WorldWideScience

Sample records for cftr-regulated anion conductance

  1. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    OpenAIRE

    Yubin He; Jiefeng Pan; Liang Wu; Yuan Zhu; Xiaolin Ge; Jin Ran; ZhengJin Yang; Tongwen Xu

    2015-01-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH− conductiv...

  2. Benzimidazole-derived anion for lithium-conducting electrolytes

    Science.gov (United States)

    Niedzicki, Leszek; Oledzki, Piotr; Bitner, Anna; Bukowska, Maria; Szczecinski, Przemyslaw

    2016-02-01

    In this work we announce new lithium salt of 5,6-dicyano-2-(trifluoromethyl)benzimidazolide (LiTDBI) designed for application in lithium conductive electrolytes. It was synthesized and completely characterized by NMR techniques. Studies show salt's thermal stability up to 270 °C and electrochemical stability in liquid solvents up to +4.7 V vs. metallic lithium anode. Basic characterization of electrolytes made with this salt show conductivity over 1 mS cm-1 and unusually high transference number at high concentrations (0.74 in EC:DMC 1:2 ratio mixture) along with low onset of conductivity peak. As a final proof of concept, cycling in half-cell was performed and electrolyte based on LiTDBI showed perfect capacity retention. Such properties show remarkable progress in creating efficient lithium-conducting electrolytes with use of weakly-coordinating anions.

  3. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    Energy Technology Data Exchange (ETDEWEB)

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon; Ocola, Leonidas E.; Nealey, Paul F.

    2016-03-08

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which are anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.

  4. Ionic conductivity in crystal structures with isolated tetragonal anions

    International Nuclear Information System (INIS)

    A unique peculiarity - the presence of complex isolated tetrahedron anions TZK4(4y-Z), where K - oxygen or Hal atom, y - its valency, Z - T element valency, is showh to be characteristic for different groups of superionic conductors including complex oxides of zirconium, scandium and molybdenum. It is possible to integrate and systematize a large number of ionic conductors on the basis of the given peculiarities of the crystal structure. Such an approach allows to consider the structure and electrophysical properties of a great number of cation conductors on the common ground, and to mark the concrete ways for searching new ion conducting materials

  5. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    Science.gov (United States)

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2015-08-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH- conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH- conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology.

  6. Conductance hysteresis in the voltage-dependent anion channel.

    Science.gov (United States)

    Rappaport, Shay M; Teijido, Oscar; Hoogerheide, David P; Rostovtseva, Tatiana K; Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2015-09-01

    Hysteresis in the conductance of voltage-sensitive ion channels is observed when the transmembrane voltage is periodically varied with time. Although this phenomenon has been used in studies of gating of the voltage-dependent anion channel, VDAC, from the outer mitochondrial membrane for nearly four decades, full hysteresis curves have never been reported, because the focus was solely on the channel opening branches of the hysteresis loops. We studied the hysteretic response of a multichannel VDAC system to a triangular voltage ramp the frequency of which was varied over three orders of magnitude, from 0.5 mHz to 0.2 Hz. We found that in this wide frequency range the area encircled by the hysteresis curves changes by less than a factor of three, suggesting broad distribution of the characteristic times and strongly non-equilibrium behavior. At the same time, quasi-equilibrium two-state behavior is observed for hysteresis branches corresponding to VDAC opening. This enables calculation of the usual equilibrium gating parameters, gating charge and voltage of equipartitioning, which were found to be almost insensitive to the ramp frequency. To rationalize this peculiarity, we hypothesize that during voltage-induced closure and opening the system explores different regions of the complex free energy landscape, and, in the opening branch, follows quasi-equilibrium paths. PMID:26094068

  7. Highly conductive side chain block copolymer anion exchange membranes.

    Science.gov (United States)

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days. PMID:27216558

  8. Effect of anionic surfactant concentration on the variable range hopping conduction in polypyrrole nanoparticles

    Science.gov (United States)

    Rawal, Ishpal; Kaur, Amarjeet

    2014-01-01

    The mechanism of charge transport in polypyrrole (PPy) nanoparticles prepared with different concentrations (5 to 30 mM) of anionic surfactant (sodium dodecyl sulfate) is reported. Transmission electron microscopy technique confirms the formation of PPy nanoparticles of sizes ˜52 to 28 nm under surfactant directed approach. The room temperature electrical conductivity of the prepared nanoparticles found to increase from 3 to 22 S/cm with surfactant concentration. The temperature dependent activation energy rules out the possibility of band conduction mechanism in the prepared PPy nanoparticles and thus the synthesized nanoparticles are analyzed under variable range hopping (VRH) model for conduction mechanism. The PPy nanoparticles, reduced with liquid ammonia, hold 3D VRH conduction mechanism for the charge transport. However, in the doped samples, some deviation from 3D VRH conduction behavior at higher temperatures (>150 K) has been observed. This may be attributed to the presence of anionic surfactant in these samples. The doping of anionic surfactant causes rise in conducting islands, which may lead to the change in the shape/distribution of density of states governed by Gaussian or exponential type near Fermi level.

  9. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators. PMID:27226582

  10. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, M G; Giordano, M E; De Nuccio, F; Nicolardi, G; Hoffmann, E K; Schettino, T

    2005-01-01

    electrogenic V(te) and I(sc) responses to hypotonicity resulted from the activation of different K+ and anion conductive pathways on the apical and basolateral membranes of the epithelium: (a) iberiotoxin-sensitive K+ channels on the apical and basolateral membrane, (b) apamin-sensitive K+ channels mainly on...... the basolateral membrane, (c) DIDS-sensitive anion channels on the apical membrane. The functional integrity of the basal Cl- conductive pathway on the basolateral membrane is also required. The electrophysiological response to hypotonic stress was completely abolished by Ca2+ removal from the Ringer...... activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium...

  11. Study of high-anionic conducting sulfonated microporous membranes for zinc-air electrochemical cells

    International Nuclear Information System (INIS)

    High-performance electrochemical membranes have been in great demand due to the rapid market growth in the portable power source devices. The electrochemical characteristics of high-anionic conducting membrane separators were studied in this report using microporous membranes with different sulfonation degrees obtained by changing the sulfonation reaction time. The degree of sulfonation treatment and the effects on the membrane separators were carefully investigated. The room temperature anionic conductivity of the membranes was improved by 132% to 3.52 x 10-2 S cm-1 when the sulfonation treatment time was 128 h. It was about 1.52 x 10-2 S cm-1 for the unsulfonated membranes. The anionic transport number in 1 M KOH aqueous solution was also improved to 0.89 from 0.79. The characteristic properties of these membrane separators were studied by infrared spectroscopy (IR), elemental analysis (EA), X-ray diffraction (XRD), scanning electron microscopy (SEM), AC impedance, contact angle measuring system and stress-strain tests. In addition, the solid-state zinc-air cells assembled from the sulfonated membrane separators showed enhanced battery power density of 38 mW cm-2 while the discharge current density was higher at 45 mA cm-2. The battery power density was around 20 mW cm-2 and the discharge current density was 25 mA cm-2 for the unsulfonated samples. Therefore, the sulfonated microporous membranes could be tailored for the different electrochemical cell applications

  12. An anionic spherical polyelectrolyte brushes-driven approach to synthesize conductive composites

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu; Zhan, Zhan [Wuhan University, School of Printing and Packaging (China); Zhang, Xiongzhi [Wuhan University, College of Chemistry and Molecular Sciences (China); Li, Houbin, E-mail: lhb@whu.edu.cn [Wuhan University, School of Printing and Packaging (China); Huang, Chi [Wuhan University, College of Chemistry and Molecular Sciences (China)

    2015-08-15

    The composites of anionic spherical polyelectrolyte brushes/conducing polymer (ASPB/CP) have been successfully prepared by chemical oxidative polymerization of aniline and pyrrole monomers in an acidic medium containing anionic spherical polyelectrolyte brushes. These composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectrometry, zeta potentials, X-ray photoelectron spectroscopy, and four probe methods. It was found that the poly(aniline-co-pyrrole) was uniformly coated on the surface of ASPB. Besides, the ASPB/CP composites had higher doping level than the pure copolymer after doping with ASPB. Moreover, these composites also showed better solubility and storage stability than pure copolymer. The electrical conductivity of the ASPB/CP composites at room temperature was 7.2 S/cm, while it was 2.4 S/cm for the pure copolymer under the same circumstances.

  13. The first BETS radical cation salts with dicyanamide anion: Crystal growth, structure and conductivity study

    International Nuclear Information System (INIS)

    Electrochemical oxidation of bis(ethylenedithio)tetraselenafulvalene (BETS) has been investigated. Simple and complex dicyanamides of transition metals (Mn2+, Ni2+ and Fe2+) were used as electrolytes. The correlation between composition of prepared radical cation salts and metal nature in electrolytes was established. Manganese dicyanamides provide the formation of BETS salts with the {Mn[N(CN)2]3}- and [N(CN)2]-XH2O anions. When Ni- or Fe-containing electrolytes were used only metalless BETS salts, α''-BETS2[N(CN)2].2H2O (I) and θ-BETS2[N(CN)2].3.6H2O (II), formed. Structures and conducting properties of these salts were analyzed. Both salts exhibit layered structure. Conducting radical cation layers have α'' (I)- or θ-type (II). Anion sheets appear as two-dimensional polymer networks of different types. These networks are formed by [N(CN)]2- anions and water molecules interlinked by hydrogen bonds. Salt I is a semiconductor and II demonstrates resistance drop down to150 K at normal pressure and down to 72 K at ∼0.4 kbar pressure. - Graphical abstract: We studied electrochemical oxidation of BETS donor in the presence of simple and/or complex dicyanamides of transition metals (Ni, Fe, Mn) as electrolytes. New conducting salts α''-BETS2[N(CN)2].2H2O and θ-BETS2[N(CN)2].3.8H2O have been synthesized and characterized. Highlights: → We studied electrochemical oxidation of BETS donor. → Dicyanamides of transition metals (Ni, Fe, Mn) were used as electrolytes. → We found a well-reproducible synthesis of magnetic superconductor BETS2Mn[N(CN)2]3. → Two new metalless BETS salts form when Ni and Fe electrolytes were used. → Their structure and conductivity were investigated.

  14. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    Science.gov (United States)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  15. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.

    OpenAIRE

    Linsdell, P; Evagelidis, A; Hanrahan, J W

    2000-01-01

    Ionic selectivity in many cation channels is achieved over a short region of the pore known as the selectivity filter, the molecular determinants of which have been identified in Ca(2+), Na(+), and K(+) channels. However, a filter controlling selectivity among different anions has not previously been identified in any Cl(-) channel. In fact, because Cl(-) channels are only weakly selective among small anions, and because their selectivity has proved so resistant to site-directed mutagenesis, ...

  16. Anion-exchange high-performance liquid chromatography with conductivity detection for the analysis of phytic acid in food

    OpenAIRE

    Talamond, Pascale; Doulbeau, Sylvie; Rochette, Isabelle; Guyot, Jean-Pierre; Trèche, Serge

    1999-01-01

    A sensitive method for the accurate determination of phytic acid in food samples is described. The proposed procedure involves the anion-exchange liquid chromatography with conductivity detection. Initially, two methods of determination of phytic acid were compared : absorptiometry and high-performance ion chromatography (HPIC) with chemically suppressed conductivity detector. Unlike most conventional methods involving precipitation by FeCl3, the simpler and more reliable HPIC assay avoids th...

  17. Cation and anion dynamics in the fast-ion conducting rotor phase of 7Li2SO4

    International Nuclear Information System (INIS)

    Complete text of publication follows. At 848 K, lithium sulfate undergoes a first-order phase transition. The high-temperature cubic a phase is a good cation conductor. At the same time, the oxo-anions are rotationally disordered. There has been a long debate about whether and how the rapid anion reorientation might enhance the canon transport through the crystal. We have performed quasielastic neutron scattering experiments on 7Li2SO4 in order to examine both anion and cation dynamics in this material. At Q -1, the quasielastic linewidth varies as DQ2 where D represents the Li tracer diffusion coefficient. At higher Q, we find a wave-like structure with linewidth maxima at 1.4 A-1 and 2.5 A-1 and a minimum at 1.9 A-1. This behavior is typical of coherent diffusion (7Li scatters both coherently and incoherently). We also see, at higher Q, a (coherent) quasielastic contribution from the oxygen nuclei due to the anion reorientation. Oxygen scattering is also found in the sodium cation conducting rotor phase of Na3PO4 where it is the predominant quasielastic component. Since the quasielastic scattering of 7Li2SO4 contains both cation and anion contributions, we perform classical molecular dynamics studies based on pair potentials from the literature. Results of these simulations are compared to the experimental dynamic structure factors. (author)

  18. Synthesis, structure and electrical conductivity of fulvalenium salts of cobalt bis(dicarbollide) anion and its derivatives

    Indian Academy of Sciences (India)

    Vladimir Bregadze; Igor Sivaev; Irina Lobanova; Olga Kazheva; Grigorii Alexandrov; Andrey Kravchenko; Vladimir Starodub; Lev Buravov; Lev Titov; Oleg Dyachenko

    2010-01-01

    TTF, TTF-BMDT, TTF-BEDT and TMTSF cation radical salts of cobalt bis(dicarbollide) anion [3,3'-Co(1,2-C2B9H11)2]- and its derivatives are prepared and their crystal structures and electrical conductivities are determined. Some regularities in the crystal structures of the TTF-based radical cation salts prepared are also discussed.

  19. Two highly proton-conductive molecular hybrids based on ionized water clusters and poly-Keggin-anion chains

    International Nuclear Information System (INIS)

    Two proton-conductive molecular hybrid complexes, {[Zn(H2O)8][H(H2O)2](HINO)4(PMo12O40)}n (1) and {[Mn(H2O)8][H(H2O)2.5](HINO)4(PMo12O40)}n (2), were constructed by introducing protonated water clusters, transition metal ionized water clusters and [PMo12O40]3- anions in the gallery of H-bonding networks based on isonicotinic acid N-oxide (HINO). Single-crystal X-ray diffraction analyses at 293 K revealed that both complexes presented exactly the same three-dimensional (3D) hydrogen-bonded networks with large one-dimensional (1D) channels. Interestingly, [PMo12O40]3- anions just filled in the 1D channels and self-assembled into poly-Keggin-anion chains. Thermogravimetric analyses both show no weight loss in the temperature range of 20-100 deg. C, indicating that all water molecules in the unit structure are not easily lost below 100 deg. C. Surprisingly, the proton conductivities of 1 and 2 in the temperature range of 85-100 deg. C under 98% RH conditions reached high proton conductivities of 10-3 S cm-1. A possible mechanism of the proton conduction was proposed according to the experimental results. - Graphical abstract: Two molecular hybrids constructed by ionized water clusters and poly-Keggin-anion chains showed high proton conductivities of 10-3 S cm-1 in the temperature range of 85-100 deg. C under 98% relative humidity. Highlights: → Proton conductors have interested us from the point of its applications in fuel cells. → Heteropolyacids have suitable characteristics to be used as excellent proton conductors. → Two new supramolecular complexes based on [PMo12O40]3- and isonicotinic acid N-oxide was constructed. → The structure was determined by using single-crystal X-ray diffraction data. → Both complexes showed good proton conductivities of 10-3 S cm-1 in the temperature range of 85-100 deg. C.

  20. Metallic conduction induced by direct anion site doping in layered SnSe2

    Science.gov (United States)

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-Taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~1020 cm-3 is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S·cm-1 from ~1.7 S·cm-1 for non-doped SnSe2. When the carrier concentration exceeds ~1019 cm-3, the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2.

  1. Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction.

    Science.gov (United States)

    Ma, Heping; Liu, Bailing; Li, Bin; Zhang, Liming; Li, Yang-Guang; Tan, Hua-Qiao; Zang, Hong-Ying; Zhu, Guangshan

    2016-05-11

    Mimicking proton conduction mechanism of Nafion to construct novel proton-conducting materials with low cost and high proton conductivity is of wide interest. Herein, we have designed and synthesized a cationic covalent organic framework with high thermal and chemical stability by combining a cationic monomer, ethidium bromide (EB) (3,8-diamino-5-ethyl-6-phenylphenanthridinium bromide), with 1,3,5-triformylphloroglucinol (TFP) in Schiff base reactions. This is the first time that the stable cationic crystalline frameworks allowed for the fabrication of a series of charged COFs (EB-COF:X, X = F, Cl, Br, I) through ion exchange processes. Exchange of the extra framework ions can finely modulate the COFs' porosity and pore sizes at nanoscale. More importantly, by introducing PW12O40(3-) into this porous cationic framework, we can greatly enhance the proton conductivity of ionic COF-based material. To the best of our knowledge, EB-COF:PW12 shows the best proton conductivity at room temperature among ever reported porous organic materials. PMID:27094048

  2. Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions

    International Nuclear Information System (INIS)

    Highlights: ► Single lithium-ion conducting polymer electrolytes based on highly delocalized polyanions are prepared. ► Phase behavior and transport properties are measured. ► They show high lithium ion transference number approaching unity. ► They show high ionic conductivity at room temperature. - Abstract: New single lithium-ion conducting polymer electrolytes are prepared by a copolymerization of the two monomers, lithium (4-styrenesulfonyl)(trifluoromethanesulfonyl)imide (LiSTFSI) and methoxy-polyethylene glycol acrylate (MPEGA, CH2=CHCO2-(CH2CH2O)n-CH3, n = 8) in various monomer ratios. The structures and compositions of the prepared lithium poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl) imide-co-methoxy-polyethylene glycol acrylate] (Li[PSTFSI-co-MPEGA]) copolymers are characterized by 1H and 19F NMR, and gel permeation chromatography (GPC). For comparison, the corresponding blended polymer electrolytes comprising lithium poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl)imide] (LiPSTFSI) and poly(ethylene oxide) (PEO) are also prepared and characterized. The fundamental properties of these two types of lithium-ion conducting polymer electrolytes are comparatively studied, in terms of phase transitions, thermal stability, XRD, ionic conductivities, lithium-ion transference numbers (tLi+), and electrochemical stabilities. Both types of the polymer electrolytes are thermally stable up to 300 °C. While both types of polymer electrolytes exhibit single lithium-ion conducting behavior with tLi+ > 0.9, the solid-state ionic conductivities of the Li[PSTFSI-co-MPEGA] copolymer electrolytes are all higher by 1–3 orders in magnitude than those of the blended ones, irrespective of the concentration of lithium ions. The highest ionic conductivities for the copolymer electrolytes are 7.6 × 10−6 S cm−1 at 25 °C and reach 10−4 S cm−1 at 60 °C, which are obtained at the ethylene oxide (EO) unit/Li+ ratio of 20.5

  3. Metallic conduction induced by direct anion site doping in layered SnSe 2

    OpenAIRE

    Sang Il Kim; Sungwoo Hwang; Se Yun Kim; Woo-Jin Lee; Doh Won Jung; Kyoung-Seok Moon; Hee Jung Park; Young-Jin Cho; Yong-Hee Cho; Jung-Hwa Kim; Dong-Jin Yun; Kyu Hyoung Lee; In-taek Han; Kimoon Lee; Yoonchul Sohn

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic co...

  4. Coexistence of Magnetism and Conductivity in Bis(ethylenediseleno) Tetrathiafulvalene (BEST) with Octahedral Anions Hexacyanoferrate (III) and Nitroprusside

    International Nuclear Information System (INIS)

    Using an accurate density-function method, we explore the coexistence of the magnetism and conductivity in bis(ethylenediselena)-tetrathiafulvalene (BEST) with the paramagnetic hexacyanoferrate(III) [Fe(CN)6]3-or the photochromic nitroprusside anion [Fe(CN)5NO]2-. The total and partial densities of states, and the atomic spin magnetic moments are calculated and discussed. It is found that the up- and down-spin total densities of states (DOS) are continuous in the vicinity of the Fermi level, there is overlap between the HOMO and LUMO in the up-spin subbands and the down-spin subbands, which reveals that these types of compounds have conductive properties. From the total and partial densities of states and atomic spin magnetic moments, it is shown that the spin magnetic moments of (BEST)4[Fe(CN)6] is mainly assembled at the iron atom and the cyanogen radical, and the spontaneous magnetic moments for (BEST)2[Fe(CN)5NO] come from iron atom, cyanogen and nitric oxide radical. To our best knowledge, it is the first theoretical study on the coexistence of the magnetism and conductivity of these compounds.

  5. Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Renzaho, Richard Fulgence;

    2013-01-01

    Polybenzimidazole is a highly hygroscopic polymer that can be doped with aqueous KOH to give a material with high ion conductivity in the 10−2Scm−1 range, which in combination with its low gas permeability makes it an interesting electrolyte material for alkaline water electrolysis. In this study...... membranes based on linear and crosslinked polybenzimidazole were evaluated for this purpose. Extensive characterization with respect to spectroscopic and physicochemical properties during aging in 6molL−1 KOH at 85°C for up to 176 days indicated structural stability of the high molecular weight specialty...... polymer, however, with limitations with respect to hydrolytic stability. The gradual decay of the average molecular weight resulted in a severe deterioration of the mechanical properties over time. Membranes based on crosslinked polybenzimidazole showed better stability than the membranes based on their...

  6. Tetramethylpyrazine stimulates cystic fibrosis transmembrane conductance regulator-mediated anion secretion in distal colon of rodents

    Institute of Scientific and Technical Information of China (English)

    Qiong He; Jin-Xia Zhu; Ying Xing; Lai-Ling Tsang; Ning Yang; Dewi Kenneth Rowlands; Yiu-Wa Chung; Hsiao-Chang Chan

    2005-01-01

    AIM: To investigate the effect of tetramethylpyrazine (TMP), an active compound from Ligustiun Wollichii Franchat, on electrolyte transport across the distal colon of rodents and the mechanism involved.METHODS: The short-circuit current (ISC) technique in conjunction with pharmacological agents and specific inhibitors were used in analyzing the electrolyte transport across the distal colon of rodents. The underlying cellular signaling mechanism was investigated by radioimmunoassay analysis (RIA) and a special mouse model of cystic fibrosis.RESULTS: TMP stimulated a concentration-dependent rise in ISC, which was dependent on both Cl- and HCO3-, and inhibited by apical application of diphenylamine-2,2'-dicarboxylic acid (DPC) and glibenclamide, but resistant to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS). Removal of Na+ from basolateral solution almost completely abolished the ISC response to TMP, but it was insensitive to apical Na+ replacement or apical Na+channel blocker, amiloride. Pretreatment of colonic mucosa with BAPTA-AM, a membrane-permeable selective Ca2+chelator, did not significantly alter the TMP-induced ISC. No additive effect of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was observed on the TMP-induced ISc, but it was significantly reduced by a protein kinase A inhibitor, H89.RIA results showed that TMP (1 mmol/L) elicited a significant increase in cellular cAMP production, which was similar to that elicited by the adenylate cyclase activator, forskolin (10 μmol/L). The TMP-elicited ISC as well as forskolin- or IBMX-induced ISC were abolished in mice with homozygous mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) presenting defective CFTR functions and secretions.CONCLUSION: TMP may stimulate cAMP-dependent and CFTR-mediated Cl- and HCO3- secretion. This may have implications in the future development of alternative treatment for constipation.

  7. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein

    OpenAIRE

    Kusumi, Kensuke; Hirotsuka, Shoko; Kumamaru, Toshiharu; Iba, Koh

    2012-01-01

    In rice (Oryza sativa L.), leaf photosynthesis is known to be highly correlated with stomatal conductance; however, it remains unclear whether stomatal conductance dominantly limits the photosynthetic rate. SLAC1 is a stomatal anion channel protein controlling stomatal closure in response to environmental [CO2]. In order to examine stomatal limitations to photosynthesis, a SLAC1-deficient mutant of rice was isolated and characterized. A TILLING screen of N-methyl-N-nitrosourea-derived mutant ...

  8. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  9. Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    International Nuclear Information System (INIS)

    Conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) strongly depends on the film morphology, which can be altered by the presence of polyelectrolytes. Aqueous dispersion of PEDOT:PSS was studied with anionic sodium polyacrylate (PA) and cationic poly(dimethyldiallylammonium chloride) (pDADMAC) polyelectrolytes that are typically used in papermaking as retention aids and dispersing agents in the paper pigment coating formulations. Spin-coated PEDOT:PSS films on a PA coated glass formed non-uniform layers with lowered conductivity compared to the reference PEDOT:PSS films on a clean glass substrate. On contrary, spin-coated PEDOT:PSS on a pDADMAC coated glass formed uniform layers with good conductivity. These results point out the importance of surface chemistry when using renewable and recyclable paper-based substrates with the PEDOT:PSS films. - Highlights: • PEDOT:PSS polymer was studied in the presence of polyelectrolytes. • Uniform layers of PEDOT:PSS and polyelectrolytes were spin-coated on glass. • Cationic polyelectrolyte was found to be more susceptible to humidity. • Cationic polyelectrolyte improves the conductivity of PEDOT:PSS. • PEDOT:PSS forms non-uniform layers on anionic polyelectrolyte coated glass

  10. Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    Energy Technology Data Exchange (ETDEWEB)

    Valtakari, Dimitar, E-mail: dimitar.valtakari@abo.fi [Abo Akademi University, Laboratory of Paper Coating and Converting, Center for Functional Materials at Biological Interfaces (FUNMAT), Porthansgatan 3, FI-20500 Åbo/Turku (Finland); Bollström, Roger [Omya International AG, CH 4665 Oftringen (Switzerland); Toivakka, Martti; Saarinen, Jarkko J. [Abo Akademi University, Laboratory of Paper Coating and Converting, Center for Functional Materials at Biological Interfaces (FUNMAT), Porthansgatan 3, FI-20500 Åbo/Turku (Finland)

    2015-09-01

    Conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) strongly depends on the film morphology, which can be altered by the presence of polyelectrolytes. Aqueous dispersion of PEDOT:PSS was studied with anionic sodium polyacrylate (PA) and cationic poly(dimethyldiallylammonium chloride) (pDADMAC) polyelectrolytes that are typically used in papermaking as retention aids and dispersing agents in the paper pigment coating formulations. Spin-coated PEDOT:PSS films on a PA coated glass formed non-uniform layers with lowered conductivity compared to the reference PEDOT:PSS films on a clean glass substrate. On contrary, spin-coated PEDOT:PSS on a pDADMAC coated glass formed uniform layers with good conductivity. These results point out the importance of surface chemistry when using renewable and recyclable paper-based substrates with the PEDOT:PSS films. - Highlights: • PEDOT:PSS polymer was studied in the presence of polyelectrolytes. • Uniform layers of PEDOT:PSS and polyelectrolytes were spin-coated on glass. • Cationic polyelectrolyte was found to be more susceptible to humidity. • Cationic polyelectrolyte improves the conductivity of PEDOT:PSS. • PEDOT:PSS forms non-uniform layers on anionic polyelectrolyte coated glass.

  11. Ion distribution in quaternary-ammonium-functionalized aromatic polymers: effects on the ionic clustering and conductivity of anion-exchange membranes.

    Science.gov (United States)

    Weiber, E Annika; Jannasch, Patric

    2014-09-01

    A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells. PMID:25044778

  12. Hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) for alkaline fuel cell applications: Effect of molecular weight

    International Nuclear Information System (INIS)

    Hydroxyl anion conducting membranes have been developed using poly(vinyl alcohol) (PVA) as polymer matrix by incorporation of poly(diallyldimethylammonium chloride) (PDDA) as anion charge carriers. PDDA of four different molecular weight (namely PDDA-HMw, PDDA-MMw, PDDA-LMw and PDDA-ULMw) was incorporated in order to clarifying the effect of molecular weight on membrane performances. The membranes are characterized in detail by FTIR spectroscopy, scanning electron microscopy (SEM), thermal gravity analysis (TG), mechanical property, AC impedance technique, water uptake, swelling ratio, oxidation and alkaline stability to evaluate their applicability in alkaline fuel cells. The OH− conductivity of the membranes was found to be increased with increasing molecular weight of PDDA, and the maximum OH− conductivity of 0.027 S cm−1 was achieved for PVA/PDDA-HMw membrane. The PVA/PDDA-HMw membrane also showed the best mechanical property and excellent thermal stability due to the most compact and dense network structure. All the membranes showed relatively high oxidative stability in 30% H2O2 and strong alkaline stability in 2 M KOH for 624 h at room temperature. The fuel cell performances of the MEAs with these membranes were 18.2, 23.4, 28.5 and 35.1 mW cm−2 using H2 and O2 gases at 25 °C. The long-term stability of single-cell performance showed that the PVA/PDDA membrane could approximately last 80 h on the fuel cell with only a slight decrease of 0.1 V in cell potential

  13. Influence of anionic vacancies on the conductivity of La9.33Si6-xAlxO26-x/2 oxide conductors with an oxyapatite structure

    Science.gov (United States)

    Inoubli, A.; Kahlaoui, M.; Sobrados, I.; Chefi, S.; Madani, A.; Sanz, J.; Ben Haj Amara, A.

    2014-12-01

    Al-doped oxyapatite-type lanthanum silicates La9.33Si6-xAlxO26-x/2□x/2 (x = 0, 0.4, 0.8 and 1) powders have been prepared by the solid state reaction at high temperature in order to determine the influence of anionic vacancies on the electrical properties of the material. The crystal structure and properties of La9.33Si6-xAlxO26-x/2□x/2 powders have been studied by X-ray diffraction (XRD) patterns, magic-angle spinning nuclear magnetic resonance (MAS-NMR) technique and complex impedance analysis. All the compounds of La9.33Si6-xAlxO26-x/2□x/2 oxyapatites doped with Al3+ consist of a hexagonal structure with a P63/m space group. Lanthanum silicates doped with trivalent Al3+ have a higher conductivity than those without trivalent Al3+ at the Si4+ site. The extra oxygen O(4) atoms in site 2a (0, 0, 0.25) occupy channels running through the structure that are responsible for the high oxygen ion conduction. However, Al substitution seems to produce oxygen vacancies and create another pathway for oxide ions. The expansion of the channels (La(1)-O(4) distance) leads to an increase in the conductivity. For the best sample (x = 1), the conductivity observed was 5 × 10-3 S cm-1 at 750 °C.

  14. Copper nano composites functionalized by bis-benzimidazole diamide ligand: Effect of size, co-anion dependent conductivity and band gap studies

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Manisha, E-mail: manishasingla@gmail.com [Dept. of Chemistry, University of Delhi, New Delhi (India); Mohapatra, Subash Chandra, E-mail: subashcm@gmail.com [Dept. of Chemistry, Jamia Millia Islamia, New Delhi (India); Ahmad, Sharif, E-mail: sharifahmad_jmi@yahoo.co.in [Dept. of Chemistry, Jamia Millia Islamia, New Delhi (India)

    2012-11-15

    Copper (I) and copper (II) nano composites capped with a bis-benzimidazole diamide ligand were prepared by reverse micelle method and characterized using CHNS, FTIR, {sup 1}H NMR, TEM and DLS studies. All particles were spherical ranging between 10 and 70 nm. They displayed a quasi reversible redox wave due to the Cu (II)/Cu (I) reduction process. The E{sub g1}{sup Prime} values shift anodically as NO{sub 3}{sup -} < Cl{sup -} < SCN{sup -}. Electrochemical HOMO and LUMO band gap (E{sub g1}{sup Prime }) for the nano composites were +1.80 (NO{sub 3}{sup -}), +2.80 (Cl{sup -}) and +4.10 (SCN{sup -}) eV, respectively. However, the optical band gap (E{sub g1}) for the nano composites was calculated from their absorption edges and lie between 1.77 and 4.13 eV. Fluorescence studies reveal that nano composites in themselves behave as an enhancer and quencher in respect to ligand, Quantum yield ({phi}) is varying from 0.008 to 0.02 photon. The activation energies range from 34 to 54 kJ mol{sup -1} and are quite low in comparison to that of the free bis-benzimidazole diamide ligand (137 kJ mol{sup -1}). The lower activation energies further re-emphasize the nano size of these composites. At room temperature, the dc conductivity lies between 1 Multiplication-Sign 10{sup -4}-9.33 Multiplication-Sign 10{sup -4} S cm{sup -1} [NO{sub 3}{sup -} > SCN{sup -} > Cl{sup -}] indicating them to be on the semiconductor insulator interface. The dielectric constant, dielectric loss and the ac conductivity were measured for all nano at room temperature and below the room temperature for the nano composite containing nitrate as co-anion. The conductivity was found to follow the correlated barrier hopping (CBH) mechanism; the exponent factor (s) varies from 0.5 to 1. -- Highlights: Black-Right-Pointing-Pointer Nano composites of copper, capped by bis benzimidazole diamide ligand. Black-Right-Pointing-Pointer Such copper nano composites have not been used in conductivity studies before. Black

  15. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties

    Science.gov (United States)

    Zhang, Heng; Han, Hongbo; Cheng, Xiaorong; Zheng, Liping; Cheng, Pengfei; Feng, Wenfang; Nie, Jin; Armand, Michel; Huang, Xuejie; Zhou, Zhibin

    2015-11-01

    Lithium salt with a super-delocalized imide anion, namely (trifluoromethane(S-trifluoromethanesulfonylimino)sulfonyl) (trifluoromethanesulfonyl)imide ([CF3SO(=NSO2CF3)2]-), [sTFSI]-), has been prepared and studied as conducting salt for Li-ion cells. The fundamental physicochemical and electrochemical properties of neat Li[sTFSI] and its carbonate-based liquid electrolyte have been characterized with various chemical and electrochemical tools. Li[sTFSI] shows a low melting point at 118 °C, and is thermally stable up to 300 °C without decomposition on the spectra of differential scanning calorimetry-thermogravimetry-mass spectrometry (DSC-TG-MS). The electrolyte of 1.0 M (mol dm-3) Li[sTFSI] in ethylene carbonate (EC)/ethyl-methyl-carbonate (EMC) (3:7, v/v) containing 0.3% water does not show any hydrolytic decomposition on the spectra of 1H and 19F NMR, after storage at 85 °C for 10 days. The conductivities of 1.0 M Li[sTFSI]-EC/EMC (3:7, v/v) are slightly lower than those of Li[(CF3SO2)2N] (LiTFSI), but higher than those of Li[(C2F5SO2)2N] (LiBETI). The electrochemical behavior of Al foil in the Li[sTFSI]-based electrolyte has been investigated by using cyclic voltammetry and chronoamperometry, and scanning electron microscope (SEM). It is illustrated that Al metal does not corrode in the high potential region (3-5 V vs. Li/Li+) in the Li[sTFSI]-based electrolyte. On Pt electrode, the Li[sTFSI]-based electrolyte is highly resistant to oxidation (ca. 5 V vs. Li/Li+), and is also resistant to reduction to allow Li deposition and stripping. The applicability of Li[sTFSI] as conducting salt for Li-ion cells has been tested using graphite/LiCoO2 cells. It shows that the cell with Li[sTFSI] displays better cycling performance than that with LiPF6.

  16. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators.

    Science.gov (United States)

    Clarke, Luka A; Botelho, Hugo M; Sousa, Lisete; Falcao, Andre O; Amaral, Margarida D

    2015-11-01

    A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease. PMID:26225835

  17. Hybrid molecular materials based upon organic π-electron donors and inorganic metal complexes. Conducting salts of bis(ethylenediseleno)tetrathiafulvalene (BEST) with the octahedral anions hexacyanoferrate(III) and nitroprusside

    International Nuclear Information System (INIS)

    The synthesis, structure and physical characterization of three new radical salts formed by the organic donor bis(ethylenediseleno)tetrathiafulvalene (BEDS-TTF or BEST) and the paramagnetic hexacyanoferrate(III) anion [Fe(CN)6]3- or the photochromic nitroprusside anion [Fe(CN)5NO]2- are reported: (BEST)4[Fe(CN)6] (1), (BEST)3[Fe(CN)6]2·H2O (2) and (BEST)2[Fe(CN)5NO] (3). Salts 1 and 3 show a layered structure with alternating organic (β-type packing) and inorganic slabs. Salt 2 shows an original interpenetrated structure probably due to the unprecedented presence of (BEST)2+ dications. The three salts are semiconductors although salt 1 exhibits a high room temperature conductivity and a semiconducting-semiconducting transition at ca. 150 K which has been attributed to a dimerization in the organic sublattice

  18. Anionic conductivity in Na0.5-xR0.5+xF2+2x (R=Dy-Lu; Y; x≅0.1) single crystals with fluorite-type structure

    International Nuclear Information System (INIS)

    Electric properties of monocrystal solid solutions Na0.5-xR0.5+xF2+2x (R=Dy-Lu; Y; x≅0.1) with fluorite type structure were studied by the method of impedance spectroscopy in the temperature range of 380-730 K. It is found that temperature dependences of anionic conductivity of the crystals studied comply with the Arrhenium equation. With a decrease in ionic radius of rare earth ion conductivity (at 500 K) and enthalpy of fluorine ion migration vary from 1.5·10-6 to 1.4·10-4 Ohm-1·cm-1 and from 0.84 to 0.64 eV respectively

  19. Hybrid molecular materials based upon organic pi-electron donors and inorganic metal complexes. Conducting salts of bis(ethylenediseleno)tetrathiafulvalene (BEST) with the octahedral anions hexacyanoferrate(III) and nitroprusside

    CERN Document Server

    Clemente-Leon, M; Galan-Mascaros, J R; Giménez-Saiz, C; Gómez-García, C J; Fabre, J M; Mousdis, G A; Papavassiliou, G C

    2002-01-01

    The synthesis, structure and physical characterization of three new radical salts formed by the organic donor bis(ethylenediseleno)tetrathiafulvalene (BEDS-TTF or BEST) and the paramagnetic hexacyanoferrate(III) anion [Fe(CN) sub 6] sup 3 sup - or the photochromic nitroprusside anion [Fe(CN) sub 5 NO] sup 2 sup - are reported: (BEST) sub 4 [Fe(CN) sub 6] (1), (BEST) sub 3 [Fe(CN) sub 6] sub 2 centre dot H sub 2 O (2) and (BEST) sub 2 [Fe(CN) sub 5 NO] (3). Salts 1 and 3 show a layered structure with alternating organic (beta-type packing) and inorganic slabs. Salt 2 shows an original interpenetrated structure probably due to the unprecedented presence of (BEST) sup 2 sup + dications. The three salts are semiconductors although salt 1 exhibits a high room temperature conductivity and a semiconducting-semiconducting transition at ca. 150 K which has been attributed to a dimerization in the organic sublattice.

  20. Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): physiological and pathophysiological relevance.

    Science.gov (United States)

    El Khouri, Elma; Touré, Aminata

    2014-07-01

    The solute carrier 26 (SLC26) proteins are transmembrane proteins located at the plasma membrane of the cells and transporting a variety of monovalent and divalent anions, including chloride, bicarbonate, sulfate and oxalate. In humans, 11 members have been identified (SLC26A1 to SLC26A11) and although part of them display a very restricted tissue expression pattern, altogether they are widely expressed in the epithelial cells of the body where they contribute to the composition and the pH regulation of the secreted fluids. Importantly, mutations in SLC26A2, A3, A4, and A5 have been associated with distinct human genetic recessive disorders (i.e. diastrophic dysplasia, congenital chloride diarrhea, Pendred syndrome and deafness, respectively), demonstrating their essential and non-redundant functions in many tissues. During the last decade, physical and functional interactions of SLC26 members with the cystic fibrosis transmembrane conductance regulator (CFTR) have been highly documented, leading to the model of a crosstalk based on the binding of the SLC26 STAS domain to the CFTR regulatory domain. In this review, we will focus on the functional interaction of SLC26A8 and SLC26A9 with the CFTR channel. In particular we will highlight the newly published studies indicating that mutations in SLC26A8 and SLC26A9 proteins are associated with a deregulation of the CFTR anion transport activity in the pathophysiological context of the sperm and the pulmonary cells. These studies confirm the physiological relevance of SLC26 and CFTR cross-regulation, opening new gates for the treatment of cystic fibrosis. PMID:24530837

  1. Crystal structure and ion conductivity of a new mixed-anion phosphate LiMg3(PO4)P2O7

    International Nuclear Information System (INIS)

    A new lithium-containing phosphate, LiMg3(PO4)P2O7, was prepared by a solid-state reaction, and it was characterized by an ab initio structure determination method on the basis of synchrotron powder X-ray diffraction data. LiMg3(PO4)P2O7 was found to be orthorhombic (space group Pnma) with lattice parameters a=9.0387(1) Å, b=10.6072(1) Å, c=8.3065(1) Å, and V=796.39(1) Å3. The structure features infinite [Mg3O10]∞ layers that are parallel to the bc plane and that are interconnected along the a axis by PO4 and P2O7 groups. The [Mg3O10]∞ layer contains Mg3O14 trimers that are formed by three edge-shared MgO6 octahedra. The PO4 and P2O7 groups are located alternatively between [Mg3O10]∞ layers. This gives rise to a three-dimensional framework that contains large tunnels along the directions [1 0 0] and [0 1 0]; the Li+ ions are stabilized in these tunnels. AC impedance spectroscopy shows that LiMg3(PO4)P2O7 has an ionic conductivity of 3.40×10−5 S cm−1 at 769 K, with an activation energy of 1.17 eV. - Graphical abstract: Polyhedral view of LiMg3(PO4)P2O7. Li+ ions are represented by orange spheres, MgO6 groups by octahedra, and PO4 groups by tetrahedra. - Highlights: • New compound LiMg3(PO4)P2O7 is reported. • The crystal structure is investigated by synchrotron XRD analysis. • The structure features [Mg3O10]∞ layers with interconnecting PO4 and P2O7 groups. • Correlation between the crystal structure and ionic conductivity is discussed

  2. Crystal structure and ion conductivity of a new mixed-anion phosphate LiMg3(PO4)P2O7

    Science.gov (United States)

    Kim, Sung-Chul; Lee, Mi-Sun; Kang, Jinyeong; Kim, Young-Il; Kim, Seung-Joo

    2015-05-01

    A new lithium-containing phosphate, LiMg3(PO4)P2O7, was prepared by a solid-state reaction, and it was characterized by an ab initio structure determination method on the basis of synchrotron powder X-ray diffraction data. LiMg3(PO4)P2O7 was found to be orthorhombic (space group Pnma) with lattice parameters a=9.0387(1) Å, b=10.6072(1) Å, c=8.3065(1) Å, and V=796.39(1) Å3. The structure features infinite [Mg3O10]∞ layers that are parallel to the bc plane and that are interconnected along the a axis by PO4 and P2O7 groups. The [Mg3O10]∞ layer contains Mg3O14 trimers that are formed by three edge-shared MgO6 octahedra. The PO4 and P2O7 groups are located alternatively between [Mg3O10]∞ layers. This gives rise to a three-dimensional framework that contains large tunnels along the directions [1 0 0] and [0 1 0]; the Li+ ions are stabilized in these tunnels. AC impedance spectroscopy shows that LiMg3(PO4)P2O7 has an ionic conductivity of 3.40×10-5 S cm-1 at 769 K, with an activation energy of 1.17 eV.

  3. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  4. Molecular physiology of EAAT anion channels.

    Science.gov (United States)

    Fahlke, Christoph; Kortzak, Daniel; Machtens, Jan-Philipp

    2016-03-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein. PMID:26687113

  5. Intrinsic anion oxidation potentials.

    Science.gov (United States)

    Johansson, Patrik

    2006-11-01

    Anions of lithium battery salts have been investigated by electronic structure calculations with the objective to find a computational measure to correlate with the observed (in)stability of nonaqueous lithium battery electrolytes vs oxidation often encountered in practice. Accurate prediction of intrinsic anion oxidation potentials is here made possible by computing the vertical free energy difference between anion and neutral radical (Delta Gv) and further strengthened by an empirical correction using only the anion volume as a parameter. The 6-311+G(2df,p) basis set, the VSXC functional, and the C-PCM SCRF algorithm were used. The Delta Gv calculations can be performed using any standard computational chemistry software. PMID:17078600

  6. 燃料电池用纳米改性聚苯并咪唑阴离子交换膜的制备%Synthesis of Polybenzimidazole/Nano-Particles Hybrid Anion Conducting Membranes Used for Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    汪称宇; 储富强; 林本才; 冯天英; 袁宁一; 丁建宁

    2016-01-01

    Imidazolium-based ionic liquid (IL) was synthesized from epichlorohydrin and 1 –methyl imidazole,and ionic liquid functionalized graphene oxide (IL–GO) was obtained from IL and graphene oxide (GO). Different content of IL–GO was incorporated into polybenzimidazole (FPBI) to investigate the content effect on the properties of composite membranes. The effect of content of IL–GO on the thermal stability,mechanical strength,ionic conductivity,ion exchange capacity (IEC),water absorption, swelling degree and alkali resistance performance of composite film were investigated. The results show that as the content of IL–GO increases,the properties of the composite membranes,such as proton conductivity,IEC and tensile properties present an increase variation. When IL–GO content is 30%,its tensile stress and tensile elastic modulus reach 77.5 MPa and 1.95 GPa respectively. Under 80℃,its maximum ionic conductivity reach up to 72.3 mS/cm. However,the thermal stability of the composite membranes don’t dramatically change,and the composite membranes show an excellent alkaline stability. This investigation demonstrates that FPBI/IL–GO composite membranes may be promising for alkaline anion exchange membrane fuel cell applications.%以环氧氯丙烷和1–甲基咪唑为原料制备新型离子液体(IL),以IL为原料对氧化石墨烯(GO)进行表面修饰制备离子液体功能化氧化石墨烯(IL–GO),以IL–GO为添加剂制备基于含氟聚苯并咪唑(FPBI)复合膜。研究了IL–GO的含量对复合膜的热稳定性、力学强度、离子电导率、离子交换容量(IEC)、吸水率、溶胀度和耐碱性等性能的影响。研究结果表明,复合膜的IEC、离子电导率和拉伸性能都随着IL–GO含量的增加而增大,当IL–GO含量为30%时其拉伸应力和拉伸弹性模量分别达到77.5 MPa和1.95 GPa,在80℃下,其最大离子电导率可达72.3 mS/cm,然而复合膜的热稳定性并没随着IL–GO含

  7. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-01

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  8. Vanadogermanate cluster anions.

    Science.gov (United States)

    Whitfield, T; Wang, X; Jacobson, A J

    2003-06-16

    Three novel vanadogermanate cluster anions have been synthesized by hydrothermal reactions. The cluster anions are derived from the (V(18)O(42)) Keggin cluster shell by substitution of V=O(2+) "caps" by Ge(2)O(OH)(2)(4+) species. In Cs(8)[Ge(4)V(16)O(42)(OH)(4)].4.7H(2)O, 1, (monoclinic, space group C2/c (No. 15), Z = 8, a = 44.513(2) A, b = 12.7632(7) A, c = 22.923(1) A, beta = 101.376(1) degrees ) and (pipH(2))(4)(pipH)(4)[Ge(8)V(14)O(50).(H(2)O)] (pip = C(4)N(2)H(10)), 2 (tetragonal, space group P4(2)/nnm (No. 134), Z = 2, a = 14.9950(7) A, c = 18.408(1) A), two and four VO(2+) caps are replaced, respectively, and each cluster anion encapsulates a water molecule. In K(5)H(8)Ge(8)V(12)SO(52).10H(2)O, 3, (tetragonal, space group I4/m (No. 87), Z = 2, a = 15.573(1) A, c = 10.963(1) A), four VO(2+) caps are replaced by Ge(2)O(OH)(2)(4+) species, and an additional two are omitted. The cluster ion in 3 contains a sulfate anion disordered over two positions. The cluster anions are analogous to the vanadoarsenate anions [V(18)(-)(n)()As(2)(n)()O(42)(X)](m)(-) (X = SO(3), SO(4), Cl; n = 3, 4) previously reported. PMID:12793808

  9. Studies of anions sorption on natural zeolites.

    Science.gov (United States)

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

  10. Anion Ordering in Bichalcogenides

    Directory of Open Access Journals (Sweden)

    Martin Valldor

    2016-07-01

    Full Text Available This review contains recent developments and new insights in the research on inorganic, crystalline compounds with two different chalcogenide ions (bichalcogenides. Anion ordering is used as a parameter to form structural dimensionalities as well as local- and global-electric polarities. The reason for the electric polarity is that, in the heterogeneous bichalcogenide lattice, the individual bond-lengths between cations and anions are different from those in a homogeneous anion lattice. It is also shown that heteroleptic tetrahedral and octahedral coordinations offer a multitude of new crystal fields and coordinations for involved cations. This coordination diversity in bichalcogenides seems to be one way to surpass electro-chemical redox potentials: three oxidation states of a single transition metal can be stabilized, e.g., Ba15V12S34O3. A new type of disproportionation, related to coordination, is presented and results from chemical pressure on the bichalcogenide lattices of (La,CeCrS2O, transforming doubly [CrS3/3S2/2O1/1]3− (5+1 into singly [CrS4/2S2/3]7/3− (6+0 and [CrS4/3O2/1]11/3− (4+2 coordinations. Also, magnetic anisotropy is imposed by the anion ordering in BaCoSO, where magnetic interactions via S or O occur along two different crystallographic directions. Further, the potential of the anion lattice is discussed as a parameter for future materials design.

  11. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.

    Science.gov (United States)

    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S

    2014-07-01

    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH. PMID:24877792

  12. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  13. Resonant spectra of quadrupolar anions

    CERN Document Server

    Fossez, K; Nazarewicz, W; Michel, N; Garrett, W R; Płoszajczak, M

    2016-01-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as extreme halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-molecule problem using a non-adiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational ban...

  14. Bound anionic states of adenine

    OpenAIRE

    Harańczyk, Maciej; Gutowski, Maciej; Li, Xiang; Bowen, Kit H.

    2007-01-01

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine...

  15. Simultaneous determination of inorganic and organic anions by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  16. Conductive polymeric compositions for lithium batteries

    Science.gov (United States)

    Angell, Charles A.; Xu, Wu

    2009-03-17

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  17. Chemical Modeling of Cometary Anions

    Science.gov (United States)

    Cordiner, Martin; Charnley, S. B.

    2009-09-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not previously been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydrodynamical model of Rodgers & Charnley (2002), we investigate the role of the hydrocarbon and nitrile anions Cn-, CnH- and CnN- in the coma. We calculate the effects of these anions on the charge balance and examine their impact on cometary coma chemistry. References: Chaizy, P. et al. 1991, Nature, 349, 393 Rodgers, S.D. & Charnley, S.B. 2002, MNRAS, 330, 660

  18. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  19. Adsorption of anionic dyes on ammonium-functionalized MCM-41

    International Nuclear Information System (INIS)

    Investigations were conducted in a batch reactor system to study the adsorption behavior of four anionic dyes (Methyl orange (MO), Orange IV (OIV), Reactive brilliant red X-3B (X-3B), and Acid fuchsine (AF)) on ammonium-functionalized MCM-41 (NH3+-MCM-41) from aqueous medium by varying the parameters such as contact time, initial dye concentration, pH and competitive anions. Dye adsorption was broadly independent of initial dye concentration. The intraparticle diffusion model was the best in describing the adsorption kinetics for the four anionic dyes on NH3+-MCM-41. The adsorption data for the four dyes were well fitted with the Langmuir model. The electrostatic interaction was considered to be the main mechanism for the dye adsorption. Finally, it was observed that the anion of soft acid inhibited the adsorption capacity significantly

  20. Ionic liquids formed with polycyano 1,1,3,3-tetracyanoallyl anions: substituent effects of anions on liquid properties.

