WorldWideScience

Sample records for cf spontaneous fission

  1. EMISSION OF PHOTONS IN SPONTANEOUS FISSION OF CF-252

    NARCIS (Netherlands)

    VANDERPLOEG, H; BACELAR, JCS; BUDA, A; LAURENS, CR; VANDERWOUDE, A; GAARDHOJE, JJ; ZELAZNY, Z; VANTHOF, G; KALANTARNAYESTANAKI, N

    1995-01-01

    High energy photon emission accompanying the spontaneous fission of Cf-252 is measured for different mass splits. The photon yields up to an energy of 20 MeV are obtained at several angles relative to the fission direction. Statistical model calculations are used to interpret the data. The photon yi

  2. Prompt Neutron Emission in 252CF Spontaneous Fission

    Science.gov (United States)

    Hambsch, F.-J.; Oberstedt, S.; Zeynalov, Sh.

    2011-10-01

    The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics. The goal was to compare the results from digital data acquisition and digital signal processing analysis with results of the pioneering work of Budtz-Jørgensen and Knitter. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 107 fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The results are in very good agreement with literature. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  3. LARGE GAMMA ANISOTROPY OBSERVED IN THE CF-252 SPONTANEOUS-FISSION PROCESS

    NARCIS (Netherlands)

    VANDERPLOEG, H; BACELAR, JC; VANDENBERG, T; IACOB, VE; JONGMAN, [No Value; VANDERWOUDE, A

    1992-01-01

    The energy spectrum and the angular dependence relative to the fission direction of photons in the energy region between 2 and 40 MeV have been measured for the spontaneous fission of Cf-252. A large anisotropy was found in the energy region 8 to 12 MeV implying that photons in this region are emitt

  4. STUDY OF THE GAMMA EMISSION PROBABILITY ACCOMPANYING THE SPONTANEOUS FISSION OF CF-252

    NARCIS (Netherlands)

    VANDERPLOEG, H; LAURENS, CR; BACELAR, JCS; BUDA, A; GAARDHOJE, JJ; VANTHOF, G; KALANTARNAYESTANAKI, N; VANDERWOUDE, A; ZELAZNY, Z

    1994-01-01

    A study of the gamma emission accompanying the spontaneous fission process of Cf-252 has been performed. The photon emission probability between 3 and 70 MeV and its angular dependence with respect to the fission direction were measured. These measurements were performed as a function of the mass as

  5. Mass Distribution Measurement of 252Cf Spontaneous Fission

    Institute of Scientific and Technical Information of China (English)

    LIU; Shi-long; YANG; Yi; ZHANG; Chun-li; HAN; Hong-yin

    2015-01-01

    The E-v method of measuring the kinetic energy(E)and velocity(v)of outgoing fission products has been utilized,with the goal of measuring the mass resolution better than 1atomic mass units(amu),and could identify every mass for light fission products of unsymmetrical fission.This work measured mass yield distribution

  6. Dynamics of the tri-nuclear system at spontaneous fission of $^{252}$Cf

    CERN Document Server

    Tashkhodjaev, R B; Alpomeshev, E Kh

    2016-01-01

    To describe of dynamics of ternary fission of $^{252}$Cf an equation of motion of the tri-nuclear system is calculated. The fission of the $^{70}$Ni+$^{50}$Ca+$^{132}$Sn channel was chosen as one of the more probable channels of true ternary fission of $^{252}$Cf. The collinearity of ternary fission has been checked by analyzing results of the equation of motion. The results show that if initially all nuclei are placed collinearly (potential energy of this position is the smallest) and the component of the middle fragment's initial velocity which is perpendicular to this line, is zero then ternary fission is collinear, otherwise the non collinear ternary fission takes place.

  7. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    Science.gov (United States)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  8. Nuclear isomerism in fission fragments produced by the spontaneous fission of {sup 252}Cf; Isomerisme nucleaire dans les fragments de fission produits dans la fission spontanee du {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gautherin, C

    1997-09-01

    This thesis is devoted to the study of the nuclear structure of neutron-rich nuclei, via the search of isomeric nuclear states. Neutron-rich nuclei were produced in the spontaneous fission of {sup 252}Cf. The experimental study of isomeric states in these nuclei was performed with the {gamma}-array EUROGAM II, coupled to an additional and original fission fragment detector composed by photovoltaic cells, SAPhIR. The photovoltaic cells are well adapted to detect low energy heavy ions and have good energy and time resolutions to obtain a good fission fragment detection. This experiment led to the discovery of new isomeric states in {sup 135}Xe, {sup 104}Mo, {sup 146,147,148}Ce and {sup 152,154,156}Nd, with lifetimes between 60 ns and 2 {mu}s. Level schemes of these nuclei have been completed. An interpretation of the isomeric states in the nuclei {sup 154,156}Nd and {sup 156,158}Sm was performed by Hartree-Fock-Bogolyubov calculations using the DIS Gogny force with two quasi-particles excitations. The confrontation with the experimental results led to an interpretation of these isomeric states as K-isomers. (author)

  9. Identification of new neutron-rich rare-earth nuclei produced in /sup 252/Cf spontaneous fission

    CERN Document Server

    Greenwood, R C; Gehrke, R J; Meikrantz, D H

    1981-01-01

    A program of systematic study of the decay properties of neutron-rich rare-earth nuclei with 30 sCf spontaneous fission, is currently underway using the Idaho ESOL (Elemental Separation On Line) Facility. The chemistry system used for the rare-earth elemental separations consists of two high-performance chromatography columns connected in series and coupled to the /sup 252 /Cf fission source via a helium gas-jet transport arrangement. The time delay for separation and initiation of gamma -ray counting with results which have been obtained to date with this system include the identification of a number of new neutron-rich rare-earth isotopes including /sup 155/Pm (t/sub 1/2/=48+or-4 s) and /sup 163/Gd (t/sub 1 /2/=68+or-3 s), in addition to 5.51 min /sup 158/Sm which was identified in an earlier series of experiments. (11 refs).

  10. Spontaneous fission of the heaviest elements

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.C.

    1989-04-01

    Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

  11. Gamma-ray multiplicity measurement of the spontaneous fission of {sup 252}Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D.L., E-mail: bleuel1@llnl.go [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Bernstein, L.A.; Burke, J.T. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gibelin, J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Heffner, M.D. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Mintz, J. [Nuclear Engineering Department, University of California, Berkeley, CA 94720 (United States); Norman, E.B. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Nuclear Engineering Department, University of California, Berkeley, CA 94720 (United States); Phair, L. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Scielzo, N.D.; Sheets, S.A.; Snyderman, N.J.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Wiedeking, M. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-12-21

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1{mu}Ci{sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  12. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  13. Neutron angular distribution in plutonium-240 spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Marcath, Matthew J., E-mail: mmarcath@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Shin, Tony H.; Clarke, Shaun D. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Peerani, Paolo [European Commission at the Joint Research Centre, Ispra (Italy); Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2016-09-11

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a {sup 252}Cf, a 0.84 g {sup 240}Pu{sub eff} metal, and a 1.63 g {sup 240}Pu{sub eff} metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons. - Highlights: • Pu-240 prompt fission fast-neutron anisotropy was quantified for the first time. • MCNPX-PoliMi and MPPost codes were used to remove cross-talk neutron detections from experiment results. • Cf-252 spontaneous fission neutrons were found to be more anisotropic than Pu-240 neutrons.

  14. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  15. Prompt neutron fission spectrum mean energies for the fissile nuclides and /sup 252/Cf

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of /sup 252/Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, /sup 233/U, /sup 235/U, /sup 239/Pu, and /sup 241/Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs. (LEW)

  16. Neutron angular distribution in plutonium-240 spontaneous fission

    Science.gov (United States)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  17. Measurement of 235U Fission Yield Induced by 252Cf Fission Neutron

    Institute of Scientific and Technical Information of China (English)

    YANG; Yi; LIU; Shi-long; JIANG; Wen-gang

    2015-01-01

    We measured fission yields of 235U by 252Cf fission neutrons with the directγray spectrometric method.Square sample foils of 15 mm,abundance of 235U is 90.2%,mass of 0.7gram,covered by pure aluminum foil.After irradiations every sample was measured by HPGe spectrometry for about 2months.Based on 140Ba’s fission yield,we get relative fission yields and the results were shown in Fig.1.

  18. The measurement of prompt neutron spectrum in spontaneous fission of {sup 244}Cm

    Energy Technology Data Exchange (ETDEWEB)

    Batenkov, O.I.; Boykov, G.S.; Drapchinsky, L.V.; Majorov, M.Ju.; Trenkin, V.A. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    Under the Program of Measurements of Prompt Fission Neutron Spectra of Minor Actinides for Transmutation Purposes the integral neutron spectrum in spontaneous fission of {sup 244}Cm has been measured by the time-of-flight method in the energy range of 0.1-15 MeV relative to the standard neutron spectrum in {sup 252}Cf spontaneous fission. Essential attention was paid to revealing of possible systematic errors. It is shown, that the {sup 244}Cm spectrum shape may be well described by using Mannhart evaluation with appropriate parameter of Maxwell temperature T{sub M} = 1.37 MeV. (author)

  19. Spontaneous fission of superheavy nucleus $^{286}$Fl

    CERN Document Server

    Poenaru, Dorin N

    2016-01-01

    The decimal logarithm of spontaneous fission half-life of the superheavy nucleus $^{286}$Fl experimentally determined is $\\log_{10} T_f^{exp} (s) = -0.632$. We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. In the first stage we study the statics. At a given mass asymmetry up to about $\\eta=0.5$ the potential barrier has a two hump shape, but for larger $\\eta$ it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay and $\\alpha$~decay. The least action trajectory is determined in the plane $(R,\\eta)$ where $R$ is the separation distance of the fission fragments and $\\eta$ is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deforma...

  20. Tagging fast neutrons from a 252Cf fission-fragment source

    CERN Document Server

    Scherzinger, Julius; Annand, John; Fissum, Kevin; Hall-Wilton, Richard; Mauritzson, Nicholai; Messi, Francesco; Perrey, Hanno; Rofors, Emil

    2016-01-01

    Coincidence and time-of-flight measurement techniques are employed to tag fission neutrons emitted from a 252Cf source. Fission fragments detected in a gaseous 4He scintillator detector supply the tag. Neutrons are detected in a NE-213 liquid-scintillator detector. The resulting continuous polychromatic beam of tagged neutrons has an energy dependence that agrees qualitatively with expectations.

  1. Role of energy cost in the yield of cold ternary fission of 252Cf

    Indian Academy of Sciences (India)

    P V Kunhikrishnan; K P Santhosh

    2013-01-01

    The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by includingWong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield in all the light charged particle emissions. The higher ground state deformation of the fragments, the odd–even effect and the enhanced yield in the octupole region observed in cold fission are found to be consistent with the concept of energy cost.

  2. Pairing-induced speedup of nuclear spontaneous fission

    CERN Document Server

    Sadhukhan, Jhilam; Nazarewicz, W; Sheikh, J A; Baran, A

    2014-01-01

    Collective inertia is strongly influenced at the level crossing at which quantum system changes diabatically its microscopic configuration. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of those configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of $^{264}$Fm and $^{240}$Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM$^*$ and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action princip...

  3. Isotopic yield in cold binary fission of even-even $^{244-258}$Cf isotopes

    CERN Document Server

    Santhosh, K P; Krishnan, Sreejith

    2016-01-01

    The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that highest yield for 244,246,248Cf isotopes are for the fragments with isotope of Pb (Z=82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z=80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z=50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favoured for Cf isotopes with mass number A 252. In the case of Cf isotope with A=252, there is an equal probability for asymmetric and symmetric splitti...

  4. Multi-modal fission in collinear ternary cluster decay of 252Cf(sf, fff

    Directory of Open Access Journals (Sweden)

    W. von Oertzen

    2015-06-01

    Full Text Available We discuss the multiple decay modes of collinear fission in 252Cf(sf, fff, with three fragments as suggested by the potential energy surface (PES. Fission as a statistical decay is governed by the phase space of the different decay channels, which are suggested in the PES-landscape. The population of the fission modes is determined by the minima in the PES at the scission points and on the internal potential barriers. The ternary collinear decay proceeds as a sequential process, in two steps. The originally observed ternary decay of 252Cf(sf into three different masses (e.g. 132–140Sn, 52–48Ca, 68–72Ni, observed by the FOBOS group in the FLNR (Flerov Laboratory for Nuclear Reactions of the JINR (Dubna the collinear cluster tripartition (CCT, is one of the ternary fission modes. This kind of “true ternary fission” of heavy nuclei has often been predicted in theoretical works during the last decades. In the present note we discuss different ternary fission modes in the same system. The PES shows pronounced minima, which correspond to several modes of ternary fragmentations. These decays have very similar dynamical features as the previously observed CCT-decays. The data obtained in the experiments on CCT allow us to extract the yields for different decay modes using specific gates on the measured parameters, and to establish multiple modes of the ternary fission decay.

  5. Study of spontaneous fission lifetimes using nuclear density functional theory

    Directory of Open Access Journals (Sweden)

    Sadhukhan Jhilam

    2013-12-01

    Full Text Available The spontaneous fission lifetimes have been studied microscopically by minimizing the collective action integral in a two-dimensional collective space of quadrupole moments (Q20, Q22 representing elongation and triaxiality. The microscopic collective potential and inertia tensor are obtained by solving the self-consistent Hartree-Fock-Bogoliubov (HFB equations with the Skyrme energy density functional and mixed pairing interaction. The mass tensor is computed within the perturbative Adiabatic Time-Dependent HFB (ATDHFB approach in the cranking approximation. The dynamic fission trajectories have been obtained by minimizing the collective action using two different numerical techniques. The values of spontaneous fission lifetimes obtained in this way are compared with the static results.

  6. Semi-empirical formula for spontaneous fission half life time

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P., E-mail: drkpsanthosh@gmail.co [School of Pure and Applied Physics, Kannur University, Payyanur Campus 670 327 (India); Biju, R.K.; Sahadevan, Sabina [P G Department of Physics and Research Centre, Payyanur College, Payyanur 670 327 (India)

    2010-01-15

    A new semi-empirical formula is proposed for determining the spontaneous fission half lives, which works well for the mass region from {sup 232}Th to {sup 286}114. The computed spontaneous fission half life times are also compared with other semi-empirical formula predictions. The alpha decay half lives are systematically computed for heavy and super heavy region with proton numbers varying from 90<=Z<=122 using Coulomb and Proximity Potential Model. The comparison between computed alpha decay half lives and the present spontaneous fission semi-empirical formula predictions of even-even isotopes with Z=90-122 are studied. It is found that in super heavy region the isotopes {sup 270-274}Ds, {sup 272-278}112, {sup 272-282}114, {sup 274-292}116, {sup 276-298}118, {sup 276-308}120 and {sup 278-314}122 will survive fission and can be synthesized and identified via alpha decay.

  7. Deformation effects in the alpha accompanied cold ternary fission of even-even $^{244-260}$Cf isotopes

    CERN Document Server

    Santhosh, K P

    2016-01-01

    Within the Unified ternary fission model (UTFM), the alpha accompanied ternary fission of even-even $^{244-260}$Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. For the alpha accompanied ternary fission of 244^Cf isotope, the highest yield is obtained for the fragment combination 108^Ru+4^He+132^Te, which contain near doubly magic nuclei 132^Te (N=80, Z=52). In the case of 246^Cf and 248^Cf isotopes, the highest yield is obtained for the fragment combinations with near doubly magic nuclei 134^Te (N=82, Z=52) as the heavier fragment. The highest yield obtained for 250^Cf, 252^Cf, 254^Cf, 256^Cf, 258^Cf and 260^Cf isotopes is for the fragment combination with doubly magic nuclei 132^Sn (N=82, Z=50) as the heavier fragment. We have included the effect of deformation and orientation of fragments and this has revealed that in addition to closed shell effect, ground state deformation also plays an important role in the calculation of relative yield of fav...

  8. Deformation effects in the alpha accompanied cold ternary fission of even-even {sup 244-260}Cf isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Krishnan, Sreejith [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)

    2016-04-15

    Within the unified ternary fission model (UTFM), the alpha accompanied ternary fission of even-even {sup 244-260}Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. For the alpha accompanied ternary fission of the {sup 244}Cf isotope, the highest yield is obtained for the fragment combination {sup 108}Ru + {sup 4}He + {sup 132}Te, which contains the near doubly magic nucleus {sup 132}Te (N = 80, Z = 52). In the case of {sup 246}Cf and {sup 248}Cf isotopes, the highest yield is obtained for the fragment combinations with the near doubly magic nucleus {sup 134}Te (N = 82, Z = 52) as the heaviest fragment. The highest yield obtained for {sup 250}Cf, {sup 252}Cf, {sup 254}Cf, {sup 256}Cf, {sup 258}Cf and {sup 260}Cf isotopes is for the fragment combination with the doubly magic nucleus {sup 132}Sn (N = 82), Z = 50 as the heaviest fragment. We have included the effect of deformation and orientation of fragments and this has revealed that in addition to the closed shell effect, ground-state deformation also plays an important role in the calculation of the relative yield of favorable fragment combinations. The computed isotopic yields for the alpha accompanied ternary fission of the {sup 252}Cf isotope are found to be in agreement with the experimental data. The emission probability and kinetic energy of the long-range alpha particle is calculated for the various isotopes of Cf and are found to be in good agreement with the experimental data. (orig.)

  9. Influence of nuclear dissipation on fission dynamics of the excited nucleus $^{248}$Cf within a stochastic approach

    Indian Academy of Sciences (India)

    ESLAMIZADEH HADI

    2016-07-01

    A stochastic approach to fission dynamics based on two-dimensional Langevin equations was applied to calculate the anisotropy of the fission fragments angular distribution and average pre-scission neutron multiplicities for the compound nucleus 248Cf formed in the $${16}$O+$^{232}$Th reactions. Postsaddle nuclear dissipation strength of $(12–14) \\times 10^{21} s^{−1}$ was extracted for Cf nucleus by fitting the results of calculations with the experimentaldata. Furthermore, it was found that the results of calculations for the anisotropy of the fission fragments angular distribution and pre-scission neutron multiplicities are very sensitive to the magnitude of post-saddle nucleardissipation.

  10. Fission dynamics of 240Cf* formed in 34,36S induced reactions

    Directory of Open Access Journals (Sweden)

    Jain Deepika

    2015-01-01

    Full Text Available We have studied the entrance channel effects in the decay of Compound nucleus 240Cf* formed in 34S+206Pb and 36S+204Pb reactions by using energy density dependent nuclear proximity potential in the framework of dynamical cluster-decay model (DCM. At different excitation energies, the fragmentation potential and preformation probability of decaying fragments are almost identical for both the entrance channels, which seem to suggest that decay is independent of its formation and entrance channel excitation energy. It is also observed that, with inclusion of deformation effects upto quadrupole within the optimum orientation approach, the fragmentation path governing potential energy surfaces gets modified significantly. Beside this, the fission mass distribution of Cf* isotopes is also investigated. The calculated fission cross-sections using SIII force for both the channels find nice agreement with the available experimental data for deformed choice of fragments, except at higher energies. In addition to this, the comparative analysis with Blocki based nuclear attraction is also worked out. It is observed that Blocki proximity potential accounts well for the CN decay at all energies whereas the use of EDF based nuclear potential suggests the presence of some non-compound nucleus process (such as quasi-fission (qf at higher energies.

  11. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    Science.gov (United States)

    Sadhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-01

    We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.

  12. Molecular Collective Vibrations in the Ternary Neutronless Fission of $^{252}Cf$

    CERN Document Server

    Misicu, S; Sandulescu, A; Greiner, W

    1999-01-01

    Based on a recent experimental finding which may suggest the existence of a tri-nuclear molecular structure before the cold ternary fragmentation of $^{252}$Cf takes place, we solved the eigenvalue problem of a certain class of vibrations which are very likely to occur in these molecules. These oscillations are the result of the joined action of rotations of the heavier fragments and the transversal vibrations of the lighter spherical cluster with respect to the fission axis. In the calculation of the interaction between the heavier fragments we took into account higher multipole deformations, including the hexadecupole one, and introduced a repulsive nuclear part to insure the creation of a potential pocket in which a few molecular states can be accommodated. The possibility to observe the de-excitation of such states is discussed in connection with the molecular life-time.

  13. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    CERN Document Server

    Sadhukhan, Jhilam; Schunck, Nicolas

    2016-01-01

    In this letter, we outline a methodology to calculate microscopically mass and charge distributions of spontaneous fission yields. We combine the multi-dimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic characteristics.

  14. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Luo, Y. X. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, S. H. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and UNRIB/Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Rasmussen, J. O.; Lee, I. Y. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stone, N. J. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Daniel, A. V. [Flerov Laboratory of Nuclear Reactions, JINR, Dubna (Russian Federation); Zhu, S. J. [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  15. Event-by-event study of neutron observables in spontaneous and thermal fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R; Randrup, J

    2011-09-14

    The event-by-event fission model FREYA is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view towards possible applications for SNM detection. We have shown that event-by-event models of fission, such as FREYA, provide a powerful tool for studying fission neutron correlations. Our results demonstrate that these correlations are significant and exhibit a dependence on the fissioning nucleus. Since our method is phenomenological in nature, good input data are especially important. Some of the measurements employed in FREYA are rather old and statistics limited. It would be useful to repeat some of these studies with modern detector techniques. In addition, most experiments made to date have not made simultaneous measurements of the fission products and the prompt observables, such as neutron and photons. Such data, while obviously more challenging to obtain, would be valuable for achieving a more complete understanding of the fission process.

  16. Maximum Alpha to Minimum Fission Pulse Amplitude for a Parallel-Plate and Hemispherical Cf-252 Ion-Chamber Instrumented Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Oberer, R.B.

    2000-12-07

    In an instrumented Cf-252 neutron source, it is desirable to distinguish fission events which produce neutrons from alpha decay events. A comparison of the maximum amplitude of a pulse from an alpha decay with the minimum amplitude of a fission pulse shows that the hemispherical configuration of the ion chamber is superior to the parallel-plate ion chamber.

  17. Radioactive Beams from 252CF Fission Using a Gas Catcher and an ECR Charge Breeder at ATLAS

    CERN Document Server

    Pardo, Richard C; Hecht, Adam; Moore, Eugene F; Savard, Guy

    2005-01-01

    An upgrade to the radioactive beam capability of the ATLAS facility has been proposed using 252Cf fission fragments thermalized and collected into a low-energy particle beam using a helium gas catcher. In order to reaccelerate these beams an existing ATLAS ECR ion source will be reconfigured as a charge breeder source. A 1Ci 252Cf source is expected to provide sufficient yield to deliver beams of up to ~106 far from stability ions per second on target. A facility description, the expected performance and the expected performance will be presented in this paper. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract W-31-109-ENG-38.

