. Materials selection criteria, growth parameters and device architecture requirements are given and discussed. In addition, the results of a recent phase matching calculation, substantiating the feasibility of the SSMS, are given and discussed

  3. Characterizing the effects of silver alloying in chalcopyrite CIGS solar cells with junction capacitance methods

    Energy Technology Data Exchange (ETDEWEB)

    Erslev, Peter T.; Hanket, Gregory M.; Shafarman, William N.; Cohen, J. David

    2009-04-01

    A variety of junction capacitance-based characterization methods were used to investigate alloys of Ag into Cu(In1-xGax)Se2 photovoltaic solar cells over a broad range of compositions. These alloys show encouraging trends of increasing VOC with increasing Ag content, opening the possibility of wide-gap cells for use in tandem device applications. Drive level capacitance profiling (DLCP) has shown very low free carrier concentrations for all Ag-alloyed devices, in some cases less than 1014 cm-3, which is roughly an order of magnitude lower than that of CIGS devices. Transient photocapacitance spectroscopy has revealed very steep Urbach edges, with energies between 10 meV and 20 meV, in the Ag-alloyed samples. This is in general lower than the Urbach edges measured for standard CIGS samples and suggests a significantly lower degree of structural disorder.

  4. Dispersion of the second harmonic generation from CdGa2X4 (X = S, Se) defect chalcopyrite: DFT calculations

    International Nuclear Information System (INIS)

    Highlights: • Nonlinear optical properties of CdGa2X4 (X = S, Se) were investigated. • The compounds have large uniaxial anisotropy and large negative birefringence. • The second order susceptibility and the first hyperpolarizability were calculated. • CdGa2Se4 posses huge second harmonic generation. - Abstract: All electron full potential linear augmented plane wave method was used for calculating the nonlinear optical susceptibilities of CdGa2X4 (X = S, Se) within the framework of density functional theory. The exchange correlation potential was solved by recently developed modified Becke and Johnson (mBJ) approximation. The crystal structure of CdGa2S4 and CdGa2Se4 reveals a large uniaxial dielectric anisotropy ensuing the birefringence of −0.036 and −0.066 which make it suitable for second harmonic generation. The second order susceptibility |χijk(2)(ω)| and microscopic first hyperpolarizability βijk(ω) were calculated. The calculated |χ123(2)(ω)| and |χ312(2)(ω)| static values for the dominant components found to be 18.36 pm/V and 22.23 pm/V for CdGa2S4 and CdGa2Se4. Both values shifted to be 60.12 pm/V and 108.86 pm/V at λ = 1064 nm. The calculated values of β123(ω) is 6.47 × 10−30 esu at static limit and 12.42 × 10−30 esu at λ = 1064 nm for CdGa2S4, whereas it is 8.82 × 10−30 esu at static limit and 20.51 × 10−30 esu at λ = 1064 nm for CdGa2Se4. The evaluation of second order susceptibilities and first hyperpolarizabilties suggest that CdGa2X4 possess huge second harmonic generation

  5. Scanning tunneling spectroscopy on the chalcopyrite solar cell absorber material Cu(In,Ga)Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, Harry; Saez-Araoz, Rodrigo; Lux-Steiner, Martha [Freie Universitaet Berlin (Germany); Sadewasser, Sascha; Ennaoui, Ahmed; Kaufmann, Christian; Kropp, Timo; Lauermann, Iver; Muenchenberg, Tim; Schock, Hans-Werner; Streicher, Ferdinand [Hahn- Meitner-Institut Berlin (Germany)

    2007-07-01

    Cu(In,Ga)Se{sub 2}-based thin film solar cells have reached efficiencies close to 20%. Nevertheless, little is known about electronic transport and carrier recombination in this material on a microscopic scale. Especially grain boundaries in these polycrystalline materials are considered to play an important role in the performance of these solar cells. We applied scanning tunneling microscopy and spectroscopy to gain more insight in the electronic microstructure of the material. Our results point to lateral electronic inhomogeneities on the absorber surface and to an enhanced density of states at grain boundaries. The influence of charging effects is discussed.

  6. Methods for synthesizing semiconductor quality chalcopyrite crystals for nonlinear optical and radiation detection applications and the like

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley; Burger, Arnold

    2016-05-10

    A method for synthesizing I-III-VI.sub.2 compounds, including: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound under heat, with mixing, and/or via vapor transport. The Group III element is melted at a temperature of between about 200 degrees C. and about 700 degrees C. Preferably, the Group I element consists of a neutron absorber and the group III element consists of In or Ga. The Group VI element and the single phase I-III compound are heated to a temperature of between about 700 degrees C. and about 1000 degrees C. Preferably, the Group VI element consists of S, Se, or Te. Optionally, the method also includes doping with a Group IV element activator.

  7. Density of electronic states and dispersion of optical functions of defect chalcopyrite CdGa{sub 2}X{sub 4} (X = S, Se): DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic)

    2013-11-15

    Graphical abstract: - Highlights: • FPLAPW method is used for calculating the electronic and optical properties of CdGa{sub 2}X{sub 4}. • Electronic and optical properties were calculated using LDA, GGA, EVGGA and mBJ. • Band gap conformed that CdGa{sub 2}X{sub 4} are semiconductors fit for UV and visible light. • The ECD shows that change in the bond length and bond nature affect the band gap. • The dielectric tensor components and its derivatives show considerable anisotropy. - Abstract: A density functional theory (DFT) based on full potential linear augmented plane wave (FPLAPW) was used for calculating the electronic structure, charge density and optical properties of CdGa{sub 2}X{sub 4} (X = S, Se) compounds. Local density approximation (LDA), generalized gradient approximation (GGA), Engle Vasko generalized gradient approximation (EVGGA) and recently modified Becke–Johnson (mBJ) were applied to calculate the band structure, total and partial density of states. The investigation of band structures and density of states of CdGa{sub 2}X{sub 4} (X = S, Se) elucidate that mBJ potential show close agreement to the experimental results. The mBJ potential was selected for further explanation of optical properties of CdGa{sub 2}X{sub 4} (X = S, Se). The study of electronic charge density contours shows that change in the bond lengths and bond nature affect the band gap of the compounds. The two non-zero dielectric tensor components and its derivatives show considerable anisotropy between the perpendicular and parallel components. The present work provide accurate information about the combination (hybridization) of orbital, formation of bands and dispersion of non-zero tensor components of CdGa{sub 2}X{sub 4} (X = S, Se)

  8. Dispersion of the second harmonic generation from CdGa{sub 2}X{sub 4} (X = S, Se) defect chalcopyrite: DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)

    2014-05-15

    Highlights: • Nonlinear optical properties of CdGa{sub 2}X{sub 4} (X = S, Se) were investigated. • The compounds have large uniaxial anisotropy and large negative birefringence. • The second order susceptibility and the first hyperpolarizability were calculated. • CdGa{sub 2}Se{sub 4} posses huge second harmonic generation. - Abstract: All electron full potential linear augmented plane wave method was used for calculating the nonlinear optical susceptibilities of CdGa{sub 2}X{sub 4} (X = S, Se) within the framework of density functional theory. The exchange correlation potential was solved by recently developed modified Becke and Johnson (mBJ) approximation. The crystal structure of CdGa{sub 2}S{sub 4} and CdGa{sub 2}Se{sub 4} reveals a large uniaxial dielectric anisotropy ensuing the birefringence of −0.036 and −0.066 which make it suitable for second harmonic generation. The second order susceptibility |χ{sub ijk}{sup (2)}(ω)| and microscopic first hyperpolarizability β{sub ijk}(ω) were calculated. The calculated |χ{sub 123}{sup (2)}(ω)| and |χ{sub 312}{sup (2)}(ω)| static values for the dominant components found to be 18.36 pm/V and 22.23 pm/V for CdGa{sub 2}S{sub 4} and CdGa{sub 2}Se{sub 4}. Both values shifted to be 60.12 pm/V and 108.86 pm/V at λ = 1064 nm. The calculated values of β{sub 123}(ω) is 6.47 × 10{sup −30} esu at static limit and 12.42 × 10{sup −30} esu at λ = 1064 nm for CdGa{sub 2}S{sub 4}, whereas it is 8.82 × 10{sup −30} esu at static limit and 20.51 × 10{sup −30} esu at λ = 1064 nm for CdGa{sub 2}Se{sub 4}. The evaluation of second order susceptibilities and first hyperpolarizabilties suggest that CdGa{sub 2}X{sub 4} possess huge second harmonic generation.

  9. Study on Several Complicated Factors Effect in Bacterial Leaching of Chalcopyrite%黄铜矿细菌浸出过程中的多因素影响

    Institute of Scientific and Technical Information of China (English)

    任浏祎; 覃文庆; 王军; 张雁生; 何小娟

    2008-01-01

    运用取自大宝山(简称DB)的嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,简称A.f)和嗜酸氧化硫硫杆菌(Acidi-thiobacillus thiooxidans,简称A.t)的混合菌对广东某硫化铜矿的黄铜矿进行摇瓶浸出试验研究.结果表明,黄铜矿摇瓶细菌浸出率受菌种、矿浆浓度、pH值、接种量多种因素的影响.细菌浸出黄铜矿的适宜条件为温度30℃,矿浆浓度5%,pH值为2.0,接种量为3×107个/mL.

  10. Optical methodology for process monitoring of chalcopyrite photovoltaic technologies: Application to low cost Cu(In,Ga)(S,Se)2 electrodeposition based processes

    OpenAIRE

    Oliva, Florian; Kretzschmar, Steffen; Colombara, Diego; Tombolato, Sara; Ruiz, Carmen Maria; Redinger, Alex; Saucedo, Edgardo; Broussillou; Goislard De Monsabert, Thomas; Unold, Thomas; Dale, Phillip; Izquierdo-Roca; Pérez-Rodríguez, Alejandro

    2016-01-01

    Non-destructive characterization of both single layers and completed devices are important issues for the development of efficient and low cost Cu(In,Ga)(S,Se)2 (CIGS) modules at high yields. This implies for the need of methodologies suitable for the assessment of optical, electrical, and physico-chemical parameters that are relevant for the final device efficiency and that can be used for quality control and process monitoring at different process steps. In these applications, detection of ...

  11. Screened-exchange density functional theory description of the electronic structure and phase stability of the chalcopyrite materials AgInSe2 and AuInSe2

    Science.gov (United States)

    Kim, Namhoon; Martin, Pamela Peña; Rockett, Angus A.; Ertekin, Elif

    2016-04-01

    We present a systematic assessment of the structural properties, the electronic density of states, the charge densities, and the phase stabilities of AgInSe2 and AuInSe2 using screened-exchange hybrid density functional theory, and compare their properties to those of CuInSe2. For AgInSe2, hybrid density functional theory properly captures several experimentally measured properties, including the increase in the band gap and the change in the direction of the lattice distortion parameter u in comparison to CuInSe2. While the electronic properties of AuInSe2 have not yet been experimentally characterized, we predict it to be a small gap (≈0.15 eV) semiconductor. We also present the phase stability of AgInSe2 and AuInSe2 according to screened-exchange density functional theory, and compare the results to predictions from conventional density functional theory, results tabulated from several online materials data repositories, and experiment (when available). In comparison to conventional density functional theory, the hybrid functional predicts phase stabilities of AgInSe2 in better agreement with experiment: discrepancies in the calculated formation enthalpies are reduced by approximately a factor of 3, from ≈0.20 eV/atom to ≈0.07 eV/atom, similar to the improvement observed for CuInSe2. We further predict that AuInSe2 is not a stable phase, and can only be present under nonequilibrium conditions.

  12. Identifying the Electronic Properties Relevant to Improving the Performance of High Band-Gap Copper Based I-III-VI2 Chalcopyrite Thin Film Photovoltaic Devices: Final Subcontract Report, 27 April 2004-15 September 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J. D.

    2008-08-01

    This report summarizes the development and evaluation of higher-bandgap absorbers in the CIS alloy system. The major effort focused on exploring suitable absorbers with significant sulfur alloying in collaboration with Shafarman's group at the Institute of Energy Conversion. Three series of samples were examined; first, a series of quaternary CuIn(SeS)2-based devices without Ga; second, a series of devices with pentenary Cu(InGa)(SeS)2 absorbers in which the Se-to-S and In-to-Ga ratios were chosen to keep the bandgap nearly constant, near 1.52 eV. Third, based on the most-promising samples in those two series, we examined a series of devices with pentenary Cu(InGa)(SeS)2 absorbers with roughly 25 at.% S/(Se+S) ratios and varying Ga fractions. We also characterized electronic properties of several wide-bandgap CuGaSe2 devices from both IEC and NREL. The electronic properties of these absorbers were examined using admittance spectroscopy, drive-level capacitance profiling, transient photocapacitance, and transient photocurrent optical spectroscopies. The sample devices whose absorbers had Ga fraction below 40 at.% and S fractions above 20 at.% but below 40% exhibited the best electronic properties and device performance.

  13. Use of different Zn precursors for the deposition of Zn(S,O) buffer layers by chemical bath for chalcopyrite based Cd-free thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saez-Araoz, R.; Lux-Steiner, M.C. [Hahn Meitner Institut, Berlin (Germany); Freie Universitaet Berlin, Berlin (Germany); Ennaoui, A.; Kropp, T.; Veryaeva, E. [Hahn Meitner Institut, Berlin (Germany); Niesen, T.P. [AVANCIS GmbH and Co. KG, Munich (Germany)

    2008-10-15

    Progress in fabricating Cu(In,Ga)(S,Se){sub 2} (CIGSSe) solar cells with Zn(S,O) buffer layers prepared by chemical bath deposition (CBD) is discussed. The effect of different Zn salt precursors on solar cell device performance is investigated using production scale CIGSSe absorbers provided by AVANCIS GmbH and Co. KG. The CBD process has been developed at the Hahn-Meitner-Institut (HMI) using zinc nitrate, zinc sulphate or zinc chloride as zinc precursor. An average efficiency of 14.2{+-}0.8% is obtained by using one-layer CBD Zn(S,O) The dominant recombination path for well performing solar cells is discussed based on the results obtained from temperature dependent J(V) analysis. The structure and morphology of buffer layers deposited using zinc nitrate and zinc sulphate has been studied by means of transmission electron micrographs of glass/Mo/CIGSSe/Zn(S,O) structures. Results show a conformal coverage of the absorber by a Zn(S,O) layer of 15-25 nm consisting of nanocrystals with radii of {proportional_to}5 nm. XAES analysis of the buffer layer reveals a similar surface composition for buffer layers deposited with zinc nitrate and zinc sulphate. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Sulfur/iron oxidation activity of three typical bioleaching bacteria and sulfur speciation in bioleaching of chalcopyrite%3种典型能量代谢菌浸出黄铜矿及其硫形态的转化

    Institute of Scientific and Technical Information of China (English)

    彭安安; 汤露; 夏金兰; 夏乐先; 赵小娟; 聂珍媛; 朱薇

    2012-01-01

      比较了3种典型嗜中温铁/硫代谢菌——Acidithiobacillus ferrooxidans、Leptospirillum ferriphilum 及Acidithiobacillus thiooxidans单独及混合浸出黄铜矿过程中细菌硫氧化、铁氧化情况。同时利用XRD、硫的K边X射线吸收近边结构光谱(XANES)等分析手段研究3种细菌单独/混合浸出黄铜矿过程中矿物组成成分和矿物表面硫的形态变化。结果表明:在浸出初期电位低于400 mV (vs SCE)时,黄铜矿的浸出速率较快,此后电位迅速升高至540 mV,黄铜矿浸出速率明显变慢。混合菌浸出时体系的硫/铁氧化活性较单一菌高,根据XANES拟合分析发现,混合菌浸出时矿物表面元素硫及黄钾铁矾积累量明显减少,浸出初期辉铜矿产量明显高于单一细菌浸出的。

  15. Comparative study on the passivation layers of copper sulphide minerals during bioleaching

    Science.gov (United States)

    Fu, Kai-bin; Lin, Hai; Mo, Xiao-lan; Wang, Han; Wen, Hong-wei; Wen, Zi-long

    2012-10-01

    The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite>bornite>pyritic chalcopyrite>covellite>porphyry chalcopyrite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered dissolution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopyrite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide Cu4Fe2S9, respectively. The ability of these passivation layers was found as Cu4Fe2S9>Cu4S11>S8>jarosite.

  16. Cu(In,Ga)Se2 and Related Solar Cells

    Science.gov (United States)

    Rau, Uwe; Schock, Hans W.

    2015-10-01

    The following sections are included: * Introduction * Material properties * Cell and module technology * Device physics * Wide-gap chalcopyrites * Kesterite (CZTS) solar cells * Conclusions * References

  17. Recovery of Copper from Cyanidation Tailing by Flotation

    Science.gov (United States)

    Qiu, Tingsheng; Huang, Xiong; Yang, Xiuli

    2016-02-01

    In this work, sodium hypochlorite, hydrogen peroxide, sodium metabisulfite and copper sulfate as activators were investigated to lessen the depression effect of cyanide for deep-depressing chalcopyrite. The experimental results indicate that the copper recovery exceeded 94%, 84% and 97% at the dosage: sodium hypochlorite 3 mL/L, hydrogen peroxide 2 mL/L, sodium metabisulfite 2 × 10-3 mol/L and copper sulfate 1.67 × 10-4 mol/L, respectively. According to the results of zeta potential and Fourier transform infrared spectrum, it is suggested that chalcopyrite was depressed because of the chemical adsorption of cyanide on the chalcopyrite surfaces. Sodium hypochlorite, hydrogen peroxide and sodium metabisulfite can destroy Cu-C bond on the deep-depressing chalcopyrite surface by chemical reaction. Copper sulfate can activate deep-depressing chalcopyrite by copper ion adsorption.

  18. <報文>中国金川産含銅ニッケル硫化鉱の浮選(第1報) : パルプ温度, pHおよびヘキサメタ燐酸ナトリウムの効果について

    OpenAIRE

    山本, 泰二; 呉, 振東; 張, 礼強

    1988-01-01

    Copper-nickel sulphide ores from Jinchuan mine in China contain mainly pentlandite, chalcopyrite, pyrrhotite and gangue minerals consisting of serpentine, olivine and pyroxyne. In the flotation of pentlandite and chalcopyrite, these gangue minerals, containing particularly serpentine, lead to poor separation. At present, the bulk concentrates of nickel-copper are low grade due to the high content of magnesium. In the smelting, both higher grade of nickel-copper and lower grade of magnesium in...

  19. Methods for forming particles

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin

    2016-06-21

    Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.

  20. Modelling Defects Acceptors And Determination Of Electric Model From The Nyquist Plot And Bode In Thin Film CIGS

    Directory of Open Access Journals (Sweden)

    Demba Diallo

    2015-08-01

    Full Text Available Abstract The performance of the chalcopyrite material CuInGaSe2 CIGS used as an absorber layer in thin-film photovoltaic devices is significantly affected by the presence of native defects. Multivalent defects e.g. double acceptors or simple acceptor are important immaterial used in solar cell production in general and in chalcopyrite materials in particular. We used the thin film solar cell simulation software SCAPS to enable the simulation of multivalent defects with up to five different charge states.Algorithms enabled us to simulate an arbitrary number of possible states of load. The presented solution method avoids numerical inaccuracies caused by the subtraction of two almost equal numbers. This new modelling facility is afterwards used to investigate the consequences of the multivalent character of defects for the simulation of chalcopyrite based CIGS. The capacitance increase with the evolution of the number of defects C- f curves have found to have defect dependence.

  1. Leptosririllum ferrooxidans-sulfide mineral interactions with reference to bioflotation nad bioflocculation

    Institute of Scientific and Technical Information of China (English)

    A.VILINSKA; K.HANUMANTHA RAO

    2008-01-01

    The adhesion of ferrous ions grown Leptospirillum ferrooxidans cells on pyrite and chalcopyrite minerals was investigated through adsorption,Zeta-potential and diffuse reflectance FT-IR measurements.The influence of bacterial species on minerals floatability was determined by Hallimond flotation tests while the flocculation behaviour was examined by Turbiscan measurements.The minerals iso-electric point (pH 6.5-7.5) after interaction with bacterial cells shifted towards cells iso-electric point (pH 3.3),indicating the chemical nature of cells adsorption on mineral surfaces.The FT-IR spectra of minerals treated with bacterial cells showed the presence of all the cell functional groups signifying cells adsorption.The bacterial cells adsorption on chalcopyrite was higher compared with pyrite,which agreed with cells greater depression effect on chalcopyrite flotation and pronounced flocculation behaviour in comparison with pyrite.

  2. Copper hydrometallurgy-current status,preliminary economics,future direction and positioning versus smelting

    Institute of Scientific and Technical Information of China (English)

    J.Peacey; GUO Xian-jian; E.Robles

    2004-01-01

    The heap leaching of oxide copper ores with copper cathode recovery by solvent extraction and electrowinning is now well established as a low-cost method of copper recovery. This technology has recently been applied successfully to mixed oxide and chalcocite ores, notably in Chile at Cerro Colorado, Quebrada Blanca and Zaldivar.Currently, there are significant development efforts underway to try to extend heap leaching to chalcopyrite ores.The success of heap leaching/SX/EW has also led to a revival in the development of hydrometallurgical processes to recover copper from chalcopyrite and other copper concentrates. The current status of copper hydrometallurgy is reviewed and the most commercially attractive potential applications are explored. The advantages and disadvantages of the hydrometallurgical treatment of chalcopyrite concentrates and its preliminary economics are compared with those for the current best practices in copper smelting and refining.

  3. Effect of Flotation Reagents on the Cake Moisture of Copper Concentrate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of reagents used in separating chalcopyrite from pyrite on the cake moisture of the copper concentrate at Daye Iron Mine Mineral Processing Plant was investigated. The results showed that the dosage of lime used for depressing pyrite was the main factor that increased the filter cake moisture of copper concentrate. With increasing the dosage of lime, the cake moisture of copper concentrate increased sharply. The cause was concluded to be the addition of lime to the pulp, which resulted in the formation of floc and a high pH value. The collector Z-200#, used for collecting chalcopyrite, had, as well, an adverse effect on the cake moisture of copper concentrate, but its effect was inferior in respect to that of lime. The cake moisture of copper concentrate can be decreased by changing the method with which lime is added and the pH value of pulp is regulated. The experiment results showed that the sulfuric acid was the best regulator. When the clarified liquor of lime was used as a depressant and the pH value of the pulp was regulated to 6.5€?7.0 by adding sulfuric acid, the cake moisture of copper concentrate was reduced from 15.49% to 13.13%. The examination of chalcopyrite surface by using ESCA (Electron Spectroscopy for Chemical Analysis) showed that calcium sulfate and iron hydroxide had formed on the surface of chalcopyrite when lime was added to the pulp. The formation of calcium sulfate and iron hydroxide on its surface increased the hydrophilicity of chalcopyrite so that its cake moisture increased. The addition of sulfuric acid to the pulp not only removed the calcium sulfate, but also reduced the concentration of iron hydroxide on the surface of chalcopyrite so that the cake moisture of copper concentrate was decreased.

  4. Les minéralisations Cu_(Ni_Bi_U_Au_Ag) d'Ifri (district du Haut Seksaoua, Maroc) : apport de l'étude texturale au débat syngenèse versus épigenèseThe Cu_(Ni_Bi_U_Au_Ag) mineralization of Ifri ('Haut Seksaoua' district, Morocco): contribution of a textural study to the discussion syngenetic versus epigenetic

    Science.gov (United States)

    Barbanson, Luc; Chauvet, Alain; Gaouzi, Aziz; Badra, Lakhifi; Mechiche, Mohamed; Touray, Jean Claude; Oukarou, Saı̈d

    2003-11-01

    The Cu ore of Ifri is a chalcopyrite stockwork hosted by Cambrian formations and was until now interpreted as a syngenetic massive sulphide deposit. Textural studies highlight two generations of pyrite early (Py I) and late (Py II) with respect to the regional deformation. The chalcopyrite stockwork overprinted Py II, outlining the epigenetic nature of the Cu mineralization. Regarding the origin of Cu-depositing fluids, the presence in the stockwork paragenesis of an U, W, Sn association and preliminary Pb/Pb dating of a brannerite belonging to this association suggest a contribution of the Tichka granite. To cite this article: L. Barbanson et al., C. R. Geoscience 335 (2003).

  5. Synthesis and structures of metal chalcogenide precursors

    Science.gov (United States)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  6. The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics

    Directory of Open Access Journals (Sweden)

    K. Boubaker

    2013-01-01

    Full Text Available Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT. Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2 at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.

  7. Characterization of a Copper mineral from Rio Grande do Sul (RS, Brazil) by Moessbauer spectroscopy and chemical analysis

    International Nuclear Information System (INIS)

    A sample from a copper-based mineral is analysed by Moessbauer spectroscopy. The results are compared with those form X-ray diffraction and microscopic analyses. A graphic correlation between the areas in the chalcopyrite spectra and the copper contents determined by chemical analysis is also made. (C.L.B.)

  8. 我国赣中XS铜钨矿床金属矿物标型特征研究及其实际意义

    Institute of Scientific and Technical Information of China (English)

    徐国风

    1981-01-01

    Typomorphic characteristics of ore minerals are discussed from a theoretical approach,examplified by studies on wolframite,chalcopyrite,pyrite,pyrrhotite,marmatite,molybdenite,arsenopyrite,and cassiterite from XS coppertungsten deposit Valuable information can be obtained on ore genesis from studies on typomorphic characteristics in terms of chemical composition,physical property,morphology and crystal structure.

  9. Influence of annealing temperature on properties of Cu(In,Ga)(Se,S)2 thin films prepared by co-sputtering from quaternary alloy and In2S3 targets

    International Nuclear Information System (INIS)

    Pentanary Cu(In,Ga)(Se,S)2 (CIGSS) thin films were deposited on soda-lime glass substrate by co-sputtering quaternary alloy, and In2S3 targets. In this study, we investigated the influence of post-annealing temperature on structural, compositional, electrical, and optical properties of CIGSS films. Our experimental results show that the CIGS quaternary target had chalcopyrite characteristics. All CIGSS films annealed above 733 K exhibited a polycrystalline tetragonal chalcopyrite structure, with (1 1 2) preferred orientation. The carrier concentration and resistivity of the resultant CIGSS layer annealed above 763 K was 4.86x1016 cm-3 and 32 Ω cm, respectively, and the optical band-gap of the CIGSS absorber layer was 1.18 eV. Raman spectral analysis demonstrated the existence of many different phases, including CuInSe2, CuGaSe2, and CuInS2. This may be because the vibration frequencies of In-Se, In-S bonds are similar to the Ga-Se and Ga-S bonds, causing their absorption bands overlap. -- Research Highlights: → We report a chalcopyrite Cu(In,Ga)(Se,S)2 (CIGSS) thin films on soda lime glass substrate by co-sputtering quaternary single-phase chalcopyrite CIGS alloy, and In2S3 targets. → By incorporating sulfur into partly selenized CIGS films, researchers fabricated a chalcopyrite CIGSS layer with double-graded band-gap structure. → The CIGS quaternary target and Raman spectra were analyzed for investigating the CIGSS structure and quality.

  10. Geology, petrography, geochemistry, and genesis of sulfide-rich pods in the Lac des Iles palladium deposits, western Ontario, Canada

    Science.gov (United States)

    Duran, Charley J.; Barnes, Sarah-Jane; Corkery, John T.

    2016-04-01

    The Lac des Iles Pd deposits are known for their Pd-rich sulfide-poor mineralization. However, previously undocumented sulfide-rich pods also occur within the intrusion that hosts the deposits. Given the complex magmatic and hydrothermal history of the mineralization at Lac des Iles, the sulfide-rich pods could have crystallized from magmatic sulfide liquids or precipitated from hydrothermal fluids. Sulfide-rich pods occur throughout the stratigraphy, in all rock types, and along comagmatic shear zones, and contain net-textured to massive sulfides. They can be divided into four main groups based on the variation in mineral assemblages: (1) pyrrhotite-pentlandite ± pyrite-chalcopyrite-magnetite-ilmenite; (2) chalcopyrite ± pyrrhotite-pentlandite-pyrite-magnetite-ilmenite; (3) pyrite ± pentlandite-chalcopyrite-pyrrhotite-magnetite-ilmenite; and (4) magnetite ± ilmenite-pyrrhotite-pentlandite-pyrite-chalcopyrite. Whole rock metal contents and S isotopic compositions do not change with the amount of pyrite present, except for slight enrichments in As and Bi. The presence of an essentially magmatic sulfide mineral assemblage (pyrrhotite-pentlandite ± chalcopyrite) with pentlandite exsolution flames in pyrrhotite in some pods suggests that the pods crystallized from magmatic sulfide liquids. The very low Cu contents of the pods suggests that they are mainly cumulates of monosulfide solid solution (MSS). We propose a model whereby sulfide liquids were concentrated into dilation zones prior to crystallizing cumulus MSS. Intermediate solid solution crystallized from the fractionated liquids at the edges of some pods leaving residual liquids enriched in Pt, Pd, Au, As, Bi, Sb, and Te. These residual liquids are no longer associated with the pods. During subsequent alteration, pyrite replaced MSS/pyrrhotite, but this did not affect the platinum-group element contents of the pods.

  11. First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon.

    Science.gov (United States)

    Bercx, Marnik; Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-07-27

    Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency. PMID:27405243

  12. Copper isotope fractionation in acid mine drainage

    Science.gov (United States)

    Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L.

    2009-01-01

    We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The ??65Cu values (based on 65Cu/63Cu) of enargite (??65Cu = -0.01 ?? 0.10???; 2??) and chalcopyrite (??65Cu = 0.16 ?? 0.10???) are within the range of reported values for terrestrial primary Cu sulfides (-1??? fractionation (??aq-min = ??65Cuaq - ??65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ?? 0.14??? and 1.60 ?? 0.14??? for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ?? 0.14???) and enargite (0.98 ?? 0.14???) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (??aq-mino = - 0.57 ?? 0.14 ???, where mino refers to the starting mineral) and no apparent fractionation for enargite (??aq-mino = 0.14 ?? 0.14 ???). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of ??65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage remediation and ore prospecting purposes. ?? 2008 Elsevier Ltd.

  13. Lixiviación de la calcopirita en medios clorurados

    Directory of Open Access Journals (Sweden)

    Ibáñez, T.

    2013-04-01

    Full Text Available The aim of this investigation is to determinate the effects of parameters and additives on the kinetics of dissolution of chalcopyrite on moderated conditions by means of dissolutions test with chalcopyrite concentrate and pure chalcopyrite in shake flasks and instrumented stirred reactors. A study of the dissolution of chalcopyrite in chloride solutions has demonstrated that the rate of dissolution of chalcopyrite is strongly dependent on the potential of the solution within a range of 540 to 630 mV (versus SHE. Leaching at pH around 2.5 results in increased rates of copper dissolution suggesting the possibility to keep the solution potential within the range. Both pyrite and silver ions enhance the dissolution of chalcopyrite and this effect increases when both species are present. The MnO2 has a negative effect on the dissolution increasing the solution potential to values where the rate decreases considerably.El objetivo de esta investigación es determinar el efecto de parámetros y aditivos (MnO2 - iones de plata - pirita en la cinética de disolución de la calcopirita mediante pruebas de disolución con concentrado de calcopirita y calcopirita natural en matraces y reactores agitados mecánicamente bajo condiciones moderadas. La disolución de la calcopirita en medios clorurados es dependiente del potencial de la solución, obteniéndose valores de velocidad aceptables dentro de los 540 y 630 mV (SHE. El pH alrededor de los 2,5 permite mantener los potenciales de solución en valores donde la calcopirita lixivia a velocidades aceptables debido a que ocurre la precipitación de hierro. Tanto la pirita como los iones de plata catalizan la disolución y el efecto es mayor con ambas especies presentes. El MnO2 posee un efecto negativo en la disolución debido a que aumenta el potencial de la solución a valores donde la velocidad disminuye considerablemente.

  14. Isotopic tracing of ore-forming source materials for Dexing porphyry copper deposit of Jiangxi, China

    Institute of Scientific and Technical Information of China (English)

    Peng QIAN; Jianjun LU

    2008-01-01

    Dexing copper deposit is the biggest porphyry copper deposit in China. By researching isotopes of C,Si and Cu from the samples of Tongchang and Fujiawu ore-field, the authors found that δ13CPDB values of siderite were close to the δ13CPDB value of original magma; δ30Si values of the samples at the ore-forming stage were close to the δ30Si value range of magma, δ30Si values of partial samples were far away from it; Cu isotopic compositions of massive chalcopyrite formed at the early ore-forming stage are higher than that of veinal chalcopyrite formed at the later ore-forming stage. The results show that ore-forming materials were mainly derived from the porphyry body, and part of them were from wall rock materials.

  15. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals.

    Science.gov (United States)

    Latorre, Mauricio; Ehrenfeld, Nicole; Cortés, María Paz; Travisany, Dante; Budinich, Marko; Aravena, Andrés; González, Mauricio; Bobadilla-Fazzini, Roberto A; Parada, Pilar; Maass, Alejandro

    2016-01-01

    In order to provide new information about the adaptation of Acidithiobacillus ferrooxidans during the bioleaching process, the current analysis presents the first report of the global transcriptional response of the native copper mine strain Wenelen (DSM 16786) oxidized under different sulfide minerals. Microarrays were used to measure the response of At. ferrooxidans Wenelen to shifts from iron supplemented liquid cultures (reference state) to the addition of solid substrates enriched in pyrite or chalcopyrite. Genes encoding for energy metabolism showed a similar transcriptional profile for the two sulfide minerals. Interestingly, four operons related to sulfur metabolism were over-expressed during growth on a reduced sulfur source. Genes associated with metal tolerance (RND and ATPases type P) were up-regulated in the presence of pyrite or chalcopyrite. These results suggest that At. ferrooxidans Wenelen presents an efficient transcriptional system developed to respond to environmental conditions, namely the ability to withstand high copper concentrations. PMID:26476161

  16. Synthesis of CulnS_2 nanocrystals and their structural transformation triggered by lisand exchange

    Institute of Scientific and Technical Information of China (English)

    KATSUHIRO Nose; YUKI Soma; TAKAHISA Omata; SHINYA Otsuka-Yao-Matsuo

    2009-01-01

    Chalcopyrite-type CulnS_2 NCs was synthesized by the hot-soap method.Mixed solutions,Cul and InCI_3 dissolved in the mixture of the tri-octylphosphite and 1-octadecene and the sulfur dissolved in tri-phenylphosphite,were used as source solutions;the hexadecylamine was additionally mixed as a surfactant before the reaction.It was observed that the product CulnS_2 NCs structurally transformed from the chalcopyrite(CP)-or zincblende(ZB)-to the wurtzite(WZ)-type depending on the amount of the surfactant and a storage time after the surfactant addition.Very weak photoluminescence in the nearinfrared region was observed for the CP-or ZB-type NCs.This band was attributable to the electronhole recombination via defect levels.No photoluminescence was detected for the wurtzite-type NCs.

  17. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se2 thin-film solar cell absorbers

    International Nuclear Information System (INIS)

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for “realistic” surfaces of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In1-xGax)Se2 thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH3-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is – apart from a slight change in surface composition – identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material

  18. Improved Single-Source Precursors for Solar-Cell Absorbers

    Science.gov (United States)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  19. The kinetic modelling from domestic ores using software tools

    OpenAIRE

    Krstev, Aleksandar; Krstev, Boris; Gocev, Zivko; Golomeov, Blagoj; Golomeova, Mirjana; Zendelska, Afrodita

    2013-01-01

    To improve kinetic models, many first - order flotation kinetics models with distributions of flotation rate constants were redefined so that they could all be represented by the same set of three model parameters. As a result, the width of the distribution become independent of its mean, and parameters of the model and the curve fitting errors, became virtually the same, independent of the chosen distribution function. In our case, investigations of the chalcopyrite ores are carried out usin...

  20. The models of optimization for increasing of copper and gold recoveries in Bucim Mine

    OpenAIRE

    Gocev, Zivko; Krstev, Aleksandar; Krstev, Boris; Golomeova, Mirjana; Zendelska, Afrodita

    2015-01-01

    The increasing in the chalcopyrite copper Bucim mine are gone forward to renewed reagent regime, including and involving new reagents for increased recovery of copper and gold. The optimization and mathematical linear are good example for improvement of industrial recoveries in flotation circuit. Nevertheless, the choice between flotation and new leaching or bioleaching method are challenge for future. The optimization techniques, for matting the mathematical model and adequate...

  1. The optimization and mathematical modelling – The precondition for increasing of recoveries from domestic mines

    OpenAIRE

    Krstev, Boris; Krstev, Aleksandar; Golomeova, Mirjana; Zendelska, Afrodita; Gocev, Zivko

    2013-01-01

    The increasing in the chalcopyrite copper Bucim mine are gone forward to renewed reagent regime, including and involving new reagents for increase d recovery of copper and gold. The optimization and mathematical linear are good example for improvement of industrial recoveries in flotation circuit. Nevertheless, the choice between flotation and new leaching or bioleaching method are challenge for future. The optimization techniques, formatting the mathematical model and adequate model for c...

  2. Petrography, mineral chemistry, fluid inclusion microthermometry and Re–Os geochronology of the Küre volcanogenic massive sulfide deposit (Central Pontides, Northern Turkey).

    OpenAIRE

    Akbulut, M; Oyman, T.; Çiçek, M.; Selby, D.; Özgenç, İ.; Tokçaer, M.

    2016-01-01

    The Re–Os isotopic system is applied for the first time to the sulfide ores and the overlying black-shales at the Küre volcanogenic massive sulfide deposit of the Central Pontides, Northern Turkey. The ore samples collected include predominantly pyrite, accompanied by chalcopyrite, sphalerite and other species. Massive ore is almost free of gangues, whereas the stockwork ore includes quartz and calcite gangue. The composition of sphalerite is similar to ancient and modern massive sulfide mine...

  3. <報文>中国金川産含銅ニッケル硫化鉱の浮選(第2報) : 捕収剤, 抑制剤および再摩鉱の効果について

    OpenAIRE

    山本, 泰二; 呉, 振東; 張, 礼強

    1988-01-01

    The effects of the collectors such as xanthate, aerofloat, aerophine (3418A), aeropromoter (4037) and sodium mercaptobenzothiazole, the depressants such as meyprofloc, jaguar (CP-B and CMHP), tannic acid and carboxymethylcellulose, and the regrinding were investigated with respect to the flotation of coppernickel sulphide ores front the Jinchuan mine. The results obtained are as follows ; (1) The floatabilities of pentlandite and chalcopyrite with sodium mercaptobenzothiazole are similar to t...

  4. The Aguablanca Cu–Ni ore deposit (Extremadura, Spain), a case of synorogenic orthomagmatic mineralization: age and isotope composition of magmas (Sr, Nd) and ore (S)

    OpenAIRE

    Casquet, César; Galindo Francisco, Mª del Carmen; Tornos Arroyo, Fernando; Velasco Roldán, Francisco; Canales Gallarosa, Ángel

    2001-01-01

    The Aguablanca Cu–Ni orthomagmatic ore deposit is hosted by mafic and ultramafic rocks of the Aguablanca stock, which is part of the larger, high-K calc-alkaline Santa Olalla plutonic complex. This intrusive complex, ca. 338 Ma in age, is located in the Ossa-Morena Zone (OMZ) of the Iberian Variscan Belt. Mineralization consists mainly of pyrrhotite, pentlandite and chalcopyrite resulting from the crystallization of an immiscible sulphide-rich liquid. Isotope work on the host igne...

  5. Selective Conversion of Biorefinery Lignin into Dicarboxylic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui; Guo, Mond; Zhang, Xiao

    2014-02-01

    The emerging biomass-to-biofuel conversion industry has created an urgent need for identifying new applications for biorefinery lignin. This paper demonstrates a new route to producing dicarboxylic acids from biorefinery lignin through chalcopyrite-catalyzed oxidation in a highly selective process. Up to 95 % selectivity towards stable dicarboxylic acids was obtained for several types of biorefinery lignin and model compounds under mild, environmentally friendly reaction conditions. The findings from this study paved a new avenue to biorefinery lignin conversions and applications.

  6. A fundamental investigation into the microwave assisted leaching of sulphide minerals

    OpenAIRE

    Al-Harahsheh, Mohammad

    2005-01-01

    Microwave assisted leaching has been investigated in an attempt to improve both the yield of extracted metal and reduce processing time. This is especially pertinent in view of the increased demands for metal and more environmentally friendly processes. This work reports a fundamental study on the influence of microwave energy on the dissolution of sulphide minerals. Chalcopyrite and sphalerite were chosen as model materials due to their economic importance and the diversity of their hea...

  7. Structural and optical properties of electrodeposited culnSe{sub 2} thin films for photovoltaic solar cells; Propiedades estructurales y opticas de laminas delgadas de CulnSe2 electrodepositadas para su aplicacion en celulas solares fotovoltaicas

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, C.; Herrero, J.; Galiano, F.

    1990-07-01

    Optical an structural properties of electrodeposited copper indium diselenide, CulnSe2, thin films were studied for its application in photovoltaic devices. X-ray diffraction patterns showed that thin films were grown in chalcopyrite phase after suitable treatments. Values of Eg for the CulnSe2 thin films showed a dependence on the deposition potential as determined by optical measurements. (Author) 47 refs.

  8. Assessment of heavy metals pollution in sulphide mine affected-soils of madrid, central spain

    OpenAIRE

    Torres, M.; Recio Vázquez, Lorena; Carral, Pilar; Álvarez, Ana María

    2011-01-01

    The uncontrolled extraction of mineral resources is considered one of the major anthropogenic sources of soil pollution. In Spain, exploitation of metallic mineral deposits and its subsequent abandonment in last decades has lead to significant environmental hazard for natural systems. In this research, potentially contaminated soils surrounding an old chalcopyrite mine district in Madrid (Central Spain) have been studied. The focus is to assess the degree of pollution by heavy metals and othe...

  9. High and intermediate sulphidation environment in the same hydrothermal deposit: the example of Au-Cu Palai???Islica deposit, Carboneras (Almer??a)

    OpenAIRE

    Carrillo-Ros??a, Javier; Morales-Ruano, Salvador; Boyce, Adrian J.; Fallick, Anthony E.

    2003-01-01

    Two epithermal environments have been identified in the Miocene Palai???Islica Au???Cu deposit: A) Intermediate sulphidation, hosted mainly in quartz veins, comprises pyrite, chalcopyrite, sphalerite and galena as the major sulphides, which are accompanied by a variety of Ag-bearing accessory minerals. Au???Ag alloys are the only gold-bearing phase. The veins are enclosed by sericitic and chloritic alteration. Fluid inclusions in quartz, sphalerite and calcite give Th between 118???453 ??C, a...

  10. Mode de genèse et valorisation des minerais de type black shales : cas du Kupferschiefer (Pologne) et des schistes noirs de Talvivaara (Finlande)

    OpenAIRE

    Gouin, Jérôme

    2008-01-01

    This thesis was carried out in the frame of an EU-FP6 project (Bioshale) and has, as main objective a better understanding of metal concentration processes in black shale ores and their beneficiation by hydro-and biotechnologies. The low mature organic matter (OM) of the Lubin ore (Kupferschiefer) played a role during syn-, dia- and epigenetic metal enrichment processes. The ore contains 7% of Cu as well as Ag, Co, Ni, Pb, Zn, as sulphides (chalcocite, covellite, bornite, chalcopyrite...). Th...

  11. The Nussir copper deposit: petrology, mineralogy, geochemistry and distribution of ore mineralization

    OpenAIRE

    Mun, Yulia

    2013-01-01

    The geology, petrography, mineralogy and geochemistry of the Nussir copper deposit in Finnmark, Northern Norway were studied during writing this thesis. The Nussir deposit of copper is a sedimentary-hosted hydrothermal deposit affected by low grade methamorphism and ductile deformation. The copper mineralization includes chalcopyrite, chalcocite, bornite, covellite, and digenite. The deposit contains also economically interesting trace elements, such as silver, gold, and PGE. The deposit show...

  12. Magnetic Separation of Weakly Magnatic Copper Minerals

    OpenAIRE

    Agricola, J. N.M.; Top, J. L.; Fort, A. F.

    1989-01-01

    High Gradient Magnetic Separation of small (5-38 µm) weakly magnetic copper mineral particles from a copper concentrate and ore has been performed. In previous work coarser fractions of these minerals, bornite and chalcopyrite, were separated successfully. The recovery of the smaller particles in the magnetic fraction decreases but their grade increases compared to the results obtained on the larger particles. At a magnetic background field of 1.3 T the concentrate was upgraded from 72% borni...

  13. Mineralization model for Chahar Gonbad copper-gold deposit (Sirjan), using mineralogical, alteration and geochemical data and multivariate statistical methods

    OpenAIRE

    Seayed Jaber Yousefi; Abas Moradian

    2012-01-01

    The study area is located in southeastern Iran, about 110 km southwest of Kerman. Geologically, the area is composed of ophiolitic rocks, volcanic rocks, intrusive bodies and sedimentary rocks. Vein mineralization within andesite, andesitic basalt, andesitic tuffs occurred along the Chahar Gonbad fault. Sulfide mineralization in the ore deposit has taken place as dissemination, veins and veinlets in which pyrite and chalcopyrite are the most important ores. In this area, argillic, phyllic and...

  14. Molecular solution processing of metal chalcogenide thin film solar cells

    OpenAIRE

    Yang, Wenbing

    2013-01-01

    The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (C...

  15. New materials for intermediate band photovoltaic cells. A theoretical and experimental approach

    OpenAIRE

    Wahnón Benarroch, Perla; Palacios Clemente, Pablo; Aguilera Bonet, Irene; Seminóvski Pérez, Yohanna; Conesa, Jose Carlos; Lucena, Raquel

    2010-01-01

    Density functional theory calculations of certain transition-metal doped semiconductors show a partially occupied relatively narrow band located between valence band and conduction band. These novel systems, containing the metallic band, are called intermediate-band materials. They have enhanced optoelectronic properties which allow an increase in solar energy conversion efficiency of conventional solar cells. We previously proposed III-V, chalcopyrite and sulfide derived compounds show...

  16. Structural and optical properties of electrodeposited culnSe2 thin films for photovoltaic solar cells

    International Nuclear Information System (INIS)

    Optical an structural properties of electrodeposited copper indium diselenide, CulnSe2, thin films were studied for its application in photovoltaic devices. X-ray diffraction patterns showed that thin films were grown in chalcopyrite phase after suitable treatments. Values of Eg for the CulnSe2 thin films showed a dependence on the deposition potential as determined by optical measurements. (Author) 47 refs

  17. The distribution, character, and rhenium content of molybdenite in the Aitik Cu-Au-Ag-(Mo) deposit and its southern extension in the northern Norrbotten ore district, northern Sweden.

    OpenAIRE

    Christina Wanhainen; Wondowossen Nigatu; David Selby; Claire L. McLeod; Roger Nordin; Nils-Johan Bolin

    2014-01-01

    Molybdenite in the Aitik deposit and its southern extension was studied through mineralogical/chemical analysis and laboratory flotation tests. It is demonstrated that molybdenite varies considerably in grain size, ranging from coarse (>20 μm) to very fine (<2 μm) and occurs predominantly as single grains in the groundmass of the rocks, as grain aggregates, and intergrown with chalcopyrite and pyrite. The dominating molybdenite-bearing rocks are the mica schists, the quartz-monzodiori...

  18. The study of molybdenite types related to the ore processing plant of the Sar Cheshmeh mine

    OpenAIRE

    Balandeh Aminzadeh; Jamshid Shahabpour; Mortaza Asadipour

    2010-01-01

    Molybdenite occurs in five forms in the Sar Cheshmeh porphyry copper deposit, namely, (1)-veinlets with quartz-molybdenite, (2)-veinlets with quartz-molydenite that were filled with pyrite, (3)-veinlets with quartz-molybdenite-pyrite–chalcopyrite, (4)-Molybdenite veinlets with very low quartz and (5)-disseminated molybdenite grains. Because of their large size, the veinlet-related molybdenite grains are easily liberated from the gangue minerals, provided the grinding is properly conducted (74...

  19. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors

    OpenAIRE

    Spolaore, Pauline; Joulian, Catherine; Gouin, Jérôme; Morin, Dominique; d'Hugues, Patrick

    2011-01-01

    During the Bioshale European project, a technoeconomic study of the bioleaching of a copper concentrate originating from a black shale ore was carried out. This concentrate is a multi-mineral resource in which the copper sulphides are mainly chalcocite, covellite, bornite and chalcopyrite. The experiments undertaken to produce the techno-economic data were also an opportunity to carry out more fundamental research. The objective of this work was to combine the results of the bioleaching exper...

  20. Metal Resistance and Lithoautotrophy in the Extreme Thermoacidophile Metallosphaera sedula

    OpenAIRE

    Maezato, Yukari; Johnson, Tyler; McCarthy, Samuel; Dana, Karl; Blum, Paul

    2012-01-01

    Archaea such as Metallosphaera sedula are thermophilic lithoautotrophs that occupy unusually acidic and metal-rich environments. These traits are thought to underlie their industrial importance for bioleaching of base and precious metals. In this study, a genetic approach was taken to investigate the specific relationship between metal resistance and lithoautotrophy during biotransformation of the primary copper ore, chalcopyrite (CuFeS2). In this study, a genetic system was developed for M. ...

  1. The principles and examples of leaching and bioleaching of copper ores

    OpenAIRE

    Krstev, Boris; Krstev, Aleksandar; Danovska, Milena

    2015-01-01

    The refractory or low grade copper chalcopyrite ores are investigated by conventional copper flotation and selective flotation for galena/sphalerite. In the meantime, investigations are directed to the new possibilities of leaching by microorganisms – bioleaching. The paper is result of these technologies and investigations carried out for recovery of in the mentioned ores. Using Simplex EVOP and computer programme Multisimplex the tabular and especially graphic performances are most acceptab...

  2. THE SEARCH OF CHEMICAL OXIDATION STAGE OF TWO STAGE PYRITE AND COPPER CONCENTRATE BIOLEACHING TECHNOLOGY

    OpenAIRE

    Scornyacov, A.; Petukhova, N.; Meftakhov, R.; Zorin, V.

    2011-01-01

    The bioleaching stage of two-stage biochemical leaching technology of pyrite and copper concentrate consisted of bornite, chalcopyrite and chalcocite, by moderate thermophiles consortium was searched. It has been shown that at 45 oC the bioleaching of copper concentrate pre-treated by biogenic leaching solution seems to be near 1.7 times faster than the non-treated one. Though the similar chemical pre-treatment of pyrite doesnt show any significant increase of its bioleaching rate.

  3. The performance of leaching and bio-leaching from sulphide ores usiing SEVOP

    OpenAIRE

    Krstev, Boris; Krstev, Aleksandar; Golomeov, Blagoj; Golomeova, Mirjana; Sala, Ferat; Gocev, Zivko; Zivanovic, Jordan; Krstev, Dejan

    2013-01-01

    The refractory or low grade copper chalcopyrite ores or galena/sphalerite domestic ores in Republic of Macedonia are investigated by conventional copper flotation and selective flotation for galena/sphalerite. In the meantime, investigations are directed to the new possibilities of leaching by microorganisms – bioleaching. The paper is result of these technologies and investigations carried out for recovery of in the mentioned ores. Using Simplex EVOP and computer programme. Multisimple...

  4. Photosensitivity of In-p-CuIn[sub x]Ga[sub 1-x]Se[sub 2] thin film structures

    Energy Technology Data Exchange (ETDEWEB)

    Gremenok, V.F. (Inst. of Physics of Solids and Semiconductors, Academy of Sciences of Belarus, Minsk (Belarus)); Zaretskaya, E.P. (Inst. of Physics of Solids and Semiconductors, Academy of Sciences of Belarus, Minsk (Belarus)); Bodnar, I.V. (Minsk Radioengineering Inst., Minsk (Belarus)); Rud' , Yu.V. (Minsk Radioengineering Inst., Minsk (Belarus)); Magomedov, M.A. (Minsk Radioengineering Inst., Minsk (Belarus))

    1993-09-10

    Thin film polycrystalline layers of the quaternary compounds CuIn[sub x]Ga[sub 1-x]Se[sub 2] with 0 [<=] x [<=] 1 of chalcopyrite structure have been prepared by laser-assisted evaporation. Schottky barriers have been formed on the deposited films using indium. By illuminating the samples through the semitransparent indium contact, the spectral dependence of the photocurrent on the atomic composition has been investigated. The analysis of some preliminary data on the structures examined is presented. (orig.)

