WorldWideScience

Sample records for chaffeensis ankyrin protein

  1. Poxviral Ankyrin Proteins

    Directory of Open Access Journals (Sweden)

    Michael H. Herbert

    2015-02-01

    Full Text Available Multiple repeats of the ankyrin motif (ANK are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.

  2. Hacker Within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    Directory of Open Access Journals (Sweden)

    Taslima Taher Lina

    2016-05-01

    Full Text Available Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME, an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  3. The recombinant 120-kilodalton protein of Ehrlichia chaffeensis, a potential diagnostic tool.

    OpenAIRE

    Yu, X J; Crocquet-Valdes, P; Cullman, L C; Walker, D H

    1996-01-01

    DNA encoding two repeat units of 120-kDa protein of Ehrlichia chaffeensis was cloned into the expression vector pGEX and expressed in Escherichia coli. The sensitivity and specificity of a dot blot assay for detection of human antibodies with the recombinant protein were 86 and 100%, respectively, compared with an indirect immunofluorescence assay.

  4. Superfamily of ankyrin repeat proteins in tomato.

    Science.gov (United States)

    Yuan, Xiaowei; Zhang, Shizhong; Qing, Xiaohe; Sun, Meihong; Liu, Shiyang; Su, Hongyan; Shu, Huairui; Li, Xinzheng

    2013-07-10

    The ankyrin repeat (ANK) protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, no detailed information concerning this family is available for tomato (Solanum lycopersicum) due to the limited information on whole genome sequences. In this study, we identified a total of 130 ANK genes in tomato genome (SlANK), and these genes were distributed across all 12 chromosomes at various densities. And chromosomal localizations of SlANK genes indicated 25 SlANK genes were involved in tandem duplications. Based on their domain composition, all of the SlANK proteins were grouped into 13 subgroups. A combined phylogenetic tree was constructed with the aligned SlANK protein sequences. This tree revealed that the SlANK proteins comprise five major groups. An analysis of the expression profiles of SlANK genes in tomato in different tissues and in response to stresses showed that the SlANK proteins play roles in plant growth, development and stress responses. To our knowledge, this is the first report of a genome-wide analysis of the tomato ANK gene family. This study provides valuable information regarding the classification and putative functions of SlANK genes in tomato. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. Cardiac ankyrin repeat protein (CARP) expression in human and murine atherosclerotic lesions - Activin induces carp in smooth muscle cells

    NARCIS (Netherlands)

    de Waard, Vivian; van Achterberg, Tanja A. E.; Beauchamp, Nicholas J.; Pannekoek, Hans; de Vries, Carlie J. M.

    2003-01-01

    Objective-Cardiac ankyrin repeat protein (CARP) is a transcription factor-related protein that has been studied most extensively in the heart. In the present study, we investigated the expression and the potential function of CARP in human and murine atherosclerosis. Methods and Results-CARP

  6. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Hikaru [Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422 (Japan); Sakata, Keiko; Kusumi, Kensuke [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kojima, Mikiko; Sakakibara, Hitoshi [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Iba, Koh, E-mail: koibascb@kyushu-u.org [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  7. Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment.

    Science.gov (United States)

    Fréal, Amélie; Fassier, Coralie; Le Bras, Barbara; Bullier, Erika; De Gois, Stéphanie; Hazan, Jamilé; Hoogenraad, Casper C; Couraud, François

    2016-04-20

    The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding protein ankyrin-G is the master-organizer of the AIS. Microtubules and their interactors, particularly end-binding proteins (EBs), have emerged as potential key players in AIS formation. Here, we show that the longest isoform of ankyrin-G (480AnkG) selectively associates with EBs via its specific tail domain and that this interaction is crucial for AIS formation and neuronal polarity in cultured rodent hippocampal neurons. EBs are essential for 480AnkG localization and stabilization at the AIS, whereas 480AnkG is required for the specific accumulation of EBs in the proximal axon. Our findings thus provide a conceptual framework for understanding how the cooperative relationship between 480AnkG and EBs induces the assembly of microtubule-AIS structures in the proximal axon. Neuronal polarity is crucial for the proper function of neurons. The assembly of the axon initial segment (AIS), which is the hallmark of early neuronal polarization, relies on the longest 480 kDa ankyrin-G isoform. The microtubule cytoskeleton and its interacting proteins were suggested to be early key players in the process of AIS formation. In this study, we show that the crosstalk between 480 kDa ankyrin-G and the microtubule plus-end tracking proteins, EBs, at the proximal axon is decisive for AIS assembly and neuronal polarity. Our work thus provides insight into the functional mechanisms used by 480 kDa ankyrin-G to drive the AIS formation and thereby to establish neuronal polarity. Copyright © 2016 the authors 0270-6474/16/364421-13$15.00/0.

  8. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    OpenAIRE

    Lina, Taslima T.; Dunphy, Paige S.; Luo, Tian; McBride, Jere W.

    2016-01-01

    ABSTRACT Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E.?chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E.?chaffeensis, via the TRP120 effector, activat...

  9. Interaction of Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) with erythrocyte ankyrin R is required for its attachment to the erythrocyte membrane.

    Science.gov (United States)

    Weng, Haibo; Guo, Xinhua; Papoin, Julien; Wang, Jie; Coppel, Ross; Mohandas, Narla; An, Xiuli

    2014-01-01

    The malaria parasite Plasmodium falciparum exports a large number of proteins into the erythrocyte cytoplasm during the asexual intraerythrocytic stage of its life cycle. A subset of these proteins interacts with erythrocyte membrane skeletal proteins and grossly alters the structure and function of the membrane. Several of the exported proteins, such as PfEMP1, PfEMP3, RESA and KAHRP, interact with the preponderant erythrocyte skeleton protein, spectrin. Here we have searched for possible interaction of these four malaria proteins with another major erythrocyte skeleton protein, ankyrin R. We have shown that KAHRP, but none of the other three, binds to ankyrin R. We have mapped the binding site for ankyrin R to a 79-residue segment of the KAHRP sequence, and the reciprocal binding site for KAHRP in ankyrin R to a subdomain (D3) of the 89kDa ankyrin R membrane-binding domain. Interaction of intact ankyrin R with KAHRP was inhibited by the free D3 subdomain. When, moreover, red cells loaded with the soluble D3 subdomain were infected with P. falciparum, KAHRP secreted by the intraerythrocytic parasite no longer migrated to the host cell membrane, but remained diffusely distributed throughout the cytosol. Our findings suggest a potentially important role for interaction of KAHRP with red cell membrane skeleton in promoting the adhesion of malaria-infected red cells to endothelial surfaces, a central element in the pathophysiology of malaria. © 2013.

  10. CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics.

    Directory of Open Access Journals (Sweden)

    Andreas Schweizer

    2008-07-01

    Full Text Available Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins-high physical stability, specificity and low production costs-with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.

  11. Designed ankyrin repeat proteins: a new approach to mimic complex antigens for diagnostic purposes?

    Directory of Open Access Journals (Sweden)

    Stefanie Hausammann

    Full Text Available Inhibitory antibodies directed against coagulation factor VIII (FVIII can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.

  12. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Robert; Livanos, Maria; Bhavsar, Gaurav; Rashid, Mohammed; Miranda, Enrique; Tolner, Berend; Meyer, Tim; Chester, Kerry [UCL Cancer Institute, London (United Kingdom); Sosabowski, Jane; Leyton, Julius; Mather, Stephen [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom); Vigor, Kim [Clare Hall Laboratories, Biotherapeutics Development Unit, Cancer Research UK, South Mimms (United Kingdom); Nagy-Davidescu, Gabriela; Plueckthun, Andreas [Universitaet Zuerich, Biochemisches Institut, Zuerich (Switzerland); Yeung, Jenny [UCL Cancer Institute, London (United Kingdom); UCL Institute of Child Health, London (United Kingdom)

    2014-11-13

    Human epidermal growth factor receptor-2 (HER2) overexpression is a predictor of response to anti-HER2 therapy in breast and gastric cancer. Currently, HER2 status is assessed by tumour biopsy, but this may not be representative of the larger tumour mass or other metastatic sites, risking misclassification and selection of suboptimal therapy. The designed ankyrin repeat protein (DARPin) G3 binds HER2 with high affinity at an epitope that does not overlap with trastuzumab and is biologically inert. We hypothesized that radiolabelled DARPin G3 would be capable of selectively imaging HER2-positive tumours, and aimed to identify a suitable format for clinical application. G3 DARPins tagged with hexahistidine (His{sub 6}) or with histidine glutamate (HE){sub 3} and untagged G3 DARPins were manufactured using a GMP-compatible Pichia pastoris protocol and radiolabelled with {sup 125}I, or with {sup 111}In via DOTA linked to a C-terminal cysteine. BALB/c mice were injected with radiolabelled G3 and tissue biodistribution was evaluated by gamma counting. The lead construct ((HE){sub 3}-G3) was assessed in mice bearing HER2-positive human breast tumour (BT474) xenografts. For both isotopes, (HE){sub 3}-G3 had significantly lower liver uptake than His{sub 6}-G3 and untagged G3 counterparts in non-tumour-bearing mice, and there was no significantly different liver uptake between His{sub 6}-G3 and untagged G3. (HE){sub 3}-G3 was taken forward for evaluation in mice bearing HER2-positive tumour xenografts. The results demonstrated that radioactivity from {sup 111}In-(HE){sub 3}-G3 was better maintained in tumours and cleared faster from serum than radioactivity from {sup 125}I-(HE){sub 3}-G3, achieving superior tumour-to-blood ratios (343.7 ± 161.3 vs. 22.0 ± 11.3 at 24 h, respectively). On microSPECT/CT, {sup 111}In-labelled and {sup 125}I-labelled (HE){sub 3}-G3 could image HER2-positive tumours at 4 h after administration, but there was less normal tissue uptake of

  13. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging

    International Nuclear Information System (INIS)

    Goldstein, Robert; Livanos, Maria; Bhavsar, Gaurav; Rashid, Mohammed; Miranda, Enrique; Tolner, Berend; Meyer, Tim; Chester, Kerry; Sosabowski, Jane; Leyton, Julius; Mather, Stephen; Vigor, Kim; Nagy-Davidescu, Gabriela; Plueckthun, Andreas; Yeung, Jenny

    2015-01-01

    Human epidermal growth factor receptor-2 (HER2) overexpression is a predictor of response to anti-HER2 therapy in breast and gastric cancer. Currently, HER2 status is assessed by tumour biopsy, but this may not be representative of the larger tumour mass or other metastatic sites, risking misclassification and selection of suboptimal therapy. The designed ankyrin repeat protein (DARPin) G3 binds HER2 with high affinity at an epitope that does not overlap with trastuzumab and is biologically inert. We hypothesized that radiolabelled DARPin G3 would be capable of selectively imaging HER2-positive tumours, and aimed to identify a suitable format for clinical application. G3 DARPins tagged with hexahistidine (His 6 ) or with histidine glutamate (HE) 3 and untagged G3 DARPins were manufactured using a GMP-compatible Pichia pastoris protocol and radiolabelled with 125 I, or with 111 In via DOTA linked to a C-terminal cysteine. BALB/c mice were injected with radiolabelled G3 and tissue biodistribution was evaluated by gamma counting. The lead construct ((HE) 3 -G3) was assessed in mice bearing HER2-positive human breast tumour (BT474) xenografts. For both isotopes, (HE) 3 -G3 had significantly lower liver uptake than His 6 -G3 and untagged G3 counterparts in non-tumour-bearing mice, and there was no significantly different liver uptake between His 6 -G3 and untagged G3. (HE) 3 -G3 was taken forward for evaluation in mice bearing HER2-positive tumour xenografts. The results demonstrated that radioactivity from 111 In-(HE) 3 -G3 was better maintained in tumours and cleared faster from serum than radioactivity from 125 I-(HE) 3 -G3, achieving superior tumour-to-blood ratios (343.7 ± 161.3 vs. 22.0 ± 11.3 at 24 h, respectively). On microSPECT/CT, 111 In-labelled and 125 I-labelled (HE) 3 -G3 could image HER2-positive tumours at 4 h after administration, but there was less normal tissue uptake of radioactivity with 111 In-(HE) 3 -G3. Preadministration of trastuzumab did not

  14. Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase

    DEFF Research Database (Denmark)

    Andresen, Christina Aaen; Smedegaard, Stine; Sylvestersen, Kathrine Beck

    2014-01-01

    The Ankyrin and SOCS (Suppressor of Cytokine Signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting with 18 members in humans, the identity of the physiological targets of the Asb protei...

  15. Ankyrins: Roles in synaptic biology and pathology.

    Science.gov (United States)

    Smith, Katharine R; Penzes, Peter

    2018-05-03

    Ankyrins are broadly expressed adaptors that organize diverse membrane proteins into specialized domains and link them to the sub-membranous cytoskeleton. In neurons, ankyrins are known to have essential roles in organizing the axon initial segment and nodes of Ranvier. However, recent studies have revealed novel functions for ankyrins at synapses, where they organize and stabilize neurotransmitter receptors, modulate dendritic spine morphology and control adhesion to the presynaptic site. Ankyrin genes have also been highly associated with a range of neurodevelopmental and psychiatric diseases, including bipolar disorder, schizophrenia and autism, which all demonstrate overlap in their genetics, mechanisms and phenotypes. This review discusses the novel synaptic functions of ankyrin proteins in neurons, and places these exciting findings in the context of ANK genes as key neuropsychiatric disorder risk-factors. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2.

    Directory of Open Access Journals (Sweden)

    V Chandana Epa

    Full Text Available Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2. HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.

  17. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts.

    Science.gov (United States)

    Jaquemar, D; Schenker, T; Trueb, B

    1999-03-12

    We have identified a novel transformation-sensitive mRNA, which is present in cultured fibroblasts but is lacking in SV40 transformed cells as well as in many mesenchymal tumor cell lines. The corresponding gene is located on human chromosome 8 in band 8q13. The open reading frame of the mRNA encodes a protein of 1119 amino acids forming two distinct domains. The N-terminal domain consists of 18 repeats that are related to the cytoskeletal protein ankyrin. The C-terminal domain contains six putative transmembrane segments that resemble many ion channels. This overall structure is reminiscent of TRP-like proteins that function as store-operated calcium channels. The novel protein with an Mr of 130 kDa is expressed at a very low level in human fibroblasts and at a moderate level in liposarcoma cells. Overexpression in eukaryotic cells appears to interfere with normal growth, suggesting that it might play a direct or indirect role in signal transduction and growth control.

  18. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yao Song

    Full Text Available AIMS: It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS: We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION: CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.

  19. The Plasmodium falciparum exported protein PF3D7_0402000 binds to erythrocyte ankyrin and band 4.1

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, Bikash; Penn, Wesley D.; Nakayasu, Ernesto S.; Lacount, Douglas J.

    2017-09-01

    Plasmodium falciparum extensively modifies the infected red blood cell (RBC), resulting in changes in deformability, shape and surface properties. These alterations suggest that the RBC cytoskeleton is a major target for modification during infection. However, the molecular mechanisms leading to these changes are largely unknown. To begin to address this question, we screened for exported P. falciparum proteins that bound to the erythrocyte cytoskeleton proteins ankyrin 1 (ANK1) and band 4.1 (4.1R), which form critical interactions with other cytoskeletal proteins that contribute to the deformability and stability of RBCs. Yeast two-hybrid screens with ANK1 and 4.1R identified eight interactions with P. falciparum exported proteins, including an interaction between 4.1R and PF3D7_0402000 (PFD0090c). This interaction was first identified in a large-scale screen (Vignali et al., Malaria J, 7:211, 2008), which also reported an interaction between PF3D7_0402000 and ANK1. We confirmed the interactions of PF3D7_0402000 with 4.1R and ANK1 in pair-wise yeast two-hybrid and co-precipitation assays. In both cases, an intact PHIST domain in PF3D7_0402000 was required for binding. Complex purification followed by mass spectrometry analysis provided additional support for the interaction of PF3D7_0402000 with ANK1 and 4.1R. RBC ghost cells loaded with maltose-binding protein (MBP)-PF3D7_0402000 passed through a metal microsphere column less efficiently than mock- or MBP-loaded controls, consistent with an effect of PF3D7_0402000 on RBC rigidity or membrane stability. This study confirmed the interaction of PF3D7_0402000 with 4.1R in multiple independent assays, provided the first evidence that PF3D7_0402000 also binds to ANK1, and suggested that PF3D7_0402000 affects deformability or membrane stability of uninfected RBC ghosts.

  20. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    Directory of Open Access Journals (Sweden)

    Taslima T. Lina

    2016-07-01

    Full Text Available Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey. Significant differences in canonical Notch signaling gene expression levels (>40% were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2 and p38 mitogen-activated protein kinase (MAPK pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4 expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival.

  1. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 colocalizes with insulin receptor substrate 4 (IRS4 in the hypothalamic neurons and mediates IRS4 degradation

    Directory of Open Access Journals (Sweden)

    Xia Zefeng

    2011-09-01

    Full Text Available Abstract Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 is expressed in neuropeptide Y and proopiomelanocortin (POMC neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4 is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC and neuropeptide Y (NPY neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.

  2. The diversity and evolution of Wolbachia ankyrin repeat domain genes.

    Directory of Open Access Journals (Sweden)

    Stefanos Siozios

    Full Text Available Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.

  3. Expression of ankyrin repeat and suppressor of cytokine signaling box protein 4 (Asb-4) in proopiomelanocortin neurons of the arcuate nucleus of mice produces a hyperphagic, lean phenotype.

    Science.gov (United States)

    Li, Ji-Yao; Chai, Biao-Xin; Zhang, Weizhen; Wang, Hui; Mulholland, Michael W

    2010-01-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein 4 (Asb-4) is specifically expressed in the energy homeostasis-related brain areas and colocalizes with proopiomelanocortin (POMC) neurons of the arcuate nucleus (ARC). Injection of insulin into the third ventricle of the rat brain increased Asb-4 mRNA expression in the paraventricular nucleus but not in the ARC of the hypothalamus, whereas injection of leptin (ip) increased Asb-4 expression in both mouse paraventricular nucleus and ARC. A transgenic mouse in which Myc-tagged Asb-4 is specifically expressed in POMC neurons of the ARC was made and used to study the effects of Asb-4 on ingestive behavior and metabolic rate. Animals with overexpression of Asb-4 in POMC neurons demonstrated an increase in food intake. However, POMC-Asb-4 transgenic animals gained significantly less weight from 6-30 wk of age. The POMC-Asb-4 mice had reduced fat mass and increased lean mass and lower levels of blood leptin. The transgenic animals were resistant to high-fat diet-induced obesity. Transgenic mice had significantly higher rates of oxygen consumption and carbon dioxide production than wild-type mice during both light and dark periods. The locomotive activity of transgenic mice was increased. The overexpression of Asb-4 in POMC neurons increased POMC mRNA expression in the ARC. The transgenic animals had no observed effect on peripheral glucose metabolism and the activity of the autonomic nervous system. These results indicate that Asb-4 is a key regulatory protein in the central nervous system, involved in the control of feeding behavior and metabolic rate.

  4. Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum.

    Science.gov (United States)

    VieBrock, Lauren; Evans, Sean M; Beyer, Andrea R; Larson, Charles L; Beare, Paul A; Ge, Hong; Singh, Smita; Rodino, Kyle G; Heinzen, Robert A; Richards, Allen L; Carlyon, Jason A

    2014-01-01

    Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks' C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway.

  5. An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues.

    Science.gov (United States)

    Bennett, Vann; Lorenzo, Damaris N

    2016-01-01

    Ankyrins are membrane-associated proteins that together with their spectrin partners are responsible for micron-scale organization of vertebrate plasma membranes, including those of erythrocytes, excitable membranes of neurons and heart, lateral membrane domains of columnar epithelial cells, and striated muscle. Ankyrins coordinate functionally related membrane transporters and cell adhesion proteins (15 protein families identified so far) within plasma membrane compartments through independently evolved interactions of intrinsically disordered sequences with a highly conserved peptide-binding groove formed by the ANK repeat solenoid. Ankyrins are coupled to spectrins, which are elongated organelle-sized proteins that form mechanically resilient arrays through cross-linking by specialized actin filaments. In addition to protein interactions, cellular targeting and assembly of spectrin/ankyrin domains also critically depend on palmitoylation of ankyrin-G by aspartate-histidine-histidine-cysteine 5/8 palmitoyltransferases, as well as interaction of beta-2 spectrin with phosphoinositide lipids. These lipid-dependent spectrin/ankyrin domains are not static but are locally dynamic and determine membrane identity through opposing endocytosis of bulk lipids as well as specific proteins. A partnership between spectrin, ankyrin, and cell adhesion molecules first emerged in bilaterians over 500 million years ago. Ankyrin and spectrin may have been recruited to plasma membranes from more ancient roles in organelle transport. The basic bilaterian spectrin-ankyrin toolkit markedly expanded in vertebrates through gene duplications combined with variation in unstructured intramolecular regulatory sequences as well as independent evolution of ankyrin-binding activity by ion transporters involved in action potentials and calcium homeostasis. In addition, giant vertebrate ankyrins with specialized roles in axons acquired new coding sequences by exon shuffling. We speculate that

  6. MNF, an ankyrin repeat protein of myxoma virus, is part of a native cellular SCF complex during viral infection

    Directory of Open Access Journals (Sweden)

    Gelfi Jacqueline

    2010-03-01

    Full Text Available Abstract Myxoma virus (MYXV, a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus. Like all poxviruses, MYXV is known for encoding multiple proteins that regulate cellular signaling pathways. Among them, four proteins share the same ANK/PRANC structure: M148R, M149R, MNF (Myxoma Nuclear factor and M-T5, all of them described as virulence factors. This family of poxvirus proteins, recently identified, has drawn considerable attention for its potential role in modulating the host ubiquitin-proteasome system during viral infection. To date, many members of this novel protein family have been shown to interact with SCF components, in vitro. Here, we focus on MNF gene, which has been shown to express a nuclear protein presenting nine ANK repeats, one of which has been identified as a nuclear localization signal. In transfection, MNF has been shown to colocalise with the transcription factor NF-κB in the nucleus of TNFα-stimulated cells. Functionally, MNF is a critical virulence factor since its deletion generates an almost apathogenic virus. In this study, to pursue the investigation of proteins interacting with MNF and of its mechanism of action, we engineered a recombinant MYXV expressing a GFP-linked MNF under the control of MNF native promoter. Infection of rabbits with MYXV-GFPMNF recombinant virus provided the evidence that the GFP fusion does not disturb the main function of MNF. Hence, cells were infected with MYXV-GFPMNF and immunoprecipitation of the GFPMNF fusion protein was performed to identify MNF's partners. For the first time, endogenous components of SCF (Cullin-1 and Skp1 were co-precipitated with an ANK myxoma virus protein, expressed in an infectious context, and without over-expression of any protein.

  7. MNF, an ankyrin repeat protein of myxoma virus, is part of a native cellular SCF complex during viral infection

    Science.gov (United States)

    2010-01-01

    Myxoma virus (MYXV), a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus). Like all poxviruses, MYXV is known for encoding multiple proteins that regulate cellular signaling pathways. Among them, four proteins share the same ANK/PRANC structure: M148R, M149R, MNF (Myxoma Nuclear factor) and M-T5, all of them described as virulence factors. This family of poxvirus proteins, recently identified, has drawn considerable attention for its potential role in modulating the host ubiquitin-proteasome system during viral infection. To date, many members of this novel protein family have been shown to interact with SCF components, in vitro. Here, we focus on MNF gene, which has been shown to express a nuclear protein presenting nine ANK repeats, one of which has been identified as a nuclear localization signal. In transfection, MNF has been shown to colocalise with the transcription factor NF-κB in the nucleus of TNFα-stimulated cells. Functionally, MNF is a critical virulence factor since its deletion generates an almost apathogenic virus. In this study, to pursue the investigation of proteins interacting with MNF and of its mechanism of action, we engineered a recombinant MYXV expressing a GFP-linked MNF under the control of MNF native promoter. Infection of rabbits with MYXV-GFPMNF recombinant virus provided the evidence that the GFP fusion does not disturb the main function of MNF. Hence, cells were infected with MYXV-GFPMNF and immunoprecipitation of the GFPMNF fusion protein was performed to identify MNF's partners. For the first time, endogenous components of SCF (Cullin-1 and Skp1) were co-precipitated with an ANK myxoma virus protein, expressed in an infectious context, and without over-expression of any protein. PMID:20211013

  8. Cj1386 Is an Ankyrin-Containing Protein Involved in Heme Trafficking to Catalase in Campylobacter jejuni

    Science.gov (United States)

    Flint, Annika; Sun, Yi-Qian

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis. PMID:22081390

  9. Ankyrin domains across the Tree of Life

    Directory of Open Access Journals (Sweden)

    Kristin K. Jernigan

    2014-02-01

    Full Text Available Ankyrin (ANK repeats are one of the most common amino acid sequence motifs that mediate interactions between proteins of myriad sizes, shapes and functions. We assess their widespread abundance in Bacteria and Archaea for the first time and demonstrate in Bacteria that lifestyle, rather than phylogenetic history, is a predictor of ANK repeat abundance. Unrelated organisms that forge facultative and obligate symbioses with eukaryotes show enrichment for ANK repeats in comparison to free-living bacteria. The reduced genomes of obligate intracellular bacteria remarkably contain a higher fraction of ANK repeat proteins than other lifestyles, and the number of ANK repeats in each protein is augmented in comparison to other bacteria. Taken together, these results reevaluate the concept that ANK repeats are signature features of eukaryotic proteins and support the hypothesis that intracellular bacteria broadly employ ANK repeats for structure-function relationships with the eukaryotic host cell.

  10. NNDSS - Table II. Ehrlichiosis and Anaplasmosis, Anaplasma phagocytophilum infection to Ehrlichia chaffeensis infection

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Ehrlichiosis and Anaplasmosis, Anaplasma phagocytophilum infection to Ehrlichia chaffeensis infection - 2018. In this Table, provisional cases of...

  11. Novel interactions of ankyrins-G at the costameres: The muscle-specific Obscurin/Titin-Binding-related Domain (OTBD) binds plectin and filamin C

    International Nuclear Information System (INIS)

    Maiweilidan, Yimingjiang; Klauza, Izabela; Kordeli, Ekaterini

    2011-01-01

    Ankyrins, the adapters of the spectrin skeleton, are involved in local accumulation and stabilization of integral proteins to the appropriate membrane domains. In striated muscle, tissue-dependent alternative splicing generates unique Ank3 gene products (ankyrins-G); they share the Obscurin/Titin-Binding-related Domain (OTBD), a muscle-specific insert of the C-terminal domain which is highly conserved among ankyrin genes, and binds obscurin and titin to Ank1 gene products. We previously proposed that OTBD sequences constitute a novel domain of protein-protein interactions which confers ankyrins with specific cellular functions in muscle. Here we searched for muscle proteins binding to ankyrin-G OTBD by yeast two hybrid assay, and we found plectin and filamin C, two organizing elements of the cytoskeleton with essential roles in myogenesis, muscle cell cytoarchitecture, and muscle disease. The three proteins coimmunoprecipitate from skeletal muscle extracts and colocalize at costameres in adult muscle fibers. During in vitro myogenesis, muscle ankyrins-G are first expressed in postmitotic myocytes undergoing fusion to myotubes. In western blots of subcellular fractions from C2C12 cells, the majority of muscle ankyrins-G appear associated with membrane compartments. Occasional but not extensive co-localization at nascent costameres suggested that ankyrin-G interactions with plectin and filamin C are not involved in costamere assembly; they would rather reinforce stability and/or modulate molecular interactions in sarcolemma microdomains by establishing novel links between muscle-specific ankyrins-G and the two costameric dystrophin-associated glycoprotein and integrin-based protein complexes. These results report the first protein-protein interactions involving the ankyrin-G OTBD domain and support the hypothesis that OTBD sequences confer ankyrins with a gain of function in vertebrates, bringing further consolidation and resilience of the linkage between sarcomeres

  12. Ehrlichia chaffeensis infection in the reservoir host (white-tailed deer and in an incidental host (dog is impacted by its prior growth in macrophage and tick cell environments.

    Directory of Open Access Journals (Sweden)

    Arathy D S Nair

    Full Text Available Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.

  13. Seroprevalence of Ehrlichia canis, Ehrlichia chaffeensis and Ehrlichia ewingii in dogs in North America

    Directory of Open Access Journals (Sweden)

    Beall Melissa J

    2012-02-01

    Full Text Available Abstract Background This study evaluated the exposure of dogs to three different Ehrlichia spp. in the south and central regions of the United States where vector-borne disease prevalence has been previously difficult to ascertain, particularly beyond the metropolitan areas. Methods Dog blood samples (n = 8,662 were submitted from 14 veterinary colleges, 6 private veterinary practices and 4 diagnostic laboratories across this region. Samples were tested for E. canis, E. chaffeensis and E. ewingii specific antibodies using peptide microtiter ELISAs. Results Overall, E. canis, E. chaffeensis and E. ewingii seroprevalence was 0.8%, 2.8%, and 5.1%, respectively. The highest E. canis seroprevalence (2.3% was found in a region encompassing Arkansas, Louisiana, Oklahoma, Tennessee and Texas. E. chaffeensis seroreactivity was 6.6% in the central region (Arkansas, Kansas, Missouri, and Oklahoma and 4.6% in the southeast region (Georgia, Maryland, North Carolina, South Carolina, Tennessee and Virginia. Seroreactivity to E. ewingii was also highest in the central region (14.6% followed by the southeast region (5.9%. The geospatial pattern derived from E. chaffeensis and E. ewingii seropositive samples was similar to previous reports based on E. chaffeensis seroreactivity in white-tailed deer and the distribution of human monocytic ehrlichiosis (HME cases reported by the CDC. Conclusions The results of this study provide the first large scale regional documentation of exposure to E. canis, E. chaffeensis and E. ewingii in pet dogs, highlighting regional differences in seroprevalence and providing the basis for heightened awareness of these emerging vector-borne pathogens by veterinarians and public health agencies.

  14. Comparative Experimental Infection Study in Dogs with Ehrlichia canis, E. chaffeensis, Anaplasma platys and A. phagocytophilum.

    Science.gov (United States)

    Nair, Arathy D S; Cheng, Chuanmin; Ganta, Chanran K; Sanderson, Michael W; Alleman, Arthur R; Munderloh, Ulrike G; Ganta, Roman R

    2016-01-01

    Dogs acquire infections with the Anaplasmataceae family pathogens, E. canis, E. chaffeensis, E. ewingii, A. platys and A. phagocytophilum mostly during summer months when ticks are actively feeding on animals. These pathogens are also identified as causing diseases in people. Despite the long history of tick-borne diseases in dogs, much remains to be defined pertaining to the clinical and pathological outcomes of infections with these pathogens. In the current study, we performed experimental infections in dogs with E. canis, E. chaffeensis, A. platys and A. phagocytophilum. Animals were monitored for 42 days to evaluate infection-specific clinical, hematological and pathological differences. All four pathogens caused systemic persistent infections detectible throughout the 6 weeks of infection assessment. Fever was frequently detected in animals infected with E. canis, E. chaffeensis, and A. platys, but not in dogs infected with A. phagocytophilum. Hematological differences were evident in all four infected groups, although significant overlap existed between the groups. A marked reduction in packed cell volume that correlated with reduced erythrocytes and hemoglobin was observed only in E. canis infected animals. A decline in platelet numbers was common with E. canis, A. platys and A. phagocytophilum infections. Histopathological lesions in lung, liver and spleen were observed in all four groups of infected dogs; infection with E. canis had the highest pathological scores, followed by E. chaffeensis, then A. platys and A. phagocytophilum. All four pathogens induced IgG responses starting on day 7 post infection, which was predominantly comprised of IgG2 subclass antibodies. This is the first detailed investigation comparing the infection progression and host responses in dogs after inoculation with four pathogens belonging to the Anaplasmataceae family. The study revealed a significant overlap in clinical, hematological and pathological changes resulting from the

  15. Solution NMR Structures of Oxidized and Reduced Ehrlichia chaffeensis thioredoxin: NMR-Invisible Structure Owing to Backbone Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Hewitt, Stephen N.; Van Voorhis, Wesley C.; Myler, Peter J.