  18. Fission barriers and probabilities of spontaneous fission for elements with Z$\\geq$100

    CERN Document Server

    Baran, A; Reinhard, P -G; Robledo, L M; Staszczak, A; Warda, M

    2015-01-01

    This is a short review of methods and results of calculations of fission barriers and fission half-lives of even-even superheavy nuclei. An approvable agreement of the following approaches is shown and discussed: The macroscopic-microscopic approach based on the stratagem of the shell correction to the liquid drop model and a vantage point of microscopic energy density functionals of Skyrme and Gogny type selfconsistently calculated within Hartree-Fock-Bogoliubov method. Mass parameters are calculated in the Hartree-Fock-Bogoliubov cranking approximation. A short part of the paper is devoted to the nuclear fission dynamics. We also discuss the predictive power of Skyrme functionals applied to key properties of the fission path of $^{266}$Hs. It applies the standard techniques of error estimates in the framework of a $\\chi^2$ analysis.

  19. Microscopic phase-space exploration modeling of $^{258}$Fm spontaneous fission

    CERN Document Server

    Tanimura, Yusuke; Ayik, Sakir

    2016-01-01

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of $^{258}$Fm can be well reproduced using simple assumptions on the quantum collective phase-space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory. This approach goes beyond mean-field by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation of daughter nuclei as well as pre- and post-scission particle emission, are obtained.

  20. Multidimensionally-constrained relativistic Hartree-Bogoliubov study of nuclear spontaneous fission

    CERN Document Server

    Zhao, Jie; Niksic, Tamara; Vretenar, Dario

    2015-01-01

    Recent microscopic studies, based on the theoretical framework of nuclear energy density functionals, have analyzed dynamic (least action) and static (minimum energy) fission paths, and it has been shown that in addition to the important role played by nonaxial and/or octupole collective degrees of freedom, fission paths crucially depend on the approximations adopted in calculating the collective inertia. The dynamics of spontaneous fission of $^{264}$Fm and $^{250}$Fm is explored. The fission paths, action integrals and the corresponding half-lives predicted by the functionals PC-PK1 and DD-PC1 are compared and, in the case of $^{264}$Fm, discussed in relation with recent results obtained using the HFB model based on the Skyrme functional SkM$^*$ and a density dependent mixed pairing interaction. Deformation energy surfaces, collective potentials, and perturbative and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic Hartree-Bogoliubov (M...

  1. The SPIDER fission fragment spectrometer for fission product yield measurements

    Energy Technology Data Exchange (ETDEWEB)

    Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-11

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.

  2. Observed mass distribution of spontaneous fission fragments from samples of lime - an SSNTD study

    CERN Document Server

    Paul, D; Ghose, D; Sastri, R C

    1999-01-01

    SSNTD is one of the most commonly used detectors in the studies involving nuclear phenomena. The ease of registration of the presence of alpha particles and fission fragments has made it particularly suitable in studies where stable long exposures are needed to extract reliable information. Studies on the presence of alpha emitting nuclides in the environment assume importance since they are found to be carcinogenic. Lime samples from Silchar in Assam of Eastern India have shown the presence of spontaneous fission fragments besides alphas. In the present study we look at the ratio of the average mass distribution of these fission fragments, that gives us an indication of the presence of the traces of transuranic elements.

  3. Semi-empirical Calculation for Yield of 240Pu Spontaneous Fission

    Institute of Scientific and Technical Information of China (English)

    SHU; Neng-chuan; LIU; Li-le; CHEN; Xiao-song; LIU; Ting-jin; SUN; Zheng-jun; CHEN; Yong-jing; QIAN; Jing

    2012-01-01

    <正>The spontaneous fission yield has important implication in the nuclear engineering. This work used semi-empirical model to calculate its chain yield, the result shows good agreement with the measured data. There are only 3 sets of measured data, and only too gave the chain yields and cumulative yields, covering 17 chains. It is not enough to satisfy the requirement of users. So it is needed to use theoretical model to calculate the chain yield without measured data.

  4. Multidimensionally-constrained relativistic mean-field study of spontaneous fission: coupling between shape and pairing degrees of freedom

    CERN Document Server

    Zhao, Jie; Niksic, Tamara; Vretenar, Dario; Zhou, Shan-Gui

    2016-01-01

    Studies of fission dynamics, based on nuclear energy density functionals, have shown that the coupling between shape and pairing degrees of freedom has a pronounced effect on the nonperturbative collective inertia and, therefore, on dynamic (least-action) spontaneous fission paths and half-lives. Collective potentials and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic mean-field (MDC-RMF) model. Pairing correlations are treated in the BCS approximation using a separable pairing force of finite range. Pairing fluctuations are included as a collective variable using a constraint on particle-number dispersion. Fission paths are determined with the dynamic programming method by minimizing the action in multidimensional collective spaces. The dynamics of spontaneous fission of $^{264}$Fm and $^{250}$Fm are explored. Fission paths, action integrals and corresponding half-lives computed in the three-dimensional collective space of shape and pa...

  5. Fission Measurements with Dance

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  6. Measurement of the energy spectrum of {sup 252}Cf fission fragments using nuclear track detectors and digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G.; Golzarri, J. I. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Castano, V. M. [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Boulevard Juriquilla 3001, Santiago de Queretaro, 76230 Queretaro (Mexico); Gaso, I. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Mena, M.; Segovia, N. [UNAM, Instituto de Geofisica, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-02-15

    The energy spectrum of {sup 252}Cf fission fragments was measured using nuclear track detectors and digital image analysis system. The detection material was fused silica glass. The detectors were chemically etched in an 8% HF solution. After experimenting with various etching time, it was found that the best resolution of the track diameter distribution was obtained after 30 minutes of etching. Both Gaussian and Lorentzian curves were fit to the track diameter distribution histograms and used to determine the basic parameters of the distribution of the light (N{sub L}) and heavy (N{sub H}) formed peaks and the minimum of the central valley (N{sub V}). Advantages of the method presented here include the fully-automated analysis process, the low cost of the nuclear track detectors and the simplicity of the nuclear track method. The distribution resolution obtained by this method is comparable with the resolution obtained by electronic analysis devices. The descriptive variables calculated were very close to those obtained by other methods based on the use of semiconductor detectors. (Author)

  7. Spontaneous Fission and alpha -Decay Half-Lives of Superheavy Nuclei in Different Macroscopic Energy Models

    CERN Document Server

    Lojewski, Z; Pomorski, K

    2003-01-01

    Spontaneous fission half-lives (T sub s sub f) of the heaviest nuclei are calculated in the macroscopic-microscopic approach based on the deformed Woods-Saxon potential. Four different models of the macroscopic energy are examined and their influence on the results is discussed. The calculations of (T sub s sub f) are performed within WKB approximation. Multi-dimensional dynamical-programming method (MDP) is applied to minimize the action integral in a 3-dimensional space of deformation parameters describing the nuclear shape (beta sub 2 ,beta sub 4 ,beta sub 6).

  8. Linearly increasing radius of the light fragment during the spontaneous fission of $^{282}$Cn

    CERN Document Server

    Poenaru, D N

    2016-01-01

    In a previous article published in Phys. Rev. C 94 (2016) 014309 we have shown for the first time that the best dynamical trajectory during the deformation toward fission of the superheavy nucleus $^{286}$Fl is a linearly increasing radius of the light fragment, $R_2$. This macroscopic-microscopic result reminds us about the $\\alpha $ or cluster preformation at the nuclear surface, assumed already in 1928, and proved microscopically many times. This time we give more detailed arguments for the neighboring nucleus $^{282}$Cn. Also similar figures are presented for heavy nuclei $^{240}$Pu and $^{252}$Cf. The deep minimum of total deformation energy near the surface is shown for the first time as a strong argument for cluster preformation.

  9. Competition between alpha-decay and spontaneous fission at isotopes of superheavy elements Rf, Db, and Sg

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, Claudia Ioana, E-mail: claudia.anghel@theory.nipne.ro [Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Magurele, P.O.Box MG-6, RO-077125 (Romania); University of Bucharest, Faculty of Physics, RO-077125 Bucharest - Magurele (Romania); Silisteanu, Andrei Octavian [Radiopharmaceutical Research Center, Horia Hulubei National Institute for Physics and Nuclear Engineering, Magurele, P.O.Box MG-6, RO-077125 (Romania)

    2015-12-07

    The most important decay modes for heavy and superheavy nuclei are their α-decay and spontaneous fission. This work investigates the evolution and the competition of these decay modes in long isotopic sequences. The partial half-lives are given by minimal sets of parameters extracted from the fit of experimental data and theoretical results. A summary of the experimental and calculated α-decay and spontaneous fission half-lives of the isotopes of elements Rf, Db, and Sg is presented. Some half-life extrapolations for nuclides not yet known are also obtained.

  10. Role of pairing degrees of freedom and higher multipolarity deformations in spontaneous fission process

    CERN Document Server

    Lojewski, Z

    1999-01-01

    Spontaneous fission (T sub s sub f) and alpha-decay half-lives (T subalpha) of the heaviest nuclei with atomic number 100 <= Z <= 114 are calculated on the basis of the deformed Woods-Saxon potential. The calculations of (T sub s sub f) are performed by the WKB approximation, in the multi-dimensional dynamical-programing method (MDP). We have examined three different effects: the effect of higher even-multipolarity shape parameters (beta sub 6 and beta sub 8), the role of reflection-asymmetry (beta sub 3 and beta sub 5) and the influence of pairing degrees of freedom (DELTA sub p and DELTA sub n). Alpha-decay half-lives (T subalpha) have been calculated by the Viola-Seaborg (V-S) formula with the parameters modified to the latest experimental data.

  11. Unified description of the proton, alpha, cluster decays and spontaneously fissions half- life

    CERN Document Server

    Mavrodiev, Strachimir Cht

    2016-01-01

    Some time ago the possibility of classical (without Gamow tunneling) universal description of radioactive nuclei decay was demonstrated. Such possibility is basis on the classical interpretation of Bohmian Psi-field reality in Bohmian-Chetaev mechanics and the hypothesis for the presence of dissipative forces, generated from the Gryzinski translational precession of the charged particles spin, in Langevin- Kramers diffusion mechanism. In this paper is present an unified model of proton, alpha decay, cluster radioactivity and spontaneous fission half-life as explicit function which depends on the total decay energy and kinetic energy, the number of protons and neutrons of daughter product, the number of protons and neutrons of mother nuclei and from a set) unknown digital parameters. The Half- lifes of the 573 nuclei taken from NuDat database together with the recent experimental data from Oganessian provide a basis for discovering the explicit form of the Kramers solution of Langevin type equation in a framew...

  12. An ECR Charge Breeder for the 252 Cf Fission Source Project (CARIBU) at ATLAS%ATLAS用于CARIBU项目的ECR离子剥离器

    Institute of Scientific and Technical Information of China (English)

    R.C.Pardo; R.Vondrasek; T.Kulevoy; V.Aseev; R.Scott; P.Suominen

    2007-01-01

    A new radioactive beam facility for ATLAS,the Californium Rare Ion Breeder Upgrade(CARIBU),is under construction.The facility will use fission fragments from a 1 Ci 252 Cf source;thermalized and collected into a low-energy beam by a helium gas catcher.In order to reaccelerate these beams.the existing ATLAS ECR-I ion source is being redesigned to function as a charge breeder source.The design and features of this charge breeder configuration is discussed and the project status described.

  13. Experimental approach to fission process of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1997-07-01

    From experimental views, it seems likely that the mechanism of nuclear fission process remains unsolved even after the Bohr and Weeler`s study in 1939. Especially, it is marked in respect of mass distribution in unsymmetric nuclear fission. The energy dependency of mass distribution can be explained with an assumption of 2-mode nuclear fission. Further, it was demonstrated that the symmetrical fission components and the unsymmetrical ones have different saddle and fission points. Thus, the presence of the 2-mode fission mechanism was confirmed. Here, transition in the nuclear fission mechanism and its cause were investigated here. As the cause of such transition, plausible four causes; a contribution of multiple-chance fission, disappearance of shell effects, beginning of fission following collective excitation due to GDR and nuclear phase transition were examined in the condition of excitation energy of 14.0 MeV. And it was suggested that the transition in the nuclear fission concerned might be related to phase transition. In addition, the mechanism of nuclear fission at a low energy and multi-mode hypothesis were examined by determination of the energy for thermal neutron fission ({sup 233,235}U and {sup 239}Pu) and spontaneous nuclear fission ({sup 252}Cf). (M.N.)

  14. Certain features of the stopping power of gases for fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Demidovich, N.N.; Nakhutin, I.E.; Shatunov, V.G.

    1975-11-20

    The stopping power for the Cf/sup 252/ spontaneous fission fragments in air down to energies approx.0.8 MeV was investigated. The experimental dependence of the electronic stopping power of air for fission fragments differs from that predicted by the theory. (AIP)

  15. Prompt Fission Gamma-ray Studies at DANCE

    Science.gov (United States)

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O'Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on 252Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and 239Pu. Correlated PFG data from 252Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  16. Searches for superheavy elements in nature: Cosmic-ray nuclei; spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Akopian, G.M., E-mail: gurgen@jinr.ru; Dmitriev, S.N.

    2015-12-15

    There is little chance that superheavy nuclei with lifetimes of no less than 100 million years are present on the stability island discovered at present. Also, pessimistic are the results of estimates made about their nucleosynthesis in r-process. Nevertheless, the search for these nuclei in nature is justified in view of the fundamental importance of this topic. The first statistically significant data set was obtained by the LDEF Ultra-Heavy Cosmic-Ray Experiment, consisting of 35 tracks of actinide nuclei in galactic cosmic rays. Because of their exceptionally long exposure time in Galaxy, olivine crystals extracted from meteorites generate interest as detectors providing unique data regarding the nuclear composition of ancient cosmic rays. The contemporary searches for superheavy elements in the earth matter rely on knowledge obtained from chemical studies of artificially synthesized superheavy nuclei. New results finding out the chemical behavior of superheavy elements should be employed to obtain samples enriched in their homologues. The detection of rare spontaneous fission events and the technique of accelerator mass spectrometry are employed in these experiments.

  17. Even–odd effects in prompt emission of spontaneously fissioning even–even Pu isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tudora, A., E-mail: anabellatudora@hotmail.com [University of Bucharest, Faculty of Physics, Bucharest Magurele, POB MG-11, R-76900 (Romania); Hambsch, F.-J. [EC-JRC Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440, Geel (Belgium); Giubega, G.; Visan, I. [University of Bucharest, Faculty of Physics, Bucharest Magurele, POB MG-11, R-76900 (Romania)

    2015-01-15

    The available experimental Y(A,TKE) data for {sup 236,238,240,242,244}Pu(SF) together with the Zp model prescription with appropriate parameters allows the investigation of even–odd effects in fragment distributions. The size of the global even–odd effect in Y(Z) is decreasing from {sup 244}Pu(SF) to {sup 236}Pu(SF) confirming the general observation of a decrease of the even–odd effect with the fissility parameter. Charge polarizations (ΔZ) and root-mean squares (rms) as a function of A of {sup 236–244}Pu(SF) were obtained for the first time. In the asymmetric fission region both ΔZ(A) and rms(A) exhibit oscillations with a periodicity of about 5 mass units due to the even–odd effects. The total average charge deviations 〈ΔZ〉 (obtained by averaging ΔZ(A) over the experimental Y(A) distribution) are of about |0.5| for all studied Pu(SF) systems. The comparison of the calculated ΔZ(A) and rms(A) of {sup 240}Pu(SF) with those of {sup 239}Pu(n{sub th},f) reported by Wahl shows an in-phase oscillation with a higher amplitude in the case of {sup 240}Pu(SF), confirming the higher even–odd effect in the case of SF. As in the previously studied cases ({sup 233,235}U(n{sub th},f), {sup 239}Pu(n{sub th},f), {sup 252}Cf(SF)) the even–odd effects in the prompt emission of {sup 236–244}Pu(SF) are mainly due to the Z even–odd effects in fragment distributions and charge polarizations and the N even–odd effects in the average neutron separation energies from fragments 〈Sn〉. The size of the global N even–odd effect in 〈Sn〉 is decreasing with the fissility parameter, being higher for the Pu(SF) systems compared to the previously studied systems. The prompt neutron multiplicities as a function of Z, ν(Z), exhibit sawtooth shapes with a visible staggering for asymmetric fragmentations. The size of the global Z even–odd effect in ν(Z) exhibits a decreasing trend with increasing fissility. The average prompt neutron multiplicities as a

  18. The statistical model calculation of prompt neutron spectra from spontaneous fission of {sup 244}Cm and {sup 246}Cm

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, B.F. [V.G. Khlopin Radium Inst., Saint Peterburg (Russian Federation)

    1997-03-01

    The calculations of integral spectra of prompt neutrons of spontaneous fission of {sup 244}Cm and {sup 246}Cm were carried out. The calculations were done by the Statistical Computer Code Complex SCOFIN applying the Hauser-Feschbach method as applied to the description of the de-excitation of excited fission fragments by means of neutron emission. The emission of dipole gamma-quanta from these fragments was considered as a competing process. The average excitation energy of a fragment was calculated by two-spheroidal model of tangent fragments. The density of levels in an excited fragment was calculated by the Fermi-gas model. The quite satisfactory agreement was reached between theoretical and experimental results obtained in frames of Project measurements. The calculated values of average multiplicities of neutron number were 2,746 for {sup 244}Cm and 2,927 for {sup 246}Cm that was in a good accordance with published experimental figures. (author)

  19. Validation of MCNPX-PoliMi Fission Models

    Energy Technology Data Exchange (ETDEWEB)

    S. A. Pozzi; S. D. Clarke; W. Walsh; E. C. Miller; J. Dolan; M. Flaska; B. M. Wieger; A. Enqvist; E. Padovani; J. K. Mattingly; D. L. Chichester; P. Peerani

    2012-10-01

    We present new results on the measurement of correlated, outgoing neutrons from spontaneous fission events in a Cf-252 source. 16 EJ-309 liquid scintillation detectors are used to measure neutron-neutron correlations for various detector angles. Anisotropy in neutron emission is observed. The results are compared to MCNPX-PoliMi simulations and good agreement is observed.

  20. SOURCES 4C : a code for calculating ([alpha],n), spontaneous fission, and delayed neutron sources and spectra.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W. B. (William B.); Perry, R. T. (Robert T.); Shores, E. F. (Erik F.); Charlton, W. S. (William S.); Parish, Theodore A.; Estes, G. P. (Guy P.); Brown, T. H. (Thomas H.); Arthur, Edward D. (Edward Dana),; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E. (James E.)

    2002-01-01

    SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.

  1. A new approach to prompt fission neutron TOF data treatment

    Science.gov (United States)

    Zeynalov, Sh.; Zeynalova, O. V.; Hambsch, F.-J.; Oberstedt, S.

    The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. A new mathematical approach, applicable to single events, was developed for prompt fission neutron (PFN) time-offlight distribution unfolding. The main goal was to understand the reasons of the long existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of the fission fragments (FF). Since the 252Cf (sf) reaction is one of the main references for nuclear data the understanding of the PFN emission mechanism is very important both for nuclear fission theory and nuclear data. The experimental data were taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to the well known work of C. Budtz-Jorgensen and H.-H. Knitter. About 2.5 × 105 coincidences between fission fragment (FF) and neutron detector response to prompt fission neutron detection have been registered (∼ 1.6 × 107 of total recorded fission events). Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12-bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The main goal of this work was a detailed description of the prompt fission neutron treatment.

  2. Study of the shielding for spontaneous fission sources of Californium-252; Estudio de blindaje para fuentes de fision espontanea de Californio-252

    Energy Technology Data Exchange (ETDEWEB)

    Davila R, I

    1991-06-15

    A shielding study is made to attenuate, until maximum permissible levels, the neutrons radiation and photons emitted by spontaneous fission coming from a source of Californium-252. The compound package by a database (Library DLC-23) and the ANISNW code is used, in it version for personal computer. (Author)

  3. HALF-LIVES OF LONG-LIVED A-DECAY, B-DECAY, BB-DECAY AND SPONTANEOUS FISSION NUCLIDES.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    2001-06-29

    In his review of radionuclides for dating purposes, Roth noted that there were a large number of nuclides, normally considered ''stable'' but which are radioactive with a very long half-life. Roth suggested that I review the data on the half-life values of these long-lived nuclides for a discussion session at the next meeting. These half-life values for long-lived nuclides include those due to various decay modes, {alpha}-decay, {beta}-decay, electron capture decay, {beta}{beta}-decay and spontaneous fission decay. This report is preliminary but will provide a quick overview of the extensive table of data on the recommendations from that review.

  4. Comparison of {sup 235}U fission cross sections in JENDL-3.3 and ENDF/B-VI

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Carlson, Allan D. [National Institute of Standards and Technology (United States); Matsunobu, Hiroyuki [Data Engineering, Inc., Fujisawa, Kanagawa (Japan); Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Talou, Patrick; Young, Philip G.; Chadwick, Mark B. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2002-01-01

    Comparisons of evaluated fission cross sections for {sup 235}U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the {sup 235}U prompt fission neutron spectrum, the {sup 252}Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a {sup 9}Be(d, xn) reaction. For {sup 235}U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For {sup 252}Cf and {sup 9}Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)

  5. Applications of Event-by-Event Fission Modeling with FREYA

    Directory of Open Access Journals (Sweden)

    Vogt R.

    2012-02-01

    Full Text Available The recently developed code FREYA (Fission Reaction Event Yield Algorithm generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on 239Pu(nth,f, 240Pu(sf and 252Cf(sf, we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.

  6. Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference

    Science.gov (United States)

    Hamilton, J. H.; Phillips, W. R.; Carter, H. K.

    The Table of Contents for the book is as follows: * Preface * Structure of Elementary Matter: Cold Valleys and Their Importance in Fission, Fusion and for Superheavy Nuclei * Tunnelling Phenomena in Nuclear Physics * Heavy Nuclei Studies Using Transfer Reactions * Isomeric Properties of Nuclei Near 78Ni * Investigation of Light Actinide Nuclei at Yale and Beyond * U-Projectile Fission at Relativistic Energies * Cluster Description of Cold Fission Modes in 252Cf * Neutron-pair Transfer Theory for Pear-shaped Ba Fission Fragments * New RMFA Parameters of Normal and Exotic Nuclei * Study of Fission Fragments from 12C+238U Reactions: Prompt and Delayed Spectroscopy * γ-Ray Angular Correlations in 252Cf and 248Cm Fission Fragments * Fragment Angular Momentum and Descent Dynamics in 252Cf Spontaneous Fission * The Experimental Investigation of Neutron-Rich Nuclei * High-Spin Structure of Some Odd-Z Nuclei with A ≈ 100 From Heavy-Ion Induced Fission * Coexistence of Symmetric and Asymmetric Nuclear Shapes and 10Be Ternary Fission * Octupole Effects in the Lanthanides * High Spin Structure of the 113-1l6Cd Isotopes Produced by Heavy-Ion Induced Fission Reaction * Temperature-Dependent Fission Barriers and Mass Distributions for 239U * Strength Distributions for Gamow Teller Transitions in Very Weakly Bound Systems * High Spin Fragmentation Spectroscopy * Search for a Four-Neutron Transfer From 8He to 4He * Microsecond Isomers in Fission Fragments in the Vicinity of the Doubly Magic 132Sn * Recent On-Line NMR/on Nuclear Magnetic Dipole Moments Near 132Sn: Meson Exchange Current Effects at the Shell Closure and Shell Model Treatment of Variation with Proton and Neutron Number * High-spin K-Isomers Beyond the Fusion Limit * High Energy Neutron Induced Fission: Charge Yield Distributions and Search and Spectroscopy of New Isomers * Hartree-Fock Mean-Field Models Using Separable Interactions * Variation of Fission Characteristics Over the Nuclear Chart * Investigation of

  7. Evaluation and compilation of fission product yields 1993

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  8. Ternary fission

    Indian Academy of Sciences (India)

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  9. Late Time Emission of Prompt Fission Gamma Rays

    CERN Document Server

    Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B

    2016-01-01

    The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...