  5. Banded sulfide-magnetite ores of Mauk copper massive sulfide deposit, Central Urals: Composition and genesis

    Science.gov (United States)

    Safina, N. P.; Maslennikov, V. V.; Maslennikova, S. P.; Kotlyarov, V. A.; Danyushevsky, L. V.; Large, R. R.; Blinov, I. A.

    2015-05-01

    The results of investigation of metamorphosed sulfide-magnetite ores from the Mauk deposit located within the Main Ural Fault at the junction of Tagil and Magnitogorsk massive sulfide zones are discussed. The ore-hosting sequence comprises metamorphic rocks formed from basalt, carbonaceous and carbonaceous-cherty siltstone, and lenticular serpentinized ultramafic bodies. The ores of the deposit are represented by banded varieties and less frequent breccia. The clastic origin of the banded ore is indicated by load casts at the bottom of sulfide beds, alternation of sulfide and barren beds, and the truncation of the growth zones of pyrite crystals. Pyrite, pyrrhotite, chalcopyrite, sphalerite, and magnetite are the major minerals of the banded ores. The internal structure of the listed minerals testifies to the deep metamorphic recrystallization of primary hydrothermal-sedimentary ores accompanied with deformation. Cubanite, pyrrhotite, mackinawite, greigite, and gold are enclosed in metacrysts of pyrite, magnetite, and chalcopyrite. The accessory minerals of the Pb-Bi-Te, Bi-Te, and Ag-Te systems as well as uraninite have been found at the Mauk deposit for the first time. Magnetite predominantly replaces pyrite and less frequently chalcopyrite, pyrrhotite, and gangue minerals. It was established that the major carriers of As and Co are crystals of metamorphic pyrite. Chalcopyrite is the major carrier of Zn, Sn, Te, Pb, Bi, and Ag. Admixture of Fe and Cu is typical of sphalerite, and Se and Ni are characteristic of pyrrhotite. Ti, V, Mn, Sb, As, Ba, and U are concentrated in magnetite. The banded ores of the Mauk deposit are suggested as having been transformed in several stages: diagenesis, anadiagenesis, epidiagenesis ( t 500°C).

  6. Air pollution in surrounding environment of Sasa tailing dam – ambient air, plant dust and ceiling dust

    OpenAIRE

    Krstev, Boris; Krstev, Aleksandar; Golomeov, Blagoj; Golomeova, Mirjana; Zendelska, Afrodita; Danevski, Tome; Fidancev, Boris

    2013-01-01

    The current and recent activities in the lead-zinc Sasa mine or copper Bucim mine and flotation of galena and sphalerite or chalcopyrite, producing metals for market, are reason for possible troubles from tailing dam-pond and surrounding river, ambient air and plant or ceiling dust. This appearance is significant for the surrounding environment, but legislative and ecological law directive limited the quantity of these. In this paper will be present results of investigations from plant ...

  7. Phase, morphology, and dimension control of CIS powders prepared using a solvothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hui [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Ting, Jyh-Ming, E-mail: jting@mail.ncku.edu.t [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2009-05-29

    Crystalline chalcopyrite semiconductor CuInSe{sub 2} nanostructures were prepared using a solvothermal route. Various amine organic agents were used as the solvents. Cupric chloride, indium chloride, and selenium powders were mixed in a solvent of ethylenediamine or diethylamine. Effects of reaction time, reaction temperature, solvent type, and reactant concentration were studied. The results show that through selective processing conditions, the phase, morphology, and dimensions of the obtained CIS nanostructures can be controlled.

  8. Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell

    Science.gov (United States)

    Wang, Mang; Yi, Jie; Yang, Sui; Cao, Zhou; Huang, Xiaopan; Li, Yuanhong; Li, Hongxing; Zhong, Jianxin

    2016-09-01

    Mg doped ZnO (ZMO) film with the tunable bandgap can adjust the conduction band offset of the window/chalcopyrite absorber heterointerface to positive to reduce the interface recombination and resulting in an increasement of chalcopyrite based solar cell efficiency. A systematic study of the effect of the electrodeposition potential on morphology, crystalline structure, crystallographic orientation and optical properties of ZMO films was investigated. It is interestingly found that the prepared doped samples undergo a significant morphological change induced by the deposition potential. With negative shift of deposition potential, an obvious morphology evolution from nanorod structrue to particle covered films was observed. A possible growth mechanism for explaining the morphological change is proposed and briefly discussed. The combined optical techniques including absorption, transmission and photoluminescence were used to study the obtained ZMO films deposited at different potential. The sample deposited at -0.9 V with the hexagonal nanorods morphology shows the highest optical transparency of 92%. The photoluminescence spectra reveal that the crystallization of the hexagonal nanorod ZMO thin film deoposited at -0.9 V is much better than the particles covered ZMO thin film. Combining the structural and optical properties analysis, the obtained normal hexagonal nanorod ZMO thin film could potentially be useful in nanostructured chalcopyrite solar cells to improve the device performance.

  9. Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs2 (A = K, Rb)

    International Nuclear Information System (INIS)

    Highlights: • Zintl tetragonal phase ACdGeAs2 (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs2 (A = K, Rb) using the full potential linear augmented plane wave method and the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices

  10. The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system.

    Science.gov (United States)

    Xiao, Yunhua; Xu, YongDong; Dong, Weiling; Liang, Yili; Fan, Fenliang; Zhang, Xiaoxia; Zhang, Xian; Niu, Jiaojiao; Ma, Liyuan; She, Siyuan; He, Zhili; Liu, Xueduan; Yin, Huaqun

    2015-12-01

    This study used an artificial enrichment microbial consortium to examine the effects of different substrate conditions on microbial diversity, composition, and function (e.g., zinc leaching efficiency) through adding pyrite (SP group), chalcopyrite (SC group), or both (SPC group) in sphalerite bioleaching systems. 16S rRNA gene sequencing analysis showed that microbial community structures and compositions dramatically changed with additions of pyrite or chalcopyrite during the sphalerite bioleaching process. Shannon diversity index showed a significantly increase in the SP (1.460), SC (1.476), and SPC (1.341) groups compared with control (sphalerite group, 0.624) on day 30, meanwhile, zinc leaching efficiencies were enhanced by about 13.4, 2.9, and 13.2%, respectively. Also, additions of pyrite or chalcopyrite could increase electric potential (ORP) and the concentrations of Fe3+ and H+, which were the main factors shaping microbial community structures by Mantel test analysis. Linear regression analysis showed that ORP, Fe3+ concentration, and pH were significantly correlated to zinc leaching efficiency and microbial diversity. In addition, we found that leaching efficiency showed a positive and significant relationship with microbial diversity. In conclusion, our results showed that the complicated substrates could significantly enhance microbial diversity and activity of function. PMID:26266752

  11. Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs{sub 2} (A = K, Rb)

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Sikander; Khan, Saleem Ayaz [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Goumri-Said, Souraya, E-mail: Souraya.Goumri-Said@chemistry.gatech.edu [School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States)

    2015-10-15

    Highlights: • Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) using the full potential linear augmented plane wave method and the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices.

  12. Structure and composition of Zn(x)Cd(1-xS) films synthesized through chemical bath deposition.

    Science.gov (United States)

    Tosun, B Selin; Pettit, Chelsea; Campbell, Stephen A; Aydil, Eray S

    2012-07-25

    Zinc cadmium sulfide (ZnxCd1-xS) thin films grown through chemical bath deposition are used in chalcopyrite solar cells as the buffer layer between the n-type zinc oxide and the p-type light absorbing chalcopyrite film. To optimize energetic band alignment and optical absorption, advanced solar cell architectures require the ability to manipulate x as a function of distance from the absorber-ZnCdS interface. Herein, we investigate the fundamental factors that govern the evolution of the composition as a function of depth in the film. By changing the initial concentrations of Zn and Cd salts in the bath, the entire range of overall compositions ranging from primarily cubic ZnS to primarily hexagonal CdS could be deposited. However, films are inhomogeneous and x varies significantly as function of distance from the film-substrate interface. Films with high overall Zn concentration (x > 0.5) exhibit a Cd-rich layer near the film-substrate interface because Cd is more reactive than Zn. This layer is typically beneath a nearly pure ZnS film that forms after the Cd-rich layers are deposited and Cd is depleted in the bath. In films with high overall Cd concentration (x < 0.5) the Zn concentration rises towards the film's surface. Fortunately, these gradients are favorable for solar cells based on low band gap chalcopyrite films.

  13. Platinum-group element concentrations in pyrite from the Main Sulfide Zone of the Great Dyke of Zimbabwe

    Science.gov (United States)

    Piña, R.; Gervilla, F.; Barnes, S.-J.; Oberthür, T.; Lunar, R.

    2016-02-01

    The Main Sulfide Zone (MSZ) of the Great Dyke of Zimbabwe hosts the world's second largest resource of platinum-group elements (PGE) after the Bushveld Complex in South Africa. The sulfide assemblage of the MSZ comprises pyrrhotite, pentlandite, chalcopyrite, and minor pyrite. Recently, several studies have observed in a number of Ni-Cu-PGE ore deposits that pyrite may host significant amounts of PGE, particularly Pt and Rh. In this study, we have determined PGE and other trace element contents in pyrite from the Hartley, Ngezi, Unki, and Mimosa mines of the Great Dyke by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Based on the textures and PGE contents, two types of pyrite can be differentiated. Py1 occurs as individual euhedral or subhedral grains or clusters of crystals mostly within chalcopyrite and pentlandite, in some cases in the form of symplectitic intergrowths, and is PGE rich (up to 99 ppm Pt and 61 ppm Rh; 1.7 to 47.1 ppm Ru, 0.1 to 7.8 ppm Os, and 1.2 to 20.2 ppm Ir). Py2 occurs as small individual euhedral or subhedral crystals within pyrrhotite, pentlandite, and less frequently within chalcopyrite and silicates and has low PGE contents (<0.11 ppm Pt, <0.34 ppm Rh, <2.5 ppm Ru, <0.37 ppm Ir, and <0.40 ppm Os). Py1 contains higher Os, Ir, Ru, Rh, and Pt contents than the associated pyrrhotite, pentlandite, and chalcopyrite, whereas Py2 has similar PGE contents as coexisting pyrrhotite and pentlandite. Based on the textural relationships, two different origins are attributed for each pyrite type. Py1 intergrowth with pentlandite and chalcopyrite is inferred to have formed by late, low temperature (<300 °C) decomposition of residual Ni-rich monosulfide solid solution, whereas Py2 is suggested to have formed by replacement of pyrrhotite and pentlandite caused by late magmatic/hydrothermal fluids.

  14. Platinum-group element concentrations in pyrite from the Main Sulfide Zone of the Great Dyke of Zimbabwe

    Science.gov (United States)

    Piña, R.; Gervilla, F.; Barnes, S.-J.; Oberthür, T.; Lunar, R.

    2016-10-01

    The Main Sulfide Zone (MSZ) of the Great Dyke of Zimbabwe hosts the world's second largest resource of platinum-group elements (PGE) after the Bushveld Complex in South Africa. The sulfide assemblage of the MSZ comprises pyrrhotite, pentlandite, chalcopyrite, and minor pyrite. Recently, several studies have observed in a number of Ni-Cu-PGE ore deposits that pyrite may host significant amounts of PGE, particularly Pt and Rh. In this study, we have determined PGE and other trace element contents in pyrite from the Hartley, Ngezi, Unki, and Mimosa mines of the Great Dyke by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Based on the textures and PGE contents, two types of pyrite can be differentiated. Py1 occurs as individual euhedral or subhedral grains or clusters of crystals mostly within chalcopyrite and pentlandite, in some cases in the form of symplectitic intergrowths, and is PGE rich (up to 99 ppm Pt and 61 ppm Rh; 1.7 to 47.1 ppm Ru, 0.1 to 7.8 ppm Os, and 1.2 to 20.2 ppm Ir). Py2 occurs as small individual euhedral or subhedral crystals within pyrrhotite, pentlandite, and less frequently within chalcopyrite and silicates and has low PGE contents (<0.11 ppm Pt, <0.34 ppm Rh, <2.5 ppm Ru, <0.37 ppm Ir, and <0.40 ppm Os). Py1 contains higher Os, Ir, Ru, Rh, and Pt contents than the associated pyrrhotite, pentlandite, and chalcopyrite, whereas Py2 has similar PGE contents as coexisting pyrrhotite and pentlandite. Based on the textural relationships, two different origins are attributed for each pyrite type. Py1 intergrowth with pentlandite and chalcopyrite is inferred to have formed by late, low temperature (<300 °C) decomposition of residual Ni-rich monosulfide solid solution, whereas Py2 is suggested to have formed by replacement of pyrrhotite and pentlandite caused by late magmatic/hydrothermal fluids.

  15. Adaptación de una cepa compatible con Acidithiobacillus ferrooxidans sobre concentrados de calcopirita (CuFeS2, esfalerita (ZnS y galena (PbS

    Directory of Open Access Journals (Sweden)

    E Mejía

    2011-08-01

    Full Text Available Adaptation of a strain Acidithiobacillus ferrooxidans compatible on concentrates of chalcopyrite (CuFeS2, sphalerite (ZnS and galena (PbSRESUMENEn este estudio se evaluó la adaptación de una cepa compatible con Acidithiobacillus ferrooxidans a altas densidades de pulpa de calcopirita, esfalerita y galena, con dos distribuciones de tamaño de partícula, -200 y -325 serie Tyler de tamices. Los microorganismos fueron adaptados por la disminución gradual de la fuente principal de energía, sulfato ferroso, y el aumento en el contenido de mineral, para finalmente realizar un subcultivo sin la adición de fuente de energía externa. La realización de subcultivos en serie resultó ser una estrategia eficaz para la adaptación a altas densidades de pulpa de esfalerita, calcopirita y galena indicando que el protocolo empleado es adecuado. Los resultados muestran que la cepa compatible con Acidithiobacillus ferrooxidans es más resistente a altas concentraciones de esfalerita, seguido por calcopirita y finalmente por galena. El tamaño de partícula juega un papel fundamental en la adaptación de los microorganismos al mineral. Palabras clave: esfalerita, calcopirita, galena, adaptación, Acidithiobacillus ferrooxidans, biolixiviación. ABSTRACTIn this study the adaptation of Acidithiobacillus ferrooxidans-like to high concentrations of chalcopyrite, sphalerite and galena were evaluated with two mineral-particle sizes: 200 and 325 Tyler mesh. The strain was adapted using two simultaneous processes. The first one consisted in a gradual decreasing of the main energy source, ferrous sulphate. The second one consisted in a gradual increasing of the mineral content. Finally, a test was made without ferrous sulphate. The serial subculturing was found to be an efficient strategy to adapt Acidithiobacillus ferrooxidans-like to higher concentrations of chalcopyrite, sphalerite and galena. This indicates that a suitable protocol was employed. The results

  16. Petrography, sulfide mineral chemistry, and sulfur isotope evidence for a hydrothermal imprint on Musina copper deposits, Limpopo Province, South Africa: Evidence for a breccia pipe origin?

    Science.gov (United States)

    Chaumba, Jeff B.; Mundalamo, Humbulani R.; Ogola, Jason S.; Cox, J. A.; Fleisher, C. J.

    2016-08-01

    The Musina copper deposits are located in the Central Zone of the Limpopo orogenic belt in Limpopo Province, South Africa. We carried out a petrographic, sulfide composition, and δ34S study on samples from Artonvilla and Campbell copper deposits and a country rock granitic gneiss to Artonvilla Mine to place some constrains on the origin of these deposits. The assemblages at both Artonvilla and Campbell Mines of brecciated quartz, potassium feldspar, muscovite, chlorite, calcite, and amphibole are consistent with sericitic alteration. Quartz, amphibole, feldspars, and micas often display angular textures which are consistent with breccias. Sulfur concentrations in pyrite from Artonvilla Mine plot in a narrow range, from 50.2 wt. % to 55.7 wt. %. With the exception of a positive correlation between Fe and Cu, no well defined correlations are shown by data from the Musina copper deposits. The occurrence of sulfides both as inclusions in, or as interstitial phases in silicates, suggests that hydrothermal alteration that affected these deposits most likely helped concentrate the mineralization at the Musina copper deposits. Sulfur concentrations in chalcopyrite samples investigated vary widely whereas the copper concentrations in chalcopyrite are not unusually higher compared to those from chalcopyrite from other tectonic settings, probably indicating that either the Cu in the Musina copper deposits occurs in native form, and/or that it is hosted by other phases. This observation lends support to the Cu having been concentrated during a later hydrothermal event. One sample from Artonvilla Mine (AtCal01) yielded pyrite δ34S values of 3.1and 3.6‰ and chalcopyrite from the same sample yielded a value of 3.9‰. A country rock granitic gneiss to Artonvilla Mine yielded a δ34Spyrite value of 8.2‰. For Campbell Mine samples, one quartz vein sample has a δ34Spyrite value of 0.5‰ whereas chalcopyrite samples drilled from different areas within the same sample

  17. Petrography, sulfide mineral chemistry, and sulfur isotope evidence for a hydrothermal imprint on Musina copper deposits, Limpopo Province, South Africa: Evidence for a breccia pipe origin?

    Science.gov (United States)

    Chaumba, Jeff B.; Mundalamo, Humbulani R.; Ogola, Jason S.; Cox, J. A.; Fleisher, C. J.

    2016-08-01

    The Musina copper deposits are located in the Central Zone of the Limpopo orogenic belt in Limpopo Province, South Africa. We carried out a petrographic, sulfide composition, and δ34S study on samples from Artonvilla and Campbell copper deposits and a country rock granitic gneiss to Artonvilla Mine to place some constrains on the origin of these deposits. The assemblages at both Artonvilla and Campbell Mines of brecciated quartz, potassium feldspar, muscovite, chlorite, calcite, and amphibole are consistent with sericitic alteration. Quartz, amphibole, feldspars, and micas often display angular textures which are consistent with breccias. Sulfur concentrations in pyrite from Artonvilla Mine plot in a narrow range, from 50.2 wt. % to 55.7 wt. %. With the exception of a positive correlation between Fe and Cu, no well defined correlations are shown by data from the Musina copper deposits. The occurrence of sulfides both as inclusions in, or as interstitial phases in silicates, suggests that hydrothermal alteration that affected these deposits most likely helped concentrate the mineralization at the Musina copper deposits. Sulfur concentrations in chalcopyrite samples investigated vary widely whereas the copper concentrations in chalcopyrite are not unusually higher compared to those from chalcopyrite from other tectonic settings, probably indicating that either the Cu in the Musina copper deposits occurs in native form, and/or that it is hosted by other phases. This observation lends support to the Cu having been concentrated during a later hydrothermal event. One sample from Artonvilla Mine (AtCal01) yielded pyrite δ34S values of 3.1and 3.6‰ and chalcopyrite from the same sample yielded a value of 3.9‰. A country rock granitic gneiss to Artonvilla Mine yielded a δ34Spyrite value of 8.2‰. For Campbell Mine samples, one quartz vein sample has a δ34Spyrite value of 0.5‰ whereas chalcopyrite samples drilled from different areas within the same sample yielded

  18. Exploration of gold occurrences in alteration zones at Dungash district, Southeastern Desert of Egypt using ASTER data and geochemical analyses

    Science.gov (United States)

    Salem, S. M.; El Sharkawi, M.; El-Alfy, Z.; Soliman, N. M.; Ahmed, S. E.

    2016-05-01

    The present study aims at exploration of new gold occurrences in the alteration zones at Dungash district. Processed ASTER images band ratios 7/6 × 4/6 and (7 + 9/8), field geology and mineralogical and geochemical data help characterize three types of alterations in three areas 1 to 3 that may be targeted for Au exploration. Area1 confined to the metavolcanics located in the SE of Dungash gold mine and revealed silicified and sericitized type alterations, composed of quartz, epidote, chlorite, biotite and opaque minerals mainly pyrite and chalcopyrite. Area2 occurs in the gabbro-diorite rocks at Abu Meraiwa area NE of Dungash gold mine, which are rich in kaolinite, illite, sericite, pyrite, arsenopyrite and chalcopyrite that record kaolinitized alteration. Area3 is hosted in carbonaceous listwaenized serpentinite thus indicating the role of listwaenitization type alteration in ore genesis. It is composed of calcite, chromite, pyrite, arsenopyrite, chalcopyrite and Ni-bearing sulphides. Au contents in area 1 range between 0.12 and 14.91 ppm, and between 6.1 and 16.3 ppm in area 2, while gold values in area 3 vary from <0.01 to 0.03 ppm. Dungash district is comprised of Pan-African assemblages of ophiolitic ultramafics thrusted over the island arc metavolcanics of dacitic- andesite composition. Gabbro-diorite rocks are intruded in the ultramafics and the acidic metavolcanics as well as diorite-quartz diorite suite intruded in the intermediate metavolcanics. Several acidic dykes, granitic dykes and quartz veins cut through the different rocks types.

  19. Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis

    Science.gov (United States)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie

    2015-05-01

    Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.

  20. Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran: Implications for possible epigenetic Cu-Au ore exploration in metaophiolites

    Science.gov (United States)

    Aftabi, Alijan; Zarrinkoub, Mohammad Hossien

    2013-01-01

    Petrogeochemical investigations at the Sahlabad region have revealed that epigenetic listvenite veins occur in sheared zones of metaophiolitic suites of Cretaceous age. The listvenite mineralization developed in three forms, namely (1) the silica-listvenite veins which are chiefly composed of chalcedony, opal, quartz, pyrite, chalcopyrite, serpentine and relicts of chrome spinels, magnetite and fuchsite; (2) the carbonate listvenite veins which are comprised principally of magnesite, dolomite, calcite, siderite, pyrite, chalcopyrite, serpentine and relicts of fuchsite, chrome spinels and magnetite; and (3) the silica-carbonate listvenite veins which include opal, quartz, dolomite, magnesite, pyrite, chalcopyrite, serpentine and relicts of chrome spinels and magnetite. The absence of mineralized granitoids and the frequent occurrences of clearcut non-metamorphosed veins indicate that the mineralizing fluids were rich in CO2, H2O, H2S and H4SiO4 and possibly formed as a result of metamorphic dehydration and decarbonation reactions of the oceanic crust at the amphibolite-greenschist facies. Geochemically, the listvenites are enriched in SiO2, MgO, CaO, CO2, LOI, Cr, Ni, Co, Au, Cu, Ag, Hg, and Pt. Also, the veins contain high values of LOI, indicating the H2O-CO2-rich metamorphogenic fluids. The high Cr content and detectable values of K2O, Al2O3 and Na2O in the listvenite veins possibly indicate the presence of fuchsite and chrome spinels. The geochemical signatures attest that the hydrothermal fluids probably derived from a metamorphosed ultramafic protolith. The maximum values for gold, copper, mercury and silver in the listvenites are about 1.9 ppm, 5.4 %, 8 ppm and 6.5 ppm, respectively and provide a unique exploration guide for further gossan sampling, remote sensing mapping, isotopic and fluid inclusion studies in the Iranian metaophiolites.

  1. Control of gallium incorporation in sol–gel derived CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bourlier, Yoan [Institut de Recherche sur les Composants logiciels et matériels pour l’Information et la Communication Avancée (IRCICA), CNRS USR 3380, Université Lille 1, 50 avenue Halley, 59655 Villeneuve d’Ascq CEDEX (France); Cristini Robbe, Odile [Institut de Recherche sur les Composants logiciels et matériels pour l’Information et la Communication Avancée (IRCICA), CNRS USR 3380, Université Lille 1, 50 avenue Halley, 59655 Villeneuve d’Ascq CEDEX (France); Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS UMR 8523, Université Lille, 59655 Villeneuve d’Ascq CEDEX (France); Lethien, Christophe [Institut de Recherche sur les Composants logiciels et matériels pour l’Information et la Communication Avancée (IRCICA), CNRS USR 3380, Université Lille 1, 50 avenue Halley, 59655 Villeneuve d’Ascq CEDEX (France); Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS UMR 8523, Université Lille, 59655 Villeneuve d’Ascq CEDEX (France); Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520, Avenue Poincaré, 59652 Villeneuve d’Ascq CEDEX (France); and others

    2015-10-15

    Highlights: • CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin films were prepared by sol–gel process. • Evolution of lattice parameters is characteristic of a solid solution. • Optical band gap was found to be linearly dependent on the gallium rate. - Abstract: In this paper, we report the elaboration of Cu(In,Ga)S{sub 2} chalcopyrite thin films via a sol–gel process. To reach this aim, solutions containing copper, indium and gallium complexes were prepared. These solutions were thereafter spin-coated onto the soda lime glass substrates and calcined, leading to metallic oxides thin films. Expected chalcopyrite films were finally obtained by sulfurization of oxides layers using a sulfur atmosphere at 500 °C. The rate of gallium incorporation was studied both at the solutions synthesis step and at the thin films sulfurization process. Elemental and X-ray diffraction (XRD) analyses have shown the efficiency of monoethanolamine used as a complexing agent for the preparation of CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin layers. Moreover, the replacement of diethanolamine by monoethanolamine has permitted the substitution of indium by isovalent gallium from x = 0 to x = 0.4 and prevented the precipitation of copper derivatives. XRD analyses of sulfurized thin films CuIn{sub (1−x)}Ga{sub x}S{sub 2,} clearly indicated that the increasing rate of gallium induced a shift of XRD peaks, revealing an evolution of the lattice parameter in the chalcopyrite structure. These results were confirmed by Raman analyses. Moreover, the optical band gap was also found to be linearly dependent upon the gallium rate incorporated within the thin films: it varies from 1.47 eV for x = 0 to 1.63 eV for x = 0.4.

  2. One-step electrodeposition process of CuInSe2: Deposition time effect

    Indian Academy of Sciences (India)

    O Meglali; N Attaf; A Bouraiou; M S Aida; S Lakehal

    2014-10-01

    CuInSe2 thin films were prepared by one-step electrodeposition process using a simplified twoelectrodes system. The films were deposited, during 5, 10, 15 and 20 min, from the deionized water solution consisting of CuCl2, InCl3 and SeO2 onto ITO-coated glass substrates. As-deposited films have been annealed under vacuum at 300 °C during 30 min. The structural, optical band gap and electrical resistivity of elaborated films were studied, respectively, using X-ray diffraction (XRD), Raman spectroscopy, UV spectrophotometer and four-point probe method. The micro structural parameters like lattice constants, crystallite size, dislocation density and strain have been evaluated. The XRD investigation proved that the film deposited at 20 min present CuInSe2 single phase in its chalcopyrite structure and with preferred orientation along (1 1 2) direction, whereas the films deposited at 5, 10 and 15 min show the CuInSe2 chalcopyrite structure with the In2Se3 as secondary phase. We have found that the formation mechanism of CuInSe2 depends on the In2Se3 phase. The optical band gap of the films is found to decrease from 1.17 to 1.04 eV with increase in deposition time. All films show Raman spectra with a dominant A1 mode at 174 cm-1, confirming the chalcopyrite crystalline quality of these films. The films exhibited a range of resistivity varying from 2.3 × 10-3 to 4.4 × 10-1 cm.

  3. Potential distribution of Cu(In,Ga)(S,Se)2-solar cell cross-sections measured by Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Current high-efficiency chalcopyrite thin-film solar cells contain multilayer structures consisting of an absorber, a buffer and a window layer. The modeling and optimization of the structures have been hampered by the lack of characterization methods to assess the electrical potential and conduction band alignment in actual devices. In this work, Kelvin probe force microscopy (KPFM) under ultrahigh vacuum (UHV) conditions is used to directly image the electronic structure of a complete thin film solar cell based on Cu(In,Ga)(S,Se)2 absorber material. The potential distribution along different solar cells is directly measured by KPFM on polished and UHV-cleaned cross-sections. Due to the high-energy sensitivity together with a lateral resolution in the nanometer range, detailed information about the various interfaces within the heterostructure is obtained. In combination with simulations of the tip-sample interaction, the work function of the different layers and the built-in voltage of the heterostructure are deduced. In our previous work, we have demonstrated that the use of a Zn1-xMg xO alloy instead of the i-ZnO layer influences the conduction band offset between chalcopyrite absorber and window layer. This substitution enabled us to improve the solar cell performance from no. etano. =6.3% for the CdS-free solar cell with pure i-ZnO to no. etano. =12.5% for the cell with Zn1-xMg xO, which is comparable to that of the reference cells with a CdS buffer (no. etano. =13.2%). We present KPFM studies of comparable devices to illustrate the possibilities of our novel characterization method. The studies demonstrate that KPFM is an excellent tool for the characterization of heterostructures on a nanometer length scale. In chalcopyrite solar cells, the KPFM technique can lead to a direct correlation between the electronic structure and the solar cell performance

  4. Control of gallium incorporation in sol–gel derived CuIn(1−x)GaxS2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Highlights: • CuIn(1−x)GaxS2 thin films were prepared by sol–gel process. • Evolution of lattice parameters is characteristic of a solid solution. • Optical band gap was found to be linearly dependent on the gallium rate. - Abstract: In this paper, we report the elaboration of Cu(In,Ga)S2 chalcopyrite thin films via a sol–gel process. To reach this aim, solutions containing copper, indium and gallium complexes were prepared. These solutions were thereafter spin-coated onto the soda lime glass substrates and calcined, leading to metallic oxides thin films. Expected chalcopyrite films were finally obtained by sulfurization of oxides layers using a sulfur atmosphere at 500 °C. The rate of gallium incorporation was studied both at the solutions synthesis step and at the thin films sulfurization process. Elemental and X-ray diffraction (XRD) analyses have shown the efficiency of monoethanolamine used as a complexing agent for the preparation of CuIn(1−x)GaxS2 thin layers. Moreover, the replacement of diethanolamine by monoethanolamine has permitted the substitution of indium by isovalent gallium from x = 0 to x = 0.4 and prevented the precipitation of copper derivatives. XRD analyses of sulfurized thin films CuIn(1−x)GaxS2, clearly indicated that the increasing rate of gallium induced a shift of XRD peaks, revealing an evolution of the lattice parameter in the chalcopyrite structure. These results were confirmed by Raman analyses. Moreover, the optical band gap was also found to be linearly dependent upon the gallium rate incorporated within the thin films: it varies from 1.47 eV for x = 0 to 1.63 eV for x = 0.4

  5. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S. [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  6. 混合岩化作用改造的铬铁矿床

    Institute of Scientific and Technical Information of China (English)

    张宝贵

    1977-01-01

    Discussion has been given to the geology and origin of a certain chromite deposit from a viewpoint of migmatization. 47 chromite orebodies have been discovered in this area. All of them, variously shaped as irregular lens, chambers, kidneys,etc., occur in migmatite, showing dear-cut contacts with the latter. Mineralogical composition of these deposits are exceedingly simple, composing mainly of chromium phlogopitc and chromite and, to the less extent, of pyrite, chalcopyrite, galena,rosite aaad etc. The pre-existing chromite deposit, which is magmatic in origin, is decply altered by migmatization, eventually giving rise to metamorphosed chromite deposits as are seen at present day.

  7. Ab-Initio Study of Magnetic Properties of Mn-doped MgSiN

    Science.gov (United States)

    Rufinus, Jeffrey

    2010-03-01

    The current interest in the field of semiconductor spintronics is mostly focused on transition metal-doped binary materials. Recently, however, the explorations of transition metal-dopd ternary semiconductors have gained attention, duel to experimental confirmations of possible high Curie temperature in chalcopyrite compounds. A density functional theory study was performed on Mn-doped ternary material MgSiN2. Our results show Mn-doped MgSiN2 to be antiferromagnetic for MnMg (Mn substitutes Mg site) and ferromagnetic for MnSi (Mn substitutes Si site).

  8. Laser annealing and defect study of chalcogenide photovoltaic materials

    Science.gov (United States)

    Bhatia, Ashish

    Cu(In,Ga)Se2 (CIGSe), CuZnSn(S,Se)4(CZTSSe), etc., are the potential chalcogenide semiconductors being investigated for next-generation thin film photovoltaics (TFPV). While the champion cell efficiency of CIGSe has exceeded 20%, CZTSSe has crossed the 10% mark. This work investigates the effect of laser annealing on CISe films, and compares the electrical characteristics of CIGSe (chalcopyrite) and CZTSe (kesterite) solar cells. Chapter 1 through 3 provide a background on semiconductors and TFPV, properties of chalcopyrite and kesterite materials, and their characterization using deep level transient spectroscopy (DLTS) and thermal admittance spectroscopy (TAS). Chapter 4 investigates electrochemical deposition (nonvacuum synthesis) of CISe followed by continuous wave laser annealing (CWLA) using a 1064 nm laser. It is found that CWLA at ≈ 50 W/cm2 results in structural changes without melting and dewetting of the films. While Cu-poor samples show about 40% reduction in the full width at half maximum of the respective x-ray diffraction peaks, identically treated Cu-rich samples register more than 80% reduction. This study demonstrates that an entirely solid-phase laser annealing path exists for chalcopyrite phase formation and crystallization. Chapter 5 investigates the changes in defect populations after pulse laser annealing in submelting regime of electrochemically deposited and furnace annealed CISe films. DLTS on Schottky diodes reveal that the ionization energy of the dominant majority carrier defect state changes nonmonotonically from 215+/-10 meV for the reference sample, to 330+/-10 meV for samples irradiated at 20 and 30 mJ/cm2, and then back to 215+/-10 meV for samples irradiated at 40 mJ/cm2. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior. Chapter 6 compares the electrical characteristics of chalcopyrite and kesterite materials. Experiments reveal CZTSe cell has an

  9. A density functional study of the high-pressure chemistry of MSiN2(M = Be, Mg, Ca): prediction of high-pressure phases and examination of pressure-induced decomposition

    Science.gov (United States)

    Rebecca Römer, S.; Kroll, Peter; Schnick, Wolfgang

    2009-07-01

    Normal pressure modifications and tentative high-pressure phases of the nitridosilicates MSiN2 with M = Be, Mg, or Ca have been thoroughly studied by density functional methods. At ambient pressure, BeSiN2 and MgSiN2 exhibit an ordered wurtzite variant derived from idealized filled β-cristobalite by a C1-type distortion. At ambient pressure, the structure of CaSiN2 can also be derived from idealized filled β-cristobalite by a different type of distortion (D1-type). Energy-volume calculations for all three compounds reveal transition into an NaCl superstructure under pressure, affording sixfold coordination for Si. At 76 GPa BeSiN2 forms an LiFeO2-type structure, corresponding to the stable ambient-pressure modification of LiFeO2, while MgSiN2 and CaSiN2 adopt an LiFeO2-type structure, corresponding to a metastable modification (24 and 60 GPa, respectively). For both BeSiN2 and CaSiN2 intermediate phases appear (for BeSiN2 a chalcopyrite-type structure and for CaSiN2 a CaGeN2-type structure). These two tetragonal intermediate structures are closely related, differing mainly in their c/a ratio. As a consequence, chalcopyrite-type structures exhibit tetrahedral coordination for both cations (M and Si), whereas in CaGeN2-type structures one cation is tetrahedrally (Si) and one bisdisphenoidally (M) coordinated. Both structure types, chalcopyrite and CaGeN2, can also be derived from idealized filled β-cristobalite through a B1-type distortion. The group-subgroup relation of the BeSiN2/MgSiN2, the CaSiN2, the chalcopyrite, the CaGeN2 and the idealized filled β-cristobalite structure is discussed and the displacive phase transformation pathways are illustrated. The zero-pressure bulk moduli were calculated for all phases and have been found to be comparable to compounds such as α- Si3N4, CaIrO3 and Al4C3. Furthermore, the thermodynamic stability of BeSiN2, MgSiN2 and CaSiN2 against phase agglomerates of the binary nitrides M3N2 and Si3N4 under pressure are examined.

  10. Growth and characterization of CuIn{sub x}Ga{sub 1-x}Te{sub 2} used for photovoltaic conversion

    Energy Technology Data Exchange (ETDEWEB)

    Benabdeslem, M.; Bechiri, L.; Benslim, N.; Mahdjoubi, L.; Hannech, E.B.; Zouiti, M. [Laboratoire des Surfaces et Interfaces (LSIMS), Universite d' Annaba (Algerie) (France); Nouet, G. [CRISMAT-ISMRA, Universite, 6-Boulevard du Marechal Juin, 14050 Caen (France)

    2006-02-15

    Bulk and thin films of CuIn{sub 0.75}Ga{sub 0.25}Te{sub 2} have been grown using respectively the sealed quartz ampoule and the flash evaporation techniques. X-ray diffraction results showed that the semiconductor has the chalcopyrite structure. The gaps of the materials were determined from optical measurements and found to be 0.99 and 1.14eV, respectively for bulk and annealed films. Photoluminescence data showed a broad emission localised at 1.05eV. (author)

  11. STUDY ON OCCURENCE FORM OF PLATINUM IN XINJIE Cu—Pt DEPOSIT BY NAA AND SCANNING PROTON MICROPROBE

    Institute of Scientific and Technical Information of China (English)

    李晓林; 童纯菡; 等

    1995-01-01

    A combination of NAA and micro-PIXE was used to study concentrations and distributions of platinum group elements (PGE) in ores from Xinjie Cu-Pt deposit.The NAA results of the bulk indicate that the ores belong to the enriched Pt-Pd type.The element concentration maps of scanning micro-PIXE for the ores show that the occurence form of Pt is independent arsenide minerals.No PGE were detected in chalcopyrite of Xinjie Cu-Pt deposit.These information are economically beneficial to the mineral smelting process.

  12. Effect of radiation on wettability and floatability of sulfide minerals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The feasibility for modifying the wettability and floatability of sulfide minerals by electron beam irradiation has been studied experimentally. The wettability of crystalline pyrite and floatability of some sulfide as pyrite, arsenopyrite, chalcopyrite and marmatite after irradiation were examined by flotation in a modified Hallimond tube. Experimental results show that the hydrophobicity of crystalline pyrite enhances with the increase of irradiation dose in a low dose range. And the flotation responses of sulfide minerals on irradiation dosevary with the mineral species and particle size. The floatability of minerals can be regulated by altering irradiation dose. An explanationfor the mechanism has been suggested based on the principle of radiation chemistry.

  13. Research Update: Cu-S based synthetic minerals as efficient thermoelectric materials at medium temperatures

    Science.gov (United States)

    Suekuni, Koichiro; Takabatake, Toshiro

    2016-10-01

    Synthetic minerals and related systems based on Cu-S are attractive thermoelectric (TE) materials because of their environmentally benign characters and high figures of merit at around 700 K. This overview features the current examples including kesterite, binary copper sulfides, tetrahedrite, colusite, and chalcopyrite, with emphasis on their crystal structures and TE properties. This survey highlights the superior electronic properties in the p-type materials as well as the close relationship between crystal structures and thermophysical properties. We discuss the mechanisms of high power factor and low lattice thermal conductivity, approaching higher TE performances for the Cu-S based materials.

  14. Chemical extraction of copper from copper sulphide ores of Pakistan by roast leach method

    International Nuclear Information System (INIS)

    Copper ores, containing both complex sulphide minerals and those containing chalcopyrite mineral, were studied for the extraction of copper by leaching after roasting. Roasting at 650 deg. C for 30 min rendered the ore leachable in dilute sulphuric acid of 2.5% concentration. The process of metal extraction would be of hydro metallurgical importance for low to high grade sulphide and polymetallic complex sulphide ores occurring in Pakistan. The kinetic models of roasting reaction fit phase boundary as well as diffusion reaction mechanism. (author)

  15. Mineralogy and fluid inclusion studies in kalchoye Copper- gold deposit, East of Esfahan

    Directory of Open Access Journals (Sweden)

    Rezvan Mehvary

    2009-09-01

    Full Text Available Kalchoye Copper-gold deposit is located about 110 kilometers east of Esfahan province and within the Eocene volcano sedimentary rocks. Sandy tuff and andesite lava are important members of this complex.The form of mineralization in area is vein and veinlet and quartz as the main gangue phase. The main ore minerals are chalcopyrite, chalcocite, galena and weathered minerals such as goethite, iron oxides, malachite and azurite. Studies in area indicate that ore mineralization Kalchoye is low sulfide, quartz type of hydrothermal ore deposits and results of thermometry studies on quartz minerals low- medium fluid with low potential mineralization is responsible for mineralization in this area.

  16. Selenium, tellurium and precious metal mineralogy in Uchalinsk copper-zinc-pyritic district, the Urals

    Science.gov (United States)

    Vikentev, I.

    2016-04-01

    During processing the most of Au, Ag, Se, Te, Pb, Bi, Sb, Hg as well as notable part of Cu, Zn and Cd fail for tailings and became heavy metal pollutants. Modes of occurrence of Au, Ag, Te and Se covers two giant VMS deposits: Uchaly (intensively deformed) and Uzelginsk (altered by late hydrothermal processes) as well as middle-sized Molodezn and West Ozern deposits (nondeformed) have been studied. Mineral forms of these elements as well as their presence in disperse mode in common ore minerals (pyrite, chalcopyrite, sphalerite) have been studied using SEM, EPMA, INAA, ICP-MS and LA-ICP-MS.

  17. Proton non-Rutherford backscattering study of oxidation kinetics in Cu and Fe sulphides

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M. [Padua Univ. (Italy). Dipt. di Fisica]|[INFN - Laboratori Nazionali di Legnaro, via Romea 4, 35020 Legnaro (Padova) (Italy); Giuntini, L. [INFN - Firenze, Largo Fermi 2, 50125 Firenze (Italy); Pratesi, G. [Museo di Mineralogia e Litologia, Universita di Firenze, via La Pira 4, 50121 Firenze (Italy); Santo, A.P. [Dipartimento di Scienze della Terra, Universita di Firenze, via La Pira 4, 50121 Firenze (Italy)

    1998-04-01

    Non-Rutherford backscattering spectrometry (NBS) with 2.4 MeV protons was performed for depth profiling of oxygen in three species of copper and iron sulphides - pyrite, chalcopyrite and bornite - on both altered and fresh surfaces. The tarnished surfaces were obtained by bathing samples in H{sub 2}O{sub 2} (35% vol.) for 100 and 1000 s. The spectra collected were compared to simulations to extract quantitative data on oxygen depth distributions for the different bathing times. The measurements have shown that the kinetics of oxidation has completely different patterns in the three investigated minerals. (orig.) 11 refs.

  18. Studies on Environmentally Friendly Leaching Processes in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The newly developed green leaching processes for chromium, lead and gold extraction from ores or concentrates are described. The chromium is extracted from the iron chromite ore with fused sodium hydroxide at 500-550°C as sodium chromate. The galena in lead sulfide concentrate is converted into lead carbonate in ammonium or sodium carbonate solution at 50-80°C followed by the separation of lead carbonate formed from the unconverted sulfide ores by flotation. Gold associated with sulfide ore (such as pyrite and chalcopyrite) can be extracted into sodium thiosulfate solution without any pretreatment such as roasting, high pressure aqueous oxidation or bacteria pre-leaching.

  19. The geology and mineralogy of the uranium occurrence at Hoehensteinweg near Poppenreuth (NE Bavaria) - a model of its mode of formation

    International Nuclear Information System (INIS)

    The uranium mineralization consists of U oxides, U titanates, U silicates and secondary U minerals, arranged roughly in order of crystallization. These ores are associated with muscovite, chlorite and smectite. The non-uranium mineralization consists of scheelite, arsenopyrite, native gold, pyrite/chalcopyrite, Bi/Pb-selenides, sulphides and iron sulphides. Scheelite only occurs in the outermost part of the granite (e.g. at Tirschenreuth). Isotope disequilibria show that further redeposition of uranium minerals probably took place in joints and alteration zones in recent or sub-recent times. The uranium mineralization is, on the basis of its geological setting, comparable with the Spanish deposits of Iberian type. (orig./HP)

  20. The Chahe Copper Deposit—Its Age and Genesis

    Institute of Scientific and Technical Information of China (English)

    张玉学; 邵树勋; 等

    1995-01-01

    The Chahe copper deposit occurs in the Early Proterozoic metamorphic series in the area of Chahe and its chalcopyrite yielded a Pb-Pb isochron age of 951±36 Ma ,providing evidence for copper mineralization at the early stage of the Jinning movement. The ore -forming material came from terrestrial clastic sediments and marine volcamic eruption and the ores were deposited in a relatively open beach environment. The Jinning movement led to folding and metamorphism of country strata, as well as to the rebomilization and transport of copper ,resulting in ore deposition in structurally weak locations. This deposit is a volcano-sedimentary metamorphic deposit.

  1. The study of molybdenite types related to the ore processing plant of the Sar Cheshmeh mine

    Directory of Open Access Journals (Sweden)

    Balandeh Aminzadeh

    2010-11-01

    Full Text Available Molybdenite occurs in five forms in the Sar Cheshmeh porphyry copper deposit, namely, (1-veinlets with quartz-molybdenite, (2-veinlets with quartz-molydenite that were filled with pyrite, (3-veinlets with quartz-molybdenite-pyrite–chalcopyrite, (4-Molybdenite veinlets with very low quartz and (5-disseminated molybdenite grains. Because of their large size, the veinlet-related molybdenite grains are easily liberated from the gangue minerals, provided the grinding is properly conducted (74 micron. Because of their fine-grain size, the disseminated molybdenite grains are not liberated from the gangue and enter the tailings during the flotation process.

  2. Preparation and characterization of Zn Se thin films

    CERN Document Server

    Ganchev, M; Stratieva, N; Gremenok, V; Zaretskaya, E; Goncharova, O

    2003-01-01

    Chemical bath deposition technique for preparation of ZnSe thin films is presented. The influence of bath temperature and duration of deposition on film growth and quality has been studied. The effect of post-deposition annealing in different ambient is also discussed. It has been determined that heat treatment removes the oxygen-containing phase from the as-deposited films and improves crystallinity. The optical and electric properties of the deposits show their potential for an alternative buffer layer in chalcopyrite-based solar cells.

  3. Physical properties and petrologic description of rock samples from an IOCG mineralized area in the northern Fennoscandian Shield, Sweden

    DEFF Research Database (Denmark)

    Sandrin, Alessandro; Edfelt, Å.; Waight, Tod Earle;

    2009-01-01

    magnetization, variation of magnetic susceptibility with temperature, Curie temperature and density). The major Cu-prospect in the area has been studied by magnetic and electron microprobe analyses of four selected rock samples. The samples are from an exploration well that intersects the main Cu mineralized......, microprobe observations indicate that Fe-sulfides are present in negligible amounts in the samples from the Tjårrojåkka area. The strong spatial relationship of Cu-minerals (e.g., chalcopyrite) and the oxidation of magnetite to hematite suggest that the presence of rocks with low magnetic susceptibility...

  4. The formation of CuInSe{sub 2}-based thin-film solar cell absorbers from alternative low-cost precursors

    Energy Technology Data Exchange (ETDEWEB)

    Jost, S.

    2008-01-18

    This work deals with real-time investigations concerning the crystallisation process of CuInSe{sub 2}-based thin-film solar cell absorbers while annealing differently produced and composed ''low-cost'' precursors. Various types of precursors have been investigated concerning their crystallisation behaviour. Three groups of experiments have been performed: (i) Investigations concerning the crystallisation process of the quaternary chalcopyrite Cu(In,Al)Se{sub 2} and Cu(In,Al)S{sub 2}, (ii) investigations concerning the formation process of the compound semiconductor CuInSe{sub 2} from electroplated precursors, and (iii) investigations concerning the crystallisation of Cu(In,Ga)Se{sub 2} using precursors with thermally evaporated indium. A specific sample surrounding has been constructed, which enables to perform time-resolved angle-dispersive X-ray powder diffraction experiments during the annealing process of precursor samples. A thorough analysis of subsequently recorded diffraction patterns using the Rietveld method provides a detailed knowledge about the semiconductor crystallisation process while annealing. Based on these fundamental investigations, conclusions have been drawn concerning an adaptation of the precursor deposition process in order to optimise the final solar cell results. The investigations have shown, that one class of electroplated precursors shows a crystallisation behaviour identical to the one known for vacuum-deposited precursors. The investigations concerning the crystallisation process of the quaternary chalcopyrite Cu(In,Al)Se{sub 2} revealed, that the chalcopyrite forms from the ternary selenide (Al,In){sub 2}Se{sub 3} and Cu{sub 2}Se at elevated process temperatures. This result is used to explain the separation of the absorber layer into an aluminum-rich and an indium-rich chalcopyrite phase, which has been observed at processed Cu(In,Al)Se{sub 2} absorbers from several research groups. In addition, differences

  5. CuGaTe2-CuAlTe2 system

    International Nuclear Information System (INIS)

    The results of studies on the chemical interaction in the CuGaTe2-CuAlTe2 as well as on the thermal and optical properties of the formed solid solutions are presented. It is shown, that continuous number of solid solutions are formed in the CuGaTe2-CuAlTe2 system, which crystallize in the chalcopyrite structure. The diagram of state of this system is plotted. The thermal expansion of these materials is studied through the dilatometric method. The linear dependence of the thermal expansion coefficient on the composition is established. The concentration dependences of the forbidden zone width diverge from the linearity

  6. Fabrication and properties of AgInTe2 thin films

    International Nuclear Information System (INIS)

    The results of studying the structure, composition and optical properties of thin films of the AgInTe2 ternary system, obtained through the method of pulsed laser evaporation, are presented for the first time. It is established, that the above films are characterized by chalcopyrite structure and their composition corresponds to the composition of crystals, used as a target. The interzone transition energies and values of crystalline and spin-orbital fission are calculated. The optical characteristics were determined from the equations for reflection and transmission in the air/film/glass substrate/air system

  7. Growth and characterisation of (CuInTe{sub x}){sub 1-x} (2 ZnTe){sub x} solid solution single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, I.V. [Belorusskij Gosudarstvennyj Univ., Minsk (Belarus). Khimicheskij Fakul' tet; Eifler, A.; Riede, V. [Belorusskij Gosudarstvennyj Univ., Minsk (Belarus). Khimicheskij Fakul' tet; Leipzig Univ. (Germany). Arbeitsgruppe Duennschichttechnik; Doering, Th.; Schmitz, W.; Bente, K. [Belorusskij Gosudarstvennyj Univ., Minsk (Belarus). Khimicheskij Fakul' tet; Inst. fuer Mineralogie, Kristallographie und Materialwissenschaft, Univ. Leipzig (Germany); Gremenok, V.F.; Victorov, I.A. [Belorusskij Gosudarstvennyj Univ., Minsk (Belarus). Khimicheskij Fakul' tet; Inst. of Physics of Solids and Semiconductors, National Academy of Sciences, Minsk (Belarus)

    2000-07-01

    The crystal structure as well as the optical properties in the band gap region of (CuInTe{sub 2}){sub 1-x} (2 ZnTe){sub x} solid solution single crystals grown by directional freezing have been studied. The lattice constants exhibit a linear dependence on crystal composition. The chalcopyrite-sphalerite phase transition was observed between x = 0.3 and x = 0.4. The variation of the band gap with respect to crystal composition can be described by a quadratic expression. (orig.)

  8. Studies on genesis of chromite and PGE in Naein ophiolite melange

    Directory of Open Access Journals (Sweden)

    Reza Shamsipour Dehkordi

    2011-10-01

    Full Text Available Nain ophiolite melange is located 140 Km east of Isfahan. Based on the geological studies, this area belongs to Mesozoic ophiolite of Urumieh – Dokhtar zone, west of central Iran. Country rocks are pridotite and serpentinized pridotite. The pridotite rocks are composed of Harzburgite, Lherzolite and replacement Dunite which is belong to spinel pridotite facies. Paragenesis of ore minerals are Chromite, Irarsite, Magnetite, Hematite, Pentlandite, Millerite, Chalcopyrite, Pyrite, and Covelline. Geochemical surveys of host rock and chromite show tholeiite series of magma and alpine type chromite. PGE (Ir, Pt, Pd, and Os are enriched in chromite. REE spider diagram pattern show the processes of boninitic magma and partial melting.

  9. Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors

    Science.gov (United States)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.

  10. Properties of CuInS2 thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    CuInS2 thin films of about 1 μm are prepared by spray pyrolysis. The X-ray analysis shows that the film sprayed at 1:1:3 ratio in the spraying mixture present single phase CuInS2 with chalcopyrite structure, and oriented preferentially in the (112) direction. The optical band gap at room temperature is around 1.45 eV. The composition of the thin films can be controlled by varying the sulphur content in the spray solution as shown by electron probe micro-analysis. The electrical properties are studied by varying the Cu:In ratio. (orig.)