    2018-01-02

    Thioredoxins (Trxs) are small ubiquitous proteins that participate in a diverse variety of redox reactions via the reversible oxidation of two cysteine thiol groups in a structurally conserved active site, CGPC. Here, we describe the NMR solution structures of a Trx from Ehrlichia chaffeensis (Ec-Trx, ECH_0218), the etiological agent responsible for human monocytic ehrlichiosis, in both the oxidized and reduced states. The overall topology of the calculated structures is similar in both redox states and similar to other Trx structures, a five-strand, mixed -sheet (1:3:2:4:5) surrounded by four -helices. Unlike other Trxs studied by NMR in both redox states, the 1H-15N HSQC spectra of reduced Ec-Trx was missing eight amide cross peaks relative to the spectra of oxidized Ec-Trx. These missing amides correspond to residues C32-E39 in the active site containing helix (2) and S72-I75 in a loop near the active site and suggest a substantial change in the backbone dynamics associated with the formation of an intramolecular C32-C35 disulfide bond.

  16. Detection of Ehrlichia chaffeensis in adult and nymphal stage lone star ticks (Amblyomma americanum) from Long Island, New York

    Science.gov (United States)

    Mixson, T.R.; Ginsberg, H.S.; Campbell, S.R.; Sumner, J.W.; Paddock, C.D.

    2004-01-01

    The lone star tick, Amblyomma americanum (L.), has increased in abundance in several regions of the northeastern United States, including areas of Long Island, NY. Adult and nymphal stage A. americanum collected from several sites on Long Island were evaluated for infection with Ehrlichia chaffeensis, the causative agent of human monocytic ehrlichiosis (HME), by using a nested polymerase chain reaction assay. Fifty-nine (12.5%) of ,17.3 adults and eight of 11.3 pools of five nymphs each (estimated minimum prevalence of infection 1.4%) contained DNA of E. chaffeensis. These data, coupled with the documented expansion of lone star tick populations in the northeastern United States, confirm that E. chaffeensis is endemic to many areas of Long Island and that HME should be considered among the differential diagnoses of the many distinct tick-borne diseases that occur in this region.

  17. Ankyrin-1 Gene Exhibits Allelic Heterogeneity in Conferring Protection Against Malaria

    Directory of Open Access Journals (Sweden)

    Hong Ming Huang

    2017-09-01

    Full Text Available Allelic heterogeneity is a common phenomenon where a gene exhibits a different phenotype depending on the nature of its genetic mutations. In the context of genes affecting malaria susceptibility, it allowed us to explore and understand the intricate host–parasite interactions during malaria infections. In this study, we described a gene encoding erythrocytic ankyrin-1 (Ank-1 which exhibits allelic-dependent heterogeneous phenotypes during malaria infections. We conducted an ENU mutagenesis screen on mice and identified two Ank-1 mutations, one resulting in an amino acid substitution (MRI95845, and the other a truncated Ank-1 protein (MRI96570. Both mutations caused hereditary spherocytosis-like phenotypes and confer differing protection against Plasmodium chabaudi infections. Upon further examination, the Ank-1(MRI96570 mutation was found to inhibit intraerythrocytic parasite maturation, whereas Ank-1(MRI95845 caused increased bystander erythrocyte clearance during infection. This is the first description of allelic heterogeneity in ankyrin-1 from the direct comparison between two Ank-1 mutations. Despite the lack of direct evidence from population studies, this data further supported the protective roles of ankyrin-1 mutations in conferring malaria protection. This study also emphasized the importance of such phenomena in achieving a better understanding of host–parasite interactions, which could be the basis of future studies.

  18. Contribution of ankyrin-band 3 complexes to the organization and mechanical properties of the membrane skeleton of human erythrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Shen, B.W. [Argonne National Lab., IL (United States). Biological and Medical Research Div.

    1995-02-01

    To understand the role of ankyrin-band 3 complexes in the organization of the spectrin-based membrane skeleton and its contribution to the mechanical properties of human erythrocytes, intact skeletons and single-layered skeleton leaflets were prepared from intact and physically sheared membrane ghosts, expanded in low salt buffer, and examined by transmission electron microscopy. While the structures of intact skeletons and single-layered skeleton leaflets shared many common features, including rigid junctional complexes of spectrin, actin, and band 4.1; short stretches ({approximately}50 {angstrom}) of flexible spectrin filaments; and globular masses of ankyrin-band 3 complexes situated close to the middle of the spectrin filaments, the definition of structural units in the intact skeleton is obscured by the superposition of the two layers. However, the spatial disposition of structural elements can be clearly defined in the images of the single-layered skeleton leaflets. Partially expanded skeletal leaflets contain conglomerates of ankyrin-band 3 complexes arranged in a circular or clove-leaf configuration that straddles multiple strands of thick spectrin cables, presumably reflecting the association of ankyrin-band 3 complexes on neighboring spectrin tetramers as well as the lateral association of the spectrin filaments. Hyperexpansion of the skeleton leaflets led to dissociation of the conglomerates of ankyrin-band 3 complexes, full-extension of the spectrin tetramers, and separation of the individual strands of spectrin tetramers. Clearly defined stands of spectrin tetramers in the hyperexpanded single-layered skeletal leaflets often contained two sets of globular protein masses that divided the spectrin tetramers into three segments of approximately equal length.

  19. Phosphorylation of the Transient Receptor Potential Ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception

    OpenAIRE

    Hall, Bradford E.; Prochazkova, Michaela; Sapio, Matthew R.; Minetos, Paul; Kurochkina, Natalya; Binukumar, B. K.; Amin, Niranjana D.; Terse, Anita; Joseph, John; Raithel, Stephen J.; Mannes, Andrew J.; Pant, Harish C.; Chung, Man-Kyo; Iadarola, Michael J.; Kulkarni, Ashok B.

    2018-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase that is upregulated during inflammation, and can subsequently modulate sensitivity to nociceptive stimuli. We conducted an in silico screen for Cdk5 phosphorylation sites within proteins whose expression was enriched in nociceptors and identified the chemo-responsive ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) as a possible Cdk5 substrate. Immunoprecipitated full length TRPA1 was shown to be phosphorylated by Cdk5 and th...

  20. Structural analyses of the Ankyrin Repeat Domain of TRPV6 and related TRPV ion channels†‡

    OpenAIRE

    Phelps, Christopher B.; Huang, Robert J.; Lishko, Polina V.; Wang, Ruiqi R.; Gaudet, Rachelle

    2008-01-01

    Transient Receptor Potential (TRP) proteins are cation channels composed of a transmembrane domain flanked by large N- and C-terminal cytoplasmic domains. All members of the vanilloid family of TRP channels (TRPV) possess an N-terminal ankyrin repeat domain (ARD). The ARD of mammalian TRPV6, an important regulator of calcium uptake and homeostasis, is essential for channel assembly and regulation. The 1.7 Å crystal structure of the TRPV6-ARD reveals conserved structural elements unique to the...

  1. Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host.

    Directory of Open Access Journals (Sweden)

    Jodi L McGill

    Full Text Available Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.

  2. Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: Determination of the roles of spacing, orientation, and enzyme identity.

    Science.gov (United States)

    Cunha, Eva S; Hatem, Christine L; Barrick, Doug

    2016-08-01

    Biomass deconstruction to small simple sugars is a potential approach to biofuels production; however, the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large-scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high-yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyperstable α-helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N-terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. Proteins 2016; 84:1043-1054. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Structural Basis for Substrate Recognition by the Ankyrin Repeat Domain of Human DHHC17 Palmitoyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Verardi, Raffaello; Kim, Jin-Sik; Ghirlando, Rodolfo; Banerjee, Anirban

    2017-09-01

    DHHC enzymes catalyze palmitoylation, a major post-translational modification that regulates a number of key cellular processes. There are up to 24 DHHCs in mammals and hundreds of substrate proteins that get palmitoylated. However, how DHHC enzymes engage with their substrates is still poorly understood. There is currently no structural information about the interaction between any DHHC enzyme and protein substrates. In this study we have investigated the structural and thermodynamic bases of interaction between the ankyrin repeat domain of human DHHC17 (ANK17) and Snap25b. We solved a high-resolution crystal structure of the complex between ANK17 and a peptide fragment of Snap25b. Through structure-guided mutagenesis, we discovered key residues in DHHC17 that are critically important for interaction with Snap25b. We further extended our finding by showing that the same residues are also crucial for the interaction of DHHC17 with Huntingtin, one of its most physiologically relevant substrates.

  4. Behavioural characterization of AnkyrinG deficient mice, a model for ANK3 related disorders

    NARCIS (Netherlands)

    van der Werf, I. M.; van Dam, D.; Missault, S.; Yalcin, B.; De Deyn, P. P.; Vandeweyer, G.; Kooy, R. Frank

    2017-01-01

    ANK3 encodes AnkyrinG (AnkG), a member of the Ankyrin family that is expressed in several different isoforms in many tissues. A unique serine-rich domain and tail domain in the two largest isoforms of AnkG (270 and 480 kDa), restrict AnkG to the axon initial segment and nodes of Ranvier of

  5. In Vitro Activities of Telithromycin (HMR 3647) against Rickettsia rickettsii, Rickettsia conorii, Rickettsia africae, Rickettsia typhi, Rickettsia prowazekii, Coxiella burnetii, Bartonella henselae, Bartonella quintana, Bartonella bacilliformis, and Ehrlichia chaffeensis

    OpenAIRE

    Rolain, Jean-Marc; Maurin, Max; Bryskier, André; Raoult, Didier

    2000-01-01

    In vitro activities of telithromycin compared to those of erythromycin against Rickettsia spp., Bartonella spp., Coxiella burnetii, and Ehrlichia chaffeensis were determined. Telithromycin was more active than erythromycin against Rickettsia, Bartonella, and Coxiella burnetii, with MICs of 0.5 μg/ml, 0.003 to 0.015 μg/ml, and 1 μg/ml, respectively, but was inactive against Ehrlichia chaffeensis.

  6. Ankyrin G expression is associated with androgen receptor stability, invasiveness, and lethal outcome in prostate cancer patients.

    Science.gov (United States)

    Wang, Tingting; Abou-Ouf, Hatem; Hegazy, Samar A; Alshalalfa, Mohammed; Stoletov, Konstantin; Lewis, John; Donnelly, Bryan; Bismar, Tarek A

    2016-12-01

    Ankyrin G (ANK3) is a member of the Ankyrin family, which functions to provide cellular stability by anchoring the cytoskeleton to the plasma membrane. Deregulation of ANK3 expression has been observed in multiple human cancers but its mechanism remains unknown. ANK3 expression in relation to disease progression and patients' outcome was investigated in two cohorts of prostate cancer (PCA). Mechanistic studies were carried out in vitro and in vivo using several PCA cell lines and the avian embryo model. Silencing ANK3 resulted in significant reduction of cell proliferation through an AR-independent mechanism. Decreased ANK3 expression delayed S phase to G2/M cell cycle transition and reduced the expression of cyclins A and B. However, cells with knocked-down ANK3 exhibited significant increase in cell invasion through an AR-dependent mechanism. Furthermore, we found that ANK3 is a regulator of AR protein stability. ANK3 knockdown also promoted cancer cell invasion and extravasations in vivo using the avian embryo model (p cancer tissues was correlated with better cancer-specific survival of PCA patients (p = 0.012). Silencing ANK3 results in significant reduction of cell proliferation through an AR-independent mechanism. ANK3 knockdown results in significant increase in cell invasion through an AR-dependent mechanism. ANK3 is a regulator of AR protein stability. ANK3 knockdown also promotes cancer cell invasion and extravasation in vivo using the avian embryo model.

  7. The expression of one ankyrin pk2 allele of the WO prophage is correlated with the Wolbachia feminizing effect in isopods

    Directory of Open Access Journals (Sweden)

    Pichon Samuel

    2012-04-01

    Full Text Available Abstract Background The maternally inherited α-Proteobacteria Wolbachia pipientis is an obligate endosymbiont of nematodes and arthropods, in which they induce a variety of reproductive alterations, including Cytoplasmic Incompatibility (CI and feminization. The genome of the feminizing wVulC Wolbachia strain harboured by the isopod Armadillidium vulgare has been sequenced and is now at the final assembly step. It contains an unusually high number of ankyrin motif-containing genes, two of which are homologous to the phage-related pk1 and pk2 genes thought to contribute to the CI phenotype in Culex pipiens. These genes encode putative bacterial effectors mediating Wolbachia-host protein-protein interactions via their ankyrin motifs. Results To test whether these Wolbachia homologs are potentially involved in altering terrestrial isopod reproduction, we determined the distribution and expression of both pk1 and pk2 genes in the 3 Wolbachia strains that induce CI and in 5 inducing feminization of their isopod hosts. Aside from the genes being highly conserved, we found a substantial copy number variation among strains, and that is linked to prophage diversity. Transcriptional analyses revealed expression of one pk2 allele (pk2b2 only in the feminizing Wolbachia strains of isopods. Conclusions These results reveal the need to investigate the functions of Wolbachia ankyrin gene products, in particular those of Pk2, and their host targets with respect to host sex manipulation.

  8. Characterization of a novel gene encoding ankyrin repeat domain from Cotesia vestalis polydnavirus (CvBV)

    International Nuclear Information System (INIS)

    Shi Min; Chen Yafeng; Huang Fang; Liu Pengcheng; Zhou Xueping; Chen Xuexin

    2008-01-01

    Cotesia vestalis (Haliday) is an endoparasitoid of Plutella xylostella (L.) larvae and injects a polydnavirus (CvBV) into its host during oviposition. In this report we describe the characterization of a gene (CvBV805) and its products. CvBV805 is located on the segment S8 of CvBV genome; it has a size of 909 bp and encodes a predicted protein of 125 amino acids. This protein contains an ankyrin repeat domain with a high degree of similarity with IκB-like genes. Gene transcripts were detected in extracts of the host as early as 2 h post-parasitization (p.p.) and continued to be detected through 24 h. Tissue-specific expression patterns showed that CvBV805 might be involved in early host immunosuppression. CvBV805 was detected in parasitized hosts at 12 h p.p. and in rBac-eGFP-CvBV805-infected Tn-5B1-4 cells at 72 h.p.i. by using western blots analysis. The size of the protein expressed in the host hemocytes and infected Tn-5B1-4 cells was 17 kDa and 56 kDa (including eGFP), respectively, which nearly corresponded with the predicted molecular weight (14.31 kDa) of CvBV805, suggesting that the protein did not undergo extensive post-translational modification. The protein was confirmed to be present within the nuclear region in hemocytes of the parasitized P. xylostella larvae at 48 h p.p. using confocal laser scanning microscopy

  9. Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available We report identification of an ankyrin-B-based macromolecular complex of Na/K ATPase (alpha 1 and alpha 2 isoforms, Na/Ca exchanger 1, and InsP3 receptor that is localized in cardiomyocyte T-tubules in discrete microdomains distinct from classic dihydropyridine receptor/ryanodine receptor "dyads." E1425G mutation of ankyrin-B, which causes human cardiac arrhythmia, also blocks binding of ankyrin-B to all three components of the complex. The ankyrin-B complex is markedly reduced in adult ankyrin-B(+/- cardiomyocytes, which may explain elevated [Ca2+]i transients in these cells. Thus, loss of the ankyrin-B complex provides a molecular basis for cardiac arrhythmia in humans and mice. T-tubule-associated ankyrin-B, Na/Ca exchanger, and Na/K ATPase are not present in skeletal muscle, where ankyrin-B is expressed at 10-fold lower levels than in heart. Ankyrin-B also is not abundantly expressed in smooth muscle. We propose that the ankyrin-B-based complex is a specialized adaptation of cardiomyocytes with a role for cytosolic Ca2+ modulation.

  10. Loss of Transient Receptor Potential Ankyrin 1 Channel Deregulates Emotion, Learning and Memory, Cognition, and Social Behavior in Mice.

    Science.gov (United States)

    Lee, Kuan-I; Lin, Hui-Ching; Lee, Hsueh-Te; Tsai, Feng-Chuan; Lee, Tzong-Shyuan

    2017-07-01

    The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that helps regulate inflammatory pain sensation and nociception and the development of inflammatory diseases. However, the potential role of the TRPA1 channel and the underlying mechanism in brain functions are not fully resolved. In this study, we demonstrated that genetic deletion of the TRPA1 channel in mice or pharmacological inhibition of its activity increased neurite outgrowth. In vivo study in mice provided evidence of the TRPA1 channel as a negative regulator in hippocampal functions; functional ablation of the TRPA1 channel in mice enhanced hippocampal functions, as evidenced by less anxiety-like behavior, and enhanced fear-related or spatial learning and memory, and novel location recognition as well as social interactions. However, the TRPA1 channel appears to be a prerequisite for motor function; functional loss of the TRPA1 channel in mice led to axonal bundle fragmentation, downregulation of myelin basic protein, and decreased mature oligodendrocyte population in the brain, for impaired motor function. The TRPA1 channel may play a crucial role in neuronal development and oligodendrocyte maturation and be a potential regulator in emotion, cognition, learning and memory, and social behavior.

  11. A novel ENU-mutation in ankyrin-1 disrupts malaria parasite maturation in red blood cells of mice.

    Directory of Open Access Journals (Sweden)

    Andreas Greth

    Full Text Available The blood stage of the plasmodium parasite life cycle is responsible for the clinical symptoms of malaria. Epidemiological studies have identified coincidental malarial endemicity and multiple red blood cell (RBC disorders. Many RBC disorders result from mutations in genes encoding cytoskeletal proteins and these are associated with increased protection against malarial infections. However the mechanisms underpinning these genetic, host responses remain obscure. We have performed an N-ethyl-N-nitrosourea (ENU mutagenesis screen and have identified a novel dominant (haploinsufficient mutation in the Ank-1 gene (Ank1(MRI23420 of mice displaying hereditary spherocytosis (HS. Female mice, heterozygous for the Ank-1 mutation showed increased survival to infection by Plasmodium chabaudi adami DS with a concomitant 30% decrease in parasitemia compared to wild-type, isogenic mice (wt. A comparative in vivo red cell invasion and parasite growth assay showed a RBC-autonomous effect characterised by decreased proportion of infected heterozygous RBCs. Within approximately 6-8 hours post-invasion, TUNEL staining of intraerythrocytic parasites, showed a significant increase in dead parasites in heterozygotes. This was especially notable at the ring and trophozoite stages in the blood of infected heterozygous mutant mice compared to wt (p<0.05. We conclude that increased malaria resistance due to ankyrin-1 deficiency is caused by the intraerythrocytic death of P. chabaudi parasites.

  12. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain.

    Science.gov (United States)

    Moparthi, Lavanya; Survery, Sabeen; Kreir, Mohamed; Simonsen, Charlotte; Kjellbom, Per; Högestätt, Edward D; Johanson, Urban; Zygmunt, Peter M

    2014-11-25

    We have purified and reconstituted human transient receptor potential (TRP) subtype A1 (hTRPA1) into lipid bilayers and recorded single-channel currents to understand its inherent thermo- and chemosensory properties as well as the role of the ankyrin repeat domain (ARD) of the N terminus in channel behavior. We report that hTRPA1 with and without its N-terminal ARD (Δ1-688 hTRPA1) is intrinsically cold-sensitive, and thus, cold-sensing properties of hTRPA1 reside outside the N-terminal ARD. We show activation of hTRPA1 by the thiol oxidant 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin) and that electrophilic compounds activate hTRPA1 in the presence and absence of the N-terminal ARD. The nonelectrophilic compounds menthol and the cannabinoid Δ(9)-tetrahydrocannabiorcol (C16) directly activate hTRPA1 at different sites independent of the N-terminal ARD. The TRPA1 antagonist HC030031 inhibited cold and chemical activation of hTRPA1 and Δ1-688 hTRPA1, supporting a direct interaction with hTRPA1 outside the N-terminal ARD. These findings show that hTRPA1 is an intrinsically cold- and chemosensitive ion channel. Thus, second messengers, including Ca(2+), or accessory proteins are not needed for hTRPA1 responses to cold or chemical activators. We suggest that conformational changes outside the N-terminal ARD by cold, electrophiles, and nonelectrophiles are important in hTRPA1 channel gating and that targeting chemical interaction sites outside the N-terminal ARD provides possibilities to fine tune TRPA1-based drug therapies (e.g., for treatment of pain associated with cold hypersensitivity and cardiovascular disease).

  13. Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain

    Czech Academy of Sciences Publication Activity Database

    Zayats, Vasilina; Samad, Abdul; Minofar, Babak; Roelofs, K. E.; Stockner, T.; Ettrich, Rüdiger

    2012-01-01

    Roč. 19, č. 11 (2012), s. 4689-4700 ISSN 1610-2940 R&D Projects: GA ČR GAP207/10/1934 Institutional research plan: CEZ:AV0Z60870520 Keywords : ankyrin repeat * EF-hand * familial episodic pain syndrom * TRPA1 Subject RIV: CE - Biochemistry Impact factor: 1.984, year: 2012

  14. The human ankyrin 1 promoter insulator sustains gene expression in a β-globin lentiviral vector in hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Zulema Romero

    Full Text Available Lentiviral vectors designed for the treatment of the hemoglobinopathies require the inclusion of regulatory and strong enhancer elements to achieve sufficient expression of the β-globin transgene. Despite the inclusion of these elements, the efficacy of these vectors may be limited by transgene silencing due to the genomic environment surrounding the integration site. Barrier insulators can be used to give more consistent expression and resist silencing even with lower vector copies. Here, the barrier activity of an insulator element from the human ankyrin-1 gene was analyzed in a lentiviral vector carrying an antisickling human β-globin gene. Inclusion of a single copy of the Ankyrin insulator did not affect viral titer, and improved the consistency of expression from the vector in murine erythroleukemia cells. The presence of the Ankyrin insulator element did not change transgene expression in human hematopoietic cells in short-term erythroid culture or in vivo in primary murine transplants. However, analysis in secondary recipients showed that the lentiviral vector with the Ankyrin element preserved transgene expression, whereas expression from the vector lacking the Ankyrin insulator decreased in secondary recipients. These studies demonstrate that the Ankyrin insulator may improve long-term β-globin expression in hematopoietic stem cells for gene therapy of hemoglobinopathies.

  15. Regulatory polymorphisms in the bovine Ankyrin 1 gene promoter are associated with tenderness and intra-muscular fat content

    LENUS (Irish Health Repository)

    Aslan, Ozlem

    2010-12-15

    Abstract Background Recent QTL and gene expression studies have highlighted ankyrins as positional and functional candidate genes for meat quality. Our objective was to characterise the promoter region of the bovine ankyrin 1 gene and to test polymorphisms for association with sensory and technological meat quality measures. Results Seven novel promoter SNPs were identified in a 1.11 kb region of the ankyrin 1 promoter in Angus, Charolais and Limousin bulls (n = 15 per breed) as well as 141 crossbred beef animals for which meat quality data was available. Eighteen haplotypes were inferred with significant breed variation in haplotype frequencies. The five most frequent SNPs and the four most frequent haplotypes were subsequently tested for association with sensory and technological measures of meat quality in the crossbred population. SNP1, SNP3 and SNP4 (which were subsequently designated regulatory SNPs) and SNP5 were associated with traits that contribute to sensorial and technological measurements of tenderness and texture; Haplotype 1 and haplotype 4 were oppositely correlated with traits contributing to tenderness (P < 0.05). While no single SNP was associated with intramuscular fat (IMF), a clear association with increased IMF and juiciness was observed for haplotype 2. Conclusion The conclusion from this study is that alleles defining haplotypes 2 and 4 could usefully contribute to marker SNP panels used to select individuals with improved IMF\\/juiciness or tenderness in a genome-assisted selection framework.

  16. Regulatory polymorphisms in the bovine Ankyrin 1 gene promoter are associated with tenderness and intramuscular fat content

    Directory of Open Access Journals (Sweden)

    Sweeney Torres

    2010-12-01

    Full Text Available Abstract Background Recent QTL and gene expression studies have highlighted ankyrins as positional and functional candidate genes for meat quality. Our objective was to characterise the promoter region of the bovine ankyrin 1 gene and to test polymorphisms for association with sensory and technological meat quality measures. Results Seven novel promoter SNPs were identified in a 1.11 kb region of the ankyrin 1 promoter in Angus, Charolais and Limousin bulls (n = 15 per breed as well as 141 crossbred beef animals for which meat quality data was available. Eighteen haplotypes were inferred with significant breed variation in haplotype frequencies. The five most frequent SNPs and the four most frequent haplotypes were subsequently tested for association with sensory and technological measures of meat quality in the crossbred population. SNP1, SNP3 and SNP4 (which were subsequently designated regulatory SNPs and SNP5 were associated with traits that contribute to sensorial and technological measurements of tenderness and texture; Haplotype 1 and haplotype 4 were oppositely correlated with traits contributing to tenderness (P Conclusion The conclusion from this study is that alleles defining haplotypes 2 and 4 could usefully contribute to marker SNP panels used to select individuals with improved IMF/juiciness or tenderness in a genome-assisted selection framework.

  17. Ideal crop plant architecture is mediated by tassels replace upper ears1, a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1.

    Science.gov (United States)

    Dong, Zhaobin; Li, Wei; Unger-Wallace, Erica; Yang, Jinliang; Vollbrecht, Erik; Chuck, George

    2017-10-10

    Axillary branch suppression is a favorable trait bred into many domesticated crop plants including maize compared with its highly branched wild ancestor teosinte. Branch suppression in maize was achieved through selection of a gain of function allele of the teosinte branched1 (tb1) transcription factor that acts as a repressor of axillary bud growth. Previous work indicated that other loci may function epistatically with tb1 and may be responsible for some of its phenotypic effects. Here, we show that tb1 mediates axillary branch suppression through direct activation of the tassels replace upper ears1 ( tru1 ) gene that encodes an ankyrin repeat domain protein containing a BTB/POZ motif necessary for protein-protein interactions. The expression of TRU1 and TB1 overlap in axillary buds, and TB1 binds to two locations in the tru1 gene as shown by chromatin immunoprecipitation and gel shifts. In addition, nucleotide diversity surveys indicate that tru1 , like tb1 , was a target of selection. In modern maize, TRU1 is highly expressed in the leaf trace vasculature of axillary internodes, while in teosinte, this expression is highly reduced or absent. This increase in TRU1 expression levels in modern maize is supported by comparisons of relative protein levels with teosinte as well as by quantitative measurements of mRNA levels. Hence, a major innovation in creating ideal maize plant architecture originated from ectopic overexpression of tru1 in axillary branches, a critical step in mediating the effects of domestication by tb1.

  18. Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents.

    Science.gov (United States)

    de Oliveira, Cristiane; Garami, Andras; Lehto, Sonya G; Pakai, Eszter; Tekus, Valeria; Pohoczky, Krisztina; Youngblood, Beth D; Wang, Weiya; Kort, Michael E; Kym, Philip R; Pinter, Erika; Gavva, Narender R; Romanovsky, Andrej A

    2014-03-26

    The rodent transient receptor potential ankyrin-1 (TRPA1) channel has been hypothesized to serve as a temperature sensor for thermoregulation in the cold. We tested this hypothesis by using deletion of the Trpa1 gene in mice and pharmacological blockade of the TRPA1 channel in rats. In both Trpa1(-/-) and Trpa1(+/+) mice, severe cold exposure (8°C) resulted in decreases of skin and deep body temperatures to ∼8°C and 13°C, respectively, both temperatures being below the reported 17°C threshold temperature for TRPA1 activation. Under these conditions, Trpa1(-/-) mice had the same dynamics of body temperature as Trpa1(+/+) mice and showed no weakness in the tail skin vasoconstriction response or thermogenic response to cold. In rats, the effects of pharmacological blockade were studied by using two chemically unrelated TRPA1 antagonists: the highly potent and selective compound A967079, which had been characterized earlier, and the relatively new compound 43 ((4R)-1,2,3,4-tetrahydro-4-[3-(3-methoxypropoxy)phenyl]-2-thioxo-5H-indeno[1,2-d]pyrimidin-5-one), which we further characterized in the present study and found to be highly potent (IC50 against cold of ∼8 nm) and selective. Intragastric administration of either antagonist at 30 mg/kg before severe (3°C) cold exposure did not affect the thermoregulatory responses (deep body and tail skin temperatures) of rats, even though plasma concentrations of both antagonists well exceeded their IC50 value at the end of the experiment. In the same experimental setup, blocking the melastatin-8 (TRPM8) channel with AMG2850 (30 mg/kg) attenuated cold-defense mechanisms and led to hypothermia. We conclude that TRPA1 channels do not drive autonomic thermoregulatory responses to cold in rodents.

  19. Chemo-nociceptive signalling from the colon is enhanced by mild colitis and blocked by inhibition of transient receptor potential ankyrin 1 channels

    DEFF Research Database (Denmark)

    Mitrovic, Martina; Shahbazian, Anaid; Bock, Elisabeth

    2010-01-01

    Transient receptor potential ankyrin 1 (TRPA1) channels are expressed by primary afferent neurones and activated by irritant chemicals including allyl isothiocyanate (AITC). Here we investigated whether intracolonic AITC causes afferent input to the spinal cord and whether this response is modifi...

  20. Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation

    DEFF Research Database (Denmark)

    Nassini, Romina; Pedretti, Pamela; Moretto, Nadia

    2012-01-01

    The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic...... inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1.By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express...... functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells...

  1. Role of Transient Receptor Potential Ankyrin 1 Ion Channel and Somatostatin sst4 Receptor in the Antinociceptive and Anti-inflammatory Effects of Sodium Polysulfide and Dimethyl Trisulfide

    Directory of Open Access Journals (Sweden)

    István Z. Bátai

    2018-02-01

    Full Text Available Transient receptor potential ankyrin 1 (TRPA1 non-selective ligand-gated cation channels are mostly expressed in primary sensory neurons. Polysulfides (POLYs are Janus-faced substances interacting with numerous target proteins and associated with both protective and detrimental processes. Activation of TRPA1 in sensory neurons, consequent somatostatin (SOM liberation and action on sst4 receptors have recently emerged as mediators of the antinociceptive effect of organic trisulfide dimethyl trisulfide (DMTS. In the frame of the present study, we set out to compare the participation of this mechanism in antinociceptive and anti-inflammatory effects of inorganic sodium POLY and DMTS in carrageenan-evoked hind-paw inflammation. Inflammation of murine hind paws was induced by intraplantar injection of carrageenan (3% in 30 µL saline. Animals were treated intraperitoneally with POLY (17 µmol/kg or DMTS (250 µmol/kg or their respective vehicles 30 min prior paw challenge and six times afterward every 60 min. Mechanical pain threshold and swelling of the paws were measured by dynamic plantar aesthesiometry and plethysmometry at 2, 4, and 6 h after initiation of inflammation. Myeloperoxidase (MPO activity in the hind paws were detected 6 h after challenge by luminescent imaging. Mice genetically lacking TRPA1 ion channels, sst4 receptors and their wild-type counterparts were used to examine the participation of these proteins in POLY and DMTS effects. POLY counteracted carrageenan-evoked mechanical hyperalgesia in a TRPA1 and sst4 receptor-dependent manner. POLY did not influence paw swelling and MPO activity. DMTS ameliorated all examined inflammatory parameters. Mitigation of mechanical hyperalgesia and paw swelling by DMTS were mediated through sst4 receptors. These effects were present in TRPA1 knockout animals, too. DMTS inhibited MPO activity with no participation of the sensory neuron–SOM axis. While antinociceptive effects of

  2. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases.