    Science.gov (United States)

    Yoshida, Yukihiro; Kondo, Masatoshi; Saito, Gunzi

    2009-07-01

    A series of ionic liquids based on five kinds of polycyano 1,1,3,3-tetracyanoallyl anions with 2-substituents having different electron-withdrawing or -donating abilities were prepared. The influence of the chemical modification on their thermal properties, viscosity, ionic conductivity, ion association, and solvatochromic shifts was characterized and compared with the case of previously reported polycyano anions, N(CN)(2)(-) and C(CN)(3)(-). Among the 1-butyl-3-methylimidazolium (BMI) salts, cyano-substituted (i.e., 1,1,2,3,3-pentacyanoallyl anion) salt has the highest melting point (42 degrees C), possibly indicating the importance of high local symmetry over decreased interionic CN...cation interactions due to the limited electron densities on terminal nitrogens of the anions, predicted by ab initio calculations. In the liquid state, methoxy-substituted (i.e., 2-methoxy-1,1,3,3-tetracyanoallyl anion) salt has the highest fluidity and ionic conductivity, associated with the significant conformational degree of freedom in the methoxy group. Although the ion diffusivity has no definite correlation with the Hammett parameter of the substituents, the introduction of electron-withdrawing cyano or cyanomethyl (i.e., 2-cyanomethyl-1,1,3,3-tetracyanoallyl anion) groups leads to the decrease in the degree of ion association and solvent donor ability, which were manifested in the Walden rule deviation and solvatochromic shift, respectively. PMID:19518062

  1. Nd2±xZr2∓xO7±x/2 (-0.2≤x≤0.4) complex oxides: Effect of anion disorder on ionic conductivity

    Science.gov (United States)

    Anithakumari, P.; Grover, V.; Tyagi, A. K.

    2016-05-01

    In the present work, a series of Nd2±xZr2∓xO7±x/2 (-0.2≤x≤0.4) was prepared by self assisted gel-combution method followed by high temperature sintering at 1673 K. Thorough structural characterizations were done by X-ray diffraction and Raman spectroscopic techniques. The nominal compositions Nd1.6Zr2.4O7.2 and Nd1.8Zr2.2O7.1 were found to possess single-phasic pyrochlore structure whereas Nd2.0Zr2.0O7 and Nd2.2Zr1.8O6.9 consisted of a pyrochlore phase and a small amount of hexagonal Nd2O3 as an impurity phase. Electrical behavior of the samples was examined by AC impedance analysis. Even though the activation energies of all the samples are not very different, a high pre-exponential factor for the Nd1.6Zr2.4O7.2 composition resulted in high ionic conductivity (3.37 × 10-3 Scm-1 at 773 K). This high ionic conductivity value makes it a superior candidate as an electrolyte material for SOFC applications.

  2. Anion Transport with Chalcogen Bonds.

    Science.gov (United States)

    Benz, Sebastian; Macchione, Mariano; Verolet, Quentin; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-07-27

    In this report, we introduce synthetic anion transporters that operate with chalcogen bonds. Electron-deficient dithieno[3,2-b;2',3'-d]thiophenes (DTTs) are identified as ideal to bind anions in the focal point of the σ holes on the cofacial endocyclic sulfur atoms. Anion binding in solution and anion transport across lipid bilayers are found to increase with the depth of the σ holes of the DTT anionophores. These results introduce DTTs and related architectures as a privileged motif to engineer chalcogen bonds into functional systems, complementary in scope to classics such as 2,2'-bipyrroles or 2,2'-bipyridines that operate with hydrogen bonds and lone pairs, respectively. PMID:27433964

  3. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai-Sheng, E-mail: Lai-Sheng-Wang@brown.edu [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States)

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.

  4. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  5. Crystal structure and ion conductivity of a new mixed-anion phosphate LiMg{sub 3}(PO{sub 4})P{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Chul; Lee, Mi-Sun; Kang, Jinyeong [Department of Chemistry, Division of Energy Systems Research, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Young-Il [Department of Chemistry, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Kim, Seung-Joo, E-mail: sjookim@ajou.ac.kr [Department of Chemistry, Division of Energy Systems Research, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-05-15

    A new lithium-containing phosphate, LiMg{sub 3}(PO{sub 4})P{sub 2}O{sub 7}, was prepared by a solid-state reaction, and it was characterized by an ab initio structure determination method on the basis of synchrotron powder X-ray diffraction data. LiMg{sub 3}(PO{sub 4})P{sub 2}O{sub 7} was found to be orthorhombic (space group Pnma) with lattice parameters a=9.0387(1) Å, b=10.6072(1) Å, c=8.3065(1) Å, and V=796.39(1) Å{sup 3}. The structure features infinite [Mg{sub 3}O{sub 10}]{sub ∞} layers that are parallel to the bc plane and that are interconnected along the a axis by PO{sub 4} and P{sub 2}O{sub 7} groups. The [Mg{sub 3}O{sub 10}]{sub ∞} layer contains Mg{sub 3}O{sub 14} trimers that are formed by three edge-shared MgO{sub 6} octahedra. The PO{sub 4} and P{sub 2}O{sub 7} groups are located alternatively between [Mg{sub 3}O{sub 10}]{sub ∞} layers. This gives rise to a three-dimensional framework that contains large tunnels along the directions [1 0 0] and [0 1 0]; the Li{sup +} ions are stabilized in these tunnels. AC impedance spectroscopy shows that LiMg{sub 3}(PO{sub 4})P{sub 2}O{sub 7} has an ionic conductivity of 3.40×10{sup −5} S cm{sup −1} at 769 K, with an activation energy of 1.17 eV. - Graphical abstract: Polyhedral view of LiMg3(PO4)P2O7. Li+ ions are represented by orange spheres, MgO6 groups by octahedra, and PO4 groups by tetrahedra. - Highlights: • New compound LiMg{sub 3}(PO{sub 4})P{sub 2}O{sub 7} is reported. • The crystal structure is investigated by synchrotron XRD analysis. • The structure features [Mg{sub 3}O{sub 10}]{sub ∞} layers with interconnecting PO{sub 4} and P{sub 2}O{sub 7} groups. • Correlation between the crystal structure and ionic conductivity is discussed.

  6. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  7. Materials chemistry approach to anion-sensor design

    Czech Academy of Sciences Publication Activity Database

    Anzenbacher Jr., P.; Jursiková, K.; Aldakov, D.; Marquez, M.; Pohl, Radek

    2004-01-01

    Roč. 60, č. 49 (2004), s. 11163-11168. ISSN 0040-4020 Institutional research plan: CEZ:AV0Z4055905 Keywords : conductive polymer * anion sensing * polythiophene Subject RIV: CC - Organic Chemistry Impact factor: 2.643, year: 2004

  8. Functional Block Copolymers via Anionic Polymerization for Electroactive Membranes

    OpenAIRE

    Schultz, Alison

    2013-01-01

           Ion-containing block copolymers blend ionic liquid properties with well-defined polymer architectures. This provides conductive materials with robust mechanical stability, efficient processability, and tunable macromolecular design. Conventional free radical polymerization and anion exchange achieved copolymers containing n-butyl acrylate and phosphonium ionic liquids. These compositions incorporated vinylbenzyl triphenyl phosphonium and vinylbenzyl tricyclohexyl phosphonium cations be...

  9. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Michael Rajamathi; Grace S Thomas; P Vishnu Kamath

    2001-10-01

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange properties together with surface basicity making them materials of importance for many modern applications. In this article, we discuss many different ways of making anionic clays and compare and contrast the rich diversity of this class of materials with the better-known cationic clays.

  10. Ionic Block Copolymers for Anion Exchange Membranes

    Science.gov (United States)

    Tsai, Tsung-Han; Herbst, Dan; Giffin, Guinevere A.; di Noto, Vito; Witten, Tom; Coughlin, E. Bryan

    2013-03-01

    Anion exchange membrane (AEM) fuel cells have regained interest because it allows the use of non-noble metal catalysts. Until now, most of the studies on AEM were based on random polyelectrolytes. In this work, Poly(vinylbenzyltrimethylammonium bromide)-b- (methylbutylene) ([PVBTMA][Br]-b-PMB) was studied by SAXS, TEM and dielectric spectroscopy to understand the fundamental structure-conductivity relationship of ion transport mechanisms within well-ordered block copolymers. The ionic conductivity and the formation of order structure were dependent on the casting solvent. Higher ion exchange capacity (IEC) of the membranes showed higher conductivity at as IEC values below 1.8mmol/g, as above this, the ionic conductivity decreases due to more water uptake leading to dilution of charge density. The humidity dependence of morphology exhibited the shifting of d-spacing to higher value and the alteration in higher characteristic peak of SAXS plot as the humidity increase from the dry to wet state. This phenomenon can be further explained by a newly developed polymer brush theory. Three ionic conduction pathways with different conduction mechanism within the membranes can be confirmed by broadband electric spectroscopy. US Army MURI (W911NF1010520)

  11. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  12. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  13. IMPROVING OF ANION EXCHANGERES REGENERATION

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibrahim

    2013-05-01

    Full Text Available Inthis study, Different basis [NaOH and KOH] of variable concentration are usedto reactivate Anion exchangers employing different schemes .The Laboratoryresults showed large improvement in efficiency of these exchangers ( i.eoperating time was increased from 12 to 42 hours .The results of this work showed that the environmentalload (waste water can be reduced greatly when using the proposed regenerationscheme .

  14. Organic superconductors with an incommensurate anion structure

    Directory of Open Access Journals (Sweden)

    Tadashi Kawamoto and Kazuo Takimiya

    2009-01-01

    Full Text Available Superconducting incommensurate organic composite crystals based on the methylenedithio-tetraselenafulvalene (MDT-TSF series donors, where the energy band filling deviates from the usual 3/4-filled, are reviewed. The incommensurate anion potential reconstructs the Fermi surface for both (MDT-TSF(AuI20.436 and (MDT-ST(I30.417 neither by the fundamental anion periodicity q nor by 2q, but by 3q, where MDT-ST is 5H-2-(1,3-dithiol-2-ylidene-1,3-diselena-4,6-dithiapentalene, and q is the reciprocal lattice vector of the anion lattice. The selection rule of the reconstructing vectors is associated with the magnitude of the incommensurate potential. The considerably large interlayer transfer integral and three-dimensional superconducting properties are due to the direct donor–donor interactions coming from the characteristic corrugated conducting sheet structure. The materials with high superconducting transition temperature, Tc, have large ratios of the observed cyclotron masses to the bare ones, which indicates that the strength of the many-body effect is the major determinant of Tc. (MDT-TS(AuI20.441 shows a metal–insulator transition at TMI=50 K, where MDT-TS is 5H-2-(1,3-diselenol-2-ylidene-1,3,4,6-tetrathiapentalene, and the insulating phase is an antiferromagnet with a high Néel temperature (TN=50 K and a high spin–flop field (Bsf=6.9 T. There is a possibility that this material is an incommensurate Mott insulator. Hydrostatic pressure suppresses the insulating state and induces superconductivity at Tc=3.2 K above 1.05 GPa, where Tc rises to the maximum, Tcmax=4.9 K at 1.27 GPa. This compound shows a usual temperature–pressure phase diagram, in which the superconducting phase borders on the antiferromagnetic insulating phase, despite the unusual band filling.

  15. Efficient Amide Based Halogenide Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    Hong Xing WU; Feng Hua LI; Hai LIN; Shou Rong ZHU; Hua Kuan LIN

    2005-01-01

    In this paper, we present the synthesis and anion recognition properties of the amide based phenanthroline derivatives 1, 2 and 3. In all cases 1:1 receptor: anion complexes were observed. The receptors were found to be selective for fluoride and chloride respectively over other putative anionic guest species.

  16. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  17. Polymerization of anionic wormlike micelles.

    Science.gov (United States)

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  18. Anion Solvation in Carbonate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  19. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.

    2014-10-01

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  20. Aquaporins with anion/monocarboxylate permeability: mechanisms, relevance for pathogen-host interactions

    Directory of Open Access Journals (Sweden)

    Janis eRambow

    2014-09-01

    Full Text Available Classically, aquaporins are divided based on pore selectivity into water specific, orthodox aquaporins and solute-facilitating aquaglyceroporins, which conduct e.g. glycerol and urea. However, more aquaporin-passing substrates have been identified over the years, such as the gases ammonia and carbon dioxide or the water-related hydrogen peroxide, and it became apparent that not all aquaporins clearly fit into one of only two subfamilies. Furthermore, certain aquaporins from both major subfamilies have been reported to conduct inorganic anions, such as chloride, or monoacids/monocarboxylates, such as lactic acid/lactate. Here, we summarize the findings on aquaporin anion transport, analyze the pore layout of such aquaporins in comparison to prototypical non-selective anion channels, monocarboxylate transporters, and formate-nitrite transporters, and discuss in which scenarios anion conducting aquaporins may be of physiological relevance.

  1. A new anionic exchange stir bar sorptive extraction coating based on monolithic material for the extraction of inorganic anion.

    Science.gov (United States)

    Huang, Xiaojia; Lin, Jianbing; Yuan, Dongxing

    2010-07-23

    A novel anionic exchange stir bar sorptive extraction (SBSE) coating based on poly(2-(methacryloyloxy)ethyltrimethylammonium chloride-co-divinylbenzene) monolithic material for the extraction of inorganic anion was prepared. The effect of preparation conditions such as ratio of functional monomer to cross-linker, content of porogenic solvent on the extraction efficiencies were investigated in detailed. The monolithic material was characterized by elemental analysis, scanning electron microscopy and infrared spectroscopy. In order to investigate the extraction capacity of the new coating for inorganic anion, the new SBSE was combined with ionic chromatography with conductivity detection, Br-, NO3-, PO4(3-) and SO4(2-) were selected as detected solutes. Several extractive parameters, including pH value and ionic strength in sample matrix, desorption solvent, extraction and desorption time were optimized. The results showed that strongly ionic strength did not favor the extraction of anlaytes. Under the optimum experimental conditions, low detection limits (S/N=3) and quantification limits (S/N=10) of the proposed method for the target anions were achieved within the range of 0.92-2.62 and 3.03-9.25 microg/L, respectively. The method also showed good linearity, simplicity, practicality and low cost for the extraction inorganic anions. Finally, the proposed method was successfully used to detect the two different trademarks of commercial purified water with satisfactory recovery in the range of 70.0-92.6%. To the best of our knowledge, this is the first to use SBSE to enrich inorganic anions. PMID:20576270

  2. Environmental behavior of inorganic anions

    International Nuclear Information System (INIS)

    Recent efforts have addressed two aspects of anion behavior in the soil/plant system. The first involves evaluation of the gaseous component of the terrestrial iodine cycle in soils and plants. Field analyses of 129I in soils and vegetation adjacent to a fuels reprocessing facility, which was idle for 10 years prior to the study, indicated that there may be a significant gaseous component to the terrestrial iodine cycle. Soil substrates, including a silt-sand, organic forest soil, quartz sand, and a sterilized soil, were amended with radioiodide, and the rates and quality of the volatile components evaluated

  3. Electron transfer in dinucleoside phosphate anions

    International Nuclear Information System (INIS)

    The electron transfer reaction within various dinucleoside phosphate radical anions has been investigated by ESR spectroscopy and pulse radiolysis. In the ESR work electrons are produced by photolysis of K4Fe(CN)6 in a 12 M LiCl glass at 770K. Upon photobleaching the electrons react with the dinucleoside phosphate to form the anion radical. The anions of the four DNA nucleosides were also produced and their ESR spectra were appropriately weighted and summed by computer to simulate the spectra found for the dinucleoside phosphate anions. From the analysis the relative amounts of each of the nucleoside anions in the dinucleoside phosphate anion were determined. Evidence suggests the electron affinity of the pyrimidine bases are greater than the purine bases; however, the results are not sufficient to distinguish between the individual purine or pyrimidine. When dinucleoside phosphate anions containing thymidine are warmed, protonation occurs only on thymine to produce the well known ''thymyl'' spectrum. Pulse radiolysis experiments on individual nucleotides (TMP, dAMP), mixtures of these nucleotides and the dinucleoside phosphate, TdA, in aqueous solution at room temperature show that in the TdA anion electron transfer occurs from adenine to thymine, whereas no electron transfer is found for mixtures of individual nucleotides. Protonation is found to occur only on thymine in the TdA anion in agreement with the ESR results

  4. The Al(I) molecule, Ph2COAl and its anion

    Science.gov (United States)

    Zhang, Xinxing; Eichhorn, Bryan; Schnöckel, Hansgeorg; Bowen, Kit

    2016-08-01

    We have formed the Al(I)-containing molecule, benzophenone-aluminum, i.e., Ph2COAl, and studied it by conducting density functional theory calculations on both its neutral and anionic forms and by measuring the photoelectron spectrum of its anion. Our calculations identified two nearly iso-energetic anion isomers, (Ph2COAl)-, the vertical detachment energies (VDE) of which are in excellent agreement with our photoelectron spectrum. Natural population analysis (NPA) of Ph2COAl found the Al moiety to be positively charged by +0.81 e, indicating a strongly ionic bond between Al and Ph2CO, i.e., Ph2CO-Al+.

  5. Electrochemical behavior of LiFePO4 cathode materials in the presence of anion adsorbents

    International Nuclear Information System (INIS)

    The poor rate capability is a major problem of olivine-structured lithium iron phosphate (LFP) cathode material in lithium-ion batteries due to its low electric conductivity and sluggish lithium diffusion. Other than the custom strategies to solve this problem like carbon coating and nano-size treatment, we simply mixed LFP with some anion adsorbents, which can store anions from the electrolytes swiftly. The effect of anion adsorbents on the performance of LFP composite electrode has been investigated by cyclic voltammetric tests and the corresponding apparent lithium diffusion coefficients have been measured

  6. Ursodeoxycholic acid and superoxide anion

    Institute of Scientific and Technical Information of China (English)

    Predrag Ljubuncic; Omar Abu-Salach; Arieh Bomzon

    2005-01-01

    AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free system and its effect on the rate of O2--induced ascorbic acid (AA) oxidation in hepatic post-mitochondrial supernatants.RESULTS: UDCA at a concentration as high as 1 mmol/Ldid not impair the ability of the X-XO system to generate O2-, but could scavenge O2- at concentrations of 0.5 and 1 mmol/L, and decrease the rate of AA oxidation at a concentration of 100 μmol/L.CONCLUSION: UDCA can scavenge O2-, an action that may be beneficial to patients with primary biliary cirrhosis.

  7. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  8. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  9. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M alk...

  10. Nanostructure-controlled anion exchange membranes for fuel cell applications by high-energy heavy-ion irradiation. Preparation and characterization of anion exchange membranes

    International Nuclear Information System (INIS)

    Heavy ions at kinetic energies typically from several hundreds of MeV to a few GeV passing through a polymer substrate induce a continuous trail of excitations and ionizations called latent tracks. We used a direct ion-track grafting method for preparation of anion exchange membranes for fuel cells. The functional anion exchange groups were introduced inside the latent tracks, thereby achieving OH--conductive channels through the thickness. These straight channels increased conductivities, while the isolated cylindrical structure of tracks restricted the water uptake. (author)

  11. Counterintuitive interaction of anions with benzene derivatives

    Science.gov (United States)

    Quiñonero, David; Garau, Carolina; Frontera, Antonio; Ballester, Pau; Costa, Antonio; Deyà, Pere M.

    2002-06-01

    Ab initio calculations were carried out on complexes between 1,3,5-trinitrobenzene (TNB) and anions, where the anion is positioned over the ring along the C3 axis. This study combines crystallographic and computational evidences to demonstrate an attractive interaction between the anion and the π-cloud of TNB. This interaction is rationalized based on the important role of the quadrupole moment of TNB and the anion-induced polarization. In addition, this study has been extended to 1,3,5-trifluorobenzene (TFB), which possesses a very small quadrupole moment. As a result, minimum energy complexes have been found between TFB and both anions and cations due to the stabilization obtained from the ion-induced polarization.

  12. Anion release and uptake kinetics: structural changes of layered 2-dimensional ZnNiHN upon uptake of acetate and chlorinated acetate anions.

    Science.gov (United States)

    Machingauta, Cleopas; Hossenlopp, Jeanne M

    2013-12-01

    X-ray diffraction and UV-vis spectroscopy were used for the investigation of ion exchange reaction kinetics of nitrates with acetate (Ac), chloro acetate (ClAc), dichloro acetate (dClAc) and trichloro acetate (tClAc) anions, using zinc nickel hydroxy nitrate (ZnNiHN) as the exchange precursor. The exchange reactions conducted at 24, 30, 40 and 50°C revealed that rate constants were inversely related to the calculated anion electronic spatial extent (ESE), while a direct relationship between rate constants and the average oxygen charges was observed. Temporal solid phase structural transformations were shown to be affected by the nature of the guest anions. The amount of nitrates released into solution has been shown to decrease as the guest anions became more chlorinated. Use of isoconversional approach revealed that activation energies changed significantly with α during dClAc intercalation than for the other anions. The topotactic intercalation of the guest anions, except dClAc, followed the Avrami-Erofe'ev kinetic model for the entire reaction progress. PMID:24054447

  13. Polyethyleneimine as a novel desorbent for anionic organic dyes on layered double hydroxide surface.

    Science.gov (United States)

    Wang, Siming; Li, Zenghe; Lu, Chao

    2015-11-15

    Polyethyleneimine (PEI) is a positively charged polymer with hydrogen-bonding sites and hydrophobic chains. Therefore, it has been clearly established as an efficient adsorbent by means of these native properties in the literatures. However, there is apparently no good reason to disregard the use of PEI as a desired desorbent. Herein, using methyl orange as a model anionic dye, we investigated the desorption performances of PEI toward anionic dyes adsorbed on the surface of CO3-layered double hydroxides (LDHs) in a wide range of pH values. The experiment results showed that the positively charged PEI had very strong desorption capacity for anionic dyes at low pH values (9.5), PEI existed as neutral molecule, it could desorb methyl orange via hydrogen bonding between the amino groups of it and sulfonate group of methyl orange; simultaneously, the anion-exchange process occurred between abundant hydroxyl anions and anionic methyl orange. The adsorption capacity of the used LDH adsorbent was about 80% after five cycles of adsorption-desorption-regeneration, which was much higher than that conducted by 0.1M NaOH solution. These findings suggested that PEI could be regarded as a promising desorbent for enriching anionic dyes in wastewater and regenerating LDHs through surface adsorption-desorption cycles. PMID:26255712

  14. Nanocomposite membranes based on quaternized polysulfone and functionalized montmorillonite for anion-exchange membranes

    Science.gov (United States)

    Liao, Xiaofeng; Ren, Li; Chen, Dongzhi; Liu, Xiaohong; Zhang, Hongwei

    2015-07-01

    In this paper, functionalized montmorillonite is intercalated with cetyl trimethyl ammonium chloride and (3-aminopropyl)triethoxysilane. Quaternized polysulfone/functionalized montmorillonite nanocomposite membranes are fabricated to evaluate their potential in anion-exchange membrane fuel cells. Fourier transform infrared spectroscopy, thermogravimetric analyzer and X-ray diffractometer are used to confirm the success of intercalation. The performances of the composite membranes for the anion-exchange membrane fuel cells in terms of their water uptake, mechanical property and ionic conductivity are investigated. Compared with other anion-exchange membranes, the nanocomposite membrane containing 5% montmorillonite modified by cetyl trimethyl ammonium chloride exhibits lower water uptake, higher ultimate stress and larger ionic conductivity. It exhibits an ionic conductivity of 4.73 × 10-2 S cm-1 at 95 °C.

  15. Renal elimination of organic anions in cholestasis

    Institute of Scientific and Technical Information of China (English)

    Adriana Mónica Tortes

    2008-01-01

    The disposition of most drugs is highly dependent on specialized transporters.OAT1 and OAT3 are two organic anion transporters expressed in the basolateral membrane of renal proximal tubule cells,identified as contributors to xenobiotic and endogenous organic anion secretion.It is well known that cholestasis may cause renal damage.Impairment of kidney function produces modifications in the renal elimination of drugs.Recent studies have demonstrated that the renal abundance of OAT1 and OAT3 plays an important role in the renal elimination of organic anions in the presence of extrahepatic cholestasis.Time elapsed after obstructive cholestasis has an important impact on the regulation of both types of organic anion transporters.The renal expression of OAT1 and OAT3 should be taken into account in order to improve pharmacotherapeutic efficacy and to prevent drug toxicity during the onset of this hepatic disease.

  16. Towards predictable transmembrane transport: QSAR analysis of anion binding and anion transport

    OpenAIRE

    Gale, Philip A.; Busschaert, Nathalie; Bradberry, Samuel J.; Wenzel, Marco; Haynes, Cally; Hiscock, Jennifer R.; Kirby, Isabelle; Karagiannidis, Louise E.; Moore, Stephen J.; Wells, Neil; Herniman, Julie; Langley, John; Horton, Peter; Mark E. Light; Marques, Igor

    2013-01-01

    The transport of anions across biological membranes by small molecules is a growing research field due to the potential therapeutic benefits of these compounds. However, little is known about the exact mechanism by which these drug-like molecules work and which molecular features make a good transporter. An extended series of 1-hexyl-3-phenylthioureas were synthesized, fully characterized (NMR, mass spectrometry, IR and single crystal diffraction) and their anion binding and anion transport p...

  17. Swelling-Activated Anion Channels Are Essential for Volume Regulation of Mouse Thymocytes

    Directory of Open Access Journals (Sweden)

    Ravshan Z. Sabirov

    2011-12-01

    Full Text Available Channel-mediated trans-membrane chloride movement is a key process in the active cell volume regulation under osmotic stress in most cells. However, thymocytes were hypothesized to regulate their volume by activating a coupled K-Cl cotransport mechanism. Under the patch-clamp, we found that osmotic swelling activates two types of macroscopic anion conductance with different voltage-dependence and pharmacology. At the single-channel level, we identified two types of events: one corresponded to the maxi-anion channel, and the other one had characteristics of the volume-sensitive outwardly rectifying (VSOR chloride channel of intermediate conductance. A VSOR inhibitor, phloretin, significantly suppressed both macroscopic VSOR-type conductance and single-channel activity of intermediate amplitude. The maxi-anion channel activity was largely suppressed by Gd3+ ions but not by phloretin. Surprisingly, [(dihydroindenyloxy] alkanoic acid (DIOA, a known antagonist of K-Cl cotransporter, was found to significantly suppress the activity of the VSOR-type single-channel events with no effect on the maxi-anion channels at 10 μM. The regulatory volume decrease (RVD phase of cellular response to hypotonicity was mildly suppressed by Gd3+ ions and was completely abolished by phloretin suggesting a major impact of the VSOR chloride channel and modulatory role of the maxi-anion channel. The inhibitory effect of DIOA was also strong, and, most likely, it occurred via blocking the VSOR Cl− channels.

  18. Efficiency of adsorption concentration of single-charged inorganic anions

    International Nuclear Information System (INIS)

    Results of adsorption concentration of inorganic anions Br-, I-, SCN- from diluted aqueous solutions using of N-alkylpyridinium chlorides (alkyl C13-C16) are presented. It is ascertained that interaction between extracted anion and surfactant cation, determining the efficiency of foam flotation of the anions investigated, increases with the decrease in anion hydration in the series Br-, I-, SCN-

  19. Novel pseudo-delocalized anions for lithium battery electrolytes.

    Science.gov (United States)

    Jónsson, Erlendur; Armand, Michel; Johansson, Patrik

    2012-05-01

    A novel anion concept of pseudo-delocalized anions, anions with distinct positive and negative charge regions, has been studied by a computer aided synthesis using DFT calculations. With the aim to find safer and better performing lithium salts for lithium battery electrolytes two factors have been evaluated: the cation-anion interaction strength via the dissociation reaction LiAn ⇌ Li(+) + An(-) and the anion oxidative stability via a vertical ionisation from anion to radical. Based on our computational results some of these anions have shown promise to perform well as lithium salts for modern lithium batteries and should be interesting synthetic targets for future research. PMID:22441354

  20. Structure of cyano-anion ionic liquids: X-ray scattering and simulations

    Science.gov (United States)

    Dhungana, Kamal B.; Faria, Luiz F. O.; Wu, Boning; Liang, Min; Ribeiro, Mauro C. C.; Margulis, Claudio J.; Castner, Edward W.

    2016-07-01

    Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790-14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN-, SCN-, N(CN) 2 -, C(CN) 3 -, and B(CN) 4 -. By combining molecular dynamics simulations, high-energy X-ray scattering measurements, and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN) 4 - anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im2,1 +/B(CN) 4 - is cationic.

  1. Recognition of anions by protonated methylazacalixpyridines

    Institute of Scientific and Technical Information of China (English)

    Han-yuan GONG; De-xian WANG; Zhi-tang HUANG; Mei-xiang WANG

    2009-01-01

    Methylazacalixpyridines are a unique kind of macro-cyclic molecules that are able to self-regulate their conformations to best fit the guests. They had shown good recognition to both neutral molecules such as diols and fullerenes and cations. After protonation, the conformation of methylazacalixpyridines became more flexible and could serve as receptors for anions.In the solution, the protonated methylazacalix[2]pyri-dine[2]arene formed complexes with halides yield-ing biding constants of 79(mol/L)-1 for chloride,10 (mol/L)-1 for bromide, and 79 (mol/L)-1 for iodide,respectively. The crystal structures of the complexes between protonated methylazaealix[4]pyridine (MACP-4), methylazacalix[2]pyridine[2] arene (MACP-2-A-2), and iodide anion showed a multiple interaction mode including electrostatic attraction,hydrogen bonding, and anion-π interactions.

  2. Identification and characterization of anion binding sites in RNA

    Energy Technology Data Exchange (ETDEWEB)

    Kieft, Jeffrey S.; Chase, Elaine; Costantino, David A.; Golden, Barbara L. (Purdue); (Colorado)

    2010-05-24

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions.

  3. Electron Photodetachment from Aqueous Anions. III. Dynamics of Geminate Pairs Derived from Photoexcitation of Mono- vs. Poly- atomic Anions

    CERN Document Server

    Lian, R; Crowell, R A; Shkrob, I A; Chen, X; Bradforth, S E; Lian, Rui; Oulianov, Dmitri A.; Crowell, Robert A.; Shkrob, Ilya A.; Bradforth, Stephen E.

    2005-01-01

    Photostimulated electron detachment from aqueous inorganic anions is the simplest example of solvent-mediated electron transfer. Here we contrast the behavior of halide anions with that of small polyatomic anions, such as pseudohalide anions (e.g., HS-) and common polyvalent anions (e.g., SO32-). Geminate recombination dynamics of hydrated electrons generated by 200 nm photoexcitation of aqueous anions (I-, Br-, OH-, HS-, CNS-, CO32-, SO32-, and Fe(CN)64-) have been studied. Prompt quantum yields for the formation of solvated, thermalized electrons and quantum yields for free electrons were determined. Pump-probe kinetics for 200 nm photoexcitation were compared with kinetics obtained at lower photoexcitation energy (225 nm or 242 nm) for the same anions, where possible. Free diffusion and mean force potential models of geminate recombination dynamics were used to analyze these kinetics. These analyses suggest that for polyatomic anions (including all polyvalent anions studied) the initial electron distributi...

  4. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  5. Photoelectron spectroscopy and theoretical studies of anion-π interactions: binding strength and anion specificity.

    Science.gov (United States)

    Zhang, Jian; Zhou, Bin; Sun, Zhen-Rong; Wang, Xue-Bin

    2015-02-01

    Proposed in theory and then their existence confirmed, anion-π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, anion-π interaction strengths that are free from complications of condensed-phase environments have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic, was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl(-), Br(-), I(-), linear thiocyanate SCN(-), trigonal planar nitrate NO3(-), pyramidic iodate IO3(-), and tetrahedral sulfate SO4(2-)). The binding energies of the resultant gaseous 1 : 1 complexes (1·Cl(-), 1·Br(-), 1·I(-), 1·SCN(-), 1·NO3(-), 1·IO3(-) and 1·SO4(2-)) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion-specific effects. The binding strengths of Cl(-), NO3(-), IO3(-) with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal mol(-1), but only about 40% of that between 1 and SO4(2-). Quantum chemical calculations reveal that all the anions reside in the center of the cavity of 1 with an anion-π binding motif in the complexes' optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and charge distribution analyses further support anion-π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work illustrates that size-selective photoelectron

  6. The conduction bands of MgO, MgS and HfO2

    NARCIS (Netherlands)

    Boer, P.K. de; Groot, R.A. de

    1998-01-01

    Electronic structure calculations for MgO, MgS and HfO2 are reported. It is shown that the conduction bands of MgO and MgS have predominantly anion character, contrary to the common picture of the conduction band being derived from cation states. In transition metal oxides, unoccupied anion states a

  7. Optimized anion exchange membranes for vanadium redox flow batteries.

    Science.gov (United States)

    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan

    2013-08-14

    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance. PMID:23799776

  8. Donnan Membrane Technique (DMT) for Anion Measurement

    NARCIS (Netherlands)

    Alonso Vega, M.F.; Weng, L.P.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2010-01-01

    Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl-, 1-2 days for NO3-, 1-4 days for SO42-

  9. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    intrinsic factors and solvent effects is the enhanced reactivity of α-nucleophiles – nucleophiles with a lone-pair adjacent to the attacking site – referred to as the α-effect. This thesis concerns the reactivity of microsolvated anions and in particular how the presence of a single solvent molecule affects...

  10. Charge and anion ordering phase transitions in (TMTTF){sub 2}X salt conductors

    Energy Technology Data Exchange (ETDEWEB)

    Nad, F. [Centre de Recherches sur les Tres Basses Temperatures, laboratoire associe a l' Universite Joseph Fourier, CNRS, BP 166, Grenoble (France); Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); Monceau, P. [Centre de Recherches sur les Tres Basses Temperatures, laboratoire associe a l' Universite Joseph Fourier, CNRS, BP 166, Grenoble (France); Carcel, C.; Fabre, J.M. [Heterochimie et Materiaux Organiques, ENSCM/ESA, Montpellier (France)

    2001-07-23

    We report measurements of the low frequency conductivity and dielectric permittivity of quasi-one-dimensional organic (TMTTF){sub 2}X salts with non-centrosymmetrical anions X=ReO{sub 4} and SCN. We show that the 'structureless transition' at 227.5 K in (TMTTF){sub 2}ReO{sub 4} is due to charge ordering and has a ferroelectric character. The anion ordering transition strongly affects the dielectric response: it suppresses the polarizability in (TMTTF){sub 2}ReO{sub 4} and induces probably an antiferroelectric state in (TMTTF){sub 2}SCN. (author). Letter-to-the-editor.

  11. UNCERTAINTIES OF ANION AND TOC MEASUREMENTS AT THE DWPF LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.

    2011-04-07

    The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) has identified a technical issue related to the amount of antifoam added to the Chemical Process Cell (CPC). Specifically, due to the long duration of the concentration and reflux cycles for the Sludge Receipt and Adjustment Tank (SRAT), additional antifoam has been required. The additional antifoam has been found to impact the melter flammability analysis as an additional source of carbon and hydrogen. To better understand and control the carbon and hydrogen contributors to the melter flammability analysis, SRR's Waste Solidification Engineering (WSE) has requested, via a Technical Task Request (TTR), that the Savannah River National Laboratory (SRNL) conduct an error evaluation of the measurements of key Slurry Mix Evaporator (SME) anions. SRNL issued a Task Technical and Quality Assurance Plan (TTQAP) [2] in response to that request, and the work reported here was conducted under the auspices of that TTQAP. The TTR instructs SRNL to conduct an error evaluation of anion measurements generated by the DWPF Laboratory using Ion Chromatography (IC) performed on SME samples. The anions of interest include nitrate, oxalate, and formate. Recent measurements of SME samples for these anions as well as measurements of total organic carbon (TOC) were provided to SRNL by DWPF Laboratory Operations (Lab OPS) personnel for this evaluation. This work was closely coordinated with the efforts of others within SRNL that are investigating the Chemical Process Cell (CPC) contributions to the melter flammability. The objective of that investigation was to develop a more comprehensive melter flammability control strategy that when implemented in DWPF will rely on process measurements. Accounting for the uncertainty of the measurements is necessary for successful implementation. The error evaluations conducted as part of this task will facilitate the integration of appropriate uncertainties for the

  12. Anion retention in soil: Possible application to reduce migration of buried technetium and iodine

    International Nuclear Information System (INIS)

    This report summarizes a literature review of our present knowledge of the anion exchange properties of a number of soils and minerals, which may potentially be used as anion exchangers to retard migration of such anions as iodide (I-), iodate (IO3-) and pertechnetate (TcO4-) away from disposal site. The amorphous clays allophane and imogolite, are found to be among the most important soil components capable of developing appreciable amounts of positive charge for anion exchange even at about neutral pH. Decreases in the SiO2/Al2O3 ratio and soil pH result in an increase in soil AEC. Allophane and imogolite rich soils have an AEC ranging from 1 to 18 meq/100g at pH about 6. Highly weathered soils dominated by Fe and Al oxides and kaolinite may develop a significant amount of AEC as soil pH falls. The retention of iodine (I) and technetium (Tc), by soils is associated with both soil organic matter, and Fe and Al oxides, whereas sorption on layer silicate minerals in negligible. Fe and Al oxides become more important in the retention of anionic I-, IO3-, and TcO4- as pH falls, since more positive charge is developed on the oxide surfaces. Although few studies, if any, have been conducted on I and Tc sorption by soil allophane and imogolite, it is estimated that a surface plough soil (2 million pounds soil per acre) with 5 meq/100g AEC, as is commonly found in andisols, shall retain approximately 5900 kg I and 4500 kg Tc. It is conceivable that an anion exchanger such as an andisol could be used to modify the near field environment of a radioactive waste disposal facility. This whole disposal system would then offer similar migration resistance to anions as is normally afforded to cations by usual and normal soils. 93 refs., 10 figs., 7 tabs

  13. Comparison And Assessment for Major Anions

    Directory of Open Access Journals (Sweden)

    Mayada Mohammed

    2013-05-01

    Full Text Available Four major anions (nitrate, phosphate, sulfate and chloride  are measured in Tigris river at Mosul in six locations since Sept.2005 to June 2006.  The same 4 anions are measured previously by researches or thesis, so their results are added to the former one for comparison. The variation of flow is also reported for the whole period in order to study the concentration-flow relationship. The nitrate and phosphate concentrations are increasing with the river flow increase and decreasing with its decrease for most periods, (reaching up to1.05mg/l at June for nitrate and 0.482mg/l at April for phosphate .The lowest concentrations are observed (as low as 0.285 mg/l at Dec. for nitrate and 0.07mg/l at Jan for phosphate. Sulfate and chloride concentration are varying oppositely to the river flow for most periods, both showing their peaks at Jan. and their lowest at June (reaching up to 170 mg/l for sulfate, and 33.4 mg/l for chloride while the minimum values are 68mg/l for sulfate, and 15.6 mg/l for chloride. The data of the previous years are not complete and data for only 8 years are available. It indicates that the anions concentrations variation corresponding to the river flow is similar to that of  the studied years. However the data with equal flow rate only are used for comparison purposes to achieve correct results. All of the studied anions are increasing since 1982-2006 in different percentages except the phosphate. The 4 major anions are lower than the standards and MCL for the recent and previous studies.

  14. Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions?

    Science.gov (United States)

    Kerner, M; Plylahan, N; Scheers, J; Johansson, P

    2015-07-15

    Several IL based electrolytes with an imidazolium cation (EMI) have been investigated trying to elucidate a possible beneficial effect of mixing FSI and TFSI anions in terms of physico-chemical properties and especially Li(+) solvation. All electrolytes were evaluated in terms of phase transitions, densities and viscosities, thermal stabilities, ionic conductivities and local structure, i.e. charge carriers. The electrolytes with up to 20% of Li-salts showed to be promising for high temperature lithium ion battery application (ca. 100 °C) and a synergetic effect of having mixed anions is discernible with the LiTFSI0.2EMIFSI0.8 electrolyte giving the best overall performance. The determination of the charge carriers revealed the SN to be ca. 2 for all analysed electrolytes, and proved the analysis of the mixed anion electrolytes to be challenging and inherently leads to an ambiguous picture of the Li(+) solvation. PMID:26147418

  15. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Directory of Open Access Journals (Sweden)

    Wataru Aoyagi

    2016-06-01

    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  16. Electronic structure calculations of acetonitrile cluster anions: Stabilization mechanism of molecular radical anions by solvation

    International Nuclear Information System (INIS)

    Systematic electronic structure calculations have been performed for (CH3CN)n-(n=2-10) anion clusters with the hybrid B3LYP and non-hybrid PW91 density-functional methods in order to understand the stabilization mechanism of an acetonitrile dimer radical anion core by solvent molecules. Since the excess negative charge is mainly localized on N atoms in the dimer anion core, solvent acetonitrile molecules are bound to the N atoms by C-H...Nδ- hydrogen-bond-like attractive interaction with the binding energy per bond being about 10-13kcal/mol. Due to this stabilization mechanism, the anion cluster for n>=4-6 is stable with respect to the electron autodetachment. Geometry optimization was also carried out for the (CH3CN)6- anion cluster where an excess electron was internally trapped. The size dependence of the stabilization energy and vertical detachment energy for the (CH3CN)n- anion clusters is discussed

  17. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  18. Functional role of anion channels in cardiac diseases

    Institute of Scientific and Technical Information of China (English)

    Da-yue DUAN; Luis LH LIU; Nathan BOZEAT; Z Maggie HUANG; Sunny Y XIANG; Guan-lei WANG; Linda YE; Joseph R HUME

    2005-01-01

    In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore,anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels,like cation channels, might function as a multiprotein complex or functional module.In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.

  19. Anions Analysis in Ground and Tap Waters by Sequential Chemical and CO2-Suppressed Ion Chromatography

    Directory of Open Access Journals (Sweden)

    Glen Andrew D. De Vera

    2011-06-01

    Full Text Available An ion chromatographic method using conductivity detection with sequential chemical and CO2 suppression was optimized for the simultaneous determination of fluoride, chloride, bromide, nitrate,phosphate and sulfate in ground and tap water. The separation was done using an anion exchange column with an eluent of 3.2 mM Na2CO3 and 3.2 mM NaHCO3 mixture. The method was linear in the concentration range of 5 to 300 μg/L with correlation coefficients greater than 0.99 for the six inorganic anions. The method was also shown to be applicable in trace anions analysis as given by the low method detection limits (MDL. The MDL was 1μg/L for both fluoride and chloride. Bromide, nitrate, phosphate and sulfate had MDLs of 7 μg/L, 10 μg/L, 9 μg/L and 2 μg/L, respectively. Good precision was obtained as shown in the relative standard deviation of 0.1 to 12% for peak area and 0.1 to 0.3% for retention time. The sensitivity of the method improved with the addition of CO2 suppressor to chemical suppression as shown in the lower background conductivity and detection limits. The recoveries of the anions spiked in water at 300 μg/L level ranged from 100 to 104%. The method was demonstrated to be sensitive, accurate and precise for trace analysis of the six anions and was applied in the anions analysis in ground and tap waters in Malolos, Bulacan. The water samples were found to contain high concentrations of chloride of up to 476 mg/L followed by sulfate (38 mg/L, bromide (1 mg/L, phosphate (0.4 mg/L, fluoride (0.2 mg/L and nitrate (0.1 mg/L.

  20. Reversible photochromism of an N-salicylidene aniline anion.

    Science.gov (United States)

    Jacquemin, Pierre-Loïc; Robeyns, Koen; Devillers, Michel; Garcia, Yann

    2014-01-21

    The first N-salicylidene aniline anion showing reversible solid state thermochromic and photochromic properties is described. The photo-isomerization involves a trans-keto form which is stabilized thanks to the local anion surrounding. This photochromic anion can be used as a guest for the preparation of hybrid materials by insertion into a cationic host matrix. PMID:24022381

  1. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R.

    1999-12-16

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying {sup 2}{Sigma} and {sup 2}{Pi} states of C{sub 2n}H (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C{sub 2}H and C{sub 4}H. Other radicals studied include NCN and I{sub 3}. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I{sub 3} revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  2. The chemistry of gold as an anion.

    Science.gov (United States)

    Jansen, Martin

    2008-09-01

    Due to relativistic and classical shell structure effects, the 6s orbital of gold is significantly contracted and energetically stabilized. This is reflected by a strikingly high electron affinity, and a distinct tendency to adopt negatively polarized valence states. This tutorial review focuses on the chemistry of gold as an anion, displaying the integral ionic charge number of 1-. Two synthetic approaches to compounds containing monoatomic gold anions have become available: (1) reacting elemental gold with molten caesium and an oxide, e.g. Cs2O; (2) metathesis reactions involving Au- dissolved in liquid ammonia. Both procedures have proven to be rather versatile. Aurides synthesized along these routes are surveyed, in particular with respect to their structures and bonding properties. PMID:18762832

  3. Specific anion effects in Artemia salina.

    Science.gov (United States)

    Lo Nostro, Pierandrea; Ninham, Barry W; Carretti, Emiliano; Dei, Luigi; Baglioni, Piero

    2015-09-01

    The specific anion effect on the vitality of Artemia salina was investigated by measuring the Lethal Time LT50 of the crustaceans in the presence of different sodium salts solutions at room temperature and at the same ionic strength as natural seawater. Fluoride, thiocyanate and perchlorate are the most toxic agents, while chloride, bromide and sulfate are well tolerated. The rates of oxygen consumption of brine shrimps were recorded in mixed NaCl+NaF or NaCl+NaSCN solutions as a function of time. The results are discussed in terms of the Hofmeister series, and suggest that, besides the biochemical processes that involve F(-), SCN(-) and ClO4(-), the different physico-chemical properties of the strong kosmotropic and chaotropic anions may contribute in determining their strong toxicity for A. salina. PMID:25978674

  4. Politseiuuringud kooskõlastamisele / Liivia Anion

    Index Scriptorium Estoniae

    Anion, Liivia

    2003-01-01

    1. aprillil 2003. a. moodustatud uurimistööde kooskõlastamise komisjoni tegevuse eesmärk on saada ülevaade kõrgkoolides õppivate töötajate poolt politseis korraldatavatest uurimustest, kasutada saadud infot politsei kasuks ja vältida teenistujate tööd segavate uurimuste tegemist. Komisjoni liige Liivia Anion teeb ülevaate komisjoni otsustuspädevuse valdkondadest ja töökorraldusest

  5. Several hemicyanine dyes as fluorescence chemosensors for cyanide anions

    Science.gov (United States)

    Liang, Muhan; Wang, Kangnan; Guan, Ruifang; Liu, Zhiqiang; Cao, Duxia; Wu, Qianqian; Shan, Yanyan; Xu, Yongxiao

    2016-05-01

    Four hemicyanine dyes as chemosensors for cyanide anions were synthesized easily. Their photophysical properties and recognition properties for cyanide anions were investigated. The results indicate that all the dyes can recognize cyanide anions with obvious color, absorption and fluorescence change. The recognition mechanism analysis basing on in situ 1H NMR and Job plot data indicates that to the compounds with hydroxyl group, the recognition mechanism is intramolecular hydrogen bonding interaction. However, to the compounds without hydroxyl group, cyanide anion is bonded to carbon-carbon double bond in conjugated bridge and induces N+ CH3 to neutral NCH3. Fluorescence of the compounds is almost quenched upon the addition of cyanide anions.

  6. The benzene radical anion: A computationally demanding prototype for aromatic anions

    International Nuclear Information System (INIS)

    The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examine the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C2 symmetry is located below one D2h stationary point on a C2h pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (Aiso) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ

  7. Supramolecular chemistry of selective anion recognition for anions of environmental relevance. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bowman-James, K.; Wilson, G.S.; Kuczera, K. [Univ. of Kansas, Lawrence, KS (US); Moyer, B. [Oak Ridge National Lab., TN (US)

    1998-06-01

    'This project has as its focus the design and synthesis of polyammonium macrocyclic receptors for oxoanions of environmental importance. The basic research aspects of this project involve: (1) synthesis (and the search for improved synthetic methods); (2) solid state structure determination and thermodynamics studies (to ascertain structural criteria for and strength of anion binding); and (3) molecular dynamics simulations (to assess solution characteristics of the interactions between anions and their receptors). Applications-oriented goals include the fabrication of more selective anion-selective electrodes and the use of these compounds in liquid-liquid separations. The latter goal comprises the subcontract with Dr. Bruce Moyer at Oak Ridge National Laboratory. This report summarizes work after 1 year and 7 months of a 3-year project. To date, the authors have focussed on the design and synthesis of selective receptors for nitrate and phosphate.'

  8. Expanded Porphyrin-Anion Supramolecular Assemblies: Environmentally Responsive Sensors for Organic Solvents and Anions.

    Science.gov (United States)

    Zhang, Zhan; Kim, Dong Sub; Lin, Chung-Yon; Zhang, Huacheng; Lammer, Aaron D; Lynch, Vincent M; Popov, Ilya; Miljanić, Ognjen Š; Anslyn, Eric V; Sessler, Jonathan L

    2015-06-24

    Porphyrins have been used frequently to construct supramolecular assemblies. In contrast, noncovalent ensembles derived from expanded porphyrins, larger congeners of naturally occurring tetrapyrrole macrocycles, are all but unknown. Here we report a series of expanded porphyrin-anion supramolecular assemblies. These systems display unique environmentally responsive behavior. Addition of polar organic solvents or common anions to the ensembles leads to either a visible color change, a change in the fluorescence emission features, or differences in solubility. The actual response, which could be followed easily by the naked eye, was found to depend on the specifics of the assembly, as well as the choice of analyte. Using the ensembles of this study, it proved possible to differentiate between common solvents, such as diethyl ether, THF, ethyl acetate, acetone, alcohol, acetonitrile, DMF, and DMSO, identify complex solvent systems, as well as distinguish between the fluoride, chloride, bromide, nitrate, and sulfate anions. PMID:25965790

  9. Anionic complexes of Cu(I) with the closo-decaborate anion

    International Nuclear Information System (INIS)

    General procedures for synthesis of anionic Cu(I) complexes with the closo-decaborate anion were worked out; they make it possible to prepare coordination compounds with a wide set of organic cations. The interaction of onium closo-decaborates with [Cu2B10H10] in acetonitrile acidified with anhydrous trifluoroacetic acid was found to be the most effective synthetic method that secures high yield and quality of the obtained products. The structure of {(C2H5)3NH[CuB10H10]} was determined by X-ray diffraction analysis

  10. Infrared Spectroscopy of Discrete Uranyl Anion Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Gary S. Groenewold; Anita K. Gianotto; Michael E. McIlwain; Michael J. Van Stipdonk; Michael Kullman; Travis J. Cooper; David T. Moore; Nick Polfer; Jos Oomens; Ivan Infante; Lucas Visscher; Bertrand Siboulet; Wibe A. de Jong

    2007-12-01

    The Free-Electron Laser for Infrared Experiments, FELIX, was used to study the wavelength-resolved multiphoton dissociation of discrete, gas phase uranyl (UO22+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The apparent uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was either hydroxide, methoxide or acetate, S was water, ammonia, acetone or acetonitrile, and n = 0-2. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands, and are comparable to solution phase values. This result was surprising because initial DFT calculations using B3LYP predicted values that were 30 – 40 cm-1 higher, consistent with intuition but not with the data. Modification of the basis set and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which resulted only very modest changes to the uranyl frequency, and did not universally shift values lower. DFT calculations for [UO2AS]+ were in accord with trends in the data, and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity.