  11. Reclamation of copper mine tailings using sewage sludge

    OpenAIRE

    Stjernman Forsberg, Lovisa

    2008-01-01

    Tailings are the fine-grained fraction of waste produced during mining operations. This work was carried out on tailings from the Aitik copper mine in northern Sweden. Establishment of vegetation on the Aitik mine tailings deposit is planned to take place at closure of the mine, using sewage sludge as fertiliser. However, the tailings contain traces of metal sulphides, e.g. pyrite, FeS2, and chalcopyrite, CuFeS2. When the sulphides are oxidised, they start to weather and release metals and st...

  12. Isolation of Leptospirillum ferriphilum by single-layered solid medium

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-she; XIE Xue-hui; XIAO Sheng-mu; WANG Xiu-mei; ZHAO Wen-jie; TIAN Zhuo-li

    2007-01-01

    According to physiological and biochemical characteristics of Leptospirillum ferriphilum, a strain of object bacteria was isolated successfully. Bacteria were enriched by selective liquid medium and plated on designed single-layered agar solid medium.Colony was cultured and bacteria were collected. The morphologies of the object bacteria were observed using crystal violet staining,scanning electron microscope(SEM) and transmission electron microscope (TEM). The result of 16S rDNA identification shows that this bacterium belongs to Leptospirillum ferriphilum and it is named as Leptospirillum ferriphilum strain D1. These results indicate that this new single-layered agar solid medium is efficient and simple for isolation of Leptospirillum ferriphilum. Additionally,physiological-biochemical characteristics show that the optimum initial pH value and its growth temperature are 1.68 and 40 ℃,respectively. The culture of it is used to leach a complex concentrate chalcopyrite, the leaching efficiencies of copper and iron are 1.93% and 13.74%, respectively, and it is more effective than the A.ferrooxidans culture in the leaching of the complex concentrate chalcopyrite.

  13. Application of Raman Spectroscopy to the Biooxidation Analysis of Sulfide Minerals

    Directory of Open Access Journals (Sweden)

    J. V. García-Meza

    2012-01-01

    Full Text Available We report the application of confocal laser scanning microscopy CLSM and Raman spectroscopy on the (biochemical oxidation of pyrite and chalcopyrite, in order to understand how surface sulfur species (S2−/S0 affects biofilm evolution during mineral colonization by Acidithiobacillus thiooxidans. We found that cells attachment occurs as cells clusters and monolayered biofilms within the first 12 h. Longer times resulted in the formation of micro- and macrocolonies with variable cell density and higher epifluorescence signal of the extracellular polymeric substances (EPS, indicating double dynamic activity of A. thiooxidans: sulfur biooxidation and biofilm formation. Raman spectra indicated S2−/S0 consumption modification during biofilm evolution. Hence, cell density increase was primarily associated with the presence of S0; the presence of refractory sulfur species on the mineral surfaces does not to affect biofilm evolution. The EPS of the biofilms was mainly composed of extracellular hydrophobic compounds (vr. gr. lipids and a minor content of hydrophilic exopolysaccharides, suggesting a hydrophobic interaction between attached cells and the altered pyrite and chalcopyrite.

  14. Leaching of complex sulphide concentrate in acidic cupric chloride solutions

    Institute of Scientific and Technical Information of China (English)

    M. TCHOUMOU; M. ROYNETTE

    2007-01-01

    The chemical analysis of a complex sulphide concentrate by emission spectrometry and X-ray diffraction shows that it contains essentially copper, lead, zinc and iron in the form of chalcopyrite, sphalerite and galena. A small amount of pyrite is also present in the ore but does not be detected with X-ray diffraction. The cupric chloride leaching of the sulphide concentrate at various durations and solid/liquid ratios at 100 ℃ shows that the rate of dissolution of the ore is the fastest in the first several hours, and after 12 h it does not evolve significantly. If oxygen is excluded from the aqueous cupric chloride solution during the leaching experiment at 100 ℃, the pyrite in the ore will not be leached. The determination of principal dissolved metals in the leaching liquor by flame atomic absorption spectrometry, and the chemical analysis of solid residues by emission spectrometry and X-ray diffraction allow to conclude that the rate of dissolution of the minerals contained in the complex sulphide concentrate are in the order of galena>sphalerite>chalcopyrite.

  15. Flotation separation of arsenopyrite from several sulphide minerals with organic depressants

    Institute of Scientific and Technical Information of China (English)

    Wang Fuliang; Wang Ligang; Sun Chuanyao

    2008-01-01

    In this paper,the separation of arsenopyrite from chalcopyrite,pyrite,galena with organic depressants (guergum and sodium humic)was discussed,and the functioning mechanism of those organic depressants was dis-cussed.The experimental results of monomineral flotation indicated that both guergum and sodium humic have depress-ing effect on arsenopyrite in the presence of ethyl xanthate.Guergum and sodium humic showed different depressing a-bility to pyrite,chalcopyrite and galena,and the higher the pH value in pulp,the stronger the depressing ability.Ultra-violet-Visible Spectrophotometric study showed that the adsorption layer of xanthate on surface of minerals had been de-sorbed by the two organic depressants,and the selective desorption of the collector layer was found from different miner-als.The xanthate cover on minerals surface was set free when dosage of the organic depressants was high enough.For artificially-mixed minerals,the separation of arsenopyrite from other sulphides was successfully realized by controlling dosage of the organic depressants.And sodium humic had been used successfully to decrease arsenic content in sulphide concentr ates in a commercial Lead-Zinc concentrator.

  16. Untersuchungen von Defektchalkopyrithalbleitern [vacancy] AB$_2$C$_4$ mit der Methode der gestoerten $\\gamma-\\gamma$- Winkelkorrelation (PAC)

    CERN Document Server

    Dietrich, M

    1998-01-01

    The compounds [vacancy]AB$_2$C$_4$ with defect chalcopyrite structure are especially interesting among the ternary semiconductors. The reason is the occurrence of vacancies in an ordered and stoichiometric manner. Representatives of defect chalcopyrites have been implanted with radioactive probe isotopes mainly at the mass separator ISOLDE at CERN. The nuclear quadrupole interactions of the probe nuclei with the electric field gradients at lattice sites have been observed with perturped $\\gamma-\\gamma$ -angular correlation spectroscopy (PAC). The annealing of the implantation induced lattice damage takes place at temperatures in between 700 K and 1100 K in the substances investigated. $^{117}$Cd, $^{111}$In and $^{77}$Br substitute the Cd-site, both Ga-sites and the Se-site, resp., in CdGa$_2$Se$_4$. The probe $^{111}$Ag substitutes the vacancy. Both the experimentally and the theoretically determined electric field gradients are in the order of magnitude of 10E21 V/m$^2$. At elevated temperatures, disorder o...

  17. Hydrometallurgical Extraction of Zinc and Copper - A {sup 57}Fe-Moessbauer and XRD Approach

    Energy Technology Data Exchange (ETDEWEB)

    Mulaba-Bafubiandi, A. F., E-mail: antoinemulaba@hotmail.com [Technikon Witwatersrand, Extraction Metallurgy Department, Faculty of Engineering (South Africa); Waanders, F. B., E-mail: chifbw@puk.ac.za [North-West University (Potchefstroom campus), School of Chemical and Minerals Engineering (South Africa)

    2005-02-15

    The most commonly used route in the hydrometallurgical extraction of zinc and copper from a sulphide ore is the concentrate-roast-leach-electro winning process. In the present investigation a zinc-copper ore from the Maranda mine, located in the Murchison Greenstone Belt, South Africa, containing sphalerite (ZnS) and chalcopyrite (CuFeS{sub 2}), was studied. The {sup 57}Fe-Moessbauer spectrum of the concentrate yielded pyrite, chalcopyrite and clinochlore, consistent with XRD data. Optimal roasting conditions were found to be 900{sup o}C for 3 h and the calcine produced contained according to X-ray diffractometry equal amounts of franklinite (ZnFe{sub 2}O{sub 4}) and zinc oxide (ZnO) and half the amount of willemite (Zn{sub 2}SiO{sub 4}). The Moessbauer spectrum showed predominantly franklinite (59%), hematite (6%) and other Zn- or Cu-depleted ferrites (35%). The latter could not be detected by XRD analyses as peak overlapping with other species occurred. Leaching was done with HCl, H{sub 2}SO{sub 4} and HNO{sub 3}, to determine which process would result in maximum recovery of Zn and Cu. More than 80% of both were recovered by using either one of the three techniques. From the residue of the leaching, the Fe-compounds were precipitated and <1% of the Zn and Cu was not recovered.

  18. Hydrometallurgical Extraction of Zinc and Copper - A 57Fe-Moessbauer and XRD Approach

    International Nuclear Information System (INIS)

    The most commonly used route in the hydrometallurgical extraction of zinc and copper from a sulphide ore is the concentrate-roast-leach-electro winning process. In the present investigation a zinc-copper ore from the Maranda mine, located in the Murchison Greenstone Belt, South Africa, containing sphalerite (ZnS) and chalcopyrite (CuFeS2), was studied. The 57Fe-Moessbauer spectrum of the concentrate yielded pyrite, chalcopyrite and clinochlore, consistent with XRD data. Optimal roasting conditions were found to be 900oC for 3 h and the calcine produced contained according to X-ray diffractometry equal amounts of franklinite (ZnFe2O4) and zinc oxide (ZnO) and half the amount of willemite (Zn2SiO4). The Moessbauer spectrum showed predominantly franklinite (59%), hematite (6%) and other Zn- or Cu-depleted ferrites (35%). The latter could not be detected by XRD analyses as peak overlapping with other species occurred. Leaching was done with HCl, H2SO4 and HNO3, to determine which process would result in maximum recovery of Zn and Cu. More than 80% of both were recovered by using either one of the three techniques. From the residue of the leaching, the Fe-compounds were precipitated and <1% of the Zn and Cu was not recovered.

  19. Synthesis of CuIn{sub x}Ga{sub 1−x}Se{sub 2} nanoparticles in organic solvent for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Jae-Sub [Department of Nano and Chemical Engineering, Kunsan National University, Jeonbuk, 573–701 (Korea, Republic of); Lee, Soo-Ho; Seo, Moon-Soo [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440–746 (Korea, Republic of); Choi, Dae-Kyu [School of New Material Science, Chonbuk National University, Jeonbuk, 561, 756 (Korea, Republic of); Lee, Jaehyeong [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440–746 (Korea, Republic of); Shim, Joongpyo, E-mail: jpshim@kunsan.ac.kr [Department of Nano and Chemical Engineering, Kunsan National University, Jeonbuk, 573–701 (Korea, Republic of)

    2013-11-01

    Chalcopyrite CuIn{sub 1−x}Ga{sub x}Se{sub 2} (CIGS; x < 0.3) nanoparticles were synthesized by reacting CuCl, InCl{sub 3}, GaCl{sub 3} and Se in oleyl amine over 250 °C. Depending on the reaction temperature and duration, the obtained nanoparticles had sizes of less than 100 nm and different chemical compositions. Because the atomic percentage of Se decreased with increasing reaction time, the proportion of Se and Ga content also changed. Furthermore, the lattice parameters, a and c, changed with increasing reaction temperature and time. Lastly, the bandgap energies of the CIGS films coated on glass plates were ∼ 0.98 eV and did not significantly change with increasing heat-treatment temperature. - Highlights: • CuIn{sub 1−x}Ga{sub x}Se{sub 2} (x < 0.3) nanoparticles synthesized by solution process in oleyl amine. • Se an Ga content in chalcopyrite particles increased with reaction time. • The nanoparticle lattice parameters changed with reaction temperature and time. • Band gaps remained fairly stable upon change of reaction temperature and time.

  20. Synthesis of Cu-Poor Copper-Indium-Gallium-Diselenide Nanoparticles by Solvothermal Route for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Chung Ping Liu

    2014-01-01

    Full Text Available Copper-indium-gallium-diselenide (CIGS thin films were fabricated using precursor nanoparticle ink and sintering technology. The precursor was a Cu-poor quaternary compound with constituent ratios of Cu/(In+Ga=0.603, Ga/(In+Ga=0.674, and Se/(Cu+In+Ga=1.036. Cu-poor CIGS nanoparticles of chalcopyrite for solar cells were successfully synthesized using a relatively simple and convenient elemental solvothermal route. After a fixed reaction time of 36 h at 180°C, CIGS nanocrystals with diameters in the range of 20–70 nm were observed. The nanoparticle ink was fabricated by mixing CIGS nanoparticles, a solvent, and an organic polymer. Analytical results reveal that the Cu-poor CIGS absorption layer prepared from a nanoparticle-ink polymer by sintering has a chalcopyrite structure and a favorable composition. For this kind of sample, its mole ratio of Cu : In : Ga : Se is equal to 0.617 : 0.410 : 0.510 : 2.464 and related ratios of Ga/(In+Ga and Cu/(In+Ga are 0.554 and 0.671, respectively. Under the condition of standard air mass 1.5 global illumination, the conversion efficiency of the solar cell fabricated by this kind of sample is 4.05%.

  1. Invisible gold in Colombian auriferous soils

    Energy Technology Data Exchange (ETDEWEB)

    Bustos Rodriguez, H., E-mail: hbustos@ut.edu.co; Oyola Lozano, D.; Rojas Martinez, Y. A. [Universidad del Tolima, Departamento de Fisica (Colombia); Perez Alcazar, G. A. [Universidad del Valle, Departamento de Fisica (Colombia); Balogh, A. G. [Darmstadt University of Technology, Institute of Materials Science (Germany)

    2005-11-15

    Optic microscopy, X-ray diffraction (XRD), Moessbauer spectroscopy (MS), Electron microprobe analysis (EPMA) and secondary ions mass spectroscopy (SIMS) were used to study Colombian auriferous soils. The auriferous samples, collected from El Diamante mine, located in Guachavez-Narino (Colombia), were prepared by means of polished thin sections and polished sections for EPMA and SIMS. Petrography analysis was made using an optical microscope with a vision camera, registering the presence, in different percentages, of the following phases: pyrite, quartz, arsenopyrite, sphalerite, chalcopyrite and galena. By XRD analysis, the same phases were detected and their respective cell parameters calculated. By MS, the presence of two types of pyrite was detected and the hyperfine parameters are: {delta}{sub 1} = 0.280 {+-} 0.01 mm/s and {Delta}Q{sub 1} = 0.642 {+-} 0.01 mm/s, {delta}{sub 2} = 0.379 {+-} 0.01 mm/s and {Delta}Q{sub 2} = 0.613 {+-} 0.01 mm/s. For two of the samples MS detected also the arsenopyrite and chalcopyrite presence. The mean composition of the detected gold regions, established by EPMA, indicated 73% Au and 27% Ag (electrum type). Multiple regions of approximately 200 x 200 {mu}m of area in each mineral sample were analyzed by SIMS registering the presence of 'invisible gold' associated mainly with the pyrite and occasionally with the arsenopyrite.

  2. Invisible gold in Colombian auriferous soils

    Science.gov (United States)

    Bustos Rodriguez, H.; Oyola Lozano, D.; Rojas Martínez, Y. A.; Pérez Alcázar, G. A.; Balogh, A. G.

    2005-11-01

    Optic microscopy, X-ray diffraction (XRD), Mössbauer spectroscopy (MS), Electron microprobe analysis (EPMA) and secondary ions mass spectroscopy (SIMS) were used to study Colombian auriferous soils. The auriferous samples, collected from El Diamante mine, located in Guachavez-Nariño (Colombia), were prepared by means of polished thin sections and polished sections for EPMA and SIMS. Petrography analysis was made using an optical microscope with a vision camera, registering the presence, in different percentages, of the following phases: pyrite, quartz, arsenopyrite, sphalerite, chalcopyrite and galena. By XRD analysis, the same phases were detected and their respective cell parameters calculated. By MS, the presence of two types of pyrite was detected and the hyperfine parameters are: δ 1 = 0.280 ± 0.01 mm/s and Δ Q 1 = 0.642 ± 0.01 mm/s, δ 2 = 0.379 ± 0.01 mm/s and Δ Q 2 = 0.613 ± 0.01 mm/s. For two of the samples MS detected also the arsenopyrite and chalcopyrite presence. The mean composition of the detected gold regions, established by EPMA, indicated 73% Au and 27% Ag (electrum type). Multiple regions of approximately 200 × 200 μm of area in each mineral sample were analyzed by SIMS registering the presence of “invisible gold” associated mainly with the pyrite and occasionally with the arsenopyrite.

  3. Effects of pulsed laser annealing on deep level defects in electrochemically-deposited and furnace annealed CuInSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, A. [Materials Science and Engineering, University of Utah, Salt Lake City (United States); Meadows, H. [Laboratoire Photovoltaïque, University of Luxembourg, Belvaux (Luxembourg); Hlaing Oo, W.M. [Materials Science and Engineering, University of Utah, Salt Lake City (United States); Dale, P.J. [Laboratoire Photovoltaïque, University of Luxembourg, Belvaux (Luxembourg); Scarpulla, M.A., E-mail: scarpulla@eng.utah.edu [Materials Science and Engineering, University of Utah, Salt Lake City (United States); Electrical and Computer Engineering, University of Utah, Salt Lake City (United States)

    2013-03-01

    CuInSe{sub 2} (CISe) is a prototype material for the I–III–VI chalcopyrites such as Cu(In,Ga)(S,Se){sub 2} used as absorber layers in thin film photovoltaic cells. Carefully-controlled pulsed-laser annealing (PLA) is a unique annealing process that has been demonstrated to improve the device performance of chalcopyrite solar cells. Here, we investigate the changes in defect populations after PLA of electrochemically-deposited CISe thin films previously furnace annealed in selenium vapor. The films were irradiated in the sub-melting regime at fluences inducing temperatures up to 840 ± 100 K. Deep-level transient spectroscopy on Schottky diodes reveals that the activation energy of the dominant majority carrier trap changes non-monotonically from 215 ± 10 meV for the reference sample, to 330 ± 10 meV for samples irradiated at 20 and 30 mJ/cm{sup 2}, and then back to 215 ± 10 meV for samples irradiated at 40 mJ/cm{sup 2}. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior. - Highlights: ► Pulsed laser annealing (PLA) effects studied on CuInSe{sub 2} films ► PLA improves crystalline order parameter. ► PLA induces changes in majority carrier defect levels.

  4. Structural, electronic and optical properties of AgXY{sub 2}(X = Al, Ga, In and Y = S, Se, Te)

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Saeed; Din, Haleem Ud [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 119, Université de Tlemcen, Tlemcen 13000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, Mascara 29000 (Algeria); Naeemullah [Department of Physics, G.D.C. Darra Adam Khel, F.R. Kohat, KPK (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2014-12-25

    Highlights: • The compounds are studied by FP-LAPW method within mBJ approximation. • All of the studied materials show isotropic behavior. • All the compounds show direct band gap nature. • Bonding nature is mostly covalent among the studied compounds. • High absorption peaks and reflectivity ensures there utility in optoelectronic devices. - Abstract: The structural, electronic and optical properties of the ternary semiconducting compounds AgXY{sub 2} (X = Al, Ga, In and Y = S, Se, Te) in Heusler and chalcopyrite crystal phases have been investigated using the density functional theory (DFT) based on the full potential linear augmented plane wave (FP-LAPW) method. The calculated lattice constant and band gap values for AgXY{sub 2} in chalcopyrite phase are in good agreement with the available experimental data. Band structure calculations are performed using modified Becke–Johnson (mBJ) method which match closely with experimental data and yield better band gaps rather than those obtained by using generalized gradient approximation (GGA) and Engel–Vosko generalized gradient approximation (EV–GGA). Decrease in band gap is observed by changing cations X and Y from the top to bottom of periodic table. Chemical bonding trends are predicted through charge density plots and quantified by Bader’s analysis. Optical properties reveal that these compounds are suitable candidates for optoelectronic devices in the visible and ultraviolet (UV) regions.

  5. AES depth profile and photoconductive studies of AgInS2 thin films prepared by co-evaporation

    Directory of Open Access Journals (Sweden)

    C. A Arredondo

    2014-06-01

    Full Text Available In this study, thin films of AgInS2 with chalcopyrite-type tetragonal structure were grown by means of a procedure based on the sequential evaporation of metallic precursors in presence of elemental sulfur in a two-stage process. The effect of the growth temperature and the proportion of the evaporated Ag mass in relation to the evaporated In mass (mAg/mIn on the phase and homogeneity in the chemical composition were researched through X-ray diffraction measurements and Auger electrons spectroscopy. These measurements evidenced that the conditions for preparing thin films containing only the AgInS2 phase, grown with tetragonal chalcopyrite-type structure and good homogeneity of the chemical composition in the entire volume, are a temperature of 500 °C and a 0.89 mAg/mIn proportion. The transient photocurrent measurements indicated that the electricity transmission is affected by recombination processes via band-to-band transitions and trap-assisted transitions.

  6. Solution transformation of Cu₂O into CuInS₂ for solar water splitting.

    Science.gov (United States)

    Luo, Jingshan; Tilley, S David; Steier, Ludmilla; Schreier, Marcel; Mayer, Matthew T; Fan, Hong Jin; Grätzel, Michael

    2015-02-11

    Though Cu2O has demonstrated high performance as a photocathode for solar water splitting, its band gap is too large for efficient use as the bottom cell in tandem configurations. Accordingly, copper chalcopyrites have recently attracted much attention for solar water splitting due to their smaller and tunable band gaps. However, their fabrication is mainly based on vacuum evaporation, which is an expensive and energy consuming process. Here, we have developed a novel and low-cost solution fabrication method, and CuInS2 was chosen as a model material due to its smaller band gap compared to Cu2O and relatively simple composition. The nanostructured CuInS2 electrodes were synthesized at low temperature in crystalline form by solvothermal treatment of electrochemically deposited Cu2O films. Following the coating of overlayers and decoration with Pt catalyst, the as-fabricated CuInS2 electrode demonstrated water splitting photocurrents of 3.5 mA cm(-2) under simulated solar illumination. To the best of our knowledge, this is the highest performance yet reported for a solution-processed copper chalcopyrite electrode for solar water splitting. Furthermore, the electrode showed good stability and had a broad incident photon-to-current efficiency (IPCE) response to wavelengths beyond 800 nm, consistent with the smaller bandgap of this material. PMID:25585159

  7. Bacterial leaching of a sulfide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans: I. Shake flask studies.

    Science.gov (United States)

    Lizama, H M; Suzuki, I

    1988-06-20

    Bacterial leaching of a sulfide ore containing pyrite, chalcopyrite, and sphalerite was studied in shake flask experiments using Thiobacillus ferrooxidans and Thiobacillus thiooxidans strains isolated from mine sites. The Fe(2+)grown T. ferrooxidans isolates solubilized sphalerite preferentially over chalcopyrite leaching 7-10% Cu, 68-76% Zn, and 10-22% Fe from the ore in 18 days. The sulfur grown T. thiooxidans isolates leached Zn much more slowly and very little Fe, with a Cu-Zn extraction ratio twice the value obtained with T. ferrooxidans. The ore adapted T. ferrooxidans started solubilizing Cu and Zn without a lag period. The ore-adapted T. thiooxidans extracted Cu as well as T. ferrooxidans, but the extraction of Zn or Fe was still much slower in the low-phosphate medium, while in the high-phosphate medium it approached the value obtained with T. ferrooxidans. A high Cu-Zn extraction ratio of 0.34 was obtained with T. thiooxidans in the low phosphate medium. In the mixed-culture experiments with T. ferrooxidans and T. thiooxidans, the culture behaved as T. thiooxidans in the low-phosphate medium with a higher Cu-Zn extraction ratio and as T. ferrooxidans in the high-phosphate medium with a lower Cu-Zn extraction ratio. It is concluded that T. ferrooxidans and T. thiooxidans solubilize sulfide minerals by different mechanisms.

  8. Microstructure characterization of the soda-lime-glass/copper-indium-gallium-selenium interface in Cu-poor Cu(In,Ga)Se2 thin films

    International Nuclear Information System (INIS)

    The microstructure characteristics of the soda-lime-glass/Cu(In,Ga)Se2 (SLG/CIGS) interface in Cu-poor CIGS films are investigated by transmission electron microscopy and selected area electronic diffraction (SAED). The SAED patterns show very sharp and strong spots, indicating the main structure of CIGS chalcopyrite. Small dispersed crystals with size distribution from 2 to 5 nm seem to be embedded in amorphous matrix, and additional spots indicate the presence of an ordered vacancy compound (OVC). This observation is consistent with the Raman results, and the OVC phase with the nanoclusters exists in the CIGS matrix, instead of layer structure. Lattice distortion results in local changes in contrast. Some pseudo-disordered structure is observed, however, the structure is actually the chalcopyrite CIGS structure. 180° rotation twins are also observed at the SLG/CIGS interface. Lattice distortion is widely observed at the interface of the Cu-poor CIGS films, and the extra spots could be caused by different lattice orientations. - Highlights: • Cu(In,Ga)Se2 (CIGS) were prepared on bare soda-lime-glass (SLG) substrates. • Microstructure of the SLG/CIGS interface was investigated. • An ordered vacancy compound (OVC) phase was observed. • The OVC phase with nanoclusters exists in the CIGS matrix, instead of layer structure. • 180° rotation twins were observed at the SLG/CIGS interface

  9. The Effect of Ga2Se3 Doping Ratios on Structure, Composition, and Electrical Properties of CuIn0.5Ga0.5Se2 Absorber Formed by Thermal Sintering

    Directory of Open Access Journals (Sweden)

    Chung Ping Liu

    2013-01-01

    Full Text Available Chalcopyrite compounds of copper indium gallium diselenide (CIGS absorber were fabricated by using binary-particle (Cu2Se, In2Se3, and Ga2Se3 precursors with thermal sintering method. The binary-particle ink was firstly prepared by milling technology and then printed onto a soda lime glass substrate, which was baked at a low temperature to remove solvents and form a dry precursor. Following milling, the average particle size of agglomerated CIGS powder is smaller than 1.1 μm. Crystallographic, stoichiometric, and electrical properties of precursor CIGS films with various doping amounts of Ga2Se3 had been widely investigated by using thermal sintering in a nonvacuum environment without selenization. Analytical results reveal that the CIGS absorption layer prepared with a Ga2Se3 doping ratio of 3 has a chalcopyrite structure and favorable composition. The mole ratio of Cu : In : Ga : Se of this sample was 1.03 : 0.49 : 0.54 : 1.94, and related ratios of Ga/(In + Ga and Cu/(In + Ga were 0.52 and 0.99, respectively. The resistivity and carrier concentration were 3.77 ohm-cm and 1.15 E  +  18 cm-3.

  10. Microstructure characterization of the soda-lime-glass/copper-indium-gallium-selenium interface in Cu-poor Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian, E-mail: wangjustb@gmail.com; Qiao, Yi; Zhu, Jie, E-mail: jiezhu@ustb.edu.cn

    2015-05-29

    The microstructure characteristics of the soda-lime-glass/Cu(In,Ga)Se{sub 2} (SLG/CIGS) interface in Cu-poor CIGS films are investigated by transmission electron microscopy and selected area electronic diffraction (SAED). The SAED patterns show very sharp and strong spots, indicating the main structure of CIGS chalcopyrite. Small dispersed crystals with size distribution from 2 to 5 nm seem to be embedded in amorphous matrix, and additional spots indicate the presence of an ordered vacancy compound (OVC). This observation is consistent with the Raman results, and the OVC phase with the nanoclusters exists in the CIGS matrix, instead of layer structure. Lattice distortion results in local changes in contrast. Some pseudo-disordered structure is observed, however, the structure is actually the chalcopyrite CIGS structure. 180° rotation twins are also observed at the SLG/CIGS interface. Lattice distortion is widely observed at the interface of the Cu-poor CIGS films, and the extra spots could be caused by different lattice orientations. - Highlights: • Cu(In,Ga)Se{sub 2} (CIGS) were prepared on bare soda-lime-glass (SLG) substrates. • Microstructure of the SLG/CIGS interface was investigated. • An ordered vacancy compound (OVC) phase was observed. • The OVC phase with nanoclusters exists in the CIGS matrix, instead of layer structure. • 180° rotation twins were observed at the SLG/CIGS interface.

  11. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    Science.gov (United States)

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-08-24

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.

  12. Temperature dependence of thermal expansion coefficient of (CuInTe{sub 2}){sub 1-x}(2ZnTe){sub x} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, I.V.; Chibusova, L.V. [Belarus State Univ. of Information Science and Radio Electronics, Minsk (Belarus); Korzun, B.V. [Inst. of Physics of Solids and Semiconductors, Minsk (Belarus)

    2000-06-16

    Investigations have been made for the first time of the thermal expansion of the (CuInTe{sub 2}){sub 1-x}(2ZnTe){sub x} solid solutions. It has been demonstrated that the thermal expansion coefficient {alpha}{sub L} grows considerably in the temperature range from 77 to 300 K whereas the temperature dependence above 300 K is rather weak. For the solid solutions with 0chalcopyrite structure into sphalerite one takes place. Such anomaly in {alpha}{sub L}(T) has not been observed for x{<=}0.4. The isotherms of the composition dependence of {alpha}{sub L} for 77, 293 and 500 K were constructed. They are linear within one-phase ranges with the chalcopyrite structure (0 < x {<=} 0.3) or sphalerite structure (x {>=} 0.4). The Debye temperatures {theta}{sub D} and the average quadratic dynamic displacements u{sup 2} were calculated. (orig.)

  13. Determination of molybdenum in flotation concentrates by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Molybdenum was determined by atomic absorption spectrophotometry in 0.05 N ammoniacal solution after the decomposition of the concentrate with aqua regia. Negros ore from Philippines was used as a flotation feed, which contained chalcopyrites and calcium-magnesium minerals. Among the metals tested copper, iron and the alkaline earths interfered. Less than 50 ppm of copper yielded lower results for molybdenum. Higher results came out with more than 50 ppm of copper. In the presence of iron and citric acid (0.4 g/100 ml) which is a suppressor for hydroxide formation, a lower estimation resulted for molybdenum. Calcium interfered, lower results by 2 and >10% being obtained with respective 2.5 and 20 ppm of calcium. More than 20 ppm of magnesium behaved similarly. Sodium sulfate (0.5 g/100 ml) served as the suppressor for copper, iron and citric acid; 100 ppm each of copper and iron did not interfere in this way. Interferences due to calcium and magnesium (less than 60 ppm) was able to be masked by the addition of sodium silicate (200 ppm as silica). The analysis of flotation products and synthetic samples consisting of molybdenite, chalcopyrite, calcium chloride and magnesium sulfate revealed that the atomic absorption method can be applied to the analysis of the concentrates for molybdenum with an error of about 2%. (auth.)

  14. Oklo as a natural analogue. Reconstruction of ancient fluid circulations using trace-element geochemistry from near to far field

    International Nuclear Information System (INIS)

    The natural nuclear reactors located in the Oklo uranium ore deposit (Gabon) represent one of the best analogy of what could be the interaction of a site of radioactive wastes storage with geological medium. It is under this view of natural analogue that reaction zones and uranium ore deposit are studied in part of european program coordinated by C.E.A. The aim of the thesis is to characterize the ancient fluid circulation which have induced some elementary redistributions from near field to far field. Tracing fluid phase geochemistry have been made by study of several mineral populations (apatite, zircon, pyrite chalcopyrite). Fluids escaping from reaction zones during their critically have been identified by isotopic and elementary compositions of apatites located in 'argiles de pile'. Geochemical feature of those fluids have not been founded in the bearing sandstones. Although, mineralogical observations, chemical analysis on whole rocks and analysis of trace elements of zircons and apatites allowed to characterize an early hydrothermal stage which predates criticality in reaction zones. At the scale of uranium ore deposit, study of sulfur allowed to identify several hydrothermal stages. All those stages are later with respect to criticality in reaction zones. The principal fluid circulation stage, present both in pyrites and galena is interpreted as a resulting from mixing between a locally induced fluid and a regional circulation. A second stage is certainly later and correspond to a reworking of lead in galena and precipitation of pyrites and chalcopyrites. (author)

  15. Copper isotope fractionation in acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, Bryn E; Mathur, Ryan; Dohnalkova, Alice; Wall, A J; Runkel, R L; Brantley, Susan L

    2009-03-01

    We surveyed the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed located in southwestern Colorado, USA. The δ65Cu values (based on 65Cu/63Cu) of local enargite (δ65Cu = -0.01 ± 0.10‰; 2σ) and chalcopyrite65Cu = 0.16 ± 0.10‰) are within the general range of previously reported values for terrestrial primary Cu sulfides (-1‰ < δ65Cu < 1). These mineral samples show lower δ65Cu values than stream waters (δ65Cu = 1.36 - 1.74 ± 0.10‰), with an average isotopic fractionation (quantified as Δaq-mino = δ65Cuaq – δ65Cu min, where Cuaq is leached Cu and Cu mino is the original mineral) of 1.60 ± 0.14‰ and 1.43 ± 0.14‰ for enargite and chalcopyrite, respectively.

  16. Compound semiconductor alloys: From atomic-scale structure to bandgap bowing

    Energy Technology Data Exchange (ETDEWEB)

    Schnohr, C. S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2015-09-15

    Compound semiconductor alloys such as In{sub x}Ga{sub 1−x}As, GaAs{sub x}P{sub 1−x}, or CuIn{sub x}Ga{sub 1−x}Se{sub 2} are increasingly employed in numerous electronic, optoelectronic, and photonic devices due to the possibility of tuning their properties over a wide parameter range simply by adjusting the alloy composition. Interestingly, the material properties are also determined by the atomic-scale structure of the alloys on the subnanometer scale. These local atomic arrangements exhibit a striking deviation from the average crystallographic structure featuring different element-specific bond lengths, pronounced bond angle relaxation and severe atomic displacements. The latter, in particular, have a strong influence on the bandgap energy and give rise to a significant contribution to the experimentally observed bandgap bowing. This article therefore reviews experimental and theoretical studies of the atomic-scale structure of III-V and II-VI zincblende alloys and I-III-VI{sub 2} chalcopyrite alloys and explains the characteristic findings in terms of bond length and bond angle relaxation. Different approaches to describe and predict the bandgap bowing are presented and the correlation with local structural parameters is discussed in detail. The article further highlights both similarities and differences between the cubic zincblende alloys and the more complex chalcopyrite alloys and demonstrates that similar effects can also be expected for other tetrahedrally coordinated semiconductors of the adamantine structural family.

  17. Hydrothermal Evolution of the Giant Cenozoic Kadjaran porphyry Cu-Mo deposit, Tethyan metallogenic belt, Armenia, Lesser Caucasus: mineral paragenetic, cathodoluminescence and fluid inclusion constraints

    Science.gov (United States)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik; Rezeau, Hervé

    2016-04-01

    The Lesser Caucasus belongs to the Central segment of the Tethyan metallogenic belt and it is a key area to understand the metallogenic evolution between the Western & Central parts of the Tethyan belt and its extension into Iran. Zangezur is the most important mineral district in the southernmost Lesser Caucasus. It is a component of the South Armenian block, and it was generated during the convergence and collision of the southern margin of the Eurasian plate and the northern margin of the Arabian plate, and terranes of Gondwana origin (Moritz et al., in press). The Zangezur ore district consists of the Tertiary Meghri-Ordubad composite pluton, which is characterized by a long-lasting Eocene to Pliocene magmatic, tectonic and metallogenic evolution. It hosts major porphyries Cu-Mo and epithermal Au - polymetallic deposits and occurrences, including the giant world class Kadjaran porphyry Cu-Mo deposit (2244 Mt reserves, 0.3% Cu, 0.05% Mo and 0.02 g/t Au). The Kadjaran deposit is hosted by a monzonite intrusion (31.83±0.02Ma; Moritz et al., in press). Detailed field studies of the porphyry stockwork and veins of the different mineralization stages, their crosscutting and displacement relationships and the age relationship between different paragenetic mineral associations were the criteria for distinction of the main stages of porphyry mineralization at the Kadjaran deposit. The economic stages being: quartz- molybdenite, quartz-molybdenite-chalcopyrite, and quartz-chalcopyrite. The main paragenetic association of the Kadjaran porphyry deposit includes pyrite, molybdenite, chalcopyrite, bornite, chalcocite, pyrrhotite, covellite, sphalerite, and galena. Recent field observations in the Kadjaran open pit revealed the presence of epithermal veins with late vuggy silica and advanced argillic alteration in the north-eastern and eastern parts of the deposit. They are distributed as separate veins and have also been recognized in re-opened porphyry veins and in

  18. First-principles study of electronic structure of CuSbS2 and CuSbSe2 photovoltaic semiconductors

    International Nuclear Information System (INIS)

    We studied the features of CuSbS2 (CAS) and CuSbSe2 (CASe), two proposed photovoltaic compounds, and clarified their electronic structures by first-principles calculations and compared them to the chalcopyrite-type CuInSe2 results. For both CAS and CASe, the calculated enthalpies of formation of the chalcostibite phases were considerably lower than those of the chalcopyrite phases. Therefore, we considered that the chalcostibite phase is more stable for CAS and CASe. In their band structure calculated with the HSE06 hybrid functional, the valence band maxima of CAS and CASe were located at the Γ-point, and the conduction band minima were located at the R-point. Their second lowest conduction band was located at the Γ-point, whose energy level nearly equaled the R-point. For CAS (CASe), the partial density of the states shows the character of the Cu 3d and S 3p (Se 4p) orbitals at the top of the valence bands and the Sb 5p and S 3p (Se 4p) orbitals at the bottom of the conduction bands. The conduction bands of CAS and CASe have a p-orbital character (Sb 5p) that differs from the s-orbital character (In 5s) of CuInSe2. It is for the reason that CAS and CASe do not have a chalcopyrite structure but a chalcostibite-type structure. The calculated absorption coefficient of CuSbS2 (104-105 cm−1) is comparable to that of CuInSe2. - Highlights: • We studied the features of CuSbS2 and CuSbSe2, newly proposed photovoltaic compounds. • Chalcostibite phase is more stable in CuSbS2 and CuSbSe2. • Band structures of CuSbS2 and CuSbS2 were calculated with HSE06 hybrid functional. • Absorption coefficient of chalcostibite-type CuSbS2 is comparable to that of CuInSe2

  19. Source of ore-forming fluids of the Tianbaoshan Pb-Zn deposit, Southwest China: constrains from C-O, S, and He-Ar isotopes

    Science.gov (United States)

    Wang, Jian; Zhang, Jun; Zhong, Wenbin

    2016-04-01

    The Sichuan-Yunnan-Guizhou (SYG) metallogenic province is one of the most important areas for Pb-Zn resources in China. The metallogenic sources of these Pb-Zn deposits have long been debated. In this study, we provide integrated C-O-S-He-Ar isotopic data of the typical Tianbaoshan Pb-Zn deposit, with an aim to constrain the sources of ore-forming fluids. The Tianbaoshan deposit a large-sized Pb-Zn deposit in SYG metallogenic province, Southwest China. The proven resources include 2.6 Mt metals of Zn+Pb with average grades of 10.09% Zn and 1.50% Pb. The orebodies are hosted within the carbonates of the Ediacaran Dengying Formation. Ore minerals consist mainly of sphalerite, galena, chalcopyrite, and pyrite. Gangue minerals are dominated by calcite and dolomite. The calcite samples from the Tianbaoshan deposit yield homogeneous δ13CV ‑PDBvalues of -1.70‰ to -1.60‰ (average -1.63), with δ18OV ‑SMOW values ranging from 12.9‰ to 15.2‰ (average 14.4). The C-O isotopic data suggest the hydrothermal fluids may be originated from a mixed source involving both mantle and carbonate wall rocks. The δ34S values of the sphalerite, galena and chalcopyrite samples vary from 3.32‰ to 5.71‰ -0.36‰ to 1.31‰ and 4.5‰ to 4.7‰ respectively, indicating a magmatic source for sulfur. The 3He/4He ratios of chalcopyrite samples range from 0.01 to 0.32 Ra which is slightly higher than the crustal ratios (0.05 Ra), but obviously lower than that of mantle fluids (6 to 9 Ra). The 40Ar/36Ar ratios range from 345.0 to 669.1, which are slightly higher than that of air (298.5). The He-Ar isotopic compositions suggest that the ore-forming fluids are dominantly derived from the crust, with litter contamination from mantle-derived fluids. In combination with the C-O, S, and He-Ar isotopic data, we propose the ore-forming fluids of the Tianbaoshan deposit were derived by mixing of crustal and mantle fluids. And the metallogenic process may be genetically related to the

  20. Fluid inclusion evidence for hydrothermal fluid evolution in the Darreh-Zar porphyry copper deposit, Iran

    Science.gov (United States)

    Nateghi, Arash; Hezarkhani, Ardeshir

    2013-09-01

    The Darreh-Zar porphyry copper deposit is associated with a quartz monzonitic-granodioritic-porphyritic stock hosted by an Eocene volcanic sedimentary complex in which magmatic hydrothermal fluids were introduced and formed veins and alteration. Within the deepest quartz-rich and chalcopyrite-poor group A veins, LVHS2 inclusions trapped high salinity, high temperature aqueous fluids exsolved directly from a relatively shallow magma (0.5 kbar). These late fluids were enriched in NaCl and reached halite saturation as a result of the low pressure of magma crystallization and fluid exsolution. These fluids extracted Cu from the crystallizing melt and transported it to the hydrothermal system. As a result of ascent, the temperature and pressure of these fluids decreased from 600 to 415 °C, and approximately 500-315 bars. At these conditions, K-feldspar and biotite were stabilized. Type A veins were formed at a depth of ∼1.2 km under conditions of lithostatic pressure and abrupt cooling. Upon cooling and decompressing, the fluid intersected with the liquid-vapor field resulting in separation of immiscible liquid and vapor. This stage was recorded by formation of LVHS1, LVHS3 and VL inclusions. These immiscible fluids formed chalcopyrite-pyrite-quartz veins with sericitic alteration envelopes (B veins) under the lithostatic-hydrostatic pressure regime at temperatures between 415 and 355 °C at 1.3 km below the paleowater table. As the fluids ascended, copper contents decreased and these fluids were diluted by mixing with the low salinity-external fluid. Therefore, pyrite-dominated quartz veins were formed in purely hydrostatic conditions in which pressure decreased from 125 bars to 54 bars and temperature decreased from 355 to 298 °C. During the magmatic-hydrothermal evolution, the composition and P-T regime changed drastically and caused various types of veins and alterations. The abundance of chalcopyrite precipitation in group B veins suggests that boiling and

  1. Sulfur isotope evidence for penetration of MVT fluids into igneous basement rocks, southeast Missouri, USA

    Science.gov (United States)

    Shelton, K. L.; Burstein, I. B.; Hagni, R. D.; Vierrether, C. B.; Grant, S. K.; Hennigh, Q. T.; Bradley, M. F.; Brandom, R. T.

    1995-08-01

    Previous studies of galena and sphalerite from Paleozoic MVT deposits in the Viburnum Trend, southeast Missouri documented large variations in δ34S values throughout the ore-forming event. The present study of Cu-Fe-sulfides reveals a similar δ34S variation that reflects two end-member sulfur reservoirs whose relative importance varied both temporally and spatially. More 34S-enriched sulfides (δ34S approaching 25‰) indicate introduction of sulfur from basinal sedimentary sources, whereas more 32S-enriched sulfides (δ34S Precambrian, igneous-hosted FeCu mineralization in southeast Missouri (West and Central Domes of Boss-Bixby) were investigated to elucidate their relationship to Cu-rich MVT orebodies hosted nearby within the overlying Cambrian Bonneterre Dolomite. Mineralization at Boss-Bixby is composed of an early phase of iron oxide deposition followed by Cu-Fe-sulfides. The Central Dome is faulted and its mineralization is more fracture-controlled than the typically podiform ores of the West Dome. The δ34S values of West Dome sulfides are 0.9 to 6.5‰ and pyrite-chalcopyrite indicate a temperature of 525° ± 50 °C. These data indicate an igneous source of sulfur during Precambrian ore deposition. In contrast, δ34S values of Central Dome sulfides are 9.4 to 20.0‰ and pyrite-chalcopyrite indicate temperatures of 275° ± 50 °C. Similar δ34S values are obtained for chalcopyrite from the overlying MVT deposits. We speculate that deeply circulating, basin-derived MVT fluids mobilized sulfur and copper from the underlying igneous basement and redeposited them in overlying Curich MVT orebodies, as well as overprinting earlier Precambrian sulfides of the Central Dome with a later, Paleozoic MVT sulfur isotope signature. Many models for MVT fluid circulation in the Midcontinent region of North America assume that igneous basement rocks are an impermeable boundary, but in southeast Missouri, evidence exists for structurally controlled MVT fluid movement

  2. Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria

    Science.gov (United States)

    Raith, Johann G.; Leitner, Thomas; Paar, Werner H.

    2015-10-01

    Structurally controlled Cu-Au mineralization in the historic Flatschach mining district (Styria, Austria) occurs in a NE-SW to NNE-WSW oriented vein system as multiple steep-dipping calcite-(dolomite)-quartz veins in amphibolite facies metamorphic rocks (banded gneisses/amphibolites, orthogneisses, metagranitoids) of the poly-metamorphosed Austroalpine Silvretta-Seckau nappe. Vein formation postdated ductile deformation events and Eoalpine (Late Cretaceous) peak metamorphism but predated Early to Middle Miocene sediment deposition in the Fohnsdorf pull-apart basin; coal-bearing sediments cover the metamorphic basement plus the mineralized veins at the northern edge of the basin. Three gold-bearing ore stages consist of a stage 1 primary hydrothermal (mesothermal?) ore assemblage dominated by chalcopyrite, pyrite and arsenopyrite. Associated minor minerals include alloclasite, enargite, bornite, sphalerite, galena, bismuth and matildite. Gold in this stage is spatially associated with chalcopyrite occurring as inclusions, along re-healed micro-fractures or along grain boundaries of chalcopyrite with pyrite or arsenopyrite. Sericite-carbonate alteration is developed around the veins. Stage 2 ore minerals formed by the replacement of stage 1 sulfides and include digenite, anilite, "blue-remaining covellite" (spionkopite, yarrowite), bismuth, and the rare copper arsenides domeykite and koutekite. Gold in stage 2 is angular to rounded in shape and occurs primarily in the carbonate (calcite, Fe-dolomite) gangue and less commonly together with digenite, domeykite/koutekite and bismuth. Stage 3 is a strongly oxidized assemblage that includes hematite, cuprite, and various secondary Cu- and Fe-hydroxides and -carbonates. It formed during supergene weathering. Stage 1 and 2 gold consists mostly of electrum (gold fineness 640-860; mean = 725; n = 46), and rare near pure gold (fineness 930-940; n = 6). Gold in stage 3 is Ag-rich electrum (fineness 350-490, n = 12), and has a

  3. Nature, origin and evolution of the granitoid-hosted early Proterozoic copper-molybdenum mineralization at Malanjkhand, Central India

    Science.gov (United States)

    Sarkar, S. C.; Kabiraj, S.; Bhattacharya, S.; Pal, A. B.

    1996-07-01

    At Malanjkhand, Central India, lode-type copper (-molybdenum) mineralization occurs within calcalkaline tonalite-granodiorite plutonic rocks of early Proterozoic age. The bulk of the mineralization occurs in sheeted quartz-sulfide veins, and K-silicate alteration assemblages, defined by alkali feldspar (K-feldspar≫albite)+dusty hematite in feldspar±biotite±muscovite, are prominent within the ore zone and the adjacent host rock. Weak propylitic alteration, defined by albite+biotite+epidote/zoisite, surrounds the K-silicate alteration zone. The mineralized zone is approximately 2 km in strike length, has a maximum thickness of 200 m and dips 65° 75°, along which low-grade mineralization has been traced up to a depth of about 1 km. The ore reserve has been conservatively estimated to be 92 million tonnes with an average Cu-content of 1.30%. Supergene oxidation, accompanied by limited copper enrichment, is observed down to a depth of 100 m or more from the surface. Primary ores consist essentially of chalcopyrite and pyrite with minor magnetite and molybdenite. δ34S (‰) values in pyrite and chalcopyrite (-0.38 to +2.90) fall within the range characteristic of granitoid-hosted copper deposits. δ18O (‰) values for vein quartz (+6.99 to +8.80) suggest exclusive involvement of juvenile water. Annealed fabrics are common in the ore. The sequence of events that led to the present state of hypogene mineralization is suggested to be as follows: fracturing of the host rock, emplacement of barren vein quartz, pronounced wall-rock alteration accompanied by disseminated mineralization and the ultimate stage of intense silicification accompanied by copper mineralization. Fragments of vein quartz and altered wall rocks and striae in the ore suggest post-mineralization deformation. The recrystallization fabric, particularly in chalcopyrite and sphalerite, is a product of dynamic recrystallization associated with the post-mineralization shearing. The petrology of the host

  4. Gold-silver-tellurium mineral assemblages in different ore styles of the Southern Urals VHMS deposits

    Science.gov (United States)

    Maslennikov, V. V.; Zaykov, V. V.; Maslennikova, S. P.; Tesalina, S. G.; Herrington, R. J.; Buschmann, B.; Becker, K.; Petersen, S.; Orgeval, J. J.; Leistel, M.