    Science.gov (United States)

    Bessac, Bret F; Sivula, Michael; von Hehn, Christian A; Caceres, Ana I; Escalera, Jasmine; Jordt, Sven-Eric

    2009-04-01

    The release of methyl isocyanate in Bhopal, India, caused the worst industrial accident in history. Exposures to industrial isocyanates induce lacrimation, pain, airway irritation, and edema. Similar responses are elicited by chemicals used as tear gases. Despite frequent exposures, the biological targets of isocyanates and tear gases in vivo have not been identified, precluding the development of effective countermeasures. We use Ca(2+) imaging and electrophysiology to show that the noxious effects of isocyanates and those of all major tear gas agents are caused by activation of Ca(2+) influx and membrane currents in mustard oil-sensitive sensory neurons. These responses are mediated by transient receptor potential ankyrin 1 (TRPA1), an ion channel serving as a detector for reactive chemicals. In mice, genetic ablation or pharmacological inhibition of TRPA1 dramatically reduces isocyanate- and tear gas-induced nocifensive behavior after both ocular and cutaneous exposures. We conclude that isocyanates and tear gas agents target the same neuronal receptor, TRPA1. Treatment with TRPA1 antagonists may prevent and alleviate chemical irritation of the eyes, skin, and airways and reduce the adverse health effects of exposures to a wide range of toxic noxious chemicals.

  3. Cooperative Interactions between 480 kDa Ankyrin-G and EB proteins assemble the axon initial segment

    NARCIS (Netherlands)

    Fréal, Amélie|info:eu-repo/dai/nl/412516721; Fassier, Coralie; Le Bras, Barbara; Bullier, Erika; de Gois, Stéphanie; Hazan, Jamilé; Hoogenraad, Casper C.|info:eu-repo/dai/nl/227263502; Couraud, François

    2016-01-01

    The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding

  4. Synaptic proteins and receptors defects in autism spectrum disorders

    OpenAIRE

    Chen, Jianling; Yu, Shunying; Fu, Yingmei; Li, Xiaohong

    2014-01-01

    Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms have contributed to the occurrence of autism spectrum disorders (ASDs). The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95 (PSD-95), SH3 and multiple ankyrin repeat domains 3 (SHANK3), synapsin, gephyrin, cadherin (CDH) and protocadherin (PCDH), thousand-and-one-amino acid 2 kinase (TAOK2), and conta...

  5. Role of methylglyoxal as a transient receptor potential ankyrin 1 agonist in colon motility disturbances associated with diabetes

    Directory of Open Access Journals (Sweden)

    Abdulmohsen Assiri

    2017-01-01

    Full Text Available Introduction: Evidence has been found to suggest that methylglyoxal (MG plays a mediating role in diabetes-related gastrointestinal conditions, and a possible mechanism relating to these conditions could be revealed by determining MG as a transient receptor potential ankyrin 1 (TRPA1 channel agonist. Methods: Muscle strips from the distal colon of male Wistar rats were used, and organ bath was employed to gain insight into the impact of MG + TRPA1 antagonist (HC-030031. Results: Considerable rise of spontaneous contractions for longitudinal muscle strips subjected to pre-treatment with MG were observed. The potentiation of the contractile response of control longitudinal muscle strips to electric field stimulation (EFS took place as a consequence of pre-treatment with 10 mM MG, and maximum response values displayed a rise from 2.16 g ± 0.323 to 3.64 g ± 0.421. 10 μM HC-030031 was observed to block the improvement of EFS responses by MG, and regarding circular muscle strips, a considerable decline in the maximum relaxation response was facilitated by 10 mM MG. Specifically, this was achieved at 20 Hz from 0.26 g ± 0.036 to 0.055 g ± 0.046. Conclusion: MG has been found to directly contract the distal colons of Wistar rats while enhancing the responses initiated as a result of carbachol and EFS. After blockading the impacts using HC-030031, evidence was found to suggest that the mediation of the impacts takes place through the activation of the TRPA1 channel, which occurs from the excretion of excitatory neurotransmitters. The findings also implicate MG in the blocking of inhibitory neurotransmission.

  6. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

    Science.gov (United States)

    De Petrocellis, Luciano; Vellani, Vittorio; Schiano-Moriello, Aniello; Marini, Pietro; Magherini, Pier Cosimo; Orlando, Pierangelo; Di Marzo, Vincenzo

    2008-06-01

    The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.e., CBD, THC, CBD acid, THC acid, cannabichromene (CBC), and cannabigerol (CBG)] on TRPA1- and TRPM8-mediated increase in intracellular Ca2+ in either HEK-293 cells overexpressing the two channels or rat dorsal root ganglia (DRG) sensory neurons. All of the compounds tested induced TRPA1-mediated Ca2+ elevation in HEK-293 cells with efficacy comparable with that of mustard oil isothiocyanates (MO), the most potent being CBC (EC(50) = 60 nM) and the least potent being CBG and CBD acid (EC(50) = 3.4-12.0 microM). CBC also activated MO-sensitive DRG neurons, although with lower potency (EC(50) = 34.3 microM). Furthermore, although none of the compounds tested activated TRPM8-mediated Ca2+ elevation in HEK-293 cells, they all, with the exception of CBC, antagonized this response when it was induced by either menthol or icilin. CBD, CBG, THC, and THC acid were equipotent (IC(50) = 70-160 nM), whereas CBD acid was the least potent compound (IC(50) = 0.9-1.6 microM). CBG inhibited Ca2+ elevation also in icilin-sensitive DRG neurons with potency (IC(50) = 4.5 microM) similar to that of anandamide (IC(50) = 10 microM). Our findings suggest that phytocannabinoids and cannabis extracts exert some of their pharmacological actions also by interacting with TRPA1 and TRPM8 channels, with potential implications for the treatment of pain and cancer.

  7. Expression of transient receptor potential ankyrin 1 (TRPA1 and its role in insulin release from rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    De-Shou Cao

    Full Text Available Several transient receptor potential (TRP channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1 ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC, hydrogen peroxide (H₂O₂, 4-hydroxynonenal (4-HNE, and cyclopentenone prostaglandins (PGJ₂ and a novel agonist methylglyoxal (MG induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP channel activation.We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP channel blockade to facilitate insulin release.

  8. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma.

    Science.gov (United States)

    Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2016-11-25

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. StaRProtein, A Web Server for Prediction of the Stability of Repeat Proteins

    Science.gov (United States)

    Xu, Yongtao; Zhou, Xu; Huang, Meilan

    2015-01-01

    Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins. PMID:25807112

  10. Modular protein switches derived from antibody mimetic proteins.

    Science.gov (United States)

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Structure and Function of the Ankyrin Repeats in the Sw14/Sw16 Transcription Complex of Budding Yeast

    National Research Council Canada - National Science Library

    Breeden, Linda

    1998-01-01

    ANK repeats were first found in the Swi6 transcription factor of Saccharomyces cerevisiae and since then were identified in many proteins, including oncogenes and tumor suppressors We have previously...

  12. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    International Nuclear Information System (INIS)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-01-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  13. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Watanabe, Tatsuo [Laboratory of Food Chemistry, School of Food and Nutritional Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Imai, Yasuyuki, E-mail: imai@u-shizuoka-ken.ac.jp [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan)

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  14. Transient receptor potential ankyrin 1 receptor activation in vitro and in vivo by pro-tussive agents: GRC 17536 as a promising anti-tussive therapeutic.

    Directory of Open Access Journals (Sweden)

    Indranil Mukhopadhyay

    Full Text Available Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1 is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca(+2 influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1.

  15. Pathophysiological Role of Transient Receptor Potential Ankyrin 1 in a Mouse Long-Lasting Cystitis Model Induced by an Intravesical Injection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Shohei Oyama

    2017-11-01

    Full Text Available Chronic inflammatory bladder disorders, such as interstitial cystitis/bladder pain syndrome, are associated with poor quality of life. The exact pathological processes remain unclear, but accumulating evidence suggests that reactive oxidative species (ROS are involved in urinary bladder disorders. Transient receptor potential ankyrin 1 (TRPA1, the most sensitive TRP channel to ROS, was shown to be responsible for urinary bladder abnormalities and hyperalgesia in an acute cystitis model. However, the roles of TRPA1 in chronic inflammatory bladder are not fully understood. We previously established a novel mouse cystitis model induced by intravesical injection of hydrogen peroxide (H2O2, resulting in long-lasting frequent urination, bladder inflammation, pain-related behavior, and histopathological changes. In the present study, we investigated the pathophysiological role of TRPA1 in the H2O2-induced long-lasting cystitis mouse model. Under anesthesia, 1.5% H2O2 solution was introduced transurethrally into the bladder of female wild-type (WT and TRPA1-knockout mice and maintained for 30 min. This increased the number of voids in WT mice at 1 and 7 days after injection, but reduced the number in TRPA1-knockout mice at 1 day but not 7 days after injection. Spontaneous locomotor activities (increase in freezing time and decrease in distance moved were reduced at 3 h after injection in WT mice, whereas the spontaneous visceral pain-related behaviors were attenuated in TRPA1-knockout mice. Furthermore, upregulation of c-fos mRNA in the spinal cord at 1 day after injection was observed in WT but not TRPA1-knockout mice. However, there was no difference in histopathological changes in the urinary bladder, such as edematous thickening in the submucosa, between WT and TRPA1-knockout mice at 1 or 7 days after injection. Finally, Trpa1 mRNA levels in the L5-S1 dorsal root ganglion were not altered, but levels in the urinary bladder were drastically increased

  16. Distinct Mechanism of Cysteine Oxidation-Dependent Activation and Cold Sensitization of Human Transient Receptor Potential Ankyrin 1 Channel by High and Low Oxaliplatin

    Directory of Open Access Journals (Sweden)

    Takahito Miyake

    2017-11-01

    Full Text Available Oxaliplatin, a third-generation platinum-based chemotherapeutic agent, displays unique acute peripheral neuropathy triggered or enhanced by cold, and accumulating evidence suggests that transient receptor potential ankyrin 1 (TRPA1 is responsible. TRPA1 is activated by oxaliplatin via a glutathione-sensitive mechanism. However, oxaliplatin interrupts hydroxylation of a proline residue located in the N-terminal region of TRPA1 via inhibition of prolyl hydroxylase (PHD, which causes sensitization of TRPA1 to reactive oxygen species (ROS. Furthermore, PHD inhibition endows cold-insensitive human TRPA1 (hTRPA1 with ROS-dependent cold sensitivity. Since cysteine oxidation and proline hydroxylation regulate its activity, their association with oxaliplatin-induced TRPA1 activation and acquirement of cold sensitivity were investigated in the present study. A high concentration of oxaliplatin (1 mM induced outward-rectifier whole-cell currents and increased the intracellular Ca2+ concentration in hTRPA1-expressing HEK293 cells, but did not increase the probability of hTRPA1 channel opening in the inside-out configuration. Oxaliplatin also induced the rapid generation of hydrogen peroxide, and the resultant Ca2+ influx was prevented in the presence of glutathione and in cysteine-mutated hTRPA1 (Cys641Ser-expressing cells, whereas proline-mutated hTRPA1 (Pro394Ala-expressing cells showed similar whole-cell currents and Ca2+ influx. By contrast, a lower concentration of oxaliplatin (100 μM did not increase the intracellular Ca2+ concentration but did confer cold sensitivity on hTRPA1-expressing cells, and this was inhibited by PHD2 co-overexpression. Cold sensitivity was abolished by the mitochondria-targeting ROS scavenger mitoTEMPO and was minimal in cysteine-mutated hTRPA1 (Cys641Ser or Cys665Ser-expressing cells. Thus, high oxaliplatin evokes ROS-mediated cysteine oxidation-dependent hTRPA1 activation independent of PHD activity, while a lower

  17. Synaptic proteins and receptors defects in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Jianling eChen

    2014-09-01

    Full Text Available Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms have contributed to the occurrence of autism spectrum disorders (ASDs. The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95 (PSD-95, SH3 and multiple ankyrin repeat domains 3 (SHANK3, synapsin, gephyrin, cadherin (CDH and protocadherin (PCDH, thousand-and-one-amino acid 2 kinase (TAOK2, and contactin (CNTN, have been shown to play important roles in the development and function of synapses. In addition, synaptic receptors, such as gamma-aminobutyric acid (GABA receptors and glutamate receptors, have also been associated with ASDs. This review will primarily focus on the defects of synaptic proteins and receptors associated with ASDs and their roles in the pathogenesis of ASDs via synaptic pathways.

  18. NCBI nr-aa BLAST: CBRC-MDOM-01-0247 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MDOM-01-0247 ref|ZP_00545283.1| 60 kDa inner membrane protein [Ehrlichia chaffee...nsis str. Sapulpa] gb|EAM85346.1| 60 kDa inner membrane protein [Ehrlichia chaffeensis str. Sapulpa] ZP_00545283.1 2.1 30% ...

  19. Analysis of protein profiles in diabetic rat blood plasma that induced by alloxan

    Science.gov (United States)

    Hidayati, Dewi; Abdulgani, Nurlita; Setiyawan, Hengki; Trisnawati, Indah; Ashuri, Nova Maulidina; Sa'adah, Noor Nailis

    2017-06-01

    Proteomics is the study to identify the proteins involved in physiological metabolic pathway. The protein profiles of blood plasma from alloxan-induced diabetic rats has investigated using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Data were analyzed descriptively based on variations of the type and intensity of the protein. There were identified the similarity of protein variant between diabetic and control rats included ankyrin (200kDa), IgG (150kDa), nephrin (136 kDa), IDE (112 kDA), albumin (66 kDa), prealbumin (55 kDA), CICP (43 kDa), ApoA-V (39 kDa), GAPDH (35 kDa), C-RP (27,1 kDa), leptin (16 kDa) and apelin (13 kDa). However, the apelin profile at diabetic rats shows the higher intensity than control.

  20. TRP channel proteins and signal transduction.

    Science.gov (United States)

    Minke, Baruch; Cook, Boaz

    2002-04-01

    TRP channel proteins constitute a large and diverse family of proteins that are expressed in many tissues and cell types. This family was designated TRP because of a spontaneously occurring Drosophila mutant lacking TRP that responded to a continuous light with a transient receptor potential (hence TRP). In addition to responses to light, TRPs mediate responses to nerve growth factor, pheromones, olfaction, mechanical, chemical, temperature, pH, osmolarity, vasorelaxation of blood vessels, and metabolic stress. Furthermore, mutations in several members of TRP-related channel proteins are responsible for several diseases, such as several tumors and neurodegenerative disorders. TRP-related channel proteins are found in a variety of organisms, tissues, and cell types, including nonexcitable, smooth muscle, and neuronal cells. The large functional diversity of TRPs is also reflected in their diverse permeability to ions, although, in general, they are classified as nonselective cationic channels. The molecular domains that are conserved in all members of the TRP family constitute parts of the transmembrane domains and in most members also the ankyrin-like repeats at the NH2 terminal of the protein and a "TRP domain" at the COOH terminal, which is a highly conserved 25-amino acid stretch with still unknown function. All of the above features suggest that members of the TRP family are "special assignment" channels, which are recruited to diverse signaling pathways. The channels' roles and characteristics such as gating mechanism, regulation, and permeability are determined by evolution according to the specific functional requirements.

  1. A study of membrane protein defects and alpha hemoglobin chains of red blood cells in human beta thalassemia

    International Nuclear Information System (INIS)

    Rouyer-Fessard, P.; Garel, M.C.; Domenget, C.; Guetarni, D.; Bachir, D.; Colonna, P.; Beuzard, Y.

    1989-01-01

    The soluble pool of alpha hemoglobin chains present in blood or bone marrow cells was measured with a new affinity method using a specific probe, beta A hemoglobin chain labeled with [ 3 H]N-ethylmaleimide. This pool of soluble alpha chains was 0.067 ± 0.017% of hemoglobin in blood of normal adult, 0.11 ± 0.03% in heterozygous beta thalassemia and ranged from 0.26 to 1.30% in homozygous beta thalassemia intermedia. This elevated pool of soluble alpha chains observed in human beta thalassemia intermedia decreased 33-fold from a value of 10% of total hemoglobin in bone marrow cells to 0.3% in the most dense red blood cells. The amount of insoluble alpha chains was measured by using the polyacrylamide gel electrophoresis in urea and Triton X-100. In beta thalassemia intermedia the amount of insoluble alpha chains was correlated with the decreased spectrin content of red cell membrane and was associated with a decrease in ankyrin and with other abnormalities of the electrophoretic pattern of membrane proteins. The loss and topology of the reactive thiol groups of membrane proteins was determined by using [ 3 H]N-ethylmaleimide added to membrane ghosts prior to urea and Triton X-100 electrophoresis. Spectrin and ankyrin were the major proteins with the most important decrease of thiol groups

  2. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    Science.gov (United States)

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    leukemia-associated RhoGEF), RGS3 and RGS12, spinophilin and neurabin-1, SRC homology 3 domain and multiple ankyrin repeat domain (Shank) proteins (Shank1, Shank2, and Shank3), partitioning defective proteins 3 and 6, multiple PDZ protein 1, Tamalin, neuronal nitric oxide synthase, syntrophins, protein interacting with protein kinase C α 1, syntenin-1, and sorting nexin 27. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. NCBI nr-aa BLAST: CBRC-ACAR-01-0651 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available subfamily A member 1 (Ankyrin-like with transmembrane domains protein 1) (Transformation sensitive protein p120) emb|CAA71610.1| ankyrin-like protein [Homo sapiens] O75762 0.46 27% ...

  4. Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina.

    Science.gov (United States)

    Overlack, Nora; Kilic, Dilek; Bauss, Katharina; Märker, Tina; Kremer, Hannie; van Wijk, Erwin; Wolfrum, Uwe

    2011-10-01

    The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are organized into protein networks by scaffold proteins. This has contributed essentially to our current understanding of the function of USH proteins and explains why defects in proteins of different families cause very similar phenotypes. We have previously shown that the USH1G protein SANS (scaffold protein containing ankyrin repeats and SAM domain) contributes to the periciliary protein network in retinal photoreceptor cells. This study aimed to further elucidate the role of SANS by identifying novel interaction partners. In yeast two-hybrid screens of retinal cDNA libraries we identified 30 novel putative interacting proteins binding to the central domain of SANS (CENT). We confirmed the direct binding of the phosphodiesterase 4D interacting protein (PDE4DIP), a Golgi associated protein synonymously named myomegalin, to the CENT domain of SANS by independent assays. Correlative immunohistochemical and electron microscopic analyses showed a co-localization of SANS and myomegalin in mammalian photoreceptor cells in close association with microtubules. Based on the present results we propose a role of the SANS-myomegalin complex in microtubule-dependent inner segment cargo transport towards the ciliary base of photoreceptor cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Towards Development of a Dermal Pain Model: In Vitro Activation of Rat and Human Transient Receptor Potential Ankyrin Repeat 1 and Safe Dermal Injection of o-Chlorobenzylidene Malononitrile to Rat.

    Science.gov (United States)

    Annas, Anita; Berg, Anna-Lena; Nyman, Eva; Meijer, Thomas; Lundgren, Viveka; Franzén, Bo; Ståhle, Lars

    2015-12-01

    During clinical development of analgesics, it is important to have access to pharmacologically specific human pain models. o-Chlorobenzylidene malononitrile (CS) is a selective and potent agonist of the transient receptor potential ankyrin repeat 1 (TRPA1), which is a transducer molecule in nociceptors sensing reactive chemical species. While CS has been subject to extensive toxicological investigations in animals and human beings, its effects on intradermal or subcutaneous injection have not previously been reported. We have investigated the potential of CS to be used as an agonist on TRPA1 in human experimental pain studies. A calcium influx assay was used to confirm the capacity of CS to activate TRPA1 with >100,000 times the selectivity over the transient receptor potential vanilloid receptor 1. CS dose-dependently (EC50 0.9 μM) released calcitonin gene-related peptide in rat dorsal root ganglion cultures, supporting involvement in pain signalling. In a local tolerance study, injection of a single intradermal dose of 20 mM CS to rats resulted in superficial, circular crusts at the injection sites after approximately 4 days. The histopathology evaluation revealed a mild, acute inflammatory reaction in the epidermis and dermis at the intradermal CS injection site 1 day after administration. After 14 days, the epidermal epithelium was fully restored. The symptoms were not considered to be adverse, and it is suggested that doses up to 20 μL of 20 mM CS can be safely administered to human beings. In conclusion, our data support development of a CS human dermal pain model. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  6. Peptide Nucleic Acid Knockdown and Intra-host Cell Complementation of Ehrlichia Type IV Secretion System Effector

    Directory of Open Access Journals (Sweden)

    Pratibha Sharma

    2017-06-01

    Full Text Available Survival of Ehrlichia chaffeensis depends on obligatory intracellular infection. One of the barriers to E. chaffeensis research progress has been the inability, using conventional techniques, to generate knock-out mutants for genes essential for intracellular infection. This study examined the use of Peptide Nucleic Acids (PNAs technology to interrupt type IV secretion system (T4SS effector protein expression in E. chaffeensis followed by intracellular complementation of the effector to determine its requirement for infection. Successful E. chaffeensis infection depends on the E. chaffeensis-specific T4SS protein effector, ehrlichial translocated factor-1 (Etf-1, which induces Rab5-regulated autophagy to provide host cytosolic nutrients required for E. chaffeensis proliferation. Etf-1 is also imported by host cell mitochondria where it inhibits host cell apoptosis to prolong its infection. We designed a PNA specific to Etf-1 and showed that the PNA bound to the target region of single-stranded Etf-1 RNA using a competitive binding assay. Electroporation of E. chaffeensis with this PNA significantly reduced Etf-1 mRNA and protein, and the bacteria's ability to induce host cell autophagy and infect host cells. Etf-1 PNA-mediated inhibition of ehrlichial Etf-1 expression and E. chaffeensis infection could be intracellularly trans-complemented by ectopic expression of Etf-1-GFP in host cells. These data affirmed the critical role of bacterial T4SS effector in host cell autophagy and E. chaffeensis infection, and demonstrated the use of PNA to analyze the gene functions of obligate intracellular bacteria.

  7. Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta.

    Science.gov (United States)

    Engelke, Michael; Friedrich, Olaf; Budde, Petra; Schäfer, Christina; Niemann, Ursula; Zitt, Christof; Jüngling, Eberhard; Rocks, Oliver; Lückhoff, Andreas; Frey, Jürgen

    2002-07-17

    Transient receptor potential proteins (TRP) are supposed to participate in the formation of store-operated Ca(2+) influx channels by co-assembly. However, little is known which domains facilitate the interaction of subunits. Contribution of the N-terminal coiled-coil domain and ankyrin-like repeats and the putative pore region of the mouse TRP1beta (mTRP1beta) variant to the formation of functional cation channels were analyzed following overexpression in HEK293 (human embryonic kidney) cells. MTRP1beta expressing cells exhibited enhanced Ca(2+) influx and enhanced whole-cell membrane currents compared to mTRP1beta deletion mutants. Using a yeast two-hybrid assay only the coiled-coil domain facilitated homodimerization of the N-terminus. These results suggest that the N-terminus of mTRP1beta is required for structural organization thus forming functional channels.

  8. A haemolytic syndrome associated with the complete absence of red cell membrane protein 4.2 in two Tunisian siblings.

    Science.gov (United States)

    Ghanem, A; Pothier, B; Marechal, J; Ducluzeau, M T; Morle, L; Alloisio, N; Feo, C; Ben Abdeladhim, A; Fattoum, S; Delaunay, J

    1990-07-01

    We report on the complete absence of protein 4.2 in two Tunisian siblings. The propositus presented with a haemolytic anaemia that evolved in an intermittent fashion until she was cured by splenectomy. Her red cells had a normal morphology, as well as normal deformability upon osmotic gradient ektacytometry. SDS-polyacrylamide gel electrophoresis failed to reveal any protein 4.2. Using anti-protein 4.2 polyclonal antibodies. Western blots were also unable to detect protein 4.2. Preparation of inside out vesicles resulted in no detectable loss of ankyrin. The propositus's sister presented with a haemolytic anaemia but had not undergone splenectomy; she showed the same biochemical features. The two cases presented of missing protein 4.2 are the first ones to be described outside the Japanese population. Considered as homozygotes for some defect that must alter the protein 4.2 gene itself, they exemplify a unique syndrome pertaining neither to elliptocytosis nor to spherocytosis, at least not closely. The parents, who are first cousins and whom we regarded as heterozygotes, were clinically and morphologically normal; they had a normal content of protein 4.2. Therefore, the 4.2 (-) haemolytic anaemia appears as entirely recessive.

  9. Expression patterns of ion channels and structural proteins in a multimodal cell type of the avian optic tectum.

    Science.gov (United States)

    Lischka, Katharina; Ladel, Simone; Luksch, Harald; Weigel, Stefan

    2018-02-15

    The midbrain is an important subcortical area involved in distinct functions such as multimodal integration, movement initiation, bottom-up, and top-down attention. Our group is particularly interested in cellular computation of multisensory integration. We focus on the visual part of the avian midbrain, the optic tectum (TeO, counterpart to mammalian superior colliculus). This area has a layered structure with the great advantage of distinct input and output regions. In chicken, the TeO is organized in 15 layers where visual input targets the superficial layers while auditory input terminates in deeper layers. One specific cell type, the Shepherd's crook neuron (SCN), extends dendrites in both input regions. The characteristic feature of these neurons is the axon origin at the apical dendrite. The molecular identity of this characteristic region and thus, the site of action potential generation are of particular importance to understand signal flow and cellular computation in this neuron. We present immunohistochemical data of structural proteins (NF200, Ankyrin G, and Myelin) and ion channels (Pan-Na v , Na v 1.6, and K v 3.1b). NF200 is strongly expressed in the axon. Ankyrin G is mainly expressed at the axon initial segment (AIS). Myelination starts after the AIS as well as the distribution of Na v channels on the axon. The subtype Na v 1.6 has a high density in this region. K v 3.1b is restricted to the soma, the primary neurite and the axon branch. The distribution of functional molecules in SCNs provides insight into the information flow and the integration of sensory modalities in the TeO of the avian midbrain. © 2017 Wiley Periodicals, Inc.

  10. Evasion of antiviral innate immunity by Theiler's virus L* protein through direct inhibition of RNase L.

    Directory of Open Access Journals (Sweden)

    Frédéric Sorgeloos

    Full Text Available Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus.

  11. Cell density-dependent nuclear/cytoplasmic localization of NORPEG (RAI14) protein

    International Nuclear Information System (INIS)

    Kutty, R. Krishnan; Chen, Shanyi; Samuel, William; Vijayasarathy, Camasamudram; Duncan, Todd; Tsai, Jen-Yue; Fariss, Robert N.; Carper, Deborah; Jaworski, Cynthia; Wiggert, Barbara

    2006-01-01

    NORPEG (RAI14), a developmentally regulated gene induced by retinoic acid, encodes a 980 amino acid (aa) residue protein containing six ankyrin repeats and a long coiled-coil domain [Kutty et al., J. Biol. Chem. 276 (2001), pp. 2831-2840]. We have expressed aa residues 1-287 of NORPEG and used the recombinant protein to produce an anti-NORPEG polyclonal antibody. Confocal immunofluorescence analysis showed that the subcellular localization of NORPEG in retinal pigment epithelial (ARPE-19) cells varies with cell density, with predominantly nuclear localization in nonconfluent cells, but a cytoplasmic localization, reminiscent of cytoskeleton, in confluent cultures. Interestingly, an evolutionarily conserved putative monopartite nuclear localization signal (P 27 KKRKAP 276 ) was identified by analyzing the sequences of NORPEG and its orthologs. GFP-NORPEG (2-287 aa), a fusion protein containing this signal, was indeed localized to nuclei when expressed in ARPE-19 or COS-7 cells. Deletion and mutation analysis indicated that the identified nuclear localization sequence is indispensable for nuclear targeting

  12. Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6.

    Science.gov (United States)

    Rothé, Benjamin; Leettola, Catherine N; Leal-Esteban, Lucia; Cascio, Duilio; Fortier, Simon; Isenschmid, Manuela; Bowie, James U; Constam, Daniel B

    2018-02-06

    Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A novel RNA-recognition-motif protein is required for premeiotic G1/S-phase transition in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Nonomura

    2011-01-01

    Full Text Available The molecular mechanism for meiotic entry remains largely elusive in flowering plants. Only Arabidopsis SWI1/DYAD and maize AM1, both of which are the coiled-coil protein, are known to be required for the initiation of plant meiosis. The mechanism underlying the synchrony of male meiosis, characteristic to flowering plants, has also been unclear in the plant kingdom. In other eukaryotes, RNA-recognition-motif (RRM proteins are known to play essential roles in germ-cell development and meiosis progression. Rice MEL2 protein discovered in this study shows partial similarity with human proline-rich RRM protein, deleted in Azoospermia-Associated Protein1 (DAZAP1, though MEL2 also possesses ankyrin repeats and a RING finger motif. Expression analyses of several cell-cycle markers revealed that, in mel2 mutant anthers, most germ cells failed to enter premeiotic S-phase and meiosis, and a part escaped from the defect and underwent meiosis with a significant delay or continued mitotic cycles. Immunofluorescent detection revealed that T7 peptide-tagged MEL2 localized at cytoplasmic perinuclear region of germ cells during premeiotic interphase in transgenic rice plants. This study is the first report of the plant RRM protein, which is required for regulating the premeiotic G1/S-phase transition of male and female germ cells and also establishing synchrony of male meiosis. This study will contribute to elucidation of similarities and diversities in reproduction system between plants and other species.

  14. STRUCTURAL AND FUNCTIONAL ASPECTS OF ACYL-COENZYME A BINDING PROTEINS (ACBPs: A COMPREHENSIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Richa Arya

    2012-06-01

    Full Text Available ACBP was originally identified as a mammalian diazepam binding inhibitor – a neuropeptide that has the ability to inhibit diazepam binding to the �-aminobutyric acid (GABA receptor (Guidotti et al., 1983. Typically, ACBPs are small (~10 kDa cytosolic proteins (Burton et al., 2005. However, a number of hybrid ACBPs are reported that are fused with ankyrin repeats, such as ACBP1 and ACBP2 in Arabidopsis thaliana (Chye et al., 1999; Li and Chye, 2003. Other functional domains, such as the human peroxisomal �3/ �2-enoyl-CoA isomerase (Geisbrecht et al., 1999, or any non-functional/ uncharacterized domain are also cited. ACBP predominantly functions as an intracellular acyl-CoA transporter and pool former, and is critical to lipid metabolism in cells (Gossett et al., 1996; Knudsen et al., 2000; Schroeder et al., 1998. Impaired lipid metabolism and other cellular functions in humans arising out of ACBP defects thus need to be explored. ACBP has only been reported in eukaryotes, not in prokaryotes, except for a few pathogenic eubacteria that might have acquired ACBP from eukaryotic hosts via lateral gene transfer (Burton et al., 2005. Whole genome sequences of several prokaryotes and pathogens being available currently, it is worthwhile to extend search for ACBPs beyond eukaryotes as well, to explore their potential as drug targets, given their essential role in lipid metabolism. As a prelude to such investigations, the current review summarizes available knowledge of ACBPs and outlines the scope of future research.

  15. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions.

    Science.gov (United States)

    Cánepa, Eduardo T; Scassa, María E; Ceruti, Julieta M; Marazita, Mariela C; Carcagno, Abel L; Sirkin, Pablo F; Ogara, María F

    2007-07-01

    The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.

  16. Adaptive GDDA-BLAST: fast and efficient algorithm for protein sequence embedding.

    Directory of Open Access Journals (Sweden)

    Yoojin Hong

    2010-10-01

    Full Text Available A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply "alignment profiles" hereafter provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.. Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the "twilight zone" of sequence similarity (<25% identity. Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named "Adaptive GDDA-BLAST." Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of low

  17. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  18. Proteins engineering

    International Nuclear Information System (INIS)

    2000-01-01

    At the - Departement d'Ingenierie et d'etudes de proteines (Deip) of the CEA more than seventy researchers are working hard to understand the function of proteins. For that they use the molecular labelling technique (F.M.)