  10. Estimation of 240Pu Mass in a Waste Tank Using Ultra-Sensitive Detection of Radioactive Xenon Isotopes from Spontaneous Fission

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, Ted W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gesh, Christopher J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haas, Derek A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meacham, Joseph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendoza, Donaldo P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olsen, Khris B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prinke, Amanda M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Reid, Bruce D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woods, Vincent T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    We report on a technique to detect and quantify the amount of 240Pu in a large tank used to store nuclear waste from plutonium production at the Hanford nuclear site. While the contents of this waste tank are known from previous grab sample measurements, our technique could allow for determination of the amount of 240Pu in the tank without costly sample retrieval and analysis of this highly radioactive material. This technique makes an assumption, which was confirmed, that 240Pu dominates the spontaneous fissions occurring in the tank.

  11. Thermal fission rates with temperature dependent fission barriers

    CERN Document Server

    Zhu, Yi

    2016-01-01

    \\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...

  12. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  13. Determination of the subcriticality level using the {sup 252}Cf source-detector method

    Energy Technology Data Exchange (ETDEWEB)

    Baeten, P. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lafuente, A., E-mail: anlafuente@etsii.upm.e [Universidad Politecnica de Madrid, 28006 Madrid (Spain); Janssens, J.; Kochetkov, A. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Pazsit, I. [Chalmers University of Technology, SE-412 96 Goteborg (Sweden); Van Grieken, G.; Van den Eynde, G. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2010-05-15

    Measurement and monitoring of reactivity in a subcritical state, e.g. during the loading of a power reactor, has a clear safety relevance. The methods currently available for the measurement of k{sub eff} in stationary subcritical conditions should be improved as they refer to the critical state. This is also very important in the framework of ADS (accelerator driven systems) where the measurement of a subcritical level without knowledge of the critical state is looked for. An alternative way to achieve this is by mean of the {sup 252}Cf source-detector method. The method makes use of three detectors inserted in the reactor: two 'ordinary' neutron detectors and one {sup 252}Cf source-detector which contains a small amount of {sup 252}Cf that introduces neutrons in the system through spontaneous fission. By observing fissions through the detection system and correlating the signals of the three detectors, the reactivity rho (and hence the multiplication factor k) can be determined. Before the actual measurements took place, a suitable data acquisition system was realized in order to process the signals and compute the auto and cross power spectral densities. The measurements were then performed in the VENUS reactor, using the {sup 252}Cf source-detector and two BF{sub 3} neutron detectors. The multiplication factor was determined using the Cf source method and compared with measurements using other methods and with computational results (Monte Carlo simulations). The Cf method was benchmarked at a UOX core to other experimental methods that used the critical state as reference and to calculations. Afterwards, the Cf source technique was analyzed in a MOX core to study the possible impact of a significant intrinsic source on the results. This benchmarking gives the possibility to validate the Cf method as a reliable technique for the measurement of subcritical levels in steady state and for cores with an intrinsic source like MOX or burnt fuel cores.

  14. Is the Double Giant Dipole Resonance Process Responsible for Alpha Emission in Ternary Fission?

    Institute of Scientific and Technical Information of China (English)

    HAN Hong-Yin(韩洪银); WAND Yi-Hua(王屹华); G.Mouze

    2001-01-01

    The Monte Carlo program built on the double giant dipole resonance model proposed by Mouze et al. [Nuovo Cimento A 110(1997)1097] was employed to calculate the energy spectrum of alpha particles emitted in the spontaneous ternary fission of 252Cf. It has been found that in the case of the zero orbital angular momentum of alpha particles in the alpha decay of the fragments, the measured alpha spectrum can be reproduced approximately by the model without any adjustable parameter.

  15. Investigation of mass-dependent prompt fission γ-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Oberstedt, Stephan; Gatera, Angelique [European Commission, DG Joint Research Centre, IRMM (Belgium); Lebois, Matthieu; Wilson, Jonathan [Institut de Physique Nucleaire Orsay, F-91406 Orsay (France); Oberstedt, Andreas [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-41296 Goeteborg (Sweden)

    2015-07-01

    In recent years we conducted a systematic investigation of fission-fragment de-excitation through prompt neutron and γ-ray emission. For the latter we were able to obtain spectral data for thermal-neutron induced fission on {sup 235}U and {sup 241}Pu with unprecedented accuracy. The recently installed neutron source LICORNE, where neutrons are produced in inverse kinematics, enables us to explore prompt de-excitation also for fast-neutron induced fission and on non-fissile targets. In a next step we started studying the spectral changes as a function of mass and total kinetic energy using the spontaneous fission of {sup 252}Cf. By tagging on isomeric γ-decay we are exploring the possibility to identify very neutron-rich isotopes. First results and the new hybrid array, GLANDIS, consisting of CeBr{sub 3} and HPGe detectors, is being presented.

  16. Thermal fission rates with temperature dependent fission barriers

    Science.gov (United States)

    Zhu, Yi; Pei, J. C.

    2016-08-01

    Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.

  17. The competition between alpha decay and spontaneous fission in odd-even and odd-odd nuclei in the range 99 \\leg Z \\leg 129

    CERN Document Server

    Santhosh, K P

    2015-01-01

    The predictions on the mode of decay of the odd-even and odd-odd isotopes of heavy and superheavy nuclei with Z = 99-129, in the range 228 \\leg A \\leg 336, have been done within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). A comparison of our calculated alpha half lives with the values computed using other theoretical models shows good agreement with each other. An extensive study on the spontaneous fission half lives of all the isotopes under study has been performed to identify the long-lived isotopes in the mass region. The study reveals that the alpha decay half lives and the mode of decay of the isotopes with Z = 109, 111, 113, 115 and 117, evaluated using our formalisms, agrees well with the experimental observations. As our study on the odd-even and odd-odd isotopes of Z = 99-129 predicts that, the isotopes $^{238,240-254}$99, $^{244,246-258}$101, $^{248,250,252-260,262}$103, $^{254,256,258-262,264}$105, $^{258,260,262-264,266}$107, $^{262,264,266-274}$109, $^{266,268-279}$11...

  18. Novel Scintillation Detectors for Prompt Fission γ-Ray Measurements

    Science.gov (United States)

    Billnert, R.; Andreotti, E.; Hambsch, F.-J.; Hult, M.; Karlsson, J.; Marissens, G.; Oberstedt, A.; Oberstedt, S.

    In this work we present first results from measurements of prompt fission γ-rays from the spontaneous fission in 252Cf. New and accurate data on corresponding γ-rays from the reactions 235U(nth,f) and 239Pu(nth,f) are highly demanded for the modeling of new Generation-IV nuclear reactor systems. For these experiments we employed scintillation detectors made out of new materials (LaBr3, LaCl3 and CeBr3), whose properties were necessary to know in order to obtain reliable results. Hence, we have characterized these detectors. In all the important properties these detectors outshine sodium-iodine detectors that where used in the 1970s, when the existing data had been acquired. Our finding is that the new generation of scintillation detectors is indeed promising, as far as an improved precision of the demanded data is concerned.

  19. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  20. Validation of IRDFF in 252Cf Standard and IRDF-2002 Reference Neutron Fields

    Directory of Open Access Journals (Sweden)

    Simakov Stanislav

    2016-01-01

    Full Text Available The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard 252Cf(s.f. and reference 235U(nth,f neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm IRDFF-1.03 in the 252Cf standard spontaneous fission spectrum; that was not the case for the current recommended spectra for 235U(nth,f. IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF-2002 collection. The ISNF facility was re-simulated to remove unphysical oscillations in the spectrum. IRDFF-1.03 was shown to reproduce reasonably well the spectrum-averaged data measured in these fields except for the case of YAYOI.

  1. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    CERN Document Server

    Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.

  2. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  3. A physics investigation of deadtime losses in neutron counting at low rates with Cf252

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [CANBERRA INDUSTRIES, INC.

    2009-01-01

    {sup 252}Cf spontaneous fission sources are used for the characterization of neutron counters and the determination of calibration parameters; including both neutron coincidence counting (NCC) and neutron multiplicity deadtime (DT) parameters. Even at low event rates, temporally-correlated neutron counting using {sup 252}Cf suffers a deadtime effect. Meaning that in contrast to counting a random neutron source (e.g. AmLi to a close approximation), DT losses do not vanish in the low rate limit. This is because neutrons are emitted from spontaneous fission events in time-correlated 'bursts', and are detected over a short period commensurate with their lifetime in the detector (characterized by the system die-away time, {tau}). Thus, even when detected neutron events from different spontaneous fissions are unlikely to overlap in time, neutron events within the detected 'burst' are subject to intrinsic DT losses. Intrinsic DT losses for dilute Pu will be lower since the multiplicity distribution is softer, but real items also experience self-multiplication which can increase the 'size' of the bursts. Traditional NCC DT correction methods do not include the intrinsic (within burst) losses. We have proposed new forms of the traditional NCC Singles and Doubles DT correction factors. In this work, we apply Monte Carlo neutron pulse train analysis to investigate the functional form of the deadtime correction factors for an updating deadtime. Modeling is based on a high efficiency {sup 3}He neutron counter with short die-away time, representing an ideal {sup 3}He based detection system. The physics of dead time losses at low rates is explored and presented. It is observed that new forms are applicable and offer more accurate correction than the traditional forms.

  4. Future research program on prompt γ-ray emission in nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Oberstedt, S.; Hambsch, F.J. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Billnert, R. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Lebois, M.; Wilson, J.N. [Institut de Physique Nucleaire Orsay, Orsay (France); Oberstedt, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Ossolution Consulting, Oerebro (Sweden)

    2015-12-15

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions {sup 235}U(n{sub th}, f), {sup 239}Pu(n{sub th},f) and {sup 252}Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of {sup 235}U and {sup 239}Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on {sup 235}U and {sup 241}Pu as well as for the spontaneous fission of {sup 252}Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on {sup 238}U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on {sup 235,238}U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies. (orig.)

  5. Future research program on prompt γ-ray emission in nuclear fission

    Science.gov (United States)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  6. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    D N Poenaru; R A Gherghescu

    2015-09-01

    Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.

  7. Sensitivity of 252Cf(sf) Neutron Observables to FREYA Inputs

    Science.gov (United States)

    Vogt, Ramona; Randrup, Jorgen; Talou, Patrick

    2016-09-01

    Within the framework of the fission event generator FREYA , (Fission Reaction Event Yield Algorithm) we have studied the sensitivity of various neutron observables to the yield distribution Y (A , Z , TKE) used as input to the code. Concentrating on the spontaneous fission of 252Cf, we generate a large number of different input yield distributions by performing simultaneous variations in the mass and charge yields as well as the kinetic energy distribution, governed by yield covariance matrices established from experimental data sets. For each of these input yield distributions, we then use FREYA to generate a large sample of complete fission events from which we extract various neutron observables, in particular the neutron multiplicity distribution, and the neutron spectrum associated with each multiplicity. On this basis, we are able to determine the sensitivity of those observables to the uncertainties in the input yield distribution obtained experimentally. This kind of study can be applied to any other case of interest and the information obtained can help to establish any needs and target accuracies required for further measurements to ensure reliable data validation. The work of J.R. was performed under the auspices of the U.S. Dept. of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. The work of P.T. was performed under the auspices of the National Nuclear Security Administration.

  8. Improved fission neutron energy discrimination with 4He detectors through pulse filtering

    Science.gov (United States)

    Zhu, Ting; Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit; Chandra, Rico; Kiff, Scott; Chung, Heejun; Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A.

    2017-03-01

    This paper presents experimental and computational techniques implemented for 4He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since 4He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the 4He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with 252Cf spontaneous fission neutrons. Given the 4He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a 4He fast neutron detection system.

  9. A double-Bragg detector with digital signal processing for the event-by-event study of fission in actinide nuclei

    Science.gov (United States)

    Frost, R. J. W.; Smith, A. G.

    2016-09-01

    In the current paper, a windowless double-Bragg chamber incorporating full signal digitisation has been developed for the purpose of studying the energy (E), mass (A), charge (Z) and angular distributions (θ, Φ) of nuclei generated by fission. This device measures E for each fission fragment by collection of the charge produced during ionisation of the fill gas. Subsequent digitisation of the signals from each of two anodes yields information on dE/dx, as well as electron collection time, which can be further used for polar angle (θ) determination. Frisch-grid and cathode signals are also digitised and are used both for anode signal correction and to produce further information on θ. To verify the operation of this detector, three angular determination techniques from the literature were implemented, and the results were found to be consistent with the referenced paper. Current results from the spontaneous fission of 252Cf are presented.

  10. Beta decay of 252Cf on the way to scission from the exit point

    CERN Document Server

    Pomorski, K; Quentin, P

    2015-01-01

    Upon increasing significantly the nuclear elongation, the beta-decay energy grows. This paper investigates within a simple yet partly microscopic approach, the transition rate of the beta decay of the 252Cf nucleus on the way to scission from the exit point for a spontaneous fission process. A rather crude classical approximation is made for the corresponding damped collective motion assumed to be one dimensional. Given these assumptions, we only aim in this paper at providing the order of magnitudes of such a phenomenon. At each deformation the energy available for beta decay, is determined from such a dynamical treatment. Then, for a given elongation, transition rates for the allowed (Fermi) beta decay are calculated from pair correlated wave functions obtained within a macroscopic-microscopic approach and then integrated over the time corresponding to the whole descent from exit to scission. The results are presented as a function of the damping factor (inverse of the characteristic damping time) in use in...

  11. A revised calculational model for fission

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  12. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    CERN Document Server

    Arnold, C W; Meierbachtol, K; Bredeweg, T; Jandel, M; Jorgenson, H J; Laptev, A; Rusev, G; Shields, D W; White, M; Blakeley, R E; Mader, D M; Hecht, A A

    2014-01-01

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEterminiation in fission Research (SPIDER) is a $2E-2v$ spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with $\\alpha$-particles from $^{229}$Th and its decay chain and $\\alpha$-particles and spontaneous fission fragments from $^{252}$Cf. Each detector module is comprised of a thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times on the order of 70 ns were measured with 200 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to precision of 0.5%. An ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for mode...

  13. Standard test method for nondestructive assay of nuclear material in scrap and waste by passive-Active neutron counting using 252Cf shuffler

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the nondestructive assay of scrap and waste items for U, Pu, or both, using a 252Cf shuffler. Shuffler measurements have been applied to a variety of matrix materials in containers of up to several 100 L. Corrections are made for the effects of matrix material. Applications of this test method include measurements for safeguards, accountability, TRU, and U waste segregation, disposal, and process control purposes (1, 2, 3). 1.1.1 This test method uses passive neutron coincidence counting (4) to measure the 240Pu-effective mass. It has been used to assay items with total Pu contents between 0.03 g and 1000 g. It could be used to measure other spontaneously fissioning isotopes such as Cm and Cf. It specifically describes the approach used with shift register electronics; however, it can be adapted to other electronics. 1.1.2 This test method uses neutron irradiation with a moveable Cf source and counting of the delayed neutrons from the induced fissions to measure the 235U equiva...

  14. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  15. Energy-loss distributions of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Demidovich, N.N.; Nakhutin, I.E.; Shatunov, V.G.

    1976-03-05

    The f-f coincidence method was used to investigate the change in the form of the energy-loss distributions of Cf/sup 252/ fission fragments in air, down to fragment energies approx.0.8 MeV. A theoretical model is considered for the estimate of the mean-squared deviations of the fragment energy-loss distributions. (AIP)

  16. Response function and relative efficiency measurements of the BC501A scintillator by using a 252 Cf fast fission chamber%利用252Cf快裂变室测量BC501A液闪探测器的相对探测效率和响应函数

    Institute of Scientific and Technical Information of China (English)

    言杰; 李澄; 刘荣; 蒋励; 鹿心鑫; 王玫

    2011-01-01

    The response function and relative efficiency of a φ50.8 mm × 50.8 mm BC501A scintillator has been measured by using a252Cf fast fission chamber.In this method, a multi-parameter data acquisition system is employed to take the time-of-flight (TOF) ,pulse shape discrimination (PSD) and recoil energy (RE.note: fission neutron induces recoil proton while the prompt gamma ray induces Compton recoil electron) of the fission neutron and prompt gamma ray in an event-by-event mode with a TOF gate.The off-line data analysis method for separating the prompt gamma ray from the fission neutron as well as its contribution to the TOF spectrum and RE spectrum to obtain the relative efficiency and response function is discussed in detail.An accurate calibration of the effective neutron detection threshold is carried out by a linear extrapolation of the section around the point of infiexion in the relative efficiency plots using neutron energy directly.The relative efficiency with 0.51 MeV effective neutron detection threshold agrees with the Monte Carlo calculation result of NEFF.The response function from 0.5 MeV to 5 MeV generally agrees with the published experimental result of the NE213 scintillator of the same size.%本文利用252Cf快裂变室和多参数数据采集系统,逐事例的同时记录了自发裂变中子和瞬发伽马的飞行时间(TOF),脉冲形状甄别(PSD)和反冲能量(RE,裂变中子是通过测量反冲质子;瞬发伽马是通过测量康普顿反冲电子)三维信息.详细介绍了通过离线数据分析完全扣除三维信息中的伽马事例贡献,以获得φ50.8 mm×50.8 mm的BC501A液闪探测器的相对探测效率和响应函数的方法.在不通过探测器响应函数进行数据转换的条件下,利用中子的能量直接确定了中子的有效测量阈值.得到的中子有效测量阈值为0.51 MeV的相对探测效率实验结果与NEFF程序计算的结果一致.探测器在0.5-5 MeV的响应函数也与

  17. Fission and Properties of Neutron-Rich Nuclei

    Science.gov (United States)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    . Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the

  18. DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy

    Science.gov (United States)

    Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.

    2009-10-01

    Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the 252Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the 252Cf(SF) reaction with data available from literature.

  19. Discovery of Interstellar CF+

    CERN Document Server

    Neufeld, D A; Menten, K M; Wolfire, M G; Black, J H; Schuller, F; Müller, H; Thorwirth, S; Gusten, R; Philipp, S

    2006-01-01

    We discuss the first astronomical detection of the CF+ (fluoromethylidynium) ion, obtained by observations of the J=1-0 (102.6 GHz), J=2-1 (205.2 GHz) and J=3-2 (307.7 GHz) rotational transitions toward the Orion Bar region. Our search for CF+, carried out using the IRAM 30m and APEX 12m telescopes, was motivated by recent theoretical models that predict CF+ abundances of a few times 1.E-10 in UV-irradiated molecular regions where C+ is present. The CF+ ion is produced by exothermic reactions of C+ with HF. Because fluorine atoms can react exothermically with H2, HF is predicted to be the dominant reservoir of fluorine, not only in well-shielded regions but also in the surface layers of molecular clouds where the C+ abundance is large. The observed CF+ line intensities imply the presence of CF+ column densities of at least 1.E+12 cm-2 over a region of size at least ~ 1 arcmin, in good agreement with theoretical predictions. They provide support for our current theories of interstellar fluorine chemistry, whic...

  20. Fission Spectrum

    Science.gov (United States)

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  1. Excitation-energy dependence of the nuclear fission characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H.; Saito, T.; Takahashi, N. [Osaka City Univ. (Japan). Faculty of Science] [and others

    1996-03-01

    It is known that the width parameter of the fragment mass yield distribution follows a beautiful systematics with respect to the excitation energy. According to this systematics, the fission characteristics following the systematics should disappear when the excitation energy Ex goes down to 14 MeV. The present purpose is to elucidate if, where, how and why a transition takes place in the fission characteristics of the asymmetric fission of light actinide elements. Two types of experiments are performed, one is the double-energy measurement of the kinetic energies of complementary fragments in the thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at 13.3- and 15.7-MeV excitations, and the other is the radiochemical study of proton-induced fission and photofission of {sup 238}U at various excitation energies. In conclusion, it has demonstrated that there are two distinctive fission mechanisms in the low-energy fission of light actinide elements and the transition between them takes place around 14-MeV excitation. The characteristics of proton fission and photofission in the energy range lower than the above transition point are the essentially the same as those of thermal-neutron fission and also spontaneous fission. The results of GDR fission indicates the fission in the high-energy side starts from the nuclear collective states, whereas the lower-energy fission is of non-collective nature. It is likely that thermal-neutron fission is rather of the barrier-penetrating type like spontaneous fission than the threshold fission. (S.Y.)

  2. SPIDER Progress Towards High Resolution Correlated Fission Product Data

    Science.gov (United States)

    Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team

    2014-09-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.

  3. Advanced modeling of prompt fission neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Talou, Patrick [Los Alamos National Laboratory

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  4. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2009-10-25

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  5. Measurements of charge distributions of the fragments in the low energy fission reaction

    Science.gov (United States)

    Wang, Taofeng; Han, Hongyin; Meng, Qinghua; Wang, Liming; Zhu, Liping; Xia, Haihong

    2013-01-01

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ-Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au-Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2* and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  6. Search for heavy-ion emission in 249Cf decay

    Science.gov (United States)

    Ardisson, G.; Barci, V.; Le Du, J. F.; Trubert, D.; Bonetti, R.; Guglielmetti, A.; Gupta, R. K.

    1999-09-01

    Using phosphate glass detectors PKS-50, we have searched for possible emission of heavy clusters in the decay of 249Cf with the aim of confirming the result obtained from a recent γ ray spectrometry experiment. After a 20-day exposure to a 7.4 MBq activity 249Cf source of 37.5 cm2 PKS-50 glasses covered with polymide foils to stop fission fragments, no ions with 17=7.4×1021 s. According to calculations performed on the basis of the preformed cluster model there seems to be very little chance that such an exotic decay might be detected, at least in the next few years.

  7. Ideological Fission

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    ; it is a materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...