    2003-04-01

    VMS deposits of the South Urals generally show a continuum in degradation and reworking ranging from pristine steep-sided hydrothermal sulphide mounds to deposits dominated by layered strata of clastic sulphides. Four different deposits with varying degrees of degradation in order of increased reworking: (Yaman-Kasy longrightarrow Molodezhnoe longrightarrow Alexandrinskoe longrightarrow Balta-Tau) have been ranged. The influence of sulphide mound destruction and of sea-floor alteration on mineral assemblages was investigated In the pristine Yaman-Kasy sulphide mound gold and silver occur as altaite+tellurium+hessite-stuetzite+sylvanite and later galena+native gold+pyrite assemblages in chalcopyrite+isocubanite-rich linings of former chimney conduits. Chalcopyrite-dominated conduit fragments in clastic ore facies contain native tellurium+gold intergrowths. In the weakly reworked Molodezhnoe deposit gold-silver assemblages only occur in sea-floor altered clastic sulphides on the slope of massive sulphide mounds in bornite- and tennantite-rich ores in association with Cu-Ag sulfides such as jalpaite, mckinstryite, and stromeyerite and rare Au-Ag-tellurides (petzite). The Alexandrinskoe deposit is dominated by clastic ores and here native gold and rare hessite occur together with galena in tennantite-sphalerite-dominated veins of the footwall as well as in drusy sphalerite forming conduits of vent chimneys. An assemblage of electrum+galena+tennantite was observed in secondary chalcopyrite in the outer walls of chimneys. Native gold+stromeyerite are common in bornite-rich clastic sulphides while an assemblage of Ag-sulphosalts+electrum is common in barite-rich ores. In the reworked Balta-Tau deposit Ag-sulphosalts+electrum-kustelite occur often together with tennantite+galena+barite banded ores. Gold-silver-telluride mineralisation in these VMS deposits changes with degree of reworking from Au-tellurides, and native gold+galena+pyrite in pristine sulphide mounds to

  5. Disseminated, veinlet and vein Pb-Zn, Cu and Sb polymetallic mineralization in the GaleChah-Shurab mining district, Iranian East Magmatic Assemblage (IEMA

    Directory of Open Access Journals (Sweden)

    Behzad Mehrabi

    2011-04-01

    Full Text Available The Iranian East Magmatic Assemblage (IEMA in the Central Lut region, hosted porphyry and vein-type polymetallic mineralization. The GaleChah-Shurab mining district is located in NW of the IEMA. Volcanic and subvolcanic bodies in the area are composed of calc-alkaline porphyry quartz-latite, porphyry dacite and rhyodacite and hornblende-biotite andesite, equivalent to I-type granite. They emplaced in Tertiary and intruded the Jurassic shale, siltstone and limestone basement (Shemshak Fm. The faults, joints and fractures, are the main controls on the mineralization, in forms of disseminated, vein, veinlet and minor stockwork and brecciation type mineralization of Pb, Zn, Cu, Sb and trace elements. Vein and veinlet of Pb+Zn±Cu±Sb in the Gale-Chah abandoned mine accompanied by carbonate and silicic alterations in association with galena, sphalerite, pyrite, chalcopyrite, bournonite and tetrahedrite as the hypogene ore minerals and their supergene products including cerussite, covellite, digenite and second-generation colloidal pyrite. The Pb+Zn+Cu+Sb mineralization associated with sericitic and silicic alterations in the Shurab abandoned mine, is composed of two types of mineralization, veinlet and brecciation vein in the porphyry dacite boundaries with Jurassic shale and sandstones, and the disseminated and disseminated-veinlet mineralization which is hosted by the altered porphyry dacite and rhyodacite intrusive rocks. The mineral assemblages are galena, sphalerite, stibnite, As-bearing pyrite, chalcopyrite and tetrahedrite-tennantite complex hypogene-sulfide ore as a hypogene ore, and malachite, covellite, cerussite and melancoitic pyrite as a sulfide-oxide supergene ore. The Pb+Zn+Sb±As±Ag polymetallic occurrence is associated with sericitic, carbonate and chloritic alteration assemblage in the Chupan occurrence, in two forms, I vein, veinlet-stockwork (30m depth confined to fault structures and II disseminated-replacement (below 70m mainly

  6. Preparation and characterization of CuInSe{sub 2} nanoparticles elaborated by novel solvothermal protocol using DMF as a solvent

    Energy Technology Data Exchange (ETDEWEB)

    Ben Marai, A., E-mail: Achraf.Benmarai@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire, PROMES-CNRS, Tecnosud, Rambla de la thermodynamique, 66100 Perpignan (France); Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, LaPhyMNE, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Djessas, K. [Laboratoire Procédés, Matériaux et Energie Solaire, PROMES-CNRS, Tecnosud, Rambla de la thermodynamique, 66100 Perpignan (France); Université de Perpignan, Via Domitia, 52 Avenue Paul Alduy, 68860, Perpignan Cedex9 (France); Ben Ayadi, Z.; Alaya, S. [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, LaPhyMNE, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia)

    2015-11-05

    In this study, high purity and near stoichiometric CuInSe{sub 2} (CIS) nanoparticles have been successfully synthesized using solvothermal route. The goal of this paper is to improve the crystal quality while reducing production cost and limiting the toxicity of solvothermal reaction, as compared to processes including selenization step. Therefore, the starting solution solvothermal is constituted by the following precursors (CuSO{sub 4}.5H{sub 2}O, InCl{sub 3}.xH{sub 2}O and Se powder) which were dissolved in N, N Dimethylformamide (DMF) as solvent. A reasonable possible mechanism for the growth of CIS nanoparticles is proposed. The effect of process parameters on the synthesis and characterization of CIS nanoparticles were examined including reaction temperature (165–240 °C), process time (12–24 h) and the drying route. The as-obtained CIS nanoparticles are analyzed using diverse techniques such as x-ray diffraction (XRD), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), Raman spectroscopy and UV–vis-IR spectrophotometer. All results demonstrate that the optimal conditions for preparing a single-phase CIS obtained at 220 °C for 24 h and followed by annealing at 400 °C for 30 min under a nitrogen atmosphere. In addition, XRD results showed that the CIS nanoparticles crystallize in the chalcopyrite structure, with grain size in the order of 25 nm, which is also confirmed by TEM images. Raman spectra show the intense peak at 171 cm{sup −1}, which correspond to the chalcopyrite structure, no signature of secondary phases. Optical measurements revealed strong absorption in the entire visible light to near-infrared region and band gap (≈1.04 eV) is very close to those of absorbent materials in thin film solar cells. - Highlights: • Highly dispersed chalcopyrite CuInSe{sub 2} nanoparticles were successfully synthesized. • The DMF solvent act as both the solvent and the complexing agent. • Band gap was calculated to be 1

  7. Chemical and mineralogical data of the metalliferous mineralization from S. Carlo mine (Peloritani mts, Ne Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Pisacane, G

    2006-05-01

    Full Text Available The mineralization processes in the Peloritani Belt (Southern Sector of the Calabria- Peloritani Arc prevalently developed during the Variscan orogenesis producing Pb, Zn, Fe, As, Sb, Cu, Ag, W, etc. polymetalliferous ore-bearing horizons. This paper focuses on the polymetalliferous mineralization recognised in the ancient S. Carlo Mine, which has already been subject of some studies and is part of an important discordant vein deposits system that are widespread in the Mandanici Unit (MaU. This Unit is characterized by a Variscan low-P, polyphasic and plurifacial metamorphic basement, exhibiting a prograde zoning, from chlorite zone of greenschist facies to oligoclase-almandine zone of amphibolite facies. The Variscan main foliation (Fv2 is irregularly cut by mineralized veins of decimetric to metric width. They are also perpendicular to the Alpine mylonitic shear zones of metric thickness developing along the sub-horizontal tectonic contacts between the tectono-stratigraphic units. These vein deposits formed along late-Alpine systems of fractures and faults, after Peloritani nappe emplacement. Minerographic study reveals a metalliferous mineral association mainly composed of tetrahedrite associated with, in order of decreasing abundance, chalcopyrite, bournonite, pentlandite, stromeyerite, arsenopyrite, scheelite, galena, sphalerite, pyrite, bismuthinite, boulangerite, jamesonite, covellite, bornite and argentite. Quartz, siderite and ankerite among non-metalliferous minerals are predominant. This work has been supported by mineralogical studies and chemical analyses carried out by Atomic Absorption and Inductively Coupled Plasma-Mass Spectrometry on powdered and separated samples of minerals. Geochemical data (major and trace elements have allowed a detailed characterization of the minerals. They have revealed that the most significant minerals with Au contents around 1 ppm are tetrahedrite, sphalerite, chalcopyrite and bournonite. The

  8. Determination of copper isotope ratios by LA-MC-ICP-MS

    International Nuclear Information System (INIS)

    Full text: The stable isotope ratios of metals commonly found in sulphide ore deposits (e.g., Cu, Zn. Fe, Sb, Ag) may be fractionated significantly during ore-forming processes (redox reactions, etc.) and thus provide important information on the source, transport and depositional mechanisms of these metals. However, little work has been done on these isotopic systems because of past analytical difficulties in making precise measurements. Recently developed laser ablation (LA)-multi-collector (MC)-ICP-MS technology now allows routine rapid, in situ determination of the isotope ratios of these metals. This study reports on: (a) the development of an analytical protocol for the measurement of the 65Cu/63Cu ratio of chalcopyrite, (b) preliminary data for samples from a wide range of copper-bearing mineral deposits, and (c) a preliminary study of the spatial distribution of Cu isotope ratios within the Cadia Hill porphyry Cu-Au deposit. The instrumentation used in this study was a Merchantek LUV266 laser sampler operated with either Ar or He as the sample carrier gas. The ablated material was transported into a Plasma MC-ICP-MS for isotopic determination. Instrumental mass bias was corrected using the measured 66Zn/64Zn ratio of a Zn-bearing aerosol added continuously to the ablated sample carrier gas flow via a T-junction. The isotopes of copper (and other metals) are fractionated significantly by volatilisation and condensation processes operative during the laser sampling/transport processes, both of which favour depletion of 65Cu relative to 63Cu in the transported material. This fractionation may be reduced by using high laser pulse energies, low repetition rates and, most significantly, by ablation in He, which reduces dramatically the condensation blanket of sulphidic material around the ablation site. Using these conditions, relatively stable Cu isotope ratios may be maintained over a long ablation period (up to 4 minutes). However, absolute ratios are still

  9. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    Science.gov (United States)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ˜1.78eV with high absorption coefficient ˜106/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80-330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ˜2.6Ωm and the films showed good photo response.

  10. Relating sulfide mineral zonation and trace element chemistry to subsurface processes in the Reykjanes geothermal system, Iceland

    Science.gov (United States)

    Libbey, R. B.; Williams-Jones, A. E.

    2016-01-01

    The nature and distribution of sulfide minerals and their trace element chemistry in the seawater-dominated Reykjanes geothermal system was determined through the study of cuttings and core from wells that intersect different regions of the hydrothermal cell, from the near surface to depths of > 3000 m. The observed sulfide mineral zonation and trace element enrichment correlate well with the present-day thermal structure of the system. Isocubanite and pyrrhotite are confined to the deep, low permeability regions, whereas an assemblage of chalcopyrite and pyrite predominates in the main convective upflow path. The presence of marcasite in the uppermost regions of the system reflects weakly acidic conditions (pH geothermal energy resources.

  11. Mineralogical data on angelaite, Cu2AgPbBiS4, from the Los Manantiales District, Chubut, Argentina

    DEFF Research Database (Denmark)

    Topa, D.; Paar, W.H.; Putz, H.;

    2010-01-01

    0.97Pb1.05Bi1.00S3.91. The ideal formula (on the basis of nine atoms) is Cu2AgPbBiS4, which requires Cu 16.31, Ag 13.84, Pb 26.58, Bi 26.81, S 16.45, total 100 wt.%. Angelaite is orthorhombic, with a 12.734(5), b 4.032(1), c 14.633(5) Å, V 751.8(5) Å3, space group Pnma and Z = 4. The calculated......Angelaite, ideally Cu2AgPbBiS4, occurs as a hypogene mineral in polymetallic ores at the Ángela groups of veins in the mining district of Los Manantiales, in the province of Chubut, Argentina. The new mineral species is predominantly associated with pyrite, sphalerite, chalcopyrite, hematite...

  12. Cu isotope variability in Bavariás largest Cu-Zn deposit in Kupferberg (NE Bavaria, Germany)

    Science.gov (United States)

    Höhn, Stefan; Frimmel, Hartwig E.; Debaille, Vinciane; Debouge, Wendy

    2016-04-01

    Kupferberg, a small town c. 15 km northeast of Kulmbach, owns its existence to Bavaria's largest Cu-Zn deposit, which was mined intermittently from the 13th to the 19th century. The deposit is located in the Saxothuringian Zone of the Variscan basement in northeastern Bavaria. It is positioned between the allochthonous Münchberg metamorphic complex in the east and a major northwest-southeast tending regional fault zone, the "Franconian Lineament", in the west. The deposit is hosted by an Early Palaeozoic volcano-sedimentary succession of the Randschiefer Formation (RF) and consists of a northwest-southeast directed string of several stratiform, sulfide-rich ore lenses. These lenses show a remarkably simple mineralogy dominated by quartz, carbonate, pyrite and chalcopyrite with minor amounts of sphalerite and chlorite. The genesis of the Cu-Zn mineralization has remained speculative. A purely syngenetic model, supported by the generally laminated appearance of the ore, has to be questioned because of the ore lenses occurring in different tectonic units. Urban & Vaché (1972) proposed supergene enrichment between the Cretaceous and the Tertiary as most critical. To test such a supergene versus hypogene Cu-mineralization, we investigated the Cu isotopic composition of primary and secondary Cu phases as well as the trace element distribution in three pyrite generations. The pyrite generation that is coeval with the principal Cu-mineralization in the form of chalcopyrite has Co/Ni ratios (on average 35) typical of hydrothermal, possibly metamorphic, formation. Chalcopyrite, present at highly variable modal proportions, yielded a narrow range in δ65Cu from -0.26 to 0.36 ‰Ḃoth the absolute values and the narrow range are similar to the δ65Cu range known for hydrothermal chalcopyrite in crustal rocks (Markl et al. 2006). Metamorphism has been shown to further restrict the range in δ65Cu (Ikehata et al. 2011) - an effect that might be applicable to Kupferberg. In

  13. Electronic structure of the Zn(O,S)/Cu(In,Ga)Se2 thin-film solar cell interface

    Energy Technology Data Exchange (ETDEWEB)

    Mezher, Michelle [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Garris, Rebekah [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Mansfield, Lorelle M. [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Horsley, Kimberly [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Weinhardt, Lothar [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen Germany; ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen Germany; Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe Germany; Duncan, Douglas A. [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Blum, Monika [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Rosenberg, Samantha G. [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Bär, Marcus [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin Germany; Institut für Physik und Chemie, Brandenburgische Technische Universität Cottbus-Senftenberg, 03046 Cottbus Germany; Ramanathan, Kannan [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Heske, Clemens [Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), Las Vegas NV 89154 USA; Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen Germany; ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen Germany; Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe Germany

    2016-03-10

    The electronic band alignment of the Zn(O,S)/Cu(In,Ga)Se2 interface in high-efficiency thin-film solar cells was derived using X-ray photoelectron spectroscopy, ultra-violet photoelectron spectroscopy, and inverse photoemission spectroscopy. Similar to the CdS/Cu(In,Ga)Se2 system, we find an essentially flat (small-spike) conduction band alignment (here: a conduction band offset of (0.09 +/- 0.20) eV), allowing for largely unimpeded electron transfer and forming a likely basis for the success of high-efficiency Zn(O,S)-based chalcopyrite devices. Furthermore, we find evidence for multiple bonding environments of Zn and O in the Zn(O,S) film, including ZnO, ZnS, Zn(OH)2, and possibly ZnSe.

  14. Drilling successful from ROV Ventana

    Science.gov (United States)

    Stakes, Debra S.; McFarlane, James A. R.; Holloway, G. Leon; Greene, H. Gary

    Cores of granite and deformed sediment from the walls of Monterey Canyon were successfully recovered from December 30 to 31, 1992, by Monterey Bay Aquarium Research Institute's (MBARI) Remotely Operated Vehicle (ROV) Ventana using a small-diameter, double-barrel drill with a diamond bit. This HSTR (Holloway-Stakes-Tengdin-Rajcula) drill was developed to drill cores horizontally from sulfide/sulfate walls of active black smokers. The drill was first successfully used by the submersible Alvin in October 1991 to drill into massive sulfide chimneys, on the Juan de Fuca Ridge (Eos, June 30, 1992, p. 273), and it was subsequently used with equal success on the chalcopyrite-rich chimneys from 21°N and 9°N on the East Pacific Rise. The recent December dives, however, marked the first time that drilling has ever been attempted from the smaller ROV and the first time coring into the harder igneous rock substrate has been attempted.

  15. Numerical simulation analysis of Guixi copper flash smelting furnace

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A numerical simulation analysis for reactions of chalcopyrite and pyrite particles coupled with momentum, heat and mass transfer between the particle and gas in a flash smelting furnace is presented. In the simulation, the equations governing the gas flow are solved numerically by Eular method. The particle phase is introduced into the gas flow by the particle-source-in-cell technique (PSIC). Predictions including the fluid flow field, temperature field, concentration field of gas phase and the tracks of particles have been obtained by the numerical simulation. The visualized results show that the reaction of sulfide particles is almost completed in the upper zone of the shaft within 1.5 m far from the central jet distributor (CJD) type concentrate burner. The simulation results are in good agreement with data obtained from a series of experiments and tests in the plant and the error is less than 2%.

  16. The solubility of a metallic mineral with other coexisting minerals and the ore-forming processes of metallic sulfides

    Institute of Scientific and Technical Information of China (English)

    CEN; Kuang; (岑况); YU; Chongwen; (於崇文)

    2001-01-01

    Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a mineral with coexisting rock-forming minerals leads to particular geochemical be-havior. The concept of solubility of a metallic mineral with coexisting rock-forming minerals and its theory and model of calculation are put forward. Taking Tianmashan Cu-Au ore deposit of sulfide minerals in Tongling district as an example, solubilities of some metallic minerals with other coex-isting minerals, such as pyrite or chalcopyrite with quartz (representing sandstone) or calcite (rep-resenting limestone), are calculated. The results show the mechanism of ore-forming processes. As the ore-forming fluid flows through sandstone, it dissolves pyrite in the sandstone at first, then transports the iron and sulfur to the interface between sandstone and limestone and eventually precipitates them on the interface.

  17. PGE patterns of ores of Dajing Cu-polymetallic deposit in Linxi County, Inner Mongolia: Indicator to source of metallogenic elements

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By comparing PGE patterns of sulfide ores with that of basic-ultrabasic dikes occurring in the Dajing Cu-polymetallic deposit, we discover that there are similar positive slopes between the basic-ultrabasic dikes and the black ores composed mainly of sphalerite and galena, reflecting affinity of their source. The PGE patterns of the yellow ores composed basically of chalcopyrite, arsenopyrite and pyrite are actually different. One is close to the pattern of the mantle lherzolite, and others resemble the pattern of the basic rocks. However, the concentrations of Ru are higher in the yellow ores, reflecting that sulfur attains or approaches saturation in their parent magma. The PGE characteristics of ores and dikes show that the magmas derived from the deep of crust and the metallogenic elements were supplied mainly by growth material of the crust. In addition, the mantle-derived magma also offered some elements.

  18. Colloidal-chemistry based synthesis of quantized CuInS2/Se2 nanoparticles

    Directory of Open Access Journals (Sweden)

    Abazović Nadica D.

    2012-01-01

    Full Text Available Ternary chalcogenide nanoparticles, CuInS2 and CuInSe2, were synthesized in high- temperature boiling organic non-polar solvent. The X-ray diffraction analysis revealed that both materials have tetragonal (chalcopyrite crystal structure. Morphology of the obtained materials was revealed by using transmission electron microscopy. Agglomerated spherical CuInS2 nanoparticles with broad size distribution in the range from 2 to 20 nm were obtained. In the case of CuInSe2, isolated particles with spherical or prismatic shape in the size range from 10 to 25 nm were obtained, as well as agglomerates consisting of much smaller particles with diameter of about 2-5 nm. The particles with the smallest diameters of both materials exhibit quantum size effect.

  19. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides

    Science.gov (United States)

    Hébert, S.; Berthebaud, D.; Daou, R.; Bréard, Y.; Pelloquin, D.; Guilmeau, E.; Gascoin, F.; Lebedev, O.; Maignan, A.

    2016-01-01

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of ‘rattlers’…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  20. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.

    Science.gov (United States)

    Hébert, S; Berthebaud, D; Daou, R; Bréard, Y; Pelloquin, D; Guilmeau, E; Gascoin, F; Lebedev, O; Maignan, A

    2016-01-13

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of 'rattlers'…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  1. 广西某金矿工艺矿物学研究%Process Mineralogy Study of a Gold Mine in Guangxi Province

    Institute of Scientific and Technical Information of China (English)

    许霞; 苏敬韧

    2016-01-01

    The process mineralogy study of a gold mine in guangxi province shows that the gold mineral occurs mainly as native gold and is primarily hosted in pyrite, chalcopyrite, pyrrhotite and so on. Copper mineral mainly occurs in the form of chalcopryrite with few quantities of covellite. The findings of the study provide a basis for developing a reasonable metallurgical process.%对广西某矿区矿石的工艺矿物学研究表明,金以自然金为主,主要的载金矿物为黄铁矿、黄铜矿、磁黄铁矿等,铜主要以黄铜矿形式产出,有极少的铜蓝。该项研究成果为制定合理的选冶工艺提供了依据。

  2. Magnetic influence on the unidentified luminous phenomena in Hessdalen, Norway

    Science.gov (United States)

    Gitle Hauge, Bjørn; Kjøniksen, Anna-Lena; Petter Strand, Erling; Zlotnicki, Jaques; Vargemezis, George

    2016-04-01

    Unidentified luminous phenomena have been observed in the low atmosphere over the Hessdalen valley for decades. First scientific investigation was done by E.Strand in 1984, where spiral movements of lights was recorded. The Science Camp program has conducted yearly field investigations since 2002 and has confirmed the existence of this spiral-behavior. (http://sciencecamp.no) Such behavior has also been documented in Alabama, USA. In September 2015 spiral like movement of lights was observed together with the more common spherical lights. This spiral movement indicates the presence of low atmospheric charged matter, moving in a magnetic field. A geological survey in 2014 reviled the presence of strong magnetic anomalies. The valley contains several abandoned copper mines containing Chalcopyrite and Magnetite. The Magnetite was not useful in the copper production, and left in heaps around the valley unused. This may contribute to the magnetic anomalies in the valley.

  3. Zn incorporation in CuInSe2: Particle size and strain effects on microstructural and electrical properties

    Indian Academy of Sciences (India)

    M Benabdeslem; A Bouasla; N Benslim; L Bechiri; S Mehdaoui; O Aissaoui; A Djekoun; M Fromm; X Portier

    2014-05-01

    Incorporation of the doping element Zn in the temperature range (550–700 °C) and the impact on structural and electrical properties of CuInSe2 material are investigated. X-ray diffraction patterns showed the chalcopyrite nature of the pure and doped CuInSe2 and revealed that diffusion temperature governs particle size as well as tensile strain. The calculated lattice parameters and cell volumes revealed that Zn diffuses in CuInSe2 by substitution on Cu sites. Electrical properties of the material have been investigated using a contact-less technique based on high frequency microwave (HF). It is found that Zn atoms influence the defect equilibrium resulting in the conversion of the conduction type. The conductivity of the samples has been found increasing as the diffusion temperature increases.

  4. Granite-hosted molybdenite mineralization from Archean Bundelkhand cratonmolybdenite characterization, host rock mineralogy, petrology, and fluid inclusion characteristics of Mo-bearing quartz

    Indian Academy of Sciences (India)

    J K Pati; M K Panigrahi; M Chakarborty

    2014-07-01

    The dominantly high-K, moderate to high SiO2 containing, variably fractionated, volcanic-arc granitoids (± sheared) from parts of Bundelkhand craton, northcentral India are observed to contain molybdenite (Mo) in widely separated 23 locations in the form of specks, pockets, clots and stringers along with quartz ± pyrite ± arsenopyrite ± chalcopyrite ± bornite ± covellite ± galena ± sphalerite and in invisible form as well. The molybdenite mineralization is predominantly associated with Bundelkhand Tectonic Zone, Raksa Shear Zone, and localized shear zones. The incidence of molybdenite is also observed within sheared quartz and tonalite–trondhjemite–granodiorite (TTG) gneisses. The fluid inclusion data show the presence of bi-phase (H2O–CO2), hypersaline and moderate temperature (100°–300°C) primary stretched fluid inclusions suggesting a possible hydrothermal origin for the Mo-bearing quartz occurring within variably deformed different granitoids variants of Archean Bundelkhand craton.

  5. Growth and properties of crystalline CuInSe2 thin films by SPD technique

    Science.gov (United States)

    Shrotriya, Vipin; Rajaram, P.

    2016-05-01

    CuInSe2 thin films were grown on glass substrates using the chemical spray pyrolysis technique. The CuInSe2 films were co-deposited from aqueous solutions containing CuCl2, InCl3, and SeO2 used as Cu, In and Se precursors respectively. EDC was used as a complexing agent and films were grown at the constant temperature of 270°C. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy dispersive analysis of X-rays (EDAX) and the results indicate that the films are single phase, p-type in conductivity and have the chalcopyrite structure. Optical study shows that the optical band gap value is 1.03 eV. From the XRD study it is clear that the average crystallite size of the films is in the range 50 to 70 nm.

  6. Porphyry-copper mineralisation in the central Srednogorie zone, Bulgaria

    Science.gov (United States)

    Strashimirov, Strashimir; Petrunov, Rumen; Kanazirski, Milko

    2002-08-01

    The porphyry-copper systems in the central part of the Srednogorie zone (Bulgaria) are represented by three major deposits (Elatsite, Medet and Assarel) and several smaller deposits and occurrences, all of them within the Panagyurishte ore district. The hydrothermal systems are related to Late Cretaceous calc-alkaline igneous complexes. Ore mineralisation is developed predominantly in the apical parts of subvolcanic and intrusive bodies as well as within the volcanic and basement metamorphic rocks. Several of the porphyry systems are spatially associated with shallow-level intermediate and high-sulphidation volcanic-hosted epithermal deposits of economic importance, such as the major gold-copper mine at Chelopech located 10 km from the Elatsite porphyry-copper deposit. Mineralisation processes in the porphyry deposits start with intensive hydrothermal alteration of the wall rocks. K-silicate alteration is characteristic for pre-ore hydrothermal activity in all of them, and it is located mostly in their central parts. Propylitic alteration is prominent in the Medet and Assarel deposits. The Assarel deposit is located in the central part of a palaeovolcanic structure and shows a large spectrum of pre-ore alterations, including propylitic, sericitic, and advanced argillic assemblages. The initial stages of the hydrothermal systems are characterised by high temperatures (>550-500 °C) and highly saline (50-20 wt% NaCl equiv.) and vapour-rich fluids of likely magmatic origin. The composition of the fluids gradually changes from H2O-NaCl±FeCl2 to H2O-NaCl-KCl and H2O-NaCl-dominated as the fluids cool, react with wall rocks, and may become diluted with meteoric water. Fe-Ti-oxide mineral associations were formed early in all deposits, later followed, in the Elatsite deposit, by an assemblage of bornite, chalcopyrite, platinum group element (PGE) phases, Co-Ni thiospinels, Ag- and Bi-tellurides, and selenides. The main ore stage in all deposits is dominated by

  7. A versatile interaction chamber for laser-based spectroscopic applications, with the emphasis on Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    The technical note describes the interaction chamber developed particularly for the laser spectroscopy technique applications, such as Laser-Induced Breakdown Spectroscopy (LIBS), Raman Spectroscopy and Laser-Induced Fluorescence. The chamber was designed in order to provide advanced possibilities for the research in mentioned fields and to facilitate routine research procedures. Parameters and the main benefits of the chamber are described, such as the built-in module for automatic 2D chemical mapping and the possibility to set different ambient gas conditions (pressure value and gas type). Together with the chamber description, selected LIBS application examples benefiting from chamber properties are described. - Highlights: • Development of the interaction chamber for LIBS applications • Example of automated chemical mapping of lead in a chalcopyrite sample • Example of LIBS measurement of fluorine in underpressure • Overview of chamber benefits

  8. Characteristics of Fluid Inclusions of Relin Cu-Mo Deposit in Northwestern Yunnan Province%滇西北热林Cu-Mo矿床流体包裹体特征

    Institute of Scientific and Technical Information of China (English)

    万多; 王可勇; 李文昌; 尹光侯; 余海军; 薛顺荣; 韦烈民

    2012-01-01

    热林Cu-Mo矿床为滇西北地区有代表性的燕山期斑岩型矿床.它产于似斑状二长花岗岩-二长花岗斑岩复式侵入体内,成矿作用经历了黄铁矿±黄铜矿-石英脉(Ⅰ)、黄铁矿-黄铜矿±辉钼矿-石英脉(Ⅱ)、辉钼矿±黄铜矿-石英脉(Ⅲ)及黄铜矿-石英-方解石脉(Ⅳ)4个阶段.流体包裹体岩相学、显微测温及碳、氢、氧同位素综合研究表明:Ⅰ-Ⅲ成矿阶段石英中均发育含NaC1子矿物三相、气液两相、富气相及含CO2三相4种类型的原生流体包裹体,与含矿的二长花岗斑岩斑晶石英中发育的包裹体类型及组合特征相似,表明成矿流体为中高温、高盐度NaCl-CO2-H2O体系热液,且主要来源于容矿的燕山期岩浆侵入体;Ⅳ阶段主要发育气液两相原生流体包裹体,成矿流体为中低温、低盐度NaCl-H2O体系热液,为岩浆来源NaCl-CO2-H2O体系热液演化晚期与大气降水混合流体.%The Relin Cu-Mo deposit located in northwest Yunnan province is a typical porphyry deposit formed in Yanshanian period.It occurs in porphyritic monzonitic granite-monzogranite porphyry intrusive complex and experienced four stages,pyrite ± chalcopyrite-quartz (Ⅰ),pyrite-chalcopyrite ± molybdenite-quartz (Ⅱ),molybdenite ± chalcopyrite-quartz(Ⅲ) and chalcopyrite-quartz-calcite (Ⅳ),respectively.Comprehensive studies of petrography,microthermometry as well as hydrogen,oxygen and carbon isotopes of fluid inclusions show that there develop four types of fluid inclusions in quartz grains formed from Ⅰ to Ⅲ mineralization stages,halite daughter mineral-bearing three-phase,aqueous two-phase,vapor-rich two-phase as well as carbon dioxide-bearing three-phase fluid inclusions.The fact that both type and assemblage of fluid inclusions in hydrothermal-origin quartz are similar to those in phenocryst quartz of ore-hosting monzo-granite porphyry indicates that the ore-forming NaCl-CO2-H2O hydrothermal fluid with medium to

  9. Pressure effect on the structural and electronic properties of CuInS2

    Science.gov (United States)

    Adetunji, B. I.

    2016-05-01

    The pressure dependence of the bond length and energy gap in chalcopyrite CuInS2 between 0 and 40 GPa has been investigated using pseudopotentials plane-wave method within the generalized gradient approximation for the exchange-correlation potential. We found that the bond length decreases as the pressure increases. Also, the energy gap of CuInS2 expands as the pressure increases with a rate of 10.693 meV/GPa. The linear pressure coefficient calculated is approximately half the reported experimental value of 23 meV/GPA. Our calculated bulk modulus of 68.7 GPa is in good agreement with the available experimental and theoretical values. The present calculations show that the d-electrons of Cu ions are one of the important factors that dominate the contributions to the I-VI bonds and the energy gap in CuInS2.

  10. Genesis of the Xinqiao Gold-Sulfide Orefield, Anhui Province, China

    Institute of Scientific and Technical Information of China (English)

    ZANG Wenshuan; WU Ganguo; ZHANG Da; LI Jinwen; ZHANG Xiangxin; LIU Aihua; ZHANG Zhongyi

    2004-01-01

    The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield in recent years, showing that it belongs to various types, such as sedimentary-reformed type, stratabound-skarn type, sedimentary submarine rocks-hosted exhalative type. We propose that it was formed in two periods of mineralization base on systematic field observation and Pb and S isotopic analyses in nearly ten years. The first period was formed during a syngenetic sedimentary process, whereas the massive sulphide orebodies are mainly related to the Yanshanian granitic magmatism. Sulfide metallic mineral associations show zoning around a granite intrusion, i.e. magnetite and pyrite →pyrite, chalcopyrite and native gold→ pyrite, sphalerite and galena. Gold orebodies occur outside the contact zone of the granite intrusion.

  11. Electrodeposition and Characterization of CulnSe2 Thin Films for Solar Cells

    Institute of Scientific and Technical Information of China (English)

    LI Jianzhuang; ZHAO Xiujian; XIA Donglin

    2007-01-01

    CuInSe2 (CIS) thin films were prepared by electrodeposition from the de-ionized water solution consisting of CuCl2, InCl3, H2SeO3 and Na-citrate onto Mo/soda-lime glass (SLG) substrates. A thermal processing in Se atmosphere at 450 ℃ was carried out for the electrodepositied films to improve the stoichiometry. The composition and morphology of selenized CIS thin films were studied using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. X-ray diffraction(XRD) studies show that the annealing in Se atmosphere at 450 ℃ promotes the structural formation of CIS chalcopyrite structure.

  12. Synthesis of CuInSe2 thin films from electrodeposited Cu11In9 precursors by two-step annealing

    Directory of Open Access Journals (Sweden)

    TSUNG-WEI CHANG

    2014-02-01

    Full Text Available In this study, copper indium selenide (CIS films were synthesized from electrodeposited Cu-In-Se precursors by two-step annealing. The agglomeration phenomenon of the electrodeposited In layer usually occurred on the Cu surface. A thermal process was adopted to turn Cu-In precursors into uniform Cu11In9 binary compounds. After deposition of the Se layer, annealing was employed to form chalcopyrite CIS. However, synthesis of CIS from Cu11In9 requires sufficient thermal energy. Annealing temperature and time were investigated to grow high quality CIS film. Various electrodeposition conditions were investigated to achieve the proper atomic ratio of CIS. The properties of the CIS films were characterized by scanning electron microscopy (SEM, X-ray Diffraction (XRD, and Raman spectra.

  13. Assessment of the geoavailability of trace elements from minerals in mine wastes: analytical techniques and assessment of selected copper minerals

    Science.gov (United States)

    Driscoll, Rhonda; Hageman, Phillip L.; Benzel, William M.; Diehl, Sharon F.; Adams, David T.; Morman, Suzette; Choate, LaDonna M.

    2012-01-01

    In this study, four randomly selected copper-bearing minerals were examined—azurite, malachite, bornite, and chalcopyrite. The objectives were to examine and enumerate the crystalline and chemical properties of each of the minerals, to determine which, if any, of the Cu-bearing minerals might adversely affect systems biota, and to provide a multi-procedure reference. Laboratory work included use of computational software for quantifying crystalline and amorphous material and optical and electron imaging instruments to model and project crystalline structures. Chemical weathering, human fluid, and enzyme simulation studies were also conducted. The analyses were conducted systematically: X-ray diffraction and microanalytical studies followed by a series of chemical, bio-leaching, and toxicity experiments.

  14. Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: evidence from tourmalines and chlorites

    Science.gov (United States)

    Slack, J.F.; Coad, P.R.

    1989-01-01

    The tourmalines and chlorites record a series of multiple hydrothermal and metamorphic events. Paragenetic studies suggest that tourmaline was deposited during several discrete stages of mineralization, as evidence by brecciation and cross-cutting relationships. Most of the tourmalines have two concentric growth zones defined by different colours (green, brown, blue, yellow). Some tourmalines also display pale discordant rims that cross-cut and embay the inner growth zones and polycrystalline, multiple-extinction domains. Late sulphide veinlets (chalcopyrite, pyrrhotite) transect the inner growth zones and pale discordant rims of many crystals. The concentric growth zones are interpreted as primary features developed by the main ore-forming hydrothermal system, whereas the discordant rims, polycrystalline domains, and cross-cutting sulphide veinlets reflect post-ore metamorphic processes. Variations in mineral proportions and mineral chemistry within the deposit mainly depend on fluctuations in temperature, pH, water/rock ratios, and amounts of entrained seawater. -from Authors

  15. Structural controls and evolution of gold-, silver-, and REE-bearing copper-cobalt ore deposits, Blackbird district, east-central Idaho: Epigenetic origins

    Science.gov (United States)

    Lund, K.; Tysdal, R.G.; Evans, K.V.; Kunk, M.J.; Pillers, R.M.

    2011-01-01

    The Cu-Co ± Au (± Ag ± Ni ± REE) ore deposits of the Blackbird district, east-central Idaho, have previously been classified as Besshi-type VMS, sedex, and IOCG deposits within an intact stratigraphic section. New studies indicate that, across the district, mineralization was introduced into the country rocks as a series of structurally controlled vein and alteration systems. Quartz-rich and biotite-rich veins (and alteration zones) and minor albite and siderite veinlets maintain consistent order and sulfide mineral associations across the district. Both early and late quartz veins contain chalcopyrite and pyrite, whereas intermediate-stage tourmaline-biotite veins host the cobaltite. Barren early and late albite and late carbonate (generally siderite) form veins or are included in the quartz veins. REE minerals, principally monazite, allanite, and xenotime, are associated with both tourmaline-biotite and late quartz veins. The veins are in mineralized intervals along axial planar cleavage, intrafolial foliation, and shears.

  16. Progress report - Physical and Environmental Sciences - Physics Division, 1996 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Powell, B.M. (ed.)

    1997-04-01

    This document is the last Progress Report for the Neutron and Condensed Matter Science Branch, at Chalk River Labs of Atomic Energy of Canada Limited. The materials science program continued to include measurements of stress as a major component, but the determination of phase diagrams for specific alloys was also a prominent activity. Studies were made of two types of unusual magnetic materials. The magnetic properties of several oxide pyrochlore were investigated and spin waves were measured in the magnetic semiconductor, chalcopyrite. The crystal structures of the deuterated anti fluorite were determined and the reorientation of the ammonium ion was refined in detail. Differential scanning calorimetry measurements were used to investigate whether spontaneous phase separation into chiral domains occurs for mixtures of DPPC of opposite chirality. A new Neutron Velocity Selector was commissioned.

  17. Granite-hosted molybdenite mineralization from Archean Bundelkhand craton-molybdenite characterization, host rock mineralogy, petrology, and fluid inclusion characteristics of Mo-bearing quartz

    Science.gov (United States)

    Pati, J. K.; Panigrahi, M. K.; Chakarborty, M.

    2014-06-01

    The dominantly high-K, moderate to high SiO2 containing, variably fractionated, volcanic-arc granitoids (± sheared) from parts of Bundelkhand craton, northcentral India are observed to contain molybdenite (Mo) in widely separated 23 locations in the form of specks, pockets, clots and stringers along with quartz ± pyrite ± arsenopyrite ± chalcopyrite ± bornite ± covellite ± galena ± sphalerite and in invisible form as well. The molybdenite mineralization is predominantly associated with Bundelkhand Tectonic Zone, Raksa Shear Zone, and localized shear zones. The incidence of molybdenite is also observed within sheared quartz and tonalite-trondhjemite-granodiorite (TTG) gneisses. The fluid inclusion data show the presence of bi-phase (H2O-CO2), hypersaline and moderate temperature (100°-300°C) primary stretched fluid inclusions suggesting a possible hydrothermal origin for the Mo-bearing quartz occurring within variably deformed different granitoids variants of Archean Bundelkhand craton.

  18. The bioleaching of different sulfide concentrates using thermophilic bacteria

    Science.gov (United States)

    Torres, F.; Blázquez, M. L.; González, F.; Ballester, A.; Mier, J. L.

    1995-05-01

    The bioleaching of different mineral sulfide concentrates with thermophilic bacteria (genus Sulfolobus @#@) was studied. Since the use of this type of bacteria in leaching systems involves stirring and the control of temperature, the influence of the type of stirring and the pulp density on dissolution rates was studied in order to ascertain the optimum conditions for metal recovery. At low pulp densities, the dissolution kinetic was favored by pneumatic stirring, but for higher pulp densities, orbital stirring produced the best results. A comparative study of three differential concentrates, one mixed concentrate, and one global concentrate was made. Copper and iron extraction is directly influenced by bacterial activity, while zinc dissolution is basically due to an indirect mechanism that is activated in the presence of copper ions. Galvanic interactions between the different sulfides favors the selective bioleaching of some phases (sphalerite and chalcopyrite) and leads to high metal recovery rates. However, the formation of galvanic couples depends on the type of concentrate.

  19. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides

    International Nuclear Information System (INIS)

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of ‘rattlers’…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites). (topical review)

  20. CuIn(S,Se){sub 2}thin film solar cells from nanocrystal inks: Effect of nanocrystal precursors

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Grayson M.; Guo Qijie [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Agrawal, Rakesh, E-mail: agrawalr@purdue.edu [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Hillhouse, Hugh W., E-mail: h2@uw.edu [School of Chemical Engineering and The Energy Center, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907 (United States); Department of Chemical Engineering, University of Washington, Seattle WA 98105 (United States)

    2011-10-31

    CuIn(S,Se){sub 2} thin film solar cells are fabricated by selenizing CuInS{sub 2} nanocrystals synthesized using a variety of copper and indium precursors. Specifically, copper and indium acetates, acetylacetonates, iodides, chlorides and nitrates are investigated to determine the effect of precursors on electronic properties and device performance. Nanocrystal synthesis with each of these precursors can be optimized to yield similar nanocrystal composition, size and structure. In addition, dense chalcopyrite CuIn(S,Se){sub 2} thin films with micron sized grains at the surface are formed upon selenization regardless of precursor type. Surprisingly, solar cells fabricated from each nanocrystal ink have roughly the same carrier concentrations of 10{sup 16} to 10{sup 17} cm{sup -3} in the absorber layer and achieve active area efficiencies of approximately 5%.

  1. Emilite,  Cu10.72Pb10.72Bi21.28S48, the last missing link of the bismuthinite-aikinite series?

    DEFF Research Database (Denmark)

    Topa, Dan; H. Paar, Werner; Balic Zunic, Tonci

    2006-01-01

    Emilite, ideally Cu10.72Pb10.72Bi21.28S48, with a 4.0285(8), b 44.986(9), c 11.599(2) Å, space group Pmc21, Z = 1, is a new Cu-Pb-Bi sulfosalt found in quartz veins of the Felbertal scheelite deposit, Salzburg Province, Austria. It occurs as rare elongate homogeneous crystals, up to 0.3 mm long...... and 0.1 mm in diameter. The associated minerals are: bismuthinite derivatives in the range krupkaite-hammarite, Ag-bearing lillianite, makovickyite, pavonite, cosalite, galenobismutite, cannizzarite, tetradymite, native bismuth, chalcopyrite, pyrite and quartz. Emilite is opaque, with a metallic luster...

  2. Structural, optical, and electrical properties of pulsed laser deposition CIGSS thin films

    Science.gov (United States)

    Xu, Yan-Bin; Kang, Y. Zhen-Feng; Fan, Yue; Xiao, Ling-ling; Bo, Qing-Rui; Ding, Tie-Zhu

    2015-12-01

    High-quality CuIn0.75Ga0.25(Se0.75S0.25)2 (CIGSS) thin films were synthesized on the soda-lime glass (SLG) substrates by pulsed laser deposition. The structural and optical properties of CIGSS thin films were studied by experiments and theoretical calculations. XRD result reveals that the films are of chalcopyrite structure. The experiments and theory show that CIGSS is a semiconductor with a direct band gap. The direct band gap energy of the deposited CIGSS thin films are in the solar energy range. The band structure and density of states of the CIGSS crystals were studied by the first principles density functional theory. The experimental data and theoretical data have demonstrated good agreement.

  3. Effects of the CuS phase on the growth and properties of CuInS2 thin films

    Science.gov (United States)

    Liu, Xiaohui; Han, Anjun; Liu, Zhengxin; Sugiyama, Mutsumi

    2016-01-01

    CuInS2 thin films were prepared by sulfurization using a less hazardous liquid, metal-organic ditertiarybutylsulfide, on soda-lime glass substrates. Single-phase chalcopyrite CuInS2 films were obtained after 15 min at 515 °C. The obtained CuInS2 films were repeatedly sulfurized under different sulfurization conditions. The characteristics of these CuInS2 films were determined by X-ray diffraction (XRD) and photoluminescence (PL) spectra analyses. The secondary impurity phase such as CuS was confirmed from XRD patterns. The growth mechanism of intrinsic defects related to the secondary phase is discussed in this paper.

  4. Rule of oxygen transmission in dump leaching

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    According to the chemical equations, the flux and concentration of oxygen required during bacterial leaching sulfuric mineral were investigated; the rule of air bubble transmitted in granular was researched in the Dump Leaching Plant of Dexing Copper Mine. The results show that lack of oxygen in dump leaching is the critical factor of restricting leaching reaction. Pyrite is the primary oxygen-consuming mineral in bioleaching. When its content is too high, it needs a great deal of oxygen for reaction and competes for the finite oxygen with objective minerals, and thus the leaching velocity decreases greatly. The average size of ore particles and diameter of bubbles are the key parameters affecting the mass transfer coefficient. Reverse analysis was adopted, and it shows that 44.8 m3 air per unit ore can meet the requirement of production if the molar ratio of pyrite to chalcopyrite is 10.

  5. Absorption Spectra of CuGaSe 2 and CuInSe 2 Semiconducting Nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2015-10-01

    The structural and optical properties of the chalcopyrite CunGanSe2n and CunInnSe2n nanoclusters (n = 2, 4, 6, and 8) are investigated as a function of the size using a combination of basin-hopping global optimization and time-dependent density functional theory. Although the lowest energy structures are found to show almost random geometries, the band gaps and absorption spectra still are subject to systematic blue shifts for decreasing cluster size in the case of CunGanSe2n, indicating strong electron confinement. The applicability of the nanoclusters in photovoltaics is discussed. © 2015 American Chemical Society.

  6. Growth and properties of CuAlSe{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, I.V. [Belarussian State Univ., Minsk (Belarus)

    1994-09-01

    The compound CuAlSe{sub 2} is one of the A{sup I}B{sup III}C{sup VI}{sub 2} ternary compounds that crystallize in the chalcopyrite structure (sp. gr. D{sup 12}{sub 2d} - I{bar 4}2m). Given that CuAlSe{sub 2} exhibits birefringence and an optical isotropy point (the intersection point of the dispersion curves for ordinary n{sub o} and extraordinary n{sub e} indices), it is considered as a promising material for producing electro-optic choppers and narrow-band visible/near-IR filters. Up to now, there have been no reports on growth of high-quality CuAlSe{sub 2} single crystals by the Bridgman technique. Therefore, the purpose of this work was to grow high-quality crystals of CuAlSe{sub 2} and to study their properties.

  7. Transmittance spectra of the CuGa3Se5 ternary compound near the fundamental absorption edge

    International Nuclear Information System (INIS)

    The CuGa3Se5 ternary compound films are produced by laser deposition at the substrate temperatures 480 and 580 K. The composition and structure of the films are studied. It is shown that, similarly to the corresponding crystals, the CuGa3Se5 films crystallize into the imperfect chalcopyrite structure. The transmittance spectra near the fundamental absorption edge are used to establish the energies and nature of optical transitions. The energies of crystal-field splitting (Δcr) and spin-orbit splitting (ΔSO of the valence band of the CuGa3Se5 ternary compound are calculated in the context of the Hopfield quasi-cubic model.

  8. Transmittance spectra of the CuGa{sub 3}Se{sub 5} ternary compound near the fundamental absorption edge

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, I. V., E-mail: chemzav@bsuir.by [Belarusian State University of Information and Radio Electronics (Belarus)

    2011-04-15

    The CuGa{sub 3}Se{sub 5} ternary compound films are produced by laser deposition at the substrate temperatures 480 and 580 K. The composition and structure of the films are studied. It is shown that, similarly to the corresponding crystals, the CuGa{sub 3}Se{sub 5} films crystallize into the imperfect chalcopyrite structure. The transmittance spectra near the fundamental absorption edge are used to establish the energies and nature of optical transitions. The energies of crystal-field splitting ({Delta}{sub cr}) and spin-orbit splitting ({Delta}{sub SO} of the valence band of the CuGa{sub 3}Se{sub 5} ternary compound are calculated in the context of the Hopfield quasi-cubic model.

  9. Representations of the occupation number matrix on the LDA/GGA+U method

    Energy Technology Data Exchange (ETDEWEB)

    Tablero, C [Instituto de EnergIa Solar, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, E-28040 Madrid (Spain)

    2008-08-13

    An analysis of the general representation of the occupation number matrix on density functional theory in conjunction with the generalized Hubbard model is presented. A central fact that will be addressed is that the total charge density cannot be broken down into simple atomic contributions. This fact means that the orbital occupations are not well defined. Different representations of the occupation number matrix, both that it conserves and that it does not conserve the number of electrons of the system, are compared. A localized basis set is used, which is suitable for large-scale electronic structure calculations based on the density functional theory. This methodology is applied to typical and well-analysed transition-metal oxide bulk systems and to Cr-doped zinc chalogenides and chalcopyrites. The bandgap, magnetic moment and detailed electronic structures are investigated and discussed with the different choices of the occupation number matrix. The results are in good agreement with previous theoretical and experimental studies.

  10. Zoned Cr, Fe-spinel from the La Perouse layered gabbro, Fairweather Range, Alaska

    Science.gov (United States)

    Czamanske, G.K.; Himmelberg, G.R.; Goff, F.E.

    1976-01-01

    Zoned spinel of unusual composition and morphology has been found in massive pyrrhotite-chalcopyrite-pent-landite ore from the La Perouse layered gabbro intrusion in the Fairweather Range, southeastern Alaska. The spinel grains show continuous zoning from cores with up to 53 wt.% Cr2O3 to rims with less than 11 wt.% Cr2O3. Their composition is exceptional because they contain less than 0.32 wt.% MgO and less than 0.10 wt.% Al2O3 and TiO2. Also notable are the concentrations of MnO and V2O3, which reach 4.73 and 4.50 wt.%, respectively, in the cores. The spinel is thought to have crystallized at low oxygen fugacity and at temperatures above 900??C, directly from a sulfide melt that separated by immiscibility from the gabbroic parental magma. ?? 1976.

  11. A hybrid-exchange density functional study of the bonding and electronic structure in bulk CuFeS2

    Science.gov (United States)

    Martínez-Casado, Ruth; Chen, Vincent H.-Y.; Mallia, Giuseppe; Harrison, Nicholas M.

    2016-05-01

    The geometric, electronic, and magnetic properties of bulk chalcopyrite CuFeS2 have been investigated using hybrid-exchange density functional theory calculations. The results are compared with available theoretical and experimental data. The theoretical description of the bonding and electronic structure in CuFeS2 is analyzed in detail and compared to those computed for chalcocite (CuS2) and greigite (Fe3S4). In particular, the behavior of the 3d electrons of Fe3+ is discussed in terms of the Hubbard-Anderson model in the strongly correlated regime and found to be similarly described in both materials by an on-site Coulomb repulsion (U) of ˜8.9 eV and a transfer integral (t) of ˜0.3 eV.

  12. CIGS nanostructure: preparation and study using liquid phase method

    Science.gov (United States)

    Jakhmola, P.; Jha, P. K.; Bhatnagar, S. P.

    2016-06-01

    Present study is motivated by interesting attainment obtained for copper indium gallium diselenide compound as a light absorbing material for thin-film solar cell. Formation of copper indium gallium diselenide nanostructures via solvothermal method using starting precursors of copper, indium, gallium salts, and selenium powder is represented. Preparation is done by varying x (0.1 and 0.3) in CuIn1- x Ga x Se2 compound at a constant temperature and using ethanolamine as a solvent. Characterization of nanostructures is done using powder X-ray diffraction, scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. It is found that grown chalcopyrite structure at different x, possess agglomeration in nanostructures. Results indicate that presence of 10 % gallium in copper indium gallium diselenide compound leads to the single-phase growth, prepare at the temperature of 190 °C for 19 h.

  13. Control over the preferred orientation of CIGS films deposited by magnetron sputtering using a wetting layer

    Science.gov (United States)

    Yan, Yong; Jiang, Fan; Liu, Lian; Yu, Zhou; Zhang, Yong; Zhao, Yong

    2016-01-01

    A growth method is presented to control the preferred orientation in chalcopyrite CuIn x Ga1- x Se2 (CIGS) thin films grown by magnetron sputtering. Films with (220/204) and (112) preferred orientation as well as randomly oriented films were prepared. The effects of an In2Se3 wetting layer and the working pressure on the texture transition phenomena were examined. A large-grained CIGS film with (220/204) texture was formed at 400°C with the inclusion of a thin (80 nm) In2Se3 layer and liquid phase (excess copper selenide phase) formation, and the reaction mechanism is proposed. The device deposited at 2.0 Pa on an In2Se3 layer exhibited the optimal electrical properties. [Figure not available: see fulltext.

  14. CuInS2 thin films obtained by spray pyrolysis for photovoltaic applications

    International Nuclear Information System (INIS)

    Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low-cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different composition solutions at various substrate temperatures. Structural, chemical composition and optical properties of CIS films were analysed by X-ray diffraction, energy dispersive X-ray spectroscopy and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the direction and no remains of oxides were found after spraying in suitable conditions. X-ray microanalysis shows that a chemical composition near to stochiometry can be obtained. An optical gap of about 1.51 eV was found for sprayed CIS thin films

  15. Gold and uranium metallogenesis in the framework of Neo-proterozoic crust growth and differentiation: example of the Mayo-Kebbi Massif (Chad) in the Central Africa Orogenic belt

    International Nuclear Information System (INIS)

    The Mayo Kebbi massif located in southwestern Chad between the Congo craton in the South, the West African craton in the west and the Sahara meta-craton to the east exposes a segment of Neo-proterozoic juvenile crust accreted in the Central African orogenic belt during the Pan African orogeny. It consists of two greenstone belts (Zalbi and Goueygoudoum) separated by the May Kebbi calc-alkaline batholith complexes and intruded by calc-alkaline high-K granitic plutons. The whole is covered by Phanerozoic sedimentary formations. The greenstone belts contain sulphide zones hosted mainly by meta-plutonic rocks (granodiorites) and meta-basalts and meta-volcaniclastics. The mineralization comprises pyrite, pyrrhotite, arsenopyrite, chalcopyrite, pentlandite, pentlandite silver, pentlandite cobaltiferous, sphalerite, cobaltite. These sulphides are disseminated, aggregated in form of layers or are filling veins and cracks. The greenstones also contain quartz veins with calcite and chlorite comprising a mineralization made of pyrite, chalcopyrite, galena and gold. Gold is present both as native crystals and as electrum. The high-K calc-alkaline Zabili granitic pluton hosts uranium mineralization related to a superposition of: (1) ductile deformation and metasomatic alteration implying the interaction between magmatic minerals with a Na-rich fluid, of potential magmatic origin, coeval to the main deposition of uranium oxides, followed by (2) brittle deformation and deposition of secondary hydrated uranium silicates involving a Na-Ca-rich fluid. We propose that these uranium mineralizations represent the extreme expression of crustal differentiation as a result of Pan-African reworking of a Neo-proterozoic juvenile crustal segment. (author)

  16. Flotation Separation of Cu-Zn Sulphide Ore by Sodium Hexametaphosphate%铜锌硫化矿浮选分离试验研究

    Institute of Scientific and Technical Information of China (English)

    李宁; 覃文庆; 焦芬; 魏茜

    2012-01-01

    通过单矿物浮选试验研究黄铜矿和铜离子活化后的铁闪锌矿在Z-200作用下的浮选行为,以及六偏磷酸钠对它们可浮性的影响.研究结果表明:用Z-200作捕收剂,六偏磷酸钠作抑制剂,黄铜矿和铜离子活化后的铁闪锌矿在pH 8~10范围内具有很好的浮选分离效果;实际矿石浮选试验表明,六偏磷酸钠和硫酸锌组合应用于铜锌分离中,对锌矿物能起到较好的抑制作用,从而达到铜锌分离的目的,但仍存在问题,需要进一步研究与优化.%The flotation behavior of chalcopyrite and Cu - aqtivitatded marmatite with O - isopropyl - N - ethyl thionocarbamate (Z - 200) and the effect of sodium hexametaphosphate on their float-ability were studied by single mineral tests. The results show that the selective separation of chalcopyrite from Cu - activitatded marmatite could be achieved at the pH value range of 8 -10 when using O - isopropyl - N - ethyl thionocarbamate as collector and sodium hexametaphosphate as depressant. The results of the real ore tests shows that the combination of sodium hexametaphosphate and zinc sulfate can depress zinc minerals effectively and outputs a good result in separating zinc from copper minerals, but with some problems which need further research and optimization.