  19. Whey Protein

    Science.gov (United States)

    ... reliable information about the safety of taking whey protein if you are pregnant or breast feeding. Stay on the safe side and avoid use. Milk allergy: If you are allergic to cow's milk, avoid using whey protein.

  20. Human skeletal muscle type 1 fibre distribution and response of stress-sensing proteins along the titin molecule after submaximal exhaustive exercise.

    Science.gov (United States)

    Koskinen, Satu O A; Kyröläinen, Heikki; Flink, Riina; Selänne, Harri P; Gagnon, Sheila S; Ahtiainen, Juha P; Nindl, Bradley C; Lehti, Maarit

    2017-11-01

    Early responses of stress-sensing proteins, muscle LIM protein (MLP), ankyrin repeat proteins (Ankrd1/CARP and Ankrd2/Arpp) and muscle-specific RING finger proteins (MuRF1 and MuRF2), along the titin molecule were investigated in the present experiment after submaximal exhaustive exercise. Ten healthy men performed continuous drop jumping unilaterally on a sledge apparatus with a submaximal height until complete exhaustion. Five stress-sensing proteins were analysed by mRNA measurements from biopsies obtained immediately and 3 h after the exercise from exercised vastus lateralis muscle while control biopsies were obtained from non-exercised legs before the exercise. Decreased maximal jump height and increased serum creatine kinase activities as indirect markers for muscle damage and HSP27 immunostainings on muscle biopsies as a direct marker for muscle damage indicated that the current exercised protocol caused muscle damage. mRNA levels for four (MLP, Ankrd1/CARP, MuRF1 and MuRF2) out of the five studied stress sensors significantly (p exercise. The magnitude of MLP and Ankrd2 responses was related to the proportion of type 1 myofibres. Our data showed that the submaximal exhaustive exercise with subject's own physical fitness level activates titin-based stretch-sensing proteins. These results suggest that both degenerative and regenerative pathways are activated in very early phase after the exercise or probably already during the exercise. Activation of these proteins represents an initial step forward adaptive remodelling of the exercised muscle and may also be involved in the initiation of myofibre repair.

  1. A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L

    Science.gov (United States)

    Drappier, Melissa; Elliott, Ruth; Zhang, Rong; Weiss, Susan R.; Silverman, Robert H.

    2018-01-01

    The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler’s murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2’-5’ oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A. PMID:29652922

  2. MST4 kinase phosphorylates ACAP4 protein to orchestrate apical membrane remodeling during gastric acid secretion.

    Science.gov (United States)

    Yuan, Xiao; Yao, Phil Y; Jiang, Jiying; Zhang, Yin; Su, Zeqi; Yao, Wendy; Wang, Xueying; Gui, Ping; Mullen, McKay; Henry, Calmour; Ward, Tarsha; Wang, Wenwen; Brako, Larry; Tian, Ruijun; Zhao, Xuannv; Wang, Fengsong; Cao, Xinwang; Wang, Dongmei; Liu, Xing; Ding, Xia; Yao, Xuebiao

    2017-09-29

    Digestion in the stomach depends on acidification of the lumen. Histamine-elicited acid secretion is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. Our recent study revealed the functional role of PKA-MST4-ezrin signaling axis in histamine-elicited acid secretion. However, it remains uncharacterized how the PKA-MST4-ezrin signaling axis operates the insertion of H,K-ATPases into the apical plasma membranes of gastric parietal cells. Here we show that MST4 phosphorylates ACAP4, an ARF6 GTPase-activating protein, at Thr 545 Histamine stimulation activates MST4 and promotes MST4 interaction with ACAP4. ACAP4 physically interacts with MST4 and is a cognate substrate of MST4 during parietal cell activation. The phosphorylation site of ACAP4 by MST4 was mapped to Thr 545 by mass spectrometric analyses. Importantly, phosphorylation of Thr 545 is essential for acid secretion in parietal cells because either suppression of ACAP4 or overexpression of non-phosphorylatable ACAP4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, persistent overexpression of MST4 phosphorylation-deficient ACAP4 results in inhibition of gastric acid secretion and blockage of tubulovesicle fusion to the apical membranes. Significantly, phosphorylation of Thr 545 enables ACAP4 to interact with ezrin. Given the location of Thr 545 between the GTPase-activating protein domain and the first ankyrin repeat, we reason that MST4 phosphorylation elicits a conformational change that enables ezrin-ACAP4 interaction. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ACAP4 signaling cascade to polarized acid secretion in gastric parietal cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Protein politics

    NARCIS (Netherlands)

    Vijver, Marike

    2005-01-01

    This study is part of the program of the interdisciplinary research group Profetas (protein foods, environment, technology and society). Profetas consists of technological, environmental and socio-economic research projects on protein food systems which result in the development of scenarios and

  4. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  5. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc

    2011-01-01

    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14......-3-3 protein in the cerebrospinal fluid (CSF) of patients with monosymptomatic optic neuritis (ON) versus patients with monosymptomatic onset who progressed to multiple sclerosis (MS). To evaluate results against data found in a complete literature review. Methods: A total of 66 patients with MS and/or ON from...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased concentration of tau...

  6. Unique nucleotide polymorphism of ankyrin gene cluster in ...

    Indian Academy of Sciences (India)

    gene order is nonrandomly distributed in eukaryote genomes. (Lercher et al. 2002 ... Birth in a birth-and-death process relates to the origin of paralogues, presumably ... are small, or the rate of concerted evolution is very slow (Nei et al. 2000).

  7. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  8. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    Years of meticulous curation of scientific literature and increasingly reliable computational predictions have resulted in creation of vast databases of protein interaction data. Over the years, these repositories have become a basic framework in which experiments are analyzed and new directions...

  9. Aquaporin Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer Virginia Roche

    2017-10-01

    Full Text Available Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1 interactions between aquaporin tetramers; (2 interactions between aquaporin monomers within a tetramer (hetero-tetramerization; and (3 transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.

  10. Protein immobilization strategies for protein biochips

    NARCIS (Netherlands)

    Rusmini, F.; Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-01-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein

  11. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Lin, Mingqun; Liu, Hongyan; Xiong, Qingming; Niu, Hua; Cheng, Zhihui; Yamamoto, Akitsugu; Rikihisa, Yasuko

    2016-11-01

    Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing.

  12. CHARACTERIZATION OF ENU-INDUCED MUTATIONS IN RED BLOOD CELL STRUCTURAL PROTEINS

    Directory of Open Access Journals (Sweden)

    Katrina Kildey

    2013-03-01

    Full Text Available Murine models with modified gene function as a result of N-ethyl-N-nitrosourea (ENU mutagenesis have been used to study phenotypes resulting from genetic change. This study investigated genetic factors associated with red blood cell (RBC physiology and structural integrity that may impact on blood component storage and transfusion outcome. Forward and reverse genetic approaches were employed with pedigrees of ENU-treated mice using a homozygous recessive breeding strategy. In a “forward genetic” approach, pedigree selection was based upon identification of an altered phenotype followed by exome sequencing to identify a causative mutation. In a second strategy, a “reverse genetic” approach based on selection of pedigrees with mutations in genes of interest was utilised and, following breeding to homozygosity, phenotype assessed. Thirty-three pedigrees were screened by the forward genetic approach. One pedigree demonstrated reticulocytosis, microcytic anaemia and thrombocytosis. Exome sequencing revealed a novel single nucleotide variation (SNV in Ank1 encoding the RBC structural protein ankyrin-1 and the pedigree was designated Ank1EX34. The reticulocytosis and microcytic anaemia observed in the Ank1EX34 pedigree were similar to clinical features of hereditary spherocytosis in humans. For the reverse genetic approach three pedigrees with different point mutations in Spnb1 encoding RBC protein spectrin-1β, and one pedigree with a mutation in Epb4.1, encoding band 4.1 were selected for study. When bred to homozygosity two of the spectrin-1β pedigrees (a, b demonstrated increased RBC count, haemoglobin (Hb and haematocrit (HCT. The third Spnb1 mutation (spectrin-1β c and mutation in Epb4.1 (band 4.1 did not significantly affect the haematological phenotype, despite these two mutations having a PolyPhen score predicting the mutation may be damaging. Exome sequencing allows rapid identification of causative mutations and development of

  13. The E5 Proteins

    OpenAIRE

    DiMaio, Daniel; Petti, Lisa

    2013-01-01

    The E5 proteins are short transmembrane proteins encoded by many animal and human papillomaviruses. These proteins display transforming activity in cultured cells and animals, and they presumably also play a role in the productive virus life cycle. The E5 proteins are thought to act by modulating the activity of cellular proteins. Here, we describe the biological activities of the best-studied E5 proteins and discuss the evidence implicating specific protein targets and pathways in mediating ...

  14. EDITORIAL: Precision proteins Precision proteins

    Science.gov (United States)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  15. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  16. Protein docking prediction using predicted protein-protein interface.

    Science.gov (United States)

    Li, Bin; Kihara, Daisuke

    2012-01-10

    Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  17. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  18. Introduction to protein blotting.

    Science.gov (United States)

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    Protein blotting is a powerful and important procedure for the immunodetection of proteins following electrophoresis, particularly proteins that are of low abundance. Since the inception of the protocol for protein transfer from an electrophoresed gel to a membrane in 1979, protein blotting has evolved greatly. The scientific community is now confronted with a variety of ways and means to carry out this transfer.

  19. Our interests in protein-protein interactions

    Indian Academy of Sciences (India)

    protein interactions. Evolution of P-P partnerships. Evolution of P-P structures. Evolutionary dynamics of P-P interactions. Dynamics of P-P interaction network. Host-pathogen interactions. CryoEM mapping of gigantic protein assemblies.

  20. Evolution of protein-protein interactions

    Indian Academy of Sciences (India)

    Evolution of protein-protein interactions · Our interests in protein-protein interactions · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20.

  1. Protein in diet

    Science.gov (United States)

    Diet - protein ... Protein foods are broken down into parts called amino acids during digestion. The human body needs a ... to eat animal products to get all the protein you need in your diet. Amino acids are ...

  2. Protein-losing enteropathy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  3. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  4. Protein surface shielding agents in protein crystallization

    International Nuclear Information System (INIS)

    Hašek, J.

    2011-01-01

    The crystallization process can be controlled by protein surface shielding agents blocking undesirable competitive adhesion modes during non-equilibrium processes of deposition of protein molecules on the surface of growing crystalline blocks. The hypothesis is based on a number of experimental proofs from diffraction experiments and also retrieved from the Protein Data Bank. The molecules adhering temporarily on the surface of protein molecules change the propensity of protein molecules to deposit on the crystal surface in a definite position and orientation. The concepts of competitive adhesion modes and protein surface shielding agents acting on the surface of molecules in a non-equilibrium process of protein crystallization provide a useful platform for the control of crystallization. The desirable goal, i.e. a transient preference of a single dominating adhesion mode between protein molecules during crystallization, leads to uniform deposition of proteins in a crystal. This condition is the most important factor for diffraction quality and thus also for the accuracy of protein structure determination. The presented hypothesis is a generalization of the experimentally well proven behaviour of hydrophilic polymers on the surface of protein molecules of other compounds

  5. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  6. Protein Structure Prediction by Protein Threading

    Science.gov (United States)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  7. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    2013-01-01

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  8. Amino acids and proteins

    Science.gov (United States)

    A balanced, safe diet with proteins is important to meet nutritional requirements. Proteins occur in animal as well as vegetable products in important quantities. In some countries, many people obtain much of their protein from animal products. In other regions, the major portion of dietary protein ...

  9. The Protein Model Portal

    OpenAIRE

    Arnold, Konstantin; Kiefer, Florian; Kopp, J?rgen; Battey, James N. D.; Podvinec, Michael; Westbrook, John D.; Berman, Helen M.; Bordoli, Lorenza; Schwede, Torsten

    2008-01-01

    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploratio...

  10. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  11. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    Science.gov (United States)

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  12. IGSF9 Family Proteins

    DEFF Research Database (Denmark)

    Hansen, Maria; Walmod, Peter Schledermann

    2013-01-01

    The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene......, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle...... facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle...

  13. Personalizing Protein Nourishment

    Science.gov (United States)

    DALLAS, DAVID C.; SANCTUARY, MEGAN R.; QU, YUNYAO; KHAJAVI, SHABNAM HAGHIGHAT; VAN ZANDT, ALEXANDRIA E.; DYANDRA, MELISSA; FRESE, STEVEN A.; BARILE, DANIELA; GERMAN, J. BRUCE

    2016-01-01

    Proteins are not equally digestible—their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources and processing methods must be tailored to the consumer’s digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health. PMID:26713355

  14. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  15. Athoropometric measurements and plasma proteins in protein ...

    African Journals Online (AJOL)

    Athoropometric measurements and plasma proteins in protein energy malnutrition. MH Etukudo, EO Agbedana, OO Akinyinka, BOA Osifo. Abstract. No Abstract. Global Journal of Medical Sciences Vol. 5(1) 2006: 7-11. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  16. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  17. Protein and protein hydrolysates in sports nutrition.

    Science.gov (United States)

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  18. Protein Data Bank (PDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Protein Data Bank (PDB) archive is the single worldwide repository of information about the 3D structures of large biological molecules, including proteins and...

  19. Learning about Proteins

    Science.gov (United States)

    ... Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Learning About Proteins KidsHealth / For Kids / Learning About Proteins What's in ...

  20. Protein electrophoresis - serum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003540.htm Protein electrophoresis - serum To use the sharing features on ... JavaScript. This lab test measures the types of protein in the fluid (serum) part of a blood ...

  1. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.; Snow, Christopher D.

    2011-01-01

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full

  2. Urine protein electrophoresis test

    Science.gov (United States)

    Urine protein electrophoresis; UPEP; Multiple myeloma - UPEP; Waldenström macroglobulinemia - UPEP; Amyloidosis - UPEP ... special paper and apply an electric current. The proteins move and form visible bands. These reveal the ...

  3. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    interactions with other proteins, or binding of small molecules. Covalent .... vealed through structural elucidation of the protein in free and oxygen-bound forms .... stance, molecular dynamic simulation of glutamine binding pro- tein shows that ...

  4. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... covering all the systems, so far discovered.5,7,8,12. With the increasing ... Structural investigations on proteins by NMR are, currently ... rapid analysis of unfolded proteins. ...... and hence help in design of drugs against them.

  5. CSF total protein

    Science.gov (United States)

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...

  6. Protein - Which is Best?

    Science.gov (United States)

    Hoffman, Jay R; Falvo, Michael J

    2004-09-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key PointsHigher protein needs are seen in athletic populations.Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  7. Peptide segments in protein-protein interfaces

    Indian Academy of Sciences (India)

    Prakash

    2006-09-06

    Sep 6, 2006 ... contact surface from the rest of the protein surface have been used to identify ..... interfaces the contribution of the charged residues, such as. Lys, Asp and ..... Lawrence M C and Colman P M 1993 Shape complementarity at.

  8. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  9. Intracellular protein breakdown. 8

    International Nuclear Information System (INIS)

    Bohley, P.; Kirschke, H.; Langner, J.; Wiederanders, B.; Ansorge, S.

    1976-01-01

    Double-labelled proteins from rat liver cytosol ( 14 C in long-lived, 3 H in short-lived proteins after in-vivo-labelling) are used as substrates for unlabelled proteinases in vitro. Differences in the degradation rates of short-lived and long-lived proteins in vitro by different proteinases and after addition of different effectors allow conclusions concerning their importance for the in-vivo-turnover of substrate proteins. The main activity (>90%) of soluble lysosomal proteinases at pH 6.1 and pH 6.9 is caused by thiolproteinases, which degrade preferentially short-lived cytosol proteins. These proteinases are inhibited by leupeptin. Autolysis of double-labelled cell fractions shows a remarkably faster breakdown of short-lived substrate proteins only in the soluble part of lysosomes. Microsomal fractions degrade in vitro preferentially long-lived substrate proteins. (author)

  10. Protein carbonylation in plants

    DEFF Research Database (Denmark)

    Møller, Ian Max; Havelund, Jesper; Rogowska-Wrzesinska, Adelina

    2017-01-01

    This chapter provides an overview of the current knowledge on protein carbonylation in plants and its role in plant physiology. It starts with a brief outline of the turnover and production sites of reactive oxygen species (ROS) in plants and the causes of protein carbonylation. This is followed...... by a description of the methods used to study protein carbonylation in plants, which is also very brief as the methods are similar to those used in studies on animals. The chapter also focuses on protein carbonylation in plants in general and in mitochondria and in seeds in particular, as case stories where...... specific carbonylated proteins have been identified. Protein carbonylation appears to accumulate at all stages of seed development and germination investigated to date. In some cases, such as seed aging, it is probably simply an accumulation of oxidative damage. However, in other cases protein...

  11. Racemic protein crystallography.

    Science.gov (United States)

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  12. Texturized dairy proteins.

    Science.gov (United States)

    Onwulata, Charles I; Phillips, John G; Tunick, Michael H; Qi, Phoebi X; Cooke, Peter H

    2010-03-01

    Dairy proteins are amenable to structural modifications induced by high temperature, shear, and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey protein concentrate (WPC), and whey protein isolate (WPI) were modified using a twin-screw extruder at melt temperatures of 50, 75, and 100 degrees C, and moistures ranging from 20 to 70 wt%. Viscoelasticity and solubility measurements showed that extrusion temperature was a more significant (P extruded dairy protein ranged from rigid (2500 N) to soft (2.7 N). Extruding at or above 75 degrees C resulted in increased peak force for WPC (138 to 2500 N) and WPI (2.7 to 147.1 N). NDM was marginally texturized; the presence of lactose interfered with its texturization. WPI products extruded at 50 degrees C were not texturized; their solubility values ranged from 71.8% to 92.6%. A wide possibility exists for creating new foods with texturized dairy proteins due to the extensive range of states achievable. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, WPI, or WPC, or NDM were modified by extrusion processing. Extrusion temperature conditions were adjusted to 50, 75, or 100 degrees C, sufficient to change the structure of the dairy proteins, but not destroy them. Extrusion modified the structures of these dairy proteins for ease of use in starchy foods to boost nutrient levels. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, whey protein isolate, whey protein concentrate, or nonfat dried milk were modified by extrusion processing. Extrusion

  13. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  14. PROTEIN - WHICH IS BEST?

    Directory of Open Access Journals (Sweden)

    Michael J. Falvo

    2004-09-01

    Full Text Available Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids, whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function are also reviewed

  15. Specificity and affinity quantification of protein-protein interactions.

    Science.gov (United States)

    Yan, Zhiqiang; Guo, Liyong; Hu, Liang; Wang, Jin

    2013-05-01

    Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones. We developed a scoring function (named as SPA-PP, specificity and affinity of the protein-protein interactions) by incorporating both the specificity and affinity into the optimization strategy. The testing results and comparisons with other scoring functions show that SPA-PP performs remarkably on both predictions of binding pose and binding affinity. Thus, SPA-PP is a promising quantification of protein-protein interactions, which can be implemented into the protein docking tools and applied for the predictions of protein-protein structure and affinity. The algorithm is implemented in C language, and the code can be downloaded from http://dl.dropbox.com/u/1865642/Optimization.cpp.

  16. General protein-protein cross-linking.

    Science.gov (United States)

    Alegria-Schaffer, Alice

    2014-01-01

    This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). © 2014 Elsevier Inc. All rights reserved.

  17. Scoring functions for protein-protein interactions.

    Science.gov (United States)

    Moal, Iain H; Moretti, Rocco; Baker, David; Fernández-Recio, Juan

    2013-12-01

    The computational evaluation of protein-protein interactions will play an important role in organising the wealth of data being generated by high-throughput initiatives. Here we discuss future applications, report recent developments and identify areas requiring further investigation. Many functions have been developed to quantify the structural and energetic properties of interacting proteins, finding use in interrelated challenges revolving around the relationship between sequence, structure and binding free energy. These include loop modelling, side-chain refinement, docking, multimer assembly, affinity prediction, affinity change upon mutation, hotspots location and interface design. Information derived from models optimised for one of these challenges can be used to benefit the others, and can be unified within the theoretical frameworks of multi-task learning and Pareto-optimal multi-objective learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part...

  19. Blue Emission in Proteins

    OpenAIRE

    Sarkar, Sohini; Sengupta, Abhigyan; Hazra, Partha; Mandal, Pankaj

    2014-01-01

    Recent literatures reported blue-green emission from amyloid fibril as exclusive signature of fibril formation. This unusual visible luminescence is regularly used to monitor fibril growth. Blue-green emission has also been observed in crystalline protein and in solution. However, the origin of this emission is not known exactly. Our spectroscopic study of serum proteins reveals that the blue-green emission is a property of protein monomer. Evidences suggest that semiconductor-like band struc...

  20. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  1. Yeast ribosomal proteins

    International Nuclear Information System (INIS)

    Otaka, E.; Kobata, K.

    1978-01-01

    The cytoplasmic 80s ribosomal proteins from the cells of yeast Saccharomyces cerevisiae were analyzed by SDS two-dimensional polyacrylamide gel electrophoresis. Seventyfour proteins were identified and consecutively numbered from 1 to 74. Upon oxidation of the 80s proteins with performic acid, ten proteins (no. 15, 20, 35, 40, 44, 46, 49, 51, 54 and 55) were dislocated on the gel without change of the total number of protein spots. Five proteins (no. 8, 14, 16, 36 and 74) were phosphorylated in vivo as seen in 32 P-labelling experiments. The large and small subunits separated in low magnesium medium were analyzed by the above gel electrophoresis. At least forty-five and twenty-eight proteins were assumed to be in the large and small subunits, respectively. All proteins found in the 80s ribosomes, except for no. 3, were detected in either subunit without appearance of new spots. The acidic protein no. 3 seems to be lost during subunit dissociation. (orig.) [de

  2. Physics of protein folding

    Science.gov (United States)

    Finkelstein, A. V.; Galzitskaya, O. V.

    2004-04-01

    Protein physics is grounded on three fundamental experimental facts: protein, this long heteropolymer, has a well defined compact three-dimensional structure; this structure can spontaneously arise from the unfolded protein chain in appropriate environment; and this structure is separated from the unfolded state of the chain by the “all-or-none” phase transition, which ensures robustness of protein structure and therefore of its action. The aim of this review is to consider modern understanding of physical principles of self-organization of protein structures and to overview such important features of this process, as finding out the unique protein structure among zillions alternatives, nucleation of the folding process and metastable folding intermediates. Towards this end we will consider the main experimental facts and simple, mostly phenomenological theoretical models. We will concentrate on relatively small (single-domain) water-soluble globular proteins (whose structure and especially folding are much better studied and understood than those of large or membrane and fibrous proteins) and consider kinetic and structural aspects of transition of initially unfolded protein chains into their final solid (“native”) 3D structures.

  3. Ultrafiltration of pegylated proteins

    Science.gov (United States)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  4. Advances in Protein Precipitation

    NARCIS (Netherlands)

    Golubovic, M.

    2009-01-01

    Proteins are biological macromolecules, which are among the key components of all living organisms. Proteins are nowadays present in all fields of biotech industry, such as food and feed, synthetic and pharmaceutical industry. They are isolated from their natural sources or produced in different

  5. Synthesis of Lipidated Proteins.

    Science.gov (United States)

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented.

  6. Amino acids and proteins

    NARCIS (Netherlands)

    van Goudoever, Johannes B.; Vlaardingerbroek, Hester; van den Akker, Chris H.; de Groof, Femke; van der Schoor, Sophie R. D.

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional

  7. Protein Attachment on Nanodiamonds.

    Science.gov (United States)

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery.

  8. The intracellular Scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins.

    Science.gov (United States)

    Koskimäki, Janne J; Pirttilä, Anna Maria; Ihantola, Emmi-Leena; Halonen, Outi; Frank, A Carolin

    2015-03-24

    Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont's activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside

  9. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard...... to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners...... and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals...

  10. Protein restriction and cancer.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Huang, Xingguo; Li, Tiejun; Yin, Yulong

    2018-03-26

    Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Sensitizing properties of proteins

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Ladics, Gregory S; McClain, Scott

    2014-01-01

    The scope of allergy risk is diverse considering the myriad ways in which protein allergenicity is affected by physiochemical characteristics of proteins. The complexity created by the matrices of foods and the variability of the human immune system add additional challenges to understanding...... the relationship between sensitization potential and allergy disease. To address these and other issues, an April 2012 international symposium was held in Prague, Czech Republic, to review and discuss the state-of-the-science of sensitizing properties of protein allergens. The symposium, organized by the Protein...... Allergenicity Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, featured presentations on current methods, test systems, research trends, and unanswered questions in the field of protein sensitization. A diverse group of over 70 interdisciplinary...

  12. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  13. The Protein Model Portal.

    Science.gov (United States)

    Arnold, Konstantin; Kiefer, Florian; Kopp, Jürgen; Battey, James N D; Podvinec, Michael; Westbrook, John D; Berman, Helen M; Bordoli, Lorenza; Schwede, Torsten

    2009-03-01

    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploration of the protein structure space. One of the challenges in using model information effectively has been to access all models available for a specific protein in heterogeneous formats at different sites using various incompatible accession code systems. Often, structure models for hundreds of proteins can be derived from a given experimentally determined structure, using a variety of established methods. This has been done by all of the PSI centers, and by various independent modeling groups. The goal of the Protein Model Portal (PMP) is to provide a single portal which gives access to the various models that can be leveraged from PSI targets and other experimental protein structures. A single interface allows all existing pre-computed models across these various sites to be queried simultaneously, and provides links to interactive services for template selection, target-template alignment, model building, and quality assessment. The current release of the portal consists of 7.6 million model structures provided by different partner resources (CSMP, JCSG, MCSG, NESG, NYSGXRC, JCMM, ModBase, SWISS-MODEL Repository). The PMP is available at http://www.proteinmodelportal.org and from the PSI Structural Genomics Knowledgebase.

  14. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are

  15. Protein-Protein Docking in Drug Design and Discovery.

    Science.gov (United States)

    Kaczor, Agnieszka A; Bartuzi, Damian; Stępniewski, Tomasz Maciej; Matosiuk, Dariusz; Selent, Jana

    2018-01-01

    Protein-protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called "hot spots" in protein-protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein-protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein-protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein-protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein-protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein-protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein-protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.

  16. Bacterial Ice Crystal Controlling Proteins

    Science.gov (United States)

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  17. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  18. Endometrial proteins: a reappraisal.

    Science.gov (United States)

    Seppälä, M; Julkunen, M; Riittinen, L; Koistinen, R

    1992-06-01

    Uterine factors influence reproduction at the macro-anatomy level, and the effects of hormonal steroids on endometrial morphology are well recognized in the histopathological diagnosis of dysfunctional bleeding and infertility. During the past decade, attention has been paid to endometrial protein synthesis and secretion with respect to endocrine stimuli and implantation, and to the paracrine/autocrine effects of endometrial peptide growth factors, their binding proteins and other factors. The emphasis of this presentation is on protein secretion of the secretory endometrium, in which progesterone plays a pivotal role. Insulin-like growth factors have receptors on the endometrium, and IGF-binding proteins, stimulated by progesterone, modulate the effects of IGFs locally. Also other protein products of the secretory endometrium have been reviewed in this communication, with special emphasis on studies of a progesterone-associated endometrial protein which has many names in the literature, such as PEP, PP14, alpha 2-PEG and AUP. Extensive studies are ongoing in many laboratories to elucidate the regulation, function, interplay at tissue and cellular levels, and clinical significance of these proteins.

  19. Protein trapping of nanoparticles

    International Nuclear Information System (INIS)

    Ang, Joo C.; Lin, Jack M.; Yaron, Peter N.; White, John W.

    2009-01-01

    Full text: We have observed the formation of protein-nanoparticle complexes at the air-water interfaces from three different methods of presenting the nanoparticles to proteins. The structures formed resemble the 'protein-nanoparticle corona' proposed by Lynch et al. [1-3) in relation to a possible route for nanoparticle entry into living cells. To do this, the methods of x-ray and neutron reflectivity (with isotopic contrast variation between the protein and nanoparticles) have been used to study the structures formed at the air-water interface of l 3 - casein presented to silica nanoparticle dispersions. Whilst the silica dispersions showed no observable reflectivity, strong signals appear in the reflectivity when protein is present. Drop-wise spreading of a small amount of protein at the air-silica sol interface and presentation of the silica sol to an isolated monomolecular protein film (made by the 'flow-trough' method [4]) gave an immediate signal. Mixing the components in solution only produces a slow response but in all cases a similar structure is formed. The different responses are interpreted in structural and stoichiometric ways.

  20. Intercellular protein-protein interactions at synapses.

    Science.gov (United States)

    Yang, Xiaofei; Hou, Dongmei; Jiang, Wei; Zhang, Chen

    2014-06-01

    Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.

  1. Functional aspects of protein flexibility

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2009-01-01

    this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions...

  2. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  3. The Pentapeptide Repeat Proteins

    OpenAIRE

    Vetting, Matthew W.; Hegde, Subray S.; Fajardo, J. Eduardo; Fiser, Andras; Roderick, Steven L.; Takiff, Howard E.; Blanchard, John S.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S,T,A,V][D,N][L,F]-[S,T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Myc...

  4. Pierced Lasso Proteins

    Science.gov (United States)

    Jennings, Patricia

    Entanglement and knots are naturally occurring, where, in the microscopic world, knots in DNA and homopolymers are well characterized. The most complex knots are observed in proteins which are harder to investigate, as proteins are heteropolymers composed of a combination of 20 different amino acids with different individual biophysical properties. As new-knotted topologies and new proteins containing knots continue to be discovered and characterized, the investigation of knots in proteins has gained intense interest. Thus far, the principle focus has been on the evolutionary origin of tying a knot, with questions of how a protein chain `self-ties' into a knot, what the mechanism(s) are that contribute to threading, and the biological relevance and functional implication of a knotted topology in vivo gaining the most insight. Efforts to study the fully untied and unfolded chain indicate that the knot is highly stable, remaining intact in the unfolded state orders of magnitude longer than first anticipated. The persistence of ``stable'' knots in the unfolded state, together with the challenge of defining an unfolded and untied chain from an unfolded and knotted chain, complicates the study of fully untied protein in vitro. Our discovery of a new class of knotted proteins, the Pierced Lassos (PL) loop topology, simplifies the knotting approach. While PLs are not easily recognizable by the naked eye, they have now been identified in many proteins in the PDB through the use of computation tools. PL topologies are diverse proteins found in all kingdoms of life, performing a large variety of biological responses such as cell signaling, immune responses, transporters and inhibitors (http://lassoprot.cent.uw.edu.pl/). Many of these PL topologies are secreted proteins, extracellular proteins, as well as, redox sensors, enzymes and metal and co-factor binding proteins; all of which provide a favorable environment for the formation of the disulphide bridge. In the PL

  5. Protein digestion in ruminants

    African Journals Online (AJOL)

    a balance between synthesis and hydrolysis. Aside from .... be used to follow the synthesis of this protein fraction. (Clarke, 1977a) .... form of digestive enzymes, urea and ammonia (Egan, ..... decreasing urine-nitrogen excretion (Thornton, Bird,.

  6. Dietary Proteins and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Medina

    2014-01-01

    Full Text Available Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  7. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  8. Markers of protein oxidation

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2004-01-01

    Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed...... of this process depends on the extent of oxidation at C-3 compared with other sites. HO*, generated by gamma radiolysis, gave the highest total carbonyl yield, with protein-bound carbonyls predominating over released. In contrast, metal ion/H2O2 systems, gave more released than bound carbonyls, with this ratio...... modulated by EDTA. This is ascribed to metal ion-protein interactions affecting the sites of initial oxidation. Hypochlorous acid gave low concentrations of released carbonyls, but high yields of protein-bound material. The peroxyl radical generator 2,2'-azobis(2-amidinopropane) hydrochloride...