  11. Infared Spectroscopy of Discrete Uranyl Anion Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Kullman, Michael; Moore, David T.; Polfer, Nick; Oomens, Jos; Infante, Ivan A.; Visscher, Lucas; Siboulet, Bertrand; De Jong, Wibe A.

    2008-01-24

    The Free-Electron Laser for Infrared Experiments (FELIX) w 1 as used to study the wavelength-resolved multiple photon photodissociation of discrete, gas phase uranyl (UO2 2 2+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was either hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands, and are comparable to solution phase values. This result was surprising because initial DFT calculations predicted values that were 30–40 cm-1 higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data, and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity.

  12. Infrared Spectroscopy of Discrete Uranyl Anion Complexes

    International Nuclear Information System (INIS)

    The Free-Electron Laser for Infrared Experiments (FELIX) w 1 as used to study the wavelength-resolved multiple photon photodissociation of discrete, gas phase uranyl (UO2 2 2+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was either hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands, and are comparable to solution phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm-1 higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data, and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity

  13. Void exclusion of antibodies by grafted-ligand porous particle anion exchangers.

    Science.gov (United States)

    Nian, Rui; Chuah, Cindy; Lee, Jeremy; Gan, Hui Theng; Latiff, Sarah Maria Abdul; Lee, Wan Yee; Vagenende, Vincent; Yang, Yuan-Sheng; Gagnon, Pete

    2013-03-22

    We describe a new variant of anion exchange chromatography in columns packed with porous particles that embody charged low-density polymer zones supported by a higher density polymer skeleton. IgG defies the norms of anion exchange and is excluded to the void volume at pH 3-10 and 0-4M NaCl. Void exclusion also occurs with Fab, F(ab')2, and IgM. Host cell protein contaminants mostly follow the usual norms of anion exchange and bind more strongly with increasing pH and decreasing conductivity. Sample buffer composition has no impact on partitioning so long as applied sample volume does not exceed the interparticle void volume of the column. Void-excluded antibody elutes in equilibration buffer. This seemingly conflicted collection of behaviors is reconciled by a variable size exclusion function mediated through the low-density polymer zones, the charge properties of the antibody species, and the pH and conductivity of the equilibration buffer. Current-generation porous particle anion exchangers that employ grafting techniques to achieve high charge density mediate void exclusion to varying degrees, with the best-suited achieving complete exclusion, and others as little as 65%. Perfusive and non-grafted particle-based exchangers mediate as little as 50% exclusion. Monoliths mediate no exclusion, due to their lack of an interparticle void volume. On qualified exchangers, the technique supports greater than 99% reduction of host proteins, DNA, and endotoxin. Virus is reduced more than 99.9%, and aggregates are reduced to less than 0.05%. The method supports better process control than other anion exchange formats because pH excursions in conjunction with changes in salt concentration do not occur until after the antibody has eluted from the column. PMID:23422893

  14. Conduct disorders

    NARCIS (Netherlands)

    Buitelaar, J.K.; Smeets, K.C.; Herpers, P.; Scheepers, F.; Glennon, J.; Rommelse, N.N.J.

    2013-01-01

    Conduct disorder (CD) is a frequently occurring psychiatric disorder characterized by a persistent pattern of aggressive and non-aggressive rule breaking antisocial behaviours that lead to considerable burden for the patients themselves, their family and society. This review paper updates diagnostic

  15. Preorganized anion traps for exploiting anion-π interactions: an experimental and computational study.

    Science.gov (United States)

    Bretschneider, Anne; Andrada, Diego M; Dechert, Sebastian; Meyer, Steffen; Mata, Ricardo A; Meyer, Franc

    2013-12-01

    1,3-Bis(pentafluorophenyl-imino)isoindoline (A(F)) and 3,6-di-tert-butyl-1,8-bis(pentafluorophenyl)-9H-carbazole (B(F)) have been designed as preorganized anion receptors that exploit anion-π interactions, and their ability to bind chloride and bromide in various solvents has been evaluated. Both receptors A(F) and B(F) are neutral but provide a central NH hydrogen bond that directs the halide anion into a preorganized clamp of the two electron-deficient appended arenes. Crystal structures of host-guest complexes of A(F) with DMSO, Cl(-), or Br(-) (A(F):DMSO, A(F):Cl(-), and A(2)(F):Br(-)) reveal that in all cases the guest is located in the cleft between the perfluorinated flaps, but NMR spectroscopy shows a more complex situation in solution because of E,Z/Z,Z isomerism of the host. In the case of the more rigid receptor B(F), Job plots evidence 1:1 complex formation with Cl(-) and Br(-), and association constants up to 960 M(-1) have been determined depending on the solvent. Crystal structures of B(F) and B(F):DMSO visualize the distinct preorganization of the host for anion-π interactions. The reference compounds 1,3-bis(2-pyrimidylimino)isoindoline (A(N)) and 3,6-di-tert-butyl-1,8-diphenyl-9H-carbazole (B(H)), which lack the perfluorinated flaps, do not show any indication of anion binding under the same conditions. A detailed computational analysis of the receptors A(F) and B(F) and their host-guest complexes with Cl(-) or Br(-) was carried out to quantify the interactions in play. Local correlation methods were applied, allowing for a decomposition of the ring-anion interactions. The latter were found to contribute significantly to the stabilization of these complexes (about half of the total energy). Compounds A(F) and B(F) represent rare examples of neutral receptors that are well preorganized for exploiting anion-π interactions, and rare examples of receptors for which the individual contributions to the binding energy have been quantified. PMID

  16. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    Proposed in theory and confirmed to exist, anion–π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, intrinsic anion–π interaction strengths that are free from complications of condensed phases’ environments, have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl⁻, Br⁻, I⁻, linear thiocyanate SCN⁻, trigonal planar nitrate NO₃⁻, pyramidic iodate IO₃⁻, and tetrahedral sulfate SO₄²⁻). The binding energies of the resultant gaseous 1:1 complexes (1•Cl⁻,1•Br⁻, 1•I⁻, 1•SCN⁻, 1•NO₃⁻, 1•IO₃⁻ and 1•SO₄²⁻) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion specific effects. The binding strengths of Cl⁻, NO₃⁻, IO₃⁻ with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal/mol, but only about 40% of that between 1 and SO₄²⁻. Quantum chemical calculations reveal that all anions reside in the center of the cavity of 1 with anion–π binding motif in the complexes’ optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and natural bond orbital charge distribution analysis further support anion–π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work

  17. Classification of the geographical origin of Italian donkey milk based on differences in inorganic anions

    OpenAIRE

    Di Bella, Giuseppa; Lo Turco, Vincenzo; Potortì, Angela Giorgia; Luppino, Rosario Rocco; Fotia, Vincenzo; Conte, Francesca; Dugo, Giacomo

    2012-01-01

    Abstract In this work the content of chlorides, nitrites, nitrates, phosphates and sulphates were used to classify 45 donkey milk samples collected from different Italian regions. An ion exchange chromatography with conductivity detector and chemical suppression method was used. The quantitative results indicate phosphates (569.39-1304.40 mg kg-1) and chlorides (545.93-1757.89 mg kg-1) that as the most abundant anions, followed by and sulphates (109.52-200.69 mg kg-1). The concentr...

  18. Altered plasmodial surface anion channel activity and in vitro resistance to permeating antimalarial compounds

    OpenAIRE

    Lisk, Godfrey; Pain, Margaret; Sellers, Morgan; Gurnev, Philip A.; Pillai, Ajay D.; Bezrukov, Sergey M.; Desai, Sanjay A.

    2010-01-01

    Erythrocytes infected with malaria parasites have increased permeability to various solutes. These changes may be mediated by an unusual small conductance ion channel known as the plasmodial surface anion channel (PSAC). While channel activity benefits the parasite by permitting nutrient acquisition, it can also be detrimental because water-soluble antimalarials may more readily access their parasite targets via this channel. Recently, two such toxins, blasticidin S and leupeptin, were used t...

  19. Trifluoromethylmetallate anions as components of molecular charge transfer salts and superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, J. A.

    1998-10-14

    Whereas polymeric and common inorganic anions frequently deprive the synthetic chemist of a chance to modify a charge transfer salt's structure through anion alterations, discrete organometallic anions provide a vast opportunity to probe the structure/property correlations of a material through rational synthetic methods. We have recently undertaken a research effort aimed at the crystallization of conducting charge transfer salts which possess modifiable, organometallic anions as the charge compensating entities. This research has been richly rewarded with the discovery of a new family of bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF or ET) based molecular superconductors. Herein is presented a summary of over twenty {kappa}(ET){sub 2}M(CF{sub 3}){sub 4}(1,1,2-trihaloethane) (M = Cu, Ag, Au) superconducting salts. Three new related salts are also reported: (ET){sub 2} [trans-Ag(CF{sub 3}),(CN){sub 2}], {kappa}{sub L}(BEDT-TSF){sub 2}Ag(CF{sub 3}){sub 4}(TCE), and {kappa}{sub L}(ET){sub 2}Ag(CF{sub 3}){sub 3}Cl(TCE).

  20. Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, M.; Honda, K.; Kondo, T.; Rao, T.N.; Tryk, D.A.; Fujishima, A

    2002-10-15

    A quasi-reversible redox reaction involving ascorbic acid was observed in non-aqueous electrolytes at conductive diamond electrode. The chemical reversibility of these reactions is consistent with ascorbic acid being reduced to the ascorbic acid radical anion in a one-electron process, with subsequent reoxidation to ascorbic acid. This is the first report on the electrochemical production of the ascorbic acid radical anion in non-aqueous electrolytes. Ascorbyl 6-stearate and 4-hydroxy 2(5H)-furanone, which have somewhat similar structures as ascorbic acid, also showed one-electron transfer reduction reaction producing radicals with a single negative charge, suggesting that these compounds follow the same electrochemical behavior as ascorbic acid. The double bond and hydroxyl substituent on the five-membered ring are shown to be necessary for the stabilization of the radical anions. It was confirmed by the calculation of the total energy using molecular orbital methods that resonance structures involving the double-bond and hydroxyl group provide significant stabilization of the radical anions. Electrochemical preparation may be a useful method for the detailed study of radicals, their molecular structure and reactivity.

  1. Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes

    International Nuclear Information System (INIS)

    A quasi-reversible redox reaction involving ascorbic acid was observed in non-aqueous electrolytes at conductive diamond electrode. The chemical reversibility of these reactions is consistent with ascorbic acid being reduced to the ascorbic acid radical anion in a one-electron process, with subsequent reoxidation to ascorbic acid. This is the first report on the electrochemical production of the ascorbic acid radical anion in non-aqueous electrolytes. Ascorbyl 6-stearate and 4-hydroxy 2(5H)-furanone, which have somewhat similar structures as ascorbic acid, also showed one-electron transfer reduction reaction producing radicals with a single negative charge, suggesting that these compounds follow the same electrochemical behavior as ascorbic acid. The double bond and hydroxyl substituent on the five-membered ring are shown to be necessary for the stabilization of the radical anions. It was confirmed by the calculation of the total energy using molecular orbital methods that resonance structures involving the double-bond and hydroxyl group provide significant stabilization of the radical anions. Electrochemical preparation may be a useful method for the detailed study of radicals, their molecular structure and reactivity

  2. The conduction bands of MgO, MgS and HfO2

    OpenAIRE

    de Boer, P. K.; de Groot, R. A.

    1998-01-01

    Electronic structure calculations for MgO, MgS and HfO2 are reported. It is shown that the conduction bands of MgO and MgS have predominantly anion character, contrary to the common picture of the conduction band being derived from cation states. In transition metal oxides, unoccupied anion states are less important due to the presence of metal d states. The anion states are, however, still not negligible for a correct description of the conduction band, as will be shown for HfO2.

  3. Anions in laser-induced plasmas

    Science.gov (United States)

    Shabanov, S. V.; Gornushkin, I. B.

    2016-07-01

    The equation of state for plasmas containing negative atomic and molecular ions (anions) is modeled. The model is based on the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye-Hückel theory. In particular, the equation of state is obtained for plasmas containing the elements Ca, Cl, C, Si, N, and Ar. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules CaCl_2, CaCl, Cl_2, N_2, C_2, Si_2, CN, SiN, SiC, and their positive and negative ions. The model is applied to laser-induced plasmas (LIPs) by including the equation of state into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas as a reactive viscous flow with radiative losses. In particular, the formation of anions Cl-, C-, Si-, {{Cl}}2^{ - }, {{Si}}2^{ - }, {{C}}2^{ - }, CN-, SiC-, and SiN- in LIPs is investigated in detail.

  4. Porating anion-responsive copolymeric gels.

    Science.gov (United States)

    England, Dustin; Yan, Feng; Texter, John

    2013-09-24

    A polymerizable ionic liquid surfactant, 1-(11-acryloyloxyundecyl)-3-methylimidiazolium bromide (ILBr), was copolymerized with methyl methacrylate (MMA) in aqueous microemulsions at 30% (ILBr w/w) and various water to MMA ratios. The ternary phase diagram of the ILBr/MMA/water system was constructed at 25 and 60 °C. Homopolymers and copolymers of ILBr and MMA were produced by thermally initiated chain radical microemulsion polymerization at various compositions in bicontinuous and reverse microemulsion subdomains. Microemulsion polymerization reaction products varied from being gel-like to solid, and these materials were analyzed by thermal and scanning electron microscopy methods. Microemulsion polymerized materials were insoluble in all solvents tested, consistent with light cross-linking. Ion exchange between Br(-) and PF6(-) in these copolymeric materials resulted in the formation of open-cell porous structures in some of these materials, as was confirmed by scanning electron microscopy (SEM). Several compositions illustrate the capture of prepolymerization nanoscale structure by thermally initiated polymerization, expanding the domain of compositions exhibiting this feat and yet to be demonstrated in any other system. Regular cylindrical pores in interpenetrating ILBr-co-MMA and PMMA networks are produced by anion exchange in the absence of templates. A percolating cluster/bicontinuous transition is "captured" by SEM after using anion exchange to visualize the mixed cluster/pore morphology. Some design principles for achieving this capture and for obtaining stimuli responsive solvogels are articulated, and the importance of producing solvogels in capturing the nanoscale is highlighted. PMID:23968242

  5. Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin.

    Science.gov (United States)

    Mallon, Madeleine; Dutt, Som; Schrader, Thomas; Crowley, Peter B

    2016-04-15

    Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb. PMID:26818656

  6. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  7. Conduction apraxia.

    Science.gov (United States)

    Ochipa, C; Rothi, L J; Heilman, K M

    1994-10-01

    A left hemisphere damaged patient with ideomotor apraxia is described, whose performance on pantomime to verbal command was superior to pantomime imitation. His reception of these same gestures (gesture naming) was spared. This syndrome has been named conduction apraxia. To account for this selective impaired performance on gesture imitation, a separation of the representations for gesture production and reception is proposed and a non-lexical gesture processing route for gesture imitation is suggested. PMID:7931387

  8. Reversible photochromism of an N-salicylidene aniline anion

    OpenAIRE

    Jacquemin, Pierre-Loïc; Robeyns, Koen; Devillers, Michel; Garcia, Yann

    2014-01-01

    The first N-salicylidene aniline anion showing reversible solid state thermochromic and photochromic properties is described. The photo-isomerization involves a trans-keto form which is stabilized thanks to the local anion surrounding. This photochromic anion can be used as a guest for the preparation of hybrid materials by insertion into a cationic host matrix. © 2014 The Royal Society of Chemistry.

  9. Anion concurrence and anion selectivity in the sorption of radionuclides by organotones

    International Nuclear Information System (INIS)

    Some long-lived and radiologically important nuclear fission products, such as I-129 (half-life t1/2 = 1,6 . 107 a), Tc-99 (t1/2 = 2,1 . 105 a), and Se-79 (t1/2 = 6,5 . 104 a) are anionic in aqueous environments. This study focuses on the adsorption of such anions to organoclays and the understanding of the selectivity of the process. The organoclays used in this study were prepared from a bentonite (MX-80) and a vermiculite clay, and the cationic surfactants hexadcylpyridium, hexadecyltrimethylammonium, and benzethonium. Surfactant adsorption to the bentonite exceeds the cation exchange capacity of the clay, with the surplus positive charge being balanced by the co-adsorption of chloride. The interlayer distance of the bentonites is increased sufficiently to contain bi- and pseudotrimolecular structures of the surfactants. Adsorption experiments were carried out using the batch technique. Anion adsorption of iodide, perrhenate, selenite, nitrate, and sulphate is mainly due to ion exchange with chloride. As an additional adsorption mechanism, the incorporation of inorganic ion pairs into the interlayer space of the clay is proposed as a result of experiments showing differences in the adsorption levels of sodium and potassium iodide. Anion adsorption results show a clear selectivity of the organoclays, with the affinity sequence being: ReO-4 > I- > NO-3 > Cl- > SO2-4 > SeO2-3. This sequence corresponds to the sequence of increasing hydration energies of the anions, thus selectivity could be due to the process of minimization of free energy of the system. (orig.)

  10. A study of oxygen transport in mixed conducting oxides using isotopic exchange and conductivity relaxation

    OpenAIRE

    Otter, den, FAH

    2000-01-01

    Mixed conducting oxygen ion conductors can be applied as membranes for the separation of oxygen from air, as electrodes for both oxygen pumps and solid oxide fuel cells. In these applications, oxygen molecules dissociate on the surface of the material. The atomic oxygen species pick up two electrons each before they are incorporated in the oxygen anion sublattice. Oxygen transport through the bulk usually occurs by a hopping process. The transport of oxygen through a mixed conducting membrane...

  11. Ab initio studies of complexation of anions to neutral species

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Patrik [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)]. E-mail: patrikj@fy.chalmers.se; Jacobsson, Per [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2005-06-30

    The complexation of simple anions (F{sup -} and Cl{sup -}) to different neutral species, anion-coordinating agents, has been studied using electronic structure calculations. The obtained changes in the equilibrium constants for salt dissolution reactions in different typical electrolyte systems are reported. In addition the lithium ion affinities of the obtained anionic complexes have been calculated. Using the present results we discuss strategies for future usage of anion complexing agents and make recommendations of salt and agent combinations for better lithium battery electrolyte performance.

  12. Inhibition of nuclear waste solutions containing multiple aggressive anions

    International Nuclear Information System (INIS)

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions; however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion

  13. Aza-Bambusurils En Route to Anion Transporters.

    Science.gov (United States)

    Singh, Mandeep; Solel, Ephrath; Keinan, Ehud; Reany, Ofer

    2016-06-20

    Previous calculations of anion binding with various bambusuril analogs predicted that the replacement of oxygen by nitrogen atoms to produce semiaza-bambus[6]urils would award these new cavitands with multiple anion binding properties. This study validates the hypothesis by efficient synthesis, crystallography, thermogravimetric analysis and calorimetry. These unique host molecules are easily accessible from the corresponding semithio-bambusurils in a one-pot reaction, which converts a single anion receptor into a potential anion channel. Solid-state structures exhibit simultaneous accommodation of three anions, linearly positioned within the cavity along the main symmetry axis. The ability to hold anions at a short distance of about 4 Å is reminiscent of natural chloride channels in E. coli, which exhibit similar distances between their adjacent anion binding sites. The calculated transition-state energy for double-anion movement through the channel suggests that although these host-guest complexes are thermodynamically stable they enjoy high kinetic flexibility to render them efficient anion channels. PMID:27225332

  14. Identification and characterization of anion binding sites in RNA.

    Science.gov (United States)

    Kieft, Jeffrey S; Chase, Elaine; Costantino, David A; Golden, Barbara L

    2010-06-01

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions. PMID:20410239

  15. Aluminum Zintl anion moieties within sodium aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  16. Approach to the Patient With a Negative Anion Gap.

    Science.gov (United States)

    Emmett, Michael

    2016-01-01

    When anion gap calculation generates a very small or negative number, an explanation must be sought. Sporadic (nonreproducible) measurement errors and systematic (reproducible) laboratory errors must be considered. If an error is ruled out, 2 general possibilities exist. A true anion gap reduction can be generated by either reduced concentrations of unmeasured anions such as albumin or increased concentrations of unmeasured cations such as magnesium, calcium, or lithium. This teaching case describes a patient with aspirin (salicylate) poisoning whose anion gap was markedly reduced (-47 mEq/L). The discussion systematically reviews the possibilities and provides the explanation for this unusual laboratory result. PMID:26363848

  17. Observation of separate cation and anion electrophoretic mobilities in pure ionic liquids

    Science.gov (United States)

    Zhang, Zhiyang; Madsen, Louis A.

    2014-02-01

    Ionic liquids (ILs) continue to show relevance in many fields, from battery electrolytes, to carbon capture, to advanced separations. These highly ion-dense fluids present unique challenges in understanding their electrochemical properties due to deviations in behavior from existing electrolyte theories. Here we present a novel characterization of ILs using electrophoretic NMR (ENMR) to determine separate cation and anion mobilities. This method uses an applied electric field coincident with a pulsed magnetic field gradient to encode the E-field driven flow into NMR signals for cations (1H) and anions (19F). We describe the detailed design of these experiments, including quantitative analysis of artifact mitigation and necessary control experiments. We then explore mobilities and diffusion coefficients for two representative ILs: 1-ethyl-3-methyl imidazolium tetrafluoroborate ([C2mim][BF4]) and 1-ethyl-3-methyl imidazolium trifluoromethanesulfonate ([C2mim][TfO]). We further use the individual ion mobilities to calculate the bulk net conductivity, which closely agrees with bulk conductivity measurements obtained using impedance spectroscopy. These observations represent the first reliable measurements of cation and anion mobilities in pure ILs, with errors of ±7%. We discuss this advanced experimental methodology in detail, as well as implications of these sensitive measurements for understanding conduction mechanisms in ion-dense electrolytes.

  18. Effects of cation and anion solvation on ion transport in functionalized perfluoropolyethers electrolytes

    Science.gov (United States)

    Timachova, Ksenia; Chintapalli, Mahati; Olsen, Kevin; Desimone, Joseph; Balsara, Nitash

    Advances in polymer electrolytes for use in lithium batteries have been limited by the incorporation of selective lithium binding groups that provide necessary solvation for the lithium but ultimately restrict the mobility of the lithium ions relative to anions. Perfluoropolyether electrolytes (PFPE) are a new class of nonflammable liquid polymer electrolytes that have been functionalized with solvating groups for both lithium ions and fluorinated anions. PFPEs with different endgroups mixed with LiN(SO2CF3)2 salt have shown substantial differences in conductivity and allows us to investigate the effects of varying solvating environments on ion transport. To study the independent motion of cations and anions in these systems, the individual diffusion coefficients of the Li + and (SO2CF3)2 - ions were measured using pulsed-field gradient nuclear magnetic resonance (PFG-NMR). Comparing conductivity calculated using these diffusion coefficients with electrochemical measurements yields an estimation for the number of charge carrier in the system. The amount of salt dissociation, not the mobility of the salt, is the primary driver of differences in electrochemical conductivities between PFPEs with different solvating groups.

  19. Impact of the [delta]F508 Mutation in First Nucleotide-binding Domain of Human Cystic Fibrosis Transmembrane Conductance Regulator on Domain Folding and Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Hal A.; Zhao, Xun; Wang, Chi; Sauder, J. Michael; Rooney, Isabelle; Noland, Brian W.; Lorimer, Don; Kearins, Margaret C.; Conners, Kris; Condon, Brad; Maloney, Peter C.; Guggino, William B.; Hunt, John F.; Emtage, Spencer (SG); (Columbia); (JHU)

    2010-07-19

    Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.

  20. Conducted Vasoreactivity

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A Y; Sosnovtseva, Olga;

    2015-01-01

    , the underlying mechanisms are debated. Here, we focus on dynamical aspects of the problem hypothesizing the existence of a bistability-powered mechanism for regenerative pulse transmission along the endothelium. Bistability implies that the cell can have two different stable resting potentials and can......Conducted vasodilation is part of the physiological response to increasing metabolic demand of the tissue. Similar responses can be elicited by focal electrical or chemical stimulation. Some evidence suggests an endothelial pathway for nondecremental transmission of hyperpolarizing pulses. However...

  1. Influence of anionic stabilization of alumina particles in 2-propanol medium on the electrophoretic deposition and mechanical properties of deposits

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Bartoníčková, E.; Hadraba, Hynek; Cihlář, J.

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3365-3371. ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Anionic stabilization * Electric conductivity * Alumina * Electrophoretic deposition Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  2. Structural evolution of small ruthenium cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Waldt, Eugen [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Hehn, Anna-Sophia; Ahlrichs, Reinhart [Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany); Kappes, Manfred M.; Schooss, Detlef, E-mail: detlef.schooss@kit.edu [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany)

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  3. Advanced polymer chemistry of organometallic anions

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, R.M.; Abney, K.D. [Los Alamos National Lab., NM (United States); Balaich, G.J.; Fino, S.A. [Air Force Academy, CO (United States)

    1997-11-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes.

  4. Anion retention in soil: Possible application to reduce migration of buried technetium and iodine

    Energy Technology Data Exchange (ETDEWEB)

    Gu, B.; Schulz, R.K. (California Univ., Berkeley, CA (United States). Dept. of Soil Science)

    1991-10-01

    This report summarizes a literature review of our present knowledge of the anion exchange properties of a number of soils and minerals, which may potentially be used as anion exchangers to retard migration of such anions as iodide (I{sup {minus}}), iodate (IO{sub 3}{sup {minus}}) and pertechnetate (TcO{sub 4}{sup {minus}}) away from disposal site. The amorphous clays allophane and imogolite, are found to be among the most important soil components capable of developing appreciable amounts of positive charge for anion exchange even at about neutral pH. Decreases in the SiO{sub 2}/Al{sub 2}O{sub 3} ratio and soil pH result in an increase in soil AEC. Allophane and imogolite rich soils have an AEC ranging from 1 to 18 meq/100g at pH about 6. Highly weathered soils dominated by Fe and Al oxides and kaolinite may develop a significant amount of AEC as soil pH falls. The retention of iodine (I) and technetium ({Tc}), by soils is associated with both soil organic matter, and Fe and Al oxides, whereas sorption on layer silicate minerals in negligible. Fe and Al oxides become more important in the retention of anionic I{sup {minus}}, IO{sub 3}{sup {minus}}, and TcO{sub 4}{sup {minus}} as pH falls, since more positive charge is developed on the oxide surfaces. Although few studies, if any, have been conducted on I and {Tc} sorption by soil allophane and imogolite, it is estimated that a surface plough soil (2 million pounds soil per acre) with 5 meq/100g AEC, as is commonly found in andisols, shall retain approximately 5900 kg I and 4500 kg {Tc}. It is conceivable that an anion exchanger such as an andisol could be used to modify the near field environment of a radioactive waste disposal facility. This whole disposal system would then offer similar migration resistance to anions as is normally afforded to cations by usual and normal soils. 93 refs., 10 figs., 7 tabs.

  5. Anion Partitioning and Ion-Pairing Behavior of Anions in the Extraction of Cesium Salts by 4,5'-bix(tert-octylbenzo)dibenzo-24-crown-8 in 1,2-Dichloroethane

    International Nuclear Information System (INIS)

    A systematic study of anion partitioning and ion-pairing was performed for an extraction of individual cesium salts into 1,2-dichloroethane (1,2-DCE) using 4,5(doubleprime)-bis(tert-octylbenzo)dibenzo-24-crown-8 as the cesium receptor. Equilibrium constants corresponding to the extraction of ion pairs and dissociated ions, formation of the 1:1 cesium/crown complex (confirmed by electrospray mass spectrometry), and dissociation of the ion pairs in water-saturated 1,2-DCE at 25 C were obtained from equilibrium modeling using the SXLSQI program. The standard Gibbs energy of partitioning between water and water-saturated 1,2-DCE was determined for picrate, permanganate, trifluoromethanesulfonate, methanesulfonate, trifluoroacetate, and acetate anions. The dissociation of the organic-phase complex ion pair [Cs(4,4(doubleprime)-bis(tert-octylbenzo)dibenzo-24-crown-8)]+NO3 observed in the extraction experiments was shown to be consistent with the dissociation constant determined independently by conductance measurements. As attributed to the large effective radius of the complex cation, the evident anion discrimination due to ion-pairing in the 1,2-DCE phase, was relatively small, by comparison only a tenth of the discrimination exhibited by the anion partitioning. Only chloride and picrate exhibit evidence for significantly greater-than-expected ion-pairing tendency. These results provide insight into the inclusion properties of the clefts formed by opposing arene rings of the crown ether upon encapsulation of the Cs+ ion, whose weak anion recognition likely reflects the preferential inclusion of 1,2-DCE molecules in the clefts. Observed anion extraction selectivity in this system, which may be ascribed predominantly to solvent-induced Hofmeister bias selectivity toward large charge-diffuse anions, was nearly the same whether cesium salts were extracted as dissociated ions or ion pairs

  6. Anion binding by biotin[6]uril in water

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Nielsen, Bjarne Enrico; Milhøj, Birgitte Olai; Sauer, Stephan P. A.; Pittelkow, Michael

    2015-01-01

    In this contribution we show that the newly discovered 6 + 6 biotin-formaldehyde macrocycle Biotin[6]uril binds a variety of anionic guest molecules in water. We discuss how and why the anions are bound based on data obtained using NMR spectroscopy, mass spectrometry, isothermal titration...... calorimetry (ITC), computational calculations and single crystal X-ray crystallography....

  7. Isothiouronium Salts Based on Anthracene and Pyrene as Anion Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Quynh Pham Bao; Kim, Taek Hyeon [Chonnam National Univ., Gwangju (Korea, Republic of)

    2010-03-15

    In summary, we prepared anthracene-bisisothiouronium and pyrene-isothiouronium salts as anion chemosensors, which showed significant fluorescence enhancement upon the addition of fluoride, acetate and dihydrogen phosphate, even in an aqueous medium. Due to the isomerism that occurred, the two isomers of the anthracene-bisisothiouronium salt bound the fluoride anion in equilibrium, while the two isomers of the pyrene-isothiouronium salt bound the fluoride anion in parallel. Organic sensors have attracted much attention due to their many possible applications in analytical and biomedical research. Therefore, a variety of synthetic receptors for anions have been reported. Among them, thiourea receptors have been thoroughly exploited in the field of molecular recognition, due to their binding of anions through hydrogen bonding. The use of isothiouronium groups has not been explored very much in the area of anion binding. Such groups can enhance the acidity of the NH moieties, thereby functioning as a better binder compared to the thiourea group. However, in some cases, the investigation of the anion sensing properties of isothiouronium receptors was complicated by the presence of isomerism. In a previous report, the isomerism of anthracene-isothiouronium salts was detected at room temperature. Herein, we wish to report the isomerism of different isothiouronium structures, viz. anthracene-bisisothiouronium and pyrene-isothiouronium salts. The anion sensing properties of these structures was also examined.

  8. Anion binding by biotin[6]uril in water

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Nielsen, Bjarne Enrico; Milhøj, Birgitte Olai;

    2015-01-01

    In this contribution we show that the newly discovered 6 + 6 biotin-formaldehyde macrocycle Biotin[6]uril binds a variety of anionic guest molecules in water. We discuss how and why the anions are bound based on data obtained using NMR spectroscopy, mass spectrometry, isothermal titration...

  9. Diffuse neutron scattering from anion-excess strontium chloride

    DEFF Research Database (Denmark)

    Goff, J.P.; Clausen, K.N.; Fåk, B.;

    1992-01-01

    The defect structure and diffusional processes have been studied in the anion-excess fluorite (Sr, Y)Cl2.03 by diffuse neutron scattering techniques. Static cuboctahedral clusters found at ambient temperature break up at temperatures below 1050 K, where the anion disorder is highly dynamic. The...

  10. A colorimetric tetrathiafulvalene-calix 4 pyrrole anion sensor

    DEFF Research Database (Denmark)

    Nielsen, K. A.

    2012-01-01

    The interaction and colorimetric sensing properties of a tetrathiafulvalene substituted calix[4]pyrrole sensor with anions were investigated using H-1 NMR and absorption spectroscopic techniques. Visual color changes were observed upon addition of different anions (Cl-, Br-, CN-, and AcO-) to a s...

  11. Triflyloxy-substituted carboranes as useful weakly coordinating anions.

    Science.gov (United States)

    Press, Loren P; McCulloch, Billy J; Gu, Weixing; Chen, Chun-Hsing; Foxman, Bruce M; Ozerov, Oleg V

    2015-09-25

    New carborane anions carrying one or three triflyloxy substituents are described. The mono-triflyloxy substituted carborane can be halogenated to give pentabromo and decachloro derivatives with preservation of the B-OTf linkage. The use of [HCB11Cl10OTf](-) as a weakly coordinating anion is demonstrated. PMID:26251850

  12. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined to...

  13. Extraction of monoclonal antibodies (IgG1) using anionic and anionic/nonionic reverse micelles.

    Science.gov (United States)

    George, Daliya A; Stuckey, David C

    2010-01-01

    Purification schemes for antibody production based on affinity chromatography are trying to keep pace with increases in cell culture expression levels and many current research initiatives are focused on finding alternatives to chromatography for the purification of Monoclonal antibodies (MAbs). In this article, we have investigated an alternative separation technique based on liquid-liquid extraction called the reverse micellar extraction. We extracted MAb (IgG1) using reverse micelles of an anionic surfactant, sodium bis 2-ethyl-hexyl sulfosuccinate (AOT) and a combination of anionic (AOT) and nonionic surfactants (Brij-30, Tween-85, Span-85) using isooctane as the solvent system. The extraction efficiency of IgG1 was studied by varying parameters, such as pH of the aqueous phase, cation concentration, and type and surfactant concentration. Using the AOT/Isooctane reverse micellar system, we could achieve good overall extraction of IgG1 (between 80 and 90%), but only 30% of the bioactivity of IgG1 could be recovered at the end of the extraction by using its binding to affinity chromatography columns as a surrogate measure of activity. As anionic surfactants were suspected as being one of the reasons for the reduced activity, we decided to combine a nonionic surfactant with an anionic surfactant and then study its effect on the extraction efficiency and bioactivity. The best results were obtained using an AOT/Brij-30/Isooctane reverse micellar system, which gave an overall extraction above 90 and 59% overall activity recovery. An AOT/Tween-85/Isooctane reverse micellar system gave an overall extraction of between 75 and 80% and overall activity recovery of around 40-45%. The results showed that the activity recovery of IgG1 can be significantly enhanced using different surfactant combination systems, and if the recovery of IgG1 can be further enhanced, the technique shows considerable promise for the downstream purification of MAbs. PMID:20665658

  14. ARE MODELS OF ANION HYDRATION OVERBOUND ? THE SOLVATION OF THE ELECTRON AND CHLORIDE ANION COMPARED

    OpenAIRE

    Sprik, M.

    1991-01-01

    By means of a fully polarizable model for the chloride ion-water interaction we show that the modelling of anion solvation suffers from a similar inconsistency as the current electron-solvent potentials. Either the bulk hydration enthalpies are correct with the first hydration shell overbound, or the potential is adapted to describe the local environment of the solute at the expense of a major loss of solvation enthalpy. It is argued that boundary effects in the simulation are at least partly...

  15. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    International Nuclear Information System (INIS)

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin

  16. Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, D.; Alloin, F. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces - LEPMI, UMR 5631 CNRS-INPG-UJF, BP 75, 38402 Saint-Martin-d' Heres Cedex (France); Ogier, L. [Eras Labo, 222, RN 90, F-38330 St Nazaire-les-Eymes (France); Akrour, L.; Fauvarque, J-F. [Laboratoire d' Electrochimie Industrielle, CNAM, 2 Rue Conte, 75003 Paris (France)

    2007-12-31

    Polymer electrolytes, using a poly(epichlorydrin-allyl glycidyl ether) copolymer as matrix, were prepared and characterized. Anion conducting networks were obtained by the incorporation of two cyclic diamines named 1,4-diazabicyclo-[2.2.2]-octane (DABCO) and 1-azabicyclo-[2.2.2]-octane (Quinuclidine), neither sensitive to Hoffman elimination. In order to improve the mechanical properties, the membrane was reinforced using polyamide supports. The physicochemical and electrochemical characteristics, namely ionic exchange capacity, swelling ratio, glass transition temperature, thermal stability and ionic conductivity, were evaluated. (author)

  17. Radioactive iodine waste treatment using electrodialysis with an anion exchange paper membrane

    International Nuclear Information System (INIS)

    In order to simply and safely treat radioactive iodine waste, a study of the removal of iodide ion from radioactive waste using electrodialysis with an anion exchange paper membrane, in which trimethylhydroxylpropylammonium groups were homogeneously dispersed with high density. In Na125I and Na36Cl concentration-cell system, electric ion and water conductances, phenomenological coefficients, have been experimentally determined on basis of nonequilibrium thermodynamics. Prepared paper membrane had higher permselectivity of 125I ion than 36Cl ions by approximately 21%. On the other hand, water flux that was accompanied by an ionic transference in prepared paper membrane was greatly larger than that in typical synthesized membrane. It is suggested that a depression of water mobility is important to practice an ideal radioactive iodide waste electrodialysis system with a novel anion exchange paper membrane

  18. Verification of the sputter-generated 32SFn- (n = 1-6) anions by accelerator mass spectrometry

    Science.gov (United States)

    Mane, R. G.; Surendran, P.; Kumar, Sanjay; Nair, J. P.; Yadav, M. L.; Hemalatha, M.; Thomas, R. G.; Mahata, K.; Kailas, S.; Gupta, A. K.

    2016-01-01

    Recently, we have performed systematic Secondary Ion Mass Spectrometry (SIMS) measurements at our ion source test set up and have demonstrated that gas phase 32SFn- (n = 1-6) anions for all size 'n' can be readily generated from a variety of surfaces undergoing Cs+ ion sputtering in the presence of high purity SF6 gas by employing the gas spray-cesium sputter technique. In our SIMS measurements, the isotopic yield ratio 34SFn-/32SFn- (n = 1-6) was found to be close to its natural abundance but not for all size 'n'. In order to gain further insight into the constituents of these molecular anions, ultra sensitive Accelerator Mass Spectrometry (AMS) measurements were conducted with the most abundant 32SFn- (n = 1-6) anions, at BARC-TIFR 14 UD Pelletron accelerator. The results from these measurements are discussed in this paper.

  19. Side-by-side comparison of analytical techniques; organic acids, total organic carbon, and anions in PWR secondary cycles

    International Nuclear Information System (INIS)

    Total Organic Carbon TOC samples should be analyzed no later than one week after they are taken and they should be stored in a refrigerated condition, if at all possible. It can be inferred that for TOC levels in the range of 50 to 120 ppb, state-of-the-art sampling and analysis techniques can produce results varying by 20 to 50 ppb. Any proposed limits for TOC should be reviewed in that light. Agreement between anion results appeared to improve over the course of the project. Both contractors agree that increased attention and care with sampling and analytical techniques probably accounted for this improvement. Utility personnel can therefore conclude that proper employee training, supervision, and motivation for proper sampling and analysis are critical if accurate anion results are to be obtained. Resonable agreement between calculated and measured values of cation conductivity suggest that both contractors had accurately determined all major anionic species

  20. A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing.

    Science.gov (United States)

    Linder, B; Raschke, K

    1992-11-16

    Slowly activating anion channel currents were discovered at micromolar 'cytoplasmic' Ca2+ during patch-clamp measurements on guard-cell protoplasts of Vicia faba and Xanthium strumarium. They activated at potentials as low as -200 mV, with time constants between 5 and 60 s, and no inactivation. The broad voltage dependence exhibited a current maximum near -40 mV. The single-channel open time was in the order of seconds, and the unitary conductance was 33 ps, similar to that of the already described 'quick' anion channel of guard cells. Because of its activity at low potentials, the slow anion channel may be essential for the depolarization of the plasmalemma that is required for salt efflux during stomatal closing. PMID:1385219

  1. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  2. [Determination of inorganic anions and gluconate by two-dimensional ion chromatography].

    Science.gov (United States)

    Chen, Ailian; Ding, Hui; Fang, Linmei; Shi, Chaoou

    2015-12-01

    A new two-dimensional ion chromatography method was developed to parallelly analyze two different types of samples with the application of valve switching technology-suppressed conductivity and pulsed amperometric analysis system, for concurrent determination of chloride, nitrite, sulfate, nitrate four inorganic anions and gluconate. The first dimensional chromatography was using Ionpac AG18+Ionpac AS18 anion analysis columns with a suppressed conductivity detector for the separation and detection of Cl-, NO2-, SO4(2-) and NO3-. Respectively, the elution was 5 and 20 mmol/L NaOH at an isocratic flow rate of 1.0 mL/min and sample injection volume of 25 μL. The second dimensional chromatography was utilizing two guard columns, CarboPac PA1 and CarboPac PA20, with 90 mmol/L NaOH solution for the isocratic eluent of 0.8 mL/min. Gluconate was enriched by an AG15 column and switched into the pulsed amperometric detector. The results showed that: each inorganic anion in 0. 1-5.0 mg/L and gluconate in 0.085 6-4.282 5 mg/L had a good linear relationship (R2 ≥ 0.994 5). The RSDs of the peak areas were between 1.05%-1.94%. The limits of detection were 0.61-2.17 μg/L for the anions and 24.24 μg/L for the gluconate. The recoveries were between 90.3% - 102.8%. The two detection modes parallelly have good separation efficiency, detection accuracy and the precision of the separation and are suitable for the analysis of complex samples. PMID:27097469

  3. Mechanically driven activation of polyaniline into its conductive form.

    Science.gov (United States)

    Baytekin, Bilge; Baytekin, H Tarik; Grzybowski, Bartosz A

    2014-07-01

    Mechanical treatment of polymers produces surface cations and anions which, as demonstrated here for the first time, can drive chemical reactions. In particular, it is shown that such a mechanical treatment transforms nonconductive polyaniline into its conductive form. These results provide a mechanical means of patterning conductive polymers and also coating small polymer objects with conductive polyaniline films preventing accumulation of static electricity. PMID:24824971

  4. An outwardly rectifying anionic background current in atrial myocytes from the human heart

    OpenAIRE

    Li, H.; Zhang, H.; Hancox, J C; Kozlowski, R. Z.

    2007-01-01

    This report describes a hitherto unreported anionic background current from human atrial cardiomyocytes. Under whole-cell patch-clamp with anion-selective conditions, an outwardly rectifying anion current (I ANION) was observed, which was larger with iodide than nitrate, and with nitrate than chloride as charge carrier. In contrast with a previously identified background anionic current from small mammal cardiomyocytes, I ANION was not augmented by the pyrethroid tefluthrin (10 μM); neither w...

  5. Designing New Electrolytes for Lithium Ion Batteries Using Superhalogen Anions

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    The electrolytes used in Lithium Ion Batteries (LIBs) such as LiBF4, LiPF6 etc. are Li-salts of some complex anions, BF4-, PF6- etc. The investigation shows that the vertical detachment energy (VDE) of these anions exceeds to that of halogen, and therefore they behave as superhalogen anions. Consequently, it might be possible to design new electrolytic salts using other superhalogen anions. We have explored this possibility using Li-salts of various superhalogen anions such as BO2-, AlH4-, TiH5- and VH6- as well as hyperhalogen anions, BH4-y(BH4)y-(y = 1 to 4). Our density functional calculations show that Li-salts of these complex anions possess similar characteristics as those of electrolytic salts in LIBs. Note that they all are halogen free and hence, non-toxic and safer than LiBF4, LiPF6 etc. In particular, LiB4H13 and LiB5H16 are two potential candidates for electrolytic salt due to their smaller Li-dissociation energy ({\\Delta}E) than those of LiBF4, LiPF6 etc. We have also noticed that {\\Delta}E of Li...

  6. Antimicrobial Ionic Liquids with Fumarate Anion

    Directory of Open Access Journals (Sweden)

    Biyan He

    2013-01-01

    Full Text Available The shortage of new antimicrobial drugs and increasing resistance of microbe to antimicrobial agents have been of some concern. The formulation studies of new antibacterial and antifungal agents have been an active research field. Ionic liquids are known as designed liquids with controllable physical/chemical/biological properties and specific functions, which have been attracting considerable interest over recent years. However, no attention has been made towards the preparation of ionic liquids with antimicrobial activities. In this paper, a new class of ionic liquids (ILs with fumarate anion was synthesized by neutralization of aqueous 1-butyl-3-methylimidazolium hydroxide with equimolar monoester fumarate and characterized using NMR and thermal gravimetric analysis. The ILs are soluble in water and polar organic solvents and also soluble in the common ILs. The antimicrobial activities of the ILs are more active than commercially available potassium sorbate and are greatly affected by the alkyl chain length. The significant antimicrobial properties observed in this research suggest that the ILs may have potential applications in the modern biotechnology.

  7. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    OpenAIRE

    Taku Tsuneishi; Hisatoshi Sakamoto; Kazushi Hayashi; Go Kawamura; Hiroyuki Muto; Atsunori Matsuda

    2014-01-01

    Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH) were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as...

  8. Zinc Potentiates an Uncoupled Anion Conductance Associated with the Dopamine Transporter

    DEFF Research Database (Denmark)

    Meinild, Anne-Kristine; Sitte, Harald H; Gether, Ulrik

    2004-01-01

    Binding of Zn(2+) to an endogenous binding site in the dopamine transporter (DAT) leads to inhibition of dopamine (DA) uptake and enhancement of carrier-mediated substrate efflux. To elucidate the molecular mechanism for this dual effect, we expressed the DAT and selected mutants in Xenopus laevis...

  9. Photoelectron spectroscopic study of the ethyl cyanoacrylate anion

    Science.gov (United States)

    Zhang, Xinxing; Tang, Xin; Bowen, Kit

    2013-09-01

    Anion photoelectron spectroscopy and density functional theory have been utilized to study the parent, ethyl cyanoacrylate molecular anion, ECA-. The measured electron affinity (0.9 ± 0.2 eV), vertical detachment energy (1.3 ± 0.1 eV), and anion-to-triplet neutral, photodetachment transition energies (4.0 ± 0.1 eV and 4.5 ± 0.1 eV) all compare well with their calculated values. The relatively high electron affinity of the ECA monomer is responsible for the fact that its “anionic” polymerization mechanism proceeds even with weak nucleophiles, such as water.

  10. Non-enzymatic superoxide anion radical sensor based on Pt nanoparticles covalently bonded to thiolated MWCNTs

    International Nuclear Information System (INIS)

    Highlights: ► Synthesis of MWCNTs–Pt nanoparticles and characterization by TEM and X-ray photoelectron spectroscopy. ► Fabrication of modified electrode PDDA/MWCNTs–Pt for electrochemical determination of O2·− without enzyme. ► The modified electrode exhibited high conductivity, biocompatibility and stability. ► This modified electrode provided higher sensitivity, wide linear range, low detection limit, good reproducibility. ► This proposed electrode displayed better electrocatalytic activity than other modified electrodes toward superoxide. - Abstract: In this study, we developed a superoxide anion biosensor based on Pt nanoparticles covalently bonded to the multi-walled carbon nanotubes (MWCNTs–Pt) and poly-diallyldimethylammonium chloride (PDDA) on a glassy carbon electrode (GCE) without enzyme. The MWCNTs–Pt film was characterized with transmission electron microscopy and X-ray photoelectron spectroscopy. The mechanism of the reduction of superoxide anion at PDDA/MWCNTs–Pt/GCE was determined to be an irreversible diffusion-controlled electrode process. The electrocatalytic properties of the MWCNTs–Pt catalyst for superoxide anion reduction were investigated by cyclic voltammetry and chronoamperometry. Good sensitivity, wide linear range, low detection limit, good reproducibility and excellent storage stability were obtained by using the amperometric response. In the study results, the proposed electrode displayed better electrocatalytic activity than the previously reported electrodes toward the dismutation of superoxide.

  11. Polymorphism and Metallic Behavior in BEDT-TTF Radical Salts with Polycyano Anions

    Directory of Open Access Journals (Sweden)

    Carlos J. Gómez-García

    2012-04-01

    Full Text Available Up to five different crystalline radical salts have been prepared with the organic donor BEDT-TTF and three different polynitrile anions. With the polynitrile dianion tcpd2− (=C[C(CN2]32−, two closely related radical salts: α'-(ET4tcpd·THF (1 (THF = tetrahydrofurane and α'-(ET4tcpd·H2O (2 have been prepared, depending on the solvent used in the synthesis. With the mono-anion tcnoetOH− (=[(NC2CC(OCH2CH2OHC(CN2]− two polymorphs with similar physical properties but different crystal packings have been synthesized: θ-(ET2(tcnoetOH (3 and β''-(ET2(tcnoetOH (4. Finally, with the mono-anion tcnoprOH− (=[(NC2CC(OCH2CH2CH2OHC(CN2]− we have prepared a metallic radical salt: β''-(ET2(tcnoprOH(CH2Cl2CH3Cl0.5 (5. Salts 1‑4 are semiconductors with high room temperature conductivities and activation energies in the range 0.1–0.5 eV, whereas salt 5 is metallic down to 0.4 K although it does not show any superconducting transition above this temperature.

  12. Bound and continuum states of molecular anions C2H- and C3N-

    Science.gov (United States)

    Harrison, Stephen; Tennyson, Jonathan

    2011-02-01

    Recently a number of molecular anions, closed-shell linear carbon chains of the form CnH- and CnN-, have been detected in space. The molecules C2H- and C3N- are investigated by using the R-matrix method to consider electron scattering from the corresponding neutral targets. Initial target calculations are conducted and refined in order to produce target state characteristics similar to the experimental data. A number of different scattering models are tested including static exchange and close-coupling models, and the use of Hartree-Fock or natural orbitals in the close-coupling calculations. The calculations concentrate on bound and resonances states for the anions as well as eigenphase sums, elastic cross-sections and electronic excitation cross-sections for electron collisions with the neutral. It is found that electronic resonances are all too high in energy to be important for anion formation in the interstellar medium. However, C3N-, unlike C2H-, supports a number of very weakly bound excited states, which may well provide the route to electron attachment for this system.

  13. Unmeasured anions and mortality in critically ill patients in 2016.

    Science.gov (United States)

    Kotake, Yoshifumi

    2016-01-01

    The presence of acid-base disturbances, especially metabolic acidosis may negatively affect the outcome of critically ill patients. Lactic acidosis is the most frequent etiology and has largest impact on the prognosis. Since lactate measurement might not have always been available at bedside, it had been regarded as one of the unmeasured anions. Therefore, anion gap and strong ion gap has been used to as a surrogate of lactate concentration. From this perspective, the relationship between either anion gap or strong ion gap and mortality has been explored. Then, lactate became routinely measurable at bedside and the direct comparison between directly measured lactate and these surrogate parameters can be possible. Currently available evidence suggests that directly measured lactate has larger prognostic ability for mortality than albumin-corrected anion gap and strong ion gap without lactate. In this commentary, the rationale and possible clinical implications of these findings are discussed. PMID:27429758

  14. Fluorinated and trifluoromethylated CB11 carborane anions and radicals

    Czech Academy of Sciences Publication Activity Database

    Higelin, Alexander; Šembera, Filip; Tamadon, F.; Wahab, Abdul; Janoušek, Zbyněk; Ludvík, Jiří; Klíma, Jiří; Crespo, R.; Piqueras, M. C.; Michl, Josef

    San Francisco: American Chemical Society, 2014. 37FLUO. [ACS National Meeting & Exposition /248./. 10.08.2014-14.08.2014, San Francisco] Institutional support: RVO:61388963 Keywords : carborane anions Subject RIV: CC - Organic Chemistry

  15. Adsorption of inorganic anionic contaminants on surfactant modified minerals

    Directory of Open Access Journals (Sweden)

    MAGDALENA TOMASEVIC-CANOVIC

    2003-11-01

    Full Text Available Organo-mineral complexes were obtained by treatment of aluminosilicate minerals (zeolite, bentonite and diatomaceous earth with a primary amine (oleylamine and an alkyl ammonium salt (stearyldimethylbenzyl ammonium chloride. The modification of the zeolite surface was carried out in two steps. The first step was treatment of the zeolite with 2 M HCl. This acid treatment of the zeolite increased its affinity for neutral molecules such as surface-active amines. The second step of the modification was the adsorption of oleylamine on the acid treated zeolite. Four types of organo-mineral complexes were prepared and their anion adsorption properties were compared to those of organo-zeolite. The adsorption of sulphate, bichromate and dihydrogenphosphate anions on the organo-mineral complexes was investigated. The anion adsorption measurements showed that the most efficient adsorbent for anion water pollutants was the primary amine modified H+-form zeolite.