  17. Influencia de la temperatura en la fijación y penetración de la plata durante la lixiviación de calcopirita con microorganismos termófilos moderados

    Directory of Open Access Journals (Sweden)

    Cancho, L.

    2004-06-01

    Full Text Available Bioleaching of chalcopyrite using mesophilic microorganisms considerably improves in the presence of silver. However, the studies carried out with moderate thermophilic microorganisms do not show a significant improvement with regard to the use of mesophilic bacteria. The main objective of the present work has been to study the silver fixation on chalcopyrite at 35 and 45 °C and its influence on the microbiological attack. Different observations using SEM, EDS microanalysis and concentration profiles using electron microprobe have been carried out. The study of the different samples showed that silver fixation was more favourable at 35 °C than at 45 °C. In addition, bacterial action improved silver penetration through attack cracks.

    La biolixiviación de la calcopirita con microorganismos mesófilos mejora considerablemente cuando se utiliza plata en el medio de reacción. Sin embargo, los estudios realizados con microorganismos termófilos moderados no muestran una mejora significativa con respecto a la utilización de bacterias mesófilas. El objetivo del presente trabajo ha sido el estudio de la fijación de plata sobre calcopirita a 35 y 45 °C y su influencia en el ataque microbiológico. Se han realizado observaciones con SEM, microanálisis por EDS y perfiles de concentración con microsonda electrónica. El estudio de las distintas muestras reveló que la fijación de la plata fue más favorable a 35 que a 45 °C y que la acción bacteriana favoreció la penetración de la plata a través de las grietas de ataque.

  18. Lead and neodymium isotopic results from metabasalts of the Haveri Formation, southern Finland: evidence for Palaeoproterozoic enriched mantle

    Directory of Open Access Journals (Sweden)

    Vaasjoki, M.

    1999-06-01

    Full Text Available Tholeiitic metabasalts and coexisting sulphides have been analysed for their Pb and Nd isotopic compositions from the Proterozoic Haveri Formation, which forms the basal unit of the Tampere Schist Belt in southern Finland. Ten whole rock samples analysed for Pb isotopes form a sublinear array which yields rather uncertain age estimates in the 1900-2000 Ma range and lies on the 207Pb/204Pb vs. 206Pb/204Pb diagram well below the average global lead evolution curve. The initial lead isotopic composition inferred from the whole rock data and measured on chalcopyrite is the least radiogenic obtained from the Svecofennian domain, and precludes involvement of old upper crustal material in basalt genesis. This together with the geochemical composition and initial eNd (1900 of +0.5±0.6 suggest that the Haveri mafic metavolcanic rocks were not derived from convective MORB-type mantle. The source was rather a mantle, which had been enriched in LREE for a considerable time period. Some chalcopyrite trace leads plot close to the whole rock array while others lie above it. This is interpreted as indicating two distinct mineralisation processes. The primary and major process involved lead which was cogenetic with the basalts, while the second mineralising fluid introduced radiogenic (high 207Pb upper crustal lead scavenged from the adjacent sedimentary rocks. The least radiogenic leads at Haveri and in the Outokumpu ophiolite complex some 300 km NE are similar and the two occurrences can be coeval. The preservation of original mantle material at Haveri may be interpreted as suggesting that continental crust had formed in the Tampere area 1900-2000 Ma ago.

  19. Ore Mineralogy Features of Hayriye and Arapdede Mineralizations in (Inegol-Bursa) Area

    Science.gov (United States)

    Sendir, Hüseyin; Kocatürk, Hüseyin; Cesur, Duru; Toygar, Özlem

    2016-04-01

    Western Anatolia (Turkey) experienced widespread Cenozoic magmatism after the collision between the Sakarya and Anatolide-Tauride continental blocks in the pre-middle Eocene. The widespread magmatic activity in NW Anatolia postdates this continental collisional event in the region. The following magmatic episode during the Oligocene and Early Miocene is known to have produced the widespread granitic plutons. Many skarn mineralization associated with plutons formed in the region (such as Hayriye and Arapdede Mineralizations). The Paleozoic aged Devlez Metabasite is the oldest unit of the study area. This unit includes amphibolite, glaucophane-lawsonite schist, muscovite schists. The unit has widely spread in area. This units are overlain unconformably by the Geyiktepe Marbles. Paleocene aged Domaniç granitoidic intrusives cut other rock series and located as a batholite. Magmatic units present porphyric and holocrystalline textures. Granitoidic intrusions are represented by tonalite, tonalite porphyr, granodiorite, granodiorite porphyr, granite, diorite, diorite porphyries. The Domaniç granitoid intruded in to the metamorphides during Paleocene and caused formations of skarn zones and related Cu-Pb-Zn mineralizations along the contacts. Mineralizations are known in the locations named as Arapdede and Hayriye. The mineralizations occur along the metamorphites - plutonics contact, in the pockets and fractures extending towards marble. The thickness of the mineralized bodies can reach up to 1 -2 m. Primary minerals are galenite, magnetite, pyrite, chalcopyrite and sphalerite at Hayriye mineralizations and sphalerite, galenite, chalcopyrite and pyrite minerals at the Arapdede mineralizations. This study supported by ESOGU BAP (201115031) Keywords: Ore mineralogy, mineralization, Cu-Pb-Zn deposits, Inegöl (Bursa).

  20. Trace Metal and Sulfur Dynamics in the First Meter of Buoyant Hydrothermal Vent Plumes

    Science.gov (United States)

    Findlay, A.; Gartman, A.; Shaw, T. J.; Luther, G. W., III

    2014-12-01

    The speciation and reactivity of metals and metal sulfides within the buoyant plume is critical to determining the ultimate fate of metals emitted from hydrothermal vents. The concentration, size fractionation, and partitioning of trace metals (Fe, Mn, Cu, Co, Zn, Cd, Pb) were determined within the first meter of the rising plume at three vent fields (TAG, Snakepit, and Rainbow) along the Mid-Atlantic Ridge. At Rainbow, total Fe concentrations exceed total sulfide concentrations by an order of magnitude, whereas at the other two sites, total Fe and total sulfide concentrations are nearly equal. At all three sites, Mn and Fe are primarily in the filtered (< 0.2 μm) fraction and Cu, Co, Zn, Cd, and Pb are mainly in the unfiltered fraction. At TAG and Snakepit, unfiltered copper is correlated with unfiltered cobalt, and unfiltered zinc is correlated with unfiltered cadmium and lead. At Rainbow, unfiltered zinc, cadmium and lead are correlated, but unfiltered copper and cobalt are not, indicating precipitation dynamics at Rainbow are different than those at TAG and Snakepit due to bulk geochemical differences, including a higher iron to sulfide ratio. A sequential HCl/HNO3 leaching method was used to distinguish metals present in pyrite and chalcopyrite in both unfiltered and filtered samples. Significant portions of unfiltered Cu and Co were extracted in HNO3, whereas unfiltered Zn, Cd, and Pb were extracted in HCl. Up to 95 % of filtered Cu, Co, and Zn, up to 80% Cd, and up to 60 % Pb are only extractable in HNO3, indicating that a significant portion of metals < 0.2 μm are incorporated into a recalcitrant fraction such as nanoparticulate pyrite or chalcopyrite.

  1. Genesis of Pb-Zn-Cu-Ag Deposits within Permian Carboniferous-Carbonate Rocks in Madina Regency, North Sumatra

    Directory of Open Access Journals (Sweden)

    Bhakti Hamonangan Harahap

    2015-11-01

    Full Text Available Strong mineralized carbonate rock-bearing Pb-Zn-Cu-Ag-(Au ores are well exposed on the Latong River area, Madina Regency, North Sumatra Province. The ore deposit is hosted within the carbonate rocks of the Permian to Carboniferous Tapanuli Group. It is mainly accumulated in hollows replacing limestone in the forms of lensoidal, colloform, veins, veinlets, cavity filling, breccia, and dissemination. The ores dominantly consist of galena (126 000 ppm Pb and sphalerite (2347 ppm Zn. The other minerals are silver, azurite, covellite, pyrite, marcasite, and chalcopyrite. This deposit was formed by at least three phases of mineralization, i.e. pyrite and then galena replaced pyrite, sphalerite replaced galena, and pyrite. The last phase is the deposition of chalcopyrite that replaced sphalerite. The Latong sulfide ore deposits posses Pb isotope ratio of 206Pb/204Pb = 19.16 - 20.72, 207Pb/204Pb = 16.16 - 17.29, and 208Pb/204Pb = 42.92 - 40.78. The characteristic feature of the deposit indicates that it is formed by a sedimentary process rather than an igneous activity in origin. This leads to an interpretation that the Latong deposit belongs to the Sedimentary Hosted Massive Sulfide (SHMS of Mississippi Valley-Type (MVT. The presence of SHMS in the island arc such as Sumatra has become controversial. For a long time, ore deposits in the Indonesian Island Arc are always identical with the porphyry and hydrothermal processes related to arc magmatism. This paper is dealing with the geology of Latong and its base metal deposits. This work is also to interpret their genesis as well as general relationship to the regional geology and tectonic setting of Sumatra.

  2. Rare earth element and stable sulphur (δ 34S) isotope study of baryte-copper mineralization in Gulani area, Upper Benue Trough, NE Nigeria

    Science.gov (United States)

    El-Nafaty, Jalo Muhammad

    2015-06-01

    The geology of Gulani area comprises of inliers of diorite and granites of the Older Granite suite of the Pan-African (600 ± 150 Ma) age within Cretaceous sediments of the Bima, Yolde and Pindiga Formations and the Tertiary/Quaternary basalts of the Biu Plateau. Epigenetic baryte-copper mineralization occurs as baryte veins within the Bima and Yolde sandstones and fracture-filling malachite in Pan-African granites. Unaltered (distal), hydrothermally altered (proximal) granites and sandstones and vein materials (mineral separates of baryte and chalcopyrite/malachite mineralized rocks) were analysed for rare earth elements (REE) and stable sulphur isotopes. The REE patterns of the unaltered rocks (both granites and sandstones) indicate background values before mineralization, depicted by enriched LREE, depleted HREE and weak negative Eu anomalies typical of Pan-African (calc-alkaline) granites and sandstones derived from them. On the other hand, the hydrothermally altered and mineralized rocks and mineral separates show a distinct baryte and copper mineralization sub-systems characterized by similar high LREE and corresponding low HREE abundances. However, the negative Eu anomalies of the copper sub-system hosted by granites are typical of Pan-African (calc-alkaline) granites. The sandstone host rocks of the baryte sub-system are marked by positive Eu anomalies interpreted as reflecting the injection and subsequent deposition of the baryte-bearing hydrothermal solutions under oxidizing conditions. The baryte mineral separates show δ (34S) isotope range of 12.3-13.1‰ (CDT) indicating sulphur from sedimentary formation sources. This ruled out magmatic source of the sulphur from the nearby Tertiary/Quaternary volcanic rocks of the Biu Plateau as well as ocean water. However, the stable sulphur isotopic determination of the sulphides (chalcopyrite/malachite mineral separates and mineralized rocks) did not yield peaks and therefore no inferences drawn in this regard.

  3. Effect of electromagnetic radiation on the physico-chemical properties of minerals

    International Nuclear Information System (INIS)

    The electromagnetic radiation effect represented by gamma rays was investigated through; chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (Sem) and magnetization when applied at a dose of 0.5704 Gy (0.5704 J/ kg) at a feed relation of 18.40 ± 1.13 mGy/ h., in different minerals; in order to characterize the impact of the same from 137Cs in the physicochemical properties of these minerals. All the irradiated samples showed chemical stability at this stage undetectable other both in the XRD study and in the images analysis obtained by Sem; and at present almost the same chemical composition as the non-irradiated samples. So the same patterns of X-ray diffraction thereof, show a tendency to slightly lower the intensity of the most representative peaks of each mineral phase, which may be due to a decrease in crystallinity or preferential crystallographic orientation in crystals. In the micrographs analysis obtained by Sem on the irradiated samples, some holes (open pores) present in the particles were observed, mainly chalcopyrite and sphalerite lesser extent, seen this fact may be due to Compton Effect, in the radiation process. In relation to the magnetization property, a variation is obtained in the saturation magnetization (Ms) for the irradiated samples containing iron and more significantly in the chalcopyrite case. Therefore, with the radiation level used; slight changes occurring in the physical properties of minerals, whereas they remained stable chemically. These small changes may represent a signal that electromagnetic radiation applied at higher doses, is a viable option for improving the mineral processing. (author)

  4. Discussion for Grinding Technique of a Copper-molybdenum Mine in Jilin Province%吉林某铜钼矿磨矿工艺探讨

    Institute of Scientific and Technical Information of China (English)

    金明水; 王大明

    2013-01-01

    吉林某铜钼矿具有回收价值的为辉钼矿和黄铜矿,浸染粒度以粗、细粒为主,不均匀嵌布。辉钼矿和黄铜矿除与脉石矿物嵌布关系紧密外,与其他金属矿物很少有嵌布关系,矿石结构构造较为简单。磨矿分级产品质量直接影响选别指标,合理确定磨矿细度,对简化磨矿流程、节省投资、降低能耗,提高选厂经济效益有着重要意义。%The ore which is based on recovery value is the molybdenite and the chalcopyrite that is from a copper-molybdenum mine in Jilin . The disseminated grain size of the ore is mainly to be coarse and fine , the grain is inbuilt unevenly . The disseminated relationship of molybdenite and chalcopyrite to the metallic is not close besides the gangue , the texture and structure of the ore is simpler . The production quality of the ore which is from the grinding and classification flowsheet will influence the index directly , so it is im-portant to define the mog reasonably for simplifying grinding flowsheet , reducing investment outlay and energy consumption , and enhancing economic performance of the concentration plant .

  5. The influence of stoichiometry and annealing temperature on the properties of CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} and CuIn{sub 0.7}Ga{sub 0.3}Te{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fiat, S. [GaziosmanpaşaUniversity, Faculty of Arts and Sciences, Physics Department, 60240 Tokat (Turkey); Koralli, P. [School of Mechanical Engineering, National Technical University of Athens, 9, Iroon Polytechniou, Zografos, 15780 Athens (Greece); Bacaksiz, E. [Karadeniz Technical University, Faculty of Arts and Sciences, Physics Department, 61080 Trabzon (Turkey); Giannakopoulos, K.P. [N.C.S.R. “Demokritos,” Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, 15310 Aghia Paraskevi, Athens (Greece); Kompitsas, M., E-mail: mcomp@eie.gr [National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 11635 Athens (Greece); Manolakos, D.E. [School of Mechanical Engineering, National Technical University of Athens, 9, Iroon Polytechniou, Zografos, 15780 Athens (Greece); Çankaya, G. [Yıldırım Beyazıt University, Faculty of Engineering and Natural Sciences, Materials Engineering, 06030 Ankara (Turkey)

    2013-10-31

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} and CuIn{sub 0.7}Ga{sub 0.3}Te{sub 2} thin films have been prepared by the electron beam evaporation technique and annealed at various temperatures (450 °C, 475 °C, 500 °C, 525 °C and 600 °C). Optical transmittance measurements have been carried out in the wavelength range 300–1200 nm. The films show high absorption in the solar radiation spectral range, and their optical band gaps range from 1.33 eV to 1.22 eV for CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} and from 1.13 eV to 1.06 eV for CuIn{sub 0.7}Ga{sub 0.3}Te{sub 2}, depending on the annealing temperature. X-ray diffraction (XRD) indicates the films are crystallized in a single phase with the chalcopyrite structure and a preferred orientation along the (112) plane. The dependence of the lattice parameters on the composition of the films is investigated. Surface morphology has been determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). These results are correlated with the XRD microstructural analysis. - Highlights: • Chalcopyrite CIGSe and CIGTe thin films have been grown by e-beam evaporation. • The samples have been annealed at 4 different temperatures up to 600 °C. • Annealing effects on the optical properties, morphology and structure were analyzed. • Annealing improves crystallinity and increases grain size. • Energy band gap reduces with annealing temperature and Se replacement by Te.

  6. Properties of different temperature annealed Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films prepared by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhou; Liu Lian; Yan Yong; Zhang Yanxia; Li Shasha; Yan Chuanpeng; Zhang Yong [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhao Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The Cu(In,Ga)Se{sub 2} and Cu(In,Ga)2Se{sub 3.5} films follow different process to form CIGS phase. Black-Right-Pointing-Pointer Composition loss of the annealed Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films are different. Black-Right-Pointing-Pointer Hexagonal CuSe phase exhibits unique transport feature. Black-Right-Pointing-Pointer Conductivity of the CIGS films is affected by the 'variable range hopping' mechanism. - Abstract: We have investigated the effect of annealing temperature on structural, compositional, electrical properties of the one-step RF sputtered Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films. After the annealing at various temperatures, loss of Se element is significant for the Cu(In,Ga)Se{sub 2} films and meanwhile composition of the annealed Cu(In,Ga){sub 2}Se{sub 3.5} films keeps almost constant. The as-deposited Cu(In,Ga)Se{sub 2} and Cu(In,Ga){sub 2}Se{sub 3.5} films show amorphous structure and they follow different transformation process to form chalcopyrite structure. Electrical conductivity of the annealed CIGS films related to their chemical composition. Cu(In,Ga)Se{sub 2} films annealed at 150 Degree-Sign C show unique electron transport mechanism for the formation of hexagonal CuSe phase. Electrical conductivity of the chalcopyrite structure films are dominated by the 'variable range hopping' transport mechanism. The annealed Cu(In,Ga){sub 2}Se{sub 3.5} films present higher density of disorders than the annealed Cu(In,Ga)Se{sub 2} films for their significant Cu deficient composition.

  7. Comparative study of structural and morphological properties of CuIn{sub 3}S{sub 5} and CuIn{sub 7}S{sub 11} materials

    Energy Technology Data Exchange (ETDEWEB)

    Khemiri, N., E-mail: naoufel_khemiri@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2010-02-15

    CuIn{sub 3}S{sub 5} and CuIn{sub 7}S{sub 11} powders were prepared by solid-state reaction method using high-purity elemental copper, indium and sulphur. The films prepared from CuIn{sub 3}S{sub 5} and CuIn{sub 7}S{sub 11} powders were grown by thermal evaporation under vacuum (10{sup -6} Torr) on glass substrates at different substrate temperature Ts varying from room temperature to 200 deg. C. The powders and thin films were characterized for their structural properties by using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). Both powders were polycrystalline with chalcopyrite and spinel structure, respectively. From the XRD data, we calculated the lattice parameters of the structure for the compounds. For CuIn{sub 3}S{sub 5} powder, we also calculated the cation-anion bond lengths. The effect of substrate temperature Ts on the structural properties of the films, such as crystal phase, preferred orientation and crystallinity was investigated. Indeed, X-ray diffraction analysis revealed that the films deposited at a room temperature (30 deg. C) are amorphous in nature while those deposited on heated were polycrystalline with a preferred orientation along (1 1 2) of the chalcopyrite phase and (3 1 1) of the spinel phase for CuIn{sub 3}S{sub 5} and CuIn{sub 7}S{sub 11} films prepared from powders, respectively. The morphology of the films was determined by atomic force microscopy AFM. The surface roughness and the grain size of the films increase on increasing the substrate temperature.

  8. Effect of electromagnetic radiation on the physico-chemical properties of minerals; Efecto de la radiacion electromagnetica en las propiedades fisicoquimicas de los minerales

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A.; Delgadillo G, J. A. [Universidad Autonoma de San Luis Potosi, Instituto de Metalurgia, Doctorado Institucional de Ingenieria y Ciencia de Materiales, Av. Sierra Leona 550, 78210 San Luis Potosi (Mexico); Vega C, H. R., E-mail: alopezm6@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The electromagnetic radiation effect represented by gamma rays was investigated through; chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (Sem) and magnetization when applied at a dose of 0.5704 Gy (0.5704 J/ kg) at a feed relation of 18.40 ± 1.13 mGy/ h., in different minerals; in order to characterize the impact of the same from {sup 137}Cs in the physicochemical properties of these minerals. All the irradiated samples showed chemical stability at this stage undetectable other both in the XRD study and in the images analysis obtained by Sem; and at present almost the same chemical composition as the non-irradiated samples. So the same patterns of X-ray diffraction thereof, show a tendency to slightly lower the intensity of the most representative peaks of each mineral phase, which may be due to a decrease in crystallinity or preferential crystallographic orientation in crystals. In the micrographs analysis obtained by Sem on the irradiated samples, some holes (open pores) present in the particles were observed, mainly chalcopyrite and sphalerite lesser extent, seen this fact may be due to Compton Effect, in the radiation process. In relation to the magnetization property, a variation is obtained in the saturation magnetization (Ms) for the irradiated samples containing iron and more significantly in the chalcopyrite case. Therefore, with the radiation level used; slight changes occurring in the physical properties of minerals, whereas they remained stable chemically. These small changes may represent a signal that electromagnetic radiation applied at higher doses, is a viable option for improving the mineral processing. (author)

  9. Alteration and petrology of Intrusive Rocks associated with Gold Mineralization at Kuh-E-Zar Gold Deposit, Torbat-e-Heydaryeh

    Directory of Open Access Journals (Sweden)

    Alireza Mazloumi Bajestani

    2009-09-01

    Full Text Available Kuh- e -Zar gold deposit located 35 km west of Torbat-e-Heydaryeh, (Khorassan e- Razavi province, East of Iran. This deposit is a specularite-rich Iron oxide type (IOCG. This mine is situated within Khaf-Bardascan volcanic plutonic belt. Based on recent exploration along this belt, several IOCG type system plus Kuh-e-Zar deposit are discovered. In the study area, several type of tuff and lava having acid to intermediate composition are identified (upper Eocene. Oligo-Miocene granite, granodiorite, synogranite and monzonite intruded upper Eocene andesite-dacite-rhyolite. Intrusive rocks are meta-aluminous, medium to high-K series I-type. Based on spider diagram, intrusive rocks show enrichment in LILE = K, Th, Rb and depletion in HFSE = Nb, Sr, Ti. Based geochemistry of igneous rock, they formed in continental margin subduction zone. Propylitic (chlorite alteration is dominated and covers large area. Silicification is restricted only to mineralized zones. Argillic and albitization is found in certain location and cover small areas. The style of mineralization was controlled by the type and geometry of fault zones. Mineralization is found as vein, stockwork and breccias. Hypogene mineral Paragenesis include: specularite-quartz-gold-chlorite ± chalcopyrite ± pyrite ± galena ± barite. Secondary minerals formed due to oxidation are: goethite, limonite, lepidocrucite, Malachite, Azurite, Covelite, Cerucite, hydrocerucite, Pyrolusite and Smitsonite. In a few localities, chalcopyrite and minor pyrite and galena are found. Based on SEM analysis gold is present as electrum. Mineralization appeared in different type such as vein, stockwork and Hydrothermal breccia in strike sleep fault zone which are hidden inside volcano plutonic rocks. The average gold grade is between 3.02 ppm and ore reserve is estimated more than 3 million tons (cut off grade = 0.7 ppm.

  10. Gold Deposition by Boiling or Cooling Without Boiling: Genesis of the Sangchon Gold Deposits, Hadong Area, South Korea

    Institute of Scientific and Technical Information of China (English)

    Maeng - Eon PARK; Kyu - Youl SUNG; Seong - Taek YUN

    2001-01-01

    In order to understand the mechanism(s) of gold precipitation in the anorthosite- hosted Sangchon gold deposits in the Hadong area, Korea, chemical speciation and reaction path calculations were accomplished by geochemical modeling.The modeling consisted of three- step procedures: reaction with anorthosite, then the simple cooling of the reacted fluid,and finally the boiling of metalliferous fluid. The principal vein minerals of the Sangchon deposits consist of quartz, sericite,kaolinite, pyrite, galena, chalcopyrite, sphalerite and acanthite. The sulfide mineralization is typically zoned from pyrite (preferentially at vein margins) to galena and sphalerite (toward vein center). Electrum is intimately associated with pyrite + chalcopyrite and sphalerite. By comparing the results of modeling with the observed mineral assemblages and paragenesis,the most appropriate evolution path of ore fluids was suggested as follow: reaction of a single fluid with anorthosite at 300℃,then the isobaric cooling of the fluid at temperatures from 2500° to 100℃3 , and then the boiling and cooling of the fluid due to the decrease of pressure and temperature. Calculations also show that all of the observed alteration minerals formed due to fluid - anorthosite interaction at early period, whereas most of sulfides and electrum were precipitated mainly due to cooling.The abundance of gold in veins depends critically on the ratio of total base metals plus iron to sulfide in the aqueous phase,because gold is transported as Au(HS)2- whose solubility is very sensitive to the sulfide activity. Our results of geochemical modeling generally fit to the observed mineral assemblages and mineral composition, indicating the usefulness of numerical simulation for elucidating the genesis of gold deposits.

  11. Synthesis and characteristics of spray deposited CuInS{sub 2} nanocrystals thin films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Majeed Khan, M.A., E-mail: majeed_phys@rediffmail.com [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Kumar, Sushil [Materials Science Lab., Department of Physics, Chaudhary Devi Lal University, Sirsa 125055 (India); AlSalhi, Mohamad S. [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 114 51 (Saudi Arabia)

    2013-10-15

    Graphical abstract: - Highlights: • CuInS{sub 2} nanocrystals thin films were synthesized by spray pyrolysis technique. • They are polycrystalline and have chalcopyrite (tetragonal) structure. • They have high absorption coefficient ∼10{sup 4} cm{sup −1} and optimum band gap of 1.55 eV. • They showed excellent opto-electronic properties employable in photovoltaics. - Abstract: Nanocrystalline thin films of CuInS{sub 2}, an attractive absorber material for highly efficient and terrestrial photovoltaic devices, were deposited on ultraclean glass substrates using spray pyrolysis technique. The prepared films were characterized by FESEM, FETEM, HRTEM, AFM, XRD, optical absorption spectroscopy, photoluminescence and current–voltage characteristics. The films exhibit almost smooth, dense and uniform topography; and have nano-sized particles 40–60 nm of CuInS{sub 2}. XRD data show that the films are polycrystalline and have chalcopyrite (tetragonal) structure with crystallite size 45–60 nm. Optical absorption studies show that the band gap of spray deposited CuInS{sub 2} films is 1.55 eV, while absorption coefficient is of ∼10{sup 5} cm{sup −1}. PL spectra have only one peak at 1.43 eV which may be attributed to the excitonic recombination through donor–acceptor impurity levels in the sample. Furthermore, CdS/CuInS{sub 2} heterojunction was also produced onto ITO coated glass substrate to evaluate solar cell parameters such as short circuit current density, open circuit voltage, fill factor and conversion efficiency.

  12. Generalized stacking fault energies, cleavage energies, ionicity and brittleness of Cu(Al/Ga/In)Se2 and CuGa(S/Se/Te)2

    International Nuclear Information System (INIS)

    We calculate the generalized stacking fault (GSF) energies and cleavage energies γcl of the chalcopyrite compounds CuAlSe2, CuGaSe2, CuInSe2, CuGaS2 and CuGaTe2 using first principles. From the GSF energies, we obtain the unstable stacking fault energies γus and intrinsic stacking fault energies γisf. By analyzing γus and γisf, we find that the 〈 1-bar 1 0〉 (1 1 2) direction is the easiest slip direction for these five compounds. Also, for CuInSe2, it is most possible to undergo a dislocation-nucleation-induced plastic deformation along the 〈 1-bar 1 0〉 (1 1 2) slip direction. We show that the (1 1 2) plane is the preferable plane for fracture in the five compounds by comparing γcl of the (0 0 1) and (1 1 2) planes. It is also found that both γus and γcl decrease as the cationic or anionic radius increases in these chalcopyrites, i.e. along the sequences CuAlSe2 → CuGaSe2 → CuInSe2 and CuGaS2 → CuGaSe2 → CuGaTe2. Based on the values of the ratio γcl/γus, we discuss the brittle–ductile properties of these compounds. All of the compounds can be considered as brittle materials. In addition, a strong relationship between γcl/γus and the total proportion of ionic bonding in these compounds is found. (paper)

  13. Redox processes in subducting oceanic crust recorded by sulfide-bearing high-pressure rocks and veins (SW Tianshan, China)

    Science.gov (United States)

    Li, Ji-Lei; Gao, Jun; Klemd, Reiner; John, Timm; Wang, Xin-Shui

    2016-09-01

    The oxidized nature of the sub-arc mantle and hence arc magmas is generally interpreted as a result of the migration of subduction-related oxidizing fluids or melts from the descending slab into the mantle wedge. This is of particular importance seeing that the oxidization state of sub-arc magmas seems to play a key role in the formations of arc-related ore deposits. However, direct constraints on the redox state of subducted oceanic crust are sparse. Here, we provide a detailed petrological investigation on sulfide- and oxide-bearing eclogites, blueschists, micaschists, eclogite-facies and retrograde veins from the Akeyazi high-pressure (HP) terrane (NW China) in order to gain insight into the redox processes recorded in a subducting oceanic slab. Sulfides in these rocks are mainly pyrite and minor pyrrhotite, chalcopyrite, bornite, molybdenite, sphalerite and chalcocite, including exsolution textures of bornite-chalcopyrite intergrowth. Magnetite, ilmenite and pyrite occur as inclusions in garnet, whereas sulfides are dominant in the matrix. Large pyrite grains in the matrix contain inclusions of garnet, omphacite and other HP index minerals. However, magnetite replacing pyrite textures are commonly observed in the retrograded samples. The eclogite-facies and retrograde veins display two fluid events, which are characterized by an early sulfide-bearing and a later magnetite-bearing mineral assemblage, respectively. Textural and petrological evidences show that the sulfides were mainly formed during HP metamorphism. Mineral assemblage transitions reveal that the relative oxygen fugacity of subducted oceanic crust decreases slightly with increasing depths. However, according to oxygen mass balance calculations, based on the oxygen molar quantities ( nO2), the redox conditions remain constant during HP metamorphism. At shallow levels (arc mantle melts.

  14. Deposition and characterization of graded Cu(In1-xGax)Se2 thin films by spray pyrolysis

    International Nuclear Information System (INIS)

    Cu(In1-xGax)Se2 (CIGS) thin films and their graded (x = 1 to 0) layer were grown on soda lime glass substrates using chemical spray pyrolysis (CSP) at different substrate temperatures (Ts). After optimization of Ts, depositions were carried out at different gallium composition (x) at optimized temperature of 350 °C. All the films deposited at Ts ≥ 350 °C were polycrystalline chalcopyrite structure, with a preferential orientation of (112), including the graded layer. With increase in x, lattice parameters a and c were observed to decrease. Line scan of the CIGS layer showed intersection of gallium and indium concentrations, revealing the graded nature of the film. Composition dependence of Raman peak for CuInSe2 (CIS) deposited by CSP was analyzed. Optical transmittance at a wavelength of 800 nm of the film with x = 0 (CIS) (30%) was found lower than that of the film grown with x = 0.82 (CIGS) (50%). Cusp-shape of the resistivity was observed with an increase of x leading to steep rise in resistivity of the films (1.61–71.68 Ω-cm) till x = 0.42 and then decreased to 4.78 Ω-cm at x = 0.82. Carrier concentrations of the films were evaluated in the order of 1016–1019 cm−3 with p-type conductivity. These results indicate that graded CIGS thin films with modulated gallium composition can be prepared by CSP. - Graphical abstract: Display Omitted - Highlights: • Optimization of the spray deposition system for device grade chalcopyrite CIGS films. • Optimized substrate temperature to obtain single-phase CIGS by spray deposition. • Detailed report on compositional dependence of CuInSe2 (CIS) thin films. • Systematic analysis of the influence of Ga in CIS by spray deposition. • Bowing parameter is extracted from the experiment values

  15. 硫化矿物的浮选电化学与浮选行为%Electrochemistry of sulfide minerals and its floatability

    Institute of Scientific and Technical Information of China (English)

    覃文庆; 姚国成; 顾帼华; 邱冠周; 王淀佐

    2011-01-01

    The flotation behaviors of chalcopyrite, pyrite, and sphalerite in the present or absent of collector were studied. The relationship between the floatability and the pulp potential was simulated through flotation test and electrochemical calculation. When the pulp pH value is lower than 4.0, chalcopyrite can be floated in the potential range from 0 to 0.9 V (vs SHE). When the pulp pH value is 4.0 or 11.0, the recovery rate of pyrite is lower than 20% after the potential value is higher than 0.85 V. When the pulp pH value is 11.0, the chalcopyrite can be floated in the potential range from 0.35 V to 0.85 V. When the pulp pH value is 10.0, the galena can be floated when the pulp potential is from 0.45 V to 0.55 V, and the chalcopyrite exhibits strong collector-induced floatability in the pulp potential range from 0.45 V to 0.80 V. Although the potential is adjusted from -0.4 V to 0.8 V, the sphalerite can not be floated at pH 9.0. When the range of potential is from -0.2 V to 0.6 V, the chalcopyrite surface is changed from hydrophilicity to hydrophobicity. And in the range of higher potential near 0.6 V, the amount of elemental sulfur (So) decreases as the potential becomes higher. The recovery of chalcopyrite is in good correspondence with the amount of elemental sulfur (So) at given pH value. The potential controlled flotation technology has made the Nanjing Lead-Zinc Mine and Xitieshan Lead-Zinc Mine obtain more profits because of the improvement of flotation results and the simplification of flotation separation system, and only one flotation system was used to treat the whole feed of 900 t/d.%研究黄铜矿、黄铁矿、方铅矿等矿物在有/无捕收剂两种情况下的浮选行为,考察浮选与矿浆电位的关系.结果表明:当pH值分别小于4.0时,黄铜矿无捕收剂浮选的电位区间为0~0.9 V;当pH值为4.0或11.0时,矿浆电位大于0.85V以后,黄铁矿的浮选回收率低于20%;当pH值为11.0时,黄铜矿无捕收剂浮

  16. Hydrothermal Fluid evolution in the Dalli porphyry Cu-Au Deposit: Fluid Inclusion microthermometry studies

    Directory of Open Access Journals (Sweden)

    Alireza Zarasvandi

    2015-10-01

    Full Text Available Introduction A wide variety of world-class porphyry Cu deposits occur in the Urumieh-Dohktar magmatic arc (UDMA of Iran.The arc is composed of calc-alkaline granitoid rocks, and the ore-hosting porphyry intrusions are dominantly granodiorite to quartz-monzonite (Zarasvandi et al., 2015. It is believed that faults played an important role in the emplacement of intrusions and subsequentporphyry-copper type mineralization (Shahabpour, 1999. Three main centers host the porphyry copper mineralization in the UDMA: (1 Ardestan-SarCheshmeh-Kharestan zone, (2 Saveh-Ardestan district; in the central parts of the UDMA, hosting the Dalli porphyry Cu-Au deposit, and (3 Takab-Mianeh-Qharahdagh-Sabalan zone. Mineralized porphyry coppersystems in the UDMA are restricted to Oligocene to Mioceneintrusions and show potassic, sericitic, argillic, propylitic and locally skarn alteration (Zarasvandi et al., 2005; Zarasvandi et al., 2015. In the Dalli porphyry deposit, four hydrothermal alteration zones, includingpotassic, sericitic, propylitic, and argillic types have been described in the two discrete mineralized areas, namely, northern and southern stocks. Hypogenemineralization includes chalcopyrite, pyrite, and magnetite, with minor occurrences of bornite.Supergene activity has produced gossan, oxidized minerals and enrichment zones. The supergene enrichment zone contains chalcocite and covellite with a 10-20 m thickness. Mineralization in the northern stock is mainly composed of pyrite and chalcopyrite. The aim of this study is the investigation and classification of hydrothermal veins and the constraining of physicochemical compositions of ore-forming fluids using systematic investigation of fluid inclusions. Materials and methods Twenty samples were collected from drill holes. Thin and polished sections were prepared from hydrothermal veins of thepotassic, sericitic and propylitic alteration zones. Samples used for fluid inclusion measurements were collected

  17. Structural studies of mechano-chemically synthesized CuIn{sub 1-x}Ga{sub x}Se{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vidhya, B., E-mail: vidhyabhojan@gmail.com [Department of Electrical Engineering, SEES, CINVESTAV-IPN, Mexico, D.F., C.P. 07360 (Mexico); Velumani, S. [Department of Electrical Engineering, SEES, CINVESTAV-IPN, Mexico, D.F., C.P. 07360 (Mexico); Arenas-Alatorre, Jesus A. [Institute of Physics, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico, D.F. (Mexico); Morales-Acevedo, Arturo; Asomoza, R. [Department of Electrical Engineering, SEES, CINVESTAV-IPN, Mexico, D.F., C.P. 07360 (Mexico); Chavez-Carvayar, J.A. [Instituto de investigaciones en Materiales, UNAM, Mexico, D.F. (Mexico)

    2010-10-25

    CuInGaSe{sub 2} is a I-III-VI{sub 2} semiconducting material of tetragonal chalcopyrite structure. It is a very prominent absorber layer for photovoltaic devices. Particle-based coating process for CIGS is considered to be promising technique with relatively simple procedures and low initial investment. In the present work CIGS nanoparticle precursors suitable for screen-printing ink has been prepared by ball milling. High purity elemental copper granules, selenium and indium powders and fine chips of gallium were used as starting materials. First the ball milling was carried out for CuIn{sub 1-x}Ga{sub x}Se{sub 2} (x = 0.5) with (i) 10 ml of ethyl alcohol (ii) 5 ml of tetra ethylene glycol (wet) and (iii) 1 ml of ethylene diamine (semi-dry) for a milling time of 3 h and the results are not stoichiometric. In order to obtain an improved stoichiometric composition dry ball milling of elemental sources for three different compositions of CuIn{sub 1-x}Ga{sub x}Se{sub 2} (x = 0.25, 0.5 and 0.75) has been carried out. X-ray diffraction analysis revealed the presence of (1 1 2), (2 2 0)/(2 0 4), (3 1 2)/(1 1 6), (4 0 0) and (3 3 2) reflections for all the milled powders. These reflections correspond to chalcopyrite structure of CIGS. Shift in peaks towards higher value of 2{theta} is observed with the increase in Ga composition. Average grain size calculated by Scherrer's formula is found to be around 13 nm for the dry samples milled for 1.5 h and 7-8 nm for the samples wet milled for 3 h. Lattice constants 'a' and 'c' are found to decrease with the increase in concentration of Gallium. FESEM analysis revealed a strong agglomeration of the particles and the particle size varied from 11 to 30 nm for the dry-milled samples. Composition of milled powders has been studied by energy dispersive X-ray analysis. TEM analysis revealed the presence of nanocrystalline particles and SAED pattern corresponds to (1 1 2), (2 2 0)/(2 0 4), (5 1 2)/(4 1 7) and (6

  18. Structural studies of mechano-chemically synthesized CuIn1-xGaxSe2 nanoparticles

    International Nuclear Information System (INIS)

    CuInGaSe2 is a I-III-VI2 semiconducting material of tetragonal chalcopyrite structure. It is a very prominent absorber layer for photovoltaic devices. Particle-based coating process for CIGS is considered to be promising technique with relatively simple procedures and low initial investment. In the present work CIGS nanoparticle precursors suitable for screen-printing ink has been prepared by ball milling. High purity elemental copper granules, selenium and indium powders and fine chips of gallium were used as starting materials. First the ball milling was carried out for CuIn1-xGaxSe2 (x = 0.5) with (i) 10 ml of ethyl alcohol (ii) 5 ml of tetra ethylene glycol (wet) and (iii) 1 ml of ethylene diamine (semi-dry) for a milling time of 3 h and the results are not stoichiometric. In order to obtain an improved stoichiometric composition dry ball milling of elemental sources for three different compositions of CuIn1-xGaxSe2 (x = 0.25, 0.5 and 0.75) has been carried out. X-ray diffraction analysis revealed the presence of (1 1 2), (2 2 0)/(2 0 4), (3 1 2)/(1 1 6), (4 0 0) and (3 3 2) reflections for all the milled powders. These reflections correspond to chalcopyrite structure of CIGS. Shift in peaks towards higher value of 2θ is observed with the increase in Ga composition. Average grain size calculated by Scherrer's formula is found to be around 13 nm for the dry samples milled for 1.5 h and 7-8 nm for the samples wet milled for 3 h. Lattice constants 'a' and 'c' are found to decrease with the increase in concentration of Gallium. FESEM analysis revealed a strong agglomeration of the particles and the particle size varied from 11 to 30 nm for the dry-milled samples. Composition of milled powders has been studied by energy dispersive X-ray analysis. TEM analysis revealed the presence of nanocrystalline particles and SAED pattern corresponds to (1 1 2), (2 2 0)/(2 0 4), (5 1 2)/(4 1 7) and (6 2 0)/(6 0 4) diffraction peaks of CIGS. From the HRTEM analysis the d

  19. 广西龙湾铅锌矿床矿石矿物组构特征及成矿阶段划分%Ore Minerals Fabric and Mineralization Stage Division of Pb-Zn Deposit in Longwan Guangxi

    Institute of Scientific and Technical Information of China (English)

    何幸儒; 陈爱兵; 谢小明

    2014-01-01

    Ore-fabric characteristics of Pb-Zn deposit systematic study in Longwan,Guangxi by detailed exploration of mine and the microscopic identification. Ore structure is mainly massive structure,dissemination structure,stockwork structure and taxitic structure. The texture is mainly formed in metasomatism and crystallization ,secondly for solid solution separation,crystallized matter recrystallization and pressure effect. Mineralization periods into sedimentary diagenesis,in epithermal mineralization period and supergene oxidation stage,the hydrothermal mineralization period mainly is the deposit metallogenic period. According to the characters of mineral composition,the mineralization is divided into five stages of mineralization,which is pyrite-quartz-calcite stage,sphalerite-galena-pyrites stage, pyrite-sphalerite-galena-chalcopyrite stage,quartz-calcite stage,oxide stage.Mineral equence is pyrite 1-sphalerite (chalcopyrite1)-galena-pyrite 2-chalcopyrite2. It is determined that Longwan ore deposit is low-temperature hydrothermal filling account-storeyed reworked polymetallic deposits control by tectonic activity.%通过井下的详细勘查和显微镜下鉴定,对广西龙湾铅锌矿床的矿石组构特征进行了系统研究.矿区矿石构造主要为块状构造、浸染状构造、网脉状构造和斑杂状构造;结构主要为结晶作用和交代作用形成的结构,其次为固溶体分离作用、结晶物质重结晶作用和压力作用形成的结构.同时将成矿期次分为沉积成岩期、中低温热液成矿期和表生氧化期,其中热液成矿期是矿床的主要成矿期.根据矿物组合特征,将成矿划分为五个成矿阶段,分别是黄铁矿-石英-方解石阶段、闪锌矿-方铅矿-黄铁矿阶段、黄铁矿-闪锌矿-方铅矿-黄铜矿阶段、石英-方解石阶段、氧化物阶段.矿物的生成顺序为黄铁矿1-闪锌矿(黄铜矿1)-方铅矿-黄铁矿2-黄铜矿2.最终确定龙湾矿床为受

  20. Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)

    Science.gov (United States)

    Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.

    2013-12-01

    The Patricia Zn-Pb-Ag ore deposit is located within the Paguanta mining project, situated at the northern end of the Andean Oligocene Porphyry Copper Belt of Chile. The sulfide mineralization occurs as W-E oriented veins hosted in volcanic rocks, mainly andesite (pyroclastic, ash and lavas), of Upper Cretaceous to Middle Tertiary age. The ore mineralogy (obtained by EMPA analyses) comprises in order of abundance, pyrite, sphalerite (5.5 - 10.89 wt % Fe, 9.8-19 % molar FeS and 0.52 wt % Cd), galena, arsenopyrite, chalcopyrite and Ag-bearing sulfosalts. The veins show a zoned and banded internal structure with pyrite at the edges and sphalerite in the center. The Ag occurs mostly as Ag-Cu-Sb sulfosalts, in order of abundance: series freibergite - argentotennantite -polybasite and stephanite. Other minor Ag phases such as argentite, pyrargirite and diaphorite were also identified. These Ag phases are typically associated with the base-metal sulfides. Freibergite occurs filling voids within sphalerite, chalcopyrite and at the contact between sphalerite and galena. Polybasite, stephanite, pyrargirite and argentite are mostly in close association with freibergite. In the case of diaphorite, it commonly occurs filling voids between galena crystals or as inclusions within galena. Some minor Ag-bearing sulfosalts are also identified between pyrite crystals. The alteration minerals are dominated by chlorite, illite and kaolinite. The gangue minerals consist of quartz and carbonates identified by XRD as kutnahorite. We obtained linear correlation statistically significant only for Ag, As Au, Cd, Cu, Pb, Sb and Zn and therefore we generated an enhanced scatter plot matrix of these elements. Bulk rock analyses (ICP/MS and XRF) of drill cores show that Ag is strongly and positively correlated with Pb and As, moderately with Cd, Sb, Au and Zn and weakly with Cu, while Au is moderately and positively correlated with Ag, As, Cd, Sb and Zn and weakly with Cu and Pb. These results

  1. Optics of the CuGaSe{sub 2} solar cell for highly efficient tandem concepts; Optik der CuGaSe{sub 2}-Solarzelle fuer hocheffiziente Tandemkonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Martina

    2010-01-25

    A principle aim of solar cell research lies in optimizing the exploitation of the incident solar light. Yet, for single junction solar cells there exists an efficiency limit as described by Shockley and Queisser. The only concept realized so far to overcome this threshold is - apart from concentration - the multijunction solar cell. However, any kind of multijunction design poses new challenges: The upper wide-gap solar cell (top cell) needs to show efficient light absorption in the short-wavelength region. At the same time sufficient transmission for long-wavelength light is required which then needs to be absorbed effectively by the low-gap bottom cell. In tandem solar cells a proper light management in top and bottom solar cell is of great importance. This work focuses on chalcopyrite-based tandem solar cells. For the wide-bandgap IR-transparent ZnO:Al/i-ZnO/CdS/CuGaSe{sub 2}/SnO{sub 2}:F/glass solar cell an optical model has been established. Starting from modeling each of the individual layers building the stack the optical behavior of the complete thin film system of the top cell could be described. Carefully selected layer combinations and comparison of experimental and calculated data allowed for the attribution of transmission losses to the distinct material properties. Defects in the absorber are of crucial importance but also free carrier absorption in the window and in the transparent back contact contribute significantly to optical losses. The quantification of the losses was achieved by calculating the effects of reduced top cell transmission on the photo current of a simplified bottom cell. An extension of the optical model allowed to calculate the effective absorption in the individual layers and to determine reflection losses at the interfaces. From these results an optimized top cell stack was derived which is characterized by A) simulation of the monolithic integration, B) reduced layer thicknesses wherever possible from the electrical point of

  2. Rhenium and precious metal (Pt, Pd, and Au) abundances in porphyry Cu-Mo deposits of Central-Asian Mobile Belt%中亚造山带中斑岩铜钼矿的Re,Pt,Pd和Au含量

    Institute of Scientific and Technical Information of China (English)

    Anita N.Berzina; Alexander F.Korobeinikov

    2007-01-01

    Precious metal ( Pt, Pd and Au) and Re contents in rocks, ores and flotation concentrates of Siberian (Russia) and Mongolian porphyry Cu-Mo and Mo-Cu deposits were studied. The following deposits are discussed: Early Devonian porphyry Mo-Cu Sora deposit (Kuznetsk Alatau Mountains, Russia) and porphyry Cu-Mo Aksug deposit, (northeastern Tuva, Russia); Triassic porphyry Cu-Mo Erdenetiin Ovoo deposit (northern Mongolia). The samples analyzed include unaltered host rocks of plutons, porphyry rocks of ore-bearing series, different types of altered rocks, mineral separate analyses of molybdenite, chalcopyrite and magnetite, as well as flotation concentrates. Pt, Pd, Au and Re contents were determined using ICP/MS, AAS and inversion voltammetric analysis.PGE abundances in rocks and poorly mineralized samples span a large range from below detection limit to 65 ppb Pt and 74 ppb Pd. Re concentrations in whole rock samples range from below detection limit to 89 ppb. Molybdenite has been shown to be the major host phase for Re. The results presented show that Aksug deposit reveals elevated PGE and Au contents in ore minerals and flotation concentrates. High Pd contents in ores of the Aksug deposit are in accordance with the presence of palladium mineralization in the form of palladium telluride merenskyite ( Pd, Pt) Te2.The variety of precious metals and Re contents in the studied deposits could be caused by a complex interplay of several factors,including importance of primary metal concentrations derived from the source, transport of metals to the deposition area,physicochemical properties of the fluid (fo2, pH, fs, T, P), and depositional conditions. Higher Re contents in molybdenite and chalcopyrite separates are typical for copper-rich Aksug and Erdenetiin Ovoo deposits. Rhenium concentration in sulfides from molybdenum-rich Sora deposit is significantly lower. Highly oxidized, Cl-rich fluid style at Aksug and Erdenetiin Ovoo was favorable for high rhenium solubility and

  3. Chemical and sulphur isotope compositions of pyrite in the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, eastern India: Implications for sulphide mineralization

    Science.gov (United States)

    Pal, Dipak C.; Sarkar, Surajit; Mishra, Biswajit; Sarangi, A. K.

    2011-06-01

    The Jaduguda U (-Cu-Fe) deposit in the Singhbhum shear zone has been the most productive uranium deposit in India. Pyrite occurs as disseminated grains or in sulphide stringers and veins in the ore zone. Veins, both concordant and discordant to the pervasive foliation, are mineralogically either simple comprising pyrite ± chalcopyrite or complex comprising pyrite + chalcopyrite + pentlandite + millerite. Nickel-sulphide minerals, though fairly common in concordant veins, are very rare in the discordant veins. Pyrite in Ni-sulphide association is commonly replaced by pentlandite at the grain boundary or along micro-cracks. Based on concentrations of Co and Ni, pyrite is classified as: type-A - high Co (up to 30800 ppm), no/low Ni; type-B - moderate Co (up to 16500 ppm) and moderate to high Ni (up to 32700 ppm); type-C - no/low Co and high Ni (up to 43000 ppm); type-D - neither Co nor Ni. Textural and compositional data of pyrites suggest that the hydrothermal fluid responsible for pre-/early-shearing mineralization evolved from Co-rich to Ni-rich and the late-/post-shearing fluid was largely depleted in minor elements. Sulphur isotope compositions of pyrite mostly furnish positive values ranging between -0.33 and 12.06‰. Composite samples of pyrites with only type-A compositions and mixed samples of type-A and type-B are consistently positive. However, pyrite with mixed type-A and type-C and pyrite with type-D compositions have negative values but close to 0‰. By integrating minor element and sulphur isotope compositions of pyrite in conjunction with other published data on the Jaduguda deposit, it is proposed that reduced sulphur for the precipitation of most pyrites (type-A, type-B) was likely derived from isotopically heavy modified seawater. However, some later sulphur might be magmatic in origin remobilized from existing sulphides in the mafic volcanic rocks in the shear zone.

  4. Deciphering a multistage history affecting U-Cu(-Fe) mineralization in the Singhbhum Shear Zone, eastern India, using pyrite textures and compositions in the Turamdih U-Cu(-Fe) deposit

    Science.gov (United States)

    Pal, Dipak C.; Barton, Mark D.; Sarangi, A. K.