  9. Protein Colloidal Aggregation Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  10. Protein Polymers and Amyloids

    DEFF Research Database (Denmark)

    Risør, Michael Wulff

    2014-01-01

    Several human disorders are caused by a common general disease mechanism arising from abnormal folding and aggregation of the underlying protein. These include the prevalent dementias like Alzheimer’s and Parkinson’s, where accumulation of protein fibrillar structures, known as amyloid fibrils......, is a general hallmark. They also include the α1-antitrypsin deficiency, where disease-causing mutations in the serine protease inhibitor, α1-antitrypsin (α1AT), leads to accumulation of the aberrant protein in the liver of these patients. The native metastable structure of α1AT constitutes a molecular trap...... that inhibits its target protease through a large conformational change but mutations compromise this function and cause premature structural collapse into hyperstable polymers. Understanding the conformational disorders at a molecular level is not only important for our general knowledge on protein folding...

  11. Protein turnover in sheep

    International Nuclear Information System (INIS)

    Buttery, P.J.

    1981-01-01

    Considerable advances have been made in the knowledge of the mechanisms and control of synthesis and degradation of proteins in animal tissues during the last decade. Most of the work on the measurement of synthetic and degradative rates of the mixed protein fraction from tissues has been conducted in the rat. There have, unfortunately, been few publications describing results of protein turnover studies with ruminants. Consideration is given here to the techniques used to measure protein turnover, and some of the results obtained, particularly with sheep, are summarized. No attempt has been made to discuss directly the situation in parasitized animals; rather the aim is to provide background information which complements other work dealing with the effects of parasites on the nitrogen metabolism of ruminants. (author)

  12. MicroProteins

    DEFF Research Database (Denmark)

    Eguen, Teinai Ebimienere; Straub, Daniel; Graeff, Moritz

    2015-01-01

    MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining...... characteristics of a miP. In this opinion article, we clearly state the characteristics of a miP as evidenced by known proteins that fit the definition; we explain why modulatory proteins misrepresented as miPs do not qualify as true miPs. We also discuss the evolutionary history of miPs, and how the miP concept...

  13. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  14. Interactive protein manipulation

    International Nuclear Information System (INIS)

    2003-01-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  15. The protein protocols handbook

    National Research Council Canada - National Science Library

    Walker, John M

    2002-01-01

    .... The new chapters cover with many rapidly developing areas, particularly the application of mass spectrometry in protein characterization, as well as the now well-established 2-D PAGE technique in proteomics...

  16. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  17. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  18. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  19. Occupational protein contact dermatitis.

    Science.gov (United States)

    Barbaud, Annick; Poreaux, Claire; Penven, Emmanuelle; Waton, Julie

    2015-01-01

    Occupational contact dermatitis is generally caused by haptens but can also be induced by proteins causing mainly immunological contact urticaria (ICU); chronic hand eczema in the context of protein contact dermatitis (PCD). In a monocentric retrospective study, from our database, only 31 (0.41%) of patients with contact dermatitis had positive skin tests with proteins: 22 had occupational PCD, 3 had non-occupational PCD, 5 occupational ICU and 1 cook had a neutrophilic fixed food eruption (NFFE) due to fish. From these results and analysis of literature, the characteristics of PCD can be summarized as follows. It is a chronic eczematous dermatitis, possibly exacerbated by work, suggestive if associated with inflammatory perionyxix and immediate erythema with pruritis, to be investigated when the patient resumes work after a period of interruption. Prick tests with the suspected protein-containing material are essential, as patch tests have negative results. In case of multisensitisation revealed by prick tests, it is advisable to analyse IgE against recombinant allergens. A history of atopy, found in 56 to 68% of the patients, has to be checked for. Most of the cases are observed among food-handlers but PCD can also be due to non-edible plants, latex, hydrolysed proteins or animal proteins. Occupational exposure to proteins can thus lead to the development of ICU. Reflecting hypersensitivity to very low concentrations of allergens, investigating ICU therefore requires caution and prick tests should be performed with a diluted form of the causative protein-containing product. Causes are food, especially fruit peel, non-edible plants, cosmetic products, latex, animals.

  20. Proteins and their crystals

    Czech Academy of Sciences Publication Activity Database

    Kutá-Smatanová, Ivana; Hogg, T.; Hilgenfeld, R.; Grandori, R.; Carey, J.; Vácha, František; Štys, Dalibor

    2003-01-01

    Roč. 10, č. 1 (2003), s. 31-32 ISSN 1211-5894 R&D Projects: GA MŠk LN00A141; GA ČR GA206/00/D007 Institutional research plan: CEZ:AV0Z5051902; CEZ:MSM 123100001 Keywords : pokeweed antiviral protein * flavodoxin-like protein * PSII Subject RIV: EB - Genetics ; Molecular Biology

  1. The tubby family proteins

    OpenAIRE

    Mukhopadhyay, Saikat; Jackson, Peter K

    2011-01-01

    The tubby mouse shows a tripartite syndrome characterized by maturity-onset obesity, blindness and deafness. The causative gene Tub is the founding member of a family of related proteins present throughout the animal and plant kingdoms, each characterized by a signature carboxy-terminal tubby domain. This domain consists of a β barrel enclosing a central α helix and binds selectively to specific membrane phosphoinositides. The vertebrate family of tubby-like proteins (TULPs) includes the foun...

  2. The caveolin proteins

    OpenAIRE

    Williams, Terence M; Lisanti, Michael P

    2004-01-01

    The caveolin gene family has three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. So far, most caveolin-related research has been conducted in mammals, but the proteins have also been found in other animals, including Xenopus laevis, Fugu rubripes, and Caenorhabditis elegans. Caveolins can serve as protein markers of caveolae ('little caves'), invaginations in the plasma membrane 50-100 nanometers in diameter. Caveolins are found predominantly at the plasma membrane but also ...

  3. More protein in cereals?

    International Nuclear Information System (INIS)

    1969-01-01

    Ways in which the protein content of plant crops may be raised by the use of nuclear radiation are to be discussed at a symposium in Vienna in June next year, organized by the joint Food and Agriculture Organization/Agency Division of Atomic Energy in Food and Agriculture. Plant crops - especially cereal grains - are the basic food and protein source of most of the world's population, particularly in less-developed countries. But their natural protein content is low; increasing the quantity and nutritional quality of plant protein is potentially the most feasible way to combat widespread protein malnutrition. This improvement in seed stock can be achieved by plant breeding methods in which nuclear irradiation techniques are used to induce mutations in grain, and other isotopic techniques can be used to select only those mutants which have the desired properties. The scientists who attend the symposium will have an opportunity to review what mutation plant breeders have achieved, the application of nuclear techniques to screening for protein and amino-acid content and nutritional value, and isotopic methods which contribute to research in plant nutrition and physiology. (author)

  4. Electrophoretic transfer protein zymography.

    Science.gov (United States)

    Pan, Daniel; Hill, Adam P; Kashou, Anthony; Wilson, Karl A; Tan-Wilson, Anna

    2011-04-15

    Zymography detects and characterizes proteolytic enzymes by electrophoresis of protease-containing samples into a nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel containing a copolymerized protein substrate. The usefulness of zymography for molecular weight determination and proteomic analysis is hampered by the fact that some proteases exhibit slower migration through a gel that contains substrate protein. This article introduces electrophoretic transfer protein zymography as one solution to this problem. In this technique, samples containing proteolytic enzymes are first resolved in nonreducing SDS-PAGE on a gel without protein substrate. The proteins in the resolving gel are then electrophoretically transferred to a receiving gel previously prepared with a copolymerized protein substrate. The receiving gel is then developed as a zymogram to visualize clear or lightly stained bands in a dark background. Band intensities are linearly related to the amount of protease, extending the usefulness of the technique so long as conditions for transfer and development of the zymogram are kept constant. Conditions of transfer, such as the pore sizes of resolving and receiving gels and the transfer time relative to the molecular weight of the protease, are explored. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. More protein in cereals?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    Ways in which the protein content of plant crops may be raised by the use of nuclear radiation are to be discussed at a symposium in Vienna in June next year, organized by the joint Food and Agriculture Organization/Agency Division of Atomic Energy in Food and Agriculture. Plant crops - especially cereal grains - are the basic food and protein source of most of the world's population, particularly in less-developed countries. But their natural protein content is low; increasing the quantity and nutritional quality of plant protein is potentially the most feasible way to combat widespread protein malnutrition. This improvement in seed stock can be achieved by plant breeding methods in which nuclear irradiation techniques are used to induce mutations in grain, and other isotopic techniques can be used to select only those mutants which have the desired properties. The scientists who attend the symposium will have an opportunity to review what mutation plant breeders have achieved, the application of nuclear techniques to screening for protein and amino-acid content and nutritional value, and isotopic methods which contribute to research in plant nutrition and physiology. (author)

  6. Disease specific protein corona

    Science.gov (United States)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  7. Competitive protein binding assay

    International Nuclear Information System (INIS)

    Kaneko, Toshio; Oka, Hiroshi

    1975-01-01

    The measurement of cyclic GMP (cGMP) by competitive protein binding assay was described and discussed. The principle of binding assay was represented briefly. Procedures of our method by binding protein consisted of preparation of cGMP binding protein, selection of 3 H-cyclic GMP on market, and measurement procedures. In our method, binding protein was isolated from the chrysalis of silk worm. This method was discussed from the points of incubation medium, specificity of binding protein, the separation of bound cGMP from free cGMP, and treatment of tissue from which cGMP was extracted. cGMP existing in the tissue was only one tenth or one scores of cGMP, and in addition, cGMP competed with cGMP in binding with binding protein. Therefore, Murad's technique was applied to the isolation of cGMP. This method provided the measurement with sufficient accuracy; the contamination by cAMP was within several per cent. (Kanao, N.)

  8. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2009-09-01

    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  9. Unique Features of Halophilic Proteins.

    Science.gov (United States)

    Arakawa, Tsutomu; Yamaguchi, Rui; Tokunaga, Hiroko; Tokunaga, Masao

    2017-01-01

    Proteins from moderate and extreme halophiles have unique characteristics. They are highly acidic and hydrophilic, similar to intrinsically disordered proteins. These characteristics make the halophilic proteins soluble in water and fold reversibly. In addition to reversible folding, the rate of refolding of halophilic proteins from denatured structure is generally slow, often taking several days, for example, for extremely halophilic proteins. This slow folding rate makes the halophilic proteins a novel model system for folding mechanism analysis. High solubility and reversible folding also make the halophilic proteins excellent fusion partners for soluble expression of recombinant proteins.

  10. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  11. Bioinformatics and moonlighting proteins

    Directory of Open Access Journals (Sweden)

    Sergio eHernández

    2015-06-01

    Full Text Available Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyse and describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are: a remote homology searches using Psi-Blast, b detection of functional motifs and domains, c analysis of data from protein-protein interaction databases (PPIs, d match the query protein sequence to 3D databases (i.e., algorithms as PISITE, e mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs have the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations –it requires the existence of multialigned family protein sequences - but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/, previously published by our group, has been used as a benchmark for the all of the analyses.

  12. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  13. Protein (Cyanobacteria): 654346314 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein Mastigocoleus testarum MLEQIELKPNWERNQVAFLDFIVNGTSLHDQFDHPQVRDLCTVFTSDQYEFDGKSSAAIHASWFLGYGETPFPDDRIPVYICSSGDFDCGTVTAYLTVNDGTIKWSEFRIERLTEELQDQPIELTSVKQCVFERNAYEKLFQPFLRKVID

  14. Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence*

    Science.gov (United States)

    Krahmer, Natalie; Hilger, Maximiliane; Kory, Nora; Wilfling, Florian; Stoehr, Gabriele; Mann, Matthias; Farese, Robert V.; Walther, Tobias C.

    2013-01-01

    Lipid droplets (LDs) are important organelles in energy metabolism and lipid storage. Their cores are composed of neutral lipids that form a hydrophobic phase and are surrounded by a phospholipid monolayer that harbors specific proteins. Most well-established LD proteins perform important functions, particularly in cellular lipid metabolism. Morphological studies show LDs in close proximity to and interacting with membrane-bound cellular organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and endosomes. Because of these close associations, it is difficult to purify LDs to homogeneity. Consequently, the confident identification of bona fide LD proteins via proteomics has been challenging. Here, we report a methodology for LD protein identification based on mass spectrometry and protein correlation profiles. Using LD purification and quantitative, high-resolution mass spectrometry, we identified LD proteins by correlating their purification profiles to those of known LD proteins. Application of the protein correlation profile strategy to LDs isolated from Drosophila S2 cells led to the identification of 111 LD proteins in a cellular LD fraction in which 1481 proteins were detected. LD localization was confirmed in a subset of identified proteins via microscopy of the expressed proteins, thereby validating the approach. Among the identified LD proteins were both well-characterized LD proteins and proteins not previously known to be localized to LDs. Our method provides a high-confidence LD proteome of Drosophila cells and a novel approach that can be applied to identify LD proteins of other cell types and tissues. PMID:23319140

  15. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact...

  16. Measuring protein breakdown rate in individual proteins in vivo

    DEFF Research Database (Denmark)

    Holm, Lars; Kjaer, Michael

    2010-01-01

    To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo.......To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo....

  17. Changes in protein composition and protein phosphorylation during ...

    African Journals Online (AJOL)

    Changes in protein profiles and protein phosphorylation were studied in various stages of germinating somatic and zygotic embryos. Many proteins, which were expressed in cotyledonary stage somatic embryos, were also present in the zygotic embryos obtained from mature dry seed. The intensity of 22 kDa protein was ...

  18. A Stevedore's protein knot.

    Directory of Open Access Journals (Sweden)

    Daniel Bölinger

    2010-04-01

    Full Text Available Protein knots, mostly regarded as intriguing oddities, are gradually being recognized as significant structural motifs. Seven distinctly knotted folds have already been identified. It is by and large unclear how these exceptional structures actually fold, and only recently, experiments and simulations have begun to shed some light on this issue. In checking the new protein structures submitted to the Protein Data Bank, we encountered the most complex and the smallest knots to date: A recently uncovered alpha-haloacid dehalogenase structure contains a knot with six crossings, a so-called Stevedore knot, in a projection onto a plane. The smallest protein knot is present in an as yet unclassified protein fragment that consists of only 92 amino acids. The topological complexity of the Stevedore knot presents a puzzle as to how it could possibly fold. To unravel this enigma, we performed folding simulations with a structure-based coarse-grained model and uncovered a possible mechanism by which the knot forms in a single loop flip.

  19. Protein Annotation from Protein Interaction Networks and Gene Ontology

    OpenAIRE

    Nguyen, Cao D.; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2011-01-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precis...

  20. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.

    2011-01-24

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  1. Sound of proteins

    DEFF Research Database (Denmark)

    2007-01-01

    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids...... example of soundfile was obtained from using Steered Molecular Dynamics for stretching the neck region of the scallop myosin molecule (in rigor, PDB-id: 1SR6), in such a way as to cause a rotation of the myosin head. Myosin is the molecule responsible for producing the force during muscle contraction...

  2. Can infrared spectroscopy provide information on protein-protein interactions?

    Science.gov (United States)

    Haris, Parvez I

    2010-08-01

    For most biophysical techniques, characterization of protein-protein interactions is challenging; this is especially true with methods that rely on a physical phenomenon that is common to both of the interacting proteins. Thus, for example, in IR spectroscopy, the carbonyl vibration (1600-1700 cm(-1)) associated with the amide bonds from both of the interacting proteins will overlap extensively, making the interpretation of spectral changes very complicated. Isotope-edited infrared spectroscopy, where one of the interacting proteins is uniformly labelled with (13)C or (13)C,(15)N has been introduced as a solution to this problem, enabling the study of protein-protein interactions using IR spectroscopy. The large shift of the amide I band (approx. 45 cm(-1) towards lower frequency) upon (13)C labelling of one of the proteins reveals the amide I band of the unlabelled protein, enabling it to be used as a probe for monitoring conformational changes. With site-specific isotopic labelling, structural resolution at the level of individual amino acid residues can be achieved. Furthermore, the ability to record IR spectra of proteins in diverse environments means that isotope-edited IR spectroscopy can be used to structurally characterize difficult systems such as protein-protein complexes bound to membranes or large insoluble peptide/protein aggregates. In the present article, examples of application of isotope-edited IR spectroscopy for studying protein-protein interactions are provided.

  3. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com)....

  4. Protein: FBA7 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA7 claudin-zona occluden Tjp1 Zo1 Tight junction protein ZO-1 Tight junction protein 1, Zona occludens pr...otein 1, Zonula occludens protein 1 10090 Mus musculus 21872 P39447 2RRM P39447 21431884 ...

  5. Protein: FEA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEA3 AREB pathway: Signaling proteins At4g11890/T26M18_100 At4g11890, Protein kinase family pr...otein, Putative uncharacterized protein At4g11890/T26M18_100 3702 Arabidopsis thaliana 826796 Q8GY82 22225700 ...

  6. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in

  7. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  8. Urinary Protein Biomarker Analysis

    Science.gov (United States)

    2017-10-01

    silica emitter via a Valco stainless steel union. Four μL of individual peptide fractions (total volume 20 μL) following PRISM were injected for LC...secreted cement gland protein XAG-2 homolog, AGR2 belongs to the protein disulfide 5 isomerase (PDI) family. The strongest AGR2 expression has...µm C18 column (75 µm i.d. × 10 cm), which was connected to a chemically etched 20 µm i.d. fused-silica emitter via a Valco stainless steel union

  9. Protein energy malnutrition.

    Science.gov (United States)

    Grover, Zubin; Ee, Looi C

    2009-10-01

    Protein energy malnutrition (PEM) is a common problem worldwide and occurs in both developing and industrialized nations. In the developing world, it is frequently a result of socioeconomic, political, or environmental factors. In contrast, protein energy malnutrition in the developed world usually occurs in the context of chronic disease. There remains much variation in the criteria used to define malnutrition, with each method having its own limitations. Early recognition, prompt management, and robust follow up are critical for best outcomes in preventing and treating PEM.

  10. Heme Sensor Proteins*

    Science.gov (United States)

    Girvan, Hazel M.; Munro, Andrew W.

    2013-01-01

    Heme is a prosthetic group best known for roles in oxygen transport, oxidative catalysis, and respiratory electron transport. Recent years have seen the roles of heme extended to sensors of gases such as O2 and NO and cell redox state, and as mediators of cellular responses to changes in intracellular levels of these gases. The importance of heme is further evident from identification of proteins that bind heme reversibly, using it as a signal, e.g. to regulate gene expression in circadian rhythm pathways and control heme synthesis itself. In this minireview, we explore the current knowledge of the diverse roles of heme sensor proteins. PMID:23539616

  11. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    Science.gov (United States)

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  12. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  13. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  14. HIV protein sequence hotspots for crosstalk with host hub proteins.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2. We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.

  15. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  16. 24-hour urine protein

    Science.gov (United States)

    ... your provider may be able to order a test that is done on just one urine sample (protein-to-creatinine ratio). Normal Results The normal ... Some labs use different measurements or test different samples. Talk to your provider about the meaning of your specific test ... Abnormal results may be due to: A group ...

  17. Disorder in Protein Crystals.

    Science.gov (United States)

    Clarage, James Braun, II

    1990-01-01

    Methods have been developed for analyzing the diffuse x-ray scattering in the halos about a crystal's Bragg reflections as a means of determining correlations in atomic displacements in protein crystals. The diffuse intensity distribution for rhombohedral insulin, tetragonal lysozyme, and triclinic lysozyme crystals was best simulated in terms of exponential displacement correlation functions. About 90% of the disorder can be accounted for by internal movements correlated with a decay distance of about 6A; the remaining 10% corresponds to intermolecular movements that decay in a distance the order of size of the protein molecule. The results demonstrate that protein crystals fit into neither the Einstein nor the Debye paradigms for thermally fluctuating crystalline solids. Unlike the Einstein model, there are correlations in the atomic displacements, but these correlations decay more steeply with distance than predicted by the Debye-Waller model for an elastic solid. The observed displacement correlations are liquid -like in the sense that they decay exponentially with the distance between atoms, just as positional correlations in a liquid. This liquid-like disorder is similar to the disorder observed in 2-D crystals of polystyrene latex spheres, and similar systems where repulsive interactions dominate; hence, these colloidal crystals appear to provide a better analogy for the dynamics of protein crystals than perfectly elastic lattices.

  18. Optimization of fluorescent proteins

    NARCIS (Netherlands)

    Bindels, D.S.; Goedhart, J.; Hink, M.A.; van Weeren, L.; Joosen, L.; Gadella (jr.), T.W.J.; Engelborghs, Y.; Visser, A.J.W.G.

    2014-01-01

    Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy

  19. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  20. Tuber storage proteins.

    Science.gov (United States)

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  1. Mobility of photosynthetic proteins

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Radek

    2013-01-01

    Roč. 116, 2-3 (2013), s. 465-479 ISSN 0166-8595 R&D Projects: GA ČR GAP501/12/0304; GA MŠk(CZ) ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : Photosynthesis * Protein mobility * FRAP Subject RIV: EE - Microbiology, Virology Impact factor : 3.185, year: 2013

  2. Proteins and their crystals

    Czech Academy of Sciences Publication Activity Database

    Kutá-Smatanová, Ivana; Hogg, T.; Hilgenfeld, R.; Grandori, R.; Carey, J.; Vácha, František; Štys, D.

    2003-01-01

    Roč. 10, - (2003), s. 30-31 ISSN 1211-5894 R&D Projects: GA MŠk LN00A141; GA ČR GA206/00/D007 Institutional research plan: CEZ:MSM 123100001 Keywords : antiviral proteins Subject RIV: CD - Macromolecular Chemistry

  3. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030 ...

  4. Radioimmunoassay of protein hormones

    International Nuclear Information System (INIS)

    Talas, M.; Fingerova, H.

    1976-01-01

    A survey is presented of the history of RIA methods for FSH, LH, HCG, HPL and prolactin determinations with special regard to the double antibody method in a kinetic system. Problems are shown in 125 I-labelling protein hormones in preparing own antisera. (L.O.)

  5. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 1. Allosteric Regulation of Proteins: A Historical Perspective on the Development of Concepts and Techniques. General Article Volume 22 Issue 1 January 2017 pp 37-50 ...

  6. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  7. Dairy Proteins and Energy Balance

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist

    High protein diets affect energy balance beneficially through decreased hunger, enhanced satiety and increased energy expenditure. Dairy products are a major source of protein. Dairy proteins are comprised of two classes, casein (80%) and whey proteins (20%), which are both of high quality......, but casein is absorbed slowly and whey is absorbed rapidly. The present PhD study investigated the effects of total dairy proteins, whey, and casein, on energy balance and the mechanisms behind any differences in the effects of the specific proteins. The results do not support the hypothesis that dairy...... proteins, whey or casein are more beneficial than other protein sources in the regulation of energy balance, and suggest that dairy proteins, whey or casein seem to play only a minor role, if any, in the prevention and treatment of obesity....

  8. Phosphorylation of human link proteins

    International Nuclear Information System (INIS)

    Oester, D.A.; Caterson, B.; Schwartz, E.R.

    1986-01-01

    Three link proteins of 48, 44 and 40 kDa were purified from human articular cartilage and identified with monoclonal anti-link protein antibody 8-A-4. Two sets of lower molecular weight proteins of 30-31 kDa and 24-26 kDa also contained link protein epitopes recognized by the monoclonal antibody and were most likely degradative products of the intact link proteins. The link proteins of 48 and 40 kDa were identified as phosphoproteins while the 44 kDa link protein did not contain 32 P. The phosphorylated 48 and 40 kDa link proteins contained approximately 2 moles PO 4 /mole link protein

  9. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    Science.gov (United States)

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  10. Molecular Convergence of Infrared Vision in Snakes

    Science.gov (United States)

    Yokoyama, Shozo; Altun, Ahmet; DeNardo, Dale F.

    2011-01-01

    It has been discovered that the transient receptor potential ankyrin 1 (TRPA1) proteins of Boidae (boas), Pythonidae (pythons), and Crotalinae (pit vipers) are used to detect infrared radiation, but the molecular mechanism for detecting the infrared radiation is unknown. Here, relating the amino acid substitutions in their TRPA1 proteins and the functional differentiations, we propose that three parallel amino acid changes (L330M, Q391H, and S434T) are responsible for the development of infrared vision in the three groups of snakes. Protein modeling shows that the three amino acid changes alter the structures of the central region of their ankyrin repeats. PMID:20937734

  11. Fluorogen-activating proteins: beyond classical fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Shengnan Xu

    2018-05-01

    Full Text Available Fluorescence imaging is a powerful technique for the real-time noninvasive monitoring of protein dynamics. Recently, fluorogen activating proteins (FAPs/fluorogen probes for protein imaging were developed. Unlike the traditional fluorescent proteins (FPs, FAPs do not fluoresce unless bound to their specific small-molecule fluorogens. When using FAPs/fluorogen probes, a washing step is not required for the removal of free probes from the cells, thus allowing rapid and specific detection of proteins in living cells with high signal-to-noise ratio. Furthermore, with different fluorogens, living cell multi-color proteins labeling system was developed. In this review, we describe about the discovery of FAPs, the design strategy of FAP fluorogens, the application of the FAP technology and the advances of FAP technology in protein labeling systems. KEY WORDS: Fluorogen activating proteins, Fluorogens, Genetically encoded sensors, Fluorescence imaging, Molecular imaging

  12. Utilization of soya protein as an alternative protein source in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... For carcass trait, ash, crude fat, and energy varied significantly with soya protein ... high-protein content, relatively well-balanced amino acid profile ..... and organoleptic quality of flesh of brook char (Salvelinus fontinalis).

  13. Analysis of protein folds using protein contact networks

    Indian Academy of Sciences (India)

    is a well-recognized classification system of proteins, which is based on manual in- ... can easily correspond to the information in the 2D matrix. ..... [7] U K Muppirala and Zhijun Li, Protein Engineering, Design & Selection 19, 265 (2006).

  14. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  15. A Mesoscopic Model for Protein-Protein Interactions in Solution

    OpenAIRE

    Lund, Mikael; Jönsson, Bo

    2003-01-01

    Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote aggregation. Here we present a computational model describing interactions between protein molecules in solution. The calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear ma...

  16. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  17. Immunostimulatory mouse granuloma protein.

    Science.gov (United States)

    Fontan, E; Fauve, R M; Hevin, B; Jusforgues, H

    1983-10-01

    Earlier studies have shown that from subcutaneous talc-induced granuloma in mice, a fraction could be extracted that fully protected mice against Listeria monocytogenes. Using standard biochemical procedures--i.e., ammonium sulfate fractionation, preparative electrophoresis, gel filtration chromatography, isoelectric focusing, and preparative polyacrylamide gel electrophoresis--we have now purified an active factor to homogeneity. A single band was obtained in NaDodSO4/polyacrylamide gel with an apparent Mr of 55,000. It migrated with alpha 1-globulins and the isoelectric point was 5 +/- 0.1. The biological activity was destroyed with Pronase but not with trypsin and a monospecific polyclonal rabbit antiserum was obtained. The intravenous injection of 5 micrograms of this "mouse granuloma protein" fully protects mice against a lethal inoculum of L. monocytogenes. Moreover, after their incubation with 10 nM mouse granuloma protein, mouse peritoneal cells became cytostatic against Lewis carcinoma cells.

  18. Stability of Hyperthermophilic Proteins

    DEFF Research Database (Denmark)

    Stiefler-Jensen, Daniel

    stability by randomly generate mutants and lengthy screening processes to identify the best new mutants. However, with the increase in available genomic sequences of thermophilic or hyperthermophilic organisms a world of enzymes with intrinsic high stability are now available. As these organisms are adapted...... to life at high temperatures so are their enzymes, as a result the high stability is accompanied by low activity at moderate temperatures. Thus, much effort had been put into decoding the mechanisms behind the high stability of the thermophilic enzymes. The hope is to enable scientist to design enzymes...... in the high stability of hyperthermophilic enzymes. The thesis starts with an introduction to the field of protein and enzyme stability with special focus on the thermophilic and hyperthermophilic enzymes and proteins. After the introduction three original research manuscripts present the experimental data...

  19. Structures composing protein domains.

    Science.gov (United States)

    Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel; Hudeček, Jiří

    2013-08-01

    This review summarizes available data concerning intradomain structures (IS) such as functionally important amino acid residues, short linear motifs, conserved or disordered regions, peptide repeats, broadly occurring secondary structures or folds, etc. IS form structural features (units or elements) necessary for interactions with proteins or non-peptidic ligands, enzyme reactions and some structural properties of proteins. These features have often been related to a single structural level (e.g. primary structure) mostly requiring certain structural context of other levels (e.g. secondary structures or supersecondary folds) as follows also from some examples reported or demonstrated here. In addition, we deal with some functionally important dynamic properties of IS (e.g. flexibility and different forms of accessibility), and more special dynamic changes of IS during enzyme reactions and allosteric regulation. Selected notes concern also some experimental methods, still more necessary tools of bioinformatic processing and clinically interesting relationships. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    Science.gov (United States)

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  1. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  2. Why fibrous proteins are romantic.

    Science.gov (United States)

    Cohen, C

    1998-01-01

    Here I give a personal account of the great history of fibrous protein structure. I describe how Astbury first recognized the essential simplicity of fibrous proteins and their paradigmatic role in protein structure. The poor diffraction patterns yielded by these proteins were then deciphered by Pauling, Crick, Ramachandran and others (in part by model building) to reveal alpha-helical coiled coils, beta-sheets, and the collagen triple helical coiled coil-all characterized by different local sequence periodicities. Longer-range sequence periodicities (or "magic numbers") present in diverse fibrous proteins, such as collagen, tropomyosin, paramyosin, myosin, and were then shown to account for the characteristic axial repeats observed in filaments of these proteins. More recently, analysis of fibrous protein structure has been extended in many cases to atomic resolution, and some systems, such as "leucine zippers," are providing a deeper understanding of protein design than similar studies of globular proteins. In the last sections, I provide some dramatic examples of fibrous protein dynamics. One example is the so-called "spring-loaded" mechanism for viral fusion by the hemagglutinin protein of influenza. Another is the possible conformational changes in prion proteins, implicated in "mad cow disease," which may be related to similar transitions in a variety of globular and fibrous proteins. Copyright 1998 Academic Press.

  3. Tuber Storage Proteins

    OpenAIRE

    SHEWRY, PETER R.

    2003-01-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits act...

  4. Prion Protein and Aging

    Directory of Open Access Journals (Sweden)

    Lisa eGasperini

    2014-08-01

    Full Text Available The cellular prion protein (PrPC has been widely investigated ever since its conformational isoform, the prion (or PrPSc, was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate β-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and

  5. The mitochondrial uncoupling proteins

    OpenAIRE

    Ledesma, Amalia; de Lacoba, Mario García; Rial, Eduardo

    2002-01-01

    The uncoupling proteins (UCPs) are transporters, present in the mitochondrial inner membrane, that mediate a regulated discharge of the proton gradient that is generated by the respiratory chain. This energy-dissipatory mechanism can serve functions such as thermogenesis, maintenance of the redox balance, or reduction in the production of reactive oxygen species. Some UCP homologs may not act as true uncouplers, however, and their activity has yet to be defined. The UCPs are integral membrane...

  6. Protein engineering techniques gateways to synthetic protein universe

    CERN Document Server

    Poluri, Krishna Mohan

    2017-01-01

    This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.

  7. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  8. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  9. Accessory Proteins at ERES

    DEFF Research Database (Denmark)

    Klinkenberg, Rafael David

    membrane targeting and association with ERES. We determine the localization of Sec16B by transient expression in HeLa cells, and find that the protein is evenly distributed throughout the cell except the nucleus at 37°C, as is also observed with mSec16A. When the temperature is lowered to 15°C, mSec16B...... proteins. Together these components co‐operate in cargo‐selection as well as forming, loading and releasing budding vesicles from specific regions on the membrane surface of the ER. Coat components furthermore convey vesicle targeting towards the Golgi. However, not much is known about the mechanisms...... that regulate the COPII assembly at the vesicle bud site. This thesis provides the first regulatory mechanism of COPII assembly in relation to ER‐membrane lipid‐signal recognition by the accessory protein p125A (Sec23IP). The aim of the project was to characterize p125A function by dissecting two main domains...