  8. Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Y T; Utyonkov, V K; Lobanov, Y V; Abdullin, F S; Polyakov, A N; Sagaidak, R N; Shirokovsky, I V; Tsyganov, Y S; Voinov, A A; Gulbekian, G G; Bogomolov, S L; Gikal, B N; Mezentsev, A N; Iliev, S; Subbotin, V G; Sukhov, A M; Subotic, K; Zagrebaev, V I; Vostokin, G K; Itkis, M G; Moody, K J; . Patin, J B; Shaughnessy, D A; Stoyer, M A; Stoyer, N J; Wilk, P A; Kenneally, J M; Landrum, J H; Wild, J F; Lougheed, R W

    2006-01-31

    The decay properties of {sup 290}116 and {sup 291}116, and the dependence of their production cross sections on the excitation energies of the compound nucleus, {sup 293}116, have been measured in the {sup 245}Cm({sup 48}Ca,xn){sup 293-x}116 reaction. These isotopes of element 116 are the decay daughters of element 118 isotopes, which are produced via the {sup 249}Cf+{sup 48}Ca reaction. They performed the element 118 experiment at two projectile energies, corresponding to {sup 297}118 compound nucleus excitation energies of E* = 29.2 {+-} 2.5 and 34.4 {+-} 2.3 MeV. During an irradiation with a total beam dose of 4.1 x 10{sup 19} {sup 48}Ca projectiles, three similar decay chains consisting of two or three consecutive {alpha} decays and terminated by a spontaneous fission (SF) with high total kinetic energy of about 230 MeV were observed. The three decay chains originated from the even-even isotope {sup 294}118 (E{sub {alpha}} = 11.65 {+-} 0.06 MeV, T{sub {alpha}} = 0.89{sub -0.31}{sup +1.07} ms) produced in the 3n-evaporation channel of the {sup 249}Cf+{sup 48}Ca reaction with a maximum cross section of 0.5{sub -0.3}{sup +1.6} pb.

  9. New prompt fission γ-ray spectral data and its impact on present evaluated nuclear data files

    Energy Technology Data Exchange (ETDEWEB)

    Oberstedt, Stephan [Commission of the European Communities, Geel (Belgium). Inst. for Reference Materials and Measurements (IRMM); Billnert, Robert [Commission of the European Communities, Geel (Belgium). Inst. for Reference Materials and Measurements (IRMM); Fundamental Fysik, CTH, S-41296 Goeteborg (Sweden); Oberstedt, Andreas [Fundamental Fysik, CTH, S-41296 Goeteborg (Sweden); CEA/DAM Ile-de-France, F-91297 Arpajon Cedex (France); Belgya, Tamas [KFKI, H-1121 Budapest 114 (Hungary); Martinez, Trino [CIEMAT, E-28040 Madrid (Spain)

    2013-07-01

    The Generation-IV International Forum (GIF) point out that fast reactors, and modeling their new and innovative cores based on existing data for the most common reactor isotopes {sup 235}U and {sup 239}Pu leads to an intolerable underestimation of the γ-heating, new measurements are required. Therefore, these two isotopes have been included in OECD/NEA's high priority nuclear data request list for prompt fission γ-ray data; in particular γ-multiplicity and mean energy are requested. Precise knowledge of the prompt γ-ray spectrum is one key to the fundamental understanding of the share of excitation energy between the two fission fragments and the (γ,n) reaction yield in the surrounding matter. With a new detection system, based on lanthanide-halide scintillation detectors, a first validation experiment was performed on the spontaneous fission of {sup 252}Cf. We present first results and discuss their impact on evaluated data tables not only for this nuclide, but also for {sup 238}U and {sup 241}Pu, which is always present in a reactor. Furthermore, we show preliminary results from our investigation of prompt γ-ray emission from the reaction {sup 235}U(n{sub th}, f), measured at the KFKI in Budapest.

  10. Characterization of the scission point from fission-fragment velocities

    CERN Document Server

    Caamaño, M; Delaune, O; Schmidt, K -H; Schmitt, C; Audouin, L; Bacri, C -O; Benlliure, J; Casarejos, E; Derkx, X; Fernández-Domínguez, B; Gaudefroy, L; Golabek, C; Jurado, B; Lemasson, A; Ramos, D; Rodríguez-Tajes, C; Roger, T; Shrivastava, A

    2015-01-01

    The isotopic-yield distributions and kinematic properties of fragments produced in transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV of excitation energy respectively, were measured in inverse kinematics with the spectrometer VAMOS. The kinematic properties of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.

  11. Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds

    Science.gov (United States)

    Bundgaard, Jeremy; Niffte Collaboration

    2015-10-01

    Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.

  12. Alpha decay from fission isomeric states

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M. (Institutul de Fizica si Inginerie Nucleara, Bucharest (Romania))

    1981-07-01

    Alpha-decay half-lives from shape isomeric states of some even-even isotopes of U, Pu and Cm nuclei are calculated by using fission theory in the parametrisation of a spheroid intersected with a sphere. The potential barrier was calculated in the framework of the liquid-drop model of Myers and Swiatecki (Art. Fys.; 36: 343 (1967)) extended for systems with different charge densities; a phenomenological shell correction was introduced. The WKB computed lifetimes are many orders of magnitude longer than that of the spontaneous fission process, in agreement with experimental results.

  13. To fission or not to fission

    CERN Document Server

    Pomorski, Krzysztof; Ivanyuk, Fedir A

    2016-01-01

    The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.

  14. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    Directory of Open Access Journals (Sweden)

    Ramos D.

    2016-01-01

    Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  15. The appearance energy of CF+3 from CF4: ion/molecule reactions related to the thermochemistry of CF+3

    Science.gov (United States)

    Fisher, Ellen R.; Armentrout, P. B.

    1990-11-01

    Guided ion beam mass spectrometry studies designed to measure the appearance energy for CF+3 from CF4 are reported. In contrast to a previous observation, we find that there is no flouride transfer equilibrium between CF+3. Rather, the thresholds for formation of CF+3 from reaction of ground state Kr+ (2P) with CF4 and from collision-induced dissociation of CF+3 by Xe are used to establish AE(CF+3/CF4).Both results are in good agreement although the former experiment yields a more precise value, namely 14.24 ± 0.07 eV.

  16. 一种仿252Cf中子源脉冲信号频谱分析的FPGA设计与实现%A Design and Realization of Simulated 252Cf Nuclear Pulse Spectrum Analysis System Based on FPGA

    Institute of Scientific and Technical Information of China (English)

    李鹏程; 魏彪

    2011-01-01

    从252Cf自发裂变中子源之裂变中子在时间分布上相互独立的基本原理出发,针对随机核信号在时间上呈泊松分布,在幅度上服从高斯分布的这一特征,开展了基于FPGA技术的仿252Cf中子源随机核信号产生及其频谱分析系统的研究.通过比较仿252Cf中子源核信号与核信号的功率谱趋势,验证了仿252Cf中子源随机信号产生机制的可靠性.研究表明,将FPGA技术运用仿核信号频谱分析是可行的,仿核随机信号的频谱分析研究工作为今后将此技术移植于核信号打下了基础.%From the basic principle of independent distribution on time of spontaneous fission neutrons source 252 Cf and according to the characteristics that nuclear random signal taking on Poisson distribution on time and Gaussian distribution on amplitude, do some researches on simulated 252Cf signal generator and its spectrum analysis based on FPCA. By comparing the power spectrum of simulated nuclear signal and nuclear signal verify that the simulation 252Cf neutron source random signal generation mechanism is reliable. The results show that using of FPCA technology on spectrum analysis of simulated nuclear signal can work, this paper have provided fundamental base for the further research that transplant the technology of spectrum analysis of simulated 252Cf source on 252Cf source random signal.

  17. Microscopic Calculations of 240Pu Fission

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W; Gogny, D

    2007-09-11

    Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.

  18. Material recognition using fission gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)], E-mail: giuseppe.viesti@pd.infn.it; Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2009-07-21

    Material recognition is studied by measuring the transmission spectrum of {sup 252}Cf fission gamma rays in the energy range E{sub {gamma}}=0.1-5.5 MeV for 0.1-MeV-wide energy bins through a number of elementary samples. Each transmitted spectrum is compared with a library of reference spectra for different elements providing the possibility of material identification. In case of elemental samples with known thickness, this procedure allows the identification of the sample Z with uncertainty typically lower than 3 Z-units over a wide range of elements. Applications to composite materials are also reported.

  19. Microscopic theory of nuclear fission: a review

    Science.gov (United States)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  20. Tunneling process in heavy-ion fusion and fission

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kondratyev, V.; Bonasera, A.

    1998-10-01

    We present a model towards the many-body description of sub-barrier fusion and spontaneous fission based on the semiclassical Vlasov equation and the Feynman path integral method. We define suitable collective variables from the Vlasov solution and use the imaginary time technique for the dynamics below the Coulomb barrier. (author)

  1. Fission and fusion scenarios for magnetic microswimmer clusters

    CERN Document Server

    Guzmán-Lastra, Francisca; Löwen, Hartmut

    2016-01-01

    Fission and fusion processes of particles clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found which depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethora of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria.

  2. Measurements of prompt fission gamma-rays and neutrons with lanthanide halide scintillation detectors

    CERN Document Server

    Oberstedt, A; Billnert, R; Borcea, R; Brys, T; Chaves, C; Gamboni, T; Geerts, W; Göök, A; Guerrero, C; Hambsch, F-J; Kis, Z; Martinez, T; Oberstedt, S; Szentmiklosi, L; Takács, K; Vivaldi, M

    2014-01-01

    Photons have been measured with lanthanide halide scintillation detectors in coincidence with fission fragments. Using the time-of-flight information, reactions from γ-rays and neutrons could easily be distinguished. In several experiments on $^{252}$Cf(sf), $^{235}$U(n$_{th}$,f) and $^{241}$Pu(n$_{th}$,f) prompt fission γ-ray spectra characteristics were determined with high precision and the results are presented here. Moreover, a measured prompt fission neutron spectrum for $^{235}$U(n$_{th}$,f) is shown in order to demonstrate a new detection technique.

  3. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  4. Importance of the neutrons kerma coefficient in the planning of Brachytherapy treatments with Cf-252 sources; Importancia del coeficiente de kerma de neutrones en la planeacion de tratamientos de Braquiterapia con fuentes de Cf-252

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.; Balcazar G, M. [ININ, 52045 Ocoyocac, Estado de Mexico (Mexico); Azorin N, J. [Universidad Autonoma Metropolitana, 09000 Mexico D.F. (Mexico); Francois L, J.L. [UNAM, 04500 Mexico D.F. (Mexico)]. e-mail: lpg@nuclear.inin.mx

    2006-07-01

    The Cf-252 is a fast neutrons emitting radioisotope by spontaneous fission that can be used as sealed source in medicine applications, industry and research. Commercially its offer sources of different sizes, compact and with a fast neutrons emission of the order of 10{sup 6} n/s-{mu}g and an energy spectra that presents respectively maxim and average energy in 2.1 MeV and 0.7 MeV. In medicine new applications are being developed for the treatment of patient with hypoxic and voluminous tumors, where the therapy with photons has not given positive results, as well as for the protocols of therapy treatment by boron neutron capture, where very small sources of Cf-252 will be used with the interstitial brachytherapy technique of high and low dose rate. In this work an analysis of how the small differences that exist in the elementary composition of 4 wicked tumors, 4 ICRU healthy tissues and 3 substitute materials of ICRU tissue used in dosimetry are presented, its generate changes in the neutrons kerma coefficient in function of the energy and consequently in the absorbed dose in the interval of 11 eV to 29 MeV. These differences can produce maximum variations of the neutron kerma coefficients ratio for E{sub n} > 1 keV of the one: 15% tumor/ICRU guest healthy tissue, 12% ICRU tumor/muscle, 12% ICRU healthy tissues ICRU/ICRU muscle, 22% substitutes tissue/tumor and 22% ICRU substitutes tissue/muscle. Also, it was found that the average value of the neutrons kerma coefficient for the 4 wicked tumors is from 6% to 7% smaller that the average value for the soft tissue in the interval energy of interest for therapy with fast neutrons with E{sub n} > 1 MeV. These results have a special importance during the planning process of brachytherapy treatments with sources of {sup 252}Cf, to optimize and to individualize the patients treatments. (Author)

  5. Cystic Fibrosis (CF): Chloride Sweat Test

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Cystic Fibrosis (CF) Chloride Sweat Test KidsHealth > For Parents > Cystic Fibrosis (CF) Chloride Sweat Test Print A A A ... It Is A chloride sweat test helps diagnose cystic fibrosis (CF) , an inherited disorder that makes kids sick ...

  6. General Description of Fission Observables: GEF Model Code

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.-H. [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Jurado, B., E-mail: jurado@cenbg.in2p3.fr [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Amouroux, C. [CEA, DSM-Saclay (France); Schmitt, C., E-mail: schmitt@ganil.fr [GANIL, Bd. Henri Becquerel, B.P. 55027, F-14076 Caen Cedex 05 (France)

    2016-01-15

    The GEF (“GEneral description of Fission observables”) model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  7. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    L Satpathy; S K Patra; R K Choudhury

    2008-01-01

    The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with = 154-172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving -process nucleosynthesis.

  8. Modernizing the Fission Basis

    Science.gov (United States)

    Tonchev, Anton; Henderson, Roger; Schunck, Nicolas; Sroyer, Mark; Vogt, Ramona

    2016-09-01

    In 1939, Niels Bohr and John Wheeler formulated a theory of neutron-induced nuclear fission based on the hypothesis of the compound nucleus. Their theory, the so-called ``Bohr hypothesis,'' is still at the heart of every theoretical fission model today and states that the decay of a compound nucleus for a given excitation energy, spin, and parity is independent of its formation. We propose the first experiment to validate to 1-2% absolute uncertainties the practical consequences of the Bohr hypothesis during induced nuclear fission. We will compare the fission product yields (FPYs) of the same 240Pu compound nucleus produced via two different reactions (i) n+239Pu and (ii) γ+240 Pu. These high-precision FPYs measurements will be extremely beneficial for our fundamental understanding of the nuclear fission process and nuclear reactions from first principles. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  9. Fission waves can oscillate

    CERN Document Server

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  10. Spontaneous pneumothorax

    Directory of Open Access Journals (Sweden)

    Davari R

    1996-07-01

    Full Text Available A case with bilateral spontaneous pneumothorax was presented. Etiology, mechanism, and treatment were discussed on the review of literature. Spontaneous Pneumothorax is a clinical entity resulting from a sudden non traumatic rupture of the lung. Biach reported in 1880 that 78% of 916 patients with spontaneous pneumothorax had tuberculosis. Kjergaard emphasized 1932 the primary importance of subpleural bleb disease. Currently the clinical spectrum of spontaneous pneumothorax seems to have entered a third era with the recognition of the interstitial lung disease and AIDS as a significant etiology. Standard treatment is including: observation, thoracocentesis, tube thoracostomy. Chemical pleurodesis, bullectomy or wedge resection of lung with pleural abrasion and occasionally pleurectomy. Little information has been reported regarding the efficacy of such treatment in spontaneous pneumothorax secondary to non bleb disease

  11. Fission Product Library and Resource

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  12. Fission modelling with FIFRELIN

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)

    2015-12-15

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for

  13. Fission modelling with FIFRELIN

    Science.gov (United States)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  14. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  15. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  16. Fission-track analysis of meteorites: Dating of the Marjalahti pallasite

    Energy Technology Data Exchange (ETDEWEB)

    Bondar, Yu.V. [Institute of Environmental Geochemistry, 34a Palladin ave., Kiev 03142 (Ukraine)]. E-mail: juliavad@yahoo.com; Perelygin, V.P. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2005-11-15

    The results of the Marjalahti pallasite fission-track age determination are presented. Thorough examination of fossil tracks in the phosphate (whitlockite) crystals coupled with U-content determination in whitlockites can make it possible to estimate the contributions of all possible track sources to the total track density and to calculate a model fission-track age. It is found that whitlockite crystals of the Marjalahti pallasite contain fossil tracks due to galactic cosmic rays (VH, VVH nuclei); fission of U and Th induced by cosmic rays; spontaneous fission of {sup 238}U; and spontaneous fission of extinct, short-lived {sup 244}Pu present in significant quantities in the early solar system. A great track density attributed to the extinct {sup 244}Pu testifies to the high fission-track age. The model fission-track ages of (4.31+/-0.02)x10{sup 9}yr for the Marjalahti pallasite are calculated. Petrographic studies allow us to interpret the fission-track age as the time of the last shock/thermal event in the cosmic history of the pallasite.

  17. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Science.gov (United States)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  18. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Energy Technology Data Exchange (ETDEWEB)

    Farget, F.; Schmidt, K.H.; Clement, E.; Delaune, O.; Derkx, X.; Dijon, A.; Golabek, C.; Lemasson, A.; Roger, T.; Schmitt, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Caamano, M.; Ramos, D.; Benlliure, J.; Cortina, D.; Fernandez-Dominguez, B.; Paradela, C. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Rodriguez-Tajes, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, L. [Universite Paris-Sud 11, CNRS/IN2P3, Institut de Physique Nucleaire, Orsay (France); Casarejos, E. [Universidade de Vigo, Vigo (Spain); Dore, D.; Salsac, M.D. [Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France); Gaudefroy, L. [CEA DAM Ile-de-France, BP 12, Bruyeres-le-Chatel (France); Heinz, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Jurado, B. [Universite Bordeaux, CENBG, UMR 5797 CNRS/IN2P3, Gradignan (France)

    2015-12-15

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus {sup 250}Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)

  19. Trifluoromethylation of perfluorinated diacylfluorides: synthesis of the diketone CF3C(O)CF2C(O)CF3 and of new perfluorinated diol (CF3)2C(OH)CF2C(OH)(CF3)2.

    Science.gov (United States)

    Corti, Sandra; Pennington, William T; DesMarteau, Darryl D

    2013-01-01

    Perfluoromalonyl difluoride reacts with TMS-CF3 (1:1) in the presence of KF to give the new diketone CF2(C(O)CF3)2. A large excess (5:1) of TMS-CF3 results in the presumed potassium dialkoxide [(CF3)2COK]2CF2 which yields the 1,3-ditertiarydiol [(CF3)2C(OH)]2CF2 on reaction with H2SO4.

  20. Scandinavian Nurse Specialist Group/Cystic Fibrosis (SNSG/CF)

    DEFF Research Database (Denmark)

    Bregnballe, Vibeke; Erwander, Inger

    2006-01-01

    /CF comprises one CF nurse from each of the centers. The board meets twice a year to plan workshops and courses. SNSG/CF is part of the International Nurse Specialist Group/Cystic Fibrosis (INSG/CF). Results: Within the framework of SNSG/CF a 2-day workshop is held every second year for approximately 40......Aims: SNSG/CF was established to stimulate and improve cooperation between CF nurses from Scandinavian CF centers. Methods: SNSG/CF includes all the CF centers in Norway (Oslo and Bergen), Sweden (Stockholm, Gothenburg, Lund and Uppsala) and Denmark (Copenhagen and Aarhus). The board of SNSG...

  1. Spontaneous emission of heavy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M. (Central Inst. of Physics, Bucharest (Romania)); Sandulescu, A. (Joint Inst. for Nuclear Research, Dubna (USSR)); Greiner, W. (Frankfurt Univ. (Germany, F.R.))

    1984-08-01

    The lifetimes of some heavy nuclei relative to the spontaneous emission of various clusters heavier than the alpha particle are estimated with a model extended from the fission theory of alpha decay, showing that this phenomenon is a new manifestation of the nuclear shell structure. A greater probability is obtained for parent-heavy-cluster combinations leading to a magic or almost magic daughter nucleus. The analytical formula obtained allows the handling of a large number of cases to search for new kinds of radioactivities.

  2. Fission modes of mercury isotopes

    CERN Document Server

    Warda, M; Nazarewicz, W

    2012-01-01

    Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asymmetric fission in $^{180}$Hg [1] have stimulated renewed interest in the mechanism of fission in heavy nuclei. Here we study fission modes and fusion valleys in $^{180}$Hg and $^{198}$Hg using the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. We show that the observed transition from asymmetric fission in $^{180}$Hg towards more symmetric distribution of fission fragments in $^{198}$Hg can be explained in terms of competing fission modes of different geometries that are governed by shell effects in pre-scission configurations. The density distributions at scission configurations are studied and related to the experimentally observed mass splits.

  3. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Santanu Pal

    2015-08-01

    It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.

  4. Cold fission description with constant and varying mass asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, S.B.; Rodriguez, O.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil); Garcia, F.; Guzman, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1998-01-01

    Different description for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the pre-scission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A > 200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life-values and mass yield of {sup 234} U cold fission are satisfactorily reproduced. (author) 39 refs., 6 figs., 2 tabs.; e-mail: telo at ird.gov.br

  5. Fission of super-heavy nuclei explored with Skyrme forces

    CERN Document Server

    Schindzielorz, N; Klüpfel, P; Reinhard, P -G; Hager, G

    2010-01-01

    We present a large scale survey of life-times for spontaneous fission in the regime of super-heavy elements (SHE), i.e. nuclei with Z=104-122. This is done on the basis of the Skyrme-Hartree-Fock model. The axially symmetric fission path is computed using a quadrupole constraint. Self-consistent cranking is used for the collective masses and associated quantum corrections. The actual tunneling probability is estimated by the WKB approximation. Three typical Skyrme forces are used to explore the sensitivity of the results. Benchmarks in the regime Z=104-108 show an acceptable agreement. The general systematics reflects nicely the islands of shell stabilization and the crossover from $\\alpha$-decay to fission for the decay chains from the region of Z/N=118/176.

  6. Advanced model for the prediction of the neutron-rich fission product yields

    Directory of Open Access Journals (Sweden)

    Rubchenya V. A.

    2013-12-01

    Full Text Available The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP.

  7. Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    Science.gov (United States)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2016-01-01

    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.

  8. Nonaxial hexadecapole deformation effects on the fission barrier

    Science.gov (United States)

    Kardan, A.; Nejati, S.

    2016-06-01

    Fission barrier of the heavy nucleus 250Cf is analyzed in a multi-dimensional deformation space. This space includes two quadrupole (ɛ2,γ) and three hexadecapole deformation (ɛ40,ɛ42,ɛ44) parameters. The analysis is performed within an unpaired macroscopic-microscopic approach. Special attention is given to the effects of the axial and non-axial hexadecapole deformation shapes. It is found that the inclusion of the nonaxial hexadecapole shapes does not change the fission barrier heights, so it should be sufficient to minimize the energy in only one degree of freedom in the hexadecapole space ɛ4. The role of hexadecapole deformation parameters is also discussed on the Lublin-Strasbourg drop (LSD) macroscopic and the Strutinsky shell energies.

  9. Etchability of Latent Fission Fragment Tracks in CR-39

    Institute of Scientific and Technical Information of China (English)

    Mukhtar Ahmed Rana

    2007-01-01

    We report the chemical etching behaviour of the CR-39 polymer detector exposed to fission fragments of 252 Cf describing etchability of latent tracks, which are like nanocylinders. The fission fragment exposed detectors were etched in 1-7N NaOH water solutions at temperatures 50-80°C for 45 min in the case of track length and 180min in the case of track diameter measurements. The reduced etch rate S (called here etchability) is determined using experimental results for all etching conditions and the etching conditions with the highest reduced etch are obtained. Physics and energetics of bulk and track etching are discussed. Possible effects causing spurious changes in determination of activation energy of etching are investigated.