  16. Metal ion separations using hydrophobic anions: Aspects of ligand design

    International Nuclear Information System (INIS)

    Metal ion extraction using hydrophobic anions has been investigated by several researchers for remediation of Cs-137 and Sr-90 in nuclear waste. The rich derivative chemistry of the cobalt bis-dicarbollide anion makes it amendable to systematic studies of the relative importance of anion structure, solvent, and synergists on the extraction selectivity and efficiency. Halogenation or alkylation of cobalt dicarbollide strongly influences the anion's solubility and stability but has little effect on extraction properties. Alkali metal selectivity depends primarily on solvent, while alkaline earth selectivity is driven by the concentration and molecular weight of polyethylene glycol synergists. Additional aspects of ligand design, including a simple extraction and recovery cycle based on redox-active metal centers, will be discussed

  17. Reaction of tungsten anion clusters with molecular and atomic nitrogen

    OpenAIRE

    Kim, Young Dok; Stolcic, Davor; Fischer, Matthias; Ganteför, Gerd

    2003-01-01

    Ultraviolet photoelectron spectra for WnN-2 (n=1 8) clusters produced by addition of atomic and molecular nitrogen on W anion clusters are presented. Evidence is provided that molecular chemisorption of N2 is more stable than the dissociative one on tungsten anion clusters consisting of eight atoms or less, which is completely different from the results on tungsten bulk surfaces. A general tendency toward molecular chemisorption for small clusters can be explained by reduced charge transfer f...

  18. GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY

    International Nuclear Information System (INIS)

    Long-chain hydrocarbon anions CnH– (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with nH2∼>105 cm–3). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H– anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment.

  19. GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cordiner, M. A. [Also at Institute for Astrophysics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Charnley, S. B., E-mail: martin.cordiner@nasa.gov [Astrochemistry Laboratory and Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States)

    2012-04-20

    Long-chain hydrocarbon anions C{sub n}H{sup -} (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n{sub H{sub 2}}{approx}>10{sup 5} cm{sup -3}). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C{sub 6}H{sup -} anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C{sub 6}O, C{sub 7}O, HC{sub 6}O, and HC{sub 7}O, the abundances of which depend on the assumed branching ratios for associative electron detachment.

  20. Intestinal transporters for endogenic and pharmaceutical organic anions

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Vestergaard, Henrik Tang; Rapin, Nicolas; Steffansen, Bente

    2012-01-01

    This review provides an overview of intestinal human transporters for organic anions and stresses the need for standardization of the various in-vitro methods presently employed in drug-drug interaction (DDI) investigations.......This review provides an overview of intestinal human transporters for organic anions and stresses the need for standardization of the various in-vitro methods presently employed in drug-drug interaction (DDI) investigations....

  1. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  2. Core-modified octaphyrins: Syntheses and anion-binding properties

    Indian Academy of Sciences (India)

    Rajneesh Misra; Venkataramanarao G Anand; Harapriya Rath; Tavarekere K Chandrashekar

    2005-03-01

    In this paper, a brief review of the syntheses, characterization and anion-binding properties of core-modified octaphyrins is presented. It has been shown that the core-modified octaphyrins exhibit aromaticity both in solution and in solid state, confirming the validity of the (4 + 2) Huckel rule for larger -electron systems. Solid-state binding characteristics of TFA anions of two core-modified octaphyrins are also described.

  3. Synthesis and Binding Properties of Two New Artificial Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhen-Ya; HUANG Yan-Yan; HU Ling; WANG Fa-Jun; HE Yong-Bing

    2003-01-01

    @@ The development of anion receptor has attracted increasing interest in supramolecular chemistry, due to poten tial applications in clinical diagnosis, environmental monitoring and biological process. [1] In comparison with thelarge variety of ligands that have been described for cations, [2] the development of selective artificial receptors foranion is still very limited. [3] Two new neutral anion receptors (1 and 2) containing thiourea and amide groups weresynthesized as shown in Scheme 1.

  4. Grain boundary mobility in anion doped MgO

    Science.gov (United States)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Certain anions OH(-), F(-) and Gl(-) are shown to enhance grain growth in MgO. The magnitude of their effect decreases in the order in which the anions are listed and depends on their location (solid-solution, second phase) in the MgO lattice. As most anions exhibit relatively high vapor pressures at sintering temperatures, they retard densification and invariably promote residual porosity. The role of anions on grain growth rates was studied in relation to their effect on pore mobility and pore removal; the atomic process controlling the actual rates was determined from observed kinetics in conjunction with the microstructural features. With respect to controlling mechanisms, the effects of all anions are not the same. OH(-) and F(-) control behavior through creation of a defect structure and a grain boundary liquid phase while Cl(-) promotes matter transport within pores by evaporation-condensation. Studies on an additional anion, S to the minus 2nd power gave results which were no different from undoped MgO, possibly because of evaporative losses during hot pressing. Hence, the effect of sulphur is negligible or undetermined.

  5. The Turn Over of the Odd-even Pattern in Mass Spectra of Carbon Cluster Anions

    Institute of Scientific and Technical Information of China (English)

    NI Guoquan; LIU Bingchen; ZHAI Huajin

    2000-01-01

    @@ Although investigations by many authorsd on the properties of carbon cluster anions by mass spectrometry and photoelectron spectroscopy last more than a decade[1~3], a general conclusion concerning the various features of the carbon clusters generated most commonly in laser vaporization/molecular beam sources has not yet been reached. In this Letter we report that the turn-over of the odd-even patter in relative abundance in the mass spectra of carbon clusters and the "manipulation" of the pattern can be realized in a controlled way by altering the vaporizing laser intensity, the backing pressure and the conductance of carries gas.

  6. Synthesis and Characterization of Imidazolium Linear Bisphenol Polycarbonate Hydroxides for Anion Exchange Membrane.

    Science.gov (United States)

    Jang, Hohyoun; Hossain, Md Awlad; Lee, Soonho; Ha, Jaesung; Yoo, Jihoo; Kim, Kyungchul; Kim, Whangi

    2015-11-01

    A novel anion exchange membrane of imidazolium functionalized bisphenol polycarbonate was prepared for application in alkaline fuel cell. Di-imidazolium polycarbonate anionic membrane was synthesized by sequential interfacial polymerization, chloromethylation, substitution with 1-methylimidazole and ion exchange with 1.0 M KOH. Chloromethylation reaction was quantitative to achieve a high content of hydroxide ions. Introduction of conjugated imidazole ring in polymer plays an important role to improve both thermal and chemical stability. Bisphenol polycarbonate is a flexible polymer and shows a good solubility in polar organic solvent. The alkaline imidazolium bisphenol polycarbonate rendered an elevated molecular weight with excellent solubility in polar aprotic solvent. Different levels of substitution and ion exchange were investigated; the resulting membranes showed high ion exchange capacities (IECs) of up to 2.15 mmol g(-1). The imidazolium-functionalized copolymer membranes showed lower water affinity (14.2-42.8% at 30 degrees C) that satisfied an essential criterion for fuel cell application. The chemical structure of the imidazolium functionalized polycarbonate membrane was confirmed by 1H NMR spectroscopy, and also the membrane properties were evaluated by thermogravimetric analysis (TGA) and water uptake (WU), IEC and conductivity assessment. They exhibited hydroxide conductivity above 10(-2) S cm(-1) at room temperature and good chemical stability for up to five days without significant losses of ion conductivity. PMID:26726604

  7. 3D Printing of Micropatterned Anion Exchange Membranes.

    Science.gov (United States)

    Seo, Jiho; Kushner, Douglas I; Hickner, Michael A

    2016-07-01

    Micropatterned anion exchange membranes (AEMs) have been 3D printed via a photoinitiated free radical polymerization and quaternization process. The photocurable formulation, consisting of diurethane dimethacrylate (DUDA), poly(ethylene glycol) diacrylate (PEGDA), dipentaerythritol penta-/hexa- acrylate, and 4-vinylbenzyl chloride (VBC), was directly cured into patterned films using a custom 3D photolithographic printing process similar to stereolithography. Measurements of water uptake, permselectivity, and ionic resistance were conducted on the quaternized poly(DUDA-co-PEGDA-co-VBC) sample series to determine their suitability as ion exchange membranes. The water uptake of the polymers increased as the ion exchange capacity (IEC) increased due to greater quaternized VBC content. Samples with IEC values between 0.98 to 1.63 mequiv/g were synthesized by varying the VBC content from 15 to 25 wt %. The water uptake was sensitive to the PEGDA content in the network resulting in water uptake values ranging from 85 to 410 wt % by varying the PEGDA fractions from 0 to 60 wt %. The permselectivity of the AEM samples decreased from 0.91 (168 wt %, 1.63 mequiv/g) to 0.85 (410 wt %, 1.63 mequiv/g) with increasing water uptake and to 0.88 (162 wt %, 0.98 mequiv/g) with decreasing IEC. Permselectivity results were relatively consistent with the general understanding of the correlation between permselectivity, water uptake, and ion content of the membrane. Lastly, it was revealed that the ionic resistance of patterned membranes was lower than that of flat membranes with the same material volume or equivalent thickness. A parallel resistance model was used to explain the influence of patterning on the overall measured ionic resistance. This model may provide a way to maximize ion exchange membrane performance by optimizing surface patterns without chemical modification to the membrane. PMID:27218137

  8. Synthesis and characterization of polypyrrole doped with anionic spherical polyelectrolyte brushes

    Directory of Open Access Journals (Sweden)

    N. Su

    2012-09-01

    Full Text Available The procedures for the synthesis of polypyrrole (PPy doped with anionic spherical polyelectrolyte brushes (ASPB (PPy/ASPB nanocomposite by means of in situ chemical oxidative polymerization were presented. Fourier transform infrared spectroscopy (FTIR and Raman spectroscopic analysis suggested the bonding structure of PPy/ASPB nanocomposite. Scanning electron microscopy (SEM was used to confirm the morphologies of samples. The crystallographic structure, chemical nature and thermal stability of conducting polymers were analyzed by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS and Thermo-gravimetric analysis (TGA respectively. Investigation of the electrical conductivity at room temperature showed that the electrical conductivity of PPy/ASPB nanocomposite was 20 S/cm, which was higher than that of PPy (3.6 S/cm.

  9. DISCOVERY OF INTERSTELLAR ANIONS IN CEPHEUS AND AURIGA

    International Nuclear Information System (INIS)

    We report the detection of microwave emission lines from the hydrocarbon anion C6H- and its parent neutral C6H in the star-forming region L1251A (in Cepheus), and the pre-stellar core L1512 (in Auriga). The carbon-chain-bearing species C4H, HC3N, HC5N, HC7N, and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for L1512. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  10. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  11. Poly-anion production in Penning and RFQ ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Bandelow, Steffi; Martinez, Franklin; Marx, Gerrit; Schweikhard, Lutz [Institute for Physics, Ernst-Moritz-Arndt University, 17487 Greifswald (Germany)

    2014-07-01

    The poly-anion production is being investigated in Penning and linear radio-frequency quadrupole (RFQ) traps at the ClusterTrap setup. The range of anionic charge states produced with the electron-bath technique in a Penning trap is restricted by the upper mass limit of this trap. By installation of a cylindrical Penning trap with a 12-Tesla superconducting magnet, the mass and thus cluster-size range is enhanced by a factor of 20 compared to the previously used hyperbolic 5-Tesla Penning trap. For first experimental tests with the 12-Tesla cylindrical Penning trap, gold cluster mono-anions Au{sup n-1}, n=330-350, have been exposed to an electron bath. As a result, higher negative charge states up to hexa-anionic clusters have been observed for the first time. In a parallel effort, di- and tri-anionic gold clusters have been produced in an RFQ-trap. To this end, an electron beam is guided through the RFQ-trap, which is operated by 2- or 3-state digital driving voltages. In addition, both polyanion-production techniques have been combined by pre-charging clusters in the RFQ-trap, transferring the resulting dianions into the Penning trap and applying the electron-bath technique to produce higher charge states.

  12. Metal-Oxide Film Conversions Involving Large Anions

    Energy Technology Data Exchange (ETDEWEB)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C. [The University of Western Ontario, Chemistry Department, 1151 Richmond St., N6A 5B7, London, Ontario (Canada)

    2008-07-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I{sup -}, Br{sup -}, S{sup 2-}). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag{sub 2}O to (1) AgI and (2) AgBr. (authors)

  13. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L. [Departamento de Quimica y Fisica Teoricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Hochlaf, M., E-mail: senent@iem.cfmac.csic.es, E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modelisation et Simulation Multi Echelle, Universite Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallee (France)

    2013-05-01

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., C{sub n} H{sup -}), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For C{sub n} H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  14. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    International Nuclear Information System (INIS)

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., Cn H–), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For Cn H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  15. Determination of inorganic anions in papermaking waters by ion chromatography

    Directory of Open Access Journals (Sweden)

    DARJA ŽARKOVIĆ

    2009-03-01

    Full Text Available A suppressed ion chromatography (IC method for the determination of inorganic anions in process water from paperboard production was developed and validated. Common inorganic anions (Cl-, NO3-, PO43- and SO42- were detected in fresh and process water samples collected from a paperboard production system at 16 characteristic points. It was shown that the use of an IonPac®-AS14 column under isocratic conditions with Na2CO3/NaHCO3 as the eluent and a suppression device proved to be a reliable analytical solution for the separation of the inorganic anions present in papermaking waters. This IC method is quite satisfactory concerning selectivity and sensitivity, and enables the determination of several inorganic anions over a wide concentration range. According to the obtained results, the total amount of analyzed inorganic anions was below 0.1 g/L, i.e., below the critical value which may trigger operational problems in paper production.

  16. Anion adsorption and atomic friction on Au(1 1 1)

    International Nuclear Information System (INIS)

    Highlights: ► Electrochemical lateral force microscopy on Au(1 1 1) in sulphuric and perchloric acid. ► Lateral forces at the atomic scale are sensitive to the adsorption state of anions. ► Friction changes at lower potentials than expected from cyclic voltammograms. ► Friction increases with normal load when sliding on specifically adsorbed anions. ► A dramatic increase in friction occurs upon electrochemical oxidation of the surface. - Abstract: The influence of anion adsorption on friction forces in an electrochemical environment has been studied by means of lateral force microscopy on Au(1 1 1) surfaces. Sensitivity to atomic stick-slip motion allows to reveal sulphate adsorption in ordered layers under the sliding tip at potentials lower than expected from cyclic voltammetry for the open surface. No ordered adsorption is found in lateral force measurements for the weakly adsorbed perchlorate anions. Correspondingly, some increase in friction in the anion adsorption regime is observed for sulphate but none for perchlorate adsorption. Friction increases significantly at the onset of oxidation in both sulphuric and perchloric acid solutions.

  17. Metal-Oxide Film Conversions Involving Large Anions

    International Nuclear Information System (INIS)

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I-, Br-, S2-). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag2O to (1) AgI and (2) AgBr. (authors)

  18. Poly-anion production in Penning and RFQ ion traps

    International Nuclear Information System (INIS)

    The poly-anion production is being investigated in Penning and linear radio-frequency quadrupole (RFQ) traps at the ClusterTrap setup. The range of anionic charge states produced with the electron-bath technique in a Penning trap is restricted by the upper mass limit of this trap. By installation of a cylindrical Penning trap with a 12-Tesla superconducting magnet, the mass and thus cluster-size range is enhanced by a factor of 20 compared to the previously used hyperbolic 5-Tesla Penning trap. For first experimental tests with the 12-Tesla cylindrical Penning trap, gold cluster mono-anions Aun-1, n=330-350, have been exposed to an electron bath. As a result, higher negative charge states up to hexa-anionic clusters have been observed for the first time. In a parallel effort, di- and tri-anionic gold clusters have been produced in an RFQ-trap. To this end, an electron beam is guided through the RFQ-trap, which is operated by 2- or 3-state digital driving voltages. In addition, both polyanion-production techniques have been combined by pre-charging clusters in the RFQ-trap, transferring the resulting dianions into the Penning trap and applying the electron-bath technique to produce higher charge states.

  19. DEVELOPMENT AND CHARACTERIZATION OF POLYVINYLIDENE FLUORIDE - IMIDAZOLIUM FUNCTIONALIZED POLYSULFONE BLEND ANION EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    S. VELU

    2015-09-01

    Full Text Available Anion exchange membrane (AEM is one of the core components of an alkaline fuel cell influencing the fuel cell’s performance, durability and stability. Out of the many anion exchange membranes reported so far, imidazolium functionalized polysulfone (PSf-ImOH membrane has been identified to have high hydroxide ionic conductivity, reaching up to 50 mS cm-1 at 20oC. However, at high levels of ion exchange capacity, the membrane’s water uptake and swelling ratio increases significantly with temperature thus destabilizing it and making it unfit for potential use in high temperature alkaline fuel cells. This limitation of PSf-ImOH membranes has been overcome by blending it with polyvinylidene fluoride (PVDF polymer, which is a thermally stable and highly hydrophobic polymer. PSf-ImOH membrane with a high degree of chloromethylation (180% was synthesized and blended with PVDF at different weight ratios (PVDF / PSf-ImOH: 30/70, 50/50 and 70/30 to create a series of novel anion exchange membranes. The prepared membranes were characterized to study their structure, water uptake, swelling ratio, solubility in low boiling water soluble solvents, thermal stability, ion exchange capacity (IEC and ionic conductivity (IC at different temperatures. The 70% PVDF blend membrane demonstrated the better performance in terms of IEC, IC and water uptake properties compared to other membranes. Comparative studies on the water uptake and IC variation between the 70% PVDF blend membrane and pure PSfImOH membrane (having the same IEC as that of the blend membrane, clearly indicated the superiority and the promising use of the blend membrane in alkaline fuel cell especially for high temperature working condition.

  20. Nuclear magnetic resonance studies of atomic motion in borohydride-based materials: Fast anion reorientations and cation diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Skripov, A.V., E-mail: skripov@imp.uran.ru; Soloninin, A.V.; Babanova, O.A.; Skoryunov, R.V.

    2015-10-05

    Highlights: • Solid solutions LiBH{sub 4}–LiI: extremely fast BH{sub 4} reorientations down to low T. • LiLa(BH{sub 4}){sub 3}Cl: Li-ion diffusive jumps and BH{sub 4} reorientations at the same frequency scale. • Dramatic acceleration of B{sub 12}H{sub 12} reorientations in the disordered phase of Na{sub 2}B{sub 12}H{sub 12}. • Fast Na-ion diffusion in the disordered phase of Na{sub 2}B{sub 12}H{sub 12}. - Abstract: Two basic types of thermally activated atomic jump motion are known to exist in solid borohydrides and the related systems: the reorientations of complex anions ([BH{sub 4}]{sup −}, [B{sub 12}H{sub 12}]{sup 2−}) and the translational diffusion of metal cations or complex anions. This paper reviews recent progress in nuclear magnetic resonance (NMR) studies of these jump processes in complex hydrides, such as solid solutions of halide anions in borohydrides, bimetallic borohydrides and borohydride–chlorides, borohydride–amides, and B{sub 12}H{sub 12}-based compounds. The emphasis is put on the systems showing fast-ion conductivity. For these systems, we discuss a possible relation between the reorientational motion of complex anions and the translational motion of metal cations.

  1. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions.

    Science.gov (United States)

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian; Bica, Katharina

    2016-05-21

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  2. Physical Properties and CO2 Reaction Pathway of 1-Ethyl-3-Methylimidazolium Ionic Liquids with Aprotic Heterocyclic Anions

    Energy Technology Data Exchange (ETDEWEB)

    Seo, S; DeSilva, MA; Brennecke, JF

    2014-12-25

    Ionic liquids (ILs) with aprotic heterocyclic anions (AHA) are attractive candidates for CO2 capture technologies. In this study, a series of AHA ILs with 1-ethyl-3-methylimidazolium ([emim](+)) cations were synthesized, and their physical properties (density, viscosity, and ionic conductivity) were measured. In addition, CO2 solubility in each IL was determined at room temperature using a volumetric method at pressures between 0 and 1 bar. The AHAs are basic anions that are capable of reacting stoichiometrically with CO2 to form carbamate species. An interesting CO2 uptake isotherm behavior was observed, and this may be attributed to a parallel, equilibrium proton exchange process between the imidazolium cation and the basic AHA in the presence of CO2, followed by the formation of "transient" carbene species that react rapidly with CO2. The presence of the imidazolium-carboxylate species and carbamate anion species was verified using H-1 and C-13 NMR spectroscopy. While the reaction between CO2 and the proposed transient carbene resulted in cation-CO2 binding that is stronger than the anion-CO2 reaction, the reactions of the imidazolium AHA ILs were fully reversible upon regeneration at 80 degrees C with nitrogen purging. The presence of water decreased the CO2 uptake due to the inhibiting effect of the neutral species (protonated form of AHA) that is formed.

  3. Structure of conduction electrons on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tsuneki [Hokkaido Univ., Sapporo (Japan); Kumagai, Jun

    1998-10-01

    The orbital structures of conduction electrons on permethylated oligosilane, Si{sub 2n}(CH{sub 3}){sub 2n+2}(n = 2 - 8), and poly(cyclohexylmethylsilane) have been determined by the electron spin-echo envelope modulation signals of the radical anions of these silanes in a deuterated rigid matrix at 77 K. The conduction electron on permethylated oligosilane is delocalized over the entire main chain, whereas that on poly(cyclohexylmethylsilane) is localized on a part of the main chain composed of about six Si atoms. Quantum-chemical calculations suggest that Anderson localization due to fluctuation of {sigma} conjugation by conformational disorder of the main chain is responsible for the localization of both the conduction electron and the hole. (author)

  4. Anion exchange sorption of molybdate and germanate from salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kislinskaya, G.E.; Denisova, T.I.; Sheka, I.A. (AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii)

    1983-02-01

    A study has been made of the state of Mo(6) and Ge(4) in solutions containing various concentrations (5-300 g/l) of HCl and their sorption with highly-alkaline macroporous anionites (Duolite 101 D, ChFO, AM, AMP) and hydroxides of iron and aluminium, depending on pH value, element concentration and time of solution contact with sorbent. Polymer anions of molybdate with a sorption maximum at pH=1-3 and monomer anions of germanate at pH>8 are found to be the most active forms of molybdenum and germanium, as to their sorption, at their concentrations of 10/sup -6/-10/sup -5/g-atom/l in sodium chloride solutions. Regions of molybdate and germanate effective sorption with anionites and hydroxides of iron and aluminium in electrolyte solutions get narrower, as compared with aqueous solutions, due to competing sorption of a background electrolyte anion.

  5. Organization and function of anionic phospholipids in bacteria.

    Science.gov (United States)

    Lin, Ti-Yu; Weibel, Douglas B

    2016-05-01

    In addition to playing a central role as a permeability barrier for controlling the diffusion of molecules and ions in and out of bacterial cells, phospholipid (PL) membranes regulate the spatial and temporal position and function of membrane proteins that play an essential role in a variety of cellular functions. Based on the very large number of membrane-associated proteins encoded in genomes, an understanding of the role of PLs may be central to understanding bacterial cell biology. This area of microbiology has received considerable attention over the past two decades, and the local enrichment of anionic PLs has emerged as a candidate mechanism for biomolecular organization in bacterial cells. In this review, we summarize the current understanding of anionic PLs in bacteria, including their biosynthesis, subcellular localization, and physiological relevance, discuss evidence and mechanisms for enriching anionic PLs in membranes, and conclude with an assessment of future directions for this area of bacterial biochemistry, biophysics, and cell biology. PMID:27026177

  6. Selection of anion exchange resins for boron thermal regeneration systems

    International Nuclear Information System (INIS)

    Boron concentration changes in the reactor coolant are effected using a new development called the boron thermal regeneration system (BTRS). Thermal regeneration refers to the use of ion-exchange resins in either retaining or releasing borate ions as a function of temperature. For the BTRS the equilibrium capacity of commercial and special anion exchange resins was investigated for the degree of cross-linking of anion resins. The equilibrium capacity increases with decreased temperature and depends strongly on the degree of cross-linking having the maximum point at about 7% of DVB. The temperature coefficient of equilibrium capacity of boric acid is also a function of the concentration of external solution and of the cross-linking having a maximum point of around 7% of DVB. Other basic characteristics of anion exchange resin were also investigated. (author)

  7. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    International Nuclear Information System (INIS)

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO43− in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10−8 M to 1 × 10−1 M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO43−) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat

  8. Guanidinium based blend anion exchange membranes for direct methanol alkaline fuel cells (DMAFCs)

    Science.gov (United States)

    Sajjad, Syed D.; Liu, Dong; Wei, Zi; Sakri, Shambhavi; Shen, Yi; Hong, Yi; Liu, Fuqiang

    2015-12-01

    Guanidinium based blend anion exchange membranes (AEMs) for direct methanol alkaline fuel cells have been fabricated and studied. The guanidinium prepolymer is first synthesized through a simple polycondensation process with the ion exchange moieties incorporated directly into the polymer backbone, and then is used to make guanidinium - chitosan (Gu-Chi) blend membranes. Besides, a lipophilic guanidinium prepolymer, synthesized by means of a precipitation reaction between sodium stearate and guanidinium salt, is adopted to tune solubility and mechanical properties of the blend AEMs. Results show that both ionic conductivity and methanol permeability of the AEMs can be tuned by blend composition and chemistry of the guanidinium based prepolymer. The selectivity (ratio of ionic conductivity to methanol permeability) of the fabricated membranes is superior to that of commercial membranes. Under fuel cell tests using 3 M methanol, the open circuit voltage (OCV) value for the blend AEM with 72 wt% of the guanidinium polymer (0.69 V) is much higher than that of the commercial Tokuyama A201 (0.47 V) at room temperature, while the blend AEMs with 50 wt% guanidinium content still show comparable values. Overall, the developed membranes demonstrate superior performance and therefore pose great promise for direct methanol anion exchange fuel cell (DMAFC) applications.

  9. Corrosion Protection of Steels by Conducting Polymer Coating

    Directory of Open Access Journals (Sweden)

    Toshiaki Ohtsuka

    2012-01-01

    Full Text Available The corrosion protection of steels by conducting polymer coating is reviewed. The conducting polymer such as polyaniline, polypyrrole, and polythiophen works as a strong oxidant to the steel, inducing the potential shift to the noble direction. The strongly oxidative conducting polymer facilitates the steel to be passivated. A bilayered PPy film was designed for the effective corrosion protection. It consisted of the inner layer in which phosphomolybdate ion, PMo12O3−40 (PMo, was doped and the outer layer in which dodecylsulfate ion (DoS was doped. The inner layer stabilized the passive oxide and the outer possessed anionic perm-selectivity to inhibit the aggressive anions such as chloride from penetrating through the PPy film to the substrate steel. By the bilayered PPy film, the steel was kept passive for about 200 h in 3.5% sodium chloride solution without formation of corrosion products.

  10. Gas-grain models for interstellar anion chemistry

    OpenAIRE

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    Long-chain hydrocarbon anions CnH- (n=4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances ...

  11. Electrostatic charge confinement using bulky tetraoctylammonium cation and four anions

    Science.gov (United States)

    Andreeva, Nadezhda A.; Chaban, Vitaly V.

    2016-04-01

    Thanks to large opposite electrostatic charges, cations and anions establish strong ionic bonds. However, applications of ionic systems - electrolytes, gas capture, solubilization, etc. - benefit from weaker non-covalent bonds. The common approaches are addition of cosolvents and delocalization of electron charge density via functionalization of ions. We report fine tuning of closest-approach distances, effective radii, and cation geometry by different anions using the semi-empirical molecular dynamics simulations. We found that long fatty acid chains employed in the tetraalkylammonium cation are largely inefficient and new substituents must be developed. The reported results foster progress of task-specific ionic liquids.

  12. Procedure for reducing hydrogen ion concentration in acidic anion eluate

    International Nuclear Information System (INIS)

    A procedure is suggested for reducing the concentration of hydrogen ions in the acidic anionic eluate formed during the separation of uranium. The procedure involves anex elution, precipitation, filtration, precipitate rinsing, and anex rinsing. The procedure is included in the uranium elution process and requires at least one ion exchanger column and at least one tank in the continuous or discontinuous mode. Sparing the neutralizing agent by reducing the hydrogen ion concentration in the acidic anionic eluate is a major asset of this procedure. (Z.S.). 1 fig

  13. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  14. Recovery of niobium anions from aqueous solutions by ion flotation

    International Nuclear Information System (INIS)

    In principle the feasibility of recovering niobates (K2NbOF5 and K2NbF7) from aqueous media by ion flotation was established. When using quaternary ammonium bases or amines as the collectors, the optimal conditions lie in the interval pH = 5.0-9.0. The interaction of niobates with cationic surfactants may proceed through an anion-exchange mechanism. The presence of acid in the solution suppresses this interaction, owing to the competition from the anions that are present and owing to binding of the surface-active collectors into a complex. 3 figures

  15. Two independent anion transport systems in rabbit mandibular salivary glands

    DEFF Research Database (Denmark)

    Novak, I; Young, J A

    1986-01-01

    Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion in the...... stimulated secretion by about 30%, but when infused in addition to furosemide (0.1 mmol/l), it inhibited by about 20%. Amiloride (1.0 mmol/l) caused no inhibition. The results suggest that there are at least three distinct carriers in the rabbit mandibular gland. One is a furosemide-sensitive Na-coupled Cl...

  16. A lanthanide complex for metal encapsulations and anion exchanges.

    Science.gov (United States)

    Sun, Yan-Qiong; Wan, Fang; Li, Xin-Xiong; Lin, Jian; Wu, Tao; Zheng, Shou-Tian; Bu, Xianhui

    2016-08-01

    A cationic lanthanide metalloligand with 3 dangling carboxylate groups on its periphery co-assembles with nitrate into a porous thermochromic solid responsive to both external cations and anions, owing to the presence of exchangeable NO3(-) as well as cation cavities arising from cooperative orientation of free carboxylate groups. An especially interesting feature is the structural memory effect during crystallization exhibited by the metalloligand, even after dissolution and binding to secondary cations (Cu(2+), Cd(2+)…). Moreover, the porous solid can undergo ion-exchange with various anions, leading to tunable thermochromic temperature and color range. PMID:27463609

  17. The thiocyanate anion as a polydentate halogen bond acceptor

    OpenAIRE

    Cauliez, Pascal; Polo, Victor; Roisnel, Thierry; Llhusar, Rosa; Fourmigué, Marc

    2010-01-01

    International audience Co-crystallisation of the Et4N+ or n-Bu4N+ salts of the thiocyanate anion with o-, m- and p-diodoperfluorobenzene or the sym-trifluorotriiodobenzene allowed for the isolation of six different salts which were structurally characterized by single crystal X-ray diffraction. Halogen bonding interactions are observed between the neutral iodinated molecules acting as halogen bond donors and the S or N ends of the thiocyanate anion, with a variety of bonding modes (termina...

  18. Development of a LSSVM-GC model for estimating the electrical conductivity of ionic liquids

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Ilani-Kashkouli, Poorandokht; Sattari, Mehdi; Mohammadi, Amir H.; Ramjugernath, Deresh; Richon, Dominique

    2014-01-01

    In this communication, an extensive set of 1077 experimental electrical conductivity data for 54 ionic liquids (ILs) was collected from 21 different literature sources. Using this dataset, a reliable least square support vector machine-group contribution (LSSVM-GC) model has been developed, which...... employs a total of 22 sub-structures in addition to the temperature to represent/predict the electrical conductivity of ILs. In order to distinguish the effects of the anion and cation on the electrical conductivity of ILs, 11 sub-structures related to the chemical structure of anions, and 11 sub...

  19. Electron Photodetachment from Aqueous Anions. I. Quantum Yields for Generation of Hydrated Electron by 193 and 248 nm Laser Photoexcitation of Miscellaneous Inorganic Anions

    CERN Document Server

    Sauer, M C; Shkrob, I A; Sauer, Myran C.; Shkrob, Ilya A.

    2004-01-01

    Time resolved transient absorption spectroscopy has been used to determine quantum yields for electron photodetachment in 193 nm and (where possible) 248 nm laser excitation of miscellaneous aqueous anions, including hexacyanoferrate(II), sulfate, sulfite, halide anions (Cl-, Br-, and I-), pseudohalide anions (OH-, HS-, CNS-), and several common inorganic anions for which no quantum yields have been reported heretofore: SO3=, NO2-, NO3-, ClO3- and ClO4-. Molar extinction coefficients for these anions and photoproducts of electron detachment from these anions at the excitation wavelengths were also determined. These results are discussed in the context of recent ultrafast kinetic studies and compared with the previous data obtained by product analyses. We suggest using electron photodetachment from the aqueous halide and pseudohalide anions as actinometric standard for time-resolved studies of aqueous photosystems in the UV.

  20. Anion-Anion Bonding and Topology in Ternary Iridium Seleno-Stannides

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Benjamin A.; Tutmaher, Jake A.; McQueen, Tyrel M. [JHU

    2016-09-06

    The synthesis and physical properties of two new and one known Ir–Sn–Se compound are reported. Their crystal structures are elucidated with transmission electron microscopy and powder X-ray diffraction. IrSn0.45Se1.55 is a pyrite phase which consists of tilted corner-sharing IrX6 octahedra with randomly distributed (Sn–Se)4– and (Se–Se)2– dimers. Ir2Sn3Se3 is a known trigonally distorted skutterudite that consists of cooperatively tilted corner-sharing IrSn3Se3 octahedra with ordered (Sn–Se)24– tetramers. Ir2SnSe5 is a layered, distorted β-MnO2 (pyrolusite) structure consisting of a double IrSe6 octrahedral row, corner sharing in the a direction and edge sharing in the b direction. This distorted pyrolusite contains (Se–Se)2– dimers and Se2– anions, and each double row is “capped” with a (Sn–Se)n polymeric chain. Resistivity, specific heat, and magnetization measurements show that all three have insulating and diamagnetic behavior, indicative of low-spin 5d6 Ir3+. Electronic structure calculations on Ir2Sn3Se3 show a single, spherical, nonspin–orbit split valence band and suggest that Ir2Sn3Se3 is topologically nontrivial under tensile strain due to inversion of Ir-d and Se-p states.

  1. Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions.

    Science.gov (United States)

    Kubáň, Pavel; Boček, Petr

    2016-02-18

    Micro-electromembrane extractions (μ-EMEs) across free liquid membranes (FLMs) were applied to simultaneous extractions of anions and cations. A transparent narrow-bore polymeric tubing was filled with adjacent plugs of μL volumes of aqueous and organic solutions, which formed a stable five-phase μ-EME system. For the simultaneous μ-EMEs of anions and cations, aqueous donor solution was the central phase, which was sandwiched between two organic FLMs and two aqueous acceptor solutions. On application of electric potential, anions and cations in the donor solution migrated across the two FLMs and into the two peripheral acceptor solutions in the direction of anode and cathode, respectively. Visual monitoring of anionic (tartrazine) and cationic (phenosafranine) dye confirmed their simultaneous μ-EMEs and their rapid (in less than 5 min) transfers into anolyte and catholyte, respectively. The concept of simultaneous μ-EMEs was further examined with selected model analytes; KClO4 was used for μ-EMEs of inorganic anions and cations and ibuprofen and procaine for μ-EMEs of acidic and basic drugs. Quantitative analyses of the resulting acceptor solutions were carried out by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D). Good extraction recoveries (91-94%) and repeatability of peak areas (≤6.3%) were achieved for 5 min μ-EMEs of K(+) and ClO4(-). Extraction recoveries and repeatability of peak areas for 5 min μ-EMEs of ibuprofen and procaine were also satisfactory and ranged from 35 to 63% and 7.6 to 11.3%, respectively. Suitability of the presented micro-extraction procedure was further demonstrated on simultaneous μ-EMEs with subsequent CE-C(4)D of ibuprofen and procaine from undiluted human urine samples. PMID:26826693

  2. Quasielastic neutron scattering study of tetrahydroborate anion dynamical perturbations in sodium borohydride due to partial halide anion substitution

    International Nuclear Information System (INIS)

    Highlights: • NaBH4–NaX (X = Cl, I) solutions were made by ball-milling/annealing pure compounds. • BH4− reorientational motions were studied by quasielastic neutron scattering. • Mobility increased from X = Cl to NaBH4 to X = I, consistent with expanding lattices. • Near 400 K, BH4− favored cubic tumbling for X = Cl and tetrahedral tumbling for X = I. • Activation energies were in the range of 11–12 kJ mol−1 for both compounds. - Abstract: Equimolar NaBH4–NaX (X = Cl and I) solid solutions were synthesized to study, via quasielastic neutron scattering, the effect of partial halide anion substitution on the reorientational dynamics of tetrahydroborate (BH4−) anions in NaBH4. The BH4− reorientational mobility increased in the order of NaBH4–NaCl, NaBH4, and NaBH4–NaI, which corresponded with expanding face-centered-cubic lattices accommodating the respective increasing sizes of the Cl−, BH4−, and I− anions. The BH4− anions in NaBH4–NaCl were found (at least above 400 K) to undergo ‘cubic’ tumbling motions with the four H atoms per anion visiting all eight corners of a cube, similar to what was previously observed for NaBH4. In contrast, the BH4− anions in NaBH4–NaI were found to undergo something more akin to ‘tetrahedral’ tumbling motions, where the H atoms visit all four corners of a tetrahedron. Despite a noticeable softening of the BH4− torsional energies with increasing lattice constant amongst NaBH4 and the two solid solutions, all three compounds exhibited similar activation energies for reorientation of about 11–12 kJ mol−1

  3. Oxidation of silicon surface with atomic oxygen radical anions

    Institute of Scientific and Technical Information of China (English)

    Wang Lian; Song Chong-Fu; Sun Jian-Qiu; Hou Ying; Li Xiao-Guang; Li Quan-Xin

    2008-01-01

    The surface oxidation of silicon (Si) wafers by atomic oxygen radical anions (O- anions) and the preparation of metal-oxide-semiconductor (MOS) capacitors on the O--oxidized Si substrates have been examined for the first time. The O- anions are generated from a recently developed O- storage-emission material of [Ca24Al28O64]4+.4O- (C12A7-O- for short). After it has been irradiated by an O- anion beam (0.5 μA/cm2) at 300℃ for 1-10 hours, the Si wafer achieves an oxide layer with a thickness ranging from 8 to 32 nm. X-ray photoelectron spectroscopy (XPS) results reveal that the oxide layer is of a mixture of SiO2, Si2O3, and Si2O distributed in different oxidation depths. The features of the MOS capacitor of are investigated by measuring capacitance-voltage (C - V) and current-voltage (Ⅰ - Ⅴ) curves. The oxide charge density is about 6.0×1011 cm-2 derived from the C - V curves. The leakage current density is in the order of 10-6 A/cm2 below 4 MV/cm, obtained from the Ⅰ - Ⅴ curves. The Oanions formed by present method would have potential applications to the oxidation and the surface-modification of materials together with the preparation of semiconductor devices.

  4. Anionic surfactant electrical and surface properties of polypyrrole containing

    Czech Academy of Sciences Publication Activity Database

    Omastová, M.; Chehimi, M. M.; Trchová, Miroslava; Stejskal, Jaroslav

    Dublin: Trinity College Dublin, 2006. 110-TH. [International Conference on Science and Technology of Synthetic Metals. 02.07.2006-07.07.2006, Dublin] Grant ostatní: Slovak Ministry of Education (SK) VEGA-2/4024/04 Institutional research plan: CEZ:AV0Z40500505 Keywords : polypyrrole * anionic polymerization Subject RIV: CD - Macromolecular Chemistry

  5. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Science.gov (United States)

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  6. Advancing Analytical Methods for Characterization of Anionic Carbohydrate Biopolymers

    OpenAIRE

    Langeslay, Derek Joseph

    2013-01-01

    The focus of this dissertation is on the development of improved analytical methods for the characterization of anionic carbohydrate biopolymers. Our goal is to extract important information from complex mixtures of heterogeneous polysaccharides by characterizing their substituent oligosaccharides in terms of monosaccharide composition and primary and secondary structure. This work focuses on the application of two major analytical platforms: spectroscopy and chromatography. The development ...

  7. Anion-free bambus[6]uril and its supramolecular properties

    Czech Academy of Sciences Publication Activity Database

    Švec, J.; Dušek, Michal; Fejfarová, Karla; Štacko, P.; Klán, P.; Kaifer, A.E.; Li, W.; Hudečková, E.; Šindelář, V.

    2011-01-01

    Roč. 17, č. 20 (2011), s. 5605-5612. ISSN 0947-6539 Grant ostatní: AVČR(CZ) Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : anion receptors * halides * host-guest systems * macrocycles * supramolecular chemistry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.925, year: 2011

  8. Molecular Anions in Protostars, Prestellar Cores and Dark Clouds

    Science.gov (United States)

    Cordiner, Martin; Charnley, Steven; Buckle, Jane; Wash, Catherine; Millar, Tom

    2011-01-01

    From our recent survey work using the Green Bank Telescope, microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H have been detected in six new sources. Using HC3N = 10(exp -9) emission maps, we targeted the most carbon-chain-rich sources for our anion survey, which included the low-mass Class 0 protostar L1251A-IRS3, the prestellar cores L1389-SMM1 and L1512, and the interstellar clouds Ll172A, TMC-1C and L1495B. Derived [C6H(-)]/[C6H] anion-to-neutral ratios are approximately 1-10. The greatest C6H(-) column densities are found in the quiescent clouds TMC-1C and L1495B, but the anion-to-neutral ratios are greatest in the prestellar cores and protostars. These results are interpreted in terms of the physical and chemical properties of the sources, and the implications for molecular cloud chemistry are discussed.

  9. Capacity gradient anion chromatography with a borate complex as eluent.

    Science.gov (United States)

    Yamamoto, A; Inoue, Y; Kodama, S; Matsunaga, A

    1999-07-30

    Complex formation between borate compounds and vicinal diols is well recognized. Generally, in a chemically bonded anion-exchange resin, many hydroxyl groups are introduced on the surface of the resin in order to make the resin hydrophilic. The borate as an eluting reagent also reacts to these hydroxyl groups, and this complex formation decreases the apparent ion-exchange capacity of the column by being dissociated to the anion depending on the eluent pH. In the present work a method is described for the simultaneous determination of anions based on the capacity gradient for suppressed ion chromatography. A Tosoh IC-Anion-PW column and dihydroxyphenylborane-mannitol eluent system were used. To maintain baseline stability, it was helpful to keep the borate concentration constant during a gradient of 16 to 0 mM mannitol as a modifier to prevent the complex formation with the hydroxyl on the resin. The chemical composition of the eluents and gradient profiles are discussed and the application to the analysis of the condensed phosphates with widely varying retention times as food additives in a cheese sample is presented. PMID:10457467

  10. Synthesis and Anion Recognition of a Novel Heterocyclic Organotin Complex

    Institute of Scientific and Technical Information of China (English)

    Li Xin ZHANG; Gui Zhi LI; Zhi Qiang LI

    2004-01-01

    A novel heterocyclic hexacoordinate organotin(IV) complex, bis(O-vanillin)-semi ethylenediamino dibenzyltin (VEDBT) was synthesized by the reaction of dibenzyltin dichloride with bis(O-vanillin)-semiethyenediamine, its structure has been characterized by spectral methods.The electrodes using VEDBT as a neutral carrier show high selectivity for salicylate anions.

  11. Modeling Donnan Dialysis Separation for Carboxylic Anion Recovery

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Møllerhøj, Martin; Jørgensen, Sten Bay;

    2010-01-01

    dynamic model for transport of multiple ions through an anion exchange membrane is derived based on an irreversible thermodynamics approach. This model accounts for the convective transport of the dissociated and undissociated species in the channels with diffusion and migration across the bounda...

  12. Rejuvenation processes applied to 'poisoned' anion exchangers in uranium processing

    International Nuclear Information System (INIS)

    The removal of 'poisons' from anion exchangers in uranium processing of Canadian radioactive ores is commonly called rejuvenation or regeneration. The cost of the ion exchange recovery of uranium is adversely affected by a decrease in the capacity and efficiency of the anion exchangers, due to their being 'poisoned' by silica, elemental sulphur, molybdenum and tetrathionates. These 'poisons' have a high affinity for the anion exchangers, are adsorbed in preference to the uranyl complex, and do not desorb with the reagents used normally in the uranyl desorption phase. The frequency of rejuvenation and the reagents required for rejuvenation are determined by the severity of the 'poisoning' accumulated by the exchanger in contact with the uranium leach liquor. Caustic soda (NaOH) at approximately equal to 18 cents/lb is commonly used to remove uranium anion exchangers of tetrathionate ((S406)/-/-) 'poisons'. A potential saving in operating cost would be of consequence if other reagents, e.g. sodium carbonate (Na2CO3) at approximately equal to 3.6 cents/lb or calcium hydroxide (Ca(OH)2) at approximately equal to 1.9 cents/lb, were effective in removing (S406)/-/-) from a 'poisoned' exchanger. A rejuvenation process for a test program was adopted after a perusal of the literature

  13. Anionic micelles and vesicles induce tau fibrillization in vitro.

    Science.gov (United States)

    Chirita, Carmen N; Necula, Mihaela; Kuret, Jeff

    2003-07-11

    Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of recombinant tau can be induced by treatment with various agents, including phosphotransferases, polyanionic compounds, and fatty acids. Here we characterize the structural features required for the fatty acid class of tau fibrillization inducer using recombinant full-length tau protein, arachidonic acid, and a series of straight chain anionic, cationic, and nonionic detergents. Induction of measurable tau fibrillization required an alkyl chain length of at least 12 carbons and a negative charge consisting of carboxylate, sulfonate, or sulfate moieties. All detergents and fatty acids were micellar at active concentrations, due to a profound, taudependent depression of their critical micelle concentrations. Anionic surfaces larger than detergent micelles, such as those supplied by phosphatidylserine vesicles, also induced tau fibrillization with resultant filaments originating from their surface. These data suggest that anionic surfaces presented as micelles or vesicles can serve to nucleate tau fibrillization, that this mechanism underlies the activity of fatty acid inducers, and that anionic membranes may serve this function in vivo. PMID:12730214

  14. Anion complexation by calix[4]arene–TTF conjugates

    Czech Academy of Sciences Publication Activity Database

    Flídrová, K.; Tkadlecová, M.; Lang, Kamil; Lhoták, P.

    2012-01-01

    Roč. 92, č. 1 (2012), s. 668-673. ISSN 0143-7208 R&D Projects: GA ČR GA203/09/0691 Institutional research plan: CEZ:AV0Z40320502 Keywords : calix[4]arene * tetrathiafulvalene * anion recognition * receptor * NMR titration * UV/vis spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 3.532, year: 2012

  15. Automated dual capillary electrophoresis system with hydrodynamic injection for the concurrent determination of cations and anions

    International Nuclear Information System (INIS)

    Highlights: • Concurrent determination of cations and anions was carried out by electrophoretic separation. • Optimized conditions for each class of analystes was possible by using separate capillaries. • Simultaneous hydrodynamic injection was carried out. • Pneumatic actuation was used for flushing and sample handling. • The denitrification of drinking water was successfully demonstrated. - Abstract: The capillary electrophoresis instrument developed for the concurrent determination of cations and anions features two separate capillaries and individual detectors to allow independent optimization for each group of ions. The capillaries are joined in a common injector block. The sample is drawn into the injector with a small membrane pump and automated simultaneous injection into both capillaries is achieved by pressurization of the fluid with compressed air. Flushing of the injector and of the capillaries with the background electrolyte is also carried out automatically by the same means. The buffer consisted of 12 mM histidine and 2 mM 18-crown-6 adjusted to pH 4 with acetic acid and was suitable for the contactless conductivity detection employed. The system was optimized for the determination of cationic NH4+ and anionic NO3− and NO2−, and linear calibration curves from about 20 μM up to about 1.5 mM were obtained for these ions. In a test run over 8 h, the reproducibility for the peak areas was within ±7%. For demonstration, the instrument was successfully applied to the concurrent monitoring of the concentrations of the three ions during the biological removal of ammonium from contaminated groundwater in a sequencing batch reactor, where NO3− and NO2− are formed as intermediate products

  16. Automated dual capillary electrophoresis system with hydrodynamic injection for the concurrent determination of cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thanh Thuy; Mai, Thanh Duc [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland); Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Nguyen, Thanh Dam [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering – University of Alcalá, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares, Madrid 28871 (Spain); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland)

    2014-09-02

    Highlights: • Concurrent determination of cations and anions was carried out by electrophoretic separation. • Optimized conditions for each class of analystes was possible by using separate capillaries. • Simultaneous hydrodynamic injection was carried out. • Pneumatic actuation was used for flushing and sample handling. • The denitrification of drinking water was successfully demonstrated. - Abstract: The capillary electrophoresis instrument developed for the concurrent determination of cations and anions features two separate capillaries and individual detectors to allow independent optimization for each group of ions. The capillaries are joined in a common injector block. The sample is drawn into the injector with a small membrane pump and automated simultaneous injection into both capillaries is achieved by pressurization of the fluid with compressed air. Flushing of the injector and of the capillaries with the background electrolyte is also carried out automatically by the same means. The buffer consisted of 12 mM histidine and 2 mM 18-crown-6 adjusted to pH 4 with acetic acid and was suitable for the contactless conductivity detection employed. The system was optimized for the determination of cationic NH{sub 4}{sup +} and anionic NO{sub 3}{sup −} and NO{sub 2}{sup −}, and linear calibration curves from about 20 μM up to about 1.5 mM were obtained for these ions. In a test run over 8 h, the reproducibility for the peak areas was within ±7%. For demonstration, the instrument was successfully applied to the concurrent monitoring of the concentrations of the three ions during the biological removal of ammonium from contaminated groundwater in a sequencing batch reactor, where NO{sub 3}{sup −} and NO{sub 2}{sup −} are formed as intermediate products.