    2009-01-01

    The ˜200-km-long intensely deformed Singhbhum Shear Zone (SSZ) in eastern India hosts India’s largest U and Cu deposits and related Fe mineralization. The SSZ separates an Archaean cratonic nucleus to the south from a Mesoproterozoic fold belt in the North and has a complex geologic history that obscures the origin of the contained iron-oxide-rich mineral deposits. This study investigates aspects of the history of mineralization in the SSZ by utilizing new petrographic and electron microprobe observations of pyrite textures and zoning in the Turamdih U-Cu(-Fe) deposit. Mineralization at Turamdih is hosted in intensively deformed quartz-chlorite schist. Sulfides and oxides include, in inferred order of development: (a) magmatic Fe(-Ti-Cr) oxide and Fe-Cu(-Ni) sulfide minerals inferred to be magmatic (?) in origin; followed by (b) uranium, Fe-oxide, and Fe-Cu(-Co) sulfide minerals that predate most or all ductile deformation, and are inferred to be of hydrothermal origin; and (c) Fe-Cu sulfides that were generated during and postdating ductile deformation. These features are associated with the formation of three compositionally and texturally distinct pyrites. Pyrite (type-A), typically in globular-semiglobular composite inclusions of pyrite plus chalcopyrite in magnetite, is characterized by very high Ni content (up to 30,700 ppm) and low Co to Ni ratios (0.01-0.61). The textural and compositional characteristics of associated chalcopyrite and rare pyrrhotite suggest that this pyrite could be linked to the magmatic event via selective replacement of magmatic pyrrhotite. Alternatively, this pyrite and associated sulfide inclusions might be cogenetic with hydrothermal Fe-oxide. Type-B pyrite that forms elongate grains and irregular relics and cores of pyrite with high Co contents (up to 23,630 ppm) and high Co to Ni ratios (7.2-140.9) are interpreted to be related to hydrothermal mineralization predating ductile deformation. A third generation of pyrite (type C

  5. Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China

    Science.gov (United States)

    Shen, Ping; Pan, HongDi

    2015-12-01

    Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO2 >> CH4 that are indicative of high fO2. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH4 >> CO2 that are indicative of low fO2. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21-0.79 wt.%). The δ13CvPDB values of the whole rocks (-23.1 to -25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ13CvPDB values of CH4 (-28.2 to -36.0 ‰) and CO2 (-6.8 to -20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ13CCO2-CH4 values (8.2-25.0 ‰) at elevated temperatures (294-830 °C) suggesting a significant contribution of thermogenic CH4. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log fO2 > FMQ + 1 in the magma stage, to log fO2 country rocks assimilation-contamination, to log fO2 > FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its fO2 such that exsolved fluids contained

  6. Deposition and characterization of graded Cu(In{sub 1-x}Ga{sub x})Se{sub 2} thin films by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Babu, B.J. [Department of Electrical Engineering-SEES, CINVESTAV-IPN, Avenida IPN 2508, San Pedro Zacatenco, D.F. C.P 07360 (Mexico); Institute of Molecules and Materials, UMR-CNRS 6283, Université du Maine, Avenue O. Messiaen, F-72085 Le Mans (France); Velumani, S., E-mail: velu@cinvestav.mx [Department of Electrical Engineering-SEES, CINVESTAV-IPN, Avenida IPN 2508, San Pedro Zacatenco, D.F. C.P 07360 (Mexico); College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kassiba, A. [Institute of Molecules and Materials, UMR-CNRS 6283, Université du Maine, Avenue O. Messiaen, F-72085 Le Mans (France); Asomoza, R. [Department of Electrical Engineering-SEES, CINVESTAV-IPN, Avenida IPN 2508, San Pedro Zacatenco, D.F. C.P 07360 (Mexico); Chavez-Carvayar, J.A. [Instituto Investigaciones en Materiales-UNAM, Ciudad Universitario, D.F.Mexico (Mexico); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-15

    Cu(In{sub 1-x}Ga{sub x})Se{sub 2} (CIGS) thin films and their graded (x = 1 to 0) layer were grown on soda lime glass substrates using chemical spray pyrolysis (CSP) at different substrate temperatures (T{sub s}). After optimization of T{sub s}, depositions were carried out at different gallium composition (x) at optimized temperature of 350 °C. All the films deposited at T{sub s} ≥ 350 °C were polycrystalline chalcopyrite structure, with a preferential orientation of (112), including the graded layer. With increase in x, lattice parameters a and c were observed to decrease. Line scan of the CIGS layer showed intersection of gallium and indium concentrations, revealing the graded nature of the film. Composition dependence of Raman peak for CuInSe{sub 2} (CIS) deposited by CSP was analyzed. Optical transmittance at a wavelength of 800 nm of the film with x = 0 (CIS) (30%) was found lower than that of the film grown with x = 0.82 (CIGS) (50%). Cusp-shape of the resistivity was observed with an increase of x leading to steep rise in resistivity of the films (1.61–71.68 Ω-cm) till x = 0.42 and then decreased to 4.78 Ω-cm at x = 0.82. Carrier concentrations of the films were evaluated in the order of 10{sup 16}–10{sup 19} cm{sup −3} with p-type conductivity. These results indicate that graded CIGS thin films with modulated gallium composition can be prepared by CSP. - Graphical abstract: Display Omitted - Highlights: • Optimization of the spray deposition system for device grade chalcopyrite CIGS films. • Optimized substrate temperature to obtain single-phase CIGS by spray deposition. • Detailed report on compositional dependence of CuInSe{sub 2} (CIS) thin films. • Systematic analysis of the influence of Ga in CIS by spray deposition. • Bowing parameter is extracted from the experiment values.

  7. Barite from the Saf'yanovka VMS deposit (Central Urals) and Semenov-1 and Semenov-3 hydrothermal sulfide fields (Mid-Atlantic Ridge): a comparative analysis of formation conditions

    Science.gov (United States)

    Safina, Nataliya P.; Melekestseva, Irina Yu.; Nimis, Paolo; Ankusheva, Nataliya N.; Yuminov, Anatoly M.; Kotlyarov, Vasily A.; Sadykov, Sergey A.

    2016-04-01

    Different genetic types of barite from colloform and clastic pyrite-rich ores from the weakly metamorphic Saf'yanovka volcanogenic massive sulfide (VMS) deposit (Central Urals) were studied in comparison with barite from the Semenov-1 and Semenov-3 seafloor hydrothermal fields (mid-Atlantic Ridge). Hydrothermal barite generally occurs as radial aggregates of tabular crystals in contrast to compact aggregates of tabular crystals with stylolite boundaries of anadiagenetic barite from the Saf'yanovka clastic ores. The Sr content in barite shows no relationship with the genetic types. The δ34S values of hydrothermal barite from both ancient and modern colloform sulfides match those of Silurian-Devonian and contemporary seawater, respectively. The lower δ34S (avg +19.6 ‰) of hydrothermal barite from the Semenov-3 clastic sulfides indicates light sulfur contribution from oxidation of fluid H2S. The higher δ34S (avg +28.1 ‰) of anadiagenetic barite from the Saf'yanovka clastic ores reflects partial thermochemical reduction of seawater sulfate. Hydrothermal barite from the Saf'yanovka and Semenov-1 colloform ores formed from low- to moderate- T (172-194 °C and 83-233 °C, respectively) relatively low salinity (1.6-4.5 and 0.6-3.8 wt% NaCleq, respectively) fluids, which underwent phase separation. Hydrothermal barite from Semenov-3 clastic sulfides associated with chalcopyrite crystallized from higher- T (266-335 °C) higher-salinity (4.8-9.2 wt% NaCleq.) fluids. The high salinity may indicate a contribution from a magmatic fluid. Anadiagenetic barite from Saf'yanovka was formed from moderate- T (140-180 °C), low- to moderate-salinity (1.4-5.4 wt% NaCleq) pore fluids. Combining our new data with those for other seafloor hydrothermal barite occurrences, the following systematics can be defined. Barite associated with pyrite-rich sulfides forms at relatively low to moderate temperatures (<230 °C), barite associated with polymetallic-rich sulfides forms at moderately

  8. Stable isotope systematics and fluid inclusion studies in the Cu-Au Visconde deposit, Carajás Mineral Province, Brazil: implications for fluid source generation

    Science.gov (United States)

    da Costa Silva, Antonia Railine; Villas, Raimundo Netuno Nobre; Lafon, Jean-Michel; Craveiro, Gustavo Souza; Ferreira, Valderez Pinto

    2015-06-01

    The Cu-Au Visconde deposit is located in the Carajás Mineral Province (CMP), northern Brazil, near the contact between the ca. 2.76 Ga metavolcano-sedimentary rocks of the Itacaiunas Supergroup rocks and the ~3.0 Ga granitic-gneissic basement. It is hosted by mylonitized Archean rocks, mainly metadacites, the Serra Dourada granite, and gabbros/diorites, which have been successively altered by sodic, sodic-calcic-magnesian, potassic, and calcic-magnesian hydrothermal processes, producing diverse mineralogical associations (albite-scapolite; albite-actinolite-scapolite-epidote; K-feldspar-biotite; chlorite-actinolite-epidote-calcite, etc.). Chalcopyrite is the dominant ore mineral and occurs principally in breccias and veins/veinlets. The aqueous fluids responsible for the alteration/mineralization were initially hot (>460 °C) and very saline (up to 58 wt.% equivalent (equiv.) NaCl), but as the system evolved, they experienced successive dilution processes. Mineral oxygen and hydrogen isotope data show that 18O-rich ( to +9.4 ‰) fluids prevailed in the earlier alteration (including magnetitites) and reached temperatures as high as 410-355 °C. Metamorphic/formation waters, most likely derived from the Carajás Basin rocks, appear to have contributed a major component to the fluid composition, although some magmatic input cannot be discounted. In turn, the later alterations and the mineralization involved cooler (<230 °C), 18O-depleted ( to +3.7 ‰) and less saline (7-30 wt.% equiv. NaCl) fluids, indicating the influx of meteoric water. Fluid dilution and cooling might have caused abundant precipitation of sulfides, especially as breccia cement. Ore δ 34 S values (+0.5 to +3.4 ‰) suggest a magmatic source for sulfur (from sulfide dissolution in pre-existing igneous rocks). The chalcopyrite Pb-Pb ages (2.73 ± 0.15 and 2.74 ± 0.10 Ga) indicate that the Visconde mineralization is Neoarchean, rather than Paleoproterozoic as previously considered. If so, the

  9. Remobilisation features and structural control on ore grade distribution at the Konkola stratiform Cu-Co ore deposit, Zambia

    Science.gov (United States)

    Torremans, K.; Gauquie, J.; Boyce, A. J.; Barrie, C. D.; Dewaele, S.; Sikazwe, O.; Muchez, Ph.

    2013-03-01

    The Konkola deposit is a high grade stratiform Cu-Co ore deposit in the Central African Copperbelt in Zambia. Economic mineralisation is confined to the Ore Shale formation, part of the Neoproterozoic metasedimentary rocks of the Katanga Supergroup. Petrographic study reveals that the copper-cobalt ore minerals are disseminated within the host rock, sometimes concentrated along bedding planes, often associated with dolomitic bands or clustered in cemented lenses and in layer-parallel and irregular veins. The hypogene sulphide mineralogy consists predominantly of chalcopyrite, bornite and chalcocite. Based upon relationships with metamorphic biotite, vein sulphides and most of the sulphides in cemented lenses were precipitated during or after biotite zone greenschist facies metamorphism. New δ34S values of sulphides from the Konkola deposit are presented. The sulphur isotope values range from -8.7‰ to +1.4‰ V-CDT for chalcopyrite from all mineralising phases and from -4.4‰ to +2.0‰ V-CDT for secondary chalcocite. Similarities in δ34S for sulphides from different vein generations, earlier sulphides and secondary chalcocite can be explained by (re)mobilisation of S from earlier formed sulphide phases, an interpretation strongly supported by the petrographic evidence. Deep supergene enrichment and leaching occurs up to a km in depth, predominantly in the form of secondary chalcocite, goethite and malachite and is often associated with zones of high permeability. Detailed distribution maps of total copper and total cobalt contents of the Ore Shale formation show a close relationship between structural features and higher copper and lower cobalt contents, relative to other areas of the mine. Structural features include the Kirilabombwe anticline and fault zones along the axial plane and two fault zones in the southern limb of the anticline. Cobalt and copper behave differently in relation to these structural features. These structures are interpreted to have

  10. Study on the process mineralogy of Xiarihamu copper-nickel ore in Qinghai%青海夏日哈木铜镍矿石工艺矿物学研究

    Institute of Scientific and Technical Information of China (English)

    刘长征; 杨启安; 吴树宽; 谢海林; 徐修生; 于传兵; 王治安

    2016-01-01

    青海夏日哈木铜镍矿石属硫化镍矿石,含镍0.63%~0.80%,铜0.14%~0.20%,钴0.025%~0.028%,是主要回收对象.矿石矿物组成复杂,铜矿物以黄铜矿为主,少量的墨铜矿和微量的方黄铜矿及铜蓝;镍矿物以镍黄铁矿为主,有微量的紫硫镍矿、砷镍矿、辉砷镍矿及含钴的辉砷镍矿等;铁矿物主要为磁铁矿,微量赤铁矿及菱铁矿.铜、镍矿物嵌布特征复杂、嵌布粒度细微,普遍被脉石矿物包裹,同时铜、镍矿物自身相互紧密连生;矿石中含镁脉石矿物较多,具有质地柔软,容易泥化,自然可浮性好,吸附能力强的特点,将给铜、镍矿物的分选带来不利的影响.%Qinghai Xiarihamu deposit copper-nickel ore belongs to the nickel sulfide ore ,nickel 0 .63% ~0.80% ,copper 0 .14% ~0 .20% ,cobalt containing 0 .025% ~0 .028% ,is the main object of recycling .The deposit of copper-nickel ore mineral composition complex ,copper content is given priority to with chalcopyrite ,a small amount of the ink copper and Party chalcopyrite and copper blue;Nickel mineral is given priority to with nickel pyrite ,there are traces of purple sulfur nickel ,nickel arsenic ,fai arsenic nickel and fai arsenic containing cobait nickel ore ,etc .Iron ore are mainly magnetite ,trace hematite and siderite . The disseminated characteristics of copper and nickel minerals are complicated which embedded in superfine particle and are generally packed by the gangue minerals .Meanwhile the copper and nickel minerals are closely associated .There are amounts of magnesium gangue minerals in ores with characteristics of soft texture ,easily sliming ,good floatability high adsorption ability .These will bring seriously bad impact to the separation of copper and nickel ore .

  11. Chemical and sulphur isotope compositions of pyrite in the Jaduguda U (–Cu–Fe) deposit, Singhbhum shear zone, eastern India: Implications for sulphide mineralization

    Indian Academy of Sciences (India)

    Dipak C Pal; Surajit Sarkar; Biswajit Mishra; A K Sarangi

    2011-06-01

    The Jaduguda U (–Cu–Fe) deposit in the Singhbhum shear zone has been the most productive uranium deposit in India. Pyrite occurs as disseminated grains or in sulphide stringers and veins in the ore zone. Veins, both concordant and discordant to the pervasive foliation, are mineralogically either simple comprising pyrite ± chalcopyrite or complex comprising pyrite + chalcopyrite + pentlandite + millerite. Nickel-sulphide minerals, though fairly common in concordant veins, are very rare in the discordant veins. Pyrite in Ni-sulphide association is commonly replaced by pentlandite at the grain boundary or along micro-cracks. Based on concentrations of Co and Ni, pyrite is classified as: type-A — high Co (up to 30800 ppm), no/low Ni; type-B — moderate Co (up to 16500 ppm) and moderate to high Ni (up to 32700 ppm); type-C — no/low Co and high Ni (up to 43000 ppm); type-D — neither Co nor Ni. Textural and compositional data of pyrites suggest that the hydrothermal fluid responsible for pre-/early-shearing mineralization evolved from Co-rich to Ni-rich and the late-/post-shearing fluid was largely depleted in minor elements. Sulphur isotope compositions of pyrite mostly furnish positive values ranging between -0.33 and 12.06%. Composite samples of pyrites with only type-A compositions and mixed samples of type-A and type-B are consistently positive. However, pyrite with mixed type-A and type-C and pyrite with type-D compositions have negative values but close to 0. By integrating minor element and sulphur isotope compositions of pyrite in conjunction with other published data on the Jaduguda deposit, it is proposed that reduced sulphur for the precipitation of most pyrites (type-A, type-B) was likely derived from isotopically heavy modified seawater. However, some later sulphur might be magmatic in origin remobilized from existing sulphides in the mafic volcanic rocks in the shear zone.

  12. Study of the growth of CuAlS{sub 2} thin films on oriented silicon (111)

    Energy Technology Data Exchange (ETDEWEB)

    Brini, R. [Laboratoire de Photovoltaique et Materiaux Semiconducteurs.(LPMS), Ecole Nationale d' ingenieurs de Tunis (ENIT), BP 37 le Belvedere 1002 Tunis (Tunisia)], E-mail: Brini_rawdha@yahoo.fr; Schmerber, G. [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS) UMR7504 CNRS-ULP, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semiconducteurs.(LPMS), Ecole Nationale d' ingenieurs de Tunis (ENIT), BP 37 le Belvedere 1002 Tunis (Tunisia); Werckmann, J. [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS) UMR7504 CNRS-ULP, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France); Rezig, B. [Laboratoire de Photovoltaique et Materiaux Semiconducteurs.(LPMS), Ecole Nationale d' ingenieurs de Tunis (ENIT), BP 37 le Belvedere 1002 Tunis (Tunisia)

    2009-02-02

    Within the chalcopyrite family the sulphur based compounds CuMS{sub 2} (M = In, Ga, Al) have attracted much interest in recent years because they show a direct wide band-gap covering from E{sub gap} = 1.53 eV (CuInS{sub 2}) over E{sub gap} = 2.43 eV (CuGaS{sub 2}) to E{sub gap} = 3.49 eV (CuAlS{sub 2}). Therefore they are particularly suitable for optoelectronic as well as photovoltaic applications. The CuAlS{sub 2} semiconductor is one of these compounds and has good luminescent properties and a wide direct gap of 3.5 eV making it suitable for the use as material for light-emitting devices in the blue region of the spectrum. To dig up fully its potential a better understanding of the fundamental properties of the CuAlS{sub 2} film itself is essential, which could be achieved from high-quality single-crystalline materials. So, the aim of this work has been to study the growth of multilayer CuAlS{sub 2} thin films on Si(111) substrates at a substrate temperature of 723 K. One, two and three layers with 60, 120 and 180 nm thicknesses, respectively, were deposited on Si(111) substrate. The effect of the CuAlS{sub 2} layer numbers on the structure, morphology and optical properties of the samples was investigated. The X-ray diffraction studies revealed that all the samples are polycrystalline in nature, single CuAlS{sub 2} phase and exhibiting chalcopyrite structure with a preferred orientation along the (112) direction. However, the sample with three CuAlS{sub 2} layers exhibit the highly oriented (112) plane with grain sizes of 80 nm. So we show that this experimental process affects significantly the structural properties of the CuAlS{sub 2} films. Raman spectroscopic measurements indicated five prominent peaks at 193, 205, 325, 335 and 370 cm{sup -1}. The possible origin of the 370 cm{sup -1} peak was investigated and was found to be some local vibration in the structure. The peaks at 193-205 and 335 cm{sup -1} were ascribed to A{sub 1} and B{sub 2} modes

  13. Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey

    Science.gov (United States)

    Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül

    2015-04-01

    This study investigated comparative leaching characteristics of acidophilic bacterial strains under shifting environmental conditions at proposed two stages as formation stage or post acidic mine drainage (AMD) generation. At the first stage, initial reactions associated with AMD generation was simulated in shaking flasks containing massive pyritic chalcopyrite ore by using a pure strain Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus sp. mostly dominated by A. ferrooxidans and A. thiooxidans at 26oC. At the second stage, long term bioleaching experiments were carried out with the same strains at 26oC and 40oC to investigate the leaching characteristics of pyritic chalcopyrite ore under elevated heavy metal and temperature conditions. During the experiments, physicochemical characteristics (e.i. Eh, pH, EC) metal (Fe, Co, Cu, Zn) and sulfate concentration of the experimental solution were monitored during 180 days. Significant acid generation and sulfate release were determined during bioleaching of the ore by mixed acidophilic cultures containing both iron and sulfur oxidizers. In the early stage of the experiments, heavy metal release from the ore was caused by generation of acid due to accelerated bacterial oxidation of the ore. Generally high concentrations of Co and Cu were released into the solution from the experiments conducted by pure cultures of Acidithiobacillus ferrooxidans whereas high Zn and Fe was released into the solution from the mixed culture experiments. In the later stage of AMD generation and post AMD, chemical oxidation is accelerated causing excessive amounts of contamination, even exceeding the amounts resulted from bacterial oxidation by mixed cultures. Acidithibacillus ferrooxidans was found to be more effective in leaching Cu, Fe and Co at higher temperatures in contrary to mixed acidophiles that are more prone to operate at optimal moderate conditions. Moreover, decreasing Fe values are noted in bioleaching

  14. Static and dynamical properties of II-VI and III-V group binary solids

    International Nuclear Information System (INIS)

    In this paper, we extend to II-VI and III-V group binary solids of zinc blende (ZB) structure with conduction d-electrons the calculation of static and dynamical properties such as bulk modulus (B) and cohesive energy or total energy (Ecoh) using the plasma oscillation theory of solids formalism already employed for ternary chalcopyrite semiconductors. The present method is not limited to tetrahedrally coordinated semiconductors and ternary chalcopyrites, but can be used for all semiconducting compounds. We have applied an extended formula on ZB structured binary semiconductors and found better agreement with the experimental data as compared to the values evaluated by previous researchers. The bulk modulus and cohesive energy of ZB-type structure compounds exhibit a linear relationship when plotted on a log-log scale against the plasmon energy ℎωp (in eV), but fall on a straight line. The results for bulk modulus differ from experimental values by the following amounts: ZnS 0.36%, ZnSe 10%, ZnTe 0.62%, CdS 1.8%, CdSe 7.4% and CdTe 1.6%, AlP 2.6%, AlAs 5.3%, AlSb 4.0%, GaP 0%, AlAs 0%, AlS 4.4%, InP 0%, InAs 0% and InSb 2.1%; and the results for cohesive energy differ from experimental values by the following amounts: ZnS 0.16%, ZnSe 0.73%, ZnTe 0.6%, CdS 7.6%, CdSe 3.5%, CdTe 2.5%, AlP 2.0%, AlAs 3.0%, AlSb 11.1%, GaP 14.6%, AlAs 17.0%, AlSb 8.7%, InP 4.3%, InAs 5.5% and InSb 0.6%.

  15. Simultaneous electrodeposition of Ag-In-Se thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aouaj, M.A.; Bihri, H.; Abd-Lefdil, M. [Laboratoire de Physique des Materiaux, Faculte des Sciences, Rabat (Morocco); Hajji, F.; Cherkaoui, F. [Laboratoire de corrosion et d' electrochimie, Faculte des Sciences, Rabat (Morocco); Diaz, R.; Rueda, F. [Univ. Autonoma de Madrid, Madrid (Spain). Dept. de fisica aplicada

    2006-07-01

    This paper explored the use of ternary chalcopyrite compounds as absorber materials in solar cells and optoelectronic devices. The preparation of ternary compounds is complicated due to different values of equilibrium potentials for each constituent. This paper presented a one step electrodeposition process that is used to prepare Ag-In-Se thin films on molybdenum supported on glass substrates. For the copper (Cu) based chalcopyrite, the optical band gap E{sub g} can be varied from 1 eV to 2.7 eV. For the silver (Ag) based materials, the optical band gap can be varied from 1.2 eV to 3.1 eV. Cu indium (In) deselenide (Se{sub 2}) and CuSe{sub 2} solar cells have achieved a single junction efficiency of 18.8 per cent comparable to that of the best multicrystalline silicon devices which have an efficiency of 19.8 per cent. As such, they are a material alternative to crystalline-silicon technologies. Other compounds such as CuIn{sub 3} tellurium (Te{sub 5}) with a band gap in 1.83 to 1.93 eV range and high resistivity of about 107 cm have been prepared in order to synthesize new semiconductor detectors of {gamma} ray radiation. AgInSe{sub 2} ternary compound is also a promising absorber semiconductor for solar cells and Schottky barrier diodes since its gap value is about 1.2 eV. It has been produced by co-evaporation; flash evaporation of ingots grown by sealed evacuated quartz ampoules; pulsed laser deposition; the horizontal Bridgman method; and, the electrodeposition method. Following recent studies on Cu compounds such as CuIn{sub 3}Se{sub 5} and CuIn{sub 3}Te{sub 5}, this study elaborated AgInSe{sub 2} and AgIn{sub 3}Se{sub 5} using the electrodeposition process which is a low-cost, high deposition speed process that does not require the use of vacuum. It was concluded that the composition and morphology of the films are a function of the growth conditions, and that heat treatment under nitrogen leads to silver indium deselenide. 13 refs.

  16. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Cox, David F.; Rosso, Kevin M.; Ross, Nancy L.; Downs, R. T.; Spackman, M. A.

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, F(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, F(rc), the Laplacian, 32F(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of F(rc) and 32F(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of F(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the highspin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the F(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite, suggesting that the neutral Fe3S4 slabs are

  17. Theoretical electron density distributions for Fe- and Cu-sulfide earth materials: a connection between bond length, bond critical point properties, local energy densities, and bonded interactions.

    Science.gov (United States)

    Gibbs, G V; Cox, D F; Rosso, K M; Ross, N L; Downs, R T; Spackman, M A

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, rho(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, rho(rc), the Laplacian, triangle down2rho(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of rho(rc) and triangle down2rho(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of rho(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the high-spin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the rho(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite

  18. Microbial and Mineral Descriptions of the Interior Habitable Zones of Active Hydrothermal Chimneys from the Endeavour Segment, Juan de Fuca Ridge

    Science.gov (United States)

    Holden, J. F.; Lin, T.; Ver Eecke, H. C.; Breves, E.; Dyar, M. D.; Jamieson, J. W.; Hannington, M. D.; Butterfield, D. A.; Bishop, J. L.; Lane, M. D.

    2013-12-01

    Actively venting hydrothermal chimneys and their associated hydrothermal fluids were collected from the Endeavour Segment, Juan de Fuca Ridge to determine the mineralogy, chemistry and microbial community composition of their interiors. To characterize the mineralogy, Mössbauer, FTIR, VNIR and thermal emission spectroscopies were used for the first time on this type of sample in addition to thin-section petrography, x-ray diffraction and elemental analyses. A chimney from the Bastille edifice was Fe-sulfide rich and composed primarily of chalcopyrite, marcasite-sphalerite, and pyrrhotite while chimneys from the Dante and Hot Harold edifices were Fe-sulfide poor and composed primarily of anhydrite. The bulk emissivity and reflectance spectroscopies corroborated well with the petrography and XRD analyses. The microbial community in the interior of Bastille was most closely related to mesophilic-to-thermophilic anaerobes of the deltaproteobacteria and hyperthermophilic archaea while those in the interiors of Dante and Hot Harold were most closely related to mesophilic-to-thermophilic aerobes of the beta-, gamma- and epsilonproteobacteria. The fluid temperatures (282-321°C) and chemistries of the three chimneys were very similar suggesting that differences in mineralogy and microbial community compositions were more dependent on fluid flow characteristics and paragenesis within the chimney. Thin-section petrography of the interior of another hydrothermal chimney collected from the Dante edifice (emitting 336°C fluid) shows a thin coat of Fe3+ oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The Fe-sulfide minerals were likely oxidized to ferrihydrite with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-based most-probable-number estimates of

  19. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides

    Science.gov (United States)

    Ono, Shuhei; Shanks, Wayne C.; Rouxel, O.J.; Rumble, D.

    2007-01-01

    Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different ??33S (?????33S-0.515 ??34S) values of up to 0.04??? even if ??34S values are identical. Detection of such small ??33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006??? (2??). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10??N, 13??N, and 21??S and Mid-Atlantic Ridge (MAR) 37??N yield ??33S values ranging from -0.002 to 0.033 and ??34S from -0.5??? to 5.3???. The combined ??34S and ??33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13??N and marcasite from MAR 37??N are in isotope disequilibrium not only in ??34S but also in ??33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low ??33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among

  20. Molecular solution processing of metal chalcogenide thin film solar cells

    Science.gov (United States)

    Yang, Wenbing

    The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (CISS) and kesterite Cu2ZnSn(S,Se) 4 organized in chronological order. Chalcopyrite CISS is a very promising material. It has been demonstrated to achieve the highest efficiency among thin film solar cells. Scaled-up industry production at present has reached the giga-watt per year level. The process however mainly relies on vacuum systems which account for a significant percentage of the manufacturing cost. In the first section of this dissertation, hydrazine based solution processed CISS has been explored. The focus of the research involves the procedures to fabricate devices from solution. The topics covered in Chapter 2 include: precursor solution synthesis with a focus on understanding the solution chemistry, CISS absorber formation from precursor, properties modification toward favorable device performance, and device structure innovation toward tandem device. For photovoltaics to have a significant impact toward meeting energy demands, the annual production capability needs to be on TW-level. On such a level, raw materials supply of rare elements (indium for CIS or tellurium for CdTe) will be the bottleneck limiting the scalability. Replacing indium with zinc and tin, earth abundant kesterite CZTS exhibits great potential to reach the goal of TW-level with no limitations on raw material availability. Chapter 3 shows pioneering work towards solution processing of CZTS film at low temperature. The solution processed devices show performances which rival vacuum

  1. Non-injection synthesis of monodisperse Cu-Fe-S nanocrystals and their size dependent properties.

    Science.gov (United States)

    Gabka, Grzegorz; Bujak, Piotr; Żukrowski, Jan; Zabost, Damian; Kotwica, Kamil; Malinowska, Karolina; Ostrowski, Andrzej; Wielgus, Ireneusz; Lisowski, Wojciech; Sobczak, Janusz W; Przybylski, Marek; Pron, Adam

    2016-06-01

    It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface. PMID:27197089

  2. Phase diagram of the CuInS{sub 2}-ZnS system and some physical properties of solid solutions phases

    Energy Technology Data Exchange (ETDEWEB)

    Parasyuk, O.V.; Voronyuk, S.V.; Gulay, L.D.; Davidyuk, G.Ye.; Halka, V.O

    2003-01-13

    The phase diagram of the quasi-binary CuInS{sub 2}-ZnS system was constructed using differential-thermal analysis and X-ray diffraction. The diagram is of the first type according to Rozeboom's classification. Continuous solid solutions are formed between both isostructural modifications (hexagonal and cubic) of ZnS and CuInS{sub 2}. It was established from the lattice parameter variations that the solid solution range of the tetragonal CuInS{sub 2} modification extends from 0 to 29 mol% ZnS, while that of the cubic modification of ZnS from 41 to 100 mol% ZnS. The crystal structure of the alloys containing 20 and 60 mol% ZnS was refined using powder diffraction. Some electric, thermoelectric and photoelectric properties of the sintered polycrystalline alloys of the CuInS{sub 2}-ZnS system were investigated. The samples from the CuInS{sub 2}-rich side exhibit high photosensitivity caused by intrinsic photojunctions in the grains of polycrystals. The alloys from the range of the coexistence of the chalcopyrite and zinc blende a phases have considerable thermopower. Models explaining the electric, thermoelectric and photoelectric properties have been suggested.

  3. Crystal and phonon structure of ZnSiP{sub 2}, a II-IV-V{sub 2} semiconducting compound

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Pedraza, H., E-mail: heribertopp@ula.ve [Departamento de Fisica, Universidad de Pamplona, Pamplona 54518000 (Colombia); Lopez-Rivera, S.A.; Martin, J.M. [Laboratorio de Fisica Aplicada, ULA, Merida 5101 (Venezuela, Bolivarian Republic of); Delgado, J.M. [Laboratorio de Cristalografia, ULA, Merida 5101 (Venezuela, Bolivarian Republic of); Power, Ch. [Centro de Estudios en Semiconductores, ULA, Merida 5101 (Venezuela, Bolivarian Republic of)

    2012-09-20

    Using single-crystal X-ray diffraction and Raman spectroscopy, the characterization of a member of the II-IV-V{sub 2} family of semiconducting compounds, ZnSiP{sub 2}, is presented in this work. The diffraction experiment showed that ZnSiP{sub 2} crystallizes in a chalcopyrite-type of structure (space group: I4{sup Macron }2d) with unit cell parameters a = 5.407(9) Angstrom-Sign and c = 10.454(2) Angstrom-Sign . The structure is based on a cubic close-packed arrangement of phosphorus atoms with the two cations in an orderly way occupying one-half of the tetrahedral sites. In this structure, two Zn and two Si are bonded to each phosphorus atom and four phosphorus atoms are bonded to each cation. The results obtained are consistent with previous reports. Raman spectroscopy, Group Theory, and a modified correlation method allowed the assignment of the characteristics of the thirteen first-order Raman active optical vibrational modes observed for this material.

  4. Growth and characterization of single phase AgInS2 crystals for energy conversion application through β-In2S3 by thermal evaporation

    Science.gov (United States)

    Gantassi, A.; Essaidi, H.; Ben Hamed, Z.; Gherouel, D.; Boubaker, K.; Colantoni, A.; Monarca, D.; Kouki, F.; Amlouk, M.; Manoubi, T.

    2015-03-01

    Silver indium sulfide thin films have been successfully synthesized out from β-In2S3 buffer layers using appropriate heat treatments of evaporated β-In2S3/Ag. X-ray analysis show that the β-In2S3/Ag crystalline films with 60 nm thickness of Ag, which were annealed under sulfur atmosphere at 400 °C, were mainly formed by the ternary AgInS2. Raman spectra confirmed that the observed peaks were characteristics to AgInS2 chalcopyrite of thin film structure. The optical band gap of AgInS2, which was evaluated as nearly 1.80 eV, was confirmed by the electrical study which yielded a value in the order of 1.78 eV. The electrical conductivity, conduction mechanism, dielectric properties and relaxation model of this thin film were studied using impedance spectroscopy technique in the frequency range 5 Hz-13 MHz under various temperatures (370-440 °C). Besides, complex impedance, AC conductivity and complex electric modulus have been investigated on the basis of frequency and temperature dependence.

  5. Mineralization model for Chahar Gonbad copper-gold deposit (Sirjan, using mineralogical, alteration and geochemical data and multivariate statistical methods

    Directory of Open Access Journals (Sweden)

    Seayed Jaber Yousefi

    2012-04-01

    Full Text Available The study area is located in southeastern Iran, about 110 km southwest of Kerman. Geologically, the area is composed of ophiolitic rocks, volcanic rocks, intrusive bodies and sedimentary rocks. Vein mineralization within andesite, andesitic basalt, andesitic tuffs occurred along the Chahar Gonbad fault. Sulfide mineralization in the ore deposit has taken place as dissemination, veins and veinlets in which pyrite and chalcopyrite are the most important ores. In this area, argillic, phyllic and propylitic alteration types are observed. Such elements as Au, Bi, Cu, S and Se are more enriched than others and the enrichment factors for these elements in comparison with background concentration are 321, 503, 393, 703 and 208, and with respect to Clark concentration are 401, 222, 532, 101 and 156, respectively. According to multivariate analysis, three major mineralization phases are recognized in the deposit. During the first phase, hydrothermal calcite veins are enriched in As, Cd, Pb, Zn and Ca, the second phase is manifested by the enrichment of sulfide veins in Cu, Au, Ag, Bi, Fe and S and the third phase mineralization includes Ni, Mn, Se and Sb as an intermediate level between the two previous phases.

  6. Uniform deposition of ternary chalcogenide nanoparticles onto mesoporous TiO2 film using liquid carbon dioxide-based coating

    International Nuclear Information System (INIS)

    We report the simultaneous deposition of two different metal precursors dissolved in liquid carbon dioxide (l-CO2), aiming to the synthesis of ternary chalcopyrite (e.g. CuInS2) nanoparticles on a mesoporous TiO2 film. The l-CO2-based deposition of Cu and In precursors and subsequent reaction with a dilute H2S gas resulted in CuxInySz nanoparticles uniformly deposited across the entire thickness of a mesoporous TiO2 film. Further heat treatment (air annealing and sulfurization) led to the formation of more stoichiometric CuInS2 nanoparticles. The formation of CuInS2 on TiO2 was confirmed by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The crystal growth of CuInS2 was also found to be controllable by adjusting the number of coating cycles of the l-CO2-based deposition. - Highlights: • Simultaneous deposition of two different metal precursors dissolved in l-CO2. • Uniform deposition of CuInS2 nanoparticles across mesoporous TiO2 film. • Highly crystalline CuInS2 formed on mesoporous TiO2 film. • Nearly stoichiometric ratio of Cu:In:S was obtained

  7. Temperature dependency of the Ga/In distribution in Cu(In,Ga)Se2 absorbers in high temperature processes

    Science.gov (United States)

    Mueller, B. J.; Demes, T.; Lill, P. C.; Haug, V.; Hergert, F.; Zweigart, S.; Herr, U.

    2016-05-01

    The current article reports about the influence of temperature and glass substrate on Ga/In interdiffusion and chalcopyrite phase formation in the stacked elemental layer process. According to the Shockley-Queisser limit the optimum for single junction devices is near 1.4 eV, which is strongly coupled on the Ga/(Ga+In) ratio of Cu(In,Ga)Se2 thin film solar cells. To increase the Ga content in the active region of the Cu(In,Ga)Se2 a 70:30 CuGa alloy target is used. An increase of the selenization temperature leads to a more homogeneous Ga/In distribution and a less pronounced Ga agglomeration at the back contact. The Ga/In interdiffusion rates for different selenization temperatures and substrates were estimated with the model of a two layer system. At the highest selenization temperature used an absorber band gap of 1.12 eV was realized, which is similar to typical values of absorbers produced during the co-evaporation process. The Na diffusion into the Cu(In,Ga)Se2 is weakly temperature dependent but strongly influenced by the choice of the glass substrate composition.

  8. Xanthate-Functional Temperature-Responsive Polymers: Effect on Lower Critical Solution Temperature Behavior and Affinity toward Sulfide Surfaces.

    Science.gov (United States)

    Ng, Wei Sung; Forbes, Elizaveta; Franks, George V; Connal, Luke A

    2016-08-01

    Xanthate-functional polymers represent an exciting opportunity to provide temperature-responsive materials with the ability to selectively attach to specific metals, while also modifying the lower critical solution temperature (LCST) behavior. To investigate this, random copolymers of poly(N-isopropylacrylamide) (PNIPAM) with xanthate incorporations ranging from 2 to 32% were prepared via free radical polymerization. Functionalization with 2% xanthate increased the LCST by 5 °C relative to the same polymer without xanthate. With increasing xanthate composition, the transition temperature increased and the transition range broadened until a critical composition of the hydrophilic xanthate groups (≥18%) where the transition disappeared completely. The adsorption of the polymers at room temperature onto chalcopyrite (CuFeS2) surfaces increased with xanthate composition, while adsorption onto quartz (SiO2) was negligible. These findings demonstrate the affinity of these functional smart polymers toward copper iron sulfide relative to quartz surfaces, presumably due to the interactions between xanthate and specific metal centers. PMID:27434760

  9. 4-Amino-1,2,4-triazole: Playing a key role in the chemical deposition of Cu-In-Ga metal layers for photovoltaic applications

    International Nuclear Information System (INIS)

    Liquid film processing of Cu(In,Ga)Se2 absorber layers has the potential to lower the cell production costs significantly namely because of the absence of vacuum steps and high material utilization. In this work an ink system based on metal carboxylates in a mixture of a nitrogen-containing base and an alcohol is investigated. After the coating step on a suitable substrate followed by the drying of the alcohol, the metal ions are reduced to the respective metals with a simple heat treatment. However, depending on the conditions, the resulting metal layers are either highly porous or dewetting above 160 °C due to the high surface tension of the intermediate liquid indium. Adding 4-amino-1,2,4-triazole to the ink leads to a homogeneous metal layer, which is crucial for the formation of dense chalcopyrite layers. We propose a stabilization mechanism based on a temporary polymeric complex of Cu2+ and the additive 4-amino-1,2,4-triazole which is decomposing completely at selenization conditions. - Highlights: • Influence of 4-amino-1,2,4-triazole on the film formation has been investigated. • Two polymers identified forming an organic matrix during the layer processing • This matrix allows processing of dense and crack free metallic layers. • The polymers decompose completely under selenization conditions

  10. Electrical characterization of all-sputtered CdS/CuInSe sub 2 solar cell heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, J.; Martil, I.; Iborra, E.; Gonzalez Diaz, G.; Sanchez Quesada, F. (Dept. Electricidad y Electronica, Univ. Complutense, Madrid (Spain))

    1990-01-01

    Current-voltage (J-V) and capacitance-frequency (C-F) measurements were taken for all-sputtered CdS/CuInSe{sub 2} solar cell heterojunctions, in the range 100 Hz - 10 MHz, to investigate the effect of interface states on the conduction mechanism. The samples analyzed had different compositions for the chalcopyrite CuInSe{sub 2} layer. All of the samples showed a hybrid tunneling/interface recombination mechanism with the major contribution coming from the interface recombination mechanism for devices having a stoichiometric or indium-rich CuInSe{sub 2} layer, and from the tunneling conduction mechanism for copper-rich devices. An estimation of the relative distribution of interface states has been performed. The values obtained for interface state density were as high as 6x10{sup 12} V{sup -1} cm{sup -2} for copper-rich heterojunctions, and were lower than 2x10{sup 11} V{sup -1} cm{sup -2} for devices having a stoichiometric or indium-rich CuInSe{sub 2} layer. (orig.).

  11. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe2

    International Nuclear Information System (INIS)

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe2, one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies

  12. Ore Petrography Using Optical Image Analysis: Application to Zaruma-Portovelo Deposit (Ecuador

    Directory of Open Access Journals (Sweden)

    Edgar Berrezueta

    2016-06-01

    Full Text Available Optical image analysis (OIA supporting microscopic observation can be applied to improve ore mineral characterization of ore deposits, providing accurate and representative numerical support to petrographic studies, on the polished section scale. In this paper, we present an experimental application of an automated mineral quantification process on polished sections from Zaruma-Portovelo intermediate sulfidation epithermal deposit (Ecuador using multispectral and color images. Minerals under study were gold, sphalerite, chalcopyrite, galena, pyrite, pyrrhotite, bornite, hematite, chalcocite, pentlandite, covellite, tetrahedrite and native bismuth. The aim of the study was to quantify the ore minerals visible in polished section through OIA and, mainly, to show a detailed description of the methodology implemented. Automated ore identification and determination of geometric parameters predictive of geometallurgical behavior, such as grade, grain size or liberation, have been successfully performed. The results show that automated identification and quantification of ore mineral images are possible through multispectral and color image analysis. Therefore, the optical image analysis method could be a consistent automated mineralogical alternative to carry on detailed ore petrography.

  13. A New Variety of Mineral—Argentian Mercurian Gold

    Institute of Scientific and Technical Information of China (English)

    杨时惠; 张汉卿; 等

    1991-01-01

    Argentian mercurian gold,golden-yellow in colour,is a variety of native gold containing Ag and Hg,coccurring as hexagonal and tetragonal crystals in hairy,milk-droplet or irregular forms.Its microhardness Hv=91kg/mm2,equivalent to 3.04on Mons'scale,and the reflectance is 70.35%(589nm).Chemical analysis gave:Au 56.05-67.33,Ag18.29-31.06 and Hg 10-14.82%,as well as minor Cu.In a few samples Bi or Fe was also detected.The simplified formula is (Au0.52Ag0.36Hg0.09Cu0.02)0.99.X-ray analysis suggests the mineral is of isometric system,with space group=Oh5-Fm3m,a0=0.40803nm,V=0.06739nm3,and Z=4.Argentian mercurian gold occurs in a Ag-multimetal deposit at Xiacun,Baiyu County,Sichuan Province,As observed in the mining district,the mineral is distributed along the fissures of the main metallic minerals pyrite,tetrahedrite,chalcopyrite,arsenopyrite,galena,sphalerite,etc.,or in the sulfide veinlets developed in the.fissures of these minerals.Also found in the mineral deposit are native gold,argentite,sulvanite,bournonite,boulangrite,etc.

  14. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  15. Bioavailability and Chronic Toxicity of Metal Sulfide Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration, Mining and Tailings Disposal.

    Science.gov (United States)

    Simpson, Stuart L; Spadaro, David A

    2016-04-01

    The exploration and proposed mining of sulfide massive deposits in deep-sea environments and increased use deep-sea tailings placement (DSTP) in coastal zones has highlighted the need to better understand the fate and effects of mine-derived materials in marine environments. Metal sulfide ores contain high concentrations of metal(loid)s, of which a large portion exist in highly mineralized or sulfidised forms and are predicted to exhibit low bioavailability. In this study, sediments were spiked with a range of natural sulfide minerals (including chalcopyrite, chalcocite, galena, sphalerite) to assess the bioavailability and toxicity to benthic invertebrates (bivalve survival and amphipod survival and reproduction). The metal sulfide phases were considerably less bioavailable than metal contaminants introduced to sediment in dissolved forms, or in urban estuarine sediments contaminated with mixtures of metal(loid)s. Compared to total concentrations, the dilute-acid extractable metal(loid) (AEM) concentrations, which are intended to represent the more oxidized and labile forms, were more effective for predicting the toxicity of the sulfide mineral contaminated sediments. The study indicates that sediment quality guidelines based on AEM concentrations provide a useful tool for assessing and monitoring the risk posed by sediments impacted by mine-derived materials in marine environments. PMID:26937684

  16. Deposition of CuInSe2 by the hybrid sputtering and evaporation method

    Science.gov (United States)

    Rockett, A.; Agarwal, A.; Yang, L. Chung; Banda, E.; Kenshole, G.

    CuInSe2 thin films deposited by a hybrid process combining magnetron sputtering of Cu and In with evaporation of Se have been analyzed and solar cells have been fabricated. The hybrid technique is shown to produce CuInSe2 films of device quality. Heterojunction Mo/CuInSe2/CdS/ITO/Ni devices with photovoltaic conversion efficiencies as high as 7.7 percent have been tested. Device characteristics for the best device include Voc = 0.385 V, Jsc = 32.6 mA, and a fill factor of 61.3 percent. The device required an air anneal to achieve full efficiency. Results of microstructural analyses using transmission electron microscopy are reported. The results assist in determining what limits the performance of these devices. As-deposited CuInSe2 exhibits no measurable differences as compared with CuInSe2 produced by three-source evaporation. All films contain microtwins, stacking faults, and voids. No evidence was found for second phases in material with metal atom fractions as much as 4 percent off stoichiometry. Defect ordering produces features in the diffraction patterns of single-phase material at positions not normally allowed for the chalcopyrite structure. These measurements are compared with results for single crystals grown with the vertical Bridgeman method by Tomlinson (1986). X-ray photoelectron spectroscopy results characterizing the valence band as a function of film composition are also presented.

  17. Impact of sulfur and gallium gradients on the performance of thin film Cu(In,Ga)(Se,S){sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lavrenko, Tetiana, E-mail: lavrenko@hs-ulm.de; Ott, Thomas; Walter, Thomas

    2015-05-01

    A graded bandgap structure proved to be an important factor for increasing an overall efficiency of the chalcopyrite-based thin film solar cells. This contribution is focused on the effects of sulfur incorporation into the surface region of industrial sequentially grown Cu(In,Ga)(Se,S){sub 2} absorbers. A front grading due to such a sulfurization step enhances the bandgap in the space charge region, whereas the bulk of the absorber exhibits a lower bandgap which determines absorption and photocurrent. It will be demonstrated that such graded bandgap structures allow separating the absorption and recombination processes, therefore resulting in highly efficient solar cells with improved open circuit voltages without compromising short circuit currents. Moreover, a segregation of a gallium rich layer at the back contact as a result of sequential deposition reactions is discussed in terms of a back contact passivation that prevents injection of electrons to the back contact and suppresses phototransistor effects often observed at low temperatures. Furthermore, an influence of longer diffusion times on gallium distribution throughout the absorber layer has been investigated. High temperature deposition processes for prolonged time enhance gallium diffusion towards the absorber/buffer interface therefore leading to an overall increase of the absorber bandgap energy when both recombination and absorption processes are being affected. - Highlights: • Separation of the recombination and absorption processes due to S incorporation • A gallium-rich layer at the back contact suppresses phototransistor effects. • Ga-diffusion at high temperature affects both electrical and optical bandgaps.

  18. Comparative study of uranium mineralised and non-mineralised dolostone of Vempalle formation, Cuddapah supergroup, Andhra Pradesh and its implication on role of algae and phosphate in uranium mineralisation

    International Nuclear Information System (INIS)

    Petromineralogical and geochemical study of both uraniferous phosphatic siliceous dolostone (PSD) and associated non uraniferous dolostone of Vempalle Formation has brought out significant mineralogical and chemical variations in these lithounits. The U-mineralisation is stratabound with exclusively impure PSD as host rock, which is sandwiched between lower massive dolostone and upper shale/cherty dolostone in the Vempalle Formation. Biogeochemical control is reflected by presence of specific types of algal stromatolites within the uraniferous PSD along with sulphur reducing bacteria, which have controlled the precipitation of biogenic pyrite, collophane (Ca phosphate) and high-Mg calcite. Geochemically, PSD compared to the associated dolostone is characterised by high U, P2O5, V, Mo, Pb, Cu and Sr which are expressed mineralogically in the form of pitchblende, coffinite, U-Ti complex, collophane, pyrite, molybdenite, galena, chalcopyrite, bornite, digenite and covellite with relatively higher Mo and V in the southern parts of the mineralised belt and higher Cu in the northern part. The organic matter and Ca phosphate have helped in initial fixing of uranium in them as indicated by the presence of pitchblende with collophane and adsorbed uranium in organic matter. Further diagenesis within a reducing environment provided by organic matter has resulted in localization of primary uranium mineralization along major diagenetic and sedimentary weak zones like carbonate-phosphate contact, clast boundaries, microstylolites, fibrous dolomite rich cavities and dolomicritic pelloids. (author)

  19. Quality, quantity and geometric determination on uranium deposit at East Upper Rabau, West Kalimantan using drilling method

    International Nuclear Information System (INIS)

    Uranium mineralization has been discovered at western and middle part of Upper Rabau within favorable bed of meta silt stone E-W orientation dipping to north. The radiometric value of Eastern part of Rabau more than 15,00 c/s SPP2NF, according to the geology, litho logy, and mineral orientation similar to those at the western and middle part. The aim of this study is to obtain the information about mineralization pattern, dimension, lateral and vertical distribution and the quality and quality. The method has been applied in the study is geology mapping, core drilling identification, rock sampling, and mineralogical and geochemical laboratory analysis. Result of the data evaluation and it interpretation shown that some centimentric-decimetric mineralized vein lets with radiometric value range 700 - 2000 c/s SPP2NF at 72-92-20 m depth. U mineralization zones consist of pyrite, chalcopyrite, sphalerite, uraninite, and magnetite. It has been found 60 - 95 m That mineralized zone is correlated to TR 136 and TR 138. Total volume of mineralized rock 13,000 M3 with the density is about 2.7. So, the total resources will be 117,3 tons with the ore grade in between of 619.50 - 9,462.00 ppm

  20. Evaluation of the effect of conventionally prepared swarna makshika bhasma on different bio-chemical parameters in experimental animals

    Directory of Open Access Journals (Sweden)

    Sudhaldev Mohapatra

    2011-01-01

    Full Text Available Swarna makshika (chalcopyrite bhasma (SMB has been used for different therapeutic purposes since long in Ayurveda. The present study is conducted to evaluate the effect of conventionally prepared SMB on different bio-chemical parameters in experimental animals, for providing scientific data base for its logical use in clinical practice. The genuine SMB was prepared by following classical techniques of shodhana and marana most commonly used by different Ayurvedic drug manufacturers. Shodhana was done by roasting raw swarna makshika with lemon juice for three days and marana was performed by 11 putas . The experimental animals (rats were divided into two groups. SMB mixed with diluted honey was administered orally in therapeutic dose to Group SMB and diluted honey only was administered to vehicle control Group, for 30 days. The blood samples were collected twice, after 15 days and after 30 days of drug administration and different biochemical investigations were done. Biochemical parameters were chosen based on references from Ayurvedic classics and contemporary medicine. It was observed that Hb% was found significantly increased and LDL and VLDL were found significantly decreased in Group SMB when compared with vehicle control group. This experimental data will help the clinician for the logical use of SMB in different disease conditions with findings like low Hb% and high LDL, VLDL levels.

  1. AN APPROACH TOWARDS STANDARDIZATION OF SWARNA MAKSHIK BHASMA (AN AYURVEDIC PREPARATION

    Directory of Open Access Journals (Sweden)

    Lagad C. E.