  10. Theoretical insight into OH- and Cl-initiated oxidation of CF3OCH(CF3)2 and CF3OCF2CF2H & fate of CF3OC(X•)(CF3)2 and CF3OCF2CF2X• radicals (X=O, O2)

    Science.gov (United States)

    Bai, Feng-Yang; Ma, Yuan; Lv, Shuang; Pan, Xiu-Mei; Jia, Xiu-Juan

    2017-01-01

    In this study, the mechanistic and kinetic analysis for reactions of CF3OCH(CF3)2 and CF3OCF2CF2H with OH radicals and Cl atoms have been performed at the CCSD(T)//B3LYP/6-311++G(d,p) level. Kinetic isotope effects for reactions CF3OCH(CF3)2/CF3OCD(CF3)2 and CF3OCF2CF2H/CF3OCF2CF2D with OH and Cl were estimated so as to provide the theoretical estimation for future laboratory investigation. All rate constants, computed by canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT), are in reasonable agreement with the limited experimental data. Standard enthalpies of formation for the species were also calculated. Atmospheric lifetime and global warming potentials (GWPs) of the reaction species were estimated, the large lifetimes and GWPs show that the environmental impact of them cannot be ignored. The organic nitrates can be produced by the further oxidation of CF3OC(•)(CF3)2 and CF3OCF2CF2• in the presence of O2 and NO. The subsequent decomposition pathways of CF3OC(O•)(CF3)2 and CF3OCF2CF2O• radicals were studied in detail. The derived Arrhenius expressions for the rate coefficients over 230–350 K are: k T(1) = 5.00 × 10‑24T3.57 exp(‑849.73/T), k T(2) = 1.79 × 10‑24T4.84 exp(‑4262.65/T), kT(3) = 1.94 × 10‑24 T4.18 exp(‑884.26/T), and k T(4) = 9.44 × 10‑28T5.25 exp(‑913.45/T) cm3 molecule‑1 s‑1.

  11. Spatial- and Time-Correlated Detection of Fission Fragments

    Directory of Open Access Journals (Sweden)

    Platkevic M.

    2012-02-01

    Full Text Available With the goal to measure angular correlations of fission fragments in rare fission decay (e.g. ternary and quaternary fission, a multi-detector coincidence system based on two and up to four position sensitive pixel detectors Timepix has been built. In addition to the high granularity, wide dynamic range and per pixel signal threshold, these devices are equipped with per pixel energy and time sensitivity providing more information (position, energy, time, enhances particle-type identification and selectivity of event-by-event detection. Operation of the device with the integrated USB 2.0 based readout interface FITPix and the control and data acquisition software tool Pixelman enables online visualization and flexible/adjustable operation for a different type of experiments. Spatially correlated fission fragments can be thus registered in coincidence. Similarly triggered measurements are performed using an integrated spectrometric module with analogue signal chain electronics. The current status of development together with demonstration of the technique with a 252Cf source is presented.

  12. Spontaneous Recovery

    Science.gov (United States)

    Rescorla, Robert A.

    2004-01-01

    Spontaneous recovery from extinction is one of the most basic phenomena of Pavlovian conditioning. Although it can be studied by using a variety of designs, some procedures are better than others for identifying the involvement of underlying learning processes. A wide range of different learning mechanisms has been suggested as being engaged by…

  13. Spontaneous deregulation

    NARCIS (Netherlands)

    Edelman, Benjamin; Geradin, Damien

    2016-01-01

    Platform businesses such as Airbnb and Uber have risen to success partly by sidestepping laws and regulations that encumber their traditional competitors. Such rule flouting is what the authors call “spontaneous private deregulation,” and it’s happening in a growing number of industries. The authors

  14. Dynamical simulation of the fission process and anisotropy of the fission fragment angular distributions of excited nuclei produced in fusion reactions

    Science.gov (United States)

    Eslamizadeh, H.

    2016-10-01

    Abstract. A stochastic approach based on four-dimensional Langevin equations was applied to calculate the anisotropy of fission fragment angular distributions, average prescission neutron multiplicity, and the fission probability in a wide range of fissile parameters for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf produced in fusion reactions. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis K were considered in the four-dimensional dynamical model. In the dynamical calculations, nuclear dissipation was generated through the chaos-weighted wall and window friction formula. Furthermore, in the dynamical calculations the dissipation coefficient of K ,γk was considered as a free parameter, and its magnitude inferred by fitting measured data on the anisotropy of fission fragment angular distributions for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf. Comparison of the calculated results for the anisotropy of fission fragment angular distributions with the experimental data showed that the results of the calculations are in good agreement with the experimental data by using values of the dissipation coefficient of K equal to (0.185-0.205), (0.175-0.192), (0.077-0.090), and (0.075-0.085) (MeVzs ) -1 /2 for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf, respectively. It was also shown that the influence of the dissipation coefficient of K on the results of the calculations of the prescission neutron multiplicity and fission probability is small.

  15. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  16. Hidden systematics of fission channels

    Directory of Open Access Journals (Sweden)

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy

  17. Modification of apparent fission yields by Chemical Fractionation following Fission (CFF)

    Science.gov (United States)

    Hohenberg, Charles; Meshik, Alex

    2008-04-01

    Grain-by-grain studies of the 2 billion year old Oklo natural reactor, using laser micro-extraction^1,2, yield detailed information about Oklo, a water-moderated pulsed reactor, cycle times, total neutron fluence and duration, but it also demonstrates Chemical Fractionation following Fission. In the CFF process, members of an isobaric yield chain with long half-lives are subject to migration before decay can occur. Of particular interest is the 129 isobar where 17 million ^129I can migrate out of the host grain before decay, and iodine compounds are water soluble. This is amply demonstated by the variation of Xe spectra between micron-sized uranium-bearing minerals and adjacent uranium-free minerals. Fission 129 yields for the spontaneous fission of ^238U generally come from measured ^129Xe in pitchblend^2, ores emplaced by aqueous activity, and are incorrect due to the CFF process. ^238U yields for the 131 and 129 chains, reported in Hyde^3, as 0.455 +- .02 and < 0.012, respectively, the latter being anomalously low. ^1A Meshik, C Hohenberg and O Pravdivtesva, PRL 93, 182302 (2004); A Meshik Sci. Am. Nov (2005), 55; ^2E K Hyde, Nucl Prop of Heavy Elements III (1964).

  18. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  19. Energy from nuclear fission(*

    Directory of Open Access Journals (Sweden)

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  20. Membrane biology: fission behind BARs.

    Science.gov (United States)

    Haucke, Volker

    2012-06-05

    Membrane bending is accomplished in part by amphipathic helix insertion into the bilayer and the assembly of BAR domain scaffolds preparing the membrane for fission. Two recent studies highlight the roles of amphipathic helices and BAR scaffolds in membrane fission and establish the structural basis of membrane bending by the N-BAR protein endophilin.

  1. Fission modes in charged-particle induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Matthies, A.; Kotte, R.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1990-12-01

    The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding {sup 232}Th and {sup 238}U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy. (orig.).

  2. Measurement of the energy spectra of fission fragments using nuclear track detectors and digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Guillermo; Golzarri, Jose I. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, Mexico D.F. 01000 (Mexico); Castano, Victor M., E-mail: castano@fata.unam.m [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Boulevard Juriquilla 3001, Santiago de Queretaro, Queretaro 76230 (Mexico)

    2010-08-15

    Energy spectra of fission fragments were determined using a Nuclear Track Methodology (NTM) supported by digital image analysis and numerical data processing using a standard personal computer. The analysis of a californium ({sup 252}Cf) spectrum with this approach shows improvement compared with the values reported previously using the standard procedure, in terms of resolution and accuracy. This new method adds full automation to the technical advantages and cost effectiveness of an NTM.

  3. Personal experiences of cystic fibrosis (CF) carrier couples prospectively identified in CF families

    NARCIS (Netherlands)

    Henneman, L; Kooij, L; Bouman, K; ten Kate, LP

    2002-01-01

    This qualitative study explores the experiences of cystic fibrosis (CF) carrier couples, prospectively identified in CF families, and the impact of the resulting genetic risk on reproductive behavior. Of the 12 couples identified until 1997, seven couples participated in semistructured interviews an

  4. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  5. Intrinsic energy partition in fission

    Directory of Open Access Journals (Sweden)

    Mirea M.

    2013-03-01

    Full Text Available The intrinsic energy partition between two complementary fission fragments is investigated microscopically. The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time-dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the other separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The excitation energy in a wide distribution of fission fragments is calculated for the 234U parent nucleus.

  6. The Cf-4 and Cf-9 resistance genes against Cladosporium fulvum are conserved in wild tomato species

    NARCIS (Netherlands)

    Kruijt, M.; Kip, D.J.; Joosten, M.H.A.J.; Brandwagt, B.F.; Wit, de P.J.G.M.

    2005-01-01

    The Cf-4 and Cf-9 genes originate from the wild tomato species Lycopersicon hirsutum and L. pimpinellifolium and confer resistance to strains of the leaf mold fungus Cladosporium fulvum that secrete the Avr4 and Avr9 elicitor proteins, respectively. Homologs of Cf-4 and Cf-9 (Hcr9s) are located in s

  7. Experimental study of fission process by fragment-neutron correlation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kanno, Ikuo; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan). Faculty of Engineering

    1997-07-01

    Fragment-neutron correlation measurement of {sup 235}U(n{sub th}, f) was carried out. The obtained results showed more statistical accuracy than that of reported thermal neutron reaction. Experimental results and it`s analysis made clear the following facts. The minimum values of <{eta}> (m*) are shown at about 90 and 145 {mu} and <{eta}> (m*) showed the symmetrical form with an axis of symmetrical fission. This tendency is same as the distribution of {sup 252}Cf(s.f). -dV/dTKE(m*) indicates the saw-teethed distribution as same as <{nu}>(m*). The distribution seems depend on stiffness of fission fragment affected by the shell effect. The level density parameter a(m*) of fission fragment obtained from {sup 235}U(n{sub th}, f) expresses the saw-teethed distribution as same as that of {sup 252}Cf(s.f). This distribution can be explained by the empirical equation under consideration of the fission fragment depending on the shell effect and the collective motion. (S.Y.)

  8. {sup 252}Cf plasma desorption and laser desorption mass spectrometry for the determination of molecular weight distribution of coal derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.R.; Bartle, K.D.; Ross, A.B.; Herod, A.A.; Kandiyoti, R.; Larsen, J.W. [University of Leeds, Leeds (United Kingdom). School of Chemistry

    1999-11-01

    A detailed knowledge of the molecular mass (MM) distribution in coal and its derived products is essential for a fundamental understanding of coal structure, and of the processes occurring during coal conversion. Fractionation using size exclusion chromatography (s.e.c.) using N-methyl-2-pyrrolidinone as the mobile phase has been applied to such materials and has provided improved MM distributions. Absolute calibration has been provided using matrix assisted laser desorption ionisation mass spectrometry (MAl.d.I.-m.s.). An alternative method of volatilising and ionising large molecules for mass spectrometry (m.s.) is {sup 252}Cf plasma desorption ({sup 252}Cf p.d.-m.s.). This involves the use of energetic fission fragments from the decay of {sup 252}Cf and produces mass spectra consisting predominantly of molecular ions from a range of polymers and biomolecules. This has been used by other workers to determine the molecular weight distribution of heavy distillation residues obtained from coal liquefaction processes either unfractionated or fractionated into broad fractions. Generally, a good agreement was obtained between values of MM determined by {sup 252}Cf p.d.-m.s. and s.e.c. A comparison is reported of MM distribution determined by {sup 252}Cf p.d.-m.s. and laser desorption mass spectrometry (l.d.-m.s.) for narrower fractions separated by s.e.c. from a coal tar pitch. 19 refs., 4 figs., 1 tab.

  9. Simulated fissioning of uranium and testing of the fission-track dating method

    Science.gov (United States)

    McGee, V.E.; Johnson, N.M.; Naeser, C.W.

    1985-01-01

    A computer program (FTD-SIM) faithfully simulates the fissioning of 238U with time and 235U with neutron dose. The simulation is based on first principles of physics where the fissioning of 238U with the flux of time is described by Ns = ??f 238Ut and the fissioning of 235U with the fluence of neutrons is described by Ni = ??235U??. The Poisson law is used to set the stochastic variation of fissioning within the uranium population. The life history of a given crystal can thus be traced under an infinite variety of age and irradiation conditions. A single dating attempt or up to 500 dating attempts on a given crystal population can be simulated by specifying the age of the crystal population, the size and variation in the areas to be counted, the amount and distribution of uranium, the neutron dose to be used and its variation, and the desired ratio of 238U to 235U. A variety of probability distributions can be applied to uranium and counting-area. The Price and Walker age equation is used to estimate age. The output of FTD-SIM includes the tabulated results of each individual dating attempt (sample) on demand and/or the summary statistics and histograms for multiple dating attempts (samples) including the sampling age. An analysis of the results from FTD-SIM shows that: (1) The external detector method is intrinsically more precise than the population method. (2) For the external detector method a correlation between spontaneous track count, Ns, and induced track count, Ni, results when the population of grains has a stochastic uranium content and/or when the counting areas between grains are stochastic. For the population method no correlation can exist. (3) In the external detector method the sampling distribution of age is independent of the number of grains counted. In the population method the sampling distribution of age is highly dependent on the number of grains counted. (4) Grains with zero-track counts, either in Ns or Ni, are in integral part of

  10. Microscopic description of fission in neutron-rich radium isotopes with the Gogny energy density functional

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain)

    2016-01-15

    Mean-field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144 ≤ N ≤ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well-developed third minimum along the fission paths of Ra nuclei is analyzed in terms of the energetics of the ''fragments'' defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and α-decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N = 164 with a steady increase that makes heavier neutron-rich Ra isotopes stable against fission, diminishing the importance of fission recycling in the r-process. (orig.)

  11. Advanced Space Fission Propulsion Systems

    Science.gov (United States)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  12. RAPID QUANTITATION OF URANIUM FROM MIXED FISSION PRODUCT SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Haney, Morgan M.; Seiner, Brienne N.; Finn, Erin C.; Friese, Judah I.

    2016-03-09

    Chemical similarities between U(VI) and Mo(VI) create challenges for separation and quantification of uranium from a mixed fission product sample. The purpose of this work was to demonstrate the feasibility of using Eichrom’s® UTEVA resin in addition to a tellurium spontaneous deposition to improve the quantitation of 235U using gamma spectroscopy. The optimized method demonstrated a consistent chemical yield of 74 ± 3 % for uranium. This procedure was evaluated using 1.41x1012 fissions produced from an irradiated HEU sample. The uranium was isotopically yielded by HPGe, and the minimum detectable activity (MDA) determined from the gamma spectra. The MDA for 235U, 237U, and 238U was reduced by a factor of two. The chemical isolation of uranium was successfully achieved in less than four hours, with a separation factor of 1.41x105 from molybdenum.

  13. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  14. Scintillation properties of N2 and CF4 and performances of a scintillating ionization chamber

    Science.gov (United States)

    Lehaut, G.; Salvador, S.; Fontbonne, J.-M.; Lecolley, F.-R.; Perronnel, J.; Vandamme, Ch.

    2015-10-01

    In this work, we studied the emission yields, decay times and coincidence resolving times (CRT) of two gases, nitrogen (N2) and tetrafluoromethane (CF4), used for particle detection in the context of fission products measurement. The set-up was made of an ionization chamber and two photomultiplier tubes (PMTs) placed front-to-front on each side of the active zone of the chamber. Using the photomultiplier tubes, the number of photoelectrons (phe) converted at the photocathodes from the scintillation processes in each gas was quantified and the scintillation time spectra were recorded. A scintillation emission yield of 24 phe MeV-1 with a decay time of τd = 2.5 ns in N2, and 225 phe MeV-1 with τd = 6.2 ns for CF4, has been measured. With our set-up, the coincidence resolving time (σ values) between the two PMTs have been measured using alpha particles at 1.4 ns and 0.34 ns for N2 and CF4, respectively.

  15. Duodenal Intracellular Bicarbonate and the 'CF Paradox'

    Directory of Open Access Journals (Sweden)

    Kaunitz JD

    2001-07-01

    Full Text Available HCO(3(- secretion, which is believed to neutralize acid within the mucus gel, is the most studied duodenal defense mechanism. In general, HCO(3(- secretion rate and mucosal injury susceptibility correlate closely. Recent studies suggest that luminal acid can lower intracellular pH (pH(i of duodenal epithelial cells and that HCO(3(- secretion is unchanged during acid stress. Furthermore, peptic ulcers are rare in cystic fibrosis (CF, although, with impaired HCO(3(- secretion, increased ulcer prevalence is predicted, giving rise to the 'CF Paradox'. We thus tested the hypothesis that duodenal epithelial cell protection occurs as the result of pH(i regulation rather than by neutralization of acid by HCO(3(- in the pre-epithelial mucus. Cellular acidification during luminal acid perfusion, and unchanged HCO(3(- secretion during acid stress are inconsistent with pre-epithelial acid neutralization by secreted HCO(3(-. Furthermore, inhibition of HCO(3(- secretion by 5-nitro-2-(3-phenylpropylamino benzoic acid (NPPB despite preservation of pH(i and protection from acid-induced injury further question the pre-epithelial acid neutralization hypothesis. This decoupling of HCO(3(- secretion and injury susceptibility by NPPB (and possibly by CF further suggest that cellular buffering, rather than HCO(3(- exit into the mucus, is of primary importance for duodenal mucosal protection, and may account for the lack of peptic ulceration in CF patients.

  16. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    Directory of Open Access Journals (Sweden)

    Blanc A.

    2013-12-01

    Full Text Available One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL campaign. In the present work, the EXILL setup and performance will be presented.

  17. A CF4 based positron trap

    Science.gov (United States)

    Marjanović, Srdjan; Banković, Ana; Cassidy, David; Cooper, Ben; Deller, Adam; Dujko, Saša; Petrović, Zoran Lj

    2016-11-01

    All buffer-gas positron traps in use today rely on N2 as the primary trapping gas due to its conveniently placed {{{a}}}1{{\\Pi }} electronic excitation cross-section. The energy loss per excitation in this process is 8.5 eV, which is sufficient to capture positrons from low-energy moderated beams into a Penning-trap configuration of electric and magnetic fields. However, the energy range over which this cross-section is accessible overlaps with that for positronium (Ps) formation, resulting in inevitable losses and setting an intrinsic upper limit on the overall trapping efficiency of ∼25%. In this paper we present a numerical simulation of a device that uses CF4 as the primary trapping gas, exploiting vibrational excitation as the main inelastic capture process. The threshold for such excitations is far below that for Ps formation and hence, in principle, a CF4 trap can be highly efficient; our simulations indicate that it may be possible to achieve trapping efficiencies as high as 90%. We also report the results of an attempt to re-purpose an existing two-stage N2-based buffer-gas positron trap. Operating the device using CF4 proved unsuccessful, which we attribute to back scattering and expansion of the positron beam following interactions with the CF4 gas, and an unfavourably broad longitudinal beam energy spread arising from the magnetic field differential between the source and trap regions. The observed performance was broadly consistent with subsequent simulations that included parameters specific to the test system, and we outline the modifications that would be required to realise efficient positron trapping with CF4. However, additional losses appear to be present which require further investigation through both simulation and experiment.

  18. Atmospheric chemistry of 4 : 2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH): Products and mechanism of Cl atom initiated oxidation

    DEFF Research Database (Denmark)

    Hurley, MD; Ball, JC; Wallington, TJ;

    2004-01-01

    Smog chamber/FTIR techniques were used to study the products and mechanism of the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH) in 700 Torr of N-2/O-2 diluent at 296 K. CF3(CF2)(3)CH2CHO is the sole primary oxidation product. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH, an...

  19. Assessment of fissionable material behaviour in fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cabellos, O., E-mail: oscar.cabellos@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Fernandez, P. [Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain)

    2010-06-21

    A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.

  20. Fission gas in thoria

    Science.gov (United States)

    Kuganathan, Navaratnarajah; Ghosh, Partha S.; Galvin, Conor O. T.; Arya, Ashok K.; Dutta, Bijon K.; Dey, Gautam K.; Grimes, Robin W.

    2017-03-01

    The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO2 we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO2 is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO2 is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO2-x the most favourable solution equilibrium site is the NTV1 while in ThO2 it is the DV.

  1. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  2. Dating by fission track method: study of neutron dosimetry with natural uranium thin films; Datacao com o metodo dos tracos de fissao: estudo da dosimetria de neutrons com filmes finos de uranio natural

    Energy Technology Data Exchange (ETDEWEB)

    Iunes, P.J.

    1990-06-01

    Fission track dating is described, focalizing the problem of the decay constant for spontaneous fission of {sup 238} U and the use of neutron dosimetry in fission track analysis. Experimental procedures using thin films of natural uranium as neutron dosimeters and its results are presented. The author shows a intercomparison between different thin films and between the dosimetry with thin film and other dosimetries. (M.V.M.). 52 refs, 12 figs, 9 tabs.

  3. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  4. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  5. Photoionisation study of Xe.CF4 and Kr.CF4 van-der-Waals molecules.

    Science.gov (United States)

    Alekseev, V A; Garcia, G A; Kevorkyants, R; Nahon, L

    2016-05-14

    We report on photoionization studies of Xe.CF4 and Kr.CF4 van-der-Waals complexes produced in a supersonic expansion and detected using synchrotron radiation and photoelectron-photoion coincidence techniques. The ionization potential of CF4 is larger than those of the Xe and Kr atoms and the ground state of the Rg.CF4 (+) ion correlates with Rg(+) ((2)P3/2) + CF4. The onset of the Rg.CF4 (+) signals was found to be only ∼0.2 eV below the Rg ionization potential. In agreement with experiment, complementary ab initio calculations show that vertical transitions originating from the potential minimum of the ground state of Rg.CF4 terminate at a part of the potential energy surfaces of Rg.CF4 (+), which are approximately 0.05 eV below the Rg(+) ((2)P3/2) + CF4 dissociation limit. In contrast to the neutral complexes, which are most stable in the face geometry, for the Rg.CF4 (+) ions, the calculations show that the minimum of the potential energy surface is in the vertex geometry. Experiments which have been performed only with Xe.CF4 revealed no Xe.CF4 (+) signal above the first ionization threshold of Xe, suggesting that the Rg.CF4 (+) ions are not stable above the first dissociation limit.

  6. Fission prompt gamma-ray multiplicity distribution measurements and simulations at DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Chyzh, A; Wu, C Y; Ullmann, J; Jandel, M; Bredeweg, T; Couture, A; Norman, E

    2010-08-24

    The nearly energy independence of the DANCE efficiency and multiplicity response to {gamma} rays makes it possible to measure the prompt {gamma}-ray multiplicity distribution in fission. We demonstrate this unique capability of DANCE through the comparison of {gamma}-ray energy and multiplicity distribution between the measurement and numerical simulation for three radioactive sources {sup 22}Na, {sup 60}Co, and {sup 88}Y. The prospect for measuring the {gamma}-ray multiplicity distribution for both spontaneous and neutron-induced fission is discussed.