  17. On line pre-concentration for simultaneous determination of low molecular weight organic acids and inorganic anions in Amazonian river water samples employing ion chromatography with conductivity detection Pré-concentração em linha para a determinação simultânea de ácidos carboxílicos de baixo peso molecular e ânions inorgânicos em amostras de rios da Amazônia empregando cromatografia de íons com detecção por condutividade elétrica

    Directory of Open Access Journals (Sweden)

    Cristiane Azevedo Tumang

    2009-01-01

    Full Text Available An ion chromatography procedure, employing an IonPac AC15 concentrator column was used to investigate on line preconcentration for the simultaneous determination of inorganic anions and organic acids in river water. Twelve organic acids and nine inorganic anions were separated without any interference from other compounds and carry-over problems between samples. The injection loop was replaced by a Dionex AC15 concentrator column. The proposed procedure employed an auto-sampler that injected 1.5 ml of sample into a KOH mobile phase, generated by an Eluent Generator, at 1.5 mL min-1, which carried the sample to the chromatographic columns (one guard column, model AG-15, and one analytical column, model AS15, with 250 x 4mm i.d.. The gradient elution concentrations consisted of a 10.0 mmol l-1 KOH solution from 0 to 6.5 min, gradually increased to 45.0 mmol l-1 KOH at 21 min., and immediatelly returned and maintained at the initial concentrations until 24 min. of total run. The compounds were eluted and transported to an electro-conductivity detection cell that was attached to an electrochemical detector. The advantage of using concentrator column was the capability of performing routine simultaneous determinations for ions from 0.01 to 1.0 mg l-1 organic acids (acetate, propionic acid, formic acid, butyric acid, glycolic acid, pyruvate, tartaric acid, phthalic acid, methanesulfonic acid, valeric acid, maleic acid, oxalic acid, chlorate and citric acid and 0.01 to 5.0 mg l-1 inorganic anions (fluoride, chloride, nitrite, nitrate, bromide, sulfate and phosphate, without extensive sample pretreatment and with an analysis time of only 24 minutes.A metodologia analítica foi desenvolvida empregando coluna pré-concentradora AC15 em linha na cromatografia iônica na determinação simultânea de ânions orgânicos e inorgânicos, com uso de coluna de guarda AG15 e analítica AS15, 250 x 4 mm i.d. (Dionex Corp.. O gradiente de concentração do eluente

  18. Synthesis and studies of boron based anion receptors and their use in non-aqueous electrolytes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.; Yang, X.Q.; Lee, H.S.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States); Choi, L.S. [Naval Research Lab., Washington, DC (United States)

    1998-12-31

    A new family of anion receptors based on boron compounds has been synthesized. These compounds can be used as anion receptors in lithium battery electrolytes and can greatly increase solubility and ionic conductivities of various lithium salts, such as LiF, LiCl, CF{sub 3}COOLi and C{sub 2}F{sub 5}COOLi, in DME solutions. Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy studies show that Cl{sup {minus}} anions of LiCl are complexed with these compounds in DME solutions. The electrochemical stability of lithium salts and one of the boron compounds in deferent solvents was studied. For the first time, LiF has been successfully used as conducting salt in a novel electrolyte with this boron compound as an additive in DME. A rechargeable Li/LiMn{sub 2}O{sub 4} cell using this electrolyte was successfully cycled 51 times. However, the capacity fades with cycling due to decomposition of the solvent. The cycling performance of the battery was greatly improved by replacing DME with PC-EC-DMC as the solvent.

  19. Endothelium modulates anion channel-dependent aortic contractions to iodide.

    Science.gov (United States)

    Lamb, F S; Barna, T J

    2000-05-01

    Anion currents contribute to vascular smooth muscle (VSM) membrane potential. The substitution of extracellular chloride (Cl) with iodide (I) or bromide (Br) initially inhibited and then potentiated isometric contractile responses of rat aortic rings to norepinephrine. Anion substitution alone produced a small relaxation, which occurred despite a lack of active tone and minimal subsequent contraction of endothelium-intact rings (4.2 +/- 1.2% of the response to 90 mM KCl). Endothelium-denuded rings underwent a similar initial relaxation but then contracted vigorously (I > Br). Responses to 130 mM I (93.7 +/- 1.9% of 90 mM KCl) were inhibited by nifedipine (10(-6) M), niflumic acid (10(-5) M), tamoxifen (10(-5) M), DIDS (10(-4) M), and HCO(-)(3)-free buffer (HEPES 10 mM) but not by bumetanide (10(-5) M). Intact rings treated with N(omega)-nitro-L-arginine (10(-4) M) responded weakly to I (15.5 +/- 2.1% of 90 mM KCl), whereas hemoglobin (10(-5) M), indomethacin (10(-6) M), 17-octadecynoic acid (10(-5) M), and 1H-[1,2, 4]oxadiazole[4,3-a]quinoxalin-1-one (10(-6) M) all failed to augment the response of intact rings to I. We hypothesize that VSM takes up I primarily via an anion exchanger. Subsequent I efflux through anion channels having a selectivity of I > Br > Cl produces depolarization. In endothelium-denuded or agonist-stimulated vessels, this current is sufficient to activate voltage-dependent calcium channels and cause contraction. Neither nitric oxide nor prostaglandins are the primary endothelial modulator of these anion channels. If they are regulated by an endothelium-dependent hyperpolarizing factor it is not a cytochrome P-450 metabolite. PMID:10775130

  20. Grafted wood pulp containing quaternary ammonium group and its application in the removal of different anions from aqueous solution

    International Nuclear Information System (INIS)

    Network wood pulp based on acrylonitrile has been chemically modified through different reactions to obtain group capable of anion exchange. Graft copolymerization of acrylonitrile onto wood pulp was carried out by using gamma-radiation 60Co. Factors affecting the grafting process e.g radiation dose and monomer concentration were investigated.The chemical modification of cyano groups were carried out by reaction with ethanol amine producing oxazoline group followed by quaternization of tertiary amine by reaction with benzyl chloride producing quaternary ammonium salt. The grafted and modified wood pulp were characterized by FTIR, SEM and TGA.Qualitative experiments of adsorption were conducted to evaluate the modified wood pulp on fixing sulfate, phosphate,nitrate and dichromate from aqueous solution using batch extractions. Based on the results obtained, it may be concluded that it is possible to modify chemically wood pulp containing cyano groups by different routes for its usage as anion exchanger

  1. Cationic and anionic environments in LiTFSI-doped di-ureasils with application in solid-state electrochromic devices

    International Nuclear Information System (INIS)

    Fourier Transform mid-infrared and Raman spectroscopies were used to investigate the cation/polymer, cation/urea bridge, cation/anion and hydrogen bonding interactions in poly(oxyethylene) (POE)/siloxane di-ureasil networks prepared by the sol-gel route and doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Materials with compositions 200 ≥n ≥ 5 (where n expresses the molar ratio OCH2CH2/Li+) were studied. The Li+ ions coordinate to the urea carbonyl oxygen atoms over the whole range of salt concentration considered. Bonding to the ether oxygen atoms of the POE chains occurs at n ≤ 40, although a significant fraction of the POE chains remain non-coordinated. In these high salt content samples, the cations interact with the anions forming contact ion pairs. 'Free' ions are probably the main charge carriers at the room temperature conductivity maximum of these ormolytes

  2. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin

    KAUST Repository

    Wallack, Maxwell J.

    2015-01-01

    Microbial reverse electrodialysis cells (MRECs) combine power generation from salinity gradient energy using reverse electrodialysis (RED), with power generation from organic matter using a microbial fuel cell. Waste heat can be used to distill ammonium bicarbonate into high (HC) and low salt concentration (LC) solutions for use in the RED stack, but nitrogen crossover into the anode chamber must be minimized to avoid ammonia loses, and foster a healthy microbial community. To reduce nitrogen crossover, an additional low concentration (LC) chamber was inserted before the anode using an additional anion exchange membrane (AEM) next to another AEM, and filled with different amounts of anion or cation ion exchange resins. Addition of the extra AEM increased the ohmic resistance of the test RED stack from 103 Ω cm2 (1 AEM) to 295 Ω cm2 (2 AEMs). However, the use of the anion exchange resin decreased the solution resistance of the LC chamber by 74% (637 Ω cm2, no resin; 166 Ω cm2 with resin). Nitrogen crossover into the anode chamber was reduced by up to 97% using 50% of the chamber filled with an anion exchange resin compared to the control (no additional chamber). The added resistance contributed by the use of the additional LC chamber could be compensated for by using additional LC and HC membrane pairs in the RED stack.

  3. Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions.

    Science.gov (United States)

    Wang, Yujuan; Lin, Hui; Jin, Fangyuan; Niu, Junfeng; Zhao, Jinbo; Bi, Ying; Li, Ying

    2016-07-01

    Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion. PMID:27037875

  4. Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure

    OpenAIRE

    Stephen Majoni; Jeanne M. Hossenlopp

    2014-01-01

    Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs) and hydroxy double salts (HDSs) can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release i...

  5. Supramolecular chemistry of selective anion recognition for anions of environmental relevance. Progress report, October 1996--July 1997

    Energy Technology Data Exchange (ETDEWEB)

    Bowman-James, K.; Wilson, G.S.; Kuczera, K. [Univ. of Kansas, Lawrence, KS (US); Moyer, B. [Oak Ridge National Lab., TN (US)

    1997-01-01

    'This project has as its focus the design and synthesis of polyammonium macrocyclic receptors for oxoanions of environmental importance. The basic research aspects of this project involve synthesis (and the search for improved synthetic methods), solid state structure determination and thermodynamics studies (to ascertain structural criteria for and strength of anion binding), and molecular dynamics simulations (to assess solution characteristics of the interactions between anions and their receptors). Applications-oriented goals include the fabrication of more efficient anion-selective electrodes and the use of these compounds in liquid- liquid separations. The latter goal is the subcontract with Bruce Moyer at Oak Ridge National Laboratory. This first year the authors have focused on nitrates and phosphates. Considerable progress has been made in the basic areas of synthesis, solid state Structure, and molecular dynamics. Anion selective electrodes have also be made which show promising selectivities for oxoanions of interest. Below are described the major findings and significance in the categories of synthesis, structure and molecular dynamics, and electrode studies. Synthesis. The synthesis of polyaza macrocycles which are the focus of these studies is often tedious and time-consuming. A major breakthrough which the authors have made this year is to identify other polyaza macrocycles, which also bind the desired anions, but which are simpler to synthesize via a two step Schiff base/reduction process with high yields. This is truly significant since now the authors can obtain large quantities of the macrocycles and do multiple studies at once (crystallizations, thermodynamics, electrode, and eventually separations). Most of their studies to date have focused on monocyclic systems, but they are now beginning to examine bicyclic macrocycles, which can be synthesized by the same method starting with the tetraamine known as tren.'

  6. Development of organovermiculite-based adsorbent for removing anionic dye from aqueous solution

    International Nuclear Information System (INIS)

    This paper reports on the development of organovermiculite-based adsorbent for removing Congo Red (CR), a model anionic dye, from aqueous solution. The organovermiculite was prepared using hexadecyl trimethylammonium bromide (HDTMAB) with variations in cation exchange capacity (CEC) and was then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results from the adsorption experiments showed that with the organic modification of 50, 100, and 200% CEC, the adsorption capacity of vermiculite towards CR was greatly improved from 2.6 to 74.07, 175.44 and 192.31 mg/g, respectively, at 298 K. The adsorption isotherm experiment was conducted at different temperatures (298, 308 and 318 K), and it was found that the uptake of CR increased with increasing temperature. Langmuir and Freundlich isotherm models were applied and the Langmuir model was found to fit the equilibrium data better. The adsorption kinetics was found to follow the pseudo-second-order model. In addition, various thermodynamic parameters such as changes in enthalpy, entropy, and the Gibbs free energy were calculated, showing adsorption to be an endothermic yet spontaneous process. The results indicated that the organovermiculite may be an effective adsorbent for the removal of anionic dyes from wastewater.

  7. Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity.

    Science.gov (United States)

    Gopiraman, Mayakrishnan; Jatoi, Abdul Wahab; Hiromichi, Seki; Yamaguchi, Kyohei; Jeon, Han-Yong; Chung, Ill-Min; Ick Soo, Kim

    2016-09-20

    Herein, we report a comparative study of silver coated anionic cellulose nanocomposite before (CMC-Ag) and after (AgNPs/CMC) chemical reduction for antibacterial activity. Cellulose nanofibers were prepared by deacetylation of electrospun cellulose acetate nanofibers, which were then treated with sodium chloroacetate to prepare anionic cellulose nanofibers (CMC). Aqueous AgNO3 solution with different concentrations was employed to produce nanofiber composites. To obtain AgNPs/CMC, the resultant Ag/CMC nanofibers were chemically reduced with NaBH4. The nanocomposites were characterized by FE-SEM, FTIR, XPS and SEM-EDS. Antimicrobiality tests were conducted using S. aureus and Escherichia coli bacteria following standard test method JIS L1902, 2008. The EDS results confirmed higher silver content in CMC-Ag nanofibers than AgNPs/CMC nanofibers. The antimicrobial test and EDS results demonstrated higher silver release (larger halo width) by the former in comparison to later which confers better antimicrobiality by CMC-Ag nanofibers. PMID:27261729

  8. Perfluoro anion based binary and ternary ionic liquids as electrolytes for dye-sensitized solar cells

    Science.gov (United States)

    Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan

    2016-04-01

    In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.

  9. Extraction of anionic dye from aqueous solutions by emulsion liquid membrane.

    Science.gov (United States)

    Dâas, Attef; Hamdaoui, Oualid

    2010-06-15

    In this work, the extraction of Congo red (CR), an anionic disazo direct dye, from aqueous solutions by emulsion liquid membrane (ELM) was investigated. The important operational parameters governing emulsion stability and extraction behavior of dye were studied. The extraction of CR was influenced by a number of variables such as surfactant concentration, stirring speed, acid concentration in the feed solution and volume ratios of internal phase to organic phase and of emulsion to feed solution. Under most favorable conditions, practically all the CR molecules present in the feed phase were extracted even in the presence of salt (NaCl). At the optimum experimental conditions, total removal of antharaquinonic dye Acid Blue 25 was attained after only 10 min. Influence of sodium carbonate concentration as internal receiving phase on the stripping efficiency of CR was examined. The best sodium carbonate concentration in the internal phase that conducted to excellent stripping efficiency (>99%) and emulsion stability was 0.1N. The membrane recovery was total and the permeation of CR was not decreased up to seven runs. ELM process is a promising alternative to conventional methods and should increase awareness of the potential for recovery of anionic dyes. PMID:20211520

  10. Absence of the bowing character in the common-anion II-VI ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tit, Nacir [Department of Physics, UAE University, P.O. Box 17551, Al-Ain (United Arab Emirates)], E-mail: ntit@uaeu.ac.ae; Obaidat, Ihab M. [Department of Physics, UAE University, P.O. Box 17551, Al-Ain (United Arab Emirates); Alawadhi, Hussain [Department of Applied Physics, University of Sharjah, P.O. Box 27272, Sharjah (United Arab Emirates)

    2009-07-29

    The absence of bandgap bowing in the common-anion II-VI semiconductor ternary alloys is investigated. As examples, we consider the Cd{sub 1-x}Zn{sub x}Te and Cd{sub 1-x}Zn{sub x}Se alloys. The sp{sup 3}s* tight-binding method with the inclusion of spin-orbit interactions is employed to calculate the alloy's band structure and its corresponding constituents' charge states (ionicities) as a function of composition. The variation is found to be nearly linear. The vanishingly small valence-band offset (VBO{approx_equal}0) in common-anion compounds would yield a linear scaling of bandgap energy with composition, especially as the conduction-band edge state being a singlet state with spherical symmetry. Furthermore, the two cation atoms (Cd and Zn) are found not to compete in changing their charge states as the composition is varied. The absence of such competition is believed to be the main reason for the absence of bowing. The theoretical results are compared to the available experimental data and found to be in good agreement.

  11. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    Science.gov (United States)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  12. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  13. Improving the Enzyme Catalytic Efficiency Using Ionic Liquids with Kosmotropic Anions

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Hua; CAMPBELL, Sophia; SOLOMON, Jonathan; SONG, Zhi-Yan; OLUBAJO, Olarongbe

    2006-01-01

    The kosmotropicity of cations and anions in ionic liquids has a strong influence on the enzyme catalytic efficiency in aqueous environments. The kosmotropic anion CF3COO- seemed to activate the protease, and the chaotropic anions tended to destabilize the enzyme.

  14. Synthesis of unsymmetrical N-carboranyl NHCs: directing effect of the carborane anion.

    Science.gov (United States)

    Asay, Matthew J; Fisher, Steven P; Lee, Sarah E; Tham, Fook S; Borchardt, Dan; Lavallo, Vincent

    2015-03-28

    The syntheses of unsymmetrical N-heterocyclic carbenes (NHCs) that contain a single N-bound icosahedral carborane anion substituent are reported. Both anionic C-2 and doubly deprotonated dianionic C-2/C-5 NHC lithium complexes are isolated. The latter species is formed selectively, which reveals a surprising directing effect conveyed by icosahedral carborane anion substituents. PMID:25387660

  15. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance. Final Report

    International Nuclear Information System (INIS)

    increased understanding of the chemical rules that govern the selective sequestration of anions.

  16. Synthetic ion transporters that work with anion-π interactions, halogen bonds, and anion-macrodipole interactions.

    Science.gov (United States)

    Vargas Jentzsch, Andreas; Hennig, Andreas; Mareda, Jiri; Matile, Stefan

    2013-12-17

    The transport of ions and molecules across lipid bilayer membranes connects cells and cellular compartments with their environment. This biological process is central to a host of functions including signal transduction in neurons and the olfactory and gustatory sensing systems, the translocation of biosynthetic intermediates and products, and the uptake of nutrients, drugs, and probes. Biological transport systems are highly regulated and selectively respond to a broad range of physical and chemical stimulation. A large percentage of today's drugs and many antimicrobial or antifungal agents take advantage of these systems. Other biological transport systems are highly toxic, such as the anthrax toxin or melittin from bee venom. For more than three decades, organic and supramolecular chemists have been interested in developing new transport systems. Over time, curiosity about the basic design has evolved toward developing of responsive systems with applications in materials sciences and medicine. Our early contributions to this field focused on the introduction of new structural motifs with emphasis on rigid-rod scaffolds, artificial β-barrels, or π-stacks. Using these scaffolds, we have constructed selective systems that respond to voltage, pH, ligands, inhibitors, or light (multifunctional photosystems). We have described sensing applications that cover the three primary principles of sensor development: immunosensors that use aptamers, biosensors (an "artificial" tongue), and differential sensors (an "artificial" nose). In this Account, we focus on our recent interest in applying synthetic transport systems as analytical tools to identify the functional relevance of less common noncovalent interactions, anion-π interactions, halogen bonds, and anion-macrodipole interactions. Anion-π interactions, the poorly explored counterpart of cation-π interactions, occur in aromatic systems with a positive quadrupole moment, such as TNT or hexafluorobenzene. To observe

  17. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  18. Epithelial Anion Transport as Modulator of Chemokine Signaling

    Science.gov (United States)

    Schnúr, Andrea; Hegyi, Péter; Rousseau, Simon; Lukacs, Gergely L.; Veit, Guido

    2016-01-01

    The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases. PMID:27382190

  19. Facile synthesis of hollow silica nanospheres employing anionic PMANa templates

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Takai, Chika; Shirai, Takashi; Fuji, Masayoshi, E-mail: fuji@nitech.ac.jp [Nagoya Institute of Technology, Advanced Ceramic Research Center (Japan)

    2015-05-15

    This article presents a facile and green route to the synthesis of hollow silica particles by means of anionic particles of poly(sodium methacrylate) (PMANa) as templates. This method was composed of the following three steps: formation of PMANa particles in ethanol by nanoprecipitation, the deposition of silica shell on the polymer cores through sol–gel process of tetraethylorthosilicate under catalysis of ammonia, and removal of the polymer templates by washing with water. The templates’ size can be controlled in the range of about 70–140 nm by altering the ratio of ethanol to water, the polymer solution concentration, the ethanol amount in polymer solution, and the silica shell thickness can be adjusted between 15 and 30 nm by varying the ratio of silica precursor to the polymer cores. A tentative interpretation about the silica-coating process on the anionic PMANa particles was also proposed according to the experimental results.

  20. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    S Radha; P Vishnu Kamath

    2013-10-01

    Transition metal complexes intercalated in layered double hydroxides have a different electronic structure as compared to their free state owing to their confinement within the interlayer gallery. UV–Vis absorptions of the intercalated complex anions show a significant shift as compared to their free state. The ligand to metal charge transfer transitions of the ferricyanide anion show a red shift on intercalation. The ferrocyanide ion shows a significant blue shift of – bands due to the increased separation between 2g and g levels on intercalation. MnO$^{-}_{4}$ ion shows a blue shift in its ligand to metal charge transfer transition since the non-bonding 1 level of oxygen from which the transition arises is stabilized.

  1. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing

    Directory of Open Access Journals (Sweden)

    Olga KOVTUNENKO

    2016-09-01

    Full Text Available Thermal properties of anionic polyurethane composition mixed with collagen product and hydrophilic sodium form of montmorillonite for use in the finishing of leather were studied by thermogravimetric method. The thermal indices of processes of thermal and thermo-oxidative destruction depending on the polyurethane composition were determined. The influence of anionic polyurethane composition on thermal behavior of chromium tanned gelatin films that imitate the leather were studied. APU composition with natural compounds increases their thermal stability both in air and in nitrogen atmosphere due to the formation of additional bonds between active groups of APU, protein and chrome tanning agent as the result of chemical reactions between organic and inorganic parts with the new structure formation.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10043

  2. The immobilization of anion exchange resins in polymer modified cements

    International Nuclear Information System (INIS)

    Organic anion exchange resins, loaded with 99-Tc as the pertechnate ion, were incorporated into polymer modified cements (Flexocrete Ltd, Preston). BFS/OPC (9:1 mix) also was modified by three polymers from the same source (styrene acrylic (2) styrene butadiene) and loaded with anion exchanger containing the pertechnate. Composites were tested for initial compressive strengths, under water and radiation stability and leach rate. IAEA standard leach testing was with simulated sea and ground waters. Ground water leaching also was carried out on composites subjected to 1.109 rads (γ). Leach testing correlated well with compressive strength. Modified composites performed better than the BFS/OPC mix under all conditions studied and were able to encapsulate higher resin loadings. (author)

  3. Mechanism of boric acid sorption on strongly basic anion exchangers

    International Nuclear Information System (INIS)

    The sorption was studied of boric acid at different temperatures and initial solution concentrations on the strongly basic anion exchange resin DIAION SA10A. The pH value of the ion exchange resin phase was determined using acidobasic indicators. The results of measurement, mathematically and graphically processed show that the increased sorption capacity of strongly basic anion exchange resins resulting from the increased concentration of the boric acid sorption solution is due to the presence of the polyborate forms (B3O3(OH)4- and B3O3(OH)52-) in the ion exchange phase. Increasing the temperature results in boric acid release from the ion exchange resin as a result of the transformation of sorbed polyborate forms to the simpler (B(OH)4-) forms. (Ha)

  4. Separation of B-10 with weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    In the study of B-10 isotope separation with weakly basic anion exchanger, the sorption isotherms of boric acid on WA-21 weak-base anion exchange resin and the sorption band shapes as well as its migration velocities in a four-inch diameter ion exchange column, were studied. The isotherms show S-shapes with gentle slope at both low concentration and high concentration regions. In the band migration study, it has been found that these S-shaped isotherms affected the velocities of the peak maximum as the band migrated along the column. The velocities could be calculated with the simple solute movement equation. These results suggest that sorption of molecular species, rather than ion exchange of the counterions is the main process that occurs inside the pores of a weak-base ion exchange resin which is in contact with a very weak electrolytic solution, such as that of boric acid. (author)

  5. Macrocyclic bis(ureas as ligands for anion complexation

    Directory of Open Access Journals (Sweden)

    Claudia Kretschmer

    2014-08-01

    Full Text Available Two macrocyclic bis(ureas 1 and 2, both based on diphenylurea, have been synthesized. Compound 1 represents the smaller ring with two ethynylene groups as linkers and 2 the larger ring with two butadiynylene groups. On thermal treatment to 130 °C molecule 1 splits up into two dihydroindoloquinolinone (3 molecules. Both compounds 1 and 2 form adducts with polar molecules such as dimethyl sulfoxide (DMSO and dimethylformamide (DMF and act as complexing agents towards a series of anions (Cl−, Br−, I−, NO3−, HSO4−. The crystal structures of 3, 2·2DMSO, 2·2DMF, and of the complex NEt4[Br·2] have been determined. Quantitative investigations of the complexation equilibria were performed via 1H NMR titrations. While 1 is a rather weak complexing agent, the large ring of 2 binds anions with association constants up to log K = 7.93 for chloride ions.

  6. Facile synthesis of hollow silica nanospheres employing anionic PMANa templates

    International Nuclear Information System (INIS)

    This article presents a facile and green route to the synthesis of hollow silica particles by means of anionic particles of poly(sodium methacrylate) (PMANa) as templates. This method was composed of the following three steps: formation of PMANa particles in ethanol by nanoprecipitation, the deposition of silica shell on the polymer cores through sol–gel process of tetraethylorthosilicate under catalysis of ammonia, and removal of the polymer templates by washing with water. The templates’ size can be controlled in the range of about 70–140 nm by altering the ratio of ethanol to water, the polymer solution concentration, the ethanol amount in polymer solution, and the silica shell thickness can be adjusted between 15 and 30 nm by varying the ratio of silica precursor to the polymer cores. A tentative interpretation about the silica-coating process on the anionic PMANa particles was also proposed according to the experimental results

  7. Anion analysis using capillary electrophoresis in the Halden reactor

    International Nuclear Information System (INIS)

    A significant investment has been made over the last decade in water chemistry analysis capability at the Halden Reactor, reflecting both the need to maintain system reliability and to provide chemical analyses for the increasing number of corrosion and chemistry-related experiments being performed in the reactor. Control of concentrations of anionic species (chloride, sulphate and nitrate) is of crucial importance in reducing the potential of stainless steel components to undergo stress corrosion cracking. Currently at Halden, samples must be taken from the coolant in the reactor itself, several auxiliary systems and approximately 10 test loop systems. Previously, anion analyses were performed using ion chromatography. In 1996, this technique was superseded by capillary electrophoresis since the latter has several advantages over the former, including speed of analysis. This paper will present operational experience of using capillary electrophoresis from two different suppliers. A discussion of the advantages and disadvantages of the technique over ion chromatography is included. (author)

  8. Microsolvation effects on the electron binding energies of halide anions

    Science.gov (United States)

    Dolgounitcheva, O.; Zakrzewski, V. G.; Streit, L.; Ortiz, J. V.

    2014-02-01

    Ab initio electron propagator calculations in the partial third order (P3) and P3+ approximations were performed to obtain vertical electron detachment energies (VEDEs) of fluoride and chloride clusters with one through three molecules of water. Larger clusters of F- and Cl- with six water molecules were also treated with and without the polarisable continuum model (PCM). For the smaller clusters, good agreement between calculated VEDEs and peak positions in photoelectron spectra is achieved. Large shifts in VEDEs are observed for both hexameric fluoride-water and chloride-water complexes when the PCM is applied. Significant changes in coordination geometries about the chloride anion also occur in this model. In all fluoride complexes, Dyson orbitals for the lowest VEDEs are delocalised over oxygen atoms. On the contrary, for the case of chloride-water clusters, the Dyson orbitals corresponding to the lowest VEDEs are localised on the anion.

  9. Cellulose based conductive polymers

    OpenAIRE

    Lin, Haishu

    2015-01-01

    Conductive fibers show potential applications in different areas. In this thesis, cellulose and its derivatives, including carboxymethyl cellulose, cellulose acetate as well as methyl cellulose were used to produce fibers via wet spinning. Different conductive materials were also introduced in an attempt to obtain cellulose-derived conductive fibers. Different conductive fillers (Zelec, carbon black, conductive polymers) were evaluated. Among them, PEDOT and PPy conductive polymers showed...

  10. Quasielastic neutron scattering study of tetrahydroborate anion dynamical perturbations in sodium borohydride due to partial halide anion substitution

    Energy Technology Data Exchange (ETDEWEB)

    Verdal, Nina [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Udovic, Terrence J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Rush, John J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Skripov, Alexander V. [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation)

    2015-10-05

    Highlights: • NaBH{sub 4}–NaX (X = Cl, I) solutions were made by ball-milling/annealing pure compounds. • BH{sub 4}{sup −} reorientational motions were studied by quasielastic neutron scattering. • Mobility increased from X = Cl to NaBH{sub 4} to X = I, consistent with expanding lattices. • Near 400 K, BH{sub 4}{sup −} favored cubic tumbling for X = Cl and tetrahedral tumbling for X = I. • Activation energies were in the range of 11–12 kJ mol{sup −1} for both compounds. - Abstract: Equimolar NaBH{sub 4}–NaX (X = Cl and I) solid solutions were synthesized to study, via quasielastic neutron scattering, the effect of partial halide anion substitution on the reorientational dynamics of tetrahydroborate (BH{sub 4}{sup −}) anions in NaBH{sub 4}. The BH{sub 4}{sup −} reorientational mobility increased in the order of NaBH{sub 4}–NaCl, NaBH{sub 4}, and NaBH{sub 4}–NaI, which corresponded with expanding face-centered-cubic lattices accommodating the respective increasing sizes of the Cl{sup −}, BH{sub 4}{sup −}, and I{sup −} anions. The BH{sub 4}{sup −} anions in NaBH{sub 4}–NaCl were found (at least above 400 K) to undergo ‘cubic’ tumbling motions with the four H atoms per anion visiting all eight corners of a cube, similar to what was previously observed for NaBH{sub 4}. In contrast, the BH{sub 4}{sup −} anions in NaBH{sub 4}–NaI were found to undergo something more akin to ‘tetrahedral’ tumbling motions, where the H atoms visit all four corners of a tetrahedron. Despite a noticeable softening of the BH{sub 4}{sup −} torsional energies with increasing lattice constant amongst NaBH{sub 4} and the two solid solutions, all three compounds exhibited similar activation energies for reorientation of about 11–12 kJ mol{sup −1}.

  11. Impact of microstructure on anion exclusion in compacted clay media

    OpenAIRE

    Tournassat, Christophe; Gaboreau, Stéphane; Robinet, Jean-Charles; Bourg, Ian C.; Steefel, Carl I

    2015-01-01

    International audience The sensitivity of ion concentration distribution models to three key model assumptions, the pore-size distribution of clay media, the distance of closest approach of ions to the clay surface, and the accessibility of sub-nanometer-wide clay mineral interlayer spaces to anions, was explored by solving the Poisson-Boltzmann equation for swelling and non-swelling clay materials. Our calculations show that all three model assumptions significantly impact values predicte...

  12. Local impermeant anions establish the neuronal chloride concentration

    DEFF Research Database (Denmark)

    Glykys, J; Dzhala, V; Egawa, K;

    2014-01-01

    Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of γ-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulat...... anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling....

  13. Alkaline Anion-Exchange Membranes Containing Mobile Ion Shuttles.

    Science.gov (United States)

    Ge, Xiaolin; He, Yubin; Guiver, Michael D; Wu, Liang; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2016-05-01

    A new class of alkaline anion-exchange membranes containing mobile ion shuttles is developed. It is achieved by threading ionic linear guests into poly(crown ether) hosts via host-guest molecular interaction. The thermal- and pH-triggered shuttling of ionic linear guests remarkably increases the solvation-shell fluctuations in inactive hydrated hydroxide ion complexes (OH(-) (H2 O)4 ) and accelerates the OH(-) transport. PMID:26972938

  14. Synthesis of Cationic Extended Frameworks for Anion-Based Applications

    OpenAIRE

    Fei, Honghan

    2012-01-01

    Many of the metal pollutants listed as priorities by the EPA (U.S. Environmental Protection Agency) occur in water as their oxo-hydroxo anionic forms (e.g. perchlorate, chromate, selenite, etc.). Radioactive technetium (Tc-99) in the form of soluble pertechnetate (TcO4−) is highly problematic in low-activity waste (LAW) to separate the nuclear waste into primary solids. Its easy leakage from glass after vitrification does not meet long-term storage performance assessment requirements. ...

  15. Organic resin anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Organic anion exchange resins are evaluated for 99-TcO4- (pertechnate) removed from aqueous nuclear waste streams. Chemical, thermal and radiation stabilities were studied. Selected resins were examined in detail for their selectivities in the presence of I-, NO3-, SO4=, CO3=, Cl- and OH-. Ion exchange equilibria and kinetic mechanisms were determined. Preliminary investigations of cement encapsulation in polymer modified form were made and some leach studies carried out. (author)

  16. Quasi-Chemical and Structural Analysis of Polarizable Anion Hydration

    OpenAIRE

    Rogers, David M.; Beck, Thomas L.

    2009-01-01

    Quasi-chemical theory is utilized to analyze the roles of solute polarization and size in determining the structure and thermodynamics of bulk anion hydration for the Hofmeister series Cl$^-$, Br$^-$, and I$^-$. Excellent agreement with experiment is obtained for whole salt hydration free energies using the polarizable AMOEBA force field. The quasi-chemical approach exactly partitions the solvation free energy into inner-shell, outer-shell packing, and outer-shell long-ranged contributions by...

  17. Factors Affecting Anion Movement and Retention in Four Forest Soils

    OpenAIRE

    D. W. Johnson; Cole, D. W.; Van Miegroet, Helga; Horng, F. W.

    1986-01-01

    Three hypotheses concerning the movement and retention of anions in forest soils were tested in a series of laboratory and field studies on two Tennessee Ultisols with mixed deciduous forest cover and two Washington Inceptisols, one with deciduous (red alder Alnus rubra Bong.) and one with coniferous [Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco] forest cover. The first hypothesis, that sulfate and phosphate retention was related to adsorption to free Fe and Al oxides, which were in turn...

  18. Uptake of trace elements in human hair by anion exchange

    International Nuclear Information System (INIS)

    The sorption of some trace elements to human hair is studied by means of radioactive tracers. Experiments with 59Fe, 64Cu, 65Zn, 72Ga and 115Cd in HCl media show a great similarity between human hair and Dowex 1-x10, indicating that the hair acts as a strongly basic anion exchanger. A corresponding similarity with strong cation exchangers is not found. Specific sorption of trace elements seems to be of little use in hair identification studies. (author)

  19. Thermal behaviour of synthetic pyroaurite-like anionic clay

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Balek, Vladimír; Dorničák, V.; Martinec, Petr; Mašláň, M.; Vaculíková, Lenka; Koloušek, D.; Bountsewa, M.

    2003-01-01

    Roč. 71, - (2003), s. 727-737. ISSN 0368-4466 R&D Projects: GA ČR GA202/00/0982; GA ČR GA106/02/0523 Institutional research plan: CEZ:AV0Z4032918; CEZ:AV0Z3086906 Keywords : pyroaurite-like anionic clay * thermal decomposition Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.094, year: 2003

  20. Thermal behaviour of synthetic pyroaurite-like anionic clay

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Balek, Vladimír; Dorničák, V.; Martinec, P.; Mašláň, M.; Bílková, L.; Koloušek, D.; Bountsewa, I. M.

    2003-01-01

    Roč. 72, č. 1 (2003), s. 727-737. ISSN 1388-6150 R&D Projects: GA MŠk LN00A028; GA ČR GA202/00/0982; GA ČR GA106/02/0523 Institutional research plan: CEZ:AV0Z4032918 Keywords : layered double hydroxide * pyroaurite-like anionic clay * thermal decomposition Subject RIV: CA - Inorganic Chemistry Impact factor: 1.094, year: 2003

  1. Inorganic anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Inorganic anion exchangers are evaluated for Tc, I and S isotope removal from aqueous nuclear waste streams. Chemical, thermal, and radiation stabilities were examined. Selected exchangers were examined in detail for their selectivities, kinetics and mechanism of the sorption process (especially in NO3-, OH- and BO3- environments). Cement encapsulation and leaching experiments were made on the exchangers showing most promise for 'radwaste' treatment. (author)

  2. Block and Graft Copolymers Containing Carboxylate or Phosphonate Anions

    OpenAIRE

    Hu, Nan

    2014-01-01

    This dissertation focuses on synthesis and characterization of graft and block copolymers containing carboxylate or phosphonate anions that are potential candidates for biomedical applications such as drug delivery and dental adhesives. Ammonium bisdiethylphosphonate (meth)acrylate and acrylamide phosphonate monomers were synthesized based on aza-Michael addition reactions. Free radical copolymerizations of these monomers with an acrylate-functional poly(ethylene oxide) (PEO) macromonomer...

  3. Comment on "Local impermeant anions establish the neuronal chloride concentration".

    Science.gov (United States)

    Luhmann, Heiko J; Kirischuk, Sergei; Kilb, Werner

    2014-09-01

    Glykys et al. (Reports, 7 February 2014, p. 670) proposed that cytoplasmic impermeant anions and polyanionic extracellular matrix glycoproteins establish the local neuronal intracellular chloride concentration, [Cl(-)]i, and thereby the polarity of γ-aminobutyric acid type A (GABAA) receptor signaling. The experimental procedures and results in this study are insufficient to support these conclusions. Contradictory results previously published by these authors and other laboratories are not referred to. PMID:25190788

  4. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Mangilal; Xing Qi; Lvov, Yuri [Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272 (United States); Shim, Bong Sup; Kotov, Nicholas [Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Varahramyan, Kody [Electrical and Computer Engineering Department, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)], E-mail: agarwal@iupui.edu

    2009-05-27

    Composite nanocoating of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) and aqueous dispersion of carbon nanotubes (CNT-PSS) on lignocellulose wood microfibers has been developed to make conductive microfibers and paper sheets. To construct the multilayers on wood microfibers, cationic poly(ethyleneimine) (PEI) has been used in alternate deposition with anionic conductive PEDOT-PSS and solubilized CNT-PSS. Using a Keithley microprobe measurement system, current-voltage measurements have been carried out on single composite microfibers after deposition of each layer to optimize the electrical properties of the coated microfibers. The conductivity of the resultant wood microfibers was in the range of 10{sup -2}-2 S cm{sup -1} depending on the architecture of the coated layer. Further, the conductivity of the coated wood microfibers increased up to 20 S cm{sup -1} by sandwiching multilayers of conductive co-polymer PEDOT-PSS with CNT-PSS through a polycation (PEI) interlayer. Moreover, paper hand sheets were manufactured from these coated wood microfibers with conductivity ranging from 1 to 20 S cm{sup -1}. A paper composite structure consisting of conductive/dielectric/conductive layers that acts as a capacitor has also been fabricated and is reported.

  5. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers

    Science.gov (United States)

    Agarwal, Mangilal; Xing, Qi; Shim, Bong Sup; Kotov, Nicholas; Varahramyan, Kody; Lvov, Yuri

    2009-05-01

    Composite nanocoating of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) and aqueous dispersion of carbon nanotubes (CNT-PSS) on lignocellulose wood microfibers has been developed to make conductive microfibers and paper sheets. To construct the multilayers on wood microfibers, cationic poly(ethyleneimine) (PEI) has been used in alternate deposition with anionic conductive PEDOT-PSS and solubilized CNT-PSS. Using a Keithley microprobe measurement system, current-voltage measurements have been carried out on single composite microfibers after deposition of each layer to optimize the electrical properties of the coated microfibers. The conductivity of the resultant wood microfibers was in the range of 10-2-2 S cm-1 depending on the architecture of the coated layer. Further, the conductivity of the coated wood microfibers increased up to 20 S cm-1 by sandwiching multilayers of conductive co-polymer PEDOT-PSS with CNT-PSS through a polycation (PEI) interlayer. Moreover, paper hand sheets were manufactured from these coated wood microfibers with conductivity ranging from 1 to 20 S cm-1. A paper composite structure consisting of conductive/dielectric/conductive layers that acts as a capacitor has also been fabricated and is reported.

  6. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers

    International Nuclear Information System (INIS)

    Composite nanocoating of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) and aqueous dispersion of carbon nanotubes (CNT-PSS) on lignocellulose wood microfibers has been developed to make conductive microfibers and paper sheets. To construct the multilayers on wood microfibers, cationic poly(ethyleneimine) (PEI) has been used in alternate deposition with anionic conductive PEDOT-PSS and solubilized CNT-PSS. Using a Keithley microprobe measurement system, current-voltage measurements have been carried out on single composite microfibers after deposition of each layer to optimize the electrical properties of the coated microfibers. The conductivity of the resultant wood microfibers was in the range of 10-2-2 S cm-1 depending on the architecture of the coated layer. Further, the conductivity of the coated wood microfibers increased up to 20 S cm-1 by sandwiching multilayers of conductive co-polymer PEDOT-PSS with CNT-PSS through a polycation (PEI) interlayer. Moreover, paper hand sheets were manufactured from these coated wood microfibers with conductivity ranging from 1 to 20 S cm-1. A paper composite structure consisting of conductive/dielectric/conductive layers that acts as a capacitor has also been fabricated and is reported.

  7. Stability of atoms in the anionic domain (Z

    CERN Document Server

    Gil, G

    2013-01-01

    We study the stability and universal behaviour of the ionization energy of N-electron atoms with nuclear charge Z in the anionic domain (Zanionic instability threshold. As testing systems we choose inert gases (He-like, Ne-like and Ar-like isoelectronic sequences) and alkali metals (Li-like, Na-like, K-like sequences). From the results, it is apparent that, for inert gases case, the stability relation with N is completely inverted in the singly-charged anion region (Z=N-1) with respect to the neutral atom region (Z=N), i.e. larger systems are more stable than the smaller ones. We devised a semi-analytical model (inspired by the zero-range forces theory) which lead us to establish the ionization energy dependence on the nuclear charge n...

  8. Chemistry of nitrile anions in the interstellar medium

    International Nuclear Information System (INIS)

    Despite the extreme conditions of temperature (down to 10K) and density (down to 100 molecules/cm3), the giant molecular clouds and the circumstellar envelopes present a rich and complex chemistry. To date, more than 180 molecules have been detected in the InterStellar Medium (ISM) with a large abundance of nitriles (RC≡N). In addition, several anions have been recently observed in this medium: C4H¯, C6H¯, C8H¯, CN¯, C3N¯ and C5N¯. These last species should play a key role in the molecular growth towards complexity. To explore this hypothesis, their reactivity must be studied in the laboratory. The FALP-MS and the CRESU experimental apparatuses of the Rennes University are able to measure absolute rate coefficient of various chemical reactions, including the ion – molecule reactions, in gas phase at low temperature (from 300K for the FALP-MS down to 15K for the CRESU). Therefore, these experimental tools are particularly adapted to the kinetic studies of reactions potentially involved in the Interstellar Medium. One of the difficulties encountered in experiments with anions is their generation. We describe here the formation of the CN¯ and C3N¯ anions by dissociative electron attachment on the molecular precursors BrCN and BrC3N

  9. Fixing of metallic acetates on an anion-exchange resin

    International Nuclear Information System (INIS)

    After giving a brief review of the theoretical principles governing the fixation of anionic complexes of metallic elements on an anion exchange resin, we consider the particular case of uranyl acetate. By plotting the partition curves we have been able to calculate the exchange constants in the resin. By studying the changes in the logarithm of the limiting partition coefficient as a function of the logarithm of the free acetate ion concentration, it has been possible to calculate the dissociation constants for the complexes in solution. The fixation of a large number of metallic acetates has been studied. All the tests have been negative except in the case of mercury. For this reason we have been able to consider the possibility of separating uranium from a certain number of elements. Some of these separations are possible even in the presence of interfering anions such as chlorides which have a greater affinity for the resin than have the acetate ions. In the case of water-ethanol and water-isopropanol mixtures, we have improved the conditions under which copper acetate and mercury acetate may be fixed. This study has enabled us to calculate the dissociation constant for the CuAc3- complex in the mixtures water +40% (by weight) isopropanol and water +50% (by weight) isopropanol. It should also make it possible to use separation conditions which could not hitherto be applied in aqueous media. (author)

  10. An anionic antimicrobial peptide from toad Bombina maxima.

    Science.gov (United States)

    Lai, Ren; Liu, Hen; Hui Lee, Wen; Zhang, Yun

    2002-07-26

    Amphibian skin is a rich resource of antimicrobial peptides like maximins and maximins H from toad Bombina maxima. A novel cDNA clone encoding a precursor protein that comprises maximin 3 and a novel peptide, named maximin H5, was isolated from a skin cDNA library of B. maxima. The predicted primary structure of maximin H5 is ILGPVLGLVSDTLDDVLGIL-NH2. Containing three aspartate residues and no basic amino acid residues, maximin H5 is characterized by an anionic property. Different from cationic maximin H peptides, only Gram-positive strain Staphylococcus aureus was sensitive to maximin H5, while the other bacterial and fungal strains tested were resistant to it. The presence of metal ions, like Zn2+ and Mg2+, did not increase its antimicrobial potency. Maximin H5 represents the first example of potential anionic antimicrobial peptides from amphibians. The results provide the first evidence that, together with cationic antimicrobial peptides, anionic antimicrobial peptides may also exist naturally as part of the innate defense system. PMID:12127963

  11. Phosphate Removal by Anion Binding on Functionalized Nanoporous Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Chouyyok, Wilaiwan; Wiacek, Robert J.; Pattamakomsan, Kanda; Sangvanich, Thanapon; Grudzien, Rafal M.; Fryxell, Glen E.; Yantasee, Wasanna

    2010-03-26

    Phosphate was captured from aqueous solutions by cationic metal-EDA complexes anchored inside mesoporous silica MCM-41 supports (Cu(II)-EDA-SAMMS and Fe(III)-EDA-SAMMS). Fe-EDA-SAMMS was more effective at capturing phosphate than the Cu-EDA-SAMMS and was further studied for matrix effects (e.g., pH, ionic strength, and competing anions) and sorption performance (e.g., capacity and rate). The adsorption of phosphate was highly pH dependent; it increased with increasing pH from 1.0 to 6.5, and decreased above pH 6.5. The adsorption was affected by high ionic strength (0.1 M of NaCl). In the presence of 1000-fold molar excess of chloride and nitrate anions, phosphate removal by Fe-EDA-SAMMS was not affected. Slight, moderate and large impacts were seen with bicarbonate, sulfate and citrate anions, respectively. The phosphate adsorption data on Fe-EDA-SAMMS agreed well with the Langmuir model with the estimated maximum capacity of 43.3 mg/g. The material displayed rapid sorption rate (99% of phosphate removal within 1 min) and lowering the phosphate content to ~ 10 µg/L of phosphorus, which is lower than the EPA’s established freshwater contaminant level for phosphorous (20 µg/L).

  12. Effect of Anion on Adsorption of Rare Earth Elements on Kaolinite

    Institute of Scientific and Technical Information of China (English)

    Wan Yingxin; Liu Jianjun

    2007-01-01

    For a better understanding the adsorption of rare earth elements (REEs) on minerals and its controlling factors, adsorption experiments were performed with kaolin in a matrix of various concentration of anion (Cl-, ClO4-, SO42-) in the pH 6.5. The adsorption of REEs onto the kaolin increase with increasing anion concentration, especially in the presence of SO42-, which is ascribe to the Na+ mass effect and anion complexation. furthermore, the heavy REEs are more adsorbed onto kaolin in presence of higher concentration of anion, especially for Cl- and SO42-, presumably due to the difference of anion complexation with light REE and heavy REEs.

  13. Effect of anions on Toxicity of Cadmium Applied to MIcrobial Biomass in Red Soil

    Institute of Scientific and Technical Information of China (English)

    K.S.KHAN; XIEZHENGMIAO; 等

    1997-01-01

    A laboratory incubation experiment was conducted to elucidat the effects of associated anions on toxicity of cadmium applied to microbial biomass in the red soil. Cadmium was applied at six different levels,i.e.,O(background),5,15,30,60 and 100μg g-1 soil in the form of either cadmium acetate or cadmium chloride. Application of cadmium as cadmium acetate markedly reduced the soil microbial biomass carbon compared to cadmium applied as cadmium chlorde at all the tested levels.Similarly,organic carbon to biomass carbon ration in the soil was markedly increased by increasing the level of the cadmium in the soil as cadmium acetate,while the change wa much smaller in the case of cadmium chloride at the same cadmium levels.The results suggested that due consideration should be given to the source of cadmium while deciding the cadmium levles in experiments.

  14. Study on the adsorption kinetics of orthophosphate anions on layer double hydroxide

    Institute of Scientific and Technical Information of China (English)

    PENG Shuchuan; L(U) Lü; WANG Jin; HAN Lu; CHEN Tianhu; JIANG Shaotong

    2009-01-01

    A kinetic study was conducted on the adsorption of orthophosphate anions on layer double hydroxide (LDH). The adsorption has proved itself to be a spontaneous endothermic process and is large in capacity and rate. The adsorption isotherm correlates well with the Freundlich model, and a rise in temperature will lead to an increase in adsorption efficiency. Additionally, the results suggested that the adsorption is an entropy-increasing process and is in good agreement with the pseudo-second order kinetics. The free energy (ΔG) of adsorption of orthophosphate onto LDH varies within the range of -1.75- -3.34 kJ/mol, the enthalpy (ΔH) varies by 7.96 kJ/mol and the entropy (ΔS) by 33.59 kJ/mol. The adsorption activation energy is 8.3 kJ/mol, showing that the adsorption of orthophosphate onto LDH is determined to be a physical adsorption.

  15. Leishmania amazonensis: Anionic currents expressed in oocytes upon microinjection of mRNA from the parasite.

    Science.gov (United States)

    Lagos M, Luisa F; Moran, Oscar; Camacho, Marcela

    2007-06-01

    Transport mechanisms involved in pH homeostasis are relevant for the survival of Leishmania parasites. The presence of chloride conductive pathways in Leishmania has been anticipated since anion channel inhibitors limit the proton extrusion mediated by the H+ATPase, which is the major regulator of intracellular pH in amastigotes. In this study, we used Xenopus laevis oocytes as a heterologous expression system in which to study the expression of ion channels upon microinjection of polyA mRNA from Leishmania amazonensis. After injection of polyA mRNA into the oocytes, we measured three different types of currents. We discuss the possible origin of each, and propose that Type 3 currents could be the result of the heterologous expression of proteins from Leishmania since they show different pharmacological and biophysical properties as compared to endogenous oocyte currents. PMID:17328895

  16. Extraction of Tetra-oxo Anions into a Hydrophobic, Ionic Liquid-Based Solvent Without Concomitant Ion Exchange

    International Nuclear Information System (INIS)

    Hydrophobic ionic liquids (IL) have the potential to simplify certain separations by serving as both an extraction solvent and an electrolyte for subsequent electrochemical reductions. While IL-based solvents are known to be efficient media for metal ion extraction, separations employing these solvents are frequently complicated by the loss of constituent IL ions to the aqueous phase, resulting in deteriorating performance. In this study, we have examined the extraction of pertechnetate and related tetra-oxo anions from aqueous solutions into IL-based solvents incorporating tetraalkylphosphonium bis((trifluoromethyl)sulfonyl)imide and a crown ether. In contrast to various previously studied IL-based cation extraction systems, facile anion extraction without significant transfer of the IL ions to the aqueous phase has been observed. In addition, the solvents exhibit high distribution ratios (100-500 for pertechnetate), significant electrical conductivity (>100 (micro)S/cm), and a wide (∼4 V) electrochemical window. The results suggest that these solvents may provide the basis for improved approaches to the extraction and recovery of a variety of anions.