  10. Papillomavirus E6 proteins

    International Nuclear Information System (INIS)

    Howie, Heather L.; Katzenellenbogen, Rachel A.; Galloway, Denise A.

    2009-01-01

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition

  11. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  12. Noncovalent synthesis of protein dendrimers

    NARCIS (Netherlands)

    Lempens, E.H.M.; Baal, van I.; Dongen, van J.L.J.; Hackeng, T.M.; Merkx, M.; Meijer, E.W.

    2009-01-01

    The covalent synthesis of complex biomolecular systems such as multivalent protein dendrimers often proceeds with low efficiency, thereby making alternative strategies based on noncovalent chemistry of high interest. Here, the synthesis of protein dendrimers using a strong but noncovalent

  13. Protein folding and wring resonances

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren

    1997-01-01

    The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested that prot......The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested...... that protein folding takes place when the amplitude of a wring excitation becomes so large that it is energetically favorable to bend the protein backbone. The condition under which such structural transformations can occur is found, and it is shown that both cold and hot denaturation (the unfolding...

  14. Protein Linked to Atopic Dermatitis

    Science.gov (United States)

    ... Research Matters NIH Research Matters January 14, 2013 Protein Linked to Atopic Dermatitis Normal skin from a ... in mice suggests that lack of a certain protein may trigger atopic dermatitis, the most common type ...

  15. Pathways of Unconventional Protein Secretion

    NARCIS (Netherlands)

    Rabouille, Catherine

    2017-01-01

    Secretory proteins are conventionally transported through the endoplasmic reticulum to the Golgi and then to the plasma membrane where they are released into the extracellular space. However, numerous substrates also reach these destinations using unconventional pathways. Unconventional protein

  16. Pathways of Unconventional Protein Secretion

    NARCIS (Netherlands)

    Rabouille, Catherine

    2016-01-01

    Secretory proteins are conventionally transported through the endoplasmic reticulum to the Golgi and then to the plasma membrane where they are released into the extracellular space. However, numerous substrates also reach these destinations using unconventional pathways. Unconventional protein

  17. Designing proteins for therapeutic applications.

    Science.gov (United States)

    Lazar, Greg A; Marshall, Shannon A; Plecs, Joseph J; Mayo, Stephen L; Desjarlais, John R

    2003-08-01

    Protein design is becoming an increasingly useful tool for optimizing protein drugs and creating novel biotherapeutics. Recent progress includes the engineering of monoclonal antibodies, cytokines, enzymes and viral fusion inhibitors.

  18. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  19. Tyrosine phosphorylation of WW proteins

    Science.gov (United States)

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  20. Protein annotation from protein interaction networks and Gene Ontology.

    Science.gov (United States)

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  2. A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction

    Directory of Open Access Journals (Sweden)

    Meijing Li

    2015-01-01

    Full Text Available Many researchers focus on developing protein-named entity recognition (Protein-NER or PPI extraction systems. However, the studies about these two topics cannot be merged well; then existing PPI extraction systems’ Protein-NER still needs to improve. In this paper, we developed the protein-protein interaction extraction system named PPIMiner based on Support Vector Machine (SVM and parsing tree. PPIMiner consists of three main models: natural language processing (NLP model, Protein-NER model, and PPI discovery model. The Protein-NER model, which is named ProNER, identifies the protein names based on two methods: dictionary-based method and machine learning-based method. ProNER is capable of identifying more proteins than dictionary-based Protein-NER model in other existing systems. The final discovered PPIs extracted via PPI discovery model are represented in detail because we showed the protein interaction types and the occurrence frequency through two different methods. In the experiments, the result shows that the performances achieved by our ProNER and PPI discovery model are better than other existing tools. PPIMiner applied this protein-named entity recognition approach and parsing tree based PPI extraction method to improve the performance of PPI extraction. We also provide an easy-to-use interface to access PPIs database and an online system for PPIs extraction and Protein-NER.

  3. Proteins: Chemistry, Characterization, and Quality

    NARCIS (Netherlands)

    Sforza, S.; Tedeschi, T.; Wierenga, P.A.

    2016-01-01

    Proteins are one of the major macronutrients in food, and several traditional food commodities are good sources of proteins (meat, egg, milk and dairy products, fish, and soya). Proteins are polymers made by 20 different amino acids. They might undergo desired or undesired chemical or enzymatic

  4. Protein: FBA8 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA8 LUBAC (linear ubiquitin chain-assembly complex) RNF31 ZIBRA RNF31 RING finger pr...otein 31 HOIL-1-interacting protein, Zinc in-between-RING-finger ubiquitin-associated domain protein 9606 Homo sapiens Q96EP0 55072 2CT7 55072 Q96EP0 ...

  5. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules MAVS IPS1, KIAA1271, VISA VISA_(gene) Mitochondrial antiviral-signaling pr...otein CARD adapter inducing interferon beta, Interferon beta promoter stimulator protein... 1, Putative NF-kappa-B-activating protein 031N, Virus-induced-signaling adapter 9606 Homo sapiens Q7Z434 57506 2VGQ 57506 ...

  6. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Ubiquitination CBLB RNF56 CBLB E3 ubiquitin-protein ligase CBL-B Casitas B-lineage lymphoma pr...oto-oncogene b, RING finger protein 56, SH3-binding protein CBL-B, Signal transduction prote

  7. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases WWP1 WWP1 NEDD4-like E3 ubiquitin-protein ligase WWP1 Atrophin-1-interacting pr...otein 5, WW domain-containing protein 1 9606 Homo sapiens Q9H0M0 11059 2OP7, 1ND7 11059 ...

  8. Hydrophobic patches on protein surfaces

    NARCIS (Netherlands)

    Lijnzaad, P.

    2007-01-01

    Hydrophobicity is a prime determinant of the structure and function of proteins. It is the driving force behind the folding of soluble proteins, and when exposed on the surface, it is frequently involved in recognition and binding of ligands and other proteins. The energetic cost of

  9. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Protein-protein interactions and cancer: targeting the central dogma.

    Science.gov (United States)

    Garner, Amanda L; Janda, Kim D

    2011-01-01

    Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.

  11. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  12. The Proteins API: accessing key integrated protein and genome information.

    Science.gov (United States)

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-07-03

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  14. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  15. Protein enriched pasta: structure and digestibility of its protein network.

    Science.gov (United States)

    Laleg, Karima; Barron, Cécile; Santé-Lhoutellier, Véronique; Walrand, Stéphane; Micard, Valérie

    2016-02-01

    Wheat (W) pasta was enriched in 6% gluten (G), 35% faba (F) or 5% egg (E) to increase its protein content (13% to 17%). The impact of the enrichment on the multiscale structure of the pasta and on in vitro protein digestibility was studied. Increasing the protein content (W- vs. G-pasta) strengthened pasta structure at molecular and macroscopic scales but reduced its protein digestibility by 3% by forming a higher covalently linked protein network. Greater changes in the macroscopic and molecular structure of the pasta were obtained by varying the nature of protein used for enrichment. Proteins in G- and E-pasta were highly covalently linked (28-32%) resulting in a strong pasta structure. Conversely, F-protein (98% SDS-soluble) altered the pasta structure by diluting gluten and formed a weak protein network (18% covalent link). As a result, protein digestibility in F-pasta was significantly higher (46%) than in E- (44%) and G-pasta (39%). The effect of low (55 °C, LT) vs. very high temperature (90 °C, VHT) drying on the protein network structure and digestibility was shown to cause greater molecular changes than pasta formulation. Whatever the pasta, a general strengthening of its structure, a 33% to 47% increase in covalently linked proteins and a higher β-sheet structure were observed. However, these structural differences were evened out after the pasta was cooked, resulting in identical protein digestibility in LT and VHT pasta. Even after VHT drying, F-pasta had the best amino acid profile with the highest protein digestibility, proof of its nutritional interest.

  16. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  17. Protein Sorting Prediction

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2017-01-01

    and drawbacks of each of these approaches is described through many examples of methods that predict secretion, integration into membranes, or subcellular locations in general. The aim of this chapter is to provide a user-level introduction to the field with a minimum of computational theory.......Many computational methods are available for predicting protein sorting in bacteria. When comparing them, it is important to know that they can be grouped into three fundamentally different approaches: signal-based, global-property-based and homology-based prediction. In this chapter, the strengths...

  18. Proteins in the experiment

    International Nuclear Information System (INIS)

    Yang, Y.S.

    1985-08-01

    The backbone of ferredoxin and hemoproteins are described by SAWs in two and three dimensions. But the spin-lattice relaxation process of Fsub(e) 3+ ions cannot be described by pure fractal model. The spectral dimensions observed in experiment is defined through dsub(s)=dsub(f)/a, a is given by the scaling form of the low frequency mode ω(bL)=bsup(a)ω(L) of the whole system consisting of proteins and the solvent upon a change of the length scale. (author)

  19. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  20. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  1. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  2. Metagenomics and the protein universe

    Science.gov (United States)

    Godzik, Adam

    2011-01-01

    Metagenomics sequencing projects have dramatically increased our knowledge of the protein universe and provided over one-half of currently known protein sequences; they have also introduced a much broader phylogenetic diversity into the protein databases. The full analysis of metagenomic datasets is only beginning, but it has already led to the discovery of thousands of new protein families, likely representing novel functions specific to given environments. At the same time, a deeper analysis of such novel families, including experimental structure determination of some representatives, suggests that most of them represent distant homologs of already characterized protein families, and thus most of the protein diversity present in the new environments are due to functional divergence of the known protein families rather than the emergence of new ones. PMID:21497084

  3. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2014-01-01

    Full Text Available WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1 and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA, two integrin beta (ITGB, and one syndecan (SDC. Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.

  4. Prion protein in milk.

    Directory of Open Access Journals (Sweden)

    Nicola Franscini

    Full Text Available BACKGROUND: Prions are known to cause transmissible spongiform encephalopathies (TSE after accumulation in the central nervous system. There is increasing evidence that prions are also present in body fluids and that prion infection by blood transmission is possible. The low concentration of the proteinaceous agent in body fluids and its long incubation time complicate epidemiologic analysis and estimation of spreading and thus the risk of human infection. This situation is particularly unsatisfactory for food and pharmaceutical industries, given the lack of sensitive tools for monitoring the infectious agent. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an adsorption matrix, Alicon PrioTrap, which binds with high affinity and specificity to prion proteins. Thus we were able to identify prion protein (PrP(C--the precursor of prions (PrP(Sc--in milk from humans, cows, sheep, and goats. The absolute amount of PrP(C differs between the species (from microg/l range in sheep to ng/l range in human milk. PrP(C is also found in homogenised and pasteurised off-the-shelf milk, and even ultrahigh temperature treatment only partially diminishes endogenous PrP(C concentration. CONCLUSIONS/SIGNIFICANCE: In view of a recent study showing evidence of prion replication occurring in the mammary gland of scrapie infected sheep suffering from mastitis, the appearance of PrP(C in milk implies the possibility that milk of TSE-infected animals serves as source for PrP(Sc.

  5. Ethylene and protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, D J

    1973-01-01

    Ethylene reduces the rate of expansion growth of cells and it is suggestive that the rate of expansion is controlled at least in part by the synthesis of hydroxyproline rich glycopeptides that are secreted with other polysaccharide material through the plasmalemma into the cell wall, thereby enhancing the thickness of the cell wall and also rendering it poorly extensible. In combination, auxin would appear to counteract the effect of ethylene in this respect, for although auxin enhances the synthesis of protein and the content in the cell walls, as well as causing some increase in wall thickness, it reduces the amount of hydroxyproline reaching the wall. Such effects may be instrumental in enhancing wall plasticity, the rate of expansion and the final cell size. These results indicate that ethylene and auxin together afford a dual regulatory system exerted through a control of a specific part of the protein synthetic pathway, the products of which regulate the rate of expansion, and the potential for expansion, of the plant cell wall. 38 references, 3 figures, 8 tables.

  6. The netrin protein family.

    Science.gov (United States)

    Rajasekharan, Sathyanath; Kennedy, Timothy E

    2009-01-01

    The name netrin is derived from the Sanskrit Netr, meaning 'guide'. Netrins are a family of extracellular proteins that direct cell and axon migration during embryogenesis. Three secreted netrins (netrins 1, 3 and 4), and two glycosylphosphatidylinositol (GPI)-anchored membrane proteins, netrins G1 and G2, have been identified in mammals. The secreted netrins are bifunctional, acting as attractants for some cell types and repellents for others. Receptors for the secreted netrins include the Deleted in Colorectal Cancer (DCC) family, the Down's syndrome cell adhesion molecule (DSCAM), and the UNC-5 homolog family: Unc5A, B, C and D in mammals. Netrin Gs do not appear to interact with these receptors, but regulate synaptic interactions between neurons by binding to the transmembrane netrin G ligands NGL1 and 2. The chemotropic function of secreted netrins has been best characterized with regard to axon guidance during the development of the nervous system. Extending axons are tipped by a flattened, membranous structure called the growth cone. Multiple extracellular guidance cues direct axonal growth cones to their ultimate targets where synapses form. Such cues can be locally derived (short-range), or can be secreted diffusible cues that allow target cells to signal axons from a distance (long-range). The secreted netrins function as short-range and long-range guidance cues in different circumstances. In addition to directing cell migration, functional roles for netrins have been identified in the regulation of cell adhesion, the maturation of cell morphology, cell survival and tumorigenesis.

  7. Protein detection using biobarcodes.

    Science.gov (United States)

    Müller, Uwe R

    2006-10-01

    Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.

  8. IGF binding proteins.

    Science.gov (United States)

    Bach, Leon A

    2017-12-18

    Insulin-like growth factor binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellularly; (ii) interaction with and modulation of other growth factor pathways including EGF, TGF- and VEGF; and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.

  9. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  10. Botanical and Protein Sweeteners

    Directory of Open Access Journals (Sweden)

    D.A. Agboola

    2014-10-01

    Full Text Available Plant species with unusual taste properties such as bitterness, sourness or sweetness and others with a taste- modifying components; have long been known to man, although their exploitation has been limited. Exponential growth in the number of patients suffering from diseases caused by the consumption of sugar has become a threat to mankind's health. Artificial low calorie sweeteners available in the market may have severe side effects. It takes time to figure out the long term side effects and by the time these are established, they are replaced by a new low calorie sweetener. Saccharine has been used for centuries to sweeten foods and beverages without calories or carbohydrate. It was also used on a large scale during the sugar shortage of the two world wars but was abandoned as soon as it was linked with the development of bladder cancer. Naturally occurring sweet and taste modifying proteins (Thaumatin, Curculin, Miraculin, Brazzein, Pentadin, Monellin, Mabinlin present in  plants such as Thaumatococcus daniellii (Marantaceae, Curculigo latifolia (Hypoxidaceae, Synsepalum dulcificum (Sapotaceae, Pentadiplandra brazzeana (Pentadiplandraceae, Dioscoreophyllum cumminsii (Menispermaceae, Capparis masaikai (Capparaceae are being seen as potential replacements for the currently available artificial low calorie sweeteners. Most protein sweetener plants such as S. dulcificum, P. brazzeana, C. masaikai, are shrubs; C. latifolia, T. danielli, are perennial herbs while D. Cumminsii is an annual liana.

  11. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-01-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  12. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-08-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  13. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  14. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used...... to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions.......Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...

  15. On the role of electrostatics on protein-protein interactions

    Science.gov (United States)

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-01-01

    The role of electrostatics on protein-protein interactions and binding is reviewed in this article. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and basic electrostatic effects occurring upon the formation of the complex are discussed. The role of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated and indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartment. At the end, the similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity. PMID:21572182

  16. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    Science.gov (United States)

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  17. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  18. Evolutionary reprograming of protein-protein interaction specificity.

    Science.gov (United States)

    Akiva, Eyal; Babbitt, Patricia C

    2015-10-22

    Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Information assessment on predicting protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Gerstein Mark

    2004-10-01

    Full Text Available Abstract Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information. Results Our assessment is based on the genomic features used in a Bayesian network approach to predict protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing information about any of the features, our analysis shows that there is a larger information contribution from the functional-classification than from expression correlations or essentiality. We also show that in this case alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks for predicting interactions. Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene Ontology (GO functional similarity datasets as the dominating information contributors for predicting the protein-protein interactions under the framework proposed by Jansen et al. Random forests based on the MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete information, adding other genomic data does little for improving predictions. We also found that the data discretizations used in the

  20. Protein Adaptations in Archaeal Extremophiles

    Science.gov (United States)

    Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449

  1. Protein Adaptations in Archaeal Extremophiles

    Directory of Open Access Journals (Sweden)

    Christopher J. Reed

    2013-01-01

    Full Text Available Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  2. Viral Organization of Human Proteins

    Science.gov (United States)

    Wuchty, Stefan; Siwo, Geoffrey; Ferdig, Michael T.

    2010-01-01

    Although maps of intracellular interactions are increasingly well characterized, little is known about large-scale maps of host-pathogen protein interactions. The investigation of host-pathogen interactions can reveal features of pathogenesis and provide a foundation for the development of drugs and disease prevention strategies. A compilation of experimentally verified interactions between HIV-1 and human proteins and a set of HIV-dependency factors (HDF) allowed insights into the topology and intricate interplay between viral and host proteins on a large scale. We found that targeted and HDF proteins appear predominantly in rich-clubs, groups of human proteins that are strongly intertwined among each other. These assemblies of proteins may serve as an infection gateway, allowing the virus to take control of the human host by reaching protein pathways and diversified cellular functions in a pronounced and focused way. Particular transcription factors and protein kinases facilitate indirect interactions between HDFs and viral proteins. Discerning the entanglement of directly targeted and indirectly interacting proteins may uncover molecular and functional sites that can provide novel perspectives on the progression of HIV infection and highlight new avenues to fight this virus. PMID:20827298

  3. Proteins aggregation and human diseases

    Science.gov (United States)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  4. Proteins of bacteriophage phi6

    International Nuclear Information System (INIS)

    Sinclair, J.F.; Tzagoloff, A.; Levine, D.; Mindich, L.

    1975-01-01

    We investigated the protein composition of the lipid-containing bacteriophage phi 6. We also studied the synthesis of phage-specific proteins in the host bacterium Pseudomonas phaseolicola HB10Y. The virion was found to contain 10 proteins of the following molecular weights: P1, 93,000; P2, 88,000; P3, 84,000; P4, 36,800; P5, 24,000; P6, 21,000; P7, 19,900; P8, 10,500; P9, 8,700; and P10, less than 6,000. Proteins P3, P9, and P10 were completely extracted from the virion with 1 percent Triton X-100. Protein P6 was partially extracted. Proteins P8 and P9 were purified by column chromatography. The amino acid composition of P9 was determined and was found to lack methionine. Labeling of viral proteins with [ 35 S]methionine in infected cells indicated that proteins P5, P9, P10, and P11 lacked methionine. Treatment of host cells with uv light before infection allowed the synthesis of P1, P2, P4, and P7; however, the extent of viral protein synthesis fell off exponentially with increasing delay time between irradiation and infection. Treatment of host cells with rifampin during infection allowed preferential synthesis of viral proteins, but the extent of synthesis also fell off exponentially with increasing delay time between the addition of rifampin and the addition of radioactive amino acids. All of the virion proteins were seen in gels prepared from rifampin-treated infected cells. In addition, two proteins, P11 and P12, were observed; their molecular weights were 25,200 and 20,100, respectively. Proteins P1, P2, P4, and P7 were synthesized early, whereas the rest began to increase at 45 min post-infection

  5. Protein (Cyanobacteria): 500464022 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available thetical protein Synechococcus sp. WH 7803 MSRQRFRGLYLQNTGHPLCFSFVTYTPQTREQMVACGDLRADEEYFSPVLFDFLLFVSEGILGASPGVAFPFGYDDLAIVASRIRGTGVQHEYLIAINASAWNESKQAVLQQLRDILSRDLWDGARLRRGNDHPSPSE

  6. Protein (Cyanobacteria): 504930526 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Rivularia sp. PCC 7116 MAEDNNLTNNSATNISSESQTLNKDIEELVTRQAKAWENADSEAIIADFAENGAFIAPGTSLKGKADIKKAAEDYFKEFTDTKVKITRIFSDGKEGGVEWTWSDKNKKTGEKSLIDDAIIFEIKDGKIIYWREYFDKQTVSS

  7. Protein (Viridiplantae): 159470305 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Chlamydomonas reinhardtii MSSRPKRAASANMANVIAAEKANKAAALHAWPKMWATKLEAQLQLMFMPTRLHRRPLHQGTCRNYSTAPGITGVIELTSAFYRMYPNATFVFNKETAAKGTYRGEEETAASWWLKHVGSKLEIYLSPLRCRPEVSR ...

  8. Protein (Cyanobacteria): 516317055 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ical protein Prochlorothrix hollandica MYENERDNERENEYDLISPVEILPVIVARAIAPPSPPATTPDDPERVYESENEREDESISPVEILPVIVARAIA...PPSPPSTAPDDPEDEYERGDEREDEYEDEAISPVEILPVIVARAIAPPSPPATAPDEDAAAPDENEDEYEEI

  9. Protein (Cyanobacteria): 497073171 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein Fischerella sp. JSC-11 MHYYVHPFQLELHKLENMIVHVQHVNNQEVKQIADSRLFTSQAIGEEGGDTVTTKAIGEEGGDTVTTQAIGEEGGDTVTTKAIGEEGGDTVTTQAIGEEGGDTVTTQAIGEEGGDTVTTKAIGEEGGDTVTTLAFGEEGGF

  10. Protein (Cyanobacteria): 518320325 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ... hypothetical protein Calothrix sp. PCC 7103 MDYVHPFQMELHKLESMIVHVQYADIKEVDKTLASNDAVSTQAVGEEGGTKVSTRALGEEGGNILTTYAVGEEGGNILTTYAVGEEGGDKVTTQAVGEEGGTRVTTYAVGEEGGGRVTTKAVGEEGGSIIRR

  11. Protein (Cyanobacteria): 447729 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Microcystis aeruginosa PCC 9806 MMEDIVWKMQQRSRTLQDYRKDIRGLWQDEAAKTLNRRYLDPHEDDDQKMIEFLQKQVQGLEKTNEELVKAKDYALEAERYSQQVEHFLEREKQEVKQAYYSYDRSIEYYGLTQAELPNIHRLIQQANRSCN ...

  12. Protein (Cyanobacteria): 515516403 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Anabaena sp. PCC 7108 MTVRFLLDSNIISEPSRPIPNIQVLDQLNRYRSEVAIASVVVHEILYGCWRLPPSKRKDSLWKYIQDSVLNLPVFDYNLNAAKWHAQERARLSKIGKTPAFIDGQIASIAFCNDLILVTNNVADFQDFQDLVIENWFI

  13. Protein (Viridiplantae): 308803454 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available unnamed protein product, partial Ostreococcus tauri MRSFVLIIHASASYDKIRSCTPATRYACDVRSNLKRAALGDVQPPLGLVLAALEIIFVPRADDARVTHGLFEQPIEEALLLPGLRARYSSRQSKSHVTSHDPRLDPPQIHHPAPVRYHPIASPSX ...

  14. Protein (Cyanobacteria): 493685768 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Microcoleus vaginatus MSEIPAEQTQTNLTTPEITTESSISGVENVKNSLGNVLNSWKLKVGVAVVVLFAVSLFAFYWQHIIAVVGMKSWSARSGANPIECMVRDTNNDQYVSCSALLDQQIVPLECSSSLFNIGCRVNYGTAAANPRQTNPR

  15. Protein supplementation with sports protein bars in renal patients.

    Science.gov (United States)

    Meade, Anthony

    2007-05-01

    Malnutrition prevalence in patients on dialysis is well established. The protein requirements for both hemodialysis and peritoneal dialysis have been documented elsewhere, including the Kidney Disease Outcomes Quality Initiative Clinical Practice Guidelines for Nutrition in Chronic Renal Failure. The clinical challenge is to assist patients in meeting these targets, especially in those with anorexia. Traditional supplements have included fluid, which is an issue for patients who are fluid restricted. The study objectives were to (1) investigate the range of sports protein supplements that may be suitable for patients on hemodialysis to use and (2) trial nonfluid protein supplements in patients on hemodialysis. Known manufacturers of sports protein bars and other sports supplements available in Australia were contacted for the nutrient breakdown of high-protein products, specifically potassium, protein, and phosphorus contents. As a result, selected high-protein sports bars (Protein FX, Aussie Bodies, Port Melbourne, Victoria, Australia) were used as an alternative to the more commonly used renal-specific fluid supplements (Nepro, Abbott Laboratories, Abbott Park, IL; Novasource Renal, Novartis Nutrition Corporation, Fremont, MI; and Renilon, Nutricia, Wiltshire, UK) in patients with poor nutritional status requiring supplementation. Patient satisfaction and clinical nutrition markers were investigated. The study took place at inpatient, in-center, and satellite hemodialysis settings in Adelaide, South Australia. A total of 32 patients (16 females and 16 males) with an average age of 62.9 years (range 32-86 years) undergoing hemodialysis (acute and maintenance) were included. Subjects were selected by the author as part of routine clinical nutrition care. Patients trialed sports protein bars as a protein supplement alone or in conjunction with other supplementary products. All patients were in favor of the trial, with 22 of 32 patients continuing with the protein

  16. Protein degradation and protection against misfolded or damaged proteins

    Science.gov (United States)

    Goldberg, Alfred L.

    2003-12-01

    The ultimate mechanism that cells use to ensure the quality of intracellular proteins is the selective destruction of misfolded or damaged polypeptides. In eukaryotic cells, the large ATP-dependent proteolytic machine, the 26S proteasome, prevents the accumulation of non-functional, potentially toxic proteins. This process is of particular importance in protecting cells against harsh conditions (for example, heat shock or oxidative stress) and in a variety of diseases (for example, cystic fibrosis and the major neurodegenerative diseases). A full understanding of the pathogenesis of the protein-folding diseases will require greater knowledge of how misfolded proteins are recognized and selectively degraded.

  17. Water-Protein Interactions: The Secret of Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Silvia Martini

    2013-01-01

    Full Text Available Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS and selective (R1SE spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells.

  18. Mapping monomeric threading to protein-protein structure prediction.

    Science.gov (United States)

    Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang

    2013-03-25

    The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.

  19. Protein Crystal Growth

    Science.gov (United States)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  20. Protein- mediated enamel mineralization

    Science.gov (United States)

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  1. Drosophila Protein interaction Map (DPiM)

    OpenAIRE

    Guruharsha, K.G.; Obar, Robert A.; Mintseris, Julian; Aishwarya, K.; Krishnan, R.T.; VijayRaghavan, K.; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when,...

  2. Nanofibers made of globular proteins.

    Science.gov (United States)

    Dror, Yael; Ziv, Tamar; Makarov, Vadim; Wolf, Hila; Admon, Arie; Zussman, Eyal

    2008-10-01

    Strong nanofibers composed entirely of a model globular protein, namely, bovine serum albumin (BSA), were produced by electrospinning directly from a BSA solution without the use of chemical cross-linkers. Control of the spinnability and the mechanical properties of the produced nanofibers was achieved by manipulating the protein conformation, protein aggregation, and intra/intermolecular disulfide bonds exchange. In this manner, a low-viscosity globular protein solution could be modified into a polymer-like spinnable solution and easily spun into fibers whose mechanical properties were as good as those of natural fibers made of fibrous protein. We demonstrate here that newly formed disulfide bonds (intra/intermolecular) have a dominant role in both the formation of the nanofibers and in providing them with superior mechanical properties. Our approach to engineer proteins into biocompatible fibrous structures may be used in a wide range of biomedical applications such as suturing, wound dressing, and wound closure.

  3. Validation of protein carbonyl measurement

    DEFF Research Database (Denmark)

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna

    2015-01-01

    Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial...... protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5min of UV irradiation irrespective of method used. After irradiation for 15min, less oxidation was detected by half of the laboratories than after 5min...... irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated...

  4. Maintaining protein composition in cilia.

    Science.gov (United States)

    Stephen, Louise A; Elmaghloob, Yasmin; Ismail, Shehab

    2017-12-20

    The primary cilium is a sensory organelle that is vital in regulating several signalling pathways. Unlike most organelles cilia are open to the rest of the cell, not enclosed by membranes. The distinct protein composition is crucial to the function of cilia and many signalling proteins and receptors are specifically concentrated within distinct compartments. To maintain this composition, a mechanism is required to deliver proteins to the cilium whilst another must counter the entropic tendency of proteins to distribute throughout the cell. The combination of the two mechanisms should result in the concentration of ciliary proteins to the cilium. In this review we will look at different cellular mechanisms that play a role in maintaining the distinct composition of cilia, including regulation of ciliary access and trafficking of ciliary proteins to, from and within the cilium.

  5. Preparation of GST Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-04-01

    INTRODUCTIONThis protocol describes the preparation of glutathione-S-transferase (GST) fusion proteins, which have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis.

  6. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    NARCIS (Netherlands)

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  7. Multiple protonation equilibria in electrostatics of protein-protein binding.

    Science.gov (United States)

    Piłat, Zofia; Antosiewicz, Jan M

    2008-11-27

    All proteins contain groups capable of exchanging protons with their environment. We present here an approach, based on a rigorous thermodynamic cycle and the partition functions for energy levels characterizing protonation states of the associating proteins and their complex, to compute the electrostatic pH-dependent contribution to the free energy of protein-protein binding. The computed electrostatic binding free energies include the pH of the solution as the variable of state, mutual "polarization" of associating proteins reflected as changes in the distribution of their protonation states upon binding and fluctuations between available protonation states. The only fixed property of both proteins is the conformation; the structure of the monomers is kept in the same conformation as they have in the complex structure. As a reference, we use the electrostatic binding free energies obtained from the traditional Poisson-Boltzmann model, computed for a single macromolecular conformation fixed in a given protonation state, appropriate for given solution conditions. The new approach was tested for 12 protein-protein complexes. It is shown that explicit inclusion of protonation degrees of freedom might lead to a substantially different estimation of the electrostatic contribution to the binding free energy than that based on the traditional Poisson-Boltzmann model. This has important implications for the balancing of different contributions to the energetics of protein-protein binding and other related problems, for example, the choice of protein models for Brownian dynamics simulations of their association. Our procedure can be generalized to include conformational degrees of freedom by combining it with molecular dynamics simulations at constant pH. Unfortunately, in practice, a prohibitive factor is an enormous requirement for computer time and power. However, there may be some hope for solving this problem by combining existing constant pH molecular dynamics

  8. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Myristoylated proteins and peptidyl myristoyltransferase

    International Nuclear Information System (INIS)

    Marchildon, G.A.