  7. Monte-Carlo Hauser-Feshbach simulations of prompt fission gamma-ray properties

    Science.gov (United States)

    Stetcu, Ionel; Talou, Patrick; Kawano, Toshihiko; Jandel, Marian

    2014-09-01

    Properties of prompt fission neutrons and γ rays, emitted before the weak decays of the fission fragments toward stability, are important for both nuclear technologies and a better understanding of the fission process. In the present work, we use the Hauser-Feshbach model to simulate the de-excitation of the fully accelerated fission fragments treated as compound nuclei. Our Monte-Carlo implementation of the Hauser-Feshbach statistical model, which takes into account the competition between the neutron and γ emissions, allows the description of both average quantities, like in the Los Alamos model, and correlations between the emitted particles. Our simulations will be compared against available experimental data and current evaluations. In particular, we will compare our average γ-ray spectrum with recent measurements at the research reactor KFKI in Budapest for the 235U(nth , f) and 252Cf(sf) reactions, as well as multiplicity-dependent distributions obtained at the DANCE facility at LANSCE. Properties of prompt fission neutrons and γ rays, emitted before the weak decays of the fission fragments toward stability, are important for both nuclear technologies and a better understanding of the fission process. In the present work, we use the Hauser-Feshbach model to simulate the de-excitation of the fully accelerated fission fragments treated as compound nuclei. Our Monte-Carlo implementation of the Hauser-Feshbach statistical model, which takes into account the competition between the neutron and γ emissions, allows the description of both average quantities, like in the Los Alamos model, and correlations between the emitted particles. Our simulations will be compared against available experimental data and current evaluations. In particular, we will compare our average γ-ray spectrum with recent measurements at the research reactor KFKI in Budapest for the 235U(nth , f) and 252Cf(sf) reactions, as well as multiplicity-dependent distributions obtained at the

  8. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  9. Identification and systematical studies of the electron-capture delayed fission (ECDF) in the lead region

    CERN Multimedia

    Pauwels, D B; Lane, J

    2008-01-01

    In our recent experiment (March 2007) at the velocity filter SHIP(GSI) we observed the electron-capture delayed fission of the odd-odd isotope $^{194}$At. This is the first unambiguous identification of this phenomenon in the very neutron-deficient nuclei in the vicinity of the proton shell closure at Z=82. In addition, the total kinetic energy (TKE) for the daughter nuclide $^{194}$Po was measured, despite the fact that this isotope does not decay via spontaneous fission. Semi-empirical analysis of the electron-capture Q$_{EC}$ values and fission barriers B$_{f}$ shows that a relatively broad island of ECDF must exist in this region of the Nuclide Chart, with some of the nuclei having unusually high ECDF probabilities. Therefore, this Proposal is intended to initiate the systematic identification and study of $\\beta$-delayed fission at ISOLDE in the very neutron-deficient lead region. Our aim is to provide unique low-energy fission data (e.g. probabilities, TKE release, fission barriers and their isospin dep...

  10. Investigation of the atomic emission spectroscopy of F atoms and CF2 molecules in CF4 plasma processing

    Science.gov (United States)

    Jin, Huiliang; Li, Jie; Tang, Caixue; Deng, Wenhui; Chen, Xianhua

    2016-10-01

    The surface chemistry reaction involved in the processing of Atmospheric Pressure Plasma Jet (APPJ) produced from CF4 precursor has been explored. The atomic emission spectroscopy of F atoms and CF2 molecules was investigated as they contribute to substrate etching and FC film formation during APPJ processing. Optical emission spectroscopy (OES) spectra were acquired for CF4 plasma, relative concentrations of excited state species of F atoms and CF2 molecules were also dependent upon plasma parameters. The densities of F atoms increased dramatically with increasing applied RF power, whereas CF2 molecules decreased monotonically over the same power range, the subsequent electron impacted decomposition of plasma species after CF4 precursor fragmentation. The spectrum of the F atoms and CF2 molecules fallowed the same tendency with the increasing concentration of gas CF4, reaching the maximum at the 20sccm and 15sccm respectively, and then the emission intensity of reactive atoms decreased with more CF4 molecules participating. Addition certain amount O2 into CF4 plasma resulted in promoting CF4 dissociation, O2 can easily react with the dissociation product of CF2 molecules, which inhibit the compound of the F atoms, so with the increasing concentration of O2, the concentration of the CF2 molecules decreased and the emission intensities of F atoms showed the maximum at the O2/CF4 ratio of 20%. These results have led to the development of a scheme that illustrates the mechanisms of surface chemistry reaction and the affection of plasma parameters in CF4 plasma systems with respect to F and CF2 gas-phase species.

  11. The role of off-line mass spectrometry in nuclear fission.

    Science.gov (United States)

    De Laeter, J R

    1996-01-01

    The role of mass spectrometry in nuclear fission has been invaluable since 1940, when A. O. C. Nier separated microgram quantities of (235) U from (238) U, using a gas source mass spectrometer. This experiment enabled the fissionable nature of (235) U to be established. During the Manhattan Project, the mass spectrometer was used to measure the isotope abundances of uranium after processing in various separation systems, in monitoring the composition of the gaseous products in the Oak Ridge Diffusion Plant, and as a helium leak detector. Following the construction of the first reactor at the University of Chicago, it was necessary to unravel the nuclear systematics of the various fission products produced in the fission process. Off-line mass spectrometry was able to identify stable and long-lived isotopes produced in fission, but more importantly, was used in numerous studies of the distribution of mass of the cumulative fission yields. Improvements in sensitivity enabled off-line mass spectrometric studies to identify fine structure in the mass-yield curve and, hence, demonstrate the importance of shell structure in nuclear fission. Solid-source mass spectrometry was also able to measure the cumulative fission yields in the valley of symmetry in the mass-yield curve, and enabled spontaneous fission yields to be quantified. Apart from the accurate measurement of abundances, the stable isotope mass spectrometric technique has been invaluable in establishing absolute cumulative fission yields for many isotopes making up the mass-yield distribution curve for a variety of fissile nuclides. Extensive mass spectrometric studies of noble gases in primitive meteorites revealed the presence of fission products from the now extinct nuclide (244) Pu, and have eliminated the possibility of fission products from a super-heavy nuclide contributing to isotopic anomalies in meteoritic material. Numerous mass spectrometric studies of the isotopic and elemental abundances of

  12. Computer analysis of nuclear track emulsion exposed to thermal neutrons and Cf source

    Science.gov (United States)

    Mamatkulov, K. Z.; Ambřozová, I.; Artemenkov, D. A.; Bradnova, V.; Kamanin, D. V.; Kattabekov, R. R.; Majling, L.; Marey, A.; Ploc, O.; Rusakova, V. V.; Stanoeva, R.; Turek, K.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-02-01

    Application of the nuclear track emulsion technique (NTE) in radioactivity and nuclear fission studies is discussed. It is suggested to use a HSP-1000 automated microscope for searching for a collinear cluster tri-partition of heavy nuclei implanted in NTE. Calibrations of α-particles and ion ranges in a novel NTE are carried out. Surface exposures of NTE samples to a Cf-252 source started. Planar events containing fragments and long-range α-particles as well as fragment triples only are studied. Splittings induced by thermal neutrons are studied in boron-enriched emulsion. Use of the image recognition program ”ImageJ” for obtaining characteristics of individual events and for events from the large scan area is presented.

  13. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since it’s discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  14. Development of Fission Chamber Assembly

    Institute of Scientific and Technical Information of China (English)

    YANGJinwei; ZHANGWei; SONGXianying; LIXu

    2003-01-01

    The fission chambers which are gas counters with fissile material inside chamber,provide essential information for plasma opcharacteristics. In conjunction with the neutron flux monitor system these provide time-resolved measurements of the global neutron source strength and fusion power from thermal nuclear fusion reactor as ITER for all plasma conditions for which neutrons are produced.

  15. [New aspects of therapy of mucoviscidosis (CF)].

    Science.gov (United States)

    Dietzsch, H J; Wunderlich, P

    1993-02-01

    The authors survey of recent advances in CF research and their therapeutic implications: 1. the possibility of successful gene therapy by transfer of the normal gene to airway epithelial cells. 2. inhalations with the potassium-sparing diuretic amiloride that diminish the viscosity of the bronchial secretions, 3. application of adenosine or uridine triphosphate (ATP or UTP) to the apical surface of the respiratory epithelial cells which intervene with the function of ion channels, 4. enzymatic cleavage and liquidification of bronchial secretions by aerosolized human recombinante DNase. In addition, the possible advantages of (heart-) lung-transplantation are also discussed.

  16. Two neutron correlations in photo-fission

    Science.gov (United States)

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-09-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  17. Fission dynamics at low excitation energy

    CERN Document Server

    Aritomo, Y

    2013-01-01

    The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.

  18. Fission yield studies at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Weber, C.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2012-04-15

    Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future. (orig.)

  19. Atomic nuclei decay modes by spontaneous emission of heavy ions

    OpenAIRE

    Poenaru, Dorin N.; Ivaşcu, Marin; Săndulescu, Aurel; Greiner, Walter

    2006-01-01

    The great majority of the known nuclides with Z>40, including the so-called stable nuclides, are metastable with respect to several modes of spontaneous superasymmetric splitting. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relative to the alpha decay for these natural radioactivities. From a huge amount of systematic calculations it is concluded that the process should proceed with maximum intensity in the trans-lead n...

  20. UF{sub 6} as a detector gas for fission studies

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Enders, Joachim; Freudenberger, Martin; Neumann-Cosel, Peter von [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Goeoek, Alf; Oberstedt, Stephan [Commission of the European Communities, Geel (Belgium). Inst. for Reference Materials and Measurements (IRMM); Oberstedt, Andreas [Akademin foer Naturvetenskap och Teknik, Oerebro Univ. (Sweden); Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Fundamental Fysik

    2013-07-01

    A Frisch-grid ionization chamber has been built to test a mixture of argon with gaseous UF{sub 6} and to study its properties as a counting gas. We present first results using increasing mass fractions of {sup 238}UF{sub 6} mixed into argon. The drift velocity of the electrons increases with the content of {sup 238}UF{sub 6}, while a good signal quality and energy resolution of the ionization chamber is preserved. Using uranium hexafluoride in the detector gas may give access to experiments where extremely high luminosity is required in combination with good angular and energy and/or mass resolution. Examples comprise the investigation of spontaneous fission of {sup 238}U, the study of parity non-conservation in the fission process, or precision measurements of fission fragments with good resolution using tagged photons in the entrance channel.

  1. Cluster radioactivity and very asymmetric fission through quasi-molecular shapes

    Energy Technology Data Exchange (ETDEWEB)

    Royer, G. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Gupta, R.K. [Panjab Univ., Chandigarh (India). Dept. of Physics; Denisov, V.Yu. [Akademyiya Nauk Ukrayini, Kiev (Ukraine)

    1997-12-31

    The decay of radioactive nuclei which emit heavy clusters like C, O, Ne, Mg and Si has been studied in the fission valley which leads one spherical nucleus towards two spherical touching nuclei before crossing the barrier. Assuming volume conservation, the deformation energy has been calculated within a generalized liquid drop model taking into account the proximity effects between the cluster and the daughter nucleus. The theoretical partial half-lives obtained within the WKB barrier penetration probability are in good agreement with the experimental data for the heaviest clusters. The Ne, Mg and Si emission looks like a very-asymmetric spontaneous fission. The {sup 14}C radioactivity is not correctly described within the fission hypothesis. The {sup 14}C and apparently also the {sup 20}O are probably pre-born in the parent nucleus, the emission being similar to the {alpha} decay process. (author). 27 refs.

  2. Age and Thermal History of the East Ore Section,Bayan,Obo Deposit—A Fission Track Study

    Institute of Scientific and Technical Information of China (English)

    张峰; 刘铁庚; 等

    1997-01-01

    Considerable attention has been paid in recent years to the study of geothermal history by using spontaneous fission tracks of 238U recorded in minerals.Apatite and zircon were used for fission track study in this paper because apatitie has been widely used as a natural geothermometer(Wang Shicheng et al., 1994) to reveal the thermal evolution of sedimentary rocks based on its low annealing temperature of fission tracks and zircon is characterized by a closing temperature above 700℃,The samples were collected from ferruginous,siliceous slate wall rock at the upper levels of the orebody and Nb-REE-Fe ores from deep tunnels.The age and thermal evolution of the orebody were discussed in terms of fission track characters and their length variations observed in the coexisting apatite and zircon in the same specimen.

  3. Cold valleys in the radioactive decay of 248-254Cf isotopes

    Indian Academy of Sciences (India)

    R K Biju; Sabina Sahadevan; K P Santosh; Antony Joseph

    2008-04-01

    Based on the concept of cold valley in cold fission and fusion, we have investigated the cluster decay process in 248-254Cf isotopes. In addition to alpha particle minima, other deep minima occur for S, Ar and Ca clusters. It is found that inclusion of proximity potential does not change the position of minima but minima become deeper. Taking Coulomb and proximity potential as interacting barrier for post-scission region, we computed half-lives and other characteristics for various clusters from these parents. Our study reveals that these parents are stable against light clusters and unstable against heavy clusters. Computed half-lives for alpha decay agree with experimental values within two orders of magnitude. The most probable clusters from these parents are predicted to be 46Ar, 48,50Ca which indicate the role of doubly or near doubly magic clusters in cluster radioactivity. Odd A clusters are found to be favorable for emission from odd A parents. Cluster decay model is extended to symmetric region and it is found that symmetric fission is also probable which stresses the role of doubly or near doubly magic 132Sn nuclei. Geiger-Nuttal plots were studied for various clusters and are found to be linear with varying slopes and intercepts.

  4. Induction of external abnormalities in offspring of male mice irradiated with [sup 252]Cf neutron

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, Akihiro; Ono, Tetsuya; Mori, Yuriko (Tohoku University School of Medicine, Sendai (Japan). Department of Radiation Research); Okada, Shigefumi (Kyoto University (Japan). Radiation Biology Center); Sawada, Syozo (Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology)

    1992-08-01

    To assess the genetic effects of fission neutron, the induction of external malformations was studied in F[sub 1] fetuses after F[sub 0] male mice were irradiated. Male mice of the ICR:MCH strain were irradiated with [sup 252]Cf neutron at doses of 0.238, 0.475, 0.95 and 1.9 Gy. They were mated with non-irradiated female mice at 71-120 days after irradiation. Pregnant females were autopsied on day 18 of gestation and their fetuses were examined for deaths and external abnormalities. No increases of pre- and post-implantation losses were noted at any dose. External abnormalities were observed at rates of 1.40% in the 0.238 Gy, 2.23% in the 0.475 Gy, 3.36% in the 0.95 and 3.26% in the 1.9 Gy groups; the rate in the control group was 1.65%. The dose-response curve was linear up to 0.95 Gy, and then flattened out; the induction rate of external abnormalities was 2.7x10[sup -4]/gamete/cGy based on the linear regression. These results indicated that fission neutron effectively induces external abnormalities in F[sub 1] fetuses after spermatogonial irradiation. (author). 29 refs.; 1 fig.; 2 tabs.

  5. A fission fragment detector for correlated fission output studies

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)

    2014-09-01

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

  6. Cluster fission from the standpoint of nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmoo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics

    1996-03-01

    Atomic nucleus belongs to a quantal finite many body system. Nucleus shows great resemblance to cluster, above all metal cluster, although the strength of interaction is different. The works of Brechignac group, Saunder, Martin and P. Froeblich are explained by the critical size Nc as the central term. The differences between cluster and nucleus are investigated and a future view of cluster fission is explained. (S.Y.)

  7. Neutron dose rate for {sup 252} Cf AT source in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, L.; Balcazar, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico); Francois, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico)

    2006-07-01

    The AAPM TG-43 modified protocol was used for the calculation of the neutron dose rate of {sup 252}Cf sources for two tissue substitute materials, five normal tissues and six tumours. The {sup 252}Cf AT source model was simulated using the Monte Carlo MCNPX code in spherical geometry for the following factors: a) neutron air kerma strength conversion factor, b) dose rate constant, c) radial dose function, d) geometry factor, e) anisotropy function and f) neutron dose rate. The calculated dose rate in water at 1 cm and 90 degrees from the source long axis, using the Watt fission spectrum, was D{sub n}(r{sub 0}, {theta}{sub 0})= 1.9160 cGy/h-{mu}g. When this value is compared with Rivard et al. calculation using MCNP4B code, 1.8730 cGy/h-{mu}g, a difference of 2.30% is obtained. The results for the reference neutron dose rate in other media show how small variations in the elemental composition between the tissues and malignant tumours, produce variations in the neutron dose rate up to 12.25%. (Author)

  8. GEANT4 and PHITS simulations of the shielding of neutrons from $^{252}$Cf source

    CERN Document Server

    Shin, Jae Won

    2014-01-01

    Neutron shielding simulations by using GEANT4 and PHITS code are performed. As a neutron source, $^{252}$Cf is considered and the energy distribution of the neutrons emitted from $^{252}$Cf is assumed the Watt fission spectrum. The neutron dose equivalent rates with and without the shield are estimated for shielding materials such as graphite, iron, polyethylene, NS-4-FR and KRAFTON-HB. For the neutron shielding simulations by using GEANT4, high precision (G4HP) model with G4NDL 4.2 based on ENDF-VII data are used. And for PHITS simulations, JENDL-4.0 library are used for the same purpose. It is found that differences between the shielding calculations by using GEANT4 with G4NDL 4.2 and PHITS with JENDL-4.0 library are not significant for all cases considered in this work. We investigate the accuracy of the neutron dose equivalent rates obtained from GEANT4 and PHITS by comparing our simulation results with experimental data and other values calculated earlier. Calculated neutron dose equivalent rates agree w...

  9. Simultaneous measurement of (n, γ) and (n, fission) cross sections with the DANCE 4π BaF 2 array

    Science.gov (United States)

    Bredeweg, T. A.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R. C.; Esch, E.-I.; Ethvignot, T.; Granier, T.; Jandel, M.; Macri, R. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2007-08-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The detector for advanced neutron capture experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. However, neutron capture measurements on many of the actinides are complicated by the presence of prompt γ-rays arising from low energy neutron-induced fission, which competes with neutron capture to varying degrees. Previous measurements of 235U using the DANCE array have shown that we can partially resolve capture from fission events based on total γ-ray calorimetry (i.e. total γ-ray energy versus γ-ray multiplicity). The addition of a dedicated fission-tagging detector to the DANCE array has greatly improved our ability to separate these two competing processes. In addition to higher quality neutron capture data, the addition of a fission-tagging detector offers a means to determine the capture-to-fission ratio (σγ/σf) in a single measurement, which should reduce the effect of systematic uncertainties. We are currently using a dual parallel-plate avalanche counter (PPAC) with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. Results from tests of the fission-tag detector, as well as preliminary results from measurements on 235U and 252Cf that utilized the fission-tag detector will be presented.

  10. Fission properties for r-process nuclei

    CERN Document Server

    Erler, J; Loens, H P; Martínez-Pinedo, G; Reinhard, P -G

    2011-01-01

    We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. The computation of fission lifetimes takes care of the crucial ingredients of the large-amplitude collective dynamics along the fission path, as self-consistent collective mass and proper quantum corrections. We discuss the different topologies of fission landscapes which occur in the realm of SHE (symmetric versus asymmetric fission, regions of triaxial fission, bi-modal fission, and the impact of asymmetric ground states). The explored region is extended deep into the regime of very neutron-rich isotopes as they are expec...

  11. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  12. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Schear, Melissa A [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  13. Technical Application of Nuclear Fission

    Science.gov (United States)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  14. A new perfluorinated peroxynitrate, CF{sub 3}CF{sub 2}CF{sub 2}CF{sub 2}OONO{sub 2}. Synthesis, characterization and atmospheric implications

    Energy Technology Data Exchange (ETDEWEB)

    Bossolasco, Adriana G.; Vila, Jesús A.; Burgos Paci, Maxi A.; Malanca, Fabio E., E-mail: fmalanca@fcq.unc.edu.ar; Argüello, Gustavo A.

    2014-09-30

    Highlights: • A new perfluoroalkyl peroxynitrate identified. • Its thermal stability and UV spectra has been studied. • First principles calculations were used to explore the ground state potential energy surface. • Comparison with shorter perfluoroalkyl peroxynitrates is presented. • Its lifetime is in agreement with the expected for similar peroxynitrates. - Abstract: CF{sub 3}CF{sub 2}CF{sub 2}CF{sub 2}OONO{sub 2} was synthesized from the photolysis of CF{sub 3}CF{sub 2}CF{sub 2}CF{sub 2}I, in presence of NO{sub 2} and O{sub 2}. Alkyl peroxynitrates (C{sub x}F{sub 2x+1}OONO{sub 2}) could be formed in the atmospheric degradation of chlorofluorocarbons, hydrofluorocarbons and hydrofluoroethers. We present here the synthesis and characterization (IR and UV absorption cross sections) of CF{sub 3}CF{sub 2}CF{sub 2}CF{sub 2}OONO{sub 2} and its comparison with those corresponding to other perfluoro alkyl peroxynitrates. The thermal stability was studied as a function of total pressure (from 9.0 to 417 mbar) and temperature (from 283 to 293 K) using infrared spectroscopy. Kinetic parameters measured for the thermal dissociation were E{sub a} = (81 ± 4) kJ/mol and A = 4.8 × 10{sup 12}. DFT calculations at the B3LYP/6-311+G{sup ∗} level were used to explore the ground state potential energy surface. Geometrical parameters, conformer populations and vibrational spectra are presented. The calculated activation energy was 81.3 kJ mol{sup −1} in excellent agreement with experimental results. Atmospheric implications are discussed.

  15. Atmospheric chemistry of CF3CH2CH2OH

    DEFF Research Database (Denmark)

    Hurley, Michael D.; Misner, Jessica A.; Ball, James C.

    2005-01-01

    Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF3CH2C(O)H and CF3CH2CH2OH in 700 Torr of N-2 or air diluent at 296 2 K. The rate constants determined were k(Cl+CF3CH2C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF3CH2C(O)H) = (2.57 +/- 0.44...

  16. Atmospheric chemistry of (CF3)2CFOCH3

    DEFF Research Database (Denmark)

    Andersen, Lene Løffler; Østerstrøm, Freja From; Nielsen, Ole John

    2014-01-01

    FTIR smog chamber techniques were used to measure k(Cl + (CF 3)2CFOCH3) = (1.80 ± 0.42) × 10-13, k(Cl + (CF3)2CFOCHO) = (1.47 ± 0.56) × 10-14, and k(OH + (CF3) 2CFOCH3) = (1.55 ± 0.24) × 10-14 cm3 molecule-1 s-1. The chlorine-atom initiated oxidation of (CF3)2CFOCH3 in air in the absence of NOX r...

  17. Upper limits for the rate constants of the reactions of CF3O2 and CF3O radicals with ozone at 295 K

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.