  17. THE EFFECT OF IONIC STRENGTH ON THE UPTAKE OF TAURINE ON A STRONG-BASIC ANION EXCHANGE RESIN

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Studied the effect of ionic strength on the uptake of taurine on a strong-basic anionexchange resin. The batch phase equilibrium experiments of ta urine on the anion exchange resin D290 were conducted at different ionic strength, and then the amounts of uptake of taurine on the resin at different pH were determined. The ion exchange mechanisms of taurine on the anion exchange resin at different pH were discussed. Experimental results showed that with increase of the ionic strength of solution, the adsorbed amount of taurine on the resin D290 decreased; Adding small amounts of NaOH or HCl into the system of taurine aqueous solution/D290 anionresin would make the amount of taurine taken up on the resin to decrease due to the competition uptakes of hydroxyl ion with taurine or the decrease in the amount of absorbable zwitterions of taurine in the solution and excluding the cations of taurine from the anion resin.

  18. A study on the electron transport properties of ZnON semiconductors with respect to the relative anion content

    Science.gov (United States)

    Park, Jozeph; Kim, Yang Soo; Ok, Kyung-Chul; Park, Yun Chang; Kim, Hyun You; Park, Jin-Seong; Kim, Hyun-Suk

    2016-04-01

    High-mobility zinc oxynitride (ZnON) semiconductors were grown by RF sputtering using a Zn metal target in a plasma mixture of Ar, N2, and O2 gas. The RF power and the O2 to N2 gas flow rates were systematically adjusted to prepare a set of ZnON films with different relative anion contents. The carrier density was found to be greatly affected by the anion composition, while the electron mobility is determined by a fairly complex mechanism. First-principles calculations indicate that excess vacant nitrogen sites (VN) in N-rich ZnON disrupt the local electron conduction paths, which may be restored by having oxygen anions inserted therein. The latter are anticipated to enhance the electron mobility, and the exact process parameters that induce such a phenomenon can only be found experimentally. Contour plots of the Hall mobility and carrier density with respect to the RF power and O2 to N2 gas flow rate ratio indicate the existence of an optimum region where maximum electron mobility is obtained. Using ZnON films grown under the optimum conditions, the fabrication of high-performance devices with field-effect mobility values exceeding 120 cm2/Vs is demonstrated based on simple reactive RF sputtering methods.

  19. Electron exchange between dipole-bound anion and polar molecule and dipole-bound anions dimer formation

    International Nuclear Information System (INIS)

    We consider collision between a dipole-bound molecular anion and a neutral polar molecule and show that the excess electron can bind two neutral molecules into a dimer. Using a variational approach similar to the Heitler-London model of H''+2 ion we obtain the energy terms of such a dimer. Their difference determines the cross-section of electron transfer from the anion to the neutral molecule in quasiclassical near-resonant Born-Oppenheimer approximation. We obtain for the cross-section an analytic expression containing the weak (logarythmic) factor depending on the molecular dipole moment, and collision velocity. Our analytic calculations are in a good accordance with the results of a recent experiment.

  20. Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia

    Science.gov (United States)

    Li, Hongyu; Valkenier, Hennie; Judd, Luke W.; Brotherhood, Peter R.; Hussain, Sabir; Cooper, James A.; Jurček, Ondřej; Sparkes, Hazel A.; Sheppard, David N.; Davis, Anthony P.

    2016-01-01

    Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especially promising activity, including deliverability, potency and persistence. Electrophysiological tests show strong effects in epithelia, close to those of natural anion channels. Toxicity assays yield negative results in three cell lines, suggesting that promotion of anion transport may not be deleterious to cells. We therefore conclude that synthetic anion carriers are realistic candidates for further investigation as treatments for cystic fibrosis.

  1. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  2. Ionic Liquids with Weakly Coordinating [M(III)(OR(F))4](-) Anions.

    Science.gov (United States)

    Rupp, Alexander B A; Krossing, Ingo

    2015-09-15

    Ionic liquids (ILs) are defined as salts with melting points below 100 °C. They attracted much attention in the last two decades due to their unique set of properties, including high conductivities, low viscosities, negligible vapor pressure, and high electrochemical resistance. ILs are seen as tunable systems, of which (also in mixtures) up to 10(19) combinations may exist. These properties make ILs interesting candidates for a variety of fundamental to industrial applications. Our addition to this field was weakly coordinating, little interacting anions, the highly fluorinated aluminates [Al(OR(F))4](-) (R(F) = C(CF3)3, C(CH3), (CF3)2, and CH(CF3)2 and later also CH2(CF3)). We have used these anions in a broad spectrum of applications, including the stabilization of reactive cations, (polymerization) catalysis, and conducting salts for cyclic voltammetry or in electrochemical cells. Especially the [Al(Ohfip)4](-) (hfip = CH(CF3)2) anions in combination with asymmetric organic cations turned out to be very well suited for the synthesis of ILs with very low melting points, some even far below 0 °C. Also the analogous borates, [B(OR(F))4](-), were shown to yield ILs, and currently a plethora of such aluminate and borate ILs have been synthesized and thoroughly investigated. In many aspects, at least the [Al(Ohfip)4](-) ILs present almost ideally noninteracting prototype ILs with (nearly) isotropic but weak and flat Coulomb potential. Consequently, their overall interionic interactions are significantly reduced compared with other classes of ILs, resulting in an extraordinarily low degree, or (for short cation chain lengths below six) even complete absence of ion pairing. From thorough analysis of the principles governing the physical properties of this highly fluorinated IL class with minimized interactions, we were able to learn basic principles that could be extended, for example, to the prediction of the principal properties of a wide variety of typical ILs. In

  3. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers

    Science.gov (United States)

    Alper, Seth L.

    2009-01-01

    Summary Plasmalemmal Cl–/HCO3– exchangers are encoded by the SLC4 and SLC26 gene superfamilies, and function to regulate intracellular pH, [Cl–] and cell volume. The Cl–/HCO3– exchangers of polarized epithelial cells also contribute to transepithelial secretion and reabsorption of acid–base equivalents and Cl–. This review focuses on Na+-independent electroneutral Cl–/HCO3– exchangers of the SLC4 family. Human SLC4A1/AE1 mutations cause the familial erythroid disorders of spherocytic anemia, stomatocytic anemia and ovalocytosis. A largely discrete set of AE1 mutations causes familial distal renal tubular acidosis. The Slc4a2/Ae2–/– mouse dies before weaning with achlorhydria and osteopetrosis. A hypomorphic Ae2–/– mouse survives to exhibit male infertility with defective spermatogenesis and a syndrome resembling primary biliary cirrhosis. A human SLC4A3/AE3 polymorphism is associated with seizure disorder, and the Ae3–/– mouse has increased seizure susceptibility. The transport mechanism of mammalian SLC4/AE polypeptides is that of electroneutral Cl–/anion exchange, but trout erythroid Ae1 also mediates Cl– conductance. Erythroid Ae1 may mediate the DIDS-sensitive Cl– conductance of mammalian erythrocytes, and, with a single missense mutation, can mediate electrogenic SO42–/Cl– exchange. AE1 trafficking in polarized cells is regulated by phosphorylation and by interaction with other proteins. AE2 exhibits isoform-specific patterns of acute inhibition by acidic intracellular pH and independently by acidic extracellular pH. In contrast, AE2 is activated by hypertonicity and, in a pH-independent manner, by ammonium and by hypertonicity. A growing body of structure–function and interaction data, together with emerging information about physiological function and structure, is advancing our understanding of SLC4 anion exchangers. PMID:19448077

  4. ANION EXCHANGE CAPACITY OF CHROMATE ON MODIFIED ZEOLITE CLINOPTILOLITE WITH HDTMA-Br AND ITS REGENERATION

    Directory of Open Access Journals (Sweden)

    Widajanti Wibowo

    2011-04-01

    Full Text Available Zeolite Clinoptilolite from Lampung, located in South of Sumatra, had been modified with surfactanthexadecyltrimethylammonium bromide (HDTMA-Br as chromate anion exchanger. Surfactant modified zeolite (SMZClinoptilolite in particle size range of 1.5 - 2.0 mm, which contained 196.7 mmol HDTMA-Br/kg zeolite, was used foranion exchange of chromate at neutral pH. This experiment was conducted in a glass column filled with 5 gram SMZ.The breakthrough chromate exchange capacity was found 1.262 mg/g SMZ, while the total capacity was found 2.107mg/g SMZ. The regeneration of SMZ saturated with chromate was conducted using a mixed solutions of 0.28 MNa2CO3 and 0.5 M NaOH, compared with using a solution of 0.01 M Na2S2O4. The desorption of chromate achieved92% with the mixed solutions of Na2CO3 and NaOH and 90% with the Na2S2O4 solution. The regenerated SMZ withNa2CO3-NaOH solutions was prior washed with HCl solution to remove the carbonate from SMZ, before being used forchromate sorption again. Its breakthrough capacity was reduced to 1.074 mg/g SMZ, and to 0.724 mg/g SMZ whenregenerated with Na2S2O4 solution. These results indicated that regeneration of SMZ affected its exchange capacity foranion chromate. However, it is still could be acceptable, when Na2CO3/NaOH solutions were used for the regenerationof SMZ saturated with anion chromate.

  5. A fluorescent coumarin-thiophene hybrid as a ratiometric chemosensor for anions: Synthesis, photophysics, anion sensing and orbital interactions

    Science.gov (United States)

    Yanar, Ufuk; Babür, Banu; Pekyılmaz, Damla; Yahaya, Issah; Aydıner, Burcu; Dede, Yavuz; Seferoğlu, Zeynel

    2016-03-01

    A colorimetric and fluorimetric fluorescent chemosensor (CT-2), having a coumarin ring as a signaling unit and an acetamido thiophene ring as an H-donor receptor, has been synthesized from amino derivative (CT-1) of CT-2 for the purpose of recognition of anions in DMSO. The absorption and emission maxima were both determined for the fluorescent dye in different solvents. Both hypsochromic shift at the absorption maximum, and quenching of fluorescence after interactions between the anions and the receptoric part, were observed. This phenomenon was explained using orbital interactions based on quantum chemical calculations. The selectivity and sensitivity of CT-2 for F-, Cl-, Br-, I-, AcO-, CN-, H2PO4-, HSO4- and ClO4- anions were determined with spectrophotometric, fluorimetric and 1H NMR titration techniques and it was found that CT-2 be utilized for the detection of CN-, F- and AcO- in the presence of other ions as competitors. Color and fluorescence changes visible to the naked eye and under UV (365 nm) were observed upon addition of CN-, F- and AcO- to the solution of chemosensor (CT-2) in DMSO. The sensor showed no colorimetric and fluorimetric response for the anions such as Cl-, Br-, I-, H2PO4-, HSO4-, and ClO4-. However, 1H NMR titration shows that the chemosensor was more sensitive to CN-, than F- and AcO- at the stochiometric ratio of 1:2.5 respectively. Additionally, the compounds CT-1 and CT-2 showed good thermal stability for practical applications.

  6. Diffusion, sorption, and retardation processes of anions in bentonite and organo-bentonites for multibarrier systems

    Science.gov (United States)

    Schampera, Birgit; Dultz, Stefan

    2013-04-01

    The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch

  7. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom;

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...... dodecyl isomers (with the benzene group at positions 1, 2 and 6). The conductivity was measured both by van der Pauw measurements on PPy-DBS in the oxidized, dry state as function of temperature, and by electrochemical impedance spectroscopy as function of potential in 0.1 M NaCl aqueous electrolyte...

  8. Effects of Different Dietary Cation-Anion Difference on Fiber Degradation in Rumen of Laoshan Dairy Goats

    Institute of Scientific and Technical Information of China (English)

    WANG Lihua; FENG Qiang

    2009-01-01

    The experiment was conducted to determine effects of different dietary cation-anion difference(DCAD) in diets on ruminal fluid pH and fiber degradation in rumen of Laoshan dairy goats. A 4×4 latin square design was adopted. DCAD in different sampling time-points. There was no effect of DCAD on carboxymethyl cellulase in ruminal fluid at 4 h and 8 h postfeeding (P>0.05).was advantage to non-pregnancy, non-lactication Laoshan dairy goat.

  9. M8L12 cubic cages with all facial Δ or facial Λ configuration: effects of surface anions on the occupancy of the cage and anion exchange.

    Science.gov (United States)

    Yang, Jing; Chang, Xiao-Yong; Sham, Kiu-Chor; Yiu, Shek-Man; Kwong, Hoi-Lun; Che, Chi-Ming

    2016-05-21

    M8L12 cubic cages (M = Mn(II), Zn(II) or Cd(II)), with all eight metal ions having all facial Δ or facial Λ configurations and having an encapsulated anion, were prepared by the self-assembly of m-xylene-bridged imidazolyl-imine ligands and MX2 (X = PF6(-), SbF6(-), TfO(-)) salts; the encapsulated anion exchange with different anions (SbF6(-), Tf2N(-), NO3(-), TsO(-)) was studied and the results with NO3(-) and TsO(-) indicate that anions on the cage surfaces affect the encapsulated anion exchange and the occupancy of the cage. PMID:27064122

  10. Heat conduction in nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liqiu [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)], E-mail: lqwang@hkucc.hku.hk; Wei Xiaohao [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)

    2009-03-15

    We show that macroscale heat conduction in nanofluids is of a dual-phase-lagging type rather than the Fourier type. This leads to models for effective thermal capacity, conductivity and diffusivity of nanofluids and reveals even more anomalous thermal behavior of nanofluids than those reported in the literature. Due to the coupled conduction of the two phases, thermal waves and possibly resonance may appear in nanofluid heat conduction. Such waves and resonance are responsible for the extraordinary conductivity enhancement. The analysis and result are also valid for heat conduction in two-phase systems.

  11. Solvation of benzophenone anion radical in ethanol and ethanol/2-methyltetrahydrofuran mixture

    International Nuclear Information System (INIS)

    The electron spin-echo modulations and the absoprtion spectra of benzophenone anion radicals generated by γ-irradiation in the glassy matrices of ethanol and ethanol2-methyltetrahydrofuran mixtures have been measured for elucidating the mechanism of spectral shift observed during the solvation of the anion radicals in alcohols. The anion radical generated at 4.2 K in the ethanol matrix maintains the same solvation structure as that of neutral benzophenone. At 77 K ethanol molecules solvate the anion radical by orienting the O-H dipoles toward the anion radical. The anion radical is hydrogen-bonded by two ethanol molecules through the p/sub z/ orbital on the benzophenone oxygen which composes the π orbitals of anion radical. Three kinds of anion radicals are observed in the mixed matrix at 77 K. Two of them are essentially the same as those observed in the ethanol matrix at 4.2 and 77 K. The third has the absorption maximum at 700 nm and is attributed to the anion radical hydrogen-bonded by one ethanol molecule through the p/sub z/ orbital. It is concluded that the spectral shift observed in alcohols is caused by the stabilization of a SOMO π* orbital induced by the hydrogen bonding with the (RO)H--O--H(OR) angle perpendicular to the molecular plane of the anion radical

  12. Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, Graciela C. [Centro de Procesos Superficiales, Instituto Nacional de Tecnologia Industrial (INTI), Av. Gral. Paz 5445, B1650KNA, San Martin, Buenos Aires (Argentina); Nonjola, Patrick; Mathe, Mkhulu K. [Council for Scientific and Industrial Research (CSIR), Material Science and Manufacturing, PO Box 395, Brumeria, Pretoria 0001 (South Africa); Franceschini, Esteban A.; Izraelevitch, Federico H.; Corti, Horacio R. [Departamento de Fisica de la Materia Condensada, Comision Nacional de Energia Atomica (CNEA), Av. Gral. Paz 1499, B1650KNA, San Martin, Buenos Aires (Argentina)

    2010-06-15

    Ammonium quaternized polymers such as poly (arylene ether sulfones) are being developed and studied as candidates of ionomeric materials for application in alkaline fuel cells, due to their low cost and promising electrochemical properties. In this work, a quaternary ammonium polymer was synthesized by chloromethylation of a commercial polysulfone followed by amination process. Quaternized polysulfone membrane properties such us water and water-methanol uptake, electrical conductivity and Young's modulus were evaluated and compared to Nafion 117, commonly employed in direct methanol fuel cells. The anionic polysulfone membrane sorbs more water than Nafion all over the whole range of water activities, but it uptakes much less methanol as compared to Nafion. The specific conductivity of the fully hydrated polysulfone membrane equilibrated with KOH solutions at ambient temperature increases with the KOH concentration, reaching a maximum of 0.083 S cm{sup -1} for 2 M KOH, slightly less conductive than Nafion 117. The elastic modulus of the polysulfone membranes inmersed in water is similar to that reported for Nafion membranes under the same conditions. We concluded that quaternized polysulfone membrane are good candidates as electrolytes in alkaline direct methanol fuel cells. (author)

  13. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  14. Chemistry of nitrile anions in the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Carles, S.; Le Garrec, J.-L.; Biennier, L. [Institut de Physique de Rennes, Département de Physique Moléculaire, Astrophysique de Laboratoire, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837,35708 Rennes Cedex 7 (France)

    2015-12-31

    Despite the extreme conditions of temperature (down to 10K) and density (down to 100 molecules/cm{sup 3}), the giant molecular clouds and the circumstellar envelopes present a rich and complex chemistry. To date, more than 180 molecules have been detected in the InterStellar Medium (ISM) with a large abundance of nitriles (RC≡N). In addition, several anions have been recently observed in this medium: C{sub 4}H{sup ¯}, C{sub 6}H{sup ¯}, C{sub 8}H{sup ¯}, CN{sup ¯}, C{sub 3}N{sup ¯} and C{sub 5}N{sup ¯}. These last species should play a key role in the molecular growth towards complexity. To explore this hypothesis, their reactivity must be studied in the laboratory. The FALP-MS and the CRESU experimental apparatuses of the Rennes University are able to measure absolute rate coefficient of various chemical reactions, including the ion – molecule reactions, in gas phase at low temperature (from 300K for the FALP-MS down to 15K for the CRESU). Therefore, these experimental tools are particularly adapted to the kinetic studies of reactions potentially involved in the Interstellar Medium. One of the difficulties encountered in experiments with anions is their generation. We describe here the formation of the CN{sup ¯} and C{sub 3}N{sup ¯} anions by dissociative electron attachment on the molecular precursors BrCN and BrC{sub 3}N.

  15. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  16. Anion Photoelectron Spectroscopy of NbW- and W2-

    Science.gov (United States)

    Schnepper, D. Alex; Baudhuin, Melissa A.; Leopold, Doreen; Casey, Sean M.

    2015-06-01

    The 488 nm vibrationally-resolved photoelectron spectra of NbW- and W2- are reported. The electron affinity of W2 ( 1σg+ ← 2σu+ ) is found to be 1.118 ± 0.007 eV, which differs from the value reported in a previous anion photoelectron spectroscopic study of W2- (1.46 eV), but was accurately predicted by density functional calculations (1.12 eV). The fundamental vibrational frequency of W2 is measured to be 345 ± 15 wn, in agreement with the value previously reported in matrix resonance Raman studies (337 wn). The W2- anion is measured to have a fundamental frequency of 320 ± 15 wn. Several weak transitions to excited electronic states are seen and tentatively assigned based on calculated energies. NbW has an electron affinity of 0.856 ± 0.007 eV. Vibrational frequencies are found, by Franck-Condon fitting of overlapping transitions, to be 365 ± 20 cm-1 for NbW- and 410 ± 20 cm-1 for NbW. This increase in vibrational frequency upon photodetachment suggests that the extra electron is in an antibonding orbital, leading to ground state assignments of 3Δ and 2Δ for the anion and neutral, respectively. These results are compared to those obtained for other Group V and Group VI transition metal dimers and trends are discussed. H. Weidele et al., Chem. Phys. Lett. 237 (1995) 425-431 Z. J. Wu, X. F. Ma, Chem. Phys. Lett. 371 (2003) 35-39 Z. Hu, J.-G. Dong, J. R. Lombardi, D. M. Lindsay, J. Chem. Phys. 97 (1992) 8811-8812

  17. Cardiac conduction system

    Science.gov (United States)

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  18. Understanding anionic Chugaev elimination in pericyclic tetracene formation

    OpenAIRE

    Burroughs, Laurence; Ritchie, John; Woodward, Simon

    2016-01-01

    The reaction pathway for the formation of tetracenes from the diols 1,2-C6H4(CHOHC≡CAr)2 , LiHDMS, CS2 and MeI has been modelled by computational methods at the CBS-QB3 level of theory. Comparison of PhCHOC(=S)YCCPh (Y = S- or SMe) indicates a slight kinetic advantage for the anionic system towards [3,3]-sigmatropic rearrangement [Eact(calc.) 19.7 vs 21.8 kcal mol-1]. Using anthracene-based models, 10-{SC(=O)Y}-4a,10-dihydroanthracene (Y = S- or SMe), allows direct comparison of both syn and...

  19. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin

    International Nuclear Information System (INIS)

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO22+. By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni2+ - Co2+; Ni2+ - Co2+ - Cu2+; UO22+ - Fe3+; UO22+ - Cr3+; UO22+ - Cu2+; UO22+ - Ni2+; UO22+ - Co2+; UO22+ - Mn2+ and UO22+ - Cd2+), as well as the purification of a uranyl sulfosalicylate solution

  20. Quasichemical and structural analysis of polarizable anion hydration

    Science.gov (United States)

    Rogers, David M.; Beck, Thomas L.

    2010-01-01

    Quasichemical theory is utilized to analyze the relative roles of solute polarization and size in determining the structure and thermodynamics of bulk anion hydration for the Hofmeister series Cl-, Br-, and I-. Excellent agreement with experiment is obtained for whole salt hydration free energies using the polarizable AMOEBA force field. The total hydration free energies display a stronger dependence on ion size than on polarizability. The quasichemical approach exactly partitions the solvation free energy into inner-shell, outer-shell packing, and outer-shell long-ranged contributions by means of a hard-sphere condition. The inner-shell contribution becomes slightly more favorable with increasing ion polarizability, indicating electrostriction of the nearby waters. Small conditioning radii, even well inside the first maximum of the ion-water(oxygen) radial distribution function, result in Gaussian behavior for the long-ranged contribution that dominates the ion hydration free energy. This in turn allows for a mean-field treatment of the long-ranged contribution, leading to a natural division into first-order electrostatic, induction, and van der Waals terms. The induction piece exhibits the strongest ion polarizability dependence, while the larger-magnitude first-order electrostatic piece yields an opposing but weaker polarizability dependence. The van der Waals piece is small and positive, and it displays a small ion specificity. The sum of the inner-shell, packing, and long-ranged van der Waals contributions exhibits little variation along the anion series for the chosen conditioning radii, targeting electrostatic effects (influenced by ion size) as the largest determinant of specificity. In addition, a structural analysis is performed to examine the solvation anisotropy around the anions. As opposed to the hydration free energies, the solvation anisotropy depends more on ion polarizability than on ion size: increased polarizability leads to increased anisotropy

  1. Separation of boron isotopes using NMG type anion exchange resin

    International Nuclear Information System (INIS)

    Ion exchange separation of boron isotopes (B-10 and B-11) has been studied by using a special boron selective ion exchange resin; NMG (n-methyl glucamine)-type anion exchange resin. The resin has shown a large isotope separation coefficient of 1.02 at the experimental conditions of temperature, 80degC, and boric acid concentration, 0.2 M (mole/dm3). Enriched B-10 (92%) was obtained after the migration of 1149 m by a recyclic operation of ion exchange columns in a merry-go-round method. (author)

  2. On the Adsorption of Some Anionic Collectors on Fluoride Minerals

    DEFF Research Database (Denmark)

    Sørensen, Emil

    1973-01-01

    Test flotations have been carried out in a small apparatus under standardized conditions in order to determine the dependence of the flotation yield on the reagent concentration for certain minerals and anionic collectors. The results suggest that a special adsorption mechanism is operating in th...... case of fluoride minerals, and a theory is presented which involves the joint action of ionic and hydrogen bonds. A precondition is the compatibility of the crystal geometry with the configuration of the polar group of the collector molecules....

  3. Quasichemical and structural analysis of polarizable anion hydration.

    Science.gov (United States)

    Rogers, David M; Beck, Thomas L

    2010-01-01

    Quasichemical theory is utilized to analyze the relative roles of solute polarization and size in determining the structure and thermodynamics of bulk anion hydration for the Hofmeister series Cl(-), Br(-), and I(-). Excellent agreement with experiment is obtained for whole salt hydration free energies using the polarizable AMOEBA force field. The total hydration free energies display a stronger dependence on ion size than on polarizability. The quasichemical approach exactly partitions the solvation free energy into inner-shell, outer-shell packing, and outer-shell long-ranged contributions by means of a hard-sphere condition. The inner-shell contribution becomes slightly more favorable with increasing ion polarizability, indicating electrostriction of the nearby waters. Small conditioning radii, even well inside the first maximum of the ion-water(oxygen) radial distribution function, result in Gaussian behavior for the long-ranged contribution that dominates the ion hydration free energy. This in turn allows for a mean-field treatment of the long-ranged contribution, leading to a natural division into first-order electrostatic, induction, and van der Waals terms. The induction piece exhibits the strongest ion polarizability dependence, while the larger-magnitude first-order electrostatic piece yields an opposing but weaker polarizability dependence. The van der Waals piece is small and positive, and it displays a small ion specificity. The sum of the inner-shell, packing, and long-ranged van der Waals contributions exhibits little variation along the anion series for the chosen conditioning radii, targeting electrostatic effects (influenced by ion size) as the largest determinant of specificity. In addition, a structural analysis is performed to examine the solvation anisotropy around the anions. As opposed to the hydration free energies, the solvation anisotropy depends more on ion polarizability than on ion size: increased polarizability leads to increased

  4. Minority anion substitution by Ni in ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Correia, João Guilherme; Amorim, Lígia Marina; Silva, Daniel José; David-Bosne, Eric; Decoster, Stefan; da Silva, Manuel Ribeiro; Temst, Kristiaan; Vantomme, André

    2013-01-01

    We report on the lattice location of implanted Ni in ZnO using the $\\beta$− emission channeling technique. In addition to the majority substituting for the cation (Zn), a significant fraction of the Ni atoms occupy anion (O) sites. Since Ni is chemically more similar to Zn than it is to O, the observed O substitution is rather puzzling. We discuss these findings with respect to the general understanding of lattice location of dopants in compound semiconductors. In particular, we discuss potential implications on the magnetic behavior of transition metal doped dilute magnetic semiconductors.

  5. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons are the ch...... awarded the Nobel Prize in chemistry “for the discovery and development of conductive polymers”....

  6. 3-Methyltrimethylammonium poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membrane for alkaline polymer electrolyte fuel cells

    Indian Academy of Sciences (India)

    K Hari Gopi; S Gouse Peera; S D Bhat; P Sridhar; S Pitchumani

    2014-06-01

    Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl substitution and homogeneously quaternized to form an anion exchange membrane (AEM). 1H NMR and FT–IR studies reveal successful incorporation of the above groups in the polymer backbone. The membrane is characterized for its ion exchange capacity and water uptake. The membrane formed by these processes show good ionic conductivity and when used in fuel cell exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 is obtained for PPO based membrane in APEFCs at 30 °C.

  7. Cermet fuel thermal conductivity

    International Nuclear Information System (INIS)

    Cermets have been proposed as a candidate fuel for space reactors for several reasons, including their potential for high thermal conductivity. However, there is currently no accepted model for cermet fuel thermal conductivity. The objective of the work reported in this paper was to (a) investigate the adequacy of existing models; (b) develop, if necessary, an improved model; and (c) provide recommendations for future work on cermet thermal conductivity. The results from this work indicate that further work is needed to accurately characterize cermet fuel thermal conductivity. It was determined that particle shape and orientation have a large impact on cermet thermal conductivity

  8. Zn-Al LAYERED DOUBLE HYDROXIDE PILLARED BY DIFFERENT DICARBOXYLATE ANIONS

    Directory of Open Access Journals (Sweden)

    S. Gago

    2004-12-01

    Full Text Available Zn-Al layered double hydroxides (LDHs intercalated by terephthalate (TPH and biphenyl-4,4'-dicarboxylate (BPH anions have been synthesized by direct co-precipitation from aqueous solution. The Zn/Al ratio in the final materials was 1.8. The products were characterized by powder X-ray diffraction, thermogravimetric analysis, FTIR and FT Raman spectroscopy, and MAS NMR spectroscopy. The basal spacing for the TPH-LDH intercalate was 14.62 Å, indicating that the guest anions stack to form a monolayer with the aromatic rings perpendicular to the host layers. For the LDH intercalate containing BPH anions, a basal spacing of at least 19.2 Å would be expected if the anions adopted an arrangement similar to that for the TPH anions. The observed spacing was 18.24 Å, suggesting that the anions are tilted slightly with respect to the host layers.

  9. Investigation of Polyacrylate Anion-Exchangers for Separation of Rare Earth Element Complexes with EDTA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rare earth complexes with EDTA, Ln(edta), show an unusual sequence of affinity for the anion-exchangers. The sorption and chromatographic separation of Y3+ for Nd3+ complexes with EDTA was studied by using the strongly basic gel and macroporous polyacrylate anion-exchangers, Amberlite IRA 458 and Amberlite 958, and the weakly basic gel polyacrylate anion-exchanger, Amberlite IRA-68. The investigations on sorption and separation of rare earth complexes with EDTA on the polyacrylate anion-exchangers applied mainly in the environment protection so far indicate that they can be applied in anionexchange separation of lanthanide complexes with aminopolycarboxylic acids. It was shown that the weakly basic polyacrylate gel anion-exchanger Amberlite IRA-68 is the most effective in purification of Y3+ from Nd3+ in comparison with the strongly basic anion-exchangers of this type.

  10. Influence of Inner Transducer Properties on EMF Response and Stability of Solid-Contact Anion Selective Membrane Electrodes Based on Metalloporphyrin Ionophores

    OpenAIRE

    Górski, Łukasz; Matusevich, Alexey; Pietrzak, Mariusz; Wang, Lin; Meyerhoff, Mark E.; Malinowska, Elżbieta

    2009-01-01

    The performance of solid-contact/coated wire type electrodes with plasticized PVC membranes containing metalloporphyrins as anion selective ionophores is reported. The membranes are deposited on transducers based on graphite pastes and graphite rods. The hydrophobicity of the underlying conductive transducer surface is found to be a key factor that influences the formation of an aqueous layer beneath the polymer film. Elimination of this ill-defined water layer greatly improves the electroche...

  11. Determination of the rate constants of the reactions CO2+OH- -> HCO3- and barbituric acid -> barbiturate anion -> H- using the pulse radiolyse technique

    International Nuclear Information System (INIS)

    The kinetics of the reactions of CO2 + OH --> HCO3- (i) and barbituric acid -> barbiturate anion + H+ (ii) have been remeasured using as a new approach the pulse radiolysis technique with optical and conductivity detection. The rate constants obtained in the present study, ksub(j) (210C) = 6900 +- 700 M-1 s-1 and ksub(II) (190C) = 22 +- 2 s-1 agree within experimental errors with values obtained earlier by other methods. (orig.)

  12. Pulse radiolysis study of the formation and the reactivity of baicalin radical anion, and in comparison with rutin, quercetin and acyrlate ester radical anions in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Sun Gang [Department of Applied Chemistry, College of Chemical and Molecular Engineering, Peking University, Beijing 100871 (China) and Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St Louis, MO 63110 (United States)]. E-mail: gangsun@wustl.edu; Wang Wenfeng [Shanghai Institute of Applied Physics, Academic Sinica, P.O. Box 800-204, Shanghai 201800 (China); Wu Jilan [Department of Applied Chemistry, College of Chemical and Molecular Engineering, Peking University, Beijing 100871 (China)]. E-mail: wangwqchem@pku.edu.cn

    2007-06-15

    The reaction of solvated electrons with baicalin in N{sub 2}-saturated ethanol has been studied by pulse radiolysis. The results show that a solvated electron can add to baicalin and generate a baicalin radical anion with a maximum UV absorbance peak at 360 nm. Its molar extinction coefficient at this wavelength is 1.3x10{sup 4} M{sup -1} cm{sup -1}. The rate constant for the build-up of the baicalin radical anion is 1.3({+-}0.4)x10{sup 10} M{sup -1} s{sup -1}. Decay of the radical anion is induced by a proton transfer reaction and a recombination reaction, which involves a pseudo-first-order reaction with rate constant 2.6({+-}0.4)x10{sup 3} s{sup -1} and a second-order reaction with rate constant 1.3({+-}0.2)x10{sup 9} M{sup -1} s{sup -1}. The effect of acetaldehyde on the decay of the baicalin radical anion was also investigated. Electron transfer between the baicalin radical anion and acetaldehyde was not observed, probably due to the low rate of electron transfer between the baicalin radical anion and acetaldehyde. Reactivity of the rutin, quercetin, baicalin and ethyl acrylate radical anions are also compared.

  13. Anions dramatically enhance proton transfer through aqueous interfaces.

    Science.gov (United States)

    Mishra, Himanshu; Enami, Shinichi; Nielsen, Robert J; Hoffmann, Michael R; Goddard, William A; Colussi, Agustín J

    2012-06-26

    Proton transfer (PT) through and across aqueous interfaces is a fundamental process in chemistry and biology. Notwithstanding its importance, it is not generally realized that interfacial PT is quite different from conventional PT in bulk water. Here we show that, in contrast with the behavior of strong nitric acid in aqueous solution, gas-phase HNO(3) does not dissociate upon collision with the surface of water unless a few ions (> 1 per 10(6) H(2)O) are present. By applying online electrospray ionization mass spectrometry to monitor in situ the surface of aqueous jets exposed to HNO(3(g)) beams we found that NO(3)(-) production increases dramatically on > 30-μM inert electrolyte solutions. We also performed quantum mechanical calculations confirming that the sizable barrier hindering HNO(3) dissociation on the surface of small water clusters is drastically lowered in the presence of anions. Anions electrostatically assist in drawing the proton away from NO(3)(-) lingering outside the cluster, whose incorporation is hampered by the energetic cost of opening a cavity therein. Present results provide both direct experimental evidence and mechanistic insights on the counterintuitive slowness of PT at water-hydrophobe boundaries and its remarkable sensitivity to electrostatic effects. PMID:22689964

  14. Dynamics of anion-molecule reactions at low energy

    International Nuclear Information System (INIS)

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (SN2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of SN2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing SN2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout SN2 mechanism involving CH3-rotation. (orig.)

  15. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  16. Liquid anion-exchange separation of vanadium from malonate media

    International Nuclear Information System (INIS)

    Vanadium (IV) and (V) can be quantitatively extracted with 0.2 mol/l Amberlite LA-2 in xylene at pH 3.0 from 0.02 mol/l malonic acid, stripped with 0.5 mol/l hydrochloric acid, and determined spectrophotometrically. Five other liquid anion exchangers (Amberlite LA-1, Primene JM-T, Aliquat 336S, TOA and TIOA) were examined as possible extractants. The extraction of vanadium(IV) was found to be quantitative only with Amberlite LA-2, while that of vanadium(V) was quantitative with Amberlite LA-1 and LA-2, Primene JM-T and Aliquat 336S. Eight common solvents were tested as diluents; of these hexane, cyclohexane, benzene, and xylene were found to be satisfactory. Vanadium was separated from elements that do not form anionic complexes with malonic acid by selective extraction, from those that form weak complexes by washing the organic extract with water, and from metals that form strong malonato complexes by selective stripping with hydrochloric, nitric, or sulphuric acid. The method has been applied to the determination of vanadium in steel, coal fly ash and fuel oil. The precision of measurement is within ±5% and the detection limit of the method for vanadium is 0.5 mg/kg. (orig.)

  17. A consistent model for anion exclusion and surface diffusion

    International Nuclear Information System (INIS)

    A decomposition of the diffusion flux equation for an electrostatically bound and mobile hydrated ion into two components is proposed. The first component includes the effects arising solely from the irregular pore shape and increase in solvent viscosity in the proximity of negatively charged pore walls. Apart from these effects, the second flux component includes an additional contribution from an increased (decreased) concentration for cations (anions) close to the pore walls. Defining the distribution coefficient, Kd, in a fashion that allows negative values for co-ions readily accounts for their exclusion without the need to introduce somewhat artificial quantities like the effective co-ion porosity. In this study, it is thus possible to retain the purely volumetric meaning of the porosity and to maintain consistency throughout the conceptualization for anions, cations and electrically neutral species. Furthermore, the decomposition of the flux equation provides support for surface diffusion, a subject of great controversy and lively debate in the literature. In this connection, the role of concentration to regulate the diffusive flux for ions in relation to neutral species is emphasized. Implications for the theoretical apparent and effective diffusivities in compacted montmorillonite clay are also discussed and a modified form of the macroscopic theory is proposed

  18. Diffusion of anions and cations in compacted sodium bentonite

    International Nuclear Information System (INIS)

    The thesis presents the results of studies on the diffusion mechanisms of anions and cations in compacted sodium bentonite, which is planned to be used as a buffer material in nuclear waste disposal in Finland. The diffusivities and sorption factors were determined by tracer experiments. The pore volume accessible to chloride, here defined as effective porosity, was determined as a function of bentonite density and electrolyte concentration in water, and the Stern-Gouy double-layer model was used to explain the observed anion exclusion. The sorption of Cs+ and Sr2+ was studied in loose and compacted bentonite samples as a function of the electrolyte concentration in solution. In order to obtain evidence of the diffusion of exchangeable cations, defined as surface diffusion, the diffusivities of Cs+ and Sr2+ in compacted bentonite were studied as a function of the sorption factor, which was varied by electrolyte concentration in solution. The measurements were performed both by a non-steady state method and by a through-diffusion method. (89 refs., 35 fig., 4 tab.)

  19. Fibrin solubilizing properties of certain anionic and cationic detergents.

    Science.gov (United States)

    Chakrabarty, S

    1989-08-15

    The fibrinolytic (fibrin dissolving) properties of several anionic, cationic, nonionic and zwitterionic detergents were assessed in an in vitro fibrin agarose assay. Of the 4 anionic detergents tested, only sodium dodecyl sulfate (SDS) was found to be fibrinolytic. SDS was fibrinolytic either in the absence or presence of factor XIII. Four other cationic detergents were found to possess similar fibrinolytic properties. These cationic detergents were cetyltrimethylammonium bromide (CTAB), mix alkyltrimethyl ammonium bromide (MTAB), hexadecyltrimethylammonium bromide (HTAB) and cetylpyridium chloride (CPC). The nonionic (digitonin, triton X-100/tween 20) and zeitterionic (CHAPS, zeittergent 3-08) detergents were not fibrinolytic. Detergents mediated fibrinolysis, unlike that of tissue type plasminogen activator and urokinase, was independent of the presence of plasminogen. Non-detergents such as polyethylene glycol and highly charged compounds such as poly-1-lysine and poly-1-glutamic acid were not fibrinolytic. Fibrinolytic activity was observed for SDS and the cationic detergents at concentrations ranging from 0.1-10 percent. The effects of these fibrinolytic detergents (SDS, CTAB, MTAB, HTAB and CPC) on clot formation and on pre-formed clots were then assessed, using freshly drawn human venous blood. Incorporation of these detergents into blood inhibited the formation of clots in a concentration dependent manner. The detergents were also able to dissolve pre-formed clots in a similar fashion. SDS was found to be most potent in these properties. PMID:2510356

  20. Anion-exchangeable inorganic-organic hybrid materials synthesized without using templates

    Institute of Scientific and Technical Information of China (English)

    XU Xianzhu; SONG Jiangwei; LI Defeng; XIAO Fengshou

    2004-01-01

    Inorganic-organic hybrid materials have been obtained at room temperature in aqueous solution without using the templates of surfactants. The materials are care fully characterized by anion-exchange measurement, elements analysis, X-ray diffraction, and infrared spectroscopy. Notably, the anion-exchange capacity of the samples (3.9 Interestingly, both small and large anions could be easily exchanged into the samples due to the plasticity of the sam pies, along with the phase transition.

  1. Preparation, Characterization and Adsorption Performance of a Novel Anionic Starch Microsphere

    OpenAIRE

    Yati Yang; Xiuzhi Wei; Peng Sun; Juanmin Wan

    2010-01-01

    Neutral starch microspheres (NSMs) were synthesized by an inverse microemulsion technology with epichlorohydrin as a crosslinker and soluble starch as starting material. Anionic starch microspheres (ASMs) were prepared from NSMs by the secondary polymerization with chloroacetic acid as the anionic etherifying agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and laser diffraction particle size analyzer were used to characterize the anionic starch micro...

  2. Entwicklung anion-chiraler ionischer Flüssigkeiten und ihre Anwendung in der Katalyse

    OpenAIRE

    Gausepohl, Rolf

    2006-01-01

    The aim of this dissertation was the investigation of anion-chiral ionic liquids (ILs) in catalytic reactions in order to investigate a potential chirality transfer. Thus chirality has been incorporated into the anion of the molten salt. There are several examples of catalytic reactions known in literature to be heavily influenced by the choice of the anions covering a large scope of influence from conversion to even enantioselectivity. It was aimed to combine this effect with the structural ...

  3. On the Formation of (Anionic) Excited Helium Dimers in Helium Droplets

    OpenAIRE

    Huber, Stefan E.; Mauracher, Andreas

    2014-01-01

    Metastable atomic and molecular helium anions exhibiting high-spin quartet configurations can be produced in helium droplets via electron impact. Their lifetimes allow detection in mass spectrometric experiments. Formation of atomic helium anions comprises collision-induced excitation of ground state helium and concomitant electron capture. Yet the formation of molecular helium anions in helium droplets has been an unresolved issue. In this work, we explore the interaction of excited helium a...

  4. Modeling the interaction of nitrate anions with ozone and atmospheric moisture

    Institute of Scientific and Technical Information of China (English)

    A. Y. Galashev

    2015-01-01

    The molecular dynamics method is used to investigate the interaction between one–six nitrate anions and water clus-ters absorbing six ozone molecules. The infrared (IR) absorption and reflection spectra are reshaped significantly, and new peaks appear at Raman spectra due to the addition of ozone and nitrate anions to the disperse water system. After ozone and nitrate anions are captured, the average (in frequency) IR reflection coefficient of the water disperse system increased drastically and the absorption coefficient fell.

  5. Removal of chromium complex dye from aqueous solutions using strongly basic and weakly basic anion exchangers

    OpenAIRE

    Kauspediene, D.; Kazlauskiene E.; Selskiene, A.

    2010-01-01

    Removal of chromium complex dye from aqueous solutions by sorption onto a weakly basic, acrylic matrix anion exchanger Purolite A845 and a strongly basic, polystyrene matrix anion exchanger Purolite A 500P has been investigated under various experimental conditions: the initial dye concentration, pH and temperature. The sorption of chromium complex dye proceeds as a result of miscellaneous interactions between the dye and anion exchanger: ion exchange and physical sorption. The removal effici...

  6. The remarkable ability of anions to bind dihydrogen.

    Science.gov (United States)

    Della, Therese Davis; Suresh, Cherumuttathu H

    2016-05-25

    The structural features and hydrogen binding affinity of anions F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-) have been explored at the CCSD(T)/aug-cc-pVTZ//CCSD/6-311++G(d,p) level of coupled cluster theory and the M06L/6-311++G(d,p) level of density functional theory along with a two-point extrapolation to the complete basis set limit and a benchmark study at CCSD(T) and MP2 levels. The coupled cluster, MP2 and DFT methods yield comparable results and show that anions have very high capacity to store hydrogen as the weight percent of H2 in the highest H2-coordinated state of F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-) is 56.0, 47.6, 33.5, 64.0, 65.4, 41.2, 55.4, and 40.0 wt%, respectively. The CCSD(T)/aug-cc-pVTZ//CCSD/6-311++G(d,p) results are presented for anions coordinated with up to nine or ten H2 molecules, while up to the entire first coordination shell is computed using the M06L method which revealed H2 coordination numbers of 12, 16, 20, 15, 15, 16, 16, and 17, respectively, for F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-). An increase in the total interaction energy (Eint) and a decrease in the interaction energy per H2 molecule (Eint/H2) with an increase in the number of coordinated H2 molecules are observed. However, the decrease in Eint/H2 is very less and even in the highest coordinated anions, substantially good values of Eint/H2 are observed, viz. 4.24, 2.59, 2.09, 3.32, 3.07, 2.36, 2.31, and 2.63 kcal mol(-1) for F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-), respectively, which are comparable with the values obtained for complexes with lesser H2 coordination. The stability of the complexes is attributed to the formation of a large number of non-covalent X(-)H bonds as revealed by the identification of bond critical points in the quantum theory of atoms in molecules (QTAIM) analysis. Further, critical features of molecular electrostatic potential (MESP) have been used to correlate the

  7. Contactless conductivity detector for microchip capillary electrophoresis

    Science.gov (United States)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  8. A photoelectron spectroscopic and computational study of the o-dicarbadodecaborane parent anion

    Science.gov (United States)

    Zhang, Xinxing; Bowen, Kit

    2016-06-01

    We report a combined photoelectron spectroscopic and computational study of the o-dicarbadodecaborane (o-carborane) parent anion, (C2B10H12)-. Previous studies that focused on the electrophilic nature of o-carborane led to tantalizing yet mixed results. In our study, we confirmed that o-carborane does in fact form a parent anion and that it has considerable stability. This anion is an isomer ("Anion iso 2") where unlike in neutral o-carborane, the two carbon atoms are not bound.

  9. Halides with Fifteen Aliphatic C–H···Anion Interaction Sites

    Science.gov (United States)

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J.; Lastovickova, Dominika N.; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W.; Kim, Kwang S.

    2016-07-01

    Since the aliphatic C–H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C–H (Cali–H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali–H groups. An X-ray structure of imidazolium-based scaffolds using Cali–H···A‑ interactions (A‑ = anion) shows that a halide anion is directly interacting with fifteen Cali–H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali–H···A‑ interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms.

  10. Halides with Fifteen Aliphatic C-H···Anion Interaction Sites.

    Science.gov (United States)

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J; Lastovickova, Dominika N; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W; Kim, Kwang S

    2016-01-01

    Since the aliphatic C-H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C-H (Cali-H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali-H groups. An X-ray structure of imidazolium-based scaffolds using Cali-H···A(-) interactions (A(-) = anion) shows that a halide anion is directly interacting with fifteen Cali-H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali-H···A(-) interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms. PMID:27444513

  11. Reillex/trademark/ HPQ: A new, macroporous polyvinylpyridine resin for separating plutonium using nitrate anion exchange

    International Nuclear Information System (INIS)

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greater stability to chemical and radiolytic degradation. 8 refs., 12 figs

  12. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis

    Institute of Scientific and Technical Information of China (English)

    Anabel Brandoni; María Herminia Hazelhoff; Romina Paula Bulacio; Adriana Mónica Torres

    2012-01-01

    Obstructive jaundice occurs in patients suffering from cholelithiasis and from neoplasms affecting the pancreas and the common bile duct.The absorption,distribution and elimination of drugs are impaired during this pathology.Prolonged cholestasis may alter both liver and kidney function.Lactam antibiotics,diuretics,non-steroidal anti-inflammatory drugs,several antiviral drugs as well as endogenous compounds are classified as organic anions.The hepatic and renal organic anion transport pathways play a key role in the pharmacokinetics of these compounds.It has been demonstrated that acute extrahepatic cholestasis is associated with increased renal elimination of organic anions.The present work describes the molecular mechanisms involved in the regulation of the expression and function of the renal and hepatic organic anion transporters in extrahepatic cholestasis,such as multidrug resistanceassociated protein 2,organic anion transporting polypeptide 1,organic anion transporter 3,bilitranslocase,bromosulfophthalein/bilirubin binding protein,organic anion transporter 1 and sodium dependent bile salt transporter.The modulation in the expression of renal organic anion transporters constitutes a compensatory mechanism to overcome the hepatic dysfunction in the elimination of organic anions.

  13. A colorimetric and fluorescence enhancement anion probe based on coumarin compounds.

    Science.gov (United States)

    Zhao, Limin; Liu, Ge; Zhang, Baofeng

    2016-12-01

    In this paper, anion probe 1 was designed and synthesized by using phenprocoumon containing acyl hydrazine with p-nitro azo salicylaldehyde reaction Dickson et al. (2008) Dickson et al. (2008) [1]. In the anion probe 1, the nitro moiety is a signaling group and the phenolic hydroxyl moiety is anion binding site. Then the anion probe 1 was characterized by mass spectra (MS) and infrared spectra (IR). The binding properties of the anion probe 1 for anions such as F(-), AcO(-), H2PO4(-), OH(-), Cl(-), Br(-) and I(-) were investigated by ultraviolet-visible (UV-Vis) spectra and fluorescence spectra Shao et al. (2008) Shao et al. (2008) [2]. Furthermore, the color of anion probe 1 after addition of F(-), AcO(-), H2PO4(-) and OH(-) in DMSO changed from yellow to blue, while no obvious color changes were observed by addition of other tested anions. Accordingly, the anion probe 1 could sense visually F(-), AcO(-), H2PO4(-) and OH(-) without resorting to any spectroscopic instrumentation Amendola et al. (2010) Amendola et al. (2010) [3]. PMID:27323317

  14. A photoelectron spectroscopic and computational study of the o-dicarbadodecaborane parent anion.

    Science.gov (United States)

    Zhang, Xinxing; Bowen, Kit

    2016-06-14

    We report a combined photoelectron spectroscopic and computational study of the o-dicarbadodecaborane (o-carborane) parent anion, (C2B10H12)(-). Previous studies that focused on the electrophilic nature of o-carborane led to tantalizing yet mixed results. In our study, we confirmed that o-carborane does in fact form a parent anion and that it has considerable stability. This anion is an isomer ("Anion iso 2") where unlike in neutral o-carborane, the two carbon atoms are not bound. PMID:27306011

  15. Anion retention in soil: Possible application to reduce migration of buried technetium and iodine

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, R.K.; Duckart, E.C. (California Univ., Berkeley, CA (United States). Dept. of Soil Science); O' Donnell, E. (Nuclear Regulatory Commission, Washington, DC (United States))

    1992-12-01

    Before testing the performance characteristics of andisols for retention of anions in the near-field environment of Low Level Wastes (LLW) disposal facilities it is necessary to locate one or more sufficiently extensive bodies of natural soil with the highest possible natural anion exchange capacity. For this purpose we developed a rugged, portable semiquantitative field test for anion exchange capacity based on short-term sorption of iodide by soil samples. We validated the iodide sorption field test against a well established quantitative laboratory test based on anion exchange of chloride and nitrate, then carried out an initial survey of volcanic terrain in northern California using the field test.

  16. IONIC CONDUCTIVITY IN THE COMPLEXES OF COMB-SHAPED POLYETHER WITH LITHIUM AROMATIC SULFONATE

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shengshui; QIU Weihua; XUE Dacui; LIU Qingguo

    1993-01-01

    Complexes of comb-shaped polyether and lithium aromatic sulfonates bearing different negative charge number were prepared by in situ thermal polymerization. Their conductivity depends deeply on salt content, ambient temperature and negative charge number of the added salts. Results show that anions can be partly immobilized by increasing their negative charges at lower temperature.Against discharge time the short circuit current of the battery (Li/complex film/Lix V3O8) is stabilized by increasing the anionic charge number of the complex.