    1986-01-01

    The distribution and intracellular locations of myristoylated proteins have been examined in cultured cells. Incubating a variety of cells in minimal medium containing / 3 H/ myristate led to the incorporation of labeled myristate into as many as twenty-five different intracellular proteins. The incorporation increased linearly with time for up to six hours and then increased more slowly for an additional ten hours. The chemical stability indicated that the attachment was covalent and excluded nucleophile-labile bonds such as thioesters. Fluorographs of proteins modified by / 3 H/ myristate and resolved on gradient SDS-PAGE showed patterns that differed from cell type to cell type. To examine the intracellular locations of the myristate-labeled proteins, cells were isotonically subfractionated. Most of the myristate-labeled proteins remained in the high speed supernatant devoid of microsomal membranes. This indicated that the myristate modification in itself is not sufficient to serve as an anchor for membrane association. Myristate labeled catalytic subunit of the cyclic AMP dependent protein kinase was specifically immunoprecipitated from an aliquot of the high speed supernatant proteins. However, the prominent tyrosine protein kinase of the murine lymphoma cell line LSTRA, pp56/sup lstra/, also incorporated myristate and was specifically immunoprecipitated from the high speed pellet (particulate) fraction of labeled LSTRA cells. To begin to understand the biochemical mechanism of myristate attachment to protein. The authors partially purified and characterized the peptidyl myristoyltransferase from monkey liver. Recovery of enzymatic activity was 69%

  10. Computational protein design: a review

    International Nuclear Information System (INIS)

    Coluzza, Ivan

    2017-01-01

    Proteins are one of the most versatile modular assembling systems in nature. Experimentally, more than 110 000 protein structures have been identified and more are deposited every day in the Protein Data Bank. Such an enormous structural variety is to a first approximation controlled by the sequence of amino acids along the peptide chain of each protein. Understanding how the structural and functional properties of the target can be encoded in this sequence is the main objective of protein design. Unfortunately, rational protein design remains one of the major challenges across the disciplines of biology, physics and chemistry. The implications of solving this problem are enormous and branch into materials science, drug design, evolution and even cryptography. For instance, in the field of drug design an effective computational method to design protein-based ligands for biological targets such as viruses, bacteria or tumour cells, could give a significant boost to the development of new therapies with reduced side effects. In materials science, self-assembly is a highly desired property and soon artificial proteins could represent a new class of designable self-assembling materials. The scope of this review is to describe the state of the art in computational protein design methods and give the reader an outline of what developments could be expected in the near future. (topical review)

  11. Protein intrinsic disorder in plants.

    Science.gov (United States)

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  12. Fluorine-18 labeling of proteins

    International Nuclear Information System (INIS)

    Kilbourn, M.R.; Dence, C.S.; Welch, M.J.; Mathias, C.J.

    1987-01-01

    Two fluorine-18-labeled reagents, methyl 3-[ 18 F]fluoro-5-nitrobenzimidate and 4-[ 18 F]fluorophenacyl bromide, have been prepared for covalent attachment of fluorine-18 to proteins. Both reagents can be prepared in moderate yields (30-50%, EOB) in synthesis times of 50-70 min. Reaction of these reagents with proteins (human serum albumin, human fibrinogen, and human immunoglobulin A) is pH independent, protein concentration dependent, and takes 5-60 min at mild pH (8.0) and temperature (25-37 degrees C), in yields up to 95% (corrected). The 18 F-labeled proteins are purified by size exclusion chromatography

  13. Protein intrinsic disorder in plants

    Directory of Open Access Journals (Sweden)

    Florencio ePazos

    2013-09-01

    Full Text Available To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously with different partners. Similarly, they also serve as signal integrators in signalling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms can not escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  14. High throughput protein production screening

    Science.gov (United States)

    Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  15. Protein stability: a crystallographer’s perspective

    International Nuclear Information System (INIS)

    Deller, Marc C.; Kong, Leopold; Rupp, Bernhard

    2016-01-01

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed

  16. Protein stability: a crystallographer’s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Deller, Marc C., E-mail: mdeller@stanford.edu [Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125 (United States); Kong, Leopold [National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814 (United States); Rupp, Bernhard [k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084 (United States); Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck (Austria)

    2016-01-26

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.

  17. Protein linguistics - a grammar for modular protein assembly?

    Science.gov (United States)

    Gimona, Mario

    2006-01-01

    The correspondence between biology and linguistics at the level of sequence and lexical inventories, and of structure and syntax, has fuelled attempts to describe genome structure by the rules of formal linguistics. But how can we define protein linguistic rules? And how could compositional semantics improve our understanding of protein organization and functional plasticity?

  18. Protein-Protein Interactions (PPI) reagents: | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below.

  19. Protein-Protein Interaction Reagents | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below. Emory_CTD^2_PPI_Reagents.xlsx Contact: Haian Fu

  20. Human Serum Protein-Bound iodine and Protein Fractions at ...

    African Journals Online (AJOL)

    Iodine profile of Nigerians at different ages in both sexes and in pregnant women, and under narcotic influence, such as alcoholism, cigarette smoking and marijuana addiction were studied. Their serum total protein, albumin and globulin concentrations were also determined. Results of the study showed that serum protein ...

  1. Implications of protein polymorphism on protein phase behaviour

    NARCIS (Netherlands)

    Stegen, J.; Schoot, van der P.P.A.M.

    2015-01-01

    The phase behaviour of small globular proteins is often modeled by approximating them as spherical particles with fixed internal structure. However, changes in the local environment of a protein can lead to changes in its conformation rendering this approximation invalid. We present a simple

  2. Protein scissors: Photocleavage of proteins at specific locations

    Indian Academy of Sciences (India)

    Unknown

    Binding of ligands to globular proteins at hydrophobic cavities while making specific ... ched to a PTI model A1010 monochromator. UV cut-off filter ..... >1:1 stoichiometry (protein to ligand), the binding equilibrium favors the thermo- dynamically ...

  3. Dark proteins disturb multichromophore coupling in tetrameric fluorescent proteins

    NARCIS (Netherlands)

    Blum, Christian; Meixner, Alfred J.; Subramaniam, Vinod

    2011-01-01

    DsRed is representative of the tetrameric reef coral fluorescent proteins that constitute particularly interesting coupled multichromophoric systems. Either a green emitting or a red emitting chromophore can form within each of the monomers of the protein tetramer. Within the tetramers the

  4. Inactivation of Tor proteins affects the dynamics of endocytic proteins ...

    Indian Academy of Sciences (India)

    Tor2 is an activator of the Rom2/Rho1 pathway that regulates -factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of -factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic ...

  5. Modularity in protein structures: study on all-alpha proteins.

    Science.gov (United States)

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  6. Allergenicity assessment strategy for novel food proteins and protein sources

    NARCIS (Netherlands)

    Verhoeckx, Kitty; Broekman, Henrike; Knulst, André; Houben, Geert

    To solve the future food insecurity problem, alternative and sustainable protein sources (e.g. insects, rapeseed, fava bean and algae) are now being explored for the production of food and feed. To approve these novel protein sources for future food a comprehensive risk assessment is needed

  7. Imaging protein-protein interactions in living cells

    NARCIS (Netherlands)

    Hink, M.A.; Bisseling, T.; Visser, A.J.W.G.

    2002-01-01

    The complex organization of plant cells makes it likely that the molecular behaviour of proteins in the test tube and the cell is different. For this reason, it is essential though a challenge to study proteins in their natural environment. Several innovative microspectroscopic approaches provide

  8. Composition of Overlapping Protein-Protein and Protein-Ligand Interfaces.

    Directory of Open Access Journals (Sweden)

    Ruzianisra Mohamed

    Full Text Available Protein-protein interactions (PPIs play a major role in many biological processes and they represent an important class of targets for therapeutic intervention. However, targeting PPIs is challenging because often no convenient natural substrates are available as starting point for small-molecule design. Here, we explored the characteristics of protein interfaces in five non-redundant datasets of 174 protein-protein (PP complexes, and 161 protein-ligand (PL complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the small molecule ligands must bind at the respective PP interface. We observed similar amino acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and overlapping PL contacts are highly similar.

  9. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C......-terminal of the NMDA receptor and PDZ2 of PSD-95 were fused to green fluorescent protein (GFP) and Renilla luciferase (Rluc) and expressed in COS7 cells. A robust and specific BRET signal was obtained by expression of the appropriate partner proteins and subsequently, the assay was used to evaluate a Tat......The PDZ domain mediated interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. We have recently developed a number of peptide analogues with improved affinity for the PDZ domains of PSD-95 compared...

  10. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation...... to score the likelihood of the interaction between two proteins and to develop a method for the prediction of PPIs. We have tested our method on several sets with unbalanced ratios of interactions and non-interactions to simulate real conditions, obtaining accuracies higher than 25% in the most unfavorable...

  11. Text Mining for Protein Docking.

    Directory of Open Access Journals (Sweden)

    Varsha D Badal

    2015-12-01

    Full Text Available The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking. Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu. The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound

  12. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  13. Annotating the protein-RNA interaction sites in proteins using evolutionary information and protein backbone structure.

    Science.gov (United States)

    Li, Tao; Li, Qian-Zhong

    2012-11-07

    RNA-protein interactions play important roles in various biological processes. The precise detection of RNA-protein interaction sites is very important for understanding essential biological processes and annotating the function of the proteins. In this study, based on various features from amino acid sequence and structure, including evolutionary information, solvent accessible surface area and torsion angles (φ, ψ) in the backbone structure of the polypeptide chain, a computational method for predicting RNA-binding sites in proteins is proposed. When the method is applied to predict RNA-binding sites in three datasets: RBP86 containing 86 protein chains, RBP107 containing 107 proteins chains and RBP109 containing 109 proteins chains, better sensitivities and specificities are obtained compared to previously published methods in five-fold cross-validation tests. In order to make further examination for the efficiency of our method, the RBP107 dataset is used as training set, RBP86 and RBP109 datasets are used as the independent test sets. In addition, as examples of our prediction, RNA-binding sites in a few proteins are presented. The annotated results are consistent with the PDB annotation. These results show that our method is useful for annotating RNA binding sites of novel proteins.

  14. Porcine prion protein amyloid.

    Science.gov (United States)

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  15. Radioimmunoassay of platelet proteins

    International Nuclear Information System (INIS)

    Pepper, D.S.

    1987-01-01

    The radioimmunoassay of platelet-specific proteins has proven to be an excellent way of monitoring platelet activation in vivo. In contrast to earlier methods such as aggregometry, which has been the major tool used in the evaluation of antiplatelet drugs, the RIAs are capable of working with samples which have been subjected to physiological conditions such as haematocrit, oxygen tension, shear rate and ionized calcium concentration. Also, in contrast to aggregometry, no choice of agonist is necessary. Thus, for the first time it has been possible to monitor the effects of therapeutic intervention with drugs upon the platelet release reaction in vivo. It seems reasonable to equate the release reaction in vivo with activation in vivo, though the stimuli necessarily remain unknown. Nevertheless, the fact that a significant number of the compounds mentioned in Table 3 are indeed capable of reducing platelet activation in vivo and that this effect can be measured objectively is a major step forward in our understanding of platelet pharmacology. Two important goals remain to be achieved, however, the establishment of nonhuman animal models for the evaluation of newer compounds in vivo and longer-term goal of proving in the clinical setting the relevance or otherwise of platelet activation per se to the clinical outcome of a particular disease. In this respect, the availability of accurate, reliable and specific radioimmunoassays has a central role

  16. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly ...

  17. Protein folding on a chip

    CERN Multimedia

    2004-01-01

    "Scientists at the U.S. Department of Energy's Brookhaven National Laboratory are proposing to use a super- computer originally developed to simulate elementary particles in high- energy physics to help determine the structures and functions of proteins, including, for example, the 30,000 or so proteins encoded by the human genome" (1 page)

  18. Extraction of Proteins with ABS

    NARCIS (Netherlands)

    Desai, R.K.; Streefland, M.; Wijffels, R.H.; Eppink, M.H.M.

    2016-01-01

    Over the past years, there has been an increasing trend in research on the extraction and purification of proteins using aqueous biphasic systems (ABS) formed by polymers, e.g., polyethylene glycol (PEG). In general, when dealing with protein purification processes, it is essential to maintain their

  19. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules Rsad2 Vig1 Radical S-adenosyl methionine domain-containing pr...otein 2 Viperin, Virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible 10090 Mus musculus 58185 Q8CBB9 21435586 ...

  20. Protein: FBA6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA6 vesicular transport RAB11FIP3 ARFO1, KIAA0665 RAB11FIP3 Rab11 family-interacting pr...otein 3 Arfophilin-1, EF hands-containing Rab-interacting protein, MU-MB-17.148 9606 Homo sapiens O75154 9727 2HV8 2D7C 9727 21790911 ...

  1. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases SMURF1 KIAA1625 SMURF1 E3 ubiquitin-protein ligase SMURF1 SM...AD ubiquitination regulatory factor 1, SMAD-specific E3 ubiquitin-protein ligase 1 9606 Homo sapiens Q9HCE7 57154 2LB1, 2LAZ, 2LB0, 3PYC 57154 Q9HCE7 ...

  2. Protein: MPB4 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB4 Sema3A signaling molecules DPYSL2 CRMP2, ULIP2 DPYSL2 Dihydropyrimidinase-related pr...otein 2 Collapsin response mediator protein 2, N2A3, Unc-33-like phosphoprotein 2 9606 Homo sapiens Q16555 1808 2VM8, 2GSE 1808 Q16555 ...

  3. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases STUB1 CHIP STUB1 E3 ubiquitin-protein ligase CHIP Antigen NY...-CO-7, CLL-associated antigen KW-8, Carboxy terminus of Hsp70-interacting protein, STIP1 homology and U box-containing pr

  4. Protein Networks in Alzheimer's Disease

    DEFF Research Database (Denmark)

    Carlsen, Eva Meier; Rasmussen, Rune

    2017-01-01

    Overlap of RNA and protein networks reveals glia cells as key players for the development of symptomatic Alzheimer’s disease in humans......Overlap of RNA and protein networks reveals glia cells as key players for the development of symptomatic Alzheimer’s disease in humans...

  5. Mesostructure of fibrillar protein gels

    NARCIS (Netherlands)

    Veerman, C.; Sagis, L.M.C.; Linden, van der E.

    2003-01-01

    We investigated the mesostructure of three different food proteins (ß-lactoglobulin (ß-lg), bovine serum albumin (BSA), and ovalbumin), after protein assembly at pH 2, using rheology and transmission electron microscopy (TEM). TEM micrographs showed fibrils with a contour length of about 2-7 µm for

  6. Statistical mechanics of protein solutions

    NARCIS (Netherlands)

    Prinsen, P.

    2007-01-01

    We study theoretically thermodynamic properties of spherical globular proteins in aqueous solution with added monovalent salt. We show how one can determine an effective interaction potential between the proteins from experimental data as a function of salt concentration and we apply this to the

  7. Water holding of protein gels

    NARCIS (Netherlands)

    Urbonaite, V.

    2015-01-01

    Abstract

    Food products are typically multicomponent systems, where often the spatial volume is set by a protein continuous network. The ability of protein-based food products to entrap water and to prevent its exudation upon mechanical deformation is important for the

  8. Teaching computers to fold proteins

    DEFF Research Database (Denmark)

    Winther, Ole; Krogh, Anders Stærmose

    2004-01-01

    A new general algorithm for optimization of potential functions for protein folding is introduced. It is based upon gradient optimization of the thermodynamic stability of native folds of a training set of proteins with known structure. The iterative update rule contains two thermodynamic averages...

  9. Cohesion and Adhesion with Proteins

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  10. Protein Electrochemistry: Questions and Answers.

    Science.gov (United States)

    Fourmond, V; Léger, C

    This chapter presents the fundamentals of electrochemistry in the context of protein electrochemistry. We discuss redox proteins and enzymes that are not photoactive. Of course, the principles described herein also apply to photobioelectrochemistry, as discussed in later chapters of this book. Depending on which experiment is considered, electron transfer between proteins and electrodes can be either direct or mediated, and achieved in a variety of configurations: with the protein and/or the mediator free to diffuse in solution, immobilized in a thick, hydrated film, or adsorbed as a sub-monolayer on the electrode. The experiments can be performed with the goal to study the protein or to use it. Here emphasis is on mechanistic studies, which are easier in the configuration where the protein is adsorbed and electron transfer is direct, but we also explain the interpretation of signals obtained when diffusion processes affect the response.This chapter is organized as a series of responses to questions. Questions 1-5 are related to the basics of electrochemistry: what does "potential" or "current" mean, what does an electrochemical set-up look like? Questions 6-9 are related to the distinction between adsorbed and diffusive redox species. The answers to questions 10-13 explain the interpretation of slow and fast scan voltammetry with redox proteins. Questions 14-19 deal with catalytic electrochemistry, when the protein studied is actually an enzyme. Questions 20, 21 and 22 are general.

  11. Non-Protein Coding RNAs

    CERN Document Server

    Walter, Nils G; Batey, Robert T

    2009-01-01

    This book assembles chapters from experts in the Biophysics of RNA to provide a broadly accessible snapshot of the current status of this rapidly expanding field. The 2006 Nobel Prize in Physiology or Medicine was awarded to the discoverers of RNA interference, highlighting just one example of a large number of non-protein coding RNAs. Because non-protein coding RNAs outnumber protein coding genes in mammals and other higher eukaryotes, it is now thought that the complexity of organisms is correlated with the fraction of their genome that encodes non-protein coding RNAs. Essential biological processes as diverse as cell differentiation, suppression of infecting viruses and parasitic transposons, higher-level organization of eukaryotic chromosomes, and gene expression itself are found to largely be directed by non-protein coding RNAs. The biophysical study of these RNAs employs X-ray crystallography, NMR, ensemble and single molecule fluorescence spectroscopy, optical tweezers, cryo-electron microscopy, and ot...

  12. FERM proteins in animal morphogenesis.

    Science.gov (United States)

    Tepass, Ulrich

    2009-08-01

    Proteins containing a FERM domain are ubiquitous components of the cytocortex of animal cells where they are engaged in structural, transport, and signaling functions. Recent years have seen a wealth of genetic studies in model organisms that explore FERM protein function in development and tissue organization. In addition, mutations in several FERM protein-encoding genes have been associated with human diseases. This review will provide a brief overview of the FERM domain structure and the FERM protein superfamily and then discuss recent advances in our understanding of the mechanism of function and developmental requirement of several FERM proteins including Moesin, Myosin-VIIA, Myosin-XV, Coracle/Band4.1 as well as Yurt and its vertebrate homologs Mosaic Eyes and EPB41L5/YMO1/Limulus.

  13. The PMDB Protein Model Database

    Science.gov (United States)

    Castrignanò, Tiziana; De Meo, Paolo D'Onorio; Cozzetto, Domenico; Talamo, Ivano Giuseppe; Tramontano, Anna

    2006-01-01

    The Protein Model Database (PMDB) is a public resource aimed at storing manually built 3D models of proteins. The database is designed to provide access to models published in the scientific literature, together with validating experimental data. It is a relational database and it currently contains >74 000 models for ∼240 proteins. The system is accessible at and allows predictors to submit models along with related supporting evidence and users to download them through a simple and intuitive interface. Users can navigate in the database and retrieve models referring to the same target protein or to different regions of the same protein. Each model is assigned a unique identifier that allows interested users to directly access the data. PMID:16381873

  14. Chemical shift homology in proteins

    International Nuclear Information System (INIS)

    Potts, Barbara C.M.; Chazin, Walter J.

    1998-01-01

    The degree of chemical shift similarity for homologous proteins has been determined from a chemical shift database of over 50 proteins representing a variety of families and folds, and spanning a wide range of sequence homologies. After sequence alignment, the similarity of the secondary chemical shifts of C α protons was examined as a function of amino acid sequence identity for 37 pairs of structurally homologous proteins. A correlation between sequence identity and secondary chemical shift rmsd was observed. Important insights are provided by examining the sequence identity of homologous proteins versus percentage of secondary chemical shifts that fall within 0.1 and 0.3 ppm thresholds. These results begin to establish practical guidelines for the extent of chemical shift similarity to expect among structurally homologous proteins

  15. Microdomain forming proteins in oncogenesis

    Directory of Open Access Journals (Sweden)

    I. B. Zborovskaya

    2016-01-01

    Full Text Available Lipid rafts are lateral assembles of cholesterol, sphingomyelin, glicosphingolipids and specific proteins within cell plasma membrane. These microdomains are involved into a number of important cellular processes including membrane rearrangement, protein internalization, signal transduction, entry of viruses into the cell. Some of lipid rafts are stabilized by special microdomain-forming proteins such as caveolins, SPFH domain containing superfamily, tetraspanins, galectins, which maintain integrity of rafts and regulate signal transduction via forming of “signalosomes”. Involvement of the different lipid rafts is necessary in many situations such as binding of growth factors with their receptors, integrin regulation, cytoskeleton and extracellular matrix rearrangements, vesicular transport, etc. However, such classes of microdomain-forming proteins are still considered separately from each other. In this review we tried to perform complex analysis of microdomain-forming proteins in regulation of cancer assotiated processes.

  16. Nanostructures for protein drug delivery.

    Science.gov (United States)

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.

  17. Soy protein modification: A review

    Directory of Open Access Journals (Sweden)

    Barać Miroljub B.

    2004-01-01

    Full Text Available Soy protein products such as flour, concentrates and isolates are used in food formulation because of their functionality, nutritional value and low cost. To obtain their optimal nutritive and functional properties as well as desirable flavor different treatments are used. Soybean proteins can be modified by physical, chemical and enzymatic treatments. Different thermal treatments are most commonly used, while the most appropriate way of modifying soy proteins from the standpoint of safety is their limited proteolysis. These treatments cause physical and chemical changes that affect their functional properties. This review discusses three principal methods used for modification of soy protein products, their effects on dominant soy protein properties and some biologically active compounds.

  18. Random copolymers that protect proteins

    Science.gov (United States)

    Alexander-Katz, Alfredo; Van Lehn, Reid C.

    2018-03-01

    Scientists have tried and in some limited cases succeeded to harness proteins to do chemistry (1) or use them in functional materials. However, most proteins only function correctly if they fold into specific conformations, which typically occurs with the assistance of other proteins (such as chaperones, translocons, or transporters) that mediate structure formation, membrane insertion, and intracellular trafficking (2, 3). Several methods have been used to improve protein stability in nonbiological environments—including micelle encapsulation, polymer conjugation, and sol-gel trapping (4)—but for most intended applications, they suffer from low levels of functionality, difficult chemical postfunctionalization, or the requirement of very specific solvent environments. On page 1239 of this issue, Panganiban et al. (5) introduce an approach for stabilizing proteins in disparate solvent environments that does not suffer from these drawbacks.

  19. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    International Nuclear Information System (INIS)

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-01-01

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the α subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single β subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the α subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub sα/ relative to G/sub ichemical bond/ and G/sub ochemical bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with [ 125 I]protein. Immunohistochemical studies using an antiserum against the β subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the α subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium

  20. Proteins aggregation and human diseases

    International Nuclear Information System (INIS)

    Hu, Chin-Kun

    2015-01-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease. (paper)

  1. Protein improvement in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Rabson, R

    1974-07-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  2. Protein improvement in crop plants

    International Nuclear Information System (INIS)

    Rabson, R.

    1974-01-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  3. Hematological alterations in protein malnutrition.

    Science.gov (United States)

    Santos, Ed W; Oliveira, Dalila C; Silva, Graziela B; Tsujita, Maristela; Beltran, Jackeline O; Hastreiter, Araceli; Fock, Ricardo A; Borelli, Primavera

    2017-11-01

    Protein malnutrition is one of the most serious nutritional problems worldwide, affecting 794 million people and costing up to $3.5 trillion annually in the global economy. Protein malnutrition primarily affects children, the elderly, and hospitalized patients. Different degrees of protein deficiency lead to a broad spectrum of signs and symptoms of protein malnutrition, especially in organs in which the hematopoietic system is characterized by a high rate of protein turnover and, consequently, a high rate of protein renewal and cellular proliferation. Here, the current scientific information about protein malnutrition and its effects on the hematopoietic process is reviewed. The production of hematopoietic cells is described, with special attention given to the hematopoietic microenvironment and the development of stem cells. Advances in the study of hematopoiesis in protein malnutrition are also summarized. Studies of protein malnutrition in vitro, in animal models, and in humans demonstrate several alterations that impair hematopoiesis, such as structural changes in the extracellular matrix, the hematopoietic stem cell niche, the spleen, the thymus, and bone marrow stromal cells; changes in mesenchymal and hematopoietic stem cells; increased autophagy; G0/G1 cell-cycle arrest of progenitor hematopoietic cells; and functional alterations in leukocytes. Structural and cellular changes of the hematopoietic microenvironment in protein malnutrition contribute to bone marrow atrophy and nonestablishment of hematopoietic stem cells, resulting in impaired homeostasis and an impaired immune response. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Targeting protein-protein interactions for parasite control.

    Directory of Open Access Journals (Sweden)

    Christina M Taylor

    2011-04-01

    Full Text Available Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank. EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite and B. malayi (H. sapiens parasite, which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly

  5. Protein folding and the organization of the protein topology universe

    DEFF Research Database (Denmark)

    Lindorff-Larsen,, Kresten; Røgen, Peter; Paci, Emanuele

    2005-01-01

    residues and, in addition, that the topology of the transition state is closer to that of the native state than to that of any other fold in the protein universe. Here, we review the evidence for these conclusions and suggest a molecular mechanism that rationalizes these findings by presenting a view...... of protein folds that is based on the topological features of the polypeptide backbone, rather than the conventional view that depends on the arrangement of different types of secondary-structure elements. By linking the folding process to the organization of the protein structure universe, we propose...

  6. Spectral affinity in protein networks.

    Science.gov (United States)

    Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu

    2009-11-29

    Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein

  7. Spectral affinity in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-11-01

    Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to

  8. Protein domain organisation: adding order

    Directory of Open Access Journals (Sweden)

    Kummerfeld Sarah K

    2009-01-01

    Full Text Available Abstract Background Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. Results We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. Conclusion Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected

  9. Protein domain organisation: adding order.

    Science.gov (United States)

    Kummerfeld, Sarah K; Teichmann, Sarah A

    2009-01-29

    Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected degree of clustering and more domain pairs in forward and

  10. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  11. Prions: Beyond a Single Protein

    Science.gov (United States)

    Das, Alvin S.

    2016-01-01

    SUMMARY Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a “prion.” Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins—not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease. PMID:27226089

  12. Protein intake and ovulatory infertility.

    Science.gov (United States)

    Chavarro, Jorge E; Rich-Edwards, Janet W; Rosner, Bernard A; Willett, Walter C

    2008-02-01

    The objective of the study was to evaluate whether intake of protein from animal and vegetable origin is associated with ovulatory infertility. A total of 18,555 married women without a history of infertility were followed up as they attempted a pregnancy or became pregnant during an 8 year period. Dietary assessments were related to the incidence of ovulatory infertility. During follow-up, 438 women reported ovulatory infertility. The multivariate-adjusted relative risk (RR) (95% confidence interval [CI]; P for trend) of ovulatory infertility comparing the highest to the lowest quintile of animal protein intake was 1.39 (1.01 to 1.90; 0.03). The corresponding RR (95% CI; P for trend) for vegetable protein intake was 0.78 (0.54 to 1.12; 0.07). Furthermore, consuming 5% of total energy intake as vegetable protein rather than as animal protein was associated with a more than 50% lower risk of ovulatory infertility (P =.007). Replacing animal sources of protein with vegetable sources of protein may reduce ovulatory infertility risk.

  13. Expression of multiple proteins in transgenic plants

    Science.gov (United States)

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  14. Deciphering peculiar protein-protein interacting modules in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Barkallah Insaf

    2009-04-01

    Full Text Available Abstract Interactomes of proteins under positive selection from ionizing-radiation-resistant bacteria (IRRB might be a part of the answer to the question as to how IRRB, particularly Deinococcus radiodurans R1 (Deira, resist ionizing radiation. Here, using the Database of Interacting Proteins (DIP and the Protein Structural Interactome (PSI-base server for PSI map, we have predicted novel interactions of orthologs of the 58 proteins under positive selection in Deira and other IRRB, but which are absent in IRSB. Among these, 18 domains and their interactomes have been identified in DNA checkpoint and repair; kinases pathways; energy and nucleotide metabolisms were the important biological processes that were found to be involved. This finding provides new clues to the cellular pathways that can to be important for ionizing-radiation resistance in Deira.

  15. Protein stress and stress proteins: implications in aging and disease

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-04-02

    Apr 2, 2007 ... (iii) modulating protein activity via stabilization and/or maturation to ... Resistance to any physical stress is correlated with longevity in many, if not all .... range of pathologies including cancer, diabetes, immune- problems and ...

  16. Alternative proteins: A New Green Revolution: Dietary Proteins From Leaves

    NARCIS (Netherlands)

    Geerdink, P.; Diaz, J.; Jong, J. de; Bussmann, P.

    2017-01-01

    The fractionation and isolation of leaf proteins, mostly in the form of a photosynthetic enzyme, RuBisCO, contributes to improving sustainability and increasing profitability for the agro-industrial sector.

  17. potential for quality protein maize for reducing protein- energy

    African Journals Online (AJOL)

    ACSS

    social systems hampering QPM promotion and adoption and to identify ... affects growth and development. Protein- energy ... to purchase QPM seed leading to PEU reduction. Education ..... decision support framework “targetCSA”. Agricultural ...

  18. Vaccinia complement control protein: Multi-functional protein and a ...

    Indian Academy of Sciences (India)

    Unknown

    naturally occurring antagonist of the proinflammatory cytokine IL-18. Another strategy used by ... receptors or binding proteins for tumour necrosis factor. (TNF) ... immune regulators, such as the viral IL-10 and vascular endothelial growth factor ...

  19. Proteomic screening for amyloid proteins.

    Directory of Open Access Journals (Sweden)

    Anton A Nizhnikov

    Full Text Available Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins.

  20. Gelation and interfacial behaviour of vegetable proteins

    NARCIS (Netherlands)

    Vliet, van T.; Martin, A.H.; Bos, M.A.

    2002-01-01

    Recent studies on gelation and interfacial properties of vegetable proteins are reviewed. Attention is focused on legume proteins, mainly soy proteins, and on wheat proteins. The rheological properties of vegetable protein gels as a function of heating time or temperature is discussed as well as the

  1. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  2. Arabinogalactan proteins in plants

    Directory of Open Access Journals (Sweden)

    Ewa Szczuka

    2013-04-01

    Full Text Available AGPs (arabinogalactan-proteins are the major constituent of arabic gum and have been used as emulsifiers and stabilizing agents. They are also one of the most abundant and heterogeneous class forming a large family of proteoglycans that sculpt the surface not only of plant but also of all eukaryotic cells. Undoubtedly, AGPs appear in numerous biological processes, playing diverse functions. Despite their abundance in nature and industrial utility, the in vivofunction(s of AGPs still remains unclear or even unknown. AGPs are commonly distributed in different plant organs and probably participate in all aspects of plant growth and development including reproduction (e.g. they are present in the stigma including stigma exudates, and in transmitting tissues in styles, pollen grains, and pollen tubes. The functions and evident involvement of AGPs in sexual plant reproduction in a few plant species as Actinidia deliciosa (A.Chev. C.F.Liang & A.R.Ferguson, Amaranthus hypochondriacus L., Catharanthus roseus (L. G.Don, Lolium perenneL. and Larix deciduaMill. are known from literature. The localization of two kinds of AGP epitopes, recognized by the JIM8 and JIM13 mAbs, in anatomically different ovules revealed some differences in spatial localization of these epitopes in ovules of monocots Galanthus nivalis L. and Galtonia candicans (Baker Decne. and dicots like Oenothera species and Sinapis albaL. A detailed study of the localization of AGPs in egg cells, zygotes, including the zygote division stage, and in two-celled proembryos in Nicotiana tabacumL. prompts consideration of the necessity of their presence in the very early steps of ontogenesis. The selective labeling obtained with AGP mAbs JIM8, JIM13, MAC207, and LM2 during Arabidopsis thaliana(L. Heynh. development suggests that some AGPs can be regarded as molecular markers for gametophytic cell differentiation. Moreover, the results show evident differences in the distribution of specific AGP

  3. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  4. Protein binding of psychotropic agents

    International Nuclear Information System (INIS)

    Hassan, H.A.

    1990-01-01

    Based upon fluorescence measurements, protein binding of some psychotropic agents (chlorpromazine, promethazine, and trifluoperazine) to human IgG and HSA was studied in aqueous cacodylate buffer, PH7. The interaction parameters determined from emission quenching of the proteins. The interaction parameters determined include the equilibrium constant (K), calculated from equations derived by Borazan and coworkers, the number of binding sites (n) available to the monomer molecules on a single protein molecule. The results revealed a high level of affinity, as reflected by high values of K, and the existence of specific binding sites, since a limited number of n values are obtained. 39 tabs.; 37 figs.; 83 refs

  5. Detecting mutually exclusive interactions in protein-protein interaction maps.

    KAUST Repository

    Sá nchez Claros, Carmen; Tramontano, Anna

    2012-01-01

    Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  6. Detecting mutually exclusive interactions in protein-protein interaction maps.