    1993-01-01

    Using the pulse radiolysis UV absorption technique and subsequent simulations of experimental absorption transients at 254 and 276 nm, upper limits of the rate constants for the reactions of CF3O2 and CF3O radicals with ozone were determined at 295 K, CF3O2+O3-->CF3O+2O2 (4), CF3O+O3-->CF3O2+O2 (......). The upper limits were derived as k4 ozone depletion by hydrofluorocarbons.......Using the pulse radiolysis UV absorption technique and subsequent simulations of experimental absorption transients at 254 and 276 nm, upper limits of the rate constants for the reactions of CF3O2 and CF3O radicals with ozone were determined at 295 K, CF3O2+O3-->CF3O+2O2 (4), CF3O+O3-->CF3O2+O2 (5...

  18. Microscopic description of fission in neutron-rich Radium isotopes with the Gogny energy density functional

    CERN Document Server

    Rodriguez-Guzman, R R

    2015-01-01

    Mean field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144 $\\le$ N $\\le$ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well developed third minimum along the fission paths of Ra nuclei, is analyzed in terms of the energetics of the "fragments" defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and $\\alpha$-decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N=164 with a steady increase that makes heavier ...

  19. Radiochemical studies on nuclear fission at Trombay

    Indian Academy of Sciences (India)

    Asok Goswami

    2015-08-01

    Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.

  20. Collective spectra along the fission barrier

    Directory of Open Access Journals (Sweden)

    Pigni M. T.

    2012-12-01

    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  1. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  2. Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...

  3. CF3(+) and CF2H(+): new reagents for n-alkane determination in chemical ionisation reaction mass spectrometry.

    Science.gov (United States)

    Blake, Robert S; Ouheda, Saleh A; Evans, Corey J; Monks, Paul S

    2016-11-28

    Alkanes provide a particular analytical challenge to commonly used chemical ionisation methods such as proton-transfer from water owing to their basicity. It is demonstrated that the fluorocarbon ions CF3(+) and CF2H(+), generated from CF4, as reagents provide an effective means of detecting light n-alkanes in the range C2-C6 using direct chemical ionisation mass spectrometry. The present work assesses the applicability of the reagents in Chemical Ionisation Mass Spectrometric (CI-TOF-MS) environments with factors such as high moisture content, operating pressures of 1-10 Torr, accelerating electric fields (E/N) and long-lived intermediate complex formation. Of the commonly used chemical ionisation reagents, H3O(+) and NO(+) only react with hexane and higher while O2(+) reacts with all the target samples, but creates significant fragmentation. By contrast, CF3(+) and CF2H(+) acting together were found to produce little or no fragmentation. In dry conditions with E/N = 100 Td or higher the relative intensity of CF2H(+) to CF3(+) was mostly less than 1% but always less than 3%, making CF3(+) the main reagent ion. Using O2(+) in a parallel series of experiments, a substantially greater degree of fragmentation was observed. The detection sensitivities of the alkanes with CF3(+) and CF2H(+), while relatively low, were found to be better than those observed with O2(+). Experiments using alkane mixtures in the ppm range have shown the ionisation technique based on CF3(+) and CF2H(+) to be particularly useful for measurements of alkane/air mixtures found in polluted environments. As a demonstration of the technique's effectiveness in complex mixtures, the detection of n-alkanes in a smoker's breath is demonstrated.

  4. Fission-product retention in HTGR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  5. Rapid Separation of Fission Product 141La

    Institute of Scientific and Technical Information of China (English)

    XIA; Wen; YE; Hong-sheng; LIN; Min; CHEN; Ke-sheng; XU; Li-jun; ZHANG; Wei-dong; CHEN; Yi-zhen

    2013-01-01

    141La was separated and purified from fission products in this work for physical measurements aimed at improving the accuracy of its decay parameters.As the impact of 142La and other fission products,cesium(141Cs,142Cs included)was rapid separated from the fission products,141Cs and 142Ba separation was prepared after a cooling time about 25 s when 142Cs decays to daughter 142Ba,141La purification then

  6. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    Science.gov (United States)

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  7. Brief Introduction of LOW/CF-Silo Control%LOW/CF-SILO控制简介

    Institute of Scientific and Technical Information of China (English)

    高永华; 王晋举

    2001-01-01

    @@埃塞俄比亚麦塞博水泥厂的生料储库采用了史密斯公司设计的CF型库,用于均化和储存生料粉,并通过库底的卸料装置向水泥窑系统实施连续喂料,与之配套的控制系统叫做LOW/CF-Silo失重连续喂料控制系统。1 系统概述LOW/CF-Silo控制系统由两部分组成,即连续流量CF-Silo(Continuous Flow)控制系统和失重喂料LOW(Loss of Weight)控制系统(图1)。1.1 LOW/CF-Silo控制系统的组成1个电动翻板阀;1套称重设备(包括3台申克称重传感器);4台恒压器;2个音叉料位计;2台气动截止阀;2台电动流量调节阀;56个电磁阀;7个接近开关;2台控制箱(箱内各装有1台LOW控制器);1台控制柜(柜内装有1台PLC5-80E控制器)。

  8. Effect of nuclear viscosity on fission process

    Energy Technology Data Exchange (ETDEWEB)

    Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa

    1989-02-01

    According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.

  9. Some aspects of fission and quasifission processes

    Indian Academy of Sciences (India)

    B B Back

    2015-08-01

    The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were described in a ground-breaking paper by Bohr and Wheeler only six months after the discovery, the fission process is very complex and it has been a challenge for both experimentalists and theorists to achieve a complete and satisfactory understanding of this phenomenon. Many aspects of nuclear physics are involved in fission and it continues to be a subject of intense study even three quarters of a century after its discovery. In this talk, I will review an incomplete subset of the major milestones in fission research, and briefly discuss some of the topics that I have been involved in during my career. These include studies of vibrational resonances and fission isomers that are caused by the second minimum in the fission barrier in actinide nuclei, studies of heavy-ion-induced fission in terms of the angular distributions and the mass–angle correlations of fission fragments. Some of these studies provided evidence for the importance of the quasifission process and the attendant suppression of the complete fusion process. Finally, some of the circumstances around the establishment of large-scale nuclear research in India will be discussed.

  10. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater.

    Science.gov (United States)

    Han, Gang; Liang, Can-Zeng; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian

    2016-03-15

    A novel combination of forward osmosis (FO) process with coagulation/flocculation (CF) (FO-CF) has been experimentally conceived for the treatment and reuse of textile wastewater. FO is employed to spontaneously recover water from the wastewater via osmosis and thus effectively reduces its volume with a dramatically enhanced dye concentration. CF is then applied to precipitate and remove dyes from the FO concentrated stream with much improved efficiency and reduced chemical dosage. The FO-CF hybrid system exhibits unique advantages of high water flux and recovery rate, well controlled membrane fouling, high efficiency, and minimal environmental impact. Using a lab-made thin-film composite (TFC) FO membrane, an initial water flux (Jw) of 36.0 L m(-2) h(-1) with a dye rejection of 99.9% has been demonstrated by using 2 M NaCl as the draw solution and synthetic textile wastewater containing multiple textile dyes, inorganic salts and organic additives as the feed under the FO mode. The Jw could be maintained at a high value of 12.0 L m(-2) h(-1) even when the recovery rate of the wastewater reaches 90%. Remarkable reverse fouling behavior has also been observed where the Jw of the fouled membrane can be almost fully restored to the initial value by physical flushing without using any chemicals. Due to the great dye concentration in the FO concentrated wastewater stream, the CF process could achieve more than 95% dye removal with a small dosage of coagulants and flocculants at 500-1000 ppm. The newly developed FO-CF hybrid process may open up new exploration of alternative technologies for the effective treatment and reuse of textile effluents.

  11. Multicenter intestinal current measurements in rectal biopsies from CF and non-CF subjects to monitor CFTR function.

    Directory of Open Access Journals (Sweden)

    John P Clancy

    Full Text Available Intestinal current measurements (ICM from rectal biopsies are a sensitive means to detect cystic fibrosis transmembrane conductance regulator (CFTR function, but have not been optimized for multicenter use. We piloted multicenter standard operating procedures (SOPs to detect CFTR activity by ICM and examined key questions for use in clinical trials. SOPs for ICM using human rectal biopsies were developed across three centers and used to characterize ion transport from non-CF and CF subjects (two severe CFTR mutations. All data were centrally evaluated by a blinded interpreter. SOPs were then used across four centers to examine the effect of cold storage on CFTR currents and compare CFTR currents in biopsies from one subject studied simultaneously either at two sites (24 hours post-biopsy or when biopsies were obtained by either forceps or suction. Rectal biopsies from 44 non-CF and 17 CF subjects were analyzed. Mean differences (µA/cm(2; 95% confidence intervals between CF and non-CF were forskolin/IBMX=102.6(128.0 to 81.1, carbachol=96.3(118.7 to 73.9, forskolin/IBMX+carbachol=200.9(243.1 to 158.6, and bumetanide=-44.6 (-33.7 to -55.6 (P<0.005, CF vs non-CF for all parameters. Receiver Operating Characteristic curves indicated that each parameter discriminated CF from non-CF subjects (area under the curve of 0.94-0.98. CFTR dependent currents following 18-24 hours of cold storage for forskolin/IBMX, carbachol, and forskolin/IBMX+carbachol stimulation (n=17 non-CF subjects were 44%, 47.5%, and 47.3%, respectively of those in fresh biopsies. CFTR-dependent currents from biopsies studied after cold storage at two sites simultaneously demonstrated moderate correlation (n=14 non-CF subjects, Pearson correlation coefficients 0.389, 0.484, and 0.533. Similar CFTR dependent currents were detected from fresh biopsies obtained by either forceps or suction (within-subject comparisons, n=22 biopsies from three non-CF subjects. Multicenter ICM is a

  12. Experimental study on dilution effect of all halogenated hydrocarbon CF3I and CF4%全卤代烃CF3I和CF4的阻燃能力实验

    Institute of Scientific and Technical Information of China (English)

    孙尔雁; 李振明; 公茂琼; 吴剑峰

    2011-01-01

    The flammability limits of several refrigerant mixtures containing CF3I or CF4 as the retardant in air were measured at atmospheric pressure and ambient temperature, the data curves and data tables were mapped. Compared with the literatures, the dilution effect of CF3I or CF4 is better than the hydrogen halogenated hydrocarbons (e. g. R134,R134a and R125) and the inert gases (e. g. N2 and CO2). The lower flammability limits of the flammable refrigerant mixtures increase as the molar ratio of nonflammable component (e. g. CF3I, CF4 ) to flammable component increase, while the upper flammability limits decrease. The special dilution effect of all halogenated hydrocarbon( e. g. CF3I,CF4 ) will improve the flammable refrigerants security significantly.%实验测量了多组含CF3I或CF4的制冷剂混合物的爆炸极限,绘制了爆炸极限数据曲线和数据表格,确定了不同摩尔比例制冷剂混合物的爆炸三角区和临界爆炸比.参照文献中已得出的部分实验结论,通过分析比较得出全卤代烃CF3I和CF4比N2、CO2等"惰性气体"以及含氢卤代烃R134、R134a、R125等更能有效抑制可燃制冷剂的燃爆性.此外,全卤代烃CF3I和CF4不同于惰性气体和含氢卤代烃,能够提高可燃制冷剂混合物爆炸下限,这个特点对于改善可燃制冷剂安全性有实际意义.

  13. Isoscaling of the Fission Fragments with Langevin Equation

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; TIAN Wen-Dong; ZHONG Chen; ZHOU Xing-Fei; MA Yu-Gang; WEI Yi-Bin; CAI Xiang-Zhou; CHEN Jin-Gen; FANG De-Qing; GUO Wei; MA Guo-Liang; SHEN Wen-Qing

    2005-01-01

    @@ The Langevin equation is used to simulate the fission process of 112Sn + 112Sn and 116Sn + 116Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. The isoscaling behaviour has been observed from the analysis of fission fragments of both the reactions, and the isoscaling parameter α seems to be sensitive to the width of fission probability and the beam energy.

  14. Sources and sinks of CF and CF{sub 2} in a cc-RF CF{sub 4}-plasma under various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fendel, Peter; Francis, Anne; Czarnetzki, Uwe [University of Essen, 45141 Essen (Germany)

    2005-02-01

    In an asymmetric capacitively coupled radio-frequency (cc-RF) CF{sub 4} plasma, the radical densities of CF and CF{sub 2} were measured using laser-induced fluorescence spectroscopy. From the spatially (along the symmetry axis) and temporally (after switching off the discharge) resolved data, the source distribution and the sticking coefficients are inferred. We present results for three different electrode materials (stainless steel, aluminium and silicon). According to our data, the strength and the position of the sources depend strongly on the electrode material and the applied voltage. While the CF-sources are in the sheath in front of the powered electrode for stainless steel, they are on the surface of the powered electrode in the case of aluminium. By using a simple diffusion model for the analysis of the afterglow data, it can be shown that CF{sub 2} is destroyed exclusively at the walls and the decay time is determined by diffusion and sticking only. In contrast, for CF, surface as well as volume losses due to chemical reactions are important.

  15. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  16. Spontaneous external gallbladder perforation

    Energy Technology Data Exchange (ETDEWEB)

    Noeldge, G.; Wimmer, B.; Kirchner, R.

    1981-04-01

    Spontaneous perforation of the gallbladder is one complication of cholelithiasis. There is a greater occurence of free perforation in the peritoneal cavity with bilary pertonitis, followed by the perforation into the stomach, small intestine and colon. A single case of the nowadays rare spontaneous perforation in and through the abdominal wall will be reported. Spontaneous gallbladder perforation appears nearly asymptomatic in its clinical course because of absent biliary peritonitis.

  17. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  18. Ternary fission of {sup 260}No in equatorial configuration

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, M.; Seif, W.M.; Hashem, A.S. [Faculty of Science, Department of Physics, Cairo University, Giza (Egypt)

    2016-10-15

    Spontaneous ternary fission is one of the observed decay modes of heavy nuclei. We systematically investigate the equatorial ternary fission of the {sup 260}No isotope. In the framework of the three-cluster model, the three-body interaction potential is calculated in terms of the folded M3Y-Reid nucleon-nucleon force and the Coulomb one. The relative orientations of the deformed heavy nuclei participating in the fragmentation process are taken into account. All possible emitted light particles with even mass numbers A = 4-52 are considered. The favored fragmentation channels are estimated as the ones characterized with peaks in the Q-value and local minima in the fragmentation potential. In the absence of nuclear deformations, the closed shell effects are found to play the key role in determining the channels of minimum fragmentation potential and the involved two heavier fragments tend to be of comparable sizes. Inclusion of nuclear deformations manifest the participation of highly deformed prolate nuclei, with large mass asymmetry, as heavy fragment partners in the estimated favored fragmentation channels. The results indicate that the equatorial ternary fission of {sup 260}No is most favored with the light emitted nuclei {sup 4,6,8}{sub 2}He and {sup 10}{sub 4}Be through the fragmentation channels {sup 155}{sub 60}Nd + {sup 4}{sub 2}He + {sup 101}{sub 40}Zr, {sup 153}{sub 60}Nd + {sup 6}{sub 2}He + {sup 101}{sub 40}Zr, {sup 152}{sub 60}Nd + {sup 8}{sub 2}He + {sup 100}{sub 40}Zr, and {sup 152}{sub 60}Nd + {sup 10}{sub 4}Be + {sup 98}{sub 38}Sr, respectively. (orig.)

  19. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  20. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  1. Correlation measurements of fission-fragment properties

    Directory of Open Access Journals (Sweden)

    Oberstedt A.

    2010-10-01

    Full Text Available For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.

  2. Theoretical description of prompt fission neutron multiplicity and spectra

    CERN Document Server

    Manailescu, Cristian

    2014-01-01

    The present work concerns two successful models used today: Point by Point (PbP) and the Monte Carlo approaches. The description of the PbP model and of the extended Los Alamos model for higher energies that takes into account the secondary chains and ways is given in Chapter II. In this chapter are given also examples of PbP and most probable fragmentation approach calculations for various quantities which characterize prompt emission: multi-parametric matrices, quantities as a function of fragment mass, quantities as a function of the TKE and total average quantities, for different spontaneous and neutron induced fissioning systems. Special care was given to the TXE partition between the fully accelerated fission fragments, two partition methods used in the PbP model being discussed in details. In Chapter III is given the description of the Monte Carlo treatment included in the FIFRELIN code. Only those aspects that differ from the PbP treatment are emphasized. A special attention is given to the latest dev...

  3. Fission dynamics at low excitation energy. 2

    CERN Document Server

    Aritomo, Y; Ivanyuk, F A

    2014-01-01

    The mass asymmetry in the fission of U-236 at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.

  4. Cold fission as heavy ion emission

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Maruhn, J.A.; Greiner, W.; Ivascu, M.; Mazilu, D.; Gherghescu, R.

    1987-11-01

    The last version of the analytical superasymmetric fission model is applied to study cold fission processes. Strong shell effects are present either in one or both fission fragments. A smooth behaviour is observed when the proton or the neutron numbers are changed by four units. Increasing Z and N, in the transuranium region, a sharp transition from asymmetry with a large peak-to-valley ratio to symmetry at Z=100 and/or N=164 is obtained. The transition toward asymmetry at higher Z and N is much smoother. The most probable cold fission light fragments from /sup 234/U, /sup 236/U, /sup 239/Np and /sup 240/Pu are /sup 100/Zr, /sup 104/Mo, /sup 106/Mo and /sup 106/Mo, respectively, in good agreement with experimental data. The unified treatment of alpha decay, heavy ion radioactivities and cold fission is illustrated for /sup 234/U - the first nucleus in which all three groups have been already observed.

  5. Los Alamos National Laboratory Fission Basis

    Energy Technology Data Exchange (ETDEWEB)

    Keksis, A.L.; Chadwick, M.B.; Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Meade, R.A.; Burns, C.J.; Wallstrom, T.C. [Los Alamos National Laboratory, NM 87545 (United States)

    2011-07-01

    This report is an overview of two main publications that provide a comprehensive review of the Los Alamos National Laboratory (LANL) Fission Basis. The first is the experimental paper, {sup F}ission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U, [Selby, H. D., et al., Nucl. Data Sheets, Vol. 111 2010, pp. 2891-2922] and the second is the theoretical paper, Fission Product Yields from Fission Spectrum n+ {sup 239}Pu for ENDF/B-VII.1, [Chadwick, M. B., et al., Nucl. Data Sheets, Vol. 111, 2010, pp. 2923-2964]. One important note is that none of this work would have been possible without the great documentation of the experimental details and results by G.W. Knobeloch, G. Butler, C.I. Browne, B. Erdal, B. Bayhurst, R. Prestwood, V. Armijo, J. Hasty and many others. (authors)

  6. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    E Vardaci; A Di Nitto; P N Nadtochy; A Brondi; G La Rana; R Moro; M Cinausero; G Prete; N Gelli; E M Kozulin; G N Knyazheva; I M Itkis

    2015-08-01

    A 4 light charged particle spectrometer, called 8 LP, is in operation at the Laboratori Nazionali di Legnaro, Italy, for studying reaction mechanisms in low-energy heavy-ion reactions. Besides about 300 telescopes to detect light charged particles, the spectrometer is also equipped with an anular PPAC system to detect evaporation residues and a two-arm time-of-flight spectrometer to detect fission fragments. The spectrometer has been used in several fission dynamics studies using as a probe light charged particles in the fission and evaporation residues (ER) channels. This paper proposes a journey within some open questions about the fission dynamics and a review of the main results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular, the advantages of using systems of intermediate fissility will be discussed.

  7. The Formation Process of Massive Close Spectroscopic Binaries: The Fission Hypothesis Revisited

    Science.gov (United States)

    Zinnecker, H.; Ostriker, J.

    2013-06-01

    The vast majority of massive Main-Sequence stars (M>20 Mo) seem to be born in close interactive binary systems (Chini et al. 2012, Sana et al. 2012). The very process by which these systems form is still a mystery and has received little attention so far. Because the binary separation is so tight (less than 1AU), break-up of a critically rotating protostar ("fission") remains an interesting possibility. However, standard current star formation theory treats fission as unlikely (cf. Tohline 2002, ARAA). We question this view and investigate minimum energy states of compressible polytropic analogs to the well-known incompressible MacLaurin spheroids. Dynamical non-axisymmetric instability at a critical ratio of rotational to gravitational energy (cf. Ostriker and Bodenheimer 1973) during the shrinkage of an accreting, rapidly rotating, bloated, massive protostar AFTER ACCRETION DECLINES may provide the conditions for break-up into a close binary system. Time dependent hydro-dynamical simulations are required to either confirm or reject this hypothesis.

  8. Potential impacts of CF3I on ozone as a replacement for CF3Br in aircraft applications

    Directory of Open Access Journals (Sweden)

    Y. Li

    2006-01-01

    Full Text Available Iodotrifluoromethane (CF3I has been considered to be a candidate replacement for bromotrifluoromethane (CF3Br, which is used in aircraft for fuel inerting and for fire fighting. In this study, the chemical effects of aircraft-released CF3I on atmospheric ozone were examined with the University of Illinois at Urbana-Champaign two-dimensional chemical-radiative-transport (UIUC 2-D CRT model. Using an earlier estimate of the aircraft emission profile for tank inerting in military aircraft, the resulting equivalent Ozone Depletion Potentials (ODPs for CF3I were in the range of 0.07 to 0.25. As a sensitivity study, we also analyzed CF3I emissions associated with fuel inerting if it were to occur at lower altitudes using an alternative estimate. The model calculations of resulting effects on ozone for this case gave ODPs≤0.05. Furthermore, through interactions with the National Institute of Standards and Technology (NIST, we analyzed the potential effects on ozone resulting from using CF3I in fire fighting connected with engine nacelle and auxiliary power unit applications. The scenarios evaluated using the NIST estimate suggested that the ODPs obtained by assuming aircraft flights occurring in several different latitude regions of the Northern Hemisphere are extremely low. According to the model calculation, the altitude where CF3I is released from aircraft is a dominant factor in its ozone depletion effects. On the assumption that the CF3I emission profile is representative of actual release characteristics, aircraft-released CF3I has much lower impacts than CF3Br.