    2011-03-01

    Full Text Available Swarna Makshik (Chalco-pyrite, a mineral having various therapeutic uses in Pandu (Anemia, Kushtha (Skin disorders and Kamala (Jaundice has been used since long in Ayurveda. The present study was conducted to standardize raw and processed swarna makshik using techniques which can be used by pharmacies. Powdered swarna makshik was heated in an iron pan by adding lemon juice for 3 days till liberation of sulphur fumes stopped completely. Bhasma of this purified swarna makshik was obtained by triturating it with purified sulphur and lemon juice. It was then subjected to heat in 13 putas, and for firing in each puta, 3.5 kg cow dung cakes were used. To assure the quality of bhasma, rasa shastra quality control tests like nischandratva, varitara, amla pariksha, etc., were used. After the bhasma complied with these tests, the bhasma was analyzed using X-ray Diffraction (XRD and Thermo Gravimetric analysis (TGA revealed that SM bhasma contains Fe2O3, FeS2, CuS and SiO2. It may be concluded that raw SM is a complex compound which gets converted into a mixture of simple compounds after the particular process of marana.

  2. Surprisingly contrasting metal distribution and fractionation patterns in copper smelter-affected tropical soils in forested and grassland areas (Mufulira, Zambian Copperbelt).

    Science.gov (United States)

    Ettler, Vojtěch; Konečný, Ladislav; Kovářová, Lucie; Mihaljevič, Martin; Sebek, Ondřej; Kříbek, Bohdan; Majer, Vladimír; Veselovský, František; Penížek, Vít; Vaněk, Aleš; Nyambe, Imasiku

    2014-03-01

    Six soil profiles located near Mufulira (Zambian Copperbelt) were studied to evaluate and compare the extent of environmental pollution of Cu-ore mining and smelting in both forested and grassland areas. The highest metal concentrations were detected in the uppermost soil layers with the following maxima: Co 45.8 mg kg(-1), Cu 8,980 mg kg(-1), Pb 41.6 mg kg(-1), and Zn 97.0 mg kg(-1). Numerous anthropogenic metal-bearing particles were detected in the most polluted soil layers. The spherical smelter-derived particles were mainly composed of covellite (CuS) and chalcocite (Cu2S), while the angular mining-derived particles were mostly composed of chalcopyrite (CuFeS2). Additionally, Fe-Cu oxide particles predominantly corresponding to tenorite (CuO) and delafossite (Cu(1+)Fe(3+)O2), along with hydrated Fe-oxides corresponding to secondary weathering products, were detected. In contrast to smelter-affected soils in temperate climates, where forest soils are significantly more enriched in metals than tilled soils due to high canopy interception, our data indicate a higher proportion of metal-bearing anthropogenic particles and higher metal concentrations in soils from unforested sites. This phenomenon is probably related to the more frequent and intense bushfires in forested areas, leading to the mobilization of pollutants contained in the biomass-rich surface soils back into the atmosphere. PMID:24365587

  3. Electrochemical preparation and characterization of CuInSe2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    The objective of this work has been to investigate the electrodeposition as a low-cost, large-area fabrication process to obtain CuInSe2 this films for efficient photovoltaic devices. this objective entails the elucidation of thin film deposition mechanism, the study of the fundamental properties of electrodeposited material, and also the modification of their physical and chemical parameters for photovoltaic applications. CuInSe2 thin films have been successfully electrodeposited from a citric was characterized by compositional, structural, electrical, optical and electrochemical measurements, relating their properties with the preparation parameters and also studying the effect of various thermal and chemical treatments. The results showed post-deposition treatment are needed for optimizing these films for solar cells fabrication: first, an annealing in inert atmosphere at temperatures above 400 degrees celsius to obtain a high recrystallization in the chalcopyrite structure, and after a chemical etching in KCN solution to remove secondary phases of CuxSe and Se which are frequently electrodeposited with the CuInSe2. The treated samples showed appropriate photovoltaic activity in a semiconductor-electrolite liquid junction. (author) 193 ref

  4. 云南某低品位菱铁矿选矿试验研究%Experimental Research on Mineral Processing of a Low Grade Siderite in Yunnan

    Institute of Scientific and Technical Information of China (English)

    赵天平; 王明国; 李忠烈; 王小高

    2015-01-01

    A low grade siderite from Nujiang area contains 25.67%TFe.The main metallic miner-als were siderite with a little pyrite and chalcopyrite ,and the gangue minerals were quartz and seri-cite.For effective exploration and utilization , experimental tests were conducted systematically and an iron concentrate containing 57.95% TFe with recovery rate of 80.13% was obtained using a high intensive magnetic separation -roasting process , which provides a reference for development of similar type ore .%云南怒江地区某低品位菱铁矿含TFe 25.67%,金属矿物主要为菱铁矿,还有少量黄铁矿、黄铜矿等,脉石矿物主要为石英,绢云母等,为有效开发利用该矿石资源,对有代表性的矿石进行了详细的试验研究,最终采用强磁选—焙烧的选矿工艺流程,获得了铁品位57.95%、回收率为80.13%的铁精矿,为同类型矿石的开发利用提供了借鉴。

  5. Ore Characteristics and Fluid Inclusion of the Base Metal Vein Deposit in Moncong Bincanai Area, Gowa, South Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Asmariyadi Asmariyadi

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v7i4.146This paper is dealing with ore characteristics and fluid inclusion of the Moncong Bincanai, Biringbulu Subregency of Gowa Regency, South Sulawesi Province, Indonesia. The mineralization is a vein type, with the orientation of N170oE /65oSW, hosted in open-space filling within basalt. The mineralization consists of galena, sphalerite, chalcopyrite, and pyrite. Vein thickness ranges from 5 - 17 cm, showing a crustiform banding texture, with a sequence from outer to centre: quartz, carbonate (siderite, sulphide. The quartz displays primary growth textures such as comb, crystalline, saccharoidal, and colloform. Analytical methods applied include AAS and fluid inclusion microthermometry. Chemical composition of the vein indicates an average of Pb = 47.92%, Cu = 1.27%, Zn = 1.02%, and Fe = 9.46%, which shows a significant concentration of Pb. Fluid inclusion microthermometry results indicate a range of formation temperature of 240 - 250C and salinity of the responsible hydrothermal fluid of 2.1 - 2.5 wt.% NaCl eq. The deposit is categorized into low-sulfidation epithermal deposits, which was formed within a range of 410 - 440 m below paleosurface.

  6. The mineral composition and the ore types of the uranium-vanadium deposit Srednaya Padma (Onega region, Russian Federation)

    International Nuclear Information System (INIS)

    The deposit Srednaya Padma is the largest and best prospected of the uranium-vanadium deposits of the Onega region. There are abnormally high concentrations of gold, palladium, platinum, copper and molybdenum in the ores. The ore mineralization is located in the albite-mica-carbonate metasomatites upon the proterozoic aleorolites and schists. The ores are generally composed of albite, dolomite and micas. The main vanadium mineral is vanadian flogopite, the main uranium mineral is pitchblende. The proportions of the ore and ore-forming minerals are determined. The noble metal mineralization (which associates with selenides of lead, silver and bismuth) and the copper-molybdenum mineralization (represented by chalcopyrite and molybdenite) are spread extremely irregularly in the orebodies. The ores can be classified as carbonaceous by their compositions. Four mineral ore types, with regard to the mineralization composition of the ore, are determined: pitchblende-flogopite, noble metal-pitchblende-flogopite, sulphide-flogopite and hypergene. The ores are classified in three technological ore types (uranium-vanadium; uranium-vanadium with Au, Pd, Pt; vanadium with Cu, Mo) and two technological ore sorts (by the acid inventory in processing). The correlation between the composition of the ore and the technological processing parameters are determined. The specifics of the various ore types distribution in the orebodies are discovered. A comparison with the other U-V deposits of the Onega region is made. (author). 4 refs, 3 figs, 2 tabs

  7. Correlation Between Microstructure and Optical Properties of Cu (In0.7, Ga0.3) Se2 Grown by Electrodeposition Technique

    Science.gov (United States)

    Chihi, Adel; Bessais, Brahim

    2016-09-01

    Polycrystalline thin films Cu (In0.7, Ga0.3) Se2 (CIGSe) were grown on copper foils at various cathodic potentials by using an electrodeposition technique. Scanning electron microscopy showed that the average diameter of CIGSe grains increase from 0.1 μm to 1 μm when the cathodic potential decreases. The structure and surface morphology were investigated by x-ray diffraction and atomic force microscopy (AFM) techniques. This structure study shows that the thin films were well crystallized in a chalcopyrite structure without unwanted secondary phases with a preferred orientation along (112) plane. Energy-dispersive x-ray analyses confirms the existence of CIGSe single phase on a copper substrate. AFM analysis indicated that the root mean square roughness decreases from 64.28 to 27.42 when the potential deposition increases from -0.95 V to -0.77 V. Using Raman scattering spectroscopy, the A1 optical phonon mode was observed in 173 cm-1 and two other weak peaks were detected at 214 cm-1 and 225 cm-1 associated with the B2 and E modes of the CIGSe phase. Through spectroscopy ellipsometry analysis, a three-layer optical model was exploited to derive the optical properties and layer thickness of the CIGSe film by least-squares fitting the measured variation in polarization light versus the obtained microstructure.

  8. Effects of europium substitution for In on structure and photoelectric properties of CuIn1-xEuxTe2

    Science.gov (United States)

    Nie, Xiaomeng; Guo, Yongquan

    2016-01-01

    The structures and optical and electric properties of europium doped CuIn1-xEuxTe2 have been studied systematically using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectrum (EDS), ultraviolet and visible spectrophotometer (UV-vis), and standard four-probe method. The studies reveal that the minor europium doping into CuIn1-xEuxTe2 could still stabilize the chalcopyrite structure in a solid solution of x=0.1. The lattice parameters are going up with increasing the content of europium in CuIn1-xEuxTe2 due to the size effect at In site. The structural refinement confirms that Eu partly substitutes for In and occupies the 4b crystal position. SEM morphologies show that the europium doping into CuIn1-xEuxTe2 can fine the grains from the largely agglomerated state to the uniformly separated state. The electrical resistivities of single phase CuIn1-xEuxTe2 follow a mixture model of hopping conductivity and variable range hopping conductivity. The absorption band-gaps of CuIn1-xEuxTe2 at room temperature tend to increase with increasing Eu content. CuIn1-xEuxTe2 might be a good candidate for photovoltaic cell.

  9. Genetic relationship between L granite body and 3701 uranium deposit

    International Nuclear Information System (INIS)

    The ore deposit occurs in carbonate rocks situated in the exocontact zone (0 - 120 m) with the L granite body. The mineralization is hosted by argillaceous limestone of the middle Devonian Yingtang Formation. The ore bodies are in lenticular or stratifed form. The ores are fine vein-type and disseminated type. Four stages of mineralization in the deposit are recognized. Industrial mineral is pitchblende which occurs as micro-impregnation and micro-vein in the calcite, and fills or replaces its associated minerals. Gangue minerals are chiefly calcite, pyrite, galena, sphalerite, chalcopyrite and tennantite etc. The host rocks of the ore-veins show weak hydrothermal alterations with plane and linear distribution. The L granite body with an area of 238 km2 is a single-stage intrusive batholith which mainly consists of coarse-medium grained biotite granites. Because the urnium mineralization age (65.0 - 30.7 Ma) is much younger than that of the L granite (318 -202 Ma), it may be considered that the deposit is genetically not related to activity of the L granitic magma. However, the granitic rocks may play an important role in the formation of the 3701 uranium deposit in following hands: providing a large number of uranium and lead; providing minor amounts of surfur, carbon and trace elements; forming impermeable basement to promote the accumulation of uranium-bearing solution; providing an additional heat source for heating ore-bearing solution and its convective circulation

  10. Geologic, geochemical, and isotopic studies of a carbonate- and siliciclastic-hosted Pb-Zn deposit at Lion Hill, Vermont

    Science.gov (United States)

    Foley, Nora K.; Clark, Sandra H.B.; Woodruff, Laurel G.; Mosier, Elwin L.

    1995-01-01

    Zn-, Pb-, Cu-, and Fe-bearing rocks of the Lion Hill area in western Vermont formed during the Early Cambrian by syngenetic sedimentary-exhalative and diagenetic replacement processes. Sphalerite, galena, chalcopyrite, pyrite, and, locally, magnetite form stratabound and broadly stratiform lenticular zones, -300 meters long and 25-50 meters thick, which are uneconomic at the present time. The lenses are structurally disrupted and metamorphosed to greenschist facies, probably due to the Taconic orogeny. Textural evidence suggests that mineralizing fluids permeated the sediments prior to lithification and that a dilatant fracture zone, possibly a feeder zone, contains some of the discordant veins at Lion Hill. The veins may have formed when the sediments were in a plastic, semiconsolidated state. The association of layered iron formation containing base-metal sulfide minerals provides possible lithologic evidence for syngenetic mineralization by submarine exhalative activity. Sand bars and tidal channels present in the sedimentary section could have acted as permeable pathways for movement of mineralizing fluids. The complex interlayering in the sedimentary sequence of carbonate and siliciclastic rock types having widely varying permeabilities created numerous fluid traps.

  11. Geological and geochemical characteristics of the Aksug porphyry Cu-Mo system, Altay-Sayan region, Russia%俄罗斯阿尔泰-Sayan地区Aksug斑岩Cu-Mo体系的地质与地球化学特征

    Institute of Scientific and Technical Information of China (English)

    Berzina AN; Berzina AP

    2008-01-01

    The Aksug deposit, located in Ahay-Sayan region of Russia, is one of the largest porphyry Cu-Mo deposits in Southern Siberia. The ore-bearing porphyries of the Aksug porphyry Cu-Mo system were formed in post-collisional environment. Geochemically they belong to calk-alkaline and high K-calk-alkaline series. Rocks are characterized by enrichment of LILE and depletion of HSFE and HREE, showing the importance of subduction-related components in magma generation. Large plutonic intrusions that host porphyry systems have been formed during collision. The origin of porphyritic rocks is dominantly the mantle with lower crustal contribution. The mainly economically important Cu-Mo mineralization is closely related to a porphyry series in time and space, being emplaced towards the end of magmatic activity. Though the emplacement of plutonic and ore-bearing porphyry complexes took place in different geodynamic environments, both complexes are characterized by certain similarity in geochemical composition, alkalinity, trace element content, Sr isotopic composition. This fact evidently indicates a common deep-seated magmatic source (at the lower crust-upper mantle level), Low initial 87Sr/86Sr, sulfur isotopic characteristics and presence of PGE-Co-Ni mineralization in associated pyrite-chalcopyrite ores suggest that mantle source of chalcophile elements was of high importance in porphyry Cu-Mo mineralization of the Aksug deposit.

  12. Late-stage sulfides and sulfarsenides in Lower Cambrian black shale (stone coal) from the Huangjiawan mine, Guizhou Province, People's Republic of China

    Science.gov (United States)

    Belkin, H.E.; Luo, K.

    2008-01-01

    The Ni-Mo Huangjiawan mine, Guizhou Province, People's Republic of China, occurs in Lower Cambrian black shale (stone coal) in an area where other mines have recently extracted ore from the same horizon. Detailed electron microprobe (EMPA) and scanning electron microscope (SEM) analyses of representative thin sections have revealed a complex assemblage of sulfides and sulfarsenides. Early sulfidic and phosphatic nodules and host matrix have been lithified, somewhat fractured, and then mineralized with later-stage sulfides and sulfarsenides. Gersdorffite, millerite, polydymite, pyrite, sphalerite, chalcopyrite, galena, and clausthalite have been recognized. EMPA data are given for the major phases. Pyrite trace-element distributions and coeval Ni-, As-sulfides indicate that in the main ore layer, the last sulfide deposition was Ni-As-Co-rich. Mo and V deposition were early in the petrogenesis of these rocks. The assemblages gersdorffite-millerite-polydymite (pyrite) and millerite-gersdorffite (pyrite) and the composition of gersdorffite indicate a formation temperature of between 200?? and 300??C suggesting that the last solutions to infiltrate and mineralize the samples were related to hydrothermal processes. Environmentally sensitive elements such as As, Cd, and Se are hosted by sulfides and sulfarsenides and are the main source of these elements to residual soil. Crops grown on them are enriched in these elements, and they may be hazardous for animal and human consumption. ?? Springer-Verlag 2007.

  13. Heat transfer law in leaching dump

    Institute of Scientific and Technical Information of China (English)

    WU Ai-xiang; WANG Hong-jiang; XI Yong; YANG Bao-hua; LI Jian-feng; YIN Sheng-hua; ZHA Ke-bing

    2005-01-01

    Based on the law of temperature changes in the leaching dump and the forming process of heat flux, the basic balance equation of heat flow in dump was established, the dissipated heat flow from dump to the atmosphere was analyzed to estimate the surface temperature of the ore particle in dump and discover the law of forced heat convection of heat flow transfer in dump. And the lixiviate flow formula taking a certain heat flow out of dump was deduced by using the inversion method. Through theoretic analysis, combining Dexing copper mine heap leaching production practice, the results show that the heat flow of chalcopyrite leaching emitted is not so great, but the heat flow of pyrite leaching and sulphur oxidation produced take up a higher proportion of total heat flow; the dissipated heat flow takes up a lower proportion, and most of heat flow is absorbed by itself, thus the inside temperature rises gradually; and the saturation flow form for leaching is adopted, which makes the lixiviate seepage in the transitional flow or even in the turbulent flow, so as to accelerate the heat flow diffusing and keep the leaching dump temperature suitable for bacteria living.

  14. Physics of Quantum Structures in Photovoltaic Devices

    Science.gov (United States)

    Raffaelle, Ryne P.; Andersen, John D.

    2005-01-01

    There has been considerable activity recently regarding the possibilities of using various nanostructures and nanomaterials to improve photovoltaic conversion of solar energy. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of three-dimensional arrays of zero-dimensional conductors (i.e., quantum dots) in an ordinary p-i-n solar cell structure. Quantum dots and other nanostructured materials may also prove to have some benefits in terms of temperature coefficients and radiation degradation associated with space solar cells. Two-dimensional semiconductor superlattices have already demonstrated some advantages in this regard. It has also recently been demonstrated that semiconducting quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. Improvement in thin film cells utilizing conjugated polymers has also be achieved through the use of one-dimensional quantum structures such as carbon nanotubes. It is believed that carbon nanotubes may contribute to both the disassociation as well as the carrier transport in the conjugated polymers used in certain thin film photovoltaic cells. In this paper we will review the underlying physics governing some of the new photovoltaic nanostructures being pursued, as well as the the current methods being employed to produce III-V, II-VI, and even chalcopyrite-based nanomaterials and nanostructures for solar cells.

  15. Mechanical properties and Raman scattering investigation under indentation of CdGa2S4 and CdGa2Se4

    Science.gov (United States)

    Shikimaka, O.; Burlacu, A.; Grabco, D.; Parvan, V.; Pyrtsac, C.; Ursaki, V.

    2016-05-01

    The behavior of CdGa2S4 and CdGa2Se4 single crystalline semiconductors under Berkovich indentation of the (1 1 2) face in the load range of 10-700 mN has been investigated. Values of hardness and Young’s modulus have been determined for this load range. A comparative analysis of crack development under indentation was performed for these two compounds. The observed indentation size effect was analyzed from the point of view of energy consumed for the formation of the residual imprint, fracture and relaxation processes. It was found that crack development affects the energy-load and hardness-load dependences, which show specific features for each compound. The effect of indentation on eventual phase transitions was investigated by comparing the micro-Raman spectra from a non-indented site with those measured in the indentation. Evidence of a phase transition under indentation from the initial defect chalcopyrite structure to a disordered zincblende phase is found.

  16. S掺杂CuInSe2:导致的体积变化对其禁带宽度的影响%Impact of Lattice Volume on the Band Gap Broadening of Isovalent S-Doped CuInSe2

    Institute of Scientific and Technical Information of China (English)

    陈翔; 赵宇军; 姚若河; 何巨龙

    2008-01-01

    运用第一性原理方法研究了CulnSe2和不同量的S掺杂CulnSe2所形成的化合物的电子结构.理论计算表明,S掺杂导致CuInse2禁带宽度增大,且通过对其电子结构和键长的分析,发现因S掺杂浓度的增加而导致的CulnSeS化合物晶格体积减小对其禁带宽度的增加有重要的影响.%The electronic structure of pure and S-doped chalcopyrite CulnSe2 is investigated using a first-principles pseudopotential method in the generalized gradient approximation. The calculation indicates that the band gap of CulnSe2 broadens as S-doping concentration increases. We find that the decreased lattice volume due to isovalent S-doping in CulnSe2 has a significant impact on the band gap broadening phenomena. This physical insight is further discussed with the study of the electronic structure and bond length changes.

  17. Characterization of CuInS2 thin films prepared by sulfurization of Cu-In precursor

    Institute of Scientific and Technical Information of China (English)

    YAN You-hua; LIU Ying-chun; FANG Ling; ZHU Jing-sen; ZHAO Hai-hua; LI De-ren; LU Zhi-chao; ZHOU Shao-xiong

    2008-01-01

    CuInS2 thin films were prepared by sulfurization of Cu-In precursors. The influences of the deposition sequence of Cu and In layers, such as Cu/In, Cu/In/In, and In/Cu/In, on structure, topography, and optical properties of CuInS2 thin films were investigated. X-ray diffraction results show that the deposition sequence of Cu and In layers affects the crystalline quality of CuInS2 films. Atomic force microstructure images reveal that the grain size and surface roughness are related to the deposition sequence used. When the deposition sequence of precursor is In/Cu/In, the CuInS2 thin films show a single-phase chalcopyrite structure with (112) preferred orientation. The surface morphology of CIS films is uniform and compacted. The absorption coefficient is larger than 104cm-1 with optical band gap Eg close to 1.4 eV.

  18. Preparation of CulnSe2 thin films by paste coating

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precursor pastes were obtained by milling Cu-In alloys and Se powders.CuInSe2 thin films were successfully prepared by precursor layers,which were coated using these pastes,and were annealed in a H2 atmosphere.The pastes were tested by laser particle diameter analyzer,simultaneous thermogravimetric and differential thermal analysis instruments (TG-DTA),and X-ray diffractometry (XRD).Selenized films were characterized by XRD,scanning electron microscopy (SEM),and energy dispersive spectroscopy (EDS).The results indicate that chalcopyrite CuInSe2 is formed at 180℃ and the crystallinity of this phase is improved as the temperature rises.All the CuInSe2 thin films,which were annealed at various temperatures,exhibit the preferred orientation along the (112) plane.The compression of precursor layers before selenization step is one oftbe most essential factors for the preparation of perfect CulnSe2 thin films.

  19. Development of novel control system to grow ZnO thin films by reactive evaporation

    Directory of Open Access Journals (Sweden)

    Gerardo Gordillo

    2016-07-01

    Full Text Available This work describes a novel system implemented to grow ZnO thin films by plasma assisted reactive evaporation with adequate properties to be used in the fabrication of photovoltaic devices with different architectures. The innovative aspect includes both an improved design of the reactor used to activate the chemical reaction that leads to the formation of the ZnO compound as an electronic system developed using the virtual instrumentation concept. ZnO thin films with excellent opto-electrical properties were prepared in a reproducible way, controlling the deposition system through a virtual instrument (VI with facilities to control the amount of evaporated zinc involved in the process that gives rise to the formation of ZnO, by means of the incorporation of PID (proportional integral differential and PWM (pulse width modulation control algorithms. The effectiveness and reliability of the developed system was verified by obtaining with good reproducibility thin films of n+-ZnO and i-ZnO grown sequentially in situ with thicknesses and resistivities suitable for use as window layers in chalcopyrite based thin film solar cells.

  20. Solution-based colloidal synthesis of hybrid P3HT: Ternary CuInSe2 nanocomposites using a novel combination of capping agents for low-cost photovoltaics

    Science.gov (United States)

    Sharma, Shailesh Narain; Chawla, Parul; Akanksha; Srivastava, A. K.

    2016-06-01

    In this work, ternary CuInSe2 (CISe) chalcopyrite nanocrystallites efficiently passivated by a novel combination of capping agents viz: aniline and 1-octadecene during chemical route synthesis were dispersed in conducting polymer matrix poly(3-hexylthiophene) (P3HT). By varying the composition and concentration of the ligands, the properties of the resulting CISe nanocrystallites and its corresponding polymer nanocomposites thus could be tailored. The structural, morphological and optical studies accomplished by various complimentary techniques viz. Transmission Electron Microscopy (TEM), Contact angle, Photoluminescence (PL) and Raman have enabled us to compare the different hybrid organic (polymer)-inorganic nanocomposites. On the basis of aniline-octadecene equilibrium phase diagram, the polydispersity of the CISe nanocrystals could be tuned by using controlled variations in the reaction conditions of nucleation and growth such as composition of the solvent and temperature. To the best of author's knowledge, the beneficial effects of both the capping agents; aniline and octadecene contributing well in tandem in the development of large-sized (100-125 nm) high quality, sterically- and photo-oxidative stable polycrystalline CISe and its corresponding polymer (P3HT):CISe composites with enhanced charge transfer efficiency has been reported for the first time. The low-cost synthesis and ease of preparation renders this method of great potential for its possible application in low-cost hybrid organic-inorganic photovoltaics. The figure shows the Temperature vs Mole fraction graph of two different phases (aniline and 1-octadecene) in equilibrium.

  1. Sulfide-melt inclusions in mantle xenoliths from the Changbaishan district, Jilin province, China%中国吉林长白山地区地幔捕虏体中硫化物熔体包裹体

    Institute of Scientific and Technical Information of China (English)

    徐九华; 谢玉玲

    2007-01-01

    Mantle xenoliths are common in the Cenozoic basalts of the Changbaishan District, Jilin Province, China. Sulfide assemblages in mantle minerals can be divided into three types: isolated sulfide grains, sulfide-melt inclusions and filling sulfides in fractures. Sulfide-melt inclusions occur as single-phase sulfides, sulfide-silicate melt, and CO2-sulfide-silicate melt inclusions.Isolated sulfide grains are mainly composed of pyrrhotite, but cubanite was found occasionally. Sulfide-melt inclusions are mainly composed of pentlandite and MSS, with small amounts of chalcopyrite and talnakhite. The calculated distribution coefficient KD3 for lherzolite are similar to that of mean experimental value. The bulk sulfides in lherzolite were in equilibrium with the enclosing minerals, indicating immiscible sulfide melts captured in partial melting of upper mantle. Sulfide in fractures has higher Ni/Fe and ( Fe + Ni)/Sthan those of sulfide melt inclusions. They might represent later metasomatizing fluids in the mantle. Ni/Fe and ( Fe + Ni)/S increase from isolated grains, sulfide inclusions to sulfides in fractures. These changes were not only affected by temperature and pressure, but by geochemistry of Ni, Fe and Cu, and sulfur fugacity as well.

  2. Direct Production of Copper

    Science.gov (United States)

    Victorovich, G. S.; Bell, M. C.; Diaz, C. M.; Bell, J. A. E.

    1987-09-01

    The use of commercially pure oxygen in flash smelting a typical chalcopyrite concentrate or a low grade comminuted matte directly to copper produces a large excess of heat. The heat balance is controlled by adjusting the calorific value of the solid feed. A portion of the sulfide material is roasted to produce a calcine which is blended with unroasted material, and the blend is then autogeneously smelted with oxygen and flux directly to copper. Either iron silicate or iron calcareous slags are produced, both being subject to a slag cleaning treatment. Practically all of the sulfur is contained in a continuous stream of SO2 gas, most of which is strong enough for liquefaction. A particularly attractive feature of these technologies is that no radically new metallurgical equipment needs to be developed. The oxygen smelting can be carried out not only in the Inco type flash furnace but in other suitable smelters such as cyclone furnaces. Another major advantage stems from abolishion of the ever-troublesome converter aisle, which is replaced with continuous roasting of a fraction of the copper sulfide feed.

  3. Production of Ultrafine, High-purity Ceramic Powders Using the US Bureau of Mines Developed Turbomill

    Science.gov (United States)

    Hoyer, Jesse L.

    1993-01-01

    Turbomilling, an innovative grinding technology developed by the U.S. Bureau of Mines in the early 1960's for delaminating filler-grade kaolinitic clays, has been expanded into the areas of particle size reduction, material mixing, and process reaction kinetics. The turbomill, originally called an attrition grinder, has been used for particle size reduction of many minerals, including natural and synthetic mica, pyrophyllite, talc, and marble. In recent years, an all-polymer version of the turbomill has been used to produce ultrafine, high-purity, advanced ceramic powders such as SiC, Si3N4, TiB2, and ZrO2. In addition to particle size reduction, the turbomill has been used to produce intimate mixtures of high surface area powders and whiskers. Raw materials, TiN, AlN, and Al2O3, used to produce a titanium nitride/aluminum oxynitride (TiN/AlON) composite, were mixed in the turbomill, resulting in strength increases over samples prepared by dry ball milling. Using the turbomill as a leach vessel, it was found that 90.4 pct of the copper was extracted from the chalcopyrite during a 4-hour leach test in ferric sulfate versus conventional processing which involves either roasting of the ore for Cu recovery or leaching of the ore for several days.

  4. Synthesis and optical properties of CuInS{sub 2} thin films prepared by sulfurization of electrodeposited Cu-In layers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Cheng; Wu, Po-Feng [Program in Electrical and Communications Engineering, Feng Chia University, Seatwen, Taichung (China); Shi, Jen-Bin; Chen, Chih-Jung; Yang, Shui-Yuang [Department of Electronic Engineering, Feng Chia University, Seatwen, Taichung (China)

    2012-09-15

    The chalcopyrite CuInS{sub 2} thin film was fabricated at 500 C for 2 h by sulfurization of Cu-In layers (as precursors) that were sulfurized in a glass tube with pure sulfur powder. The structural, morphological, and optical properties of CuInS{sub 2} thin films are characterized using X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and UV/Visible/NIR spectrophotometer. The study of UV/Visible/NIR absorption shows the band gap energy value of CuInS{sub 2} thin films is 1.5 eV. The XRD pattern shows the film is pure CuInS{sub 2}; no other peaks, such as CuS or CuIn{sub 5}S{sub 8} were observed. Furthermore, the surface of the CuInS{sub 2} film is compact characterized by FE-SEM, which also shows the disappearance of CuS on the surface at 500 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Electrochemical mechanism of thioglycolic acid depressing sulphide minerals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of thioglycolic acid (TGA) on the rest potential and zeta potential of sulphide minerals were studied and the electrochemical mechanism of TGA depressing sulphide minerals was put forward. Results of flotation test show that galena, pyrite and chalcopyrite can be well depressed by TGA, but sphalerite and arsenopyrite can not be depressed. Tests also show that TGA has a little influence on zeta potential of sulfide minerals covered by xanthate coatings and TGA can lower the rest potential of sulphide minerals. The electrochemical mechanism of TGA depressing sulphide minerals is that the dixanthogen adsorbing on the mineral surface will be unstable and reduced when rest potential value of sulphide mineral (φMS) is less than the reversible potential of reduction of dixanthogen to xanthate φX-|X2 in the presence of TGA, flotability of sulphide mineral becomes weak; inversely, the coatings of dixanthogen on mineral surface will keep stable when φMS>φX-|X2, sulphide mineral keeps flotability. In the system of mixed minerals, the electrochemical condition of separation of two sulphide minerals by TGA is φMS1<φX-|X2(φX-|PbX2)<φMS2.

  6. Mineral potential tracts for orogenic, Carlin-like, and epithermal gold deposits in the Islamic Republic of Mauritania, (phase V, deliverable 69): Chapter H in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Goldfarb, Richard J.; Marsh, Erin; Anderson, Eric D.; Horton, John D.; Finn, Carol A.; Beaudoin, Georges

    2015-01-01

    The gold resources of Mauritania presently include two important deposits and a series of poorly studied prospects. The Tasiast belt of deposits, which came into production in 2007, is located in the southwestern corner of the Rgueïbat Shield and defines a world-class Paleoproterozoic(?) orogenic gold ore system. The producing Guelb Moghrein deposit occurs along a shear zone in Middle Archean rocks at the bend in the Northern Mauritanides and is most commonly stated to be an iron oxide-copper-gold (IOCG) type of deposit, although it also has some important characteristics of orogenic gold and skarn deposits. Both major deposits are surrounded by numerous prospects that show similar mineralization styles. The Guelb Moghrein deposit, and IOCG deposit types in general are discussed in greater detail in a companion report by Fernette (2015). In addition, many small gold prospects, which are probably orogenic gold occurrences and are suggested to be early Paleozoic in age, occur along the length of Southern Mauritanides. Existing data indicate the gold deposits and prospects in Mauritania have a sulfide assemblage most commonly dominated by pyrrhotite and chalcopyrite, and have ore-related fluids with apparently high salinities.

  7. Form of Occurrence and Distribution Law of Associated Gold(Silver)in Anhui Tongling Huashupo Copper Mine%安徽铜陵桦树坡铜矿床伴生金(银)赋存状态及分布规律

    Institute of Scientific and Technical Information of China (English)

    陈耀远; 周贵斌

    2012-01-01

    Huashupo copper ore deposit is controlled skam-type. By thin section authentication and electron probe microanalyais, the ore deposit's mineral species are not much, trace mineral species are much. They are mainly chalcopyrite, pyrrhotite, pyrite, and gold and silver, native bismuth. The study of process mineralogy is made, and finds out the form of occurrence and process nature, providing reference for reasonably determining preparing process and conditions.%桦树坡铜矿床为一层控式矽卡岩型铜矿床,经光薄片鉴定及电子探针分析,该矿床主要矿物种类不多,而微量矿物种类较多,主要矿物有为黄铜矿、磁黄铁矿、黄铁矿,自然元素为金—银系列矿物及自然铋等.对该铜矿进行了工艺矿物学研究,重点查明了伴生金银的赋存状态及工艺性质.为伴生金银回收确定合理选矿工艺流程及条件提供依据.

  8. Geochemical Characteristics of Jinwozi Gold Deposit,Xinjiang

    Institute of Scientific and Technical Information of China (English)

    章振根; 陈南生

    1991-01-01

    The Jinwozi gold deposit consists of gold-bearing quartz veins in a biotite granodiorite of Hercynian age (Zircon U-Pb age≈335.7Ma).Ore mineralogy is simple .In addition to native gold,there are only small amounts of sulfides,meinly pyrite and minor sphalerite,chalcopyrite and galena.δ34S val-ues average 6.69‰,and δ18O13.99‰.Abundant CO2 is contained in fluid inclusions from quartz.Homogenization temperatures of fluid inclusions are between 186 and 262°.REE distribution pat-terns indicate that the igneous mass may have been derived from a common initial material of calcareous-argillaceous sediments and alkali basalts as the country rocks.In other words,the Jinwozi granodiorite is of remelting origin from crustal material.Isotopic evidence of S,O and Pb shows that the ore-forming material is genetically related to magmatic hydrothermal activity.

  9. Characterization of CdS Thin-Film in High Efficient CdS/CdTe Solar Cells

    Science.gov (United States)

    Tsuji, Miwa; Aramoto, Tetsuya; Ohyama, Hideaki; Hibino, Takeshi; Omura, Kuniyoshi

    2000-07-01

    Cadmium sulfide (CdS) thin films are the most commonly used window materials for high efficient cadmium telluride (CdTe) and chalcopyrite polycrystalline thin-film photovoltaic devices. High efficient CdS/CdTe solar cells with thin CdS films have been developed using ultrathin CdS films with a thickness of less than 0.1 μm. CdS films were deposited on transparent conductive oxide (TCO)/glass substrates by the metal organic chemical vapor deposition (MOCVD) technique. CdTe films were subsequently deposited by the close-spaced sublimation (CSS) technique. The screen printing and sintering method fabricated carbon and silver electrodes. Cell performance depends primarily on the electrical and optical properties of CdS films. Therefore we started to develop higher-quality CdS films and found clear differences between high- and low-quality CdS films from the analyses of scanning electron microscope (SEM), atomic force microscope (AFM), secondary ion mass spectroscopy (SIMS), thermal desorption spectrometry (TDS) and Fourier transforms-infrared spectrometry (FT-IR) measurements. As a result of controlling the quality of CdS films, a photovoltaic conversion efficiency of 10.5% has been achieved for size of 1376 cm2 of the solar cells under the Air Mass (AM) 1.5 conditions of the Japan Quality Assurance Organization.

  10. The Jebel Ohier deposit—a newly discovered porphyry copper-gold system in the Neoproterozoic Arabian-Nubian Shield, Red Sea Hills, NE Sudan

    Science.gov (United States)

    Bierlein, F. P.; McKeag, S.; Reynolds, N.; Bargmann, C. J.; Bullen, W.; Murphy, F. C.; Al-Athbah, H.; Brauhart, C.; Potma, W.; Meffre, S.; McKnight, S.

    2016-08-01

    Ongoing exploration in the Red Sea Hills of NE Sudan has led to the identification of a large alteration-mineralization system within a relatively undeformed Neoproterozoic intrusive-extrusive succession centered on Jebel Ohier. The style of mineralization, presence of an extensive stockwork vein network within a zoned potassic-propylitic-argillic-advanced argillic-altered system, a mineralization assemblage comprising magnetite-pyrite-chalcopyrite-bornite (±gold, silver and tellurides), and the recurrence of fertile mafic to intermediate magmatism in a developing convergent plate setting all point to a porphyry copper-gold association, analogous to major porphyry Cu-Au-Mo deposits in Phanerozoic supra-subduction settings such as the SW Pacific. Preliminary U-Pb age dating yielded a maximum constraint of c. 730 Ma for the emplacement of the stockwork system into a significantly older ( c. 800 Ma) volcanic edifice. The mineralization formed prior to regional deformation and accretion of the host terrane to a stable continental margin at by c. 700 Ma, thus ensuring preservation of the deposit. The Jebel Ohier deposit is interpreted as a relatively well-preserved, rare example of a Neoproterozoic porphyry Cu-Au system and the first porphyry Cu-Au deposit to be identified in the Arabian-Nubian Shield.

  11. Aplicação de técnicas eletroquímicas no estudo da dissolução oxidativa da covelita (CuS por Thiobacillus ferrooxidans Electrochemical techniques applied to study the oxidative dissolution of the covellite: CuS by Thiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Christiane Medina Teixeira

    2002-02-01

    Full Text Available Among the copper sulphides, chalcopyrite (CuFeS2, covellite (CuS and chalcocite (Cu2S are the most important source of minerals for copper mining industry. The acknowledge of behaviour of these sulphides related with bacterial leaching process are essential for optimization procedures. Despite of its importance, covellite has not deserved much interest of researchers regarding this matter. In this work it was studied the oxidation of covellite by the chemolithotrophic bacterium Thiobacillus ferrooxidans by using electrochemical techniques, such as open circuit potentials with the time and cyclic voltammetry. The experiments were carried out in acid medium (pH 1.8, containing or not Fe2+ as additional energy source, and in different periods of incubation; chemical controls were run in parallel. The results showed that a sulphur layer is formed spontaneously due the acid attack, covering the sulphide in the initial phase of incubation, blocking the sulphide oxidation. However, the bacterium was capable to oxidize this sulphur layer. In the presence of Fe2+ as supplemental energy source, the corrosion process was facilitated, because ocurred an indirect oxidation of covellite by Fe3+, which was produced by T. ferrooxidans oxidation of the Fe2+ added in the medium.

  12. Cation Ratio Fluctuations in Cu2ZnSnS4 at the 20 nm Length Scale Investigated by Analytical Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Erkan, Mehmet E.; Pruzan, Dennis S.; Nagaoka, Akira; Yoshino, Kenji; Moutinho, Helio; Al-Jassim, Mowafak; Scarpulla, Michael A.

    2016-09-01

    Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) is a sustainable material for thin-film photovoltaics with device efficiencies greater than 12% have been demonstrated. Despite similar crystal structure and polycrystalline film microstructures, there is widespread evidence for larger-amplitude potential and bandgap fluctuations in CZTS than in the analogous Cu(In,Ga)Se2 (CIGSe) chalcopyrite material. This disorder is believed to account for a sizable part of the larger open-circuit voltage (VOC) deficit in CZTS devices, yet the detailed origins and length scales of these fluctuations have not been fully elucidated. Herein, we present a transmission electron microscopy study focusing on composition variation within bulk multicrystals of CZTS grown by the travelling heater method (THM). In these slow-cooled, solution grown crystals we find direct evidence for spatial composition fluctuations of amplitude <1 at.% (-5 x 1020 cm-3) and thus, explainable by point defects. However, rather than being homogeneously-distributed we find a characteristic 20 nm length scale for these fluctuations, which sets a definite length scale for band gap and potential fluctuations. At ..sigma..3 grain boundaries, we find no evidence of composition variation compared to the bulk. The finding highlights such variations reported at grain boundaries in polycrystalline thin-films are direct consequences of processing methods and not intrinsic properties of CZTS itself.

  13. Santaclaraite, a new calcium-manganese silicate hydrate from California.

    Science.gov (United States)

    Erd, Richard C.; Ohashi, Y.

    1984-01-01

    Santaclaraite, ideally CaMn4(Si5O14(OH))(OH).H2O, occurs as pink and tan veins and masses in Franciscan chert in the Diablo Range, Santa Clara and Stanislaus counties, California. It is associated with four unidentified Mn silicates, Mn-howieite, quartz, braunite, calcite, rhodochrosite, kutnahorite, baryte, harmotome, chalcopyrite and native copper. Santaclaraite is triclinic, space group B1, a 15.633(1), b 7.603(1) , c 12.003(1) A, alpha 109.71(1)o, beta 88.61(1)o, gamma 99.95(1) o, V 1322.0(3) A3; Z = 4. The strongest lines of the X-ray pattern are 7.04(100), 3.003(84), 3.152(80), 7.69(63), 3.847(57) A. Crystals are lamellar to prismatic (flattened on (100)), with good cleavage on (100) and (010); H. 61/2 Dcalc. 3.398 g/cm3, Dmeas. 3.31 (+ or -0.01); optically biaxial negative, alpha 1.681, beta 1.696, gamma 1.708 (all + or - 0.002), 2Valpha 83 (+ or -1)o. Although chemically a hydrated rhodonite, santaclaraite dehydrates to Mn-bustamite at approx 550oC (in air) . Santaclaraite is a five-tetrahedral-repeat single-chain silicate and has structural affinities with rhodonite, nambulite, marsturite, babingtonite and inesite.-J.A.Z.

  14. Advances in research of sulphide ore textures and their implications for ore genesis

    Institute of Scientific and Technical Information of China (English)

    GU Lianxing; ZHENG Yuanchuan; TANG Xiaoqian; WU Changzhi; HU Wenxuan

    2006-01-01

    Important advances in research of sulphide ore textures in recent years have deepened our understanding of ore genesis of related mineral deposits. Pressure solution of sulphide minerals has been suggested as a mechanism for remobilization of ore materials,whereas pressure solution of the gangues is believed to raise the grade of the primary ores. We have known that precipitation of base metal sulphides from fluids prefers crystal and crack surfaces of pyrite to form overgrowth. Therefore, pyrite-bearing embryo beds in a sedimentary sequence can be acted as effective crystal seed beds and are favorable for fluid overprinting to form huge statabound deposits. Texture studies of various sulphides can be used to interpret the entire history of sedimentation, diagenesis, deformation and metamorphism of the ores. The study of chalcopyrite disease in sphalerite has brought about the idea of zone refining, and given a new explanation to metal zonation in massive sulphide deposits. Ductile shearing of sulphide ores may form ore mylonites, which will become oreshoots enriched in Cu, Au and Ag during late-stage fluid overprinting. Despite that various modern analytical techniques are being rapidly developed, ore microscopy remains to be an unreplaceable tool for ore geologists. Combined with these modern techniques, this tool will help accelerate the development of theories on ore genesis.

  15. Valence band offsets at Cu(In,Ga)Se{sub 2}/Zn(O,S) interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Tobias; Klein, Andreas [Surface Science Division, Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstrasse 32, 64287, Darmstadt (Germany); Botros, Miriam [Surface Science Division, Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstrasse 32, 64287, Darmstadt (Germany); Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Industriestrasse 6, 70565, Stuttgart (Germany); Witte, Wolfram; Hariskos, Dimitrios; Menner, Richard; Powalla, Michael [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Industriestrasse 6, 70565, Stuttgart (Germany)

    2014-09-15

    The energy band alignment at interfaces between Cu-chalcopyrites and Zn(O,S) buffer layers, which are important for thin-film solar cells, are considered. Valence band offsets derived from X-ray photoelectron spectroscopy for Cu(In,Ga)Se{sub 2} absorber layers with CdS and Zn(O,S) compounds are compared to theoretical predictions. It is shown that the valence band offsets at Cu(In,Ga)Se{sub 2}/Zn(O,S) interfaces approximately follow the theoretical prediction and vary significantly from sample to sample. The integral sulfide content of chemical bath deposited Zn(O,S) is reproducibly found to be 50-70%, fortuitously resulting in a conduction band offset suitable for solar cell applications with Cu(In,Ga)Se{sub 2} absorber materials. The observed variation in offset can neither be explained by variation of the Cu content in the Cu(In,Ga)Se{sub 2} near the interface nor by local variation of the chemical composition. Fermi level pinning induced by high defect concentrations is a possible origin of the variation of band offset. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vakylabad, Ali Behrad, E-mail: alibehzad86@yahoo.co.uk [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Engineers of Nano and Bio Advanced Sciences Company (ENBASCo.), ATIC, Mohaghegh University (Iran, Islamic Republic of); Schaffie, Mahin [Department of Chemical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ranjbar, Mohammad [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Manafi, Zahra [Sarcheshmeh Copper Complex, National Iranian Copper Industry Company (Iran, Islamic Republic of); Darezereshki, Esmaeel [Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center (EERC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Flotation concentrate and smelter dust were sampled and combined. Black-Right-Pointing-Pointer Copper bioleaching from the combined was investigated. Black-Right-Pointing-Pointer Two bio-reactors were investigated and optimized: stirred and airlift. Black-Right-Pointing-Pointer STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu{sub 2}S, CuS, and Cu{sub 5}FeS{sub 4}.Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  17. Genesis of the Precambrian copper-rich Caraiba hypersthenite-norite complex, Brazil

    Science.gov (United States)

    Oliveira, E. P.; Tarney, J.

    1995-08-01

    Caraiba, the largest Brazilian copper deposit under exploitation, consists mostly of disseminated and remobilised bornite and chalcopyrite hosted in early Proterozoic norite and hypersthenite. The mafic igneous complex comprises multiple intrusions of dykes, veins and breccias of norites and hypersthenites, with minor proportions of amphibolised gabbronorite and peridotite xenoliths transported by the magma from deeper levels in the lithosphere. The country rocks are high-grade gneisses, granulites and metasediments. Compositions of plagioclase(An60-40) and orthopyroxene(En70-60) fall in a narrow range similar to the Koperberg Suite from the Okiep copper district, South Africa, and to that in many massif-type anorthosites. Whole-rock major and trace element geochemistry indicate a parental magma enriched in Fe, LREE, P, K, and Cu. Negative Nb anomalies on multi-element plots and fractionated REE patterns, along with sulphide sulphur isotopes in the range δ34S = -1.495 to + 0.643‰, suggest a primary mantle lithosphere source, although a lower crustal source for the gabbronorite and peridotite xenoliths cannot be excluded. Geochronological and field evidence indicate that both norite and hypersthenite are likely to have been emplaced during a major sinistral transcurrent (partly transpressional) shearing event associated with the waning stage of evolution of the early Proterozoic Salvador-Curaçá orogen.

  18. The Gibbs free energy of nukundamite (Cu3.38Fe0.62S4): A correction and implications for phase equilibria

    Science.gov (United States)

    Seal, R.R., II; Inan, E.E.; Hemingway, B.S.

    2001-01-01

    The Gibbs free energy of formation of nukundamite (Cu3.38Fe0.62S4) was calculated from published experimental studies of the reaction 3.25 Cu3.38Fe0.62S4 + S2 = 11 CuS + 2 FeS2 in order to correct an erroneous expression in the published record. The correct expression describing the Gibbs free energy of formation (kJ???mol-1) of nukundamite relative to the elements and ideal S2 gas is ??fG?? nukundamite T(K) = -549.75 + 0.23242 T + 3.1284 T0.5, with an uncertainty of 0.6%. An evaluation of the phase equilibria of nukundamite with associated phases in the system Cu-Fe-S as a function of temperature and sulfur fugacity indicates that nukundamite is stable from 224 to 501??C at high sulfidation states. At its greatest extent, at 434??C, the stability field of nukundamite is only 0.4 log f(S2) units wide, which explains its rarity. Equilibria between nukundamite and bornite, which limit the stability of both phases, involve bornite compositions that deviate significantly from stoichiometric Cu5FeS4. Under equilibrium conditions in the system Cu-Fe-S, nukundamite + chalcopyrite is not a stable assemblage at any temperature.

  19. Copper indium disulfide nanocrystals supported on carbonized chicken eggshell membranes as efficient counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Wang, Lidan; He, Jianxin; Zhou, Mengjuan; Zhao, Shuyuan; Wang, Qian; Ding, Bin

    2016-05-01

    A domestic waste, chicken eggshell membrane (ESM), is used as a raw material to fabricate carbonized ESM loaded with chalcopyrite CuInS2 nanocrystals (denoted CESM-CuInS2) by a simple liquid impregnation and carbonization method. The CESM-CuInS2 composite possesses a natural three-dimensional macroporous network structure in which numerous CuInS2 nanocrystals with a size of about 25 nm are inlaid in carbon submicron fibers that form a microporous network. The CESM-CuInS2 composite is used as the counter electrode in a dye-sensitized solar cell (DSSC) and its photoelectric performance is tested. The DSSC with a CESM-CuInS2 counter electrode exhibits a short-circuit current density of 12.48 mA cm-2, open-circuit voltage of 0.78 V and power conversion efficiency of 5.8%; better than the corresponding values for a DSSC with a CESM counter electrode, and comparable to that of a reference DSSC with a platinum counter electrode. The favorable photoelectric performance of the CESM-CuInS2 counter electrode is attributed to its hierarchical structure, which provides a large specific surface area and numerous catalytically active sites to facilitate the oxidation of the electrolyte. This new composite material has many advantages, such as low cost and simple preparation, compared with Pt and pure CuInS2 counter electrodes.

  20. Fabrication of a Cu(InGaSe2 Thin Film Photovoltaic Absorber by Rapid Thermal Annealing of CuGa/In Precursors Coated with a Se Layer

    Directory of Open Access Journals (Sweden)

    Chun-Yao Hsu

    2013-01-01

    Full Text Available Cu(InGaSe2 (CIGS thin film absorbers are prepared using sputtering and selenization processes. The CuGa/In precursors are selenized during rapid thermal annealing (RTA, by the deposition of a Se layer on them. This work investigates the effect of the Cu content in precursors on the structural and electrical properties of the absorber. Using X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, and Hall effect measurement, it is found that the CIGS thin films produced exhibit facetted grains and a single chalcopyrite phase with a preferred orientation along the (1 1 2 plane. A Cu-poor precursor with a Cu/( ratio of 0.75 demonstrates a higher resistance, due to an increase in the grain boundary scattering and a reduced carrier lifetime. A Cu-rich precursor with a Cu/( ratio of 1.15 exhibits an inappropriate second phase ( in the absorber. However, the precursor with a Cu/( ratio of 0.95 exhibits larger grains and lower resistance, which is suitable for its application to solar cells. The deposition of this precursor on Mo-coated soda lime glass substrate and further RTA causes the formation of a MoSe2 layer at the interface of the Mo and CIGS.

  1. Kinetics of Copper Removal from Sulfidized Molybdenite Concentrates by Pressure Leaching

    Science.gov (United States)

    Padilla, Rafael; Opazo, Cristian; Ruiz, Maria C.

    2015-02-01

    Molybdenite concentrates produced from porphyry copper deposits contain copper as an impurity in variable quantities. To produce a high-grade molybdenite concentrate, a chemical purification method is normally practiced. In this paper, a new alternative for the copper elimination from molybdenite concentrates containing chalcopyrite by sulfidation of the molybdenite concentrate and subsequent pressure leaching in sulfuric acid-oxygen media is discussed. The results indicated that copper contained in sulfidized molybdenite concentrates can be dissolved effectively by pressure leaching at low temperature ranging from 373 K to 423 K (100 °C to 150 °C) and low oxygen pressure (303.98 to 1013.25 kPa) with negligible dissolution of molybdenum. The final molybdenite contained less than 0.2 pct Cu which is appropriate for marketing. Temperature and oxygen partial pressure have both significant influence on the copper dissolution. The kinetics of the copper dissolution was analyzed using the shrinking core model with surface chemical control. The calculated activation energy was 51 kJ/mol in the range of 373 K to 423 K (100 °C to 150 °C). The copper dissolution rate is of zero order with respect to hydrogen ion concentration, and first order with respect to oxygen partial pressure.