  17. The Influence of Preparation Conditions on the Electrical Conductivity of Poly N-Methyl-pyrrole Films

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen; West, Keld

    electrical conductivity has been investigated. The conductivity was measured by the in situ method using a specially prepared two-band microelectrode. The current density used during the polymerization has a considerable influence on the conductivity, as earlier observed for polypyrrole in non......-aqueous electrolytes. The conductivity changes with the size of the anion and the concentration of the electrolyte as well as on the temperature at which the polymerization was carried out. Polymer films formed at relatively higher temperatures had lower conductivities and were not able to insert as many counterions...

  18. Voltammetry of conducting polymers

    OpenAIRE

    Gulaboski, Rubin

    2014-01-01

    The search for new materials for enhancing electrical conductivity of various materials is one of the most active research areas today. Conducting polymers represent a unique class of organic materials that have been used in many applications such as bioelectronics, sensors, corrosion protection, electrocatalysis, and energy storage devices. Application of the conductive polymers in electrochemistry is almost inevitable in order to get better features of the voltammetric systems ...

  19. Conductance eigenchannels in nanocontacts

    OpenAIRE

    Brandbyge, Mads; Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel

    1997-01-01

    The electronic conductance of metal nanocontacts is analyzed in terms of eigenchannels for the transmission. The transmission through individual eigenchannels is calculated numerically for realistic models of gold point contacts based on molecular-dynamics simulation of the elongation of a contact. The conductance as a function of contact elongation exhibits a step structure. For the smallest contact areas of one or a few atom diameters, the conductance is typically quantized, and a specific ...

  20. Conductance eigenchannels in nanocontacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel

    1997-01-01

    The electronic conductance of metal nanocontacts is analyzed in terms of eigenchannels for the transmission. The transmission through individual eigenchannels is calculated numerically for realistic models of gold point contacts based on molecular-dynamics simulation of the elongation of a contac...... partly open channels, but plateaus in the conductance can still be present. We also show that the finite stiffness of the experimental setup can significantly affect the step structure of the conductance curves....

  1. Adsorption of Anionic, Cationic and Nonionic Surfactants on Carbonate Rock in Presence of ZrO 2 Nanoparticles

    Science.gov (United States)

    Esmaeilzadeh, Pouriya; Bahramian, Alireza; Fakhroueian, Zahra

    The adsorption of surfactants at the solid-water interface is important for the control of wetting, lubrication, detergency and in mineral flotation.We have studied the adsorptions of different types of surfactants, cationic (Dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS) and non-anionic (lauryl alcohol-7 mole ethoxylate, LA7) on carbonate rock in presence of zirconium oxide spherical nanoparticles (17-19 nm). ZrO2 nanoparticles with tetrahedral structure have significant effect on adsorption of surfactants on the carbonate rock. We have used the measured conductivities to determine the rate of adsorption of surfactants at rock-water interfaces. The conductivity of DTAB in aqueous solutions containing calcite powder decreases more than the other surfactants in contact with ZrO2 nanoparticles. We have also investigated the adsorption of surfactants at the air-water interface. The presence of nanoparticles, as demonstrated by our experiments, enhances the surface activity and surface adsorption of the surfactants through electrostatic forces or formation of nanostructures. Dynamic light structuring data shows similar aggregation number of nanoparticles in presence of nanoparticles.

  2. Thermodynamic solution properties of pefloxacin mesylate and its interactions with organized assemblies of anionic surfactant, sodium dodecyl sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Muhammad [Department of Chemistry, Government College University, Faisalabad 38000 (Pakistan); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Rashid, Muhammad Abid [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad (Pakistan); Mansha, Asim [Department of Chemistry, Government College University, Faisalabad 38000 (Pakistan); Siddiq, Mohammad, E-mail: m_sidiq12@yahoo.com [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2013-12-10

    Graphical abstract: - Highlights: • Free energy of adsorption is more negative than free energy of micellization. • Micellization becomes more spontaneous at high temperature. • There is strong interaction between PFM and SDS. - Abstract: This manuscript reports the physicochemical behavior of antibiotic amphiphilic drug pefloxacin mesylate (PFM) and its interaction with anionic surfactant, sodium dodecyl sulfate (SDS). The data of surface tension and electrical conductivity are helpful to detect the CMC as well as to calculate surface parameters, i.e. surface pressure, π, surface excess concentration, Γ, area per molecule of drug and standard Gibbs free energy of adsorption, ΔG{sub ads} and thermodynamic parameters like standard free energy of micellization, ΔG{sub m}, standard enthalpy of micellization, ΔH{sub m} and standard entropy of micellization, ΔS{sub m}. The interaction of this drug with anionic surfactant, sodium dodecyl sulfate (SDS) was studied by electrical conductivity and UV/visible spectroscopy. This enabled us to compute the values of partition coefficient (K{sub x}), free energy of partition, ΔG{sub p}, binding constant, K{sub b}, free energy of binding, ΔG{sub b}, number of drug molecules per micelle, n, and thermodynamic parameters of drug–surfactant interaction.

  3. Thermodynamic solution properties of pefloxacin mesylate and its interactions with organized assemblies of anionic surfactant, sodium dodecyl sulphate

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Free energy of adsorption is more negative than free energy of micellization. • Micellization becomes more spontaneous at high temperature. • There is strong interaction between PFM and SDS. - Abstract: This manuscript reports the physicochemical behavior of antibiotic amphiphilic drug pefloxacin mesylate (PFM) and its interaction with anionic surfactant, sodium dodecyl sulfate (SDS). The data of surface tension and electrical conductivity are helpful to detect the CMC as well as to calculate surface parameters, i.e. surface pressure, π, surface excess concentration, Γ, area per molecule of drug and standard Gibbs free energy of adsorption, ΔGads and thermodynamic parameters like standard free energy of micellization, ΔGm, standard enthalpy of micellization, ΔHm and standard entropy of micellization, ΔSm. The interaction of this drug with anionic surfactant, sodium dodecyl sulfate (SDS) was studied by electrical conductivity and UV/visible spectroscopy. This enabled us to compute the values of partition coefficient (Kx), free energy of partition, ΔGp, binding constant, Kb, free energy of binding, ΔGb, number of drug molecules per micelle, n, and thermodynamic parameters of drug–surfactant interaction

  4. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  5. Graphene Conductance Uniformity Mapping

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter;

    2012-01-01

    We demonstrate a combination of micro four-point probe (M4PP) and non-contact terahertz time-domain spectroscopy (THz-TDS) measurements for centimeter scale quantitative mapping of the sheet conductance of large area chemical vapor deposited graphene films. Dual configuration M4PP measurements......, demonstrated on graphene for the first time, provide valuable statistical insight into the influence of microscale defects on the conductance, while THz-TDS has potential as a fast, non-contact metrology method for mapping of the spatially averaged nanoscopic conductance on wafer-scale graphene with scan times......, dominating the microscale conductance of the investigated graphene film....

  6. Improved iodine-125 removal in anionic form of iodate by column method using laterite soil

    International Nuclear Information System (INIS)

    Soil column experiments have been conducted to treat liquid wastes from hospitals containing 125I. Three sorbent samples of laterite clay materials with different contents of iron oxides (goethite, α-FeOOH) and hydroxides were used to sorb anionic iodate. Post-treatment on effluent wastes with sodium hypochlorite (redox reagent) oxidized the iodide to the desirable iodate ion. Effluent pH after treatment ranges between 4.8 to 5.8, which does not vary much from the initial effluent pH of 4.5 before treatment. Results show that 90 to 97% sorption of iodine radionuclides with a decontamination factor ranges between 10-32 was obtained after the first two hours of experiments. Concentration has decreased from the initial 10 Bq/ml to concentration ranges of 0.3 to 0.9 Bq/ml. Batch experiments conducted using different sorbent masses of soils, show that there was a drop in sorption as the mass of soils fell below approximately 0 to 0.25 g. The sorption remains constant with the soil mass above 0.25 g. Another batch experiment using a different concentration shows that the adsorption capacity of the laterite soil was 1.1 μCi/g. The adsorption is about 96% with a distribution coefficient of 1170. (author). 9 refs., 9 figs

  7. Chapter 2 Anion Sorption Topology on Hematite: Comparison of Arsenate and Silicate

    International Nuclear Information System (INIS)

    Arsenate and silicate are tetrahedral anions that strongly sorb to positive Fe oxide surfaces over the pH range 2-7. Both are important agents for modification of Fe oxide surface reactivity, and notably passivate against other sorption reactions. Arsenate is a significant health hazard as a sorbed pollutant associated with acid mine drainage, while silicate is a common anion in natural solutions. Our aim is to understand the types of sorption complexes that form with these anions on different crystal faces, and whether polymerization occurs with the silicate units. Silicate polymerization could dramatically alter Fe oxide surface reactivity. The structural characterization is conducted using both grazing incidence extended X-ray absorption fine structure (GIEXAFS) at Stanford Synchrotron Radiation Laboratory (SSRL) and the National Synchrotron Light Source (NSLS), and surface diffraction (using crystal truncation rod (CTR) analysis) at the Advanced Photon Source (APS). GIEXAFS yields interatomic distances from arsenic and silicon to their oxygen first neighbor shell and second Fe or other next neighbor shell, and thus allows identification of the local geometry of sorption. Polarized X-ray fine structure spectroscopy further allows determination of the orientation and density of the complexes on the various Fe surface planes. However, this information is incomplete as any response of the surface to sorption is not revealed, and hydrogen bonding and water molecule arrangement at the surface can be changed due to the sorption process. To access these we use CTR experiments and compare the results with samples without sorbed anions. GIEXAFS results for both hematite (0 0 0 1) and (1(bar 1)02) planes show arsenate sorbed in two ways: bidentate binuclear and bidentate mononuclear. Most of the latter type of sorption geometry appears to be present on surface step edges on the (1(bar 1)02) surface, while there is little or no such attachment to the (1(bar 1)02) surface

  8. Conductive Critical Thinking

    Science.gov (United States)

    Paetkau, Mark

    2007-01-01

    One of my goals as an instructor is to teach students critical thinking skills. This paper presents an example of a student-led discussion of heat conduction at the first-year level. Heat loss from a human head is calculated using conduction and radiation models. The results of these plausible (but wrong) models of heat transfer contradict what…

  9. The conducting disk, revisited

    DEFF Research Database (Denmark)

    Karlsson, Per W.

    1999-01-01

    The classical formula for the charge distribution on a conducting circular disk is proved by establishing the constancy of the potential on the disk, utilizing known properties of hypergeometric functions......The classical formula for the charge distribution on a conducting circular disk is proved by establishing the constancy of the potential on the disk, utilizing known properties of hypergeometric functions...

  10. The conducting disk, revisited

    DEFF Research Database (Denmark)

    Karlsson, Per W.

    2000-01-01

    The classical formula for the charge distribution on a conducting disk is proved by establishing the constancy of the potential on the disk, utilizing known properties of hypergeometric functions.......The classical formula for the charge distribution on a conducting disk is proved by establishing the constancy of the potential on the disk, utilizing known properties of hypergeometric functions....

  11. Conductivity testing and evaluation

    Directory of Open Access Journals (Sweden)

    Lygita Makaravičiūtė

    2015-10-01

    Full Text Available Surface wastewater is consideredas effluents, which are formed on the surface of urbanized areas. Stormwater treatment is performed out using a variety of filters: sand, grass. Wastewater penetration into the deeper layers is called hydraulic conductivity. After evaluation of the hydraulic conductivity, it is possible to determine the ability of the investigated fillers to entrap the stormwater flow. The hydraulic conductivity tests can indicate which fillers of stormwater filters may influence the more effective stormwater cleaning. Four stormwater filters were tested: crushed autoclaved aerated concrete filter; crushed autoclaved aerated concrete with Meadow grass (Poa pratensis layer; silica sand filter with Meadow grass (Poa pratensis layer; silica sand filter. Under in-situ conditions hydraulic conductivity in filters is investigated using Constant-head method. Mathematical modeling program Hydrus-1D presentsthe changes of hydraulic conductivity in each filler layer of the filter. Assessed hydraulic conductivity in filters under in-situ conditions hasn‘t changed only in crushed autoclaved aerated concrete filter (30 000 mm/d. The smallest hydraulic conductivity in filters under in-situ conditions was estimated in silica sand filter with Meadow grass (Poa pratensis layer, here it was equal to 209.3 mm/d.With mathematical modeling program Hydrus-1D it was found that the hydraulic conductivity in each filter decreases, depending on the depth of filler in the filter.

  12. Codes of Conduct

    Science.gov (United States)

    Million, June

    2004-01-01

    Most schools have a code of conduct, pledge, or behavioral standards, set by the district or school board with the school community. In this article, the author features some schools that created a new vision of instilling code of conducts to students based on work quality, respect, safety and courtesy. She suggests that communicating the code…

  13. Formation reaction mechanisms of hydroxide anions from Mg(OH){sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Vaiss, Viviane S. [Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-330 (Brazil); Borges, Itamar [Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, RJ, 22290-270 (Brazil); Wypych, Fernando [Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, 81531-990 (Brazil); Leitão, Alexandre A., E-mail: alexandre.leitao@ufjf.edu.br [Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-330 (Brazil)

    2013-06-03

    Highlights: • Mg(OH){sub 2} hydroxide anion migrates to the surface thus producing an adsorbed free hydroxide anion. • Orbital contributions from adsorbed free hydroxide anion dominate the shape of total DOS in the region near the Fermi level. • The hydroxide anion formation reaction in Mg(OH){sub 2} from Mg(OH){sub 2} dissociation is slower than the formation from H{sub 2}O dissociation. • Formation of hydroxide anions in a layered hydroxide would involve reaction of H{sub 2}O molecules with layer hydroxide anions. - Abstract: DFT calculations with periodic boundary conditions were used to study two formation reaction mechanisms of adsorbed free hydroxide anions on the surface of the brucite, Mg(OH){sub 2}. In the first mechanism, we investigated the migration of a hydroxide anion present in the structure of Mg(OH){sub 2} to the layer surface. In the second, a mechanism composed of three elementary reactions was examined for the reaction of H{sub 2}O molecules with the brucite layer surface. The result in both mechanisms is the formation of hydroxide anions and a hydroxide vacancy in the positively charged Mg(OH){sub 2} layer. The global reaction is the same in both cases and the computed Gibbs free energy variation equals 37.5 kcal/mol at room temperature. The reaction barrier for the formation of hydroxide anion on Mg(OH){sub 2} surface from H{sub 2}O dissociation (27.6 kcal/mol) is lower than the reaction barrier for the formation of hydroxide anions from Mg(OH){sub 2} dissociation (43.2 kcal/mol)

  14. Formation reaction mechanisms of hydroxide anions from Mg(OH)2 layers

    International Nuclear Information System (INIS)

    Highlights: • Mg(OH)2 hydroxide anion migrates to the surface thus producing an adsorbed free hydroxide anion. • Orbital contributions from adsorbed free hydroxide anion dominate the shape of total DOS in the region near the Fermi level. • The hydroxide anion formation reaction in Mg(OH)2 from Mg(OH)2 dissociation is slower than the formation from H2O dissociation. • Formation of hydroxide anions in a layered hydroxide would involve reaction of H2O molecules with layer hydroxide anions. - Abstract: DFT calculations with periodic boundary conditions were used to study two formation reaction mechanisms of adsorbed free hydroxide anions on the surface of the brucite, Mg(OH)2. In the first mechanism, we investigated the migration of a hydroxide anion present in the structure of Mg(OH)2 to the layer surface. In the second, a mechanism composed of three elementary reactions was examined for the reaction of H2O molecules with the brucite layer surface. The result in both mechanisms is the formation of hydroxide anions and a hydroxide vacancy in the positively charged Mg(OH)2 layer. The global reaction is the same in both cases and the computed Gibbs free energy variation equals 37.5 kcal/mol at room temperature. The reaction barrier for the formation of hydroxide anion on Mg(OH)2 surface from H2O dissociation (27.6 kcal/mol) is lower than the reaction barrier for the formation of hydroxide anions from Mg(OH)2 dissociation (43.2 kcal/mol)

  15. CONDUCTIVE POLYMERS AS ELECTRODE MATERIALS

    OpenAIRE

    Armand, M.

    1983-01-01

    Polyacetylene and its related polymers are amphoteric insertion compounds accomodating both cations and anions. This property make them ideal candidates for electrochemical energy storage. However the electrochemistry of these compounds is not fully clarified and the main remaining problems are evoked here.

  16. Conductive fabric seal

    Energy Technology Data Exchange (ETDEWEB)

    Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl

    2015-10-13

    Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.

  17. Removal of both cationic and anionic contaminants by amphoteric starch.

    Science.gov (United States)

    Peng, Huanlong; Zhong, Songxiong; Lin, Qintie; Yao, Xiaosheng; Liang, Zhuoying; Yang, Muqun; Yin, Guangcai; Liu, Qianjun; He, Hongfei

    2016-03-15

    A novel amphoteric starch incorporating quaternary ammonium and phosphate groups was applied to investigate the efficiency and mechanism of cationic and anionic contaminant treatment. Its flocculation abilities for kaolin suspension and copper-containing wastewater were evaluated by turbidity reduction and copper removal efficiency, respectively. And the kinetics of formation, breakage and subsequent re-formation of aggregates were monitored using a Photometric Dispersion Analyzer (PDA) and characterized by flocculation index (FI). The results showed that amphoteric starch possessed the advantages of being lower-dosages-consuming and being stronger in shear resistance than cationic starch, and exhibited a good flocculation efficiency over a wide pH range from 3.0 to 11.0. PMID:26794754

  18. The sorption capacity of boron on anionic-exchange resin

    International Nuclear Information System (INIS)

    Boron sorption capacities on anionic-exchange resins vary with temperature, concentration, and resin cross-linkage. A semiempirical correlation, developed from boron solution chemistry, is presented to account for these variations. The relationship, based on boron chemistry and changes in Gibb's energy, can be stated approximately as Q = a1CBa2Za3 exp[-(a4T + a5T2 + a6Z0.5)]. Correlation parameters, which vary with resin type, are evaluated experimentally. Parameter values for macroporous resin Diaion PA 300 and for gel-type resins Diaion SA10 and Amberlite IRN 78LC are presented. The resulting expression is used to determine boron sorption and desorption limitations on ion exchangers at various temperatures and concentrations, and to determine the interfacial boron concentration in equilibrium and rate models

  19. The anion exchange behavior of Te and Sb

    International Nuclear Information System (INIS)

    The absorption behavior of Te and Sb in different oxidation states by anion exchange resins in hydrochloric acid medium has been studied. Distribution coefficients for Te(IV), Te(VI) as a function of HCl acid concentration (up to 3M HCl) have been determined. The absorbability for Sb(III) was noticed to be very high and could not be eluted out of the column using HCl as eluent. Sb(V) could be eluted quantitatively using 3M HCl. The present study clearly indicate that due to the EC/β+ decay of the parent isotopes 117,118Te, the daughter nuclei 117,118Sb are produced predominantly as Sb(III). (author)

  20. Vertical ionization energies of halogen anions in solution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the constrained equilibrium state theory,the nonequilibrium solvation energy is derived in the framework of the continuum model.The formula for spectral shift and vertical ionization energy are deduced for a single sphere cavity with the point charge assumption.The new model is adopted to investigate the vertical ionization for halogen atomic and molecular anions X(X = Cl,Br,I,Cl2,Br2,I2) in aqueous solution.According to the calculation using the CCSD-t/aug-cc-pVQZ method in vacuum,our final estimated vertical ionization energies in solution are very close to the experimental observations,while the traditional nonequilibrium solvation theory overestimates these vertical ionization energies.

  1. Uranium isotope separation by continuous anion exchange chromatography

    International Nuclear Information System (INIS)

    This paper reports a process for producing nuclear quality Uranium 235 (U235) from a substantially impure feed stock containing a mixture of uranium isotopes, including U235, forming a stationary phase from an anion exchange resin in the annulus of a rotating annular chromatograph; feeding the feed stock to the stationary phase to load less than 10% of the stationary phase; injecting a mobile phase comprising an eluant selected from the group consisting of aqueous solutions of sulfates, chlorides, nitrates and carbonates into the stationary phase; continuously rotating the annular chromatograph; collecting the U235 isotope in substantially pure, enriched form from the stationary phase; precipitating the U235 isotope as ammonium diurante with ammonium hydroxide; and calcining the ammonium diuranate to produce uranium oxide rich in U235 suitable for nuclear applications requiring substantially pure U235

  2. Anion formation in sputter ion sources by neutral resonant ionization

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. S., E-mail: johnsvogel@yahoo.com [University of California, 8300 Feliz Creek Dr., Ukiah, California 95482 (United States)

    2016-02-15

    Focused Cs{sup +} beams in sputter ion sources create mm-diameter pits supporting small plasmas that control anionization efficiencies. Sputtering produces overwhelmingly neutral products that the plasma can ionize as in a charge-change vapor. Electron capture between neutral atoms rises as the inverse square of the difference between the ionization potential of the Cs state and the electron affinity of the sputtered atom, allowing resonant ionization at very low energies. A plasma collision-radiation model followed electronic excitation up to Cs(7d). High modeled Cs(7d) in a 0.5 mm recess explains the 80 μA/mm{sup 2} C{sup −} current density compared to the 20 μA/mm{sup 2} from a 1 mm recess.

  3. Porphyrin Analogues of a Trityl Cation and Anion.

    Science.gov (United States)

    Kato, Kenichi; Kim, Woojae; Kim, Dongho; Yorimitsu, Hideki; Osuka, Atsuhiro

    2016-05-17

    Porphyrin-stabilized meso- or β-carbocations were generated upon treatment of the corresponding bis(4-tert-butylphenyl)porphyrinylcarbinols with trifluoroacetic acid (TFA). Bis(4-tert-butylphenyl)porphyrinylcarbinols were treated with TFA to generate the corresponding carbocations stabilized by a meso- or β-porphyrinyl group. The meso-porphyrinylmethyl carbocation displayed more effective charge delocalization with decreasing aromaticity compared with the β-porphyrinylmethyl carbocation. A propeller-like porphyrin trimer, tris(β-porphyrinyl)carbinol, was also synthesized and converted to the corresponding cation that displayed a more intensified absorption reaching over the NIR region. meso-Porphyrinylmethyl carbanion was generated as a stable species upon deprotonation of bis(4-tert-butylphenyl)(meso-porphyrinyl)methane with potassium bis(trimethylsilyl)amide (KHMDS) and [18]crown-6, whereas β-porphyrinylmethyl anions were highly unstable. PMID:26991021

  4. "Like-charge attraction" between anionic polyelectrolytes: molecular dynamics simulations.

    Science.gov (United States)

    Molnar, Ferenc; Rieger, Jens

    2005-01-18

    "Like-charge attraction" is a phenomenon found in many biological systems containing DNA or proteins, as well as in polyelectrolyte systems of industrial importance. "Like-charge attraction" between polyanions is observed in the presence of mobile multivalent cations. At a certain limiting concentration of cations, the negatively charged macroions cease to repel each other and even an attractive force between the anions is found. With classical molecular dynamics simulations it is possible to elucidate the processes that govern the attractive behavior with atomistic resolution. As an industrially relevant example we study the interaction of negatively charged carboxylate groups of sodium polyacrylate molecules with divalent cationic Ca2+ counterions. Here we show that Ca2+ ions initially associate with single chains of polyacrylates and strongly influence sodium ion distribution; shielded polyanions approach each other and eventually "stick" together (precipitate), contrary to the assumption that precipitation is initially induced by intermolecular Ca2+ bridging. PMID:15641856

  5. Preparation of anionic polyurethane nanoparticles and blood compatible behaviors.

    Science.gov (United States)

    Zhu, Qinshu; Wang, Yan; Zhou, Min; Mao, Chun; Huang, Xiaohua; Bao, Jianchun; Shen, Jian

    2012-05-01

    The anionic polyurethane nanoparticles (APU-NPs) were obtained by an emulsion polymerization method. It was found that the average size of the prepared APU-NPs is about 84 nm, and the APU-NPs have zeta-potential of -38.9 mV. The bulk characterization of synthesized APU-NPs was investigated by FTIR. The blood compatibility of APU-NPs was characterized by in vitro for coagulation tests, complement activation, platelet activation, cytotoxicity experiments, and hemolysis assay. The results showed that the APU-NPs synthesized in this paper are blood compatible with low level of cell cytotoxicity, and the results were significant for their potential use in vivo. PMID:22852346

  6. Anion Sensors as Logic Gates: A Close Encounter?

    Science.gov (United States)

    Madhuprasad; Bhat, Mahesh P; Jung, Ho-Young; Losic, Dusan; Kurkuri, Mahaveer D

    2016-04-25

    Computers have become smarter, smaller, and more efficient due to the downscaling of silicon-based components. Top-down miniaturisation of silicon-based computer components is fast reaching its limitations because of physical constraints and economical non-feasibility. Therefore, the possibility of a bottom-up approach that uses molecules to build nano-sized devices has been initiated. As a result, molecular logic gates based on chemical inputs and measurable optical outputs have captured significant attention very recently. In addition, it would be interesting if such molecular logic gates could be developed by making use of ion sensors, which can give significantly sensitive output information. This review provides a brief introduction to anion receptors, molecular logic gates, a comprehensive review on describing recent advances and progress on development of ion receptors for molecular logic gates, and a brief idea about the application of molecular logic gates. PMID:26890404

  7. Preliminary Testing For Anionic, Cationic and Non-ionic

    Directory of Open Access Journals (Sweden)

    Bokic, Lj.

    2007-11-01

    Full Text Available Detergents present a major environmental problem due to large quantities of surfactants released from laundries. For this reason, it is important to apply an appropriate analytical method for their determination. In this work, we propose two simple, fast and inexpensive analytical methods for anionic, cationic and non-ionic surfactant determination: thin layer chromatography (TLC separation for qualitative screening and quantitative potentiometric determination with ion-selective electrodes. These methods have been chosen because of their many advantages: rapidity, ease of operation, low cost of analysis and a wide variety of TLC application possibilities. The advantage of potentiometric titration is its very high degree of automation and very low detection limits obtained with different ion-selective electrodes applied for different surfactants.

  8. IR spectroscopy of gaseous fluorocarbon ions: The perfluoroethyl anion

    Energy Technology Data Exchange (ETDEWEB)

    Crestoni, Maria Elisa; Chiavarino, Barbara [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy); Lemaire, Joel; Maitre, Philippe [Universite Paris Sud, Laboratoire de Chimie Physique - UMR8000 CNRS, Faculte des Sciences - Batiment 350, 91405 Orsay Cedex (France); Fornarini, Simonetta, E-mail: simonetta.fornarini@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer C{sub 2}F{sub 5}{sup -} ions are formed by dissociative electron capture in perfluoropropane. Black-Right-Pointing-Pointer Both their reactivity towards neutrals and IRMPD spectroscopy are investigated. Black-Right-Pointing-Pointer The sampled C{sub 2}F{sub 5}{sup -} ions are best described as covalently bound pentafluoroethyl anions. - Abstract: The first IR spectrum of a perfluorinated carbanion has been obtained in the gas phase by IRMPD spectroscopy. Quantum chemical calculations at the MP2/cc-pVTZ level were performed yielding the optimized geometries and IR spectra for a covalently bound C{sub 2}F{sub 5}{sup -} species and for conceivable loosely bound F{sup -}(C{sub 2}F{sub 4}) complexes. Both the computational results and the IR characterization point to a covalent structure for the assayed species in agreement with the reactivity pattern displayed with selected neutrals.

  9. Adsorption of Anionic Dyes onto Chitosan-modified Diatomite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ge-shan; XUE Hong-hai; TANG Xiao-jian; PENG Fei; KANG Chun-li

    2011-01-01

    The purpose of this work is to study the possibility of anionic dyes Reactive Red M-8B(RR)and Direct Green B(DG)adsorbed on chitosan-modified diatomite.The characteristics of adsorbent,adsorption isotherms and the influence of adsorption time,temperature and pH were researched in this work.The results show that the modified diatomite had a much better adsorption capability than the natural diatomite.The adsorption capacities of chitosan-modified diatomite for RR and DG were 94.46 and 137.0 mg/g,respectively.Both adsorption time and adsorption temperature provided a positive effect on the dye adsorption.Within the experimental pH range,the adsorbance was enhanced at lower pH but reduced sharply at high pH.On the basis of the experimental results and discussion,electrostatic attraction is considered as the main mechanism of this chemisorption.

  10. Anion formation in sputter ion sources by neutral resonant ionization

    Science.gov (United States)

    Vogel, J. S.

    2016-02-01

    Focused Cs+ beams in sputter ion sources create mm-diameter pits supporting small plasmas that control anionization efficiencies. Sputtering produces overwhelmingly neutral products that the plasma can ionize as in a charge-change vapor. Electron capture between neutral atoms rises as the inverse square of the difference between the ionization potential of the Cs state and the electron affinity of the sputtered atom, allowing resonant ionization at very low energies. A plasma collision-radiation model followed electronic excitation up to Cs(7d). High modeled Cs(7d) in a 0.5 mm recess explains the 80 μA/mm2 C- current density compared to the 20 μA/mm2 from a 1 mm recess.

  11. Analytic description of dipole-bound anion photodetachment

    International Nuclear Information System (INIS)

    An analytical model for a dipole-bound anion (DBA) is proposed based on the exactly solvable three-dimensional Schroedinger equation for the excess electron bound by dipole potential of the parent neutral molecule (NM) in the Born-Oppenheimer approximation. The model gives reasonable analytical approximation for the dependence of the DBA binding energy on the NM dipole moment previously found numerically by many authors. The cross section of one-photon photodetachment of DBA is calculated in explicit analytical form. In the limit of high photon frequency, ω, the calculated cross-section displays ∼ω-2 behavior, which agrees perfectly with the experimental data [Bailey et al., J. Chem. Phys 104, 6976 (1996)]. At the threshold, the cross section demonstrates Gailitis-Damburg oscillations. Numerical dependence is provided for the maximal value of the cross section as a function of the NM dipole moment and the binding energy of the excess electron

  12. Alkaline direct alcohol fuel cells using an anion exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsuoka, Masao [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2005-10-04

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323K, which was about 100-200mV higher than that for a DMFC using Nafion{sup R}. The maximum power densities were in the order of ethylene glycol>glycerol>methanol>erythritol>xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode. (author)

  13. Anion exchange kinetics of uranium in sulphate media

    International Nuclear Information System (INIS)

    Experiments have shown that the sorption of uranium from acidic sulphate solutions onto strong base-anion exchange resins is particle diffusion controlled in the uranium concentration range 0.0001 to 0.004 M. A simplified diffusion model, based on Fick's Law, fits the kinetic data at each concentration. The rate of sorption falls significantly at lowered solution concentration. This corresponds with a lowered equilibrium loading of uranium and can be predicted with the Nernst-Planck equations using the measured self diffusion coefficient of uranium (1.65 x 10-8 cm2/s) and sulphate ions. The importance of this lowering of uranium sorption on the design of ion exchange equipment is stressed. (author)

  14. Experimental studies of single-photon photodetachment of atomic anions

    Science.gov (United States)

    Duvvuri, Srividya S.

    Laser photodetachment electron spectroscopy (LPES) has been used to study the structure of the terbium anion. The data was analyzed assuming that the terbium anion forms in dysprosium-like states. Using this assumption, the electron affinity of Tb([Xe]4f96s 2 6 Ho15/2 ) equals 1.98 +/- 0.10 eV, and the ground state of the terbium anion is assigned to the Dy-like Tb-([Xe]4f 106s2 5I 8) electronic configuration. At lust two bound excited states of Tb - are also evident in the photoelectron kinetic energy spectra, with binding energies of 0.449 +/- 0.01 and 1.67 +/- 0.07 eV relative to the Tb(6 Ho15/2 ) ground state. The energy scale of each Tb- photoelectron spectrum way calibrated using reference photoelectron peaks from 12 C-, 16O- and 23Na-, which have well known binding energies [1]. Photoelectron angular distribution measurements following the single-photon photodetachment of the lanthanide anions Tb- and Lu - are also presented. The asymmetry parameters were determined from the non-linear least-square fits of the photoelectron yields as a function of the angle between the photon polarization vector and the photoelectron momentum vector of the collected photoelectrons. The measurements indicated the single-photon photodetachment process hnu + Tb -([Xe]4f106s 2 5I8) → Tb([Xe]4 f96s2 6) Ho15/2 + e - has beta values of 1.51 +/- 0.08 and 1.35 +/- 0.08 at wavelengths of 514.5 and 488 nm, respectively. For Lu -, the fine-structure resolved photodetachment process hnu +Lu-([Xe]4f146s 26p5d 1D 2) → Lu([Xe]4f145 d6s2 2D 3/2) + e-, has been measured at wavelength of 532 nm yielding beta = 0.8 +/- 0.1, supporting the assertion that Lu - forms via the attachment of a 6p-electron to the neutral Lu atom [2]. Finally, photodetachment cross sections and the angular distributions of photo-electrons produced by the single-photon detachment of the Fe - and Cu- have also been measured at discrete visible photon wavelengths. From the measured photodetachment cross sections, the

  15. N-Arylazetidines: Preparation through Anionic Ring Closure.

    Science.gov (United States)

    Quinodoz, Pierre; Drouillat, Bruno; Wright, Karen; Marrot, Jérôme; Couty, François

    2016-04-01

    We report herein an efficient synthesis of diversely substituted N-aryl-2-cyanoazetidines based on an anionic ring-closure reaction. These compounds can be prepared from β-amino alcohols in enantiomerically pure form through a three-step sequence involving (i) copper-catalyzed N-arylation, (ii) N-cyanomethylation of the secondary aniline, and (iii) one-pot mesylation followed by ring closure induced by a base. This high-yielding sequence gives access to azetidines with a predictable and adjustable substitution pattern and also with predictable diastereoselectivity. These compounds are susceptible to multiple further derivatizations through Suzuki coupling or nitrile transformation, thus appearing as valuable new scaffolds for medicinal chemistry. Their rigid shape, featuring an almost planar N-arylamine and a planar four-membered ring, was revealed by both AM1 calculations and X-ray crystallography. PMID:26932242

  16. Anion formation in sputter ion sources by neutral resonant ionization

    International Nuclear Information System (INIS)

    Focused Cs+ beams in sputter ion sources create mm-diameter pits supporting small plasmas that control anionization efficiencies. Sputtering produces overwhelmingly neutral products that the plasma can ionize as in a charge-change vapor. Electron capture between neutral atoms rises as the inverse square of the difference between the ionization potential of the Cs state and the electron affinity of the sputtered atom, allowing resonant ionization at very low energies. A plasma collision-radiation model followed electronic excitation up to Cs(7d). High modeled Cs(7d) in a 0.5 mm recess explains the 80 μA/mm2 C− current density compared to the 20 μA/mm2 from a 1 mm recess

  17. The removal of anionic surfactants from water in coagulation process.

    Science.gov (United States)

    Kaleta, Jadwiga; Elektorowicz, Maria

    2013-01-01

    This paper presents the results of a laboratory study on the effectiveness of the coagulation process in removing surfactants from water. The application of traditional coagulants (aluminium sulfate and iron chlorides) has not brought satisfactory results, the reduction in anionic surfactant (AS) content reached 7.6% and 10%, respectively. Adding cationic polyelectrolyte (Zetag-50) increased the removal efficiency to 24%. Coagulation using a polyelectrolyte alone proved to be more efficient, the reduction in surfactant content fluctuated at a level of about 50%. Complete surfactant removal was obtained when powdered activated carbon was added 5 minutes before the basic coagulant to the coagulation process. The efficiency of surfactant coagulation also increased after the application of powdered clinoptilolite, but to a smaller degree. Then the removal of AS was found to be improved by dosing powdered clinoptilolite simultaneously or with short delay after the addition of the basic coagulant. PMID:23837351

  18. Interaction between cationic surfactant of 1-methyl-3-tetradecylimidazolium bromide and anionic polymer of sodium polystyrene sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); School of Chemistry and Chemical Engineering, Engineering Research Center for Fine Chemicals of Ministry of Education, Shanxi University, Shanxi Province, VIC 030006 (China); Kang, Wenpei [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Shandong Province, VIC 250100 (China); Sun, Dezhi [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); Liu, Jie, E-mail: liujie@lcu.edu.cn [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China); Wei, Xilian, E-mail: weixilian@126.com [College of Chemistry and Chemical Engineering, Liaocheng University, Shandong Province, VIC 252059 (China)

    2013-08-15

    The interaction between long-chain imidazolium ionic liquid (C{sub 14}mimBr) and anionic polyelectrolyte of sodium polystyrene sulfonate (NaPSS) has been studied using surface tension, isothermal titration microcalorimetry (ITC), dynamic light scatting (DLS) and conductance methods. The result shows that the surface tension plots have a pronounced hump in the surface tension at surfactant concentrations below the critical micelle concentration (cmc) of the surfactant. The cooperative adsorption of surfactant and polymer on the surface (PS{sub S}) and the formation of polymer/surfactant aggregate in bulk solution (PS{sub M}) provide a rational explanation about it. The formation of surfactant/polymer complexes is affected by the concentration of the surfactant or NaPSS, which is also ascertained by ITC and DLS measurements. Further, the thermodynamic parameters are derived from calorimetric titration and conductance curves, and the effects of polymer concentration and temperature on the parameters are evaluated in detail.

  19. Interaction between cationic surfactant of 1-methyl-3-tetradecylimidazolium bromide and anionic polymer of sodium polystyrene sulfonate

    International Nuclear Information System (INIS)

    The interaction between long-chain imidazolium ionic liquid (C14mimBr) and anionic polyelectrolyte of sodium polystyrene sulfonate (NaPSS) has been studied using surface tension, isothermal titration microcalorimetry (ITC), dynamic light scatting (DLS) and conductance methods. The result shows that the surface tension plots have a pronounced hump in the surface tension at surfactant concentrations below the critical micelle concentration (cmc) of the surfactant. The cooperative adsorption of surfactant and polymer on the surface (PSS) and the formation of polymer/surfactant aggregate in bulk solution (PSM) provide a rational explanation about it. The formation of surfactant/polymer complexes is affected by the concentration of the surfactant or NaPSS, which is also ascertained by ITC and DLS measurements. Further, the thermodynamic parameters are derived from calorimetric titration and conductance curves, and the effects of polymer concentration and temperature on the parameters are evaluated in detail.

  20. Examination of Amine-Functionalised Anion-Exchange Membranes for Possible Use in the All-Vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    The applicability of amine-functionalised anion-exchange membranes (AEMs) for use in the all-vanadium redox flow battery has been studied. A selection of radiation-grafted aminated membranes functionalised with dimethylamine, trimethylamine or diazabicyclo(2,2,2)octane were extensively tested. The success of each grafting process was confirmed by Raman and infrared spectroscopies, titrimetry and ionic conductivity measurements. The amine-functionalised membranes were found to have poor thermo-oxidative stability and high vanadium cation permeabilities. The results highlight the importance of balancing ionic conductivity with vanadium cation permeability and indicate that amine-based functional groups may not be suitably stable for the membranes to remain true AEMs when in use in the all-vanadium redox flow battery

  1. Electro membrane extraction of biological anions with ion chromatographic analysis.

    Science.gov (United States)

    Tan, Tsze Yin; Basheer, Chanbasha; Ng, Kai Perng; Lee, Hian Kee

    2012-08-20

    A simple and sensitive single step electro membrane extraction (EME) procedure was demonstrated for biological organic anions with determination by ion chromatography (IC). Nitrite, adipate, oxalate, iodide, fumarate, thiocyanate and perchlorate were extracted from aqueous donor solutions, across a supported liquid membrane (SLM) consisting of methanol impregnated in the walls of a porous polypropylene membrane bag and into an alkaline aqueous acceptor solution in the lumen of the propylene envelope by the application of potential of 12V applied across the SLM. The acceptor solution was analyzed by IC. Parameters affecting the extraction performance such as type of SLM, extraction time, pH of the donor and acceptor solution, and extraction voltage were studied. The most favorable EME conditions were methanol as the SLM, extraction time of 5min, pH of acceptor and sample solutions of 12 and 4, respectively, and a voltage of 12V. Portable 12V batteries were used in the study. Under these optimized conditions, all anions had enrichment factors ranging from 3.6 to 36.2 with relative standard deviations (n=3) of between 6.6 and 17.5%. Good linearity ranging from 0.1 to 10μgmL(-1) with coefficients of correlation (r) of between 0.9981 and 0.9996 were obtained. The limits of detection of the EME-IC method were from 0.01 to 0.14μgmL(-1). The developed methodology was applied to amniotic fluid samples to evaluate the feasibility of the method for real applications. PMID:22819047

  2. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. PMID:26624231

  3. A new family of anionic organic–inorganic hybrid doughnut-like nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuxiu; Gao, Wen-Yang; Wojtas, Lukasz; Zhang, Zhenjie; Zaworotko, Michael J. (Limerick); (USF)

    2015-06-15

    A family of soluble organic–inorganic hybrid doughnut-like anions, hydoughnuts, has been prepared by the self-assembly of polyoxovanadate anions and 1,3-benzenedicarboxylate (bdc) linkers. Derivatives of the parent hydoughnut, [(V₄O₈Cl)₄(bdc)₈]⁴⁻, can be obtained by changing the counter-ion or by using a variant of bdc.

  4. A C2-symmetric ratiometric fluorescence and colorimetric anion sensor based on pyrrole derivative

    International Nuclear Information System (INIS)

    A C2-symmetric fluorescence and colorimetric anion sensor (1) based on pyrrole derivative was designed and synthesized according to binding site-signaling subunit approach. The compound 1 was easily prepared by reaction of pyrrole-2,5-dicarboxaldehyde with 4-nitrophenylhydrazine in ethanol (yield=78%). In DMSO, the sensor 1 exhibited a visible color change from red to brown upon exposure to anions such as AcO- and F-; however, no obvious color changes were observed when the other tested anions (e. g. H2PO4-, Cl-, Br- and I-) were added. There was a significant redshift (Δλmax=160 nm) in UV-vis spectrum during UV-vis spectral titrations. In particular, the sensor 1 showed ratiometric fluorescence responses to anions. - Highlights: → C2-symmetric fluorescence and colorimetric anion sensor based on pyrrole derivative was designed and synthesized according to binding site-signaling subunit approach. → The sensor was easily prepared by reaction of pyrrole-2,5-dicarboxaldehyde with 4-nitrophenylhydrazine in ethanol (yield=78%). → In DMSO, the sensor exhibited a visible color change from red to brown upon exposure to anions such as AcO- and F-, however, no obvious color changes were observed when the other anions tested (e. g. H2PO4-, Cl-, Br- and I-) were added. → The sensor showed ratiometric fluorescence responses to anions.

  5. The saccharinate anion: a versatile and fascinating ligand in coordination chemistry

    Directory of Open Access Journals (Sweden)

    Enrique J. Baran

    2005-03-01

    Full Text Available The saccharinate anion, obtained by deprotonation of the N-H moiety of saccharin (o-sulfobenzimide is a very versatile and polyfunctional ligand in coordination chemistry. In this review the different forms of metal-to-ligand interactions involving this anion and some other coordination peculiarities are briefly discussed on the basis of some selected examples.

  6. CO{sub 2} binding in the (quinoline-CO{sub 2}){sup −} anionic complex

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Jacob D.; Buytendyk, Allyson M.; Wang, Yi; Bowen, Kit H., E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kim, Seong K. [Department of Chemistry, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-06-21

    We have studied the (quinoline-CO{sub 2}){sup −} anionic complex by a combination of mass spectrometry, anion photoelectron spectroscopy, and density functional theory calculations. The (quinoline-CO{sub 2}){sup −} anionic complex has much in common with previously studied (N-heterocycle-CO{sub 2}){sup −} anionic complexes both in terms of geometric structure and covalent bonding character. Unlike the previously studied N-heterocycles, however, quinoline has a positive electron affinity, and this provided a pathway for determining the binding energy of CO{sub 2} in the (quinoline-CO{sub 2}){sup −} anionic complex. From the theoretical calculations, we found CO{sub 2} to be bound within the (quinoline-CO{sub 2}){sup −} anionic complex by 0.6 eV. We also showed that the excess electron is delocalized over the entire molecular framework. It is likely that the CO{sub 2} binding energies and excess electron delocalization profiles of the previously studied (N-heterocycle-CO{sub 2}){sup −} anionic complexes are quite similar to that of the (quinoline-CO{sub 2}){sup −} anionic complex. This class of complexes may have a role to play in CO{sub 2} activation and/or sequestration.

  7. Preassembly-driven ratiometric sensing of H2PO4(-) anions in organic and aqueous environments.

    Science.gov (United States)

    Gong, Wei-tao; Na, Duo; Fang, Le; Mehdi, Hassan; Ning, Gui-ling

    2015-02-21

    Gemini surfactant-like receptor is designed and synthesized. The special preassembly phenomenon of in a nonpolar solvent facilitates the novel ratiometric fluorescence sensing of H2PO4(-)via an anion-induced reassembly process in organic solvents and an anion-induced disassembly process in water. PMID:25563510

  8. The anionic basis of fluid secretion by the rabbit mandibular salivary gland

    DEFF Research Database (Denmark)

    Case, R M; Hunter, M; Novak, I;

    1984-01-01

    The role played by anions in salivary secretion has been studied in experiments on the isolated, perfused mandibular gland of the rabbit, in which perfusate Cl- and/or HCO3- were replaced by other anions. Replacement of Cl- with Br- had no significant effect on salivary secretion rate, but...

  9. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  10. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers

    KAUST Repository

    Zhang, H.

    2013-08-07

    A novel one-pot methodology combining anionic polymerization and polyhomologation, through a "bridge" molecule (BF3OEt 2), was developed for the synthesis of polyethylene (PE)-based block copolymers. The anionically synthesized macroanion reacts with the "bridge" molecule to afford a 3-arm star (trimacromolecular borane) which serves as an initiator for the polyhomologation. 2013 The Royal Society of Chemistry.

  11. CO2 binding in the (quinoline-CO2)− anionic complex

    International Nuclear Information System (INIS)

    We have studied the (quinoline-CO2)− anionic complex by a combination of mass spectrometry, anion photoelectron spectroscopy, and density functional theory calculations. The (quinoline-CO2)− anionic complex has much in common with previously studied (N-heterocycle-CO2)− anionic complexes both in terms of geometric structure and covalent bonding character. Unlike the previously studied N-heterocycles, however, quinoline has a positive electron affinity, and this provided a pathway for determining the binding energy of CO2 in the (quinoline-CO2)− anionic complex. From the theoretical calculations, we found CO2 to be bound within the (quinoline-CO2)− anionic complex by 0.6 eV. We also showed that the excess electron is delocalized over the entire molecular framework. It is likely that the CO2 binding energies and excess electron delocalization profiles of the previously studied (N-heterocycle-CO2)− anionic complexes are quite similar to that of the (quinoline-CO2)− anionic complex. This class of complexes may have a role to play in CO2 activation and/or sequestration

  12. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    Science.gov (United States)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  13. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Science.gov (United States)

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-01-01

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292

  14. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells.

    Science.gov (United States)

    Hayashi, M; Inagaki, A; Novak, I; Matsuda, H

    2016-07-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl(-) channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (V te) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl(-) currents in Capan-1 single cells. The effects of adenosine on V te, an equivalent short-circuit current (I sc), and whole-cell Cl(-) currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased I sc and whole-cell Cl(-) currents through CFTR Cl(-) channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of I sc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl(-) currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl(-) channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion. PMID:26965147

  15. Two Multi-armed Neutral Receptors for α, ω-Dicarboxylate Anions

    Institute of Scientific and Technical Information of China (English)

    WU, Jin-Long; HE, Yong-Bing; WEI, Lan-Hua; LIU, Shun-Ying; XU, Kuo-Xi; MENG, Ling-Zhi

    2006-01-01

    Two new multi-armed neutral receptors 1 and 2 containing thiourea and amide groups were synthesized by simple steps in good yields. Receptors 1 and 2 have a better selectivity and higher association constants for malonate anion than other anions examined by the present work. In particular, distinct color changes were observed upon addition of dicarboxylate anions to the solution of 1 in DMSO. The UV-Vis and fluorescence spectra data indicate that a 1: 2 stoichiometry complex was formed between compound 1 or 2 and dicarboxylate anions of shorter carbon chain, and a 1: 1 stoichiometry complex was formed between compound 1 or 2 and dicarboxylate anions of longer carbon chain through hydrogen bonding interactions.

  16. Action spectroscopy of gas-phase carboxylate anions by multiple photon IR electron detachment/attachment

    CERN Document Server

    Steill, Jeffrey D

    2008-01-01

    We report on a form of gas-phase anion action spectroscopy based on infrared multiple photon electron detachment and subsequent capture of the free electrons by a neutral electron scavenger in a Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer. This method allows one to obtain background-free spectra of strongly bound anions, for which no dissociation channels are observed. The first gas-phase spectra of the acetate and propionate anions are presented using SF6 as electron scavenger and a free electron laser as source of intense and tunable infrared radiation. To validate the method, we compare infrared spectra obtained through multiple photon electron detachment/attachment and multiple photon dissociation for the benzoate anion. In addition, different electron acceptors are used, comparing both associative and dissociative electron capture. The relative energies of dissociation (by CO2 loss) and electron detachment are investigated for all three anions by DFT and CCSD(T) methods. DFT calcu...

  17. Effect of anionic salts on selenium metabolism in nonlactating, pregnant dairy cows.

    Science.gov (United States)

    Gant, R G; Sanchez, W; Kincaid, R L

    1998-06-01

    The objective of this trial was to determine whether anionic salts in the diets of nonlactating, pregnant cows for 14 to 21 d prepartum affected measures of Se status. One of three dietary treatments (control, anionic salts, and anionic salts plus Se) was administered to 34 nonlactating, pregnant cows using a completely randomized design with repeated measures. The anionic salts were delivered via gelatin capsules that were administered orally in two equal amounts per day, and the Se (3 mg/d) was administered via an intraruminal bolus. The incidence of milk fever among cows was not significantly different across dietary treatments. The severity of hypocalcemia as indicated by concentrations of ionized Ca in serum collected milk fever without danger of significantly reducing the transfer of Se from the dam to the calf and without compromising the Se status of the cow when the anionic salts are limited to administration for 14 to 21 d before calving. PMID:9684171

  18. A procedure for reducing the concentration of hydrogen ions in acid anionic eluate and equipment therefore

    International Nuclear Information System (INIS)

    The method is described of reducing the concentration of hydrogen ions in acid anionic eluate produced in the separation of uranium or other metals, in which anion exchanger elution, precipitation, filtration and precipitate and anion exchanger washing are used. The technological line for such elution comprises at least one ion exchange column and at least one container. They together form the first and the second stages of preparation of the acid anion elution solution, the sorption-elution separation of hydrogen ions on an cation exchanger being inserted between them. The preparation of the solution is divide into two stages. In the first stage, the acid and part of the solution for the preparation of the acid anion elution solution are supplied. The resulting enriched acid elution solution is fe onto the cation exchanger where the hydrogen ion concentration i reduced. It is then carried into the second stage where it is mixed with the remaining part of the solution. (B.S.)