    KAUST Repository

    Sánchez Claros, Carmen

    2012-06-08

    Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  7. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.

    Science.gov (United States)

    Dzuricky, Michael; Roberts, Stefan; Chilkoti, Ashutosh

    2018-05-01

    A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.

  8. Selection of peptides interfering with protein-protein interaction.

    Science.gov (United States)

    Gaida, Annette; Hagemann, Urs B; Mattay, Dinah; Räuber, Christina; Müller, Kristian M; Arndt, Katja M

    2009-01-01

    Cell physiology depends on a fine-tuned network of protein-protein interactions, and misguided interactions are often associated with various diseases. Consequently, peptides, which are able to specifically interfere with such adventitious interactions, are of high interest for analytical as well as medical purposes. One of the most abundant protein interaction domains is the coiled-coil motif, and thus provides a premier target. Coiled coils, which consist of two or more alpha-helices wrapped around each other, have one of the simplest interaction interfaces, yet they are able to confer highly specific homo- and heterotypic interactions involved in virtually any cellular process. While there are several ways to generate interfering peptides, the combination of library design with a powerful selection system seems to be one of the most effective and promising approaches. This chapter guides through all steps of such a process, starting with library options and cloning, detailing suitable selection techniques and ending with purification for further down-stream characterization. Such generated peptides will function as versatile tools to interfere with the natural function of their targets thereby illuminating their down-stream signaling and, in general, promoting understanding of factors leading to specificity and stability in protein-protein interactions. Furthermore, peptides interfering with medically relevant proteins might become important diagnostics and therapeutics.

  9. Targeting protein-protein interaction between MLL1 and reciprocal proteins for leukemia therapy.

    Science.gov (United States)

    Wang, Zhi-Hui; Li, Dong-Dong; Chen, Wei-Lin; You, Qi-Dong; Guo, Xiao-Ke

    2018-01-15

    The mixed lineage leukemia protein-1 (MLL1), as a lysine methyltransferase, predominantly regulates the methylation of histone H3 lysine 4 (H3K4) and functions in hematopoietic stem cell (HSC) self-renewal. MLL1 gene fuses with partner genes that results in the generation of MLL1 fusion proteins (MLL1-FPs), which are frequently detected in acute leukemia. In the progress of leukemogenesis, a great deal of proteins cooperate with MLL1 to form multiprotein complexes serving for the dysregulation of H3K4 methylation, the overexpression of homeobox (HOX) cluster genes, and the consequent generation of leukemia. Hence, disrupting the interactions between MLL1 and the reciprocal proteins has been considered to be a new treatment strategy for leukemia. Here, we reviewed potential protein-protein interactions (PPIs) between MLL1 and its reciprocal proteins, and summarized the inhibitors to target MLL1 PPIs. The druggability of MLL1 PPIs for leukemia were also discussed. Copyright © 2017. Published by Elsevier Ltd.

  10. Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria -transformed leukocytes

    KAUST Repository

    Haidar, Malak; de Laté , Perle Latré ; Kennedy, Eileen J.; Langsley, Gordon

    2017-01-01

    One powerful application of cell penetrating peptides is the delivery into cells of molecules that function as specific competitors or inhibitors of protein-protein interactions. Ablating defined protein-protein interactions is a refined way

  11. With Protein Foods, Variety Is Key: 10 Tips for Choosing Protein

    Science.gov (United States)

    ... Dietary Guidelines Communicator’s Guide 10 Tips: Vary Your Protein Routine You are here Home 10 Tips: Vary ... Protein Routine Print Share 10 Tips: Vary Your Protein Routine Protein foods include both animal (meat, poultry, ...

  12. Protein-carbohydrate supplements improve muscle protein balance in muscular dystrophy patients after endurance exercise

    DEFF Research Database (Denmark)

    Andersen, Grete; Ørngreen, Mette C; Preisler, Nicolai

    2015-01-01

    In healthy individuals, postexercise protein supplementation increases muscle protein anabolism. In patients with muscular dystrophies, aerobic exercise improves muscle function, but the effect of exercise on muscle protein balance is unknown. Therefore, we investigated 1) muscle protein balance...

  13. Identifying Key Attributes for Protein Beverages.

    Science.gov (United States)

    Oltman, A E; Lopetcharat, K; Bastian, E; Drake, M A

    2015-06-01

    This study identified key attributes of protein beverages and evaluated effects of priming on liking of protein beverages. An adaptive choice-based conjoint study was conducted along with Kano analysis to gain insight on protein beverage consumers (n = 432). Attributes evaluated included label claim, protein type, amount of protein, carbohydrates, sweeteners, and metabolic benefits. Utility scores for levels and importance scores for attributes were determined. Subsequently, two pairs of clear acidic whey protein beverages were manufactured that differed by age of protein source or the amount of whey protein per serving. Beverages were evaluated by 151 consumers on two occasions with or without priming statements. One priming statement declared "great flavor," the other priming statement declared 20 g protein per serving. A two way analysis of variance was applied to discern the role of each priming statement. The most important attribute for protein beverages was sweetener type, followed by amount of protein, followed by type of protein followed by label claim. Beverages with whey protein, naturally sweetened, reduced sugar and ≥15 g protein per serving were most desired. Three consumer clusters were identified, differentiated by their preferences for protein type, sweetener and amount of protein. Priming statements positively impacted concept liking (P 0.05). Consistent with trained panel profiles of increased cardboard flavor with higher protein content, consumers liked beverages with 10 g protein more than beverages with 20 g protein (6.8 compared with 5.7, P appeal. © 2015 Institute of Food Technologists®

  14. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    Science.gov (United States)

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  15. Structural entanglements in protein complexes

    Science.gov (United States)

    Zhao, Yani; Chwastyk, Mateusz; Cieplak, Marek

    2017-06-01

    We consider multi-chain protein native structures and propose a criterion that determines whether two chains in the system are entangled or not. The criterion is based on the behavior observed by pulling at both termini of each chain simultaneously in the two chains. We have identified about 900 entangled systems in the Protein Data Bank and provided a more detailed analysis for several of them. We argue that entanglement enhances the thermodynamic stability of the system but it may have other functions: burying the hydrophobic residues at the interface and increasing the DNA or RNA binding area. We also study the folding and stretching properties of the knotted dimeric proteins MJ0366, YibK, and bacteriophytochrome. These proteins have been studied theoretically in their monomeric versions so far. The dimers are seen to separate on stretching through the tensile mechanism and the characteristic unraveling force depends on the pulling direction.

  16. Database of Interacting Proteins (DIP)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent...

  17. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  18. Statistical Analysis of Protein Ensembles

    Science.gov (United States)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  19. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  20. Protein tyrosine phosphatases: regulatory mechanisms.

    NARCIS (Netherlands)

    den Hertog, J.; Ostman, A.; Bohmer, F.D.

    2008-01-01

    Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and

  1. Single Molecule Spectroscopy of Fluorescent Proteins

    NARCIS (Netherlands)

    Blum, Christian; Subramaniam, Vinod

    2009-01-01

    The discovery and use of fluorescent proteins has revolutionized cellular biology. Despite the widespread use of visible fluorescent proteins as reporters and sensors in cellular environments the versatile photophysics of fluorescent proteins is still subject to intense research. Understanding the

  2. Recent advances in racemic protein crystallography.

    Science.gov (United States)

    Yan, Bingjia; Ye, Linzhi; Xu, Weiliang; Liu, Lei

    2017-09-15

    Solution of the three-dimensional structures of proteins is a critical step in deciphering the molecular mechanisms of their bioactivities. Among the many approaches for obtaining protein crystals, racemic protein crystallography has been developed as a unique method to solve the structures of an increasing number of proteins. Exploiting unnatural protein enantiomers in crystallization and resolution, racemic protein crystallography manifests two major advantages that are 1) to increase the success rate of protein crystallization, and 2) to obviate the phase problem in X-ray diffraction. The requirement of unnatural protein enantiomers in racemic protein crystallography necessitates chemical protein synthesis, which is hitherto accomplished through solid phase peptide synthesis and chemical ligation reactions. This review highlights the fundamental ideas of racemic protein crystallography and surveys the harvests in the field of racemic protein crystallography over the last five years from early 2012 to late 2016. Copyright © 2017. Published by Elsevier Ltd.

  3. Cellular strategies to cope with protein aggregation

    NARCIS (Netherlands)

    Scior, Annika; Juenemann, Katrin; Kirstein, Janine

    2016-01-01

    Nature has evolved several mechanisms to detoxify intracellular protein aggregates that arise upon proteotoxic challenges. These include the controlled deposition of misfolded proteins at distinct cellular sites, the protein disaggregation and refolding by molecular chaperones and/or degradation of

  4. PROTEIN ANTIMIKROB DARI TANAMAN TRICHOSANTHES

    Directory of Open Access Journals (Sweden)

    Sukma D

    2008-08-01

    Full Text Available The research was aimed to study morphology, growth, development, pest and disease of 3 Trichosanthes species, initiate shoots, callus and hairy root culture in vitro, analyze chitinase and peroxidase activities and the effect of salicylic acid (SA and etefon (ETF on the chitinase and peroxidase activities of crude protein extract from Trichosanthes, and evaluate in vitro antifungal activity of crude protein extract of Trichosanthes. The results of the research showed the differences of morphological characters, growth habit of T. cucumerina var. anguina, T.tricuspidata and the differences of pest and diseases problem of T. quinquangulata. T. cucumerina var. anguina and T. quinquangulata. T. tricuspidata had the highest chitinase activity in crude protein extract of in vitro shoots, calli and plant roots and peroxidase activity in plant roots grown in field. T. cucumerina var. anguina showed the highest chitinase and peroxidase activities in crude protein extract of plant roots grown in field and calli. Chitinase and peroxidase activities of calli crude protein extract of T. tricuspidata could be increased by SA and ETF. Adversely, ETF decreased the peroxidase activity of calli crude protein exract ofT. tricuspidata. In T. cucumerina var. anguina, SA could not increase the chitinase activity but increase the peroxidase activity. The crude protein from in vitro shoots of T. tricuspidata could inhibited the spore germination of Fusarium sp. from T. cucumerina var. anguina, Fusarium oxysporum from shallot, Puccinia arachidis from peanut and Pseudoperonospora cubensis from cucumber. The protein could not inhibit spore germination of Curvularia eragrostidis from Dendrobium orchids

  5. ERG protein expression over time

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Brasso, Klaus; Thomsen, Frederik Birkebæk

    2015-01-01

    AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed by immunohistochem......AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed...

  6. Physics and biology of protein

    International Nuclear Information System (INIS)

    Go, Nobuhiro

    2008-01-01

    This is a record of my lecture given at the occasion of Yukawa-Tomonaga Centennial Symposium. At first I will mention very briefly how Yukawa contributed to the development of biophysics in Japan. Then I will be concerned with the relationship between physics and biology by discussing various aspects of protein. How far and in what sense can physics approach the essence of protein? In what aspects are something beyond physics important? (author)

  7. Controlling proteins through molecular springs.

    Science.gov (United States)

    Zocchi, Giovanni

    2009-01-01

    We argue that the mechanical control of proteins-the notion of controlling chemical reactions and processes by mechanics-is conceptually interesting. We give a brief review of the main accomplishments so far, leading to our present approach of using DNA molecular springs to exert controlled stresses on proteins. Our focus is on the physical principles that underlie both artificial mechanochemical devices and natural mechanisms of allostery.

  8. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  9. Adjustable chain trees for proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2012-01-01

    A chain tree is a data structure for changing protein conformations. It enables very fast detection of clashes and free energy potential calculations. A modified version of chain trees that adjust themselves to the changing conformations of folding proteins is introduced. This results in much...... tighter bounding volume hierarchies and therefore fewer intersection checks. Computational results indicate that the efficiency of the adjustable chain trees is significantly improved compared to the traditional chain trees....

  10. Soliton concepts and protein structure

    Science.gov (United States)

    Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao

    2012-03-01

    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.

  11. Protein interfacial structure and nanotoxicology

    International Nuclear Information System (INIS)

    White, John W.; Perriman, Adam W.; McGillivray, Duncan J.; Lin, J.-M.

    2009-01-01

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between β-casein and κ-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a β-casein monolayer is attacked by a κ-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a β-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle 'corona' thought to be important for nanoparticle-cell wall penetration.

  12. Strep-Tagged Protein Purification.

    Science.gov (United States)

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  13. Protein interfacial structure and nanotoxicology

    Energy Technology Data Exchange (ETDEWEB)

    White, John W. [Research School of Chemistry, Australian National University, Canberra (Australia)], E-mail: jww@rsc.anu.edu.au; Perriman, Adam W.; McGillivray, Duncan J.; Lin, J.-M. [Research School of Chemistry, Australian National University, Canberra (Australia)

    2009-02-21

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between {beta}-casein and {kappa}-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a {beta}-casein monolayer is attacked by a {kappa}-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a {beta}-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle 'corona' thought to be important for nanoparticle-cell wall penetration.

  14. Inferring high-confidence human protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Yu Xueping

    2012-05-01

    Full Text Available Abstract Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs, aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83% of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134% than either ranking based on the hypergeometric test (~109% or occurrence ranking (~46%. Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high

  15. Exceptional heat stability of high protein content dispersions containing whey protein particles

    NARCIS (Netherlands)

    Saglam, D.; Venema, P.; Vries, de R.J.; Linden, van der E.

    2014-01-01

    Due to aggregation and/or gelation during thermal treatment, the amount of whey proteins that can be used in the formulation of high protein foods e.g. protein drinks, is limited. The aim of this study was to replace whey proteins with whey protein particles to increase the total protein content and

  16. Exoskeletal proteins from the crab, Cancer pagurus

    DEFF Research Database (Denmark)

    Andersen, Svend Olav

    1999-01-01

    Crustacea; decapods; cuticle; exoskeleton; structural protein; amino acid sequence; mass spectrometry......Crustacea; decapods; cuticle; exoskeleton; structural protein; amino acid sequence; mass spectrometry...

  17. Potential disruption of protein-protein interactions by graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mei [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Kang, Hongsuk; Luan, Binquan [Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Yang, Zaixing [Institute of Quantitative Biology and Medicine, SRMP and RAD-X, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 (China); Zhou, Ruhong, E-mail: ruhong@us.ibm.com [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Department of Chemistry, Columbia University, New York, New York 10027 (United States)

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  18. PDBTM: Protein Data Bank of transmembrane proteins after 8 years.

    Science.gov (United States)

    Kozma, Dániel; Simon, István; Tusnády, Gábor E

    2013-01-01

    The PDBTM database (available at http://pdbtm.enzim.hu), the first comprehensive and up-to-date transmembrane protein selection of the Protein Data Bank, was launched in 2004. The database was created and has been continuously updated by the TMDET algorithm that is able to distinguish between transmembrane and non-transmembrane proteins using their 3D atomic coordinates only. The TMDET algorithm can locate the spatial positions of transmembrane proteins in lipid bilayer as well. During the last 8 years not only the size of the PDBTM database has been steadily growing from ∼400 to 1700 entries but also new structural elements have been identified, in addition to the well-known α-helical bundle and β-barrel structures. Numerous 'exotic' transmembrane protein structures have been solved since the first release, which has made it necessary to define these new structural elements, such as membrane loops or interfacial helices in the database. This article reports the new features of the PDBTM database that have been added since its first release, and our current efforts to keep the database up-to-date and easy to use so that it may continue to serve as a fundamental resource for the scientific community.

  19. Potential disruption of protein-protein interactions by graphene oxide

    International Nuclear Information System (INIS)

    Feng, Mei; Kang, Hongsuk; Luan, Binquan; Yang, Zaixing; Zhou, Ruhong

    2016-01-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  20. Architectures and Functional Coverage of Protein-Protein Interfaces

    Science.gov (United States)

    Tuncbag, Nurcan; Gursoy, Attila; Guney, Emre; Nussinov, Ruth; Keskin, Ozlem

    2008-01-01

    The diverse range of cellular functions is performed by a limited number of protein folds existing in nature. One may similarly expect that cellular functional diversity would be covered by a limited number of protein-protein interface architectures. Here, we present 8205 interface clusters, each representing unique interface architecture. This dataset of protein-protein interfaces is analyzed and compared with older datasets. We observe that the number of both biological and crystal interfaces increase significantly compared to the number of PDB entries. Further, we find that the number of distinct interface architectures grows at a much faster rate than the number of folds and is yet to level off. We further analyze the growth trend of the functional coverage by constructing functional interaction networks from interfaces. The functional coverage is also found to steadily increase. Interestingly, we also observe that despite the diversity of interface architectures, some are more favorable and frequently used, and of particular interest, those are the ones which are also preferred in single chains. PMID:18620705

  1. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  2. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    Science.gov (United States)

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  3. Feature generation and representations for protein-protein interaction classification.

    Science.gov (United States)

    Lan, Man; Tan, Chew Lim; Su, Jian

    2009-10-01

    Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.

  4. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences. Xiuhong Yang. Articles written in Journal of Biosciences. Volume 33 Issue 1 March 2008 pp 103-112 Articles. Molecular cloning and characterization of a gene encoding RING zinc finger ankyrin protein from drought-tolerant Artemisia desertorum · Xiuhong Yang Chao Sun Yuanlei ...

  5. Variants in the ASB10 Gene Are Associated with Primary Open Angle Glaucoma

    NARCIS (Netherlands)

    Micheal, S.; Ayub, H.; Islam, F.; Siddiqui, S.N.; Khan, W.A.; Akhtar, F.; Qamar, R.; Khan, M.I.; Hollander, A.I. den

    2015-01-01

    BACKGROUND: Recently nonsynonymous coding variants in the ankyrin repeats and suppressor of cytokine signaling box-containing protein 10 (ASB10) gene were found to be associated with primary open angle glaucoma (POAG) in cohorts from Oregon and Germany, but this finding was not confirmed in an

  6. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  7. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    Science.gov (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Blood proteins as carcinogen dosimeters

    International Nuclear Information System (INIS)

    Tannenbaum, S.R.; Skipper, P.L.

    1986-01-01

    The problem of quantifying exposure to genotoxins in a given individual represents a formidable challenge. In this paper methods which rely on the covalent binding of carcinogens and their metabolites to blood proteins are described. That carcinogens interact with proteins as well as with DNA has been established, although whether protein-carcinogen adducts can result in genetic damage has not been established. It has been shown, however, that the amount of a protein carcinogen adduct formed may be used as a quantitative measure of exposure to a carcinogen. Such a measure presumably is reflective of the absorption, metabolism, and excretion of the compound in an exposed individual. Protein adduction may reflect exposure in a time-frame of weeks to months. Thus, protein adduct measurement is a form of human chemical dosimetry. Hemoglobin and albumin are promising candidates for such dosimeters. Hemoglobin has a lifetime of about 120 days in humans; thus, circulating levels of carcinogen-modified hemoglobin will reflect the level of carcinogen exposure during a period of nearly four months. It also possesses some metabolic competence, particularly, the ability to oxidize aromatic hydroxylamines to nitroso compounds which react quite efficiently with sulfhydryl groups. Albumin has a half-life of 20 to 25 days in man. This protein does not possess metabolic capacity other than, perhaps, some esterase activity. In contrast to hemoglobin, though, it is not protected by the erythrocyte membrane and might be the target for a greater number of carcinogens. It is present and is synthesized in the same cells in which the reactive metabolic intermediates of carcinogens are mostly formed - the hepatocytes. Also, albumin has a number of high-affinity binding sites for a broad spectrum of xenobiotics and endobiotics. 25 refs., 1 tab

  9. Quantifying the molecular origins of opposite solvent effects on protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Vincent Vagenende

    Full Text Available Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments.

  10. Protein stability: a crystallographer’s perspective

    Science.gov (United States)

    Deller, Marc C.; Kong, Leopold; Rupp, Bernhard

    2016-01-01

    Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed. PMID:26841758

  11. Arraying proteins by cell-free synthesis.

    Science.gov (United States)

    He, Mingyue; Wang, Ming-Wei

    2007-10-01

    Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.

  12. In situ synthesis of protein arrays.

    Science.gov (United States)

    He, Mingyue; Stoevesandt, Oda; Taussig, Michael J

    2008-02-01

    In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.

  13. [Nutritional value of the proteins of carboxydobacteria].

    Science.gov (United States)

    Volova, T G; Vlasova, N V; Barashkov, V A

    1980-01-01

    The biological value of proteins from 3 carboxidobacterial strains was assessed on the basis of the protein amino acid content, consumption by the test-organism T. pyriformis and protein susceptibility to proteolytic enzymes in vitro. Carboxidobacterial proteins are characterized by a full-value amino acid composition and contain large amounts of all indispensable amino acids. This indicates that on the whole these proteins are quality ones. Experiments with the test-organisms have shown, however, that the relative biological value of the protein samples significantly yields to casein. The total digestibility of carboxidobacterial proteins by pepsin and trypsin in vitro is close to that of wheat vegetable proteins and lower as compared with that of casein. Carboxidobacterial proteins may be thus attributed to a protein group being an intermediate one between casein and wheat vegetable proteins.

  14. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  15. Protein-protein docking with dynamic residue protonation states.

    Directory of Open Access Journals (Sweden)

    Krishna Praneeth Kilambi

    2014-12-01

    Full Text Available Protein-protein interactions depend on a host of environmental factors. Local pH conditions influence the interactions through the protonation states of the ionizable residues that can change upon binding. In this work, we present a pH-sensitive docking approach, pHDock, that can sample side-chain protonation states of five ionizable residues (Asp, Glu, His, Tyr, Lys on-the-fly during the docking simulation. pHDock produces successful local docking funnels in approximately half (79/161 the protein complexes, including 19 cases where standard RosettaDock fails. pHDock also performs better than the two control cases comprising docking at pH 7.0 or using fixed, predetermined protonation states. On average, the top-ranked pHDock structures have lower interface RMSDs and recover more native interface residue-residue contacts and hydrogen bonds compared to RosettaDock. Addition of backbone flexibility using a computationally-generated conformational ensemble further improves native contact and hydrogen bond recovery in the top-ranked structures. Although pHDock is designed to improve docking, it also successfully predicts a large pH-dependent binding affinity change in the Fc-FcRn complex, suggesting that it can be exploited to improve affinity predictions. The approaches in the study contribute to the goal of structural simulations of whole-cell protein-protein interactions including all the environmental factors, and they can be further expanded for pH-sensitive protein design.

  16. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION

    Science.gov (United States)

    Robscheit-Robbins, F. S.; Miller, L. L.; Whipple, G. H.

    1947-01-01

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive

  17. Protein crystal nucleation in pores.

    Science.gov (United States)

    Nanev, Christo N; Saridakis, Emmanuel; Chayen, Naomi E

    2017-01-16

    The most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution. Porous materials are exceptionally effective at inducing nucleation. It is shown here that a combined diffusion-adsorption effect can increase protein concentration inside pores, which enables crystal nucleation even under conditions where heterogeneous nucleation on flat surfaces is absent. Provided the pore is sufficiently narrow, protein molecules approach its walls and adsorb more frequently than they can escape. The decrease in the nucleation energy barrier is calculated, exhibiting its quantitative dependence on the confinement space and the energy of interaction with the pore walls. These results provide a detailed explanation of the effectiveness of porous materials for nucleation of protein crystals, and will be useful for optimal design of such materials.

  18. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    Energy Technology Data Exchange (ETDEWEB)

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  19. Protein synthesis controls phosphate homeostasis.

    Science.gov (United States)

    Pontes, Mauricio H; Groisman, Eduardo A

    2018-01-01

    Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium , this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg 2+ ), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg 2+ promotes an uptake in Mg 2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. © 2018 Pontes and Groisman; Published by Cold Spring Harbor Laboratory Press.

  20. Protein methylation in pea chloroplasts

    International Nuclear Information System (INIS)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-01-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [ 3 H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [ 3 H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [ 3 H]methyl group

  1. Protein design for pathway engineering.

    Science.gov (United States)

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Protein phosphorylation and bacterial chemotaxis

    International Nuclear Information System (INIS)

    Hess, J.F.; Bourret, R.B.; Oosawa, K.; Simon, M.I.; Matsumura, P.

    1988-01-01

    Bacteria are able to respond to changes in concentration of a large variety of chemicals and to changes in physical parameters, including viscosity, osmolarity, and temperature, by swimming toward a more favorable location (for review, see Stewart and Dahlquist 1987). Most chemotactic responses are mediated by a series of transmembrane receptor proteins that interact with or bind specific chemicals and thus monitor environmental conditions. Over the past 10 years, work in a number of laboratories has resulted in the identification and characterization of many of the genes and proteins required for the signal transduction process. The authors postulated that rapid and transient covalent modification of the chemotaxis gene products could function to transmit information from the receptor by regulating protein-protein interaction between the chemotaxis gene products. To test this idea, the authors purified the proteins corresponding to the cheA, cheY, cheZ, cheW, and cheB genes and tested the purified polypeptides to determine whether they could be covalently modified and whether they would interact with each other in vitro

  3. Whole Protein Native Fitness Potentials

    Science.gov (United States)

    Faraggi, Eshel; Kloczkowski, Andrzej

    2013-03-01

    Protein structure prediction can be separated into two tasks: sample the configuration space of the protein chain, and assign a fitness between these hypothetical models and the native structure of the protein. One of the more promising developments in this area is that of knowledge based energy functions. However, standard approaches using pair-wise interactions have shown shortcomings demonstrated by the superiority of multi-body-potentials. These shortcomings are due to residue pair-wise interaction being dependent on other residues along the chain. We developed a method that uses whole protein information filtered through machine learners to score protein models based on their likeness to native structures. For all models we calculated parameters associated with the distance to the solvent and with distances between residues. These parameters, in addition to energy estimates obtained by using a four-body-potential, DFIRE, and RWPlus were used as training for machine learners to predict the fitness of the models. Testing on CASP 9 targets showed that our method is superior to DFIRE, RWPlus, and the four-body potential, which are considered standards in the field.

  4. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  5. Effector proteins of rust fungi.

    Science.gov (United States)

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  6. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    Science.gov (United States)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  7. Isotopic Changes During Digestion: Protein

    Science.gov (United States)

    Tuross, N.

    2013-12-01

    Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.

  8. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  9. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  10. Protein moonlighting in parasitic protists.

    Science.gov (United States)

    Ginger, Michael L

    2014-12-01

    Reductive evolution during the adaptation to obligate parasitism and expansions of gene families encoding virulence factors are characteristics evident to greater or lesser degrees in all parasitic protists studied to date. Large evolutionary distances separate many parasitic protists from the yeast and animal models upon which classic views of eukaryotic biochemistry are often based. Thus a combination of evolutionary divergence, niche adaptation and reductive evolution means the biochemistry of parasitic protists is often very different from their hosts and to other eukaryotes generally, making parasites intriguing subjects for those interested in the phenomenon of moonlighting proteins. In common with other organisms, the contribution of protein moonlighting to parasite biology is only just emerging, and it is not without controversy. Here, an overview of recently identified moonlighting proteins in parasitic protists is provided, together with discussion of some of the controversies.

  11. Protein (Viridiplantae): 145354532 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 436017:4420 predicted protein Ostreococcus lucimarinus CCE9901 MSTRRPTTRARADDGFARDDDEDDGAHDDVAANTIVVYTKPGCCLCDGLKDKLDAAVDAAARAPPGASL...ECLRDFALCVRDVSTNAAWAESYAGSVPRVFVRVAVDAASTERSSVVSREFARPPPKRAAARVAEDLASLVRRACAPARAGWTVVTTTAWDAPSSSF ...

  12. Protein (Cyanobacteria): 383945 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ckel incorporation protein HypA Oscillatoria acuminata PCC 6304 MHEVSLMENTLNIALDCASAQNASKIHRLKMRVGDLSGVVPDALEFAFDVVTRGTIAEGAKFEIERVPVVCHCSTCDRNFEPIDLFYECPHCHQLTYQIQSGQEIELTSLEVS ...

  13. Protein (Cyanobacteria): 505001956 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein of unknown function DUF1818 Gloeocapsa sp. PCC 7428 MERVVKSGTGWRVGWNPHAAKYQALIGTDDWAIELTSAEFYDFCRLAVQLTEAIAQISQELMDEEKISCEAESDLVWMEVTGYPHAYSLHFILHTGRGVEGTWTPQAVPHLIQAVQMIQVF

  14. Protein (Cyanobacteria): 434405526 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 107:2633 ... hypothetical protein Cylst_3595 Cylindrospermum stagnale PCC 7417 MNKNNIQNYRFVCTLTFGDIYGQIIVWLITITISLASALALMGARRPVYALVTVGLVVLLTLPFLLFAFVTTLINHIELTSIEPGTKMEPIPGNVSQQQPIQASS

  15. Protein (Cyanobacteria): 298492611 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 551115:2260 ... 50S ribosomal protein L20 'Nostoc azollae' 0708 MTRVKRGNVARKRRNKILKLAKGFRGSHSTLFRTAHQQVMKALRSAYRDRKKKKRDFRRLWITRINAASRQNGLSYSQLIGNLKKANVELNRKMLAQLAVLDPASFAKVAELANSVKA

  16. Protein (Cyanobacteria): 479132100 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 05 696747:1505 ... hypothetical protein Arthrospira platensis NIES-39 MGGGNGTQQHHLSVMLGFTLVSPNLPRAIAYLSRLGGGNGTQQHHLSVMLGFTLVSPKLPRAIA...YLSRLGGGNGTQQHHLSVMLGFTLVSPNLPRAIAYLSRLGGGNGTQQHHLSVMLGFTLVSPNLQMLGETRATKSDRLFK

  17. Protein (Cyanobacteria): 479132040 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 05 696747:1505 ... hypothetical protein Arthrospira platensis NIES-39 MGGGNGTQQHHLSVMLGFTLVSPNLPRAIAYLSRLGGGNGTQQHHLSVMLGFTLVSPKLPRAIA...YLSRLGGGNGTQQHHLSVMLGFTLVSPNLPRAIAYLSRLGGGNGTQQHHLSVMLGFTLVSPNLQMLGETRATKSDRLFK

  18. Protein (Cyanobacteria): 652337765 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available othetical protein Fischerella sp. PCC 9605 MLTSYNIKDYEKAIFDFSKAIALEPNNPINHYERGNAYFLLKDYQRAIADYSKAIELKPNDSNAYELRGFAYFYLKGYQRAIA...DYTKVLELKTNDANAYELRGFAYFYLKGYQRAIADYSKAIELKPNNTNAYVLRGLAYYKLLDYQKAITDVQQASRLYYQQNNREGFQKAEDLLQELQSLINN

  19. Protein (Cyanobacteria): 479132036 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 05 696747:1505 ... hypothetical protein Arthrospira platensis NIES-39 MEVRNPTTPSLNDVGFHGVSPNLQRAIAYLSRLGGGNGTQHHHLSVMFGFTLVSPNLPRAIA...YLSRLGGGNGTQQHHLSVMLGFTLVSPKLPRAIAYLSRLGGGNGTQHHHLSVILGFTLVSPNLQMLGETQATKSDRLFK

  20. Protein (Cyanobacteria): 653002134 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available thetical protein, partial Planktothrix agardhii MKFINPKTDYAFKKIFGSDQSQDILISFLNAIVYQGETFITYLEIIDPYAPGRISGLKTT...YFDVKAQLNNGENVLIEMQAFNVPAFGKRILYNTAKMYVNQLKLGEVYPELRAAIGVAVTDFIMFNEHNKVISQFTLKEDELQVNYQHSPLKLVFVELPKFNKTLEELTTITDKWLYFLRKAPDLEVVPESMLIVPEIEKAFTIADRVNLSLEEVDDLEKREQFERERIGAIELG