  2. Neyshabour turquoise mine: the first Iron Oxide Cu-Au-U-LREE (IOCG mineralized system in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Karimpour

    2011-11-01

    Full Text Available Neyshabour turquoise mine is located in northwest of Neyshabour, southern Quchan volcanic belt. Eocene andesite and dacite forming as lava and pyroclastic rocks cover most of the area. Subvolcanic diorite to syenite porphyry (granitoids of magnetite series intruded the volcanic rocks. Both volcanic and subvolcanic rocks are highly altered. Four types of alteration are recognized including: silicification, argillic, calcification and propylitic. Silicification is dominant followed by argillic alteration. Mineralization is present as stockwork, disseminated and hydrothermal breccia. Hypogene minerals are pyrite, magnetite, specularite, chalcopyrite, and bornite. Secondary minerals are turquoise, chalcocite, covellite, and iron oxides. A broad zone of gossan has developed in the area. Oxidized zone has a thickness of about 80 m. Mineralized samples show high anomalies of Cu, Au, Zn, As, Mo, Co, U, LREE, Nb, and Th. Both aeromagnetic and radiometric (U and Th maps show very strong anomalies (10 × 5km within the mineralized area. Based on geology, alteration, mineralization, geochemistry, and geophysics, Neyshabour turquoise mine is a large Iron oxide Cu-Au-U-LREE (IOCG mineralized system. In comparison with other IOCG deposits, it has some similarities with Olympic Dam (Australia and Candelaria (Chile. In comparison with Qaleh Zari and Kuh Zar mines, Neyshabour turquoise mine is the first Iron oxide Cu-Au-U-LREE (IOCG mineralized system discovered in Iran.

  3. Uniform deposition of ternary chalcogenide nanoparticles onto mesoporous TiO{sub 2} film using liquid carbon dioxide-based coating

    Energy Technology Data Exchange (ETDEWEB)

    Nursanto, Eduardus Budi [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Park, Se Jin [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Jeon, Hyo Sang; Hwang, Yun Jeong [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Kim, Jaehoon, E-mail: jaehoonkim@skku.edu [School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, GyeongGi-Do 440–746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), 2066, Seobu-Ro, Jangan-Gu, Suwon, GyeongGi-Do 440–746 (Korea, Republic of); Min, Byoung Koun, E-mail: bkmin@kist.re.kr [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Green School, Korea University, 145,Anam-ro, Seongbuk-gu, Seoul 136–713 (Korea, Republic of)

    2014-08-28

    We report the simultaneous deposition of two different metal precursors dissolved in liquid carbon dioxide (l-CO{sub 2}), aiming to the synthesis of ternary chalcopyrite (e.g. CuInS{sub 2}) nanoparticles on a mesoporous TiO{sub 2} film. The l-CO{sub 2}-based deposition of Cu and In precursors and subsequent reaction with a dilute H{sub 2}S gas resulted in Cu{sub x}In{sub y}S{sub z} nanoparticles uniformly deposited across the entire thickness of a mesoporous TiO{sub 2} film. Further heat treatment (air annealing and sulfurization) led to the formation of more stoichiometric CuInS{sub 2} nanoparticles. The formation of CuInS{sub 2} on TiO{sub 2} was confirmed by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The crystal growth of CuInS{sub 2} was also found to be controllable by adjusting the number of coating cycles of the l-CO{sub 2}-based deposition. - Highlights: • Simultaneous deposition of two different metal precursors dissolved in l-CO{sub 2}. • Uniform deposition of CuInS{sub 2} nanoparticles across mesoporous TiO{sub 2} film. • Highly crystalline CuInS{sub 2} formed on mesoporous TiO{sub 2} film. • Nearly stoichiometric ratio of Cu:In:S was obtained.

  4. Computational Nano-materials Design for Spinodal Nanotechnology as a New Class of Bottom-up Nanotechnology

    Science.gov (United States)

    Katayama-Yoshida, Hiroshi; Fukushima, Tetsuya; Sato, Kazunori

    Based on the spinodal nano-decomposition (SND) of dilute magnetic semiconductors (DMS), we generalized the SND to the application of catalysis and photovoltaic solar-cells, where nano-scale particle formation in catalysis and and nano-scale separation of electrons and holes are essential in order to enhance the efficiency. First, we summarize the shape control (Konbu- & Dairiseki-Phases) and dimensionality dependence of crystal growth condition on SND in DMS. Second, we discuss the application of SND for the formation of nano-particles and the self-regeneration in three-way catalysis for automotive emission control by Perovskite La(Fe,Pd or Rh)O3. Third, we propose (i) self-regeneration mechanism and (ii) self-organized nano-structures by SND in chalcopyrite Cu(In,Ga)Se2, Kesterite Cu2ZnSnSe4, and Perovskite CsSnI3 for the low-cost, environment-friendly and high-efficiency photovoltaic solar cells using first-principles calculations.

  5. XPS characteristics of sulfur of bio-oxidized arsenic-bearing gold concentrate and changes of surface nature of bio-oxidation residue

    Institute of Scientific and Technical Information of China (English)

    杨洪英; 巩恩普; 杨立; 陈刚; 范有静; 张玉山; 吕久吉

    2004-01-01

    During bio-oxidation of sulfides, the chemical state change of sulfur is a complex and key factor. It is not only an indicator of the extent and intensity of the bio-oxidation, but also controls the property of bio-leaching medium and the period of oxidation. The chemical state of sulfur in sulfides oxidized by leaching bacteria was studied with XPS. Sulfide minerals in the arsenic-hearing gold concentrate consist of pyrite, arsenopyrite, chalcopyrite, galena, sphalerite and so on. In order to probe the pattern of the chemical state change of sulfur in the bio-oxidation residue of arsenic-bearing gold concentrate, the structure of the grains, and the surface nature of the residue, XPS test was carried out through different sputtering duration. The study of XPS clearly shows that: sulfides is progressively oxidized from the surface of minerals to the core by leaching bacteria; the chemical valence of sulfur changes from S2- or [S2]2- to [SO4]2-; sulfur in the core is in a reduction state, S2- or [S2]2- , but exists in an oxidation state S6+ on the surface; due to the chemical state change of sulfur, mineral phase of the bio-oxidation residue is also changed(sulfides inside, while sulfates outside); the layered structure is found in the grains of the bio-oxidation residue.

  6. First-Principles Study of Structural, Optical, and Thermodynamic Properties of ZnIn2X4 (X = Se, Te) Compounds with DC or DF Structure

    Science.gov (United States)

    Reguieg, S.; Baghdad, R.; Abdiche, A.; Bezzerrouk, M. A.; Benyoucef, B.; Khenata, R.; Bin-Omran, S.

    2016-08-01

    Structural and optoelectronic properties of ZnIn2Se4 and ZnIn2Te4 compounds in defect chalcopyrite (DC) and defect famatinite (DF) structures have been calculated by the full-potential linearized augmented plane-wave (FP-LAPW) method within density functional theory (DFT) as implemented in the WIEN2K package. For the exchange correlation effects, we adopted the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) for structural calculations and the Tran-Blaha-modified Becke-Johnson (TB-mBJ) functional for electronic properties. The lattice parameters (a, c) and internal parameters (x, y, z) are in good agreement with available results. The band structures prove that these kinds of material have a direct bandgap (Γ-Γ) in both structures. Optical properties such as the dielectric function ɛ(ω) and refractive index n(ω) were calculated in the energy range from 0 eV to 14 eV. Thermodynamic properties were also analyzed using the quasiharmonic Debye model.

  7. Highlights of the Salt Extraction Process

    Science.gov (United States)

    Abbasalizadeh, Aida; Seetharaman, Seshadri; Teng, Lidong; Sridhar, Seetharaman; Grinder, Olle; Izumi, Yukari; Barati, Mansoor

    2013-11-01

    This article presents the salient features of a new process for the recovery of metal values from secondary sources and waste materials such as slag and flue dusts. It is also feasible in extracting metals such as nickel and cobalt from ores that normally are difficult to enrich and process metallurgically. The salt extraction process is based on extraction of the metals from the raw materials by a molten salt bath consisting of NaCl, LiCl, and KCl corresponding to the eutectic composition with AlCl3 as the chlorinating agent. The process is operated in the temperature range 973 K (700°C) to 1173 K (900°C). The process was shown to be successful in extracting Cr and Fe from electric arc furnace (EAF) slag. Electrolytic copper could be produced from copper concentrate based on chalcopyrite in a single step. Conducting the process in oxygen-free atmosphere, sulfur could be captured in the elemental form. The method proved to be successful in extracting lead from spent cathode ray tubes. In order to prevent the loss of AlCl3 in the vapor form and also chlorine gas emission at the cathode during the electrolysis, liquid aluminum was used. The process was shown to be successful in extracting Nd and Dy from magnetic scrap. The method is a highly promising process route for the recovery of strategic metals. It also has the added advantage of being environmentally friendly.

  8. A New Heterotrophic Strain for Bioleaching of Low Grade Complex Copper Ore

    Directory of Open Access Journals (Sweden)

    Kaijian Hu

    2016-02-01

    Full Text Available A new heterotrophic strain, named Providencia sp. JAT-1, was isolated and used in bioleaching of low-grade complex copper ore. The strain uses sodium citrate as a carbon source and urea as a nitrogen source to produce ammonia. The optimal growth condition of the strain is 30 C, initial pH 8, sodium citrate 10 g/L and urea 20 g/L, under which the cell density and ammonia concentration in the medium reached a maximum of 4.83 × 108 cells/mL and 14 g/L, respectively. Ammonia produced by the strain is used as the main lixiviant in bioleaching. Bioleaching results revealed that higher strain growth led to a higher copper recovery, while higher pulp density will cause a greater inhibitory effect on strain growth and ammonia production. The copper extraction reached the highest value of 54.5% at the pulp density of 1%. Malachite, chrysocolla and chalcocite are easy to leach out in this bioleaching system while chalcopyrite is difficult. Results of comparative leaching experiments show that bioleaching using JAT-1 is superior to ammonia leaching at the same condition. The metabolites produced by the strain other than ammonia are also involved in bioleaching.

  9. The formation of auriferous quartz-sulfide veins in the Pataz region, northern Peru: A synthesis of geological, mineralogical, and geochemical data

    Science.gov (United States)

    Schreiber, D. W.; Amstutz, G. C.; Fontboté, L.

    1990-12-01

    The Pataz region in the eastern part of the North Peruvian Department La Libertad hosts a number of important gold mining districts like La Lima, El Tingo, Pataz, Parcoy, and Buldibuyo. Economic gold mineralization occurs in quartz-sulfide veins at the margin of the calc-alkaline Pataz Batholith, that mainly consists of granites, granodiorites, and monzodiorites. The batholith is of Paleozoic age and cuts the Precambrian to Early Paleozoic low-grade metamorphic basement series. Its intrusion was controlled by a NNW-trending fault of regional importance. The gold-bearing veins are characterized by a two-stage sulfide mineralization. Bodies of massive pyrite and some arsenopyrite were formed in stage 1, and after subsequent fracturing they served as sites for deposition of gold, electrum, galena, sphalerite, and chalcopyrite. It is concluded that gold was transported as a AuCl{2/-}-complex by oxidizing chloride solutions and deposited near older pyrite by micro-scale redox changes and a slight temperature decrease. Mineralogical, textural, geochemical, and microthermometric features are interpreted as a consequence of mineralization at considerable depth produced by a hydrothermal system linked with the emplacement of the Pataz Batholith. acteristics in order to outline a general physicochemical model of the hydrothermal ore-forming processes.

  10. Isolation and identification of moderately thermophilic acidophilic iron-oxidizing bacterium and its bioleaching characterization

    Institute of Scientific and Technical Information of China (English)

    ZENG Wei-min; WU Chang-bin; ZHANG Ru-bing; HU Pei-lei; QIU Guan-zhou; GU Guo-hua; ZHOU Hong-bo

    2009-01-01

    A moderately thermophilic acidophilic iron-oxidizing bacterium ZW-1 was isolated from Dexing mine, Jiangxi Province, China. The morphological, biochemical and physiological characteristics, 16S rRNA sequence and bioleaching characterization of strain ZW-1 were studied. The optimum growth temperature is 48 ℃, and the optimum initial pH is 1.9. The strain can grow autotrophically by using ferrous iron or elemental sulfur as sole energy sources. The strain is also able to grow heterotrophically by using peptone and yeast extract powder, but not glucose. The cell density of strain ZW-1 can reach up to 1.02×108 /mL with addition of 0.4 g/L peptone. A phylogenetic tree was constructed by comparing with the published 16S rRNA sequences of the relative bacteria species. In the phylogenetic tree, strain ZW-1 is closely relative to Sulfobacilus acidophilus with more than 99% sequence similarity. The results of bioleaching experiments indicate that the strain could oxidize Fe2+ efficiently, and the maximum oxidizing rate is 0.295 g/(L·h). It could tolerate high concentration of Fe3+ and Cu2+ (35 g/L and 25 g/L, respectively). After 20 d, 44.6% of copper is extracted from chalcopyrite by using strain ZW-1 as inocula.

  11. Mechanism of influence of ferric ion on electrogenerative leaching of sulfide minerals with FeCl3

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-fen; FANG Zheng

    2006-01-01

    A dual cell system was used to study the influence of ferric ion on the electrogenerative leaching of sulfide minerals.Reaction mechanisms for the ferric chloride electrogenerative leaching of a series of sulfide minerals were proposed based on the data collected from the dual cell experiments. The influences of ferric ion on the electrogenerative leaching of sulfide minerals are similar. Ferric ion plays an important role on limiting the electrogenerative leaching rate at a relatively low concentration of FeCl3(about less than 0.15 mol/L). The mathematical models based on the Butler-Volmer relation were delineated, and kinetic equations with respect to ferric ions for each sulfide mineral were obtained. The kinetic equations show that when the concentration of ferric ion is relatively low, the electrogenerative leaching rates are predicted to be proportional to 6/7, 4/5, 2/3 and 2/3 order of ferric ion for nickel concentrate, chalcopyrite concentrate, sphalerite and galena respectively. As the concentration of ferric ion increase, the correlative dependence between electrogenerative leaching rate and concentration of ferric ion becomes weak. The above conclusions are in agreement with the experimental results.

  12. Temperature dependence of band gaps in semiconductors: electron-phonon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Reinhard K.; Cardona, M.; Lauck, R. [MPI for Solid State Research, Stuttgart (Germany); Bhosale, J.; Ramdas, A.K. [Physics Dept., Purdue University, West Lafayette, IN (United States); Burger, A. [Fisk University, Dept. of Life and Physical Sciences, Nashville, TN (United States); Munoz, A. [MALTA Consolider Team, Dept. de Fisica Fundamental II, Universidad de La Laguna, Tenerife (Spain); Instituto de Materiales y Nanotecnologia, Universidad de La Laguna, Tenerife (Spain); Romero, A.H. [CINVESTAV, Dept. de Materiales, Unidad Queretaro, Mexico (Mexico); MPI fuer Mikrostrukturphysik, Halle an der Saale (Germany)

    2013-07-01

    We investigate the temperature dependence of the energy gap of several semiconductors with chalcopyrite structure and re-examine literature data and analyze own high-resolution reflectivity spectra in view of our new ab initio calculations of their phonon properties. This analysis leads us to distinguish between materials with d-electrons in the valence band (e.g. CuGaS{sub 2}, AgGaS{sub 2}) and those without d-electrons (e.g. ZnSnAs{sub 2}). The former exhibit a rather peculiar non-monotonic temperature dependence of the energy gap which, so far, has resisted cogent theoretical description. We demonstrate it can well be fitted by including two Bose-Einstein oscillators with weights of opposite sign leading to an increase at low-T and a decrease at higher T's. We find that the energy of the former correlates well with characteristic peaks in the phonon density of states associated with low-energy vibrations of the d-electron constituents.

  13. Mineralogical analysis of auriferous ores from the El Diamante mine, Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Bustos Rodriguez, Humberto, E-mail: hbustos@ut.edu.co; Oyola Lozano, Dagoberto; Rojas Martinez, Yebrayl A. [Universidad del Tolima, Departamento de Fisica (Colombia); Perez Alcazar, German A. [Universidad del Valle, Departamento de Fisica (Colombia); Flege, Stefan; Balogh, Adam G. [Darmstadt University of Technology, Institute of Materials Science (Germany); Cabri, Louis J. [Cabri Consulting Inc. (Canada); Tubrett, Michael [Memorial University of Newfoundland (Canada)

    2007-02-15

    X-ray diffraction (XRD), Moessbauer spectrometry (MS), secondary ions mass spectroscopy (SIMS) and laser-ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) were used to study mineral samples of Colombian auriferous ores collected from the 'El Diamante' mine, located in the municipality of Guachavez-Narino, in Colombia. The samples were prepared as polished thin sections and polished sections. From XRD data, quartz, sphalerite and pyrite were detected and their respective cell parameters were estimated. From MS analyses, pyrite, arsenopyrite and chalcopyrite were identified; their respective hyperfine parameters and respective texture were deduced. Multiple regions of approximately 200 x 200 {mu}m in each sample were analyzed with SIMS; the occurrence of 'invisible gold' associated mainly with pyrite and secondarily with arsenopyrite could thus be assigned. It was also found that pyrite is of the arsenious type. Spots from 30 to 40 {mu}m in diameter were analyzed with LAM-ICP-MS for pyrite, arsenopyrite and sphalerite; Au is 'homogeneously' distributed inside the structure of the arsenious pyrite and the arsenopyrite (not as inclusions); the chemical composition indicates similarities of this 'invisible gold', forming a solid solution with arsenious pyrite and arsenopyrite. One hundred nineteen and 62 ppm of 'invisible gold' was quantified in 21 spots analyzed on pyrite and in 14 spots on arsenopyrite, respectively.

  14. Structural and Electronic Properties Study of Colombian Aurifer Soils by Moessbauer Spectroscopy and X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bustos Rodriguez, H., E-mail: hbustos@ut.edu.co; Rojas Martinez, Y.; Oyola Lozano, D. [Universidad del Tolima, Departamento de Fisica (Colombia); Perez Alcazar, G. A.; Fajardo, M. [Universidad del Valle, Departamento de Fisica (Colombia); Mojica, J. [Ingeominas Valle, Departamento de Geologia (Colombia); Molano, Y. J. C. [Universidad Nacional, Departamento de Geologia (Colombia)

    2005-02-15

    In this work a study on gold mineral samples is reported, using optical microscopy, X-ray diffraction (XRD) and Moessbauer spectroscopy (MS). The auriferous samples are from the El Diamante mine, located in Guachavez-Narino (Colombia) and were prepared by means of polished thin sections. The petrography analysis registered the presence, in different percentages that depend on the sample, of pyrite, quartz, arsenopyirite, sphalerite, chalcopyrite and galena. The XRD analysis confirmed these findings through the calculated cell parameters. One typical Rietveld analysis showed the following weight percent of phases: 85.0% quartz, 14.5% pyrite and 0.5% sphalerite. In this sample, MS demonstrated the presence of two types of pyrite whose hyperfine parameters are {delta}{sub 1} = 0.280 {+-} 0.002 mm/s and {Delta}{sub 1} = 0.642 {+-} 0.002 mm/s, {delta}{sub 2} = 0.379 {+-} 0.002 mm/s and {Delta}{sub 2} = 0.613 {+-} 0.002 mm/s.

  15. Mineralogical analysis of auriferous ores from the El Diamante mine, Colombia

    Science.gov (United States)

    Bustos Rodriguez, Humberto; Oyola Lozano, Dagoberto; Rojas Martínez, Yebrayl A.; Pérez Alcázar, Germán A.; Flege, Stefan; Balogh, Adam G.; Cabri, Louis J.; Tubrett, Michael

    2007-02-01

    X-ray diffraction (XRD), Mössbauer spectrometry (MS), secondary ions mass spectroscopy (SIMS) and laser-ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) were used to study mineral samples of Colombian auriferous ores collected from the “El Diamante” mine, located in the municipality of Guachavez-Nariño, in Colombia. The samples were prepared as polished thin sections and polished sections. From XRD data, quartz, sphalerite and pyrite were detected and their respective cell parameters were estimated. From MS analyses, pyrite, arsenopyrite and chalcopyrite were identified; their respective hyperfine parameters and respective texture were deduced. Multiple regions of approximately 200 × 200 μm in each sample were analyzed with SIMS; the occurrence of “invisible gold” associated mainly with pyrite and secondarily with arsenopyrite could thus be assigned. It was also found that pyrite is of the arsenious type. Spots from 30 to 40 μm in diameter were analyzed with LAM-ICP-MS for pyrite, arsenopyrite and sphalerite; Au is “homogeneously” distributed inside the structure of the arsenious pyrite and the arsenopyrite (not as inclusions); the chemical composition indicates similarities of this “invisible gold”, forming a solid solution with arsenious pyrite and arsenopyrite. One hundred nineteen and 62 ppm of ‘invisible gold’ was quantified in 21 spots analyzed on pyrite and in 14 spots on arsenopyrite, respectively.

  16. Structural and Electronic Properties Study of Colombian Aurifer Soils by Mössbauer Spectroscopy and X-ray Diffraction

    Science.gov (United States)

    Bustos Rodríguez, H.; Rojas Martínez, Y.; Oyola Lozano, D.; Pérez Alcázar, G. A.; Fajardo, M.; Mojica, J.; Molano, Y. J. C.

    2005-02-01

    In this work a study on gold mineral samples is reported, using optical microscopy, X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). The auriferous samples are from the El Diamante mine, located in Guachavez-Nariño (Colombia) and were prepared by means of polished thin sections. The petrography analysis registered the presence, in different percentages that depend on the sample, of pyrite, quartz, arsenopyirite, sphalerite, chalcopyrite and galena. The XRD analysis confirmed these findings through the calculated cell parameters. One typical Rietveld analysis showed the following weight percent of phases: 85.0% quartz, 14.5% pyrite and 0.5% sphalerite. In this sample, MS demonstrated the presence of two types of pyrite whose hyperfine parameters are δ 1 = 0.280 ± 0.002 mm/s and Δ 1 = 0.642 ± 0.002 mm/s, δ 2 = 0.379 ± 0.002 mm/s and Δ 2 = 0.613 ± 0.002 mm/s.

  17. Isolation and characterization of YNTC- 1, a novel Alicyclobacillus sendaiensis strain

    Institute of Scientific and Technical Information of China (English)

    DING Jian-nan; HE Huan; ZHANG Cheng-gui; YU Yi-zun; QIU Guan-zhou

    2008-01-01

    A heterotrophic acidothermophilic bacterial strain, YNTC-1, was isolated from an acidic hot spring in Tengchong, Yunan, China. YNTC-1 grows at pH value of 1.5-8.0 and temperature of 40-70℃, with optimal pH and temperature at 3.0 and 55℃,respectively. The cells of the strain are in shape of short rod, with 1.0-1.2 μm in length and 0.7-0.8 μm in diameter, and with distinct spores at both poles of each cell. The predominant fatty acids in cellular membrane of the strain are C18:1ω7c. 16s rRNA gene analysis reveals that this strain is closely related to Alicyclobacillus sendaiensis, with over 99% sequence similarity. Based on phenotypie and genotypic analyses, YNTC-1 is identified as a member ofA. sendaiensis. Considering some important morphological and biochemical differences between strain YNTC-1 and A. sendaiensis ATCC 27009T, YNTC-1 may be proposed to be a novel subspecies of A. sendaiensis. However, this viewpoint has to be confirmed by further studies. Co-bioleaching of pyrite and chalcopyrite with strain YN22, Sulfobacillus thermosulfidooxidans, shows that strain YNTC-1 has no evident influence on bioleaching rates of these two sulphide minerals.

  18. Preparation and characterization of CuInSe{sub 2} electrodeposited thin films annealed in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hamrouni, S., E-mail: sahbihamrouni82@yahoo.fr [College of Science and Art at Rass-Qassim University, PO Box 53 Postcode 51921 (Saudi Arabia); Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif (Tunisia); AlKhalifah, Manea S. [College of Science and Art at Rass-Qassim University, PO Box 53 Postcode 51921 (Saudi Arabia); Boujmil, M.F. [Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif (Tunisia); Saad, K. Ben [College of Science and Art at Rass-Qassim University, PO Box 53 Postcode 51921 (Saudi Arabia); Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif (Tunisia)

    2014-02-15

    The effect of the annealing temperature on the CuInSe{sub 2} (CIS) electrodeposed films on FTO substrates has been investigated. Followed by different annealing, in vacuum and for different temperatures, X-ray diffraction has proved that the CuInSe{sub 2} films have chalcopyrite structure oriented along the (1 1 2) direction with good crystallinity at 400 °C. From the evolution of the full width at half maximum (FWHM) of the (1 1 2) peak, we have estimated the grain size versus the annealing temperature. The results show that the grain size increases from 0.45 to 0.75 μm with the annealing temperature. The morphological, optical and electrical properties of the CIS films have been investigated respectively, by the scanning electron microscopy (SEM), UV–vis spectroscopy and I–V characteristics. The band gaps of the CIS films also shows an evolution when the temperature is varied. In fact the band gap decreases from 1.24 eV at 250 °C to 0.98 eV at 450 °C. The electrical characterization of the junction Al/CIS/FTO shows an interesting Schottky rectifying behavior.

  19. Catalytic effect of activated carbon on bioleaching of low-grade primary copper sulfide ores

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The catalytic effect of activated carbon on the bioleaching of low-grade primary copper sulfide ores using mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was investigated. The results show that the addition of activated carbon can greatly accelerate the rate and efficiency of copper dissolution from low-grade primary copper sulfide ores. The solution with the concentration of 3.0 g/L activated carbon is most beneficial to the dissolution of copper. The resting time of the mixture of activated carbon and ores has an impact on the bioleaching of low-grade primary copper sulfide ores. The 2 d resting time is most favorable to the dissolution of copper. The enhanced dissolution rate and efficiency of copper can be attributed to the galvanic interaction between activated carbon and chalcopyrite. The addition of activated carbon obviously depresses the dissolution of iron and the bacterial oxidation of ferrous ions in solution. The lower redox potentials are more favorable to the copper dissolution than the higher potentials for low-grade primary copper sulfide ores in the presence of activated carbon.

  20. ARTICLES: Metal Precursor Influence on Performance of Culn1-xGaxSe2 Films

    Science.gov (United States)

    Wang, Man; Zhang, Zhong-wei; Jiang, Guo-shun; Zhu, Chang-fei

    2010-06-01

    CuIn1-xGaxSe2 (CIGS) films were prepared by a two-stage method, in which Cu-In-Ga metallic precursors were firstly deposited on unheated Mo-coated soda lime glass substrates by direct current sputtering CuGa (20%Ga) and radio frequency sputtering In targets in an Ar atmosphere, followed by selenization at 520 °C for 40 min in Se vapor. By adjusting the sputtering thickness ratio of surface CuGa (20%Ga) and bottom CuGa (20%Ga) alloy layers in metal precursor, different CIGS thin films were fabricated. Through X-ray diffraction spectra, Raman spectra, local energy dispersive spectrometer, planar- and cross-sectional views of scanning electron microscopy measurements, it revealed that the CIGS thin films from selenization of metal precursor with CuGa:In:CuGa thickness ratio of 7:20:3 (sample-2-se) was of chalcopyrite structure with the preferred (112) orientation, and the grains sizes ranged from 0.5 μm to 2 μm, and sample-2-se had no binary compound phase of In-Se and order defect compound phase. Consequently, the results of illuminated current-voltage curve and quantum efficiency measurements showed that the CIGS film device made from sample-2-se had relative higher photo-electric conversion efficiency (3.59%) and good spectrum response.

  1. 金川三矿区低品位铜镍矿石工艺矿物学研究%Study on the Process Mineralogy of Low-grade Copper-nickel Ore in Jinchuan No.3 Deposit Area

    Institute of Scientific and Technical Information of China (English)

    程少逸; 赵礼兵; 袁致涛; 赵毕文

    2011-01-01

    The prooess mineralogy study was made to identify the mineral composition, occurrence forms of coppernickel, and the dissemination characteristics of main minerals in low-grade copper-nickel ores of Jinchuan No. 3 deposit.The results showed that copper and nickel ores mainly occurs in form of pentlandite, violarite, chalcopyrite and wallerite,but other sulfides and gangues have close and complex dissemination relation with these minerals.Serpentine has a critical argillic alteration, which brings unfavorable effect on the separation of copper and nickel.%通过工艺矿物学研究,查明了金川二矿区低品位铜镍矿石的矿物组成、铜镍的赋存形式及主要有用矿物的嵌布特性.研究结果表明:矿石中的铜、镍主要以镍黄铁矿、紫硫镍铁矿、黄铜矿、墨铜矿形式存在,但其他硫化矿物及脉石矿物与它们嵌布关系密切而复杂;矿石蛇纹石蚀变严重,易于泥化.这些将给铜、镍的分选带来不利影响.

  2. Investigation of defect properties in Cu(In,Ga)Se 2 solar cells by deep-level transient spectroscopy

    Science.gov (United States)

    Kerr, L. L.; Li, Sheng S.; Johnston, S. W.; Anderson, T. J.; Crisalle, O. D.; Kim, W. K.; Abushama, J.; Noufi, R. N.

    2004-09-01

    The performance of the chalcopyrite material Cu(In,Ga)Se 2 (CIGS) used as an absorber layer in thin-film photovoltaic devices is significantly affected by the presence of native defects. The deep-level transient spectroscopy (DLTS) technique is used in this work to characterize the defect properties, yielding relevant information about the defect types, their capture cross-sections, and energy levels and densities in the CIGS cells. Three solar cells developed using different absorber growth technologies were analyzed using DLTS, capacitance-voltage ( C- V), and capacitance-temperature ( C- T) techniques. It was found that CIS cells grown at the University of Florida exhibits a middle-gap defect level that may relate to the cell's low fill factor and open-circuit voltage values observed. A high efficiency ( ηc>18%) CIGS cell produced by the National Renewable Energy Laboratory (NREL) was found to contain three minority-carrier (electron) traps and a 13% CIGS cell produced by the Energy Photovoltaics Inc. (EPV) exhibited one majority (hole) trap. The approach followed using the DLTS technique serves as a paradigm for revealing the presence of significant defect levels in absorber materials, and may be used to support the identification of remedial processing operations.

  3. Optical properties and defect levels in a surface layer found on CuInSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abulfotuh, F.; Wangensteen, T.; Ahrenkiel, R.; Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    In this paper the authors have used photoluminescence (PL) and wavelength scanning ellipsometry (WSE) to clarify the relationship among the electro-optical properties of copper indium diselenide (CIS) thin films, the type and origin of dominant defect states, and device performance. The PL study has revealed several shallow acceptor and donor levels dominating the semiconductor. PL emission from points at different depths from the surface of the CIS sample has been obtained by changing the angle of incidence of the excitation laser beam. The resulting data were used to determine the dominant defect states as a function of composition gradient at the surface of the chalcopyrite compound. The significance of this type of measurement is that it allowed the detection of a very thin layer with a larger bandgap (1.15-1.26 eV) than the CIS present on the surface of the CIS thin films. The presence of this layer has been correlated by several groups to improvement of the CIS cell performance. An important need that results from detecting this layer on the surface of the CIS semiconductor is the determination of its thickness and optical constants (n, k) as a function of wavelength. The thickness of this surface layer is about 500 {Angstrom}.

  4. Influence of Ce doping on structural and photoelectric properties of CuInS2 thin films

    Science.gov (United States)

    Zhu, Jun; Xiao, Lingling; Ding, Tiezhu; Wang, Yanlai; Fan, Yue

    2015-09-01

    Cerium doped CuInS2 thin films were successfully fabricated by a powder metallurgy method. X-ray diffraction and scanning electron microscope measurements showed that the as-prepared CuIn1-xCexS2 samples are of good crystallinity and crystallize with chalcopyrite structure when sintering at 550 °C. The presence of Ce3+ in host material was conformed by X-ray photoelectron spectroscopy. Two subband photon absorption peaks were observed at 1710 nm (0.73 eV) and 1955 nm (0.63 eV) in the UV-Vis-NIR absorption spectrum. This behavior could suggest that an intermediate band forms in the forbidden band of CuInS2 semiconductor due to cerium incorporation. The optical bandgap of CuIn1-xCexS2 films was tuned in the range of 1.38 eV to 1.23 eV with increasing cerium content. And the electrical conductivity could be improved if doped moderate cerium content, especially x = 0.1.

  5. Influence of Ce doping on structural and photoelectric properties of CuInS{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun, E-mail: jiulye@126.com; Xiao, Lingling; Ding, Tiezhu; Wang, Yanlai; Fan, Yue [School of Physical Science and Technology, Inner Mongolia University, Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region, Hohhot 010021 (China)

    2015-09-21

    Cerium doped CuInS{sub 2} thin films were successfully fabricated by a powder metallurgy method. X-ray diffraction and scanning electron microscope measurements showed that the as-prepared CuIn{sub 1−x}Ce{sub x}S{sub 2} samples are of good crystallinity and crystallize with chalcopyrite structure when sintering at 550 °C. The presence of Ce{sup 3+} in host material was conformed by X-ray photoelectron spectroscopy. Two subband photon absorption peaks were observed at 1710 nm (0.73 eV) and 1955 nm (0.63 eV) in the UV–Vis–NIR absorption spectrum. This behavior could suggest that an intermediate band forms in the forbidden band of CuInS{sub 2} semiconductor due to cerium incorporation. The optical bandgap of CuIn{sub 1−x}Ce{sub x}S{sub 2} films was tuned in the range of 1.38 eV to 1.23 eV with increasing cerium content. And the electrical conductivity could be improved if doped moderate cerium content, especially x = 0.1.

  6. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.

    Science.gov (United States)

    Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong

    2015-10-14

    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost. PMID:26390182

  7. 黄铁矿和黄铜矿中铁铜钴镍的纸层析及定量测定

    Institute of Scientific and Technical Information of China (English)

    中国科学院贵阳地球化学研究所中心分析室

    1973-01-01

    The method of paper chromatography for the separation and quantitative determination of iron, copper, cobalt and nickel in pyrite and chalcopyrite is described.The three systems of ehromtograpbie solvents for the separation of iron, copper, cobalt and nickel on the 8×25 or 15×26 cm Whatman No. 3, involving acetone-hydrochloric acid-water, butanone-hydrochloric acid-water and acetone-acetylacetone-hydrochloric acid-water have been tested. As a developing system for the separation of this four elements in samples, the mixture of aoetone-acetylacetone-hydroehlorio acid-water is considered to be the best. After developing in a 30×40 cm glass dryer, the paper is dried in air and rendered the zone visible by treatment with 0.1% (W/V) rubeanic acid solution. The R1 values, colour reactions with this spray reagent and the eolour are given. A good paper chromatography of elements has been obtained. The elements are determined by colorimetrie method, with 1-nitroso-2-naphthol for cobalt,1-(2-pyridylozo)-2-naphthol for nickel, oxalic acid bis-cyelohexylidene hydrozide for copper, and sulfosalicylic acid for iron. In addition, iron and copper can also be determined by titration with potassium dichromate solution and iodimetry respectively.

  8. Raman scattering analysis of Cu-poor Cu(In,Ga)Se{sub 2} cells fabricated on polyimide substrates: Effect of Na content on microstructure and phase structure

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo-Roca, V. [IN2UB/Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028, Barcelona (Spain); Caballero, R. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin (Germany); Fontane, X. [IREC, Catalonia Institute for Energy Research, C. Josep Pla 2 B2, 08019, Barcelona (Spain); Kaufmann, C.A. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin (Germany); Alvarez-Garcia, J. [Centre de Recerca i Investigacio de Catalunya (CRIC), Trav. de Gracia 108, 08012 Barcelona (Spain); Calvo-Barrio, L. [Lab. Analisis de Superficies, SCT, Universitat de Barcelona, Lluis Sole i Sabaris 1-3, 08028 Barcelona (Spain); Saucedo, E. [IREC, Catalonia Institute for Energy Research, C. Josep Pla 2 B2, 08019, Barcelona (Spain); Perez-Rodriguez, A., E-mail: aperezr@irec.cat [IN2UB/Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028, Barcelona (Spain); IREC, Catalonia Institute for Energy Research, C. Josep Pla 2 B2, 08019, Barcelona (Spain); Morante, J.R. [INUB/Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028, Barcelona (Spain); IREC, Catalonia Institute for Energy Research, C. Josep Pla 2 B2, 08019, Barcelona (Spain); Schock, H.W. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin (Germany)

    2011-08-31

    This work reports the Raman scattering surface and in-depth resolved analysis of Cu-poor Cu(In,Ga)Se{sub 2} (CIGS) grown on polyimide substrates. In order to study the effect of Na on the formation and microstructure of the CIGS and the corresponding Cu-poor ordered vacancy compound (OVC) phases, a NaF precursor layer with different thicknesses was deposited on the Mo-coated substrates before growing of the samples. The Raman spectroscopy data are correlated with the analysis of the samples by Auger electron spectroscopy and scanning electron microscopy. These data corroborate the significant role of Na on the inhibition of Ga-In interdiffusion and on the formation of the MoSe{sub 2} interfacial phase at the back region of the layers. Presence of Na also leads to an enhancement in the formation of the chalcopyrite CIGS phase and a decrease in the occurrence of the dominant OVC phase at the surface region. This study confirms the strong dependence of the microstructure and phase distribution in CIGS absorber layers on the Na available during their growth.

  9. Proceedings of wide band gap semiconductors

    International Nuclear Information System (INIS)

    This book contains the proceedings of wide band gap semiconductors. Wide band gap semiconductors are under intense study because of their potential applications in photonic devices in the visible and ultraviolet part of the electromagnetic spectrum, and devices for high temperature, high frequency and high power electronics. Additionally, due to their unique mechanical, thermal, optical, chemical, and electronic properties many wide band gap semiconductors are anticipated to find applications in thermoelectric, electrooptic, piezoelectric and acoustooptic devices as well as protective coatings, hard coatings and heat sinks. Material systems covered in this symposium include diamond, II-VI compounds, III-V nitrides, silicon carbide, boron compounds, amorphous and microcrystalline semiconductors, chalcopyrites, oxides and halides. The various papers addressed recent experimental and theoretical developments. They covered issues related to crystal growth (bulk and thin films), structure and microstructure, defects, doping, optoelectronic properties and device applications. A theoretical session was dedicated to identifying common themes in the heteroepitaxy and the role of defects in doping, compensation and phase stability of this unique class of materials. Important experimental milestones included the demonstrations of bright blue injection luminescence at room temperatures from junctions based on III-V nitrides and a similar result from multiple quantum wells in a ZnSe double heterojunction at liquid nitrogen temperatures

  10. Enhanced absorption in tandem solar cells by applying hydrogenated In2O3 as electrode

    International Nuclear Information System (INIS)

    To realize the high efficiency potential of perovskite/chalcopyrite tandem solar cells in modules, hydrogenated In2O3 (IO:H) as electrode is investigated. IO:H with an electron mobility of 100 cm2 V−1 s−1 is demonstrated. Compared to the conventional Sn doped In2O3 (ITO), IO:H exhibits a decreased electron concentration and leads to almost no sub-bandgap absorption up to the wavelength of 1200 nm. Without a trade-off between transparency and lateral resistance in the IO:H electrode, the tandem cell keeps increasing in efficiency as the IO:H thickness increases and efficiencies above 22% are calculated. In contrast, the cells with ITO as electrode perform much worse due to the severe parasitic absorption in ITO. This indicates that IO:H has the potential to lead to high efficiencies, which is otherwise constrained by the parasitic absorption in conventional transparent conductive oxide electrode for tandem solar cells in modules

  11. Enhanced absorption in tandem solar cells by applying hydrogenated In{sub 2}O{sub 3} as electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guanchao, E-mail: guanchao.yin@helmholtz-berlin.de; Manley, Phillip [Nanooptische Konzepte für die PV, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin (Germany); Steigert, Alexander; Klenk, Reiner [Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin (Germany); Schmid, Martina [Nanooptische Konzepte für die PV, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin (Germany); Fachbereich Physik, Freie Universität Berlin, 14195 Berlin (Germany)

    2015-11-23

    To realize the high efficiency potential of perovskite/chalcopyrite tandem solar cells in modules, hydrogenated In{sub 2}O{sub 3} (IO:H) as electrode is investigated. IO:H with an electron mobility of 100 cm{sup 2} V{sup −1} s{sup −1} is demonstrated. Compared to the conventional Sn doped In{sub 2}O{sub 3} (ITO), IO:H exhibits a decreased electron concentration and leads to almost no sub-bandgap absorption up to the wavelength of 1200 nm. Without a trade-off between transparency and lateral resistance in the IO:H electrode, the tandem cell keeps increasing in efficiency as the IO:H thickness increases and efficiencies above 22% are calculated. In contrast, the cells with ITO as electrode perform much worse due to the severe parasitic absorption in ITO. This indicates that IO:H has the potential to lead to high efficiencies, which is otherwise constrained by the parasitic absorption in conventional transparent conductive oxide electrode for tandem solar cells in modules.

  12. Tectonic hydrothermal gold mineralisation in the outboard zone of the Southern Alps, New Zealand

    International Nuclear Information System (INIS)

    Gold-bearing veins cut a belt of low-grade (pumpellyite-actinolite/greenschist facies) schist in the Ben Ohau Range to the east of the Main Divide, in the outboard zone of the Southern Alps continental collisional zone, New Zealand. The schist has been exposed along the currently active Ostler Fault system, which has had c. 5 km of reverse motion since the Pliocene. The veins consist of quartz, ankerite, calcite, chlorite, and pyrite, with minor chalcopyrite and galena. Hydrothermal chlorite contains about 490 ppm Zn, and the gold contains 3-5 wt% Ag. Hydrothermal alteration of host rock is minor apart from Sr enrichment (up to four times background). Fluid inclusions in quartz are aqueous with minor dissolved CO2 and salts (18O = +10 to +14; δ13C = -6 to -10 per thousand) are similar to data from economic metamorphogenic Au deposits of the nearby Otago Schist, but minor meteoric incursion may have occurred. Isotopic data are also similar to veins formed in the inboard zone of the Southern Alps orogen. The Ben Ohau veins demonstrate that gold can be concentrated in low-grade schists distant from the most active part of the hydrothermal system driven by continental collision. (author). 45 refs., 6 figs., 3 tabs

  13. Homogeneity of single phase Cu(In,Ga)Se2 produced by selenisation of metal precursors: An optical investigation

    International Nuclear Information System (INIS)

    Two-stage processes involving the selenisation of metallic precursor layers are among the most promising techniques for the formation of chalcopyrite-based solar cell absorber layers on a commercial scale. In this paper, the homogeneity of Cu(In0.75Ga0.25)Se2 prepared by a new two-stage technique [V. Alberts, Semicond. Sci. Technol., 19 (2004) 65.], which involves the selenisation of sputtered CuIn0.75Ga0.25 precursor films in steps designed to control the reaction rates of the binary selenide phases and to prevent the formation of the more stable CuGaSe2 phase, is studied. Photoluminescence spectroscopy, optical absorption measurements and X-ray diffraction measurements confirm that layers grown by a traditional process, which involves a single selenisation step, contain separate quaternary phases: gallium-rich phases are found closer to the substrate, while gallium-poor phases reside near the front surface. Layers produced by the novel process do not show this grading. A line appearing at ∼ 0.8 eV is ascribed to NaIII, which results from the out-diffusion of Na from the glass substrate

  14. SEM - EDS mineralogical study of the Cuaro Sill Tacuarembo dept. (Uruguay)

    International Nuclear Information System (INIS)

    The Mesozoic magmatism exposed in the Norte basin of Uruguay is related with the tectono-magmatic events of the South Atlantic Ocean opening and, regionally is part of the Parana Magmatic Province (PMP). It is represented by basaltic flows correspondent to the Arapey Formation and by the associated intrusive rocks of the Cuaro Formation. The aim of this work is the mineralogical characterization of the Cuaro Sill (Department of Tacuarembo, NE Uruguay), using conventional petrographic techniques (polarized transmitted and reflected microscopy) and scanning electron microscopy (SEM-EDS). Based on the petrographic features observed, the dolerites of the Cuaro Sill are composed by: plagioclase (labradorite), pyroxenes (augite and pigeonite), Fe-Ti oxides (magnetite and ilmenite), relicts of olivine and apatite. It presents frequent glomero-porphyritic textures, with plagioclase/clinopyroxene phenocrysts, with lack of cumulate textures. Anomalous concentrations of guide exploration elements have not been observed despite the presence of traces of Mn and Cr within the ilmenites or the presence of sulfides (chalcopyrite). Therefore, a greater potential of these elements at deeper levels of the intrusion is not rule out

  15. Daughter minerals in fluid inclusions of garnet and diopside from Tongguanshan Copper Deposit by SEM/EDS and LRM

    Institute of Scientific and Technical Information of China (English)

    Yuling Xie; Jiuhua Xu; Zengqian Hou; Zhusen Yang; Wenyi Xu; Yifeng Meng; Baohua Wang

    2004-01-01

    Tongguanshan copper deposit of Tongling large ore belt is one of the typical skarn copper deposits. Based on careful observation under microscope many daughter minerals including transparent ones and opaque ones have been distinguished in the fluid inclusions of garnet and diopside. The results of SEM/EDS (scanning electron microscope/energy dispersive spectrometer) and LRM (laser Raman microprobe) analysis show that these daughter minerals in garnet are sylvite, halite, sphalerite, chalcopyrite and carbonate. Sylvite daughter mineral is very popular in garnet and diopside. The existence of so much sylvite daughter mineral and other daughter minerals in the fluid inclusions indicates that the ore-forming fluid is of supper-high salinity and high potassium concentration. High potassium concentration in the fluid inclusions agrees with K-rich mesotype-acid rock and K-silicate alteration that occurred widely in this area. The daughter mineral assemblage in garnet and diopside is similar to the mineral assemblage of oreforming stage that followed skarn stage.

  16. Occurrence mechanism of silicate and aluminosilicate minerals in Sarcheshmeh copper flotation concentrate

    Institute of Scientific and Technical Information of China (English)

    H.R. Barkhordari; E. Jorjani; A. Eslami; M. Noaparast

    2009-01-01

    The Sarcheshmeh copper flotation circuit is producing 5×10~4 t copper concentrate per month with an averaging grade of 28% Cu in rougher, cleaner and reeleaner stages. In recent years, with the increase in the open pit depth, the content of aluminosili- cate minerals increased in plant feed and subsequently in flotation concentrate. It can motivate some problems, such as unwanted consumption of reagents, decreasing of the copper concentrate grade, increasing of Al_2O_3 and SiO_2 in the copper concentrate, and needing a higher temperature in the smelting process. The evaluation of the composite samples related to the most critical working period of the plant shows that quartz, illite, biotite, chlorite, orthoclase, albeit, muscovite, and kaolinite are the major Al_2O_3 and SiO_2 beating minerals that accompany chalcopyrite, chalcoeite, and covellite minerals in the plant feed. The severe alteration to clay min-erals was a general rule in all thin sections that were prepared from the plant feed. Sieve analysis of the flotation concentrate shows that Al_2O_3 and SiO_2 bearing minerals in the flotation concentrate can be decreased by promoting the size reduction from 53 to 38 μm. Interlocking of the Al_2O_3 and SiO_2 beating minerals with ehalcopyrite and ehalcocite is the occurrence mechanism of silicate and aluminosilicate minerals in the flotation concentrate. The dispersed form of interlocking is predominant.

  17. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: A lead isotope study of an Archaean gold prospect in the Attu region, Nagssugtoqidian orogen, West Greenland

    Directory of Open Access Journals (Sweden)

    Stendal, Henrik

    2006-12-01

    Full Text Available This paper presents a lead isotope investigation of a gold prospect south of the village Attu in the northern part of the Nagssugtoqidian orogen in central West Greenland. The Attu gold prospect is a replacement gold occurrence, related to a shear/mylonite zone along a contact between orthogneissand amphibolite within the Nagssugtoqidian orogenic belt. The mineral occurrence is small, less than 0.5 m wide, and can be followed along strike for several hundred metres. The mineral assemblage is pyrite, chalcopyrite, magnetite and gold. The host rocks to the gold prospect are granulite facies ‘brown gneisses’ and amphibolites. Pb-isotopic data on magnetite from the host rocks yield an isochron in a 207Pb/204Pb vs. 206Pb/204Pb diagram, giving a date of 3162 ± 43 Ma (MSWD = 0.5. This date is interpreted to represent the age of the rocks in question, and is older than dates obtained from rocks elsewhere within the Nagssugtoqidian orogen. Pb-isotopic data on cataclastic magnetite from the shear zone lie close to this isochron, indicating a similar origin. The Pb-isotopic compositions of the ore minerals are similar to those previously obtained from the close-by ~2650 Ma Rifkol granite, and suggest a genetic link between the emplacement of this granite and the formation of the ore minerals in the shear/mylonite zone. Consequently, the age of the gold mineralisation is interpreted tobe late Archaean.

  18. 电沉积-退火工艺制备铜铟硒太阳能电池薄膜及表征%Preparation and Characterization of Electrodeposited-Annealed CulnSe2 Thin Films for Solar Cells

    Institute of Scientific and Technical Information of China (English)

    张中伟; 郭宏艳; 李纪; 朱长飞

    2011-01-01

    CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 C. The morphology, composition, crystal structure,optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VISNIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.

  19. Silver sulfotellurides from volcanic-hosted massive sulfide deposits in the Southern Urals

    Science.gov (United States)

    Novoselov, K. A.; Belogub, E. V.; Zaykov, V. V.; Yakovleva, V. A.

    2006-07-01

    This paper addresses Ag-sulfotellurides occurring in volcanic-hosted massive sulfide deposits of the Southern Urals. Cervelleite-like minerals were identified in ores from the Gayskoe, Yaman-Kasy, Severo-Uvaryazhskoe, Tash-Tau, and Babaryk deposits, where they occur in ores containing chalcopyrite, galena, sphalerite, tennantite ± bornite. Other Ag- and Te-bearing minerals (electrum, hessite, stromeyerite and Ag-bearing chalcocite) are present in the association. A benleonardite-like mineral associated with sylvanite and native tellurium was found as a metastable phase in paleohydrothermal tubes relics from the Yaman-Kasy deposit. Formation of the sulfotellurides indicates relative low fTe2 in the hydrothermal systems, insufficient for formation of most S-free tellurides. The significant Cu enrichment in cervelleite relates to the association with bornite. Broad variations in composition and physical properties of cervelleite-like sulfotellurides allow the supposition of the presence of several, as yet unnamed mineral species, which can be distinguished by Cu contents, Te/S ratios, and presumably by crystal structure.

  20. Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia

    Science.gov (United States)

    Maslennikov, V. V.; Maslennikova, S. P.; Large, R. R.; Danyushevsky, L. V.; Herrington, R. J.; Stanley, C. J.

    2013-02-01

    Tellurium-bearing minerals are generally rare in chimney material from mafic and bimodal felsic volcanic hosted massive sulfide (VMS) deposits, but are abundant in chimneys of the Urals VMS deposits located within Silurian and Devonian bimodal mafic sequences. High physicochemical gradients during chimney growth result in a wide range of telluride and sulfoarsenide assemblages including a variety of Cu-Ag-Te-S and Ag-Pb-Bi-Te solid solution series and tellurium sulfosalts. A change in chimney types from Fe-Cu to Cu-Zn-Fe to Zn-Cu is accompanied by gradual replacement of abundant Fe-, Co, Bi-, and Pb- tellurides by Hg, Ag, Au-Ag telluride and galena-fahlore with native gold assemblages. Decreasing amounts of pyrite, both colloform and pseudomorphic after pyrrhotite, isocubanite ISS and chalcopyrite in the chimneys is coupled with increasing amounts of sphalerite, quatz, barite or talc contents. This trend represents a transition from low- to high sulphidation conditions, and it is observed across a range of the Urals deposits from bimodal mafic- to bimodal felsic-hosted types: Yaman-Kasy → Molodezhnoye → Uzelga → Valentorskoye → Oktyabrskoye → Alexandrinskoye → Tash-Tau → Jusa.