  19. Anion-Exchange Properties of Trifluoroacetate and Triflate Salts of N-Alkylammonium Resorcinarenes.

    Science.gov (United States)

    Pan, Fangfang; Beyeh, Ngong Kodiah; Bertella, Stefania; Rissanen, Kari

    2016-03-01

    The synthesis of N-benzyl- and N-cyclohexylammonium resorcinarene trifluoroacetate (TFA) and triflate (OTf) salt receptors was investigated. Solid-state analysis by single-crystal X-ray diffraction revealed that the N-alkylammonium resorcinarene salts (NARSs) with different upper substituents had different cavity sizes and different affinities for anions. Anion-exchange experiments by mixing equimolar amounts of N-benzylammonium resorcinarene trifluoroacetate and N-cyclohexylammonium resorcinarene triflate, as well as N-benzylammonium resorcinarene triflate and N-cyclohexylammonium resorcinarene trifluoroacetate showed that the NARS with flexible benzyl groups preferred the larger OTf anion, whereas the rigid cyclohexyl groups preferred the smaller TFA anions. The anion-exchange processes were confirmed in the solid state by single-crystal and powder X-ray diffraction experiments and in the gas phase by electrospray ionization mass spectrometry. PMID:26749383

  20. Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure

    Directory of Open Access Journals (Sweden)

    Stephen Majoni

    2014-01-01

    Full Text Available Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs and hydroxy double salts (HDSs can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release. The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers. The orthoisomer showed a more sustained and complete release as compared to the other isomers.

  1. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of Kd values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  2. NMR Studies on Diffusion and Molecular Motions of Imidazolium Ionic Liquids doped by Lithium Salts Related to Ionic Conductivity and Computational Interaction Energy

    Institute of Scientific and Technical Information of China (English)

    Kikuko; Hayamizua; Seiji; Tsuzuki; Shiro; Seki

    2007-01-01

    1 Results Room-temperature Ionic liquids (RTILs) are special class of compounds, where a combination of cations and anions produces neutral, stable and viscous liquids with high ionic conductivity. Widely spread applications are proposed to use conductors, electrolytes, clean solvents and others. Especially, RTILs are expected to be safe electrolytes in the ion-lithium batteries. In this study, NMR methods are used to clarify the basic properties of the individual movements of the anions and cations of ...

  3. Dissecting holographic conductivities

    CERN Document Server

    Davison, Richard A

    2015-01-01

    The DC thermoelectric conductivities of holographic systems in which translational symmetry is broken can be efficiently computed in terms of the near-horizon data of the dual black hole. By calculating the frequency dependent conductivities to the first subleading order in the momentum relaxation rate, we give a physical explanation for these conductivities in the simplest such example, in the limit of slow momentum relaxation. Specifically, we decompose each conductivity into the sum of a coherent contribution due to momentum relaxation and an incoherent contribution, due to intrinsic current relaxation. This decomposition is different from those previously proposed, and is consistent with the known hydrodynamic properties in the translationally invariant limit. This is the first step towards constructing a consistent theory of charged hydrodynamics with slow momentum relaxation.

  4. Nerve conduction velocity

    Science.gov (United States)

    Nerve conduction velocity (NCV) is a test to see how fast electrical signals move through a nerve. ... surface electrodes are placed on the skin over nerves at different spots. Each patch gives off a ...

  5. Conducting polymers: polyaniline

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava; Bober, Patrycja; Humpolíček, P.; Kašpárková, V.; Sapurina, I.; Shishov, M. A.; Varga, M.

    Hoboken: John Wiley & Sons, 2015, s. 1-44. ISBN 9780471440260 Institutional support: RVO:61389013 Keywords : conducting polymers * polyaniline Subject RIV: CD - Macromolecular Chemistry http://onlinelibrary.wiley.com/book/10.1002/0471440264/

  6. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Robert L; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  7. Thermal conductivity of HNS

    Energy Technology Data Exchange (ETDEWEB)

    Faubion, B.D.

    1976-03-01

    The thermal conductivity of HNS I and two samples of HNS II was determined at 222, 293, 347 and 394/sup 0/K. The thermal diffusivity of pellets of each HNS lot pressed to three densities was measured using the pulse heating method. The thermal conductivity was calculated for each pellet from the thermal diffusivity, density and the specific heat. The specific heat for each HNS sample was measured at each temperature using the DSC method.

  8. Proton conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, G.W.; Pederson, L.R.; Armstrong, T.R.; Bates, J.L.; Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    Cerate perovskites of the general formula AM{sub x}Ce{sub 1-x}O{sub 3-{delta}}, where A = Sr or Ba and where M = Gd, Nd, Y, Yb or other rare earth dopant, are known to conduct a protonic current. Such materials may be useful as the electrolyte in a solid oxide fuel cell operating at intermediate temperatures, as an electrochemical hydrogen separation membrane, or as a hydrogen sensor. Conduction mechanisms in these materials were evaluated using dc cyclic voltammetry and mass spectrometry, allowing currents and activation energies for proton, electron, and oxygen ion contributions to the total current to be determined. For SrYb{sub 0.05}Ce{sub 0.95}O{sub 3-{delta}}, one of the best and most environmentally stable compositions, proton conduction followed two different mechanisms: a low temperature process, characterized by an activation energy of 0.42{+-}0.04 eV, and a high temperature process, characterized by an activation energy of 1.38{+-}0.13 eV. It is believed that the low temperature process is dominated by grain boundary conduction while bulk conduction is responsible for the high temperature process. The activation energy for oxygen ion conduction (0.97{+-}0.10 eV) agrees well with other oxygen conductors, while that for electronic conduction, 0.90{+-}0.09 eV, is affected by a temperature-dependent electron carrier concentration. Evaluated by direct measurement of mass flux through a dense ceramic with an applied dc field, oxygen ions were determined to be the majority charge carrier except at the lowest temperatures, followed by electrons and then protons.

  9. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  10. Conversion kinetics for smelt anions: cyanate and sulfide

    Energy Technology Data Exchange (ETDEWEB)

    DeMartini, N.

    2004-07-01

    Cyanate and sulfide are two anions found in the molten salts (smelt) from the kraft recovery boiler of the chemical recovery cycle. Their concentrations in smelt are significantly different, as are their origins. The concentration of cyanate in smelt ranges between 0.4 and 2.1 g OCN{sup -}/kg smelt while the concentration of sulfide ranges between 78 and 115 g S{sup 2-}/kg smelt. Cyanate is a by-product of black liquor combustion. It is formed from organic nitrogen compounds in black liquor during the char burning stage. The charge of the cyanate anion is balanced by the alkali metals found in smelt, namely sodium and potassium. It has been found that the nitrogen in cyanate represents about 30% of the nitrogen entering the recovery boiler with the black liquor. This flow is similar in magnitude to the flows of black liquor nitrogen exiting the recovery boiler as the gaseous compounds NO and N{sub 2}. The method for cyanate analysis used in this work is presented in the Methods chapter of this thesis and Paper I. The results from nitrogen balances at three European kraft pulp mills are discussed in this thesis and Papers II and III, with a focus on the fate of cyanate in the recovery boiler and recausticizing process. Cyanate exits the recovery boiler with the smelt and reacts to form ammonia in the recausticizing solutions of the chemical recovery cycle. Papers IV and V of this thesis focus on the rate of ammonia formation from cyanate in model solutions and in kraft green liquors. The experiments were carried out at temperatures of 80 to 95 deg C, which are temperatures similar to those found in the recausticizing process of a kraft pulp mill. The kinetic studies help clarify the catalytic effect of bicarbonate. A rate equation applicable for use in describing ammonia formation from cyanate in highly alkaline solutions such as pulp mill recovery streams is presented. The sulfide anion, on the other hand, is a desired product of black liquor combustion as the

  11. Cartilage conduction hearing.

    Science.gov (United States)

    Shimokura, Ryota; Hosoi, Hiroshi; Nishimura, Tadashi; Yamanaka, Toshiaki; Levitt, Harry

    2014-04-01

    Sound information is known to travel to the cochlea via either air or bone conduction. However, a vibration signal, delivered to the aural cartilage via a transducer, can also produce a clearly audible sound. This type of conduction has been termed "cartilage conduction." The aural cartilage forms the outer ear and is distributed around the exterior half of the external auditory canal. In cartilage conduction, the cartilage and transducer play the roles of a diaphragm and voice coil of a loudspeaker, respectively. There is a large gap between the impedances of cartilage and skull bone, such that cartilage vibrations are not easily transmitted through bone. Thus, these methods of conduction are distinct. In this study, force was used to apply a transducer to aural cartilage, and it was found that the sound in the auditory canal was amplified, especially for frequencies below 2 kHz. This effect was most pronounced at an application force of 1 N, which is low enough to ensure comfort in the design of hearing aids. The possibility of using force adjustments to vary amplification may also have applications for cell phone design. PMID:25234994

  12. Transparent conducting oxide nanotubes

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  13. Transparent conducting oxide nanotubes

    International Nuclear Information System (INIS)

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current–voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10−4 Ωcm at T = 300 K (compared to 6.5 × 10−1 Ωcm for nominally undoped nanotubes) to 2.2 × 10−4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm–1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples. (paper)

  14. Communication: Vibrationally resolved photoelectron spectroscopy of the tetracyanoquinodimethane (TCNQ) anion and accurate determination of the electron affinity of TCNQ

    International Nuclear Information System (INIS)

    Tetracyanoquinodimethane (TCNQ) is widely used as an electron acceptor to form highly conducting organic charge-transfer solids. Surprisingly, the electron affinity (EA) of TCNQ is not well known and has never been directly measured. Here, we report vibrationally resolved photoelectron spectroscopy (PES) of the TCNQ− anion produced using electrospray and cooled in a cryogenic ion trap. Photoelectron spectrum taken at 354.7 nm represents the detachment transition from the ground state of TCNQ− to that of neutral TCNQ with a short vibrational progression. The EA of TCNQ is measured accurately to be 3.383 ± 0.001 eV (27 289 ± 8 cm−1), compared to the 2.8 ± 0.1 eV value known in the literature and measured previously using collisional ionization technique. In addition, six vibrational peaks are observed in the photoelectron spectrum, yielding vibrational frequencies for three totally symmetric modes of TCNQ. Two-photon PES via a bound electronic excited state of TCNQ− at 3.100 eV yields a broad low kinetic energy peak due to fast internal conversion to vibrationally excited levels of the anion ground electronic state. The high EA measured for TCNQ underlies its ability as a good electron acceptor

  15. Electroactive Materials for Anion Separation -- Technetium from Nitrate

    International Nuclear Information System (INIS)

    The general aim of this project is to design and prepare new electroactive ion-exchange (EaIX) materials that can be used to remove the radioactive components from high-level radioactive waste (HLW) at U.S. Department of Energy (DOE) sites nationwide. The specific objective is to develop and investigate redox-active polymers, such as polyvinylferrocene (PVF), that can be used to remove pertechnetate (TcO4-) ion from HLW. Electroactive materials are an important class of materials for this application because they can minimize or eliminate secondary waste streams associated with HLW processing, thereby reducing the costs of environmental cleanup. The technologies currently available for treatment and disposal of approximately 90 million gallons of HLW at the DOE Savannah River Site, Idaho National Engineering and Environmental Laboratory, and Hanford Site are neither cost-effective nor practical. Processes to separate the HLW constituents from the low-level waste (LLW) fraction are required to reduce the volume of waste that must be treated and disposed of and to reduce the cost of treatment and disposal. Use of EaIX materials, conjoined with the use of porous membranes that also are under development, can significantly reduce or eliminate secondary wastes associated with more traditional ion-exchange or solvent extraction technologies and, thus, can help improve the effectiveness and reduce the cost of DOE's waste treatment and disposal efforts. Beyond its importance as a cost issue, separation of TcO4- from HLW also addresses a critical environmental issue. The most common isotope of technetium (99Tc) has an extremely long half-life of 210,000 years. Rapid development of advanced methods to remove and separate this long-lived radioactive isotope is important because most of the technetium in the DOE HLW probably is in the form of TcO4-, which is highly mobile in soils and groundwater. This project is focused on anion separation and, in particular, the selective

  16. Responsible conduct of research

    CERN Document Server

    Shamoo, Adil E

    2015-01-01

    Since the early 2000s, the field of Responsible Conduct of Research has become widely recognized as essential to scientific education, investigation, and training. At present, research institutions with public funding are expected to have some minimal training and education in RCR for their graduate students, fellows and trainees. These institutions also are expected to have a system in place for investigating and reporting misconduct in research or violations of regulations in research with human subjects, or in their applications to federal agencies for funding. Public scrutiny of the conduct of scientific researchers remains high. Media reports of misconduct scandals, biased research, violations of human research ethics rules, and moral controversies in research occur on a weekly basis. Since the 2009 publication of the 2nd edition of Shamoo and Resnik's Responsible Conduct of Research, there has been a vast expansion in the information, knowledge, methods, and diagnosis of problems related to RCR and the ...

  17. Conductive epoxypolyamide coating composition

    Energy Technology Data Exchange (ETDEWEB)

    Mirabeau, M.N.; Rohrbacher, F.

    1991-10-01

    This patent describes a conductive coating composition comprising a film forming binder and pigment in a pigment to binder weight ratio of about 15:100 to 100:100. It comprises 40-70% by weight of an amine component having at least two reactive amine groups selected from the group consisting of an amine, polyamide, polyamido amine resin or mixtures thereof; and 30-60% by weight of an epoxy resin having at least two epoxy groups per resin molecule; wherein the pigment comprises an electrically conductive pigment that comprises silica selected from the group consisting of amorphous silica, a silica containing material or silica coated pigment, the silica being in association with a two- dimensional network of antimony-containing tin oxide crystallites in which the antimony content ranges from about 1-30% by weight of the tin oxide and the composition forms a coating having a surface conductivity of at least 100 Ransburg units.

  18. Conducting everyday life

    DEFF Research Database (Denmark)

    Juhl, Pernille

    In the paper I discuss how small children (0-4 year) develop through ‘conducting everyday life’ across contexts (Holzkamp 2013). I discuss how this process of conducting everyday life is essential when discussing the ‘good life for children’ from a child perspective. These issues are addressed by......, they are involved in preventive interventions. I conducted participatory observations with the children in their everyday life. Overall, the study stresses that even small children must be perceived as active participants who act upon and struggle with different conditions and meaning making processes...... using materials from my ongoing Ph.D. project which is based on cultural-historical research traditions and critical psychological conceptualizations. The project is a qualitative study of 6 children, who for various reasons are defined as being children-at-risk. Due to concerns about their development...

  19. Imidazolium-Functionalized Anion Exchange Polymer Electrolytes with High Tensile Strength and Stability for Alkaline Membrane Fuel Cells

    International Nuclear Information System (INIS)

    This study reports novel kinds of high tensile strength alkaline anion-exchange membranes composed of imidazolium-functionalized anion exchange polymer electrolytes. The membranes were prepared by a combined thermal and chemical cross-linking of poly (vinyl alcohol) and poly (3-methyl-1-vinylimidazolium chloride)-co-(1-vinylpyrrolidone) (PMVIC-co-VP). Characterizations by AC impedance technique, mechanical property, FTIR spectroscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), along with the water uptake, alkaline resistance and oxidation stability were carried out on the membranes consisting of different PVA/PVA-PMVIC-co-VP mass ratios to evaluate their applicability in alkaline fuel cells. The membrane in a mass ratio of 1:0.4 exhibited high tensile stress at break in the range of 59.3∼76.6 MPa, and the elongation at break around 9.2∼14.9%, depending on the annealing temperature from 130∼190 °C. The OH− conductivity of the membranes was found to be increased with increasing annealing temperature and mass ratio, and reached high up to 1.7 × 10−2 S cm−1. Besides, the membranes showed perfect oxidation stability in 30% H2O2 for 250 hours with no obvious weight loss was observed. XPS analysis indicated that some degradation occurred when the membrane was exposed to 8 M KOH at 85 °C for 312 h, but no lessened OH− conductivity was detected. SEM pictures revealed an ordered microvoid structure with pore size ca. 100∼150 nm uniformly dispersed on the membrane surface, which imparted the PVA/PVA-PMVIC-co-VP membrane with good OH− conductivity

  20. Adsorption of uranium (VI) from mixed chloride-fluoride solutions by anion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Pakholkov, V.S.; Denisova, L.A.; Rychkov, V.N.; Kurnosenko, N.A.

    1988-03-01

    Experimental data are reported and discussed concerning the adsorption of uranium from 0.025 M solutions of UO/sub 2/Cl/sub 2/, containing HCl, HF, and NH/sub 4/Cl over a wide concentration range, using anion-exchange resins of varying basicities. UV and IR spectroscopic studies were conducted in order to clarify the chemical mechanism of uranium adsorption. Adsorption isotherms for all of the ion-exchange resins studied are convex in shape and can be described by the following equations: log K/sub d/ = a + b (-log C/sub e/), and log A = a + (b + 1) log C/sub e/, where A is the adsorptivity in mmole U/g; K/sub d/ is the distribution coefficient in mg/liter; and C/sub e/ is the equilibrium concentration of U in mmole/ml. General mathematical models have been obtained to describe the adsorption process; these consist of a system of regression equations derived from the results of a complete 2/sup 3/ factorial study.

  1. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-01

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV). PMID:24884171

  2. Modulation of the voltage-dependent anion channel of mitochondria by elaidic acid.

    Science.gov (United States)

    Tewari, Debanjan; Bera, Amal Kanti

    2016-08-26

    Dietary trans fatty acids (TFAs) are known to increase the risk of cardiovascular diseases by altering plasma lipid profile and activating various inflammatory signaling pathways. Here we show that elaidic acid (EA), the most abundant TFA in diet, alters the electrophysiological properties of voltage-dependent anion channel (VDAC) of mitochondria. Purified bovine brain VDAC, when incorporated in the planar lipid bilayer (PLB) composed of 1,2-diphytanoyl-sn-glycero-3 phosphatidyl choline (DPhPC) and EA in a 9 to 1 ratio (wt/wt), exhibited complete closing events at different voltages. The closing events were observed at even -10 mV, a voltage at which VDAC usually remains fully open all the time. Additionally, the voltage sensitivity of VDAC was lost in presence of EA; the channel conductance did not decrease with increasing voltages. In identical experimental conditions, membrane containing oleic acid (OA), the cis isomer of EA did not produce any such effect. We propose that EA possibly exerts its adverse effect by modulating VDAC. PMID:27318085

  3. Silicate anion structural change in calcium silicate hydrate gel on dissolution of hydrated cement

    International Nuclear Information System (INIS)

    High pH conditions of aqueous solutions in a radioactive waste repository can be brought about by dissolution of cementitious materials. In order to clarify the mechanisms involved in maintaining this high pH for long time, we investigated the dissolution phenomena of OPC hydrate. In the present research, leaching tests on powdered cement hydrates were conducted by changing the ratio of mass of leaching water to mass of OPC hydrate (liquid/solid ratio) from 10 - 2,000 (wt/wt). Ordinary Portland Cement hydrate was contacted with deionized water and placed in a sealed bottle. After a predetermined period, the solid was separated from the solution. From the results of XRD analysis on the solid phase and the Ca concentration in the aqueous phase, it was confirmed that Ca(OH)2 was preferentially dissolved when the liquid/solid ratio was 10 or 100 (wt/wt), and that C-S-H gel as well as Ca(OH)2 were dissolved when the liquid/solid ratio was 500 (wt/wt) or larger. 29Si-NMR results showed that the silicate anion chain of the C-S-H gel became longer when the liquid/solid ratio was 500 (wt/wt) or greater. This indicates that leaching of OPC hydrate results in a structural change of C-S-H gel. (author)

  4. Fruit juice, organic anion transporting polypeptides, and drug interactions in psychiatry.

    Science.gov (United States)

    Andrade, Chittaranjan

    2014-11-01

    Organic anion transporting polypeptides (OATPs) are a group of membrane transport proteins that facilitate the influx of endogenous and exogenous substances across biological membranes. OATPs are found in enterocytes and hepatocytes and in brain, kidney, and other tissues. In enterocytes, OATPs facilitate the gastrointestinal absorption of certain orally administered drugs. Fruit juices such as grapefruit juice, orange juice, and apple juice contain substances that are OATP inhibitors. These fruit juices diminish the gastrointestinal absorption of certain antiallergen, antibiotic, antihypertensive, and β-blocker drugs. While there is no evidence, so far, that OATP inhibition affects the absorption of psychotropic medications, there is no room for complacency because the field is still nascent and because the necessary studies have not been conducted. Patients should therefore err on the side of caution, taking their medications at least 4 hours distant from fruit juice intake. Doing so is especially desirable with grapefruit juice, orange juice, and apple juice; with commercial fruit juices in which OATP-inhibiting substances are likely to be present in higher concentrations; with calcium-fortified fruit juices; and with medications such as atenolol and fexofenadine, the absorption of which is substantially diminished by concurrent fruit juice intake. PMID:25470100

  5. Comparison of in vitro predictive tests for irritation induced by anionic surfactants.

    Science.gov (United States)

    Goffin, V; Paye, M; Piérard, G E

    1995-07-01

    Skin compatibility of anionic surfactants may often but not always be predicted by in vitro tests. For instance, the correlation between in vivo and in vitro data is classically hampered in the presence of magnesium. This ion is known to interfere with in vitro skin irritation predictive tests based on protein denaturation. This study was conducted to compare a recently introduced assay, corneosurfametry, with other in vitro tests including the pH-rise of bovine serum albumin, collagen swelling, and zein solubilization tests. Corneosurfametry entails collection of cyanoacrylate skin surface strippings and short contact time with surfactants, followed by staining samples with toluidine blue and basic fuchsin dyes. Measurements are made by reflectance colorimetry. Data show that irritation potentials predicted by corneosurfametry agree with those obtained by established in vivo and in vitro irritation tests. Moreover, corneosurfametry data are not artificially lowered by addition of magnesium in surfactant solutions. In conclusion, corneosurfametry should be viewed as one of the realistic predictive tests for surfactant irritancy. PMID:7493460

  6. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    Science.gov (United States)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan

    2015-03-01

    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  7. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.; Clemenson, P. I.; Carneiro, K.; Yueqiuan, S.; Mortensen, Kell

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  8. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.;

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  9. Photoelectron spectra and structure of the Mnn− anions (n = 2–16)

    International Nuclear Information System (INIS)

    Photoelectron spectra of the Mnn− anion clusters (n = 2–16) are obtained by anion photoelectron spectroscopy. The electronic and geometrical structures of the anions are computed using density functional theory with generalized gradient approximation and a basis set of triple-ζ quality. The electronic and geometrical structures of the neutral Mnn clusters have also been computed to estimate the adiabatic electron affinities. The average absolute difference between the computed and experimental vertical detachment energies of an extra electron is about 0.2 eV. Beginning with n = 6, all lowest total energy states of the Mnn− anions are ferrimagnetic with the spin multiplicities which do not exceed 8. The computed ionization energies of the neutral Mnn clusters are in good agreement with previously obtained experimental data. According to the results of our computations, the binding energies of Mn atoms are nearly independent on the cluster charge for n > 6 and possess prominent peaks at Mn13 and Mn13− in the neutral and anionic series, respectively. The density of states obtained from the results of our computations for the Mnn− anion clusters show the metallic character of the anion electronic structures

  10. Analysis of anionic post-blast residues of low explosives from soil samples of forensic interest

    International Nuclear Information System (INIS)

    The growing threats and terrorist activities in recent years have urged the need for rapid and accurate forensic investigation on post-blast samples. The analysis of explosives and their degradation products in soils are important to enable forensic scientist to identify the explosives used in the bombing and establish possible links to their likely origin. Anions of interest for post-blast identification of low explosives were detected and identified using ion chromatography (IC). IC separations of five anions (Cl-, NO2-, NO3-, SO42-, SCN-) employed a Metrosep Anion Dual 2 column with carbonate eluent. The anions were separated within 17 minutes. Sampling of post blast residues was carried out in Rompin, Pahang. The post-blast explosive residues were extracted from soil samples collected at the seat of three simulated explosion points. The homemade explosives comprised of black powder of various amounts (100 g, 150 g and 200 g) packed in small plastic sauce bottles. In black powder standard, three anions (Cl-, NO3-, SO42-) were identified. However, low amounts of nitrite (NO2-) were found present in post-blast soil samples. The amounts of anions were generally found to be decreased with decreasing amount of black powder explosive used. The anions analysis was indicative that nitrates were being used as one of the black powder explosive ingredients. (author)

  11. Separation of bivalent anti-T cell immunotoxin from Pichia pastoris glycoproteins by borate anion exchange.

    Science.gov (United States)

    Woo, Jung Hee; Neville, David M

    2003-08-01

    A major problem encountered in the large-scale purification of the bivalent anti-T cell immunotoxin, A-dmDT390-bisFv(G4S), from Pichia pastoris supernatants was the presence of host glycoproteins exhibiting similar charge, size, and hydrophobicity characteristics. We overcame this problem by employing borate anion exchange chromatography. The borate anion has an affinity for carbohydrates and imparts negative charges to these structures. We found that at a concentration of sodium borate between 50 and 100 mM, the nonglycosylated immunotoxin did not bind to Poros 50 HQ anion exchanger resin, but glycoproteins, including aggregates related to the immunotoxin, did. By using this property of the immunotoxin in the presence of sodium borate, we successfully developed a 3-step purification procedure: (i) Butyl-650M hydrophobic interaction chromatography, (ii) Poros 50 HQ anion exchange chromatography in the presence of borate, and (iii) HiTrap Q anion exchange chromatography. The final preparation exhibited a purity of greater than 98% and a yield of greater than 50% from the supernatant. Previously, boronic acid resins have been used to separate glycoproteins from proteins. However, combining borate anion with conventional anion exchange resins accomplishes the separation of the immunotoxin from glycoproteins and eliminates the need to evaluate nonstandard resins with respect to good manufacturing practice guidelines. PMID:12951782

  12. Role of anion polarizability in fluorescence sensitization of DNA-templated silver nanoclusters

    Science.gov (United States)

    Peng, Jian; Shao, Yong; Liu, Lingling; Zhang, Lihua; Fu, Wensheng; Liu, Hua

    2014-06-01

    Fluorescent silver nanoclusters (Ag NCs) as novel fluorophores have received much attention because of their high brightness, good photostability and widely tunable emissions from the visible to the near-infrared range as a result of their size and existing environment. However, efforts are still needed to find the factors that tune the emission of Ag NCs. In this work, Ag NCs that were size-selectively grown on DNA were used to investigate the effect of the electronic properties of coordinating ligands. Halogen anions were used as the paradigm because of their periodicity in element properties. We found that addition of halogen anions did not alter the emission wavelength of Ag NCs, but the fluorescence intensity showed an initial increase at low concentrations of Cl-, Br- and I- followed by a gradual decrease at high concentrations. No increase in fluorescence was observed for F- at either low or high concentration. Such specific halogen-anion sensitization of the fluorescence of Ag NCs suggests that the binding strength/manner and dipole polarizability of these anions synergistically tune the emission behavior of Ag NCs. Less fluorescence sensitization occurred for the anion having high enough polarizability to form a covalent bond with Ag NCs. The anion polarizability-sensitized fluorescence indicates the role of anion electronic properties in tuning the emission behavior of Ag NCs, which should be seriously considered in designing Ag NC-based sensors and devices.

  13. Low-lying electronic structure of EuH, EuOH, and EuO neutrals and anions determined by anion photoelectron spectroscopy and DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kafader, Jared O.; Ray, Manisha; Jarrold, Caroline Chick, E-mail: cjarrold@indiana.edu [Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States)

    2015-07-21

    The anion photoelectron (PE) spectra of EuH{sup −} and the PE spectrum of overlapping EuOH{sup −} and EuO{sup −} anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from {sup 8}Σ{sup −} anion ground states arising from the 4f{sup 7}σ{sub 6s}{sup 2} superconfiguration to the close-lying neutral {sup 9}Σ{sup −} and {sup 7}Σ{sup −} states arising from the 4f{sup 7}σ{sub 6s} superconfiguration are observed spaced by an energy interval similar to the free Eu{sup +} [4f{sup 7}6s] {sup 9}S - {sup 7}S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO{sup −} photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO{sup −} populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f{sup 7}σ{sub 6s} and 4f{sup 6}σ{sub 6s}{sup 2} configurations and the relative energies of the one-electron accessible 4f{sup 7} and 4f{sup 6}σ{sub 6s} neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f{sup 6}σ{sub 6s}{sup 2}  {sup 7}Σ{sup −} and 4f{sup 7}σ{sub 6s}{sup 7}Σ{sup −} anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f{sup 6} occupancy.

  14. Low-lying electronic structure of EuH, EuOH, and EuO neutrals and anions determined by anion photoelectron spectroscopy and DFT calculations

    International Nuclear Information System (INIS)

    The anion photoelectron (PE) spectra of EuH− and the PE spectrum of overlapping EuOH− and EuO− anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from 8Σ− anion ground states arising from the 4f7σ6s2 superconfiguration to the close-lying neutral 9Σ− and 7Σ− states arising from the 4f7σ6s superconfiguration are observed spaced by an energy interval similar to the free Eu+ [4f76s] 9S - 7S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO− photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO− populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f7σ6s and 4f6σ6s2 configurations and the relative energies of the one-electron accessible 4f7 and 4f6σ6s neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f6σ6s2  7Σ− and 4f7σ6s7Σ− anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f6 occupancy

  15. Theoretical investigations on the layer-anion interaction in Mg-Al layered double hydroxides: Influence of the anion nature and layer composition

    Science.gov (United States)

    Cuautli, Cristina; Ireta, Joel

    2015-03-01

    The influence of the anion nature and layer composition on the anion-layer interaction in Mg-Al layered double hydroxides (LDHs) is investigated using density functional theory. Changes in the strength of the anion-layer interaction are assessed calculating the potential energy surface (PES) associated to the interlayer anion (OH-/Cl-) in Mg-Al-OH and Mg-Al-Cl LDHs. The layer composition is varied changing the divalent to trivalent cation proportion (R). Mg-Al-OH is thus investigated with R = 2, 3, 3.5 and Mg-Al-Cl with R = 3. It is found that the PES for OH- in Mg-Al-OH/R = 3 presents wider energy basins and lower energy barriers than any other of the investigated compositions. It is shown that the latter is connected to the number of hydrogen bonds formed by the anions. These results have interesting implications for understanding the enhancement of the physicochemical properties of LDHs upon changing composition.

  16. Conducting Educational Design Research

    Science.gov (United States)

    McKenney, Susan; Reeves, Thomas

    2012-01-01

    Educational design research blends scientific investigation with systematic development and implementation of solutions to educational problems. Empirical investigation is conducted in real learning settings--not laboratories--to craft usable and effective solutions. At the same time, the research is carefully structured to produce theoretical…

  17. New code of conduct

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    During his talk to the staff at the beginning of the year, the Director-General mentioned that a new code of conduct was being drawn up. What exactly is it and what is its purpose? Anne-Sylvie Catherin, Head of the Human Resources (HR) Department, talked to us about the whys and wherefores of the project.   Drawing by Georges Boixader from the cartoon strip “The World of Particles” by Brian Southworth. A code of conduct is a general framework laying down the behaviour expected of all members of an organisation's personnel. “CERN is one of the very few international organisations that don’t yet have one", explains Anne-Sylvie Catherin. “We have been thinking about introducing a code of conduct for a long time but lacked the necessary resources until now”. The call for a code of conduct has come from different sources within the Laboratory. “The Equal Opportunities Advisory Panel (read also the "Equal opportuni...

  18. Entropy and Ionic Conductivity

    OpenAIRE

    Zhang, Yong-Jun

    2012-01-01

    It is known that the ionic conductivity can be obtained by using the diffusion constant and the Einstein relation. We derive it here by extracting it from the steady electric current which we calculate in three ways, using statistics analysis, an entropy method, and an entropy production approach.

  19. Conducting carbonized polyaniline nanotubes

    Czech Academy of Sciences Publication Activity Database

    Mentus, S.; Ciric-Marjanovic, G.; Trchová, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Roč. 20, č. 24 (2009), 245601/1-245601/10. ISSN 0957-4484 R&D Projects: GA ČR GA203/08/0686; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymers * polyaniline * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.137, year: 2009

  20. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  1. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  2. Conducting the Heat

    Science.gov (United States)

    2003-01-01

    Heat conduction plays an important role in the efficiency and life span of electronic components. To keep electronic components running efficiently and at a proper temperature, thermal management systems transfer heat generated from the components to thermal surfaces such as heat sinks, heat pipes, radiators, or heat spreaders. Thermal surfaces absorb the heat from the electrical components and dissipate it into the environment, preventing overheating. To ensure the best contact between electrical components and thermal surfaces, thermal interface materials are applied. In addition to having high conductivity, ideal thermal interface materials should be compliant to conform to the components, increasing the surface contact. While many different types of interface materials exist for varying purposes, Energy Science Laboratories, Inc. (ESLI), of San Diego, California, proposed using carbon velvets as thermal interface materials for general aerospace and electronics applications. NASA s Johnson Space Center granted ESLI a Small Business Innovation Research (SBIR) contract to develop thermal interface materials that are lightweight and compliant, and demonstrate high thermal conductance even for nonflat surfaces. Through Phase II SBIR work, ESLI created Vel-Therm for the commercial market. Vel-Therm is a soft, carbon fiber velvet consisting of numerous high thermal conductivity carbon fibers anchored in a thin layer of adhesive. The velvets are fabricated by precision cutting continuous carbon fiber tows and electrostatically flocking the fibers into uncured adhesive, using proprietary techniques.

  3. Nonlinear Conductivity in Graphene

    OpenAIRE

    Abukari, S. S.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Dompreh, K. A.

    2015-01-01

    We consider the tight-binding approximation for the description of energy bands of graphene, together with the standard Boltzmann's transport equation and constant relaxation time, an expression for the conductivity was obtained. We predicted strong nonlinear effects in graphene which may be useful for high frequency generation.

  4. Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Sanqin, Wu [School of Materials Sciences and Technology, China University of Geosciences, No. 29 Xueyuan Road, Beijing, 100083 (China); Zepeng, Zhang, E-mail: unite508@163.com [School of Materials Sciences and Technology, China University of Geosciences, No. 29 Xueyuan Road, Beijing, 100083 (China); Yunhua, Wang [Zhejiang Fenghong New Material Co., Ltd. (China); Libing, Liao [School of Materials Sciences and Technology, China University of Geosciences, No. 29 Xueyuan Road, Beijing, 100083 (China); Jiansheng, Zhang [Tangshan College, Tangshan 063000 (China)

    2014-11-15

    Graphical abstract: This picture shows the distribution of organic modifier (CTAB and SDS) in Mt interlayer and the basal spacing changes of Mt modified by CTAB and SDS. Organic modifier molecule in Mt interlayer is more and more orderly. The basal spacing of Mt is from 1.5 nm to 5 nm as modifier added. - Highlights: • The d{sub 001} of Ca-Mt, R-Na-Mt, Na-Mt modified by CTAB and SDS can reach 5 nm. • It is easier to get cation–anion OMt with greater d{sub 001} if CEC is lower. • The organic molecules distribution in cation–anion OMt was analyzed. • The influence mechanism of Ca-Mt CEC on the d{sub 001} was discussed. - Abstract: With cationic and anionic surfactants cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (SDS) as modifiers, Ca-montmorillonites (Ca-Mt), artificial Na-montmorillonites (R-Na-Mt) and natural Na-montmorillonites (Na-Mt) with different cation exchange capacity (CEC) were modified by solution intercalation method, respectively. Then cation–anion organo-montmorillonites (OMt) were prepared. The influence of CEC on the basal spacing of cation–anion OMt and the influence mechanism were discussed by X-ray diffraction (XRD) and zeta potential testing. The results indicate that the basal spacing of cation–anion OMt is related to CEC. For the same type montmorillonites, the basal spacing of cation–anion OMt decreases with the increase of CEC and it is easier to get cation–anion OMt with greater basal spacing when CEC is lower. Moreover, the CEC of Na-Mt has the greatest influence on the basal spacing of cation–anion OMt.

  5. Anion-π interactions in complexes of proteins and halogen-containing amino acids.

    Science.gov (United States)

    Borozan, Sunčica Z; Zlatović, Mario V; Stojanović, Srđan Đ

    2016-06-01

    We analyzed the potential influence of anion-π interactions on the stability of complexes of proteins and halogen-containing non-natural amino acids. Anion-π interactions are distance and orientation dependent and our ab initio calculations showed that their energy can be lower than -8 kcal mol(-1), while most of their interaction energies lie in the range from -1 to -4 kcal mol(-1). About 20 % of these interactions were found to be repulsive. We have observed that Tyr has the highest occurrence among the aromatic residues involved in anion-π interactions, while His made the least contribution. Furthermore, our study showed that 67 % of total interactions in the dataset are multiple anion-π interactions. Most of the amino acid residues involved in anion-π interactions tend to be buried in the solvent-excluded environment. The majority of the anion-π interacting residues are located in regions with helical secondary structure. Analysis of stabilization centers for these complexes showed that all of the six residues capable of anion-π interactions are important in locating one or more of such centers. We found that anion-π interacting residues are sometimes involved in simultaneous interactions with halogens as well. With all that in mind, we can conclude that the anion-π interactions can show significant influence on molecular organization and on the structural stability of the complexes of proteins and halogen-containing non-natural amino acids. Their influence should not be neglected in supramolecular chemistry and crystal engineering fields as well. PMID:26910415

  6. Purification of degraded TBP solvent using macroreticular anion exchange resin

    International Nuclear Information System (INIS)

    Tri-n-butyl phosphate (TBP) diluted with a suitable diluent is commonly used for solvent extraction in Purex process for the recovery of uranium and plutonium from irradiated nuclear fuels. This solvent gets degraded due to various factors, the main degradation product being dibutyl phosphoric acid (HDBP). A solvent cleanup step is generally incorporated in the process for removing the degradation products from the used solvent. A liquid-liquid cleanup system using sodium carbonate or sodium hydroxide solution is routinely used. Considering certain advantages, like the possibility of loading the resin almost to saturation capacity and the subsequent disposal of the spent resin by incineration and the feasibility of adopting it to the process, a liquid-solid system has been tried as an alternate method, employing various available macroreticular anion exchange resins in OH- form for the sorption of HDBP from TBP. After standardizing the various conditions for the satisfactory removal of HDBP from TBP using synthetic mixtures, resins were tested with process solvent in batch contacts. The parameters studied were (1) capacity of different resins for HDBP sorption (2) influence of acidity, uranium and HDBP on the sorption behaviour of the latter (3) removal of fission products from the solvent by the resin and (4) regeneration and recycling of the resin. (author). 2 figs., 13 tabs., 17 refs

  7. Anion-exchange sorption of molybdate and germanate

    Energy Technology Data Exchange (ETDEWEB)

    Kislinskaya, G.E.; Denisova, T.I.; Sheka, I.A.

    1983-07-20

    Interest in sorption of molybdenum and germanium from salt solutions is prompted by industrial requirements related to purification of such solutions and also to extraction of these elements from various industrial liquors.In order to identify the ionic forms of molybdenum and germanium having the highest sorption activity and to determine the optimal conditions for extraction of these elements from solutions with high electrolyte contents, we studied the states of molybdenum(VI) and germanium(IV) in solutions of sodium chloride in various concentrations, and sorption of these elements by strongly basic macroporous anion-exchange resins and by iron and aluminum hydroxides in relation to the pH, concentrations of the elements, and time of contact between the solution and the sorbent. Examination of literature data shows that the molecular and ionic states of these elements in the presence of high salt concentrations have been studied mainly in acidic solutions and at higher molybdenum and germanium concentrations. However, for selection of a method of removal of molybdenum and germanium from production liquors it is also necessary to have analogous information on their states when present in microconcentrations over wide ranges of pH.

  8. Anion-exchange sorption of molybdate and germanate

    International Nuclear Information System (INIS)

    Interest in sorption of molybdenum and germanium from salt solutions is prompted by industrial requirements related to purification of such solutions and also to extraction of these elements from various industrial liquors.In order to identify the ionic forms of molybdenum and germanium having the highest sorption activity and to determine the optimal conditions for extraction of these elements from solutions with high electrolyte contents, we studied the states of molybdenum(VI) and germanium(IV) in solutions of sodium chloride in various concentrations, and sorption of these elements by strongly basic macroporous anion-exchange resins and by iron and aluminum hydroxides in relation to the pH, concentrations of the elements, and time of contact between the solution and the sorbent. Examination of literature data shows that the molecular and ionic states of these elements in the presence of high salt concentrations have been studied mainly in acidic solutions and at higher molybdenum and germanium concentrations. However, for selection of a method of removal of molybdenum and germanium from production liquors it is also necessary to have analogous information on their states when present in microconcentrations over wide ranges of pH

  9. Studies on Anionic Surfactant Structure in the Aggregation with (Hydroxypropylcellulose

    Directory of Open Access Journals (Sweden)

    Ricardo M. de Martins

    2002-01-01

    Full Text Available Fluorescence probing, viscosity and light scattering measurements have been combined to study the aggregation of different anionic surfactants mainly in dilute solutions (0.5% w/v of (hydroxypropylcellulose (HPC MW 173,000, in moderate ionic strength (NaCl 0.1 mol.L-1. The set of surfactants includes natural cholesterol derivatives, sodium cholate (CS and sodium deoxycholate (DC, and the alkylsulphate, sodium dodecylsulphate (SDS. At 298 K the critical surfactant concentration related to aggregate/HPC formation (C1 decreases for SDS and DC whereas it increases slightly for CS. At 312 K the C1 values for CS and DC are slightly shifted toward higher values whereas it is not changed for SDS. All surfactant/HPC systems increase C1 values as the HPC concentration increases to 1.2%. Above C1 the viscosity increases for all surfactant/HPC systems but it is sharper in the increasing order CS, DC and SDS. The hydrodynamic behavior indicates that CS induces higher diffusion to HPC than SDS and DC. The aggregation in the surfactant/HPC systems is analyzed through the feature of surfactant/aggregate structure (size, charge density, etc.

  10. Removal of bromide and natural organic matter by anion exchange.

    Science.gov (United States)

    Hsu, Susan; Singer, Philip C

    2010-04-01

    Bromide removal by anion exchange was explored for various water qualities, process configurations, and resin characteristics. Simulated natural waters containing different amounts of natural organic matter (NOM), bicarbonate, chloride, and bromide were treated with a polyacrylate-based magnetic ion exchange (MIEX) resin on a batch basis to evaluate the effectiveness of the resin for removal of bromide. While bromide removal was achieved to some degree, alkalinity (bicarbonate), dissolved organic carbon (DOC), and chloride were shown to inhibit bromide removal in waters with bromide concentrations of 100 and 300 microg/L. Water was also treated using a two-stage batch MIEX process. Two-stage treatment resulted in only a slight improvement in bromide removal compared to single-stage treatment, presumably due to competition with the high concentration of chloride which is present along with bromide in natural waters. In view of the relatively poor bromide removal results for the MIEX resin, a limited set of experiments was performed using polystyrene resins. DOC and bromide removal were compared by treating model waters with MIEX and two polystyrene resins, Ionac A-641 and Amberlite IRA910. The two polystyrene resins were seen to be more effective for bromide removal, while the MIEX resin was more effective at removing DOC. PMID:20045170

  11. Electronic Structure Studies of Silicon Carbide Anionic Nanoclusters

    Science.gov (United States)

    Pradhan, Prachi

    2005-03-01

    As a continuation of our studies on the high stabilities and electronic structure properties of Si8C2 to Si14C2 clusters and Si60Cn (n=3-6) clusters,^1 we report here ab initio studies of small SimCn^- (1Gaussian03 suite of programs^2 with an all electron 6-311++G** basis set has been used. Complete geometry optimizations of different possible structures have been carried out. Carbon-rich and silicon rich species show distinctly different patterns with respect to the vertical detachment energies. For carbon-rich aggregates, the VDE's show an even odd alternation, similar to that of the carbon anions. We present results on binding energies, relative energies, fragmentation energies, vertical detachment energies, vibrational frequencies, and adiabatic electron affinities^3 for the optimized clusters. Detailed comparisons with published data in the literature will also be presented. * Work supported, in part, by the Welch Foundation, Houston, Texas (Grant No. Y-1525). ^1M. N. Huda and A. K. Ray, Phys. Rev. A (R) 69, 011201 (2004); Eur. Phys. J. D 31, 63 (2004). ^2 Gaussian03, Revision A.1, M. J. Frisch et al., Gaussian Inc., Pittsburgh, PA , 2003. ^3 P. Pradhan and A. K. Ray, J. Mol. Structure (Theochem), in press.

  12. Positive Anharmonicities: The Oxonide Anion as an Example

    Science.gov (United States)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    An accurate ab initio quartic force field for the ozonide anion has been determined at the singles and doubles coupled-cluster level of theory that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), using the augmented valence triple-zeta correlation consistent one-particle basis set. Convergence of the harmonic frequencies with respect to the one-particle basis set has been demonstrated by computing quadratic force fields at the CCSD(T) level using augmented valence double-zeta and quadruple-zeta basis sets. Fundamental vibrational frequencies have been determined via second-order ro-vibrational perturbation theory and also using exact variational methods. Agreement is very good, and they both show that the antisymmetric O-O stretch, v 3, possesses a positive anharmonic correction (that is, the fundamental frequency is predicted to be higher in energy than the harmonic frequency). Comparison of the O_3 and O3 quartic force fields shows that the positive anharmonic correction is the result of a particularly large F3333 symmetry internal coordinate force constant. The reasonableness of this force constant has been tested by computing both F33 and F3333 at the CCSD, CCSD(T), and CASPT2 levels of theory. A discussion of known positive anharmonicities for stretching modes is presented.

  13. Gamma radiation effect on gas production in anion exchange resins

    International Nuclear Information System (INIS)

    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H2g) and carbon dioxide (CO2g). TMA and H2g are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMAaq was associated with aqueous dimethylamine (DMAaq), monomethylamine (MMAaq) and ammonia (NH4+aq). CO2g is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMAg

  14. The ethylenedione anion: Elucidation of the intricate potential energy hypersurface

    International Nuclear Information System (INIS)

    Ab initio molecular orbital theory has been used to study the controversial potential energy surface of the ethylenedione anion C2O-2. Seven different basis sets, the largest being triple zeta plus two polarization functions and one set of higher angular momentum functions (TZ2Pf) in quality, were utilized in conjunction with five correlated methods, the highest-level being coupled-cluster theory including single, double, and perturbative triple excitations [CCSD(T)]. Equilibrium geometries and harmonic vibrational frequencies of the predicted 2Au trans-bent ground state are presented. The Renner--Teller potential energy surface resulting from the splitting of the doubly degenerate linear 2Πu transition state into the nondegenerate bent 2Au and linear 2Bu surfaces is also characterized by means of energy predictions for these three states. Several recent peak assignments in the experimental spectrum, as well as the isotopic shifts associated with them, are supported by theory. A correct description of the potential energy hypersurface is obtained only by application of large basis sets in conjunction with methods including high-level treatment of electron correlation effects. The TZP+/CCSD(T) methodology predicts the OCC bond angle to be 146.5 degree

  15. NITRORADICAL ANION FORMATION FROM NITROFURANTOIN IN CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    M. MERINO

    2000-03-01

    Full Text Available The electrochemical nitroreduction of nitrofurantoin has been studiedon carbon paste and glassy carbon electrodes. We can observe a monoelectronicreversible couple ArNO2/ArNO2.- and anirreversible peak due to the further reduction of nitro radical to thehidroxilamine via three electrons. According to the experimental results, the reduction process shows atypical behavior of an EC mechanism. The k2 obtained values showed that the nitroradical anion was better stabilized on carbon paste electrodeLa formación electroquímica del nitro anión radicalde nitrofurantoína ha sido estudiada sobre electrodos de carbonovítreo y pasta de carbono. Se encontró que sobre ambos tipos de electrodos, existe un proceso monoelectrónico reversible correspondientea la cupla redox ArNO2/ArNO2.-, seguido de un pico irreversible correspodiente a la reducción víatres electrones del anión radical a la correspondiente hidroxilamina.De acuerdo a los resultados obtenidos, el proceso de reducción ocurrea través de un mecanismo EC, donde los valores de k2 encontrados, indican que el anión radical nitro es mejor estabilizadosobre electrodos de pasta de carbono

  16. Anion-exchange separations of metal ions in thiocyanate media.

    Science.gov (United States)

    Fritz, J S; Kaminski, E E

    1971-05-01

    The analytical potential of a weak-base macroreticular anion-exchange resin for the quantitative separation of metal ions in thiocyanate media is investigated and demonstrated. Distribution data are given for the sorption of some 25 metal ions from aqueous mixtures of potassium thiocyanate (1.0M or less) and 0.5M hydrochloric acid. The magnitude of the distribution data suggests many possible separations, some of which were quantitatively performed by procedures which are fast, simple and require only mild conditions. Representative separations are removal of traces of iron(III) and copper(II) from water samples prior to the determination of water hardness (calcium and magnesium), separation of nickel(II) from vanadium(IV) and the separation of thorium(IV) from titanium(IV). Some multicomponent separations are the separation of rare earths(III) and thorium(IV) from scandium(III) and the separation of rare earths(III) from iron(III) and uranium(VI). PMID:18960914

  17. Computer simulation of methanol exchange dynamics around cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Santanu; Dang, Liem X.

    2016-03-03

    In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occurs at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  18. Attribution of uranium ore concentrates using elemental and anionic data

    International Nuclear Information System (INIS)

    The capability to correctly identify the geological or geographical source of unknown uranium ore concentrates (UOCs) has obvious nuclear security benefits. This paper reports on a scoping study where the trace elemental and anionic compositions of 24 UOC samples, sourced mainly from mines in Australia and Canada, were examined for their ability to allow attribution of the sample to a particular geological U deposit type or to a particular geographical source. Results of statistical analysis using canonical analysis of principal coordinates (CAP) showed that samples originating from certain U ore deposit types, especially phosphorite and quartz-pebble conglomerate, contained a distinct impurity composition. Samples grouped according to their geographical region of origin appeared to contain distinctive impurities in certain cases (Elliot Lake and Bancroft, Ontario). The key impurities responsible for differentiating groups of samples from a particular geological deposit type were identified and the use of certain impurities as signatures of processing history is discussed. The methodology described in this scoping study provides a promising approach for more comprehensive databases.

  19. Inactivation of Bacillus Subtilis by Atomic Oxygen Radical Anion

    Institute of Scientific and Technical Information of China (English)

    LI Longchun; WANG Lian; YU Zhou; LV Xuanzhong; LI Quanxin

    2007-01-01

    UAtomic oxygen radical anion (O- ) is one of the most active oxygen species, and has extremely high oxidation ability toward small-molecules of hydrocarbons. However, to our knowledge, little is known about the effects of O- on cells of micro-organisms. This work showed that O- could quickly react with the Bacillus subtilis cells and seriously damage the cell walls a s well as their other contents, leading to a fast and irreversible inactivation. SEM micrographs revealed that the cell structures were dramatically destroyed by their exposure to O-. The inactivation efficiencies of B. subtilis depend on the O-- intensity, the initial population of cells and the treatment temperature, but not on the pH in the range of our investigation. For a cell concentration of 106 cfu/ml, the number of survived cells dropped from 106 cfu/ml to 103 cfu/ml after about five-minute irradiation by an O- flux in an intensity of 233 nA/cm2 under a dry argon environment (30 ℃, 1 atm, exposed size: 1.8 cm2). The inactivation mechanism of micro-organisms induced by O- is also discussed.

  20. Hydroxide Solvation and Transport in Anion Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [Univ. of Chicago, IL (United States); Wuhan Univ. (China); Tse, Ying-Lung Steve [Univ. of Chicago, IL (United States); Lindberg, Gerrick E. [Northern Arizona Univ., Flagstaff, AZ (United States); Knight, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Voth, Gregory A. [Univ. of Chicago, IL (United States)

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.