  9. Potential impacts of CF3I on ozone as a replacement for CF3Br in aircraft applications

    Directory of Open Access Journals (Sweden)

    D. Youn

    2006-06-01

    Full Text Available Iodotrifluoromethane (CF3I has been considered to be a candidate replacement for bromotrifluoromethane (CF3Br, which is used in aircraft for fuel inerting and for fire fighting. In this study, the chemical effects of aircraft-released CF3I on atmospheric ozone were examined with the University of Illinois at Urbana-Champaign two-dimensional chemical-radiative-transport (UIUC 2-D CRT model. Using an earlier estimate of the aircraft emission profile for tank inerting in military aircraft, the resulting equivalent Ozone Depletion Potentials (ODPs for CF3I were in the range of 0.07 to 0.25. As a sensitivity study, we also analyzed CF3I emissions associated with fuel inerting if it were to occur at lower altitudes using an alternative estimate. The model calculations of resulting effects on ozone for this case gave ODPs≤0.05. Furthermore, through interactions with the National Institute of Standards and Technology (NIST, we analyzed the potential effects on ozone resulting from using CF3I in fire fighting connected with engine nacelle and auxiliary power unit applications. The scenarios evaluated using the NIST estimate suggested that the ODPs obtained by assuming aircraft flights occurring in several different latitude regions of the Northern Hemisphere are extremely low. According to the model calculation, the altitude where CF3I is released from aircraft is a dominant factor in its ozone depletion effects. On the assumption that the CF3I emission profile is representative of actual release characteristics, aircraft-released CF3I has much lower impacts on the ozone layer and can be a qualified substitute of CF3Br in engine nacelles.

  10. CF3CH(ONO)CF3: Synthesis, IR spectrum, and use as OH radical source for kinetic and mechanistic studies

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Hurley, MD; Ball, JC;

    2003-01-01

    The synthesis, IR spectrum, and first-principles characterization of CF3CH(ONO)CF3 as well as its use as an OH radical source in kinetic and mechanistic studies are reported. CF3CH(ONO)CF3 exists in two conformers corresponding to rotation about the RCO-NO bond. The more prevalent trans conformer...

  11. Spontaneous intracranial hypotension.

    LENUS (Irish Health Repository)

    Fullam, L

    2012-01-31

    INTRODUCTION: Spontaneous\\/primary intracranial hypotension is characterised by orthostatic headache and is associated with characteristic magnetic resonance imaging findings. CASE REPORT: We present a case report of a patient with typical symptoms and classical radiological images. DISCUSSION: Spontaneous intracranial hypotension is an under-recognised cause of headache and can be diagnosed by history of typical orthostatic headache and findings on MRI brain.

  12. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  13. Halogenation effects on electron collisions with CF3Cl, CF2Cl2, and CFCl3

    Science.gov (United States)

    Freitas, T. C.; Lopes, A. R.; Azeredo, A. D.; Bettega, M. H. F.

    2016-04-01

    We report differential and integral elastic cross sections for low-energy electron collisions with CF3Cl, CF2Cl2, and CFCl3 molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)] and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ∗ resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.

  14. Cross sections for elastic scattering of electrons by CF3Cl, CF2Cl2, and CFCl3.

    Science.gov (United States)

    Hoshino, M; Horie, M; Kato, H; Blanco, F; García, G; Limão-Vieira, P; Sullivan, J P; Brunger, M J; Tanaka, H

    2013-06-07

    Differential, integral, and momentum transfer cross sections have been determined for the elastic scattering of electrons from the molecules CF3Cl, CF2Cl2, and CFCl3.With the help of a crossed electron beam-molecular beam apparatus using the relative flow technique, the ratios of the elastic differential cross sections (DCSs) of CF3Cl, CF2Cl2, and CFCl3 to those of He were measured in the energy region from 1.5 to 100 eV and at scattering angles in the range 15° to 130°. From those ratios, the absolute DCSs were determined by utilizing the known DCS of He. For CF3Cl and CF2Cl2, at the common energies of measurement, we find generally good agreement with the results from the independent experiments of Mann and Linder [J. Phys. B 25, 1621 (1992); and ibid. 25, 1633 (1992)]. In addition, as a result of progressively substituting a Cl-atom, undulations in the angular distributions have been found to vary in a largely systematic manner in going from CF4 to CF3Cl to CF2Cl2 to CFCl3 and to CCl4. These observed features suggest that the elastic scattering process is, in an independently additive manner, dominated by the atomic-Cl atoms of the molecules. The present independent atom method calculation typically supports the experimental evidence, within the screened additivity rule formulation, for each species and for energies greater than about 10-20 eV. Integral elastic and momentum transfer cross sections were also derived from the measured DCSs, and are compared to the other available theoretical and experimental results. The elastic integral cross sections are also evaluated as a part of their contribution to the total cross section.

  15. Simultaneous measurement of (n,γ) and (n,fission) cross sections with the DANCE array

    Science.gov (United States)

    Bredeweg, T. A.; Jandel, M.; Fowler, M. M.; Bond, E. M.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2006-10-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The Detector for Advanced Neutron Capture Experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. Since neutron capture measurements on many of the actinides are complicated by the presence of γ-rays arising from low-energy neutron-induced fission, we are currently using a dual parallel-plate avalanche counter with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. An outline of the current experimental program will be presented as well as results from measurements on ^235U and ^252Cf that utilized the fission-tag detector.

  16. Response studies of fission track detectors within moderators in CAVE A at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S., E-mail: Sabine.Mayer@psi.c [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Boschung, M.; Fiechtner, A.; Hohmann, E. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Fehrenbacher, G.; Radon, T.; Pleskac, R.; Wengenroth, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany)

    2010-12-15

    At the Paul Scherrer Institut (PSI) fission track detectors are routinely used in moderators for determining the ambient dose equivalent in stray radiation fields due to neutrons. At the high-energy field CERF (CERN EU high-energy reference field) at CERN, the response of fission track detectors within two different moderators, where one moderator has an inlay of Pb to increase the response of the detector to high-energy neutrons, was surprisingly similar. To confirm this unexpected behaviour, a measurement campaign in another high-energy field, i.e. CAVE A at the Helmholtzzentrum fuer Schwerionenforschung (GSI) was carried out. CAVE A at GSI is one of few facilities where a stray radiation field with neutrons above 20 MeV can be generated under controlled conditions. Reference doses were obtained by simulating the stray radiation field in the measurement positions. These simulations were carried out independently by GSI and PSI using two different Monte Carlo codes, i.e. Fluka and MCNPX, respectively. In this paper the measurements at GSI are described in detail. The results are then compared to previous measurement campaigns in the radiation field of CERF as well as {sup 241}Am-Be and {sup 252}Cf radionuclide sources, which all feature different neutron spectra. None of these campaigns confirm the improvement in sensitivity of the Pb enhanced moderator compared to the PSI standard moderator in combination with fission track detectors.

  17. Temperature dependent fission fragment distribution in the Langevin equation

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; MA Yu-Gang; ZHENG Qing-Shan; CAI Xiang-Zhou; FANG De-Qing; FU Yao; LU Guang-Cheng; TIAN Wen-Dong; WANG Hong-Wei

    2009-01-01

    The temperature dependent width of the fission fragment distributions was simulated in the Langevin equation by taking two-parameter exponential form of the fission fragment mass variance at scission point for each fission event. The result can reproduce experimental data well, and it permits to make reliable estimate for unmeasured product yields near symmetry fission.

  18. Recovery and use of fission product noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  19. The Effect of CF Herbal Acupuncture by Oswestry Disability Index

    Directory of Open Access Journals (Sweden)

    Cho Tae-Sung

    2001-12-01

    Full Text Available Objective The aim of this study was to assess the effect of CF Herbal Acupuncture for the low back pain by Oswestry Disability Index Method The study population consisted of 10 patients with back pain. CF Herbal Acupuncture was administered one time per 5 days after admission. The degree of improvement was evaluated by Oswestry Disability Index and visual analogue scale(VAS. Oswestry Disability Index consisted of eleven items and they were scored as 5 or 6 points per one item. Results All of the 10 patients, after CF Herbal Acupuncture, showed decreased score by Oswestry Disability Index and VAS. It means that the patient's satisfaction degree increased after treatment. Conclusion These results suggest that The CF Herbal Acupuncture was effective for low back pain

  20. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.

    2004-01-01

    Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...

  1. Fission induced by nucleons at intermediate energies

    CERN Document Server

    Meo, Sergio Lo; Massimi, Cristian; Vannini, Gianni; Ventura, Alberto

    2014-01-01

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Li\\`ege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.

  2. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  3. Fission dynamics within time-dependent Hartree-Fock: boost-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...

  4. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  5. Snowmass CF1 Summary: WIMP Dark Matter Direct Detection

    OpenAIRE

    Cushman, P.; Galbiati,C; McKinsey, DN; Robertson, H; Tait, TMP; Bauer, D.; Borgland, A.; Cabrera, B; Calaprice, F.; Cooley, J.; Empl, T; Essig, R.; Figueroa-Feliciano, E.; Gaitskell, R.; Golwala, S

    2017-01-01

    As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of exp...

  6. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  7. Fission fragment mass and angular distributions: Probes to study non-equilibrium fission

    Indian Academy of Sciences (India)

    R G Thomas

    2015-08-01

    Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the signatures of these non-equilibrium processes based on macroscopic variables. The importance of the sticking time of the dinuclear complex with respect to the equilibration times of various degrees of freedom is emphasized.

  8. Half lives for spontaneous emission of heavy ions from atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M.; Greiner, W.

    1986-01-01

    The analytical superasymmetric fission model is used to estimate the half lives for spontaneous emission of heavy clusters from atomic nuclei. One gets a unified description of the new radioactivities, alpha decay and fission processes. Life-times shorter than 10/sup 30/s are found for the emission of more than 140 different clusters with 2-24 proton numbers and 3-31 neutron numbers. Even the 'stable' nuclides with Z > 40 are metastable with respect to several new decay modes. Solid state nuclear track detectors allow a good discrimination against other disintegration processes.

  9. Fission fragment angular distribution in heavy-ion-induced fission with anomalous behavior

    Science.gov (United States)

    Soheyli, S.; Feizi, B.

    2014-08-01

    Fission fragment angular distribution in heavy-ion-induced fission reactions is of particular importance. Transition state theory is provided to determine the angular distribution of fission fragments which includes standard saddle-point statistical and standard scission-point statistical models. The standard saddle-point statistical model was not able to reproduce the experimental fission fragment angular anisotropies for several heavy-ion-induced fission systems. In contrast to the standard saddle-point model, the standard scission-point statistical model was fairly successful in the prediction of angular anisotropy in heavy-ion-induced fission reaction systems with an anomalous behavior in angular anisotropy of fission fragments, but this model is not widely used as the standard saddle-point statistical model. In this research, a generalized model is introduced for the prediction of fission fragments angular anisotropy in the heavy-ion-induced fission reaction systems having an anomalous behavior. For this purpose, we study the N14,O16,F19+Th232;O16,F19+U238;Mg24,Si28,S32+Pb208;S32+Au197; and O16+Cm248 reaction systems. Finally, it is shown that the presented model is much more successful than previous models.

  10. Bond Alternation in Halogen Substituted Polyacetylene ---Possibility of C-F Bond Length Alternation in (CF)x---

    Science.gov (United States)

    Abdelaty, S. M.; Sasai, M.; Fukutome, H.

    1985-08-01

    Using the Hückel model, we study the π electronic and lattice structures of the ground state of halogen substituted polyacetylene (CX)x where X is F, Cl, Br or I. The halogen substitution always makes the C-C bond length alternation in the main chain and the corresponding band gap smaller than those in unsubstituted polyacetylene (CH)x. (CCl)x, (CBr)x and (CI)x have only the bond alternation in the main chain. (CF)x may take one of the three lattice structures depending on the value of the C-F σ bond force constant; the structure with the bond alternation in the main chain, the one with the bond length alternation in the C-F bonds and the one with coexistence of the two kinds of bond alternation. The structure with the C-F bond length alternation is ferroelectric.

  11. Multimode Spontaneous Parametric Down-Conversion in the Lossy Medium

    CERN Document Server

    Chrapkiewicz, Radoslaw

    2009-01-01

    We study the process of multimode Spontaneous Parametric Down--Conversion (SPDC) in the lossy, one dimensional waveguide. We propose a description using first order Correlation Functions (CF) in the fluorescence fields, as a very fruitful and easy approach providing us with a complete information about the final multimode state. We formulate the equation of the evolution of the multimode CF along the crystal using four characteristic length scales. We solve it analytically in the one mode case and numerically in the multimode case. We capture simultaneous effects of three wave mixing with ultrashort pump, linear propagation and attenuation, and we are able to divide the evolution into three stages and predict it qualitatively. We find that losses do not destroy the quantum properties of SPDC but stabilize the final state.

  12. Spontaneous Rupture of Pyometra

    OpenAIRE

    Fatemeh Mallah; Tahere Eftekhar; Mohammad Naghavi-Behzad

    2013-01-01

    Spontaneous perforation is a very rare complication of pyometra. The clinical findings of perforated pyometra are similar to perforation of the gastrointestinal tract and other causes of acute abdomen. In most cases, a correct and definite diagnosis can be made only by laparotomy. We report two cases of diffuse peritonitis caused by spontaneous perforated pyometra. The first case is a 78-year-old woman with abdominal pain for which laparotomy was performed because of suspected incarcerated he...

  13. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  14. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  15. "UCx fission targets oxidation test stand"

    CERN Document Server

    Lacroix, Rachel

    2014-01-01

    "Set up a rig dedicated to the oxidation of UCx and define a procedure for repeatable, reliable and safe method for converting UC2 fission targets into an acceptable uranium carbide oxide waste for subsequent disposal by the Swiss Authorities."

  16. Shell plus pairing effect arguments for cluster preformation at the nuclear surface in cold fission

    CERN Document Server

    Poenaru, D N

    2016-01-01

    In 1928 G. Gamow as well as Condon and Gurney gave the first explanation of alpha decay as a quantum tunnelling of a preformed particle at the nuclear surface. Soon after experimental discovery in 1984 by Rose and Jones of cluster radioactivity, confirming earlier (1980) predictions by Sandulescu, Poenaru and W. Greiner, a microscopic theory also explained the phenomenon in a similar way. Here we show for the first time that in a spontaneous cold fission process the shell plus pairing corrections calculated with Strutinsky's procedure may give a strong argument for preformation of a light fission fragment near the nuclear surface. It is obtained when the radius of the light fragment, $R_2$, is increased linearly with the separation distance, $R$, of the two fragments, while for $R_2=$~constant one gets the well known two hump potential barrier.

  17. Cluster radioactivity and very asymmetric fission through compact and creviced shapes

    Science.gov (United States)

    Royer, G.; Gupta, Raj K.; Denisov, V. Yu.

    1998-03-01

    The decay of radioactive nuclei which emit heavy clusters such as C, O, Ne, Mg and Si has been studied in the fission valley which leads one spherical nucleus towards two spherical touching nuclei before crossing the barrier. Assuming volume conservation, the macroscopic deformation energy has been calculated within a generalized liquid-drop model taking into account the proximity effects between the cluster and the daughter nucleus. The microscopic corrections have been introduced empirically to reproduce the experimental Q values. The theoretical partial half-lives obtained within the WKB barrier penetration probability are in good agreement with the experimental data. The C, O, Ne, Mg and Si emission looks like a spontaneous fission through very asymmetric compact and creviced shapes formed at the early stage of the tunneling process.

  18. FISSION-TRACK DATING OF A TEPHRA LAYER IN THE ALAT FORMATION OF THE DANDIERO GROUP (DANAKIL DEPRESSION, ERITREA

    Directory of Open Access Journals (Sweden)

    GIULIO BIGAZZI

    2004-12-01

    Full Text Available Attempts to date a biotite separate from a tephra layer recognized near Buia (Danakil Depression, Eritrea in the liwer part of the Homo remains – bearing Dandiero group (formerly attributed to the Danakil Formation using the 39Ar/40Ar method failed because of xenocrystic contamination. For this reason it was applied the fission-track method on glass, since no other phases datable with this technique were present. The quality of glass was very poor for fission-track dating, because of the small size of grains. In addition, after polishing only few glass shards showed useful surfaces for track counting and only 25 spontaneous tracks were counted. The determined fission-track age - 0.75 +/- 0.16 Ma - is a rejuvenated age due to the presence of a certain amount of annealing of spontaneous tracks. An attempt to apply the plateau method for correcting this apparent age failed. A corrected age of 1.3 +/- 0.3 Ma was computed using the size-correction method. In spite of its low precision, this fission-track age represents a significant result, since it corroborates the attribution to Jaramillo Subchron of the normal magnetozone near the base of which the tephra is located. 

  19. Microscopic description of fission in neutron-rich plutonium isotopes with the Gogny-D1M energy density functional

    CERN Document Server

    Rodriguez-Guzman, R

    2014-01-01

    The most recent parametrization D1M of the Gogny energy density functional is used to describe fission in the isotopes $^{232-280}$ Pu. We resort to the methodology introduced in our previous studies [Phys. Rev. C \\textbf{88}, 054325 (2013) and Phys. Rev. C \\textbf {89}, 054310 (2014)] to compute the fission paths, collective masses and zero point quantum corrections within the Hartree-Fock-Bogoliubov framework. The systematics of the spontaneous fission half-lives t$_{SF}$, masses and charges of the fragments in Plutonium isotopes is analyzed and compared with available experimental data. We also pay attention to isomeric states, the deformation properties of the fragments as well as to the competition between the spontaneous fission and $\\alpha$-decay modes. The impact of pairing correlations on the predicted t$_{SF}$ values is demonstrated with the help of calculations for $^{232-280}$Pu in which the pairing strengths of the Gogny-D1M energy density functional are modified by 5 $\\%$ and 10 $\\%$, respective...

  20. Seventy-five years of nuclear fission

    Indian Academy of Sciences (India)

    S S Kapoor

    2015-08-01

    Nuclear fission process is one of the most important discoveries of the twentieth century. In these 75 years since its discovery, the nuclear fission related research has not only provided new insights in the physics of large scale motion, deformation and subsequent division of a heavy nucleus, but has also opened several new frontiers of research in nuclear physics. This article is a narrative giving an overview of the landmarks of the progress in the field.

  1. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  2. MCNP6 Fission Multiplicity with FMULT Card

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Trevor [Los Alamos National Laboratory; Fensin, Michael Lorne [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; McKinney, Gregg W. [Los Alamos National Laboratory

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  3. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  4. Simultaneous measurement of (n, {gamma}) and (n, fission) cross sections with the DANCE 4{pi} BaF{sub 2} array

    Energy Technology Data Exchange (ETDEWEB)

    Bredeweg, T.A. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)]. E-mail: toddb@lanl.gov; Fowler, M.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bond, E.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Chadwick, M.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Clement, R.R.C. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Esch, E.-I. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ethvignot, T. [CEA-DAM, BP 12, 91680 Bruyeres-le-Chatel (France); Granier, T. [CEA-DAM, BP 12, 91680 Bruyeres-le-Chatel (France); Jandel, M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); O' Donnell, J.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Reifarth, R. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Rundberg, R.S. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ullmann, J.L. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Vieira, D.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wilhelmy, J.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wouters, J.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wu, C.Y. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2007-08-15

    We have recently begun a program of high precision measurements of Key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The detector for advanced neutron capture experiments (DANCE), a 4{pi} BaF{sub 2} array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. However, neutron capture measurements on many of the actinides are complicated by the presence of prompt {gamma}-rays arising from low energy neutron-induced fission, which competes with neutron capture to varying degrees. Previous measurements of {sup 235}U using the DANCE array have shown that we can partially resolve capture from fission events based on total {gamma}-ray calorimetry (i.e. total {gamma}-ray energy versus {gamma}-ray multiplicity). The addition of a dedicated fission-tagging detector to the DANCE array has greatly improved our ability to separate these two competing processes. In addition to higher quality neutron capture data, the addition of a fission-tagging detector offers a means to determine the capture-to-fission ratio ({sigma} {sub {gamma}}/{sigma} {sub f}) in a single measurement, which should reduce the effect of systematic uncertainties. We are currently using a dual parallel-plate avalanche counter (PPAC) with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. Results from tests of the fission-tag detector, as well as preliminary results from measurements on {sup 235}U and {sup 252}Cf that utilized the fission-tag detector will be presented.

  5. Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge

    Science.gov (United States)

    Zhang, Renxi; Wang, Jingting; Cao, Xu; Hou, Huiqi

    2016-04-01

    For their distinguished global warming potential (GWP100) and long atmosphere lifespan, CF4, SF6 and SF5CF3 were significant in the field of greenhouse gas research. The details of discharging character and the optimal parameter were discussed by using a Dielectric Barrier Discharge (DBD) reactor to decompose these potent greenhouse gases in this work. The results showed that SF6 could be decomposed by 92% under the conditions of 5 min resident time and 3000 V applied voltage with the partial pressure of 2.0 kPa, 28.2 kPa, and 1.8 kPa for SF6, air and water vapor, respectively. 0.4 kPa CF4 could be decomposed by 98.2% for 4 min resident time with 30 kPa Ar added. The decomposition of SF5CF3 was much more effective than that of SF6 and CF4 and moreover, 1.3 kPa SF5CF3, discharged with 30 kPa O2, Ar and air, could not be detected when the resident time was 80 s, 40 s, and 120 s, respectively. All the results indicated that DBD was a feasible technique for the abatement of potent greenhouse gases. supported by National Natural Science Foundation of China (Nos. 20507004, 21577023)

  6. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    Science.gov (United States)

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu).

  7. Microscopic description of fission in nobelium isotopes with the Gogny-D1M energy density functional

    CERN Document Server

    Rodriguez-Guzman, R

    2016-01-01

    Constrained mean-field calculations, based on the Gogny-D1M energy density functional, have been carried out to describe fission in the isotopes $^{250-260}$No. The even-even isotopes have been considered within the standard Hartree-Fock-Bogoliobov (HFB) framework while for the odd-mass ones the Equal Filling Approximation (HFB-EFA) has been employed. Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, inner and outer barrier heights as well as fission isomer excitation energies are given. Fission paths, collective masses and zero-point quantum vibrational and rotational corrections are used to compute the systematic of the spontaneous fission half-lives t$_\\mathrm{SF}$ both for even-even and odd-mass nuclei. Though there exists a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account within the self-consistent HF...

  8. Microscopic description of fission in nobelium isotopes with the Gogny-D1M energy density functional

    Science.gov (United States)

    Rodríguez-Guzmán, R.; Robledo, L. M.

    2016-11-01

    Constrained mean-field calculations, based on the Gogny-D1M energy density functional, have been carried out to describe fission in the isotopes 250-260No . The even-even isotopes have been considered within the standard Hartree-Fock-Bogoliobov (HFB) framework while for the odd-mass ones the Equal Filling Approximation (HFB-EFA) has been employed. Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, inner and outer barrier heights as well as fission isomer excitation energies are given. Fission paths, collective masses and zero-point quantum vibrational and rotational corrections are used to compute the systematic of the spontaneous fission half-lives t_SF both for even-even and odd-mass nuclei. Though there exists a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account within the self-consistent HFB-EFA blocking procedure, lead to larger t_SF values in odd-mass nuclei as compared with their even-even neighbors. Alpha decay lifetimes have also been computed using a parametrization of the Viola-Seaborg formula. The high quality of the Gogny-D1M functional regarding nuclear masses leads to a very good reproduction of Q_{α} values and consequently of lifetimes.

  9. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  10. Inclusive spectra of hadrons created by color tube fission; 1, Probability of tube fission

    CERN Document Server

    Gedalin, E V

    1997-01-01

    The probability of color tube fission that includes the tube surface small oscillation corrections is obtained with pre-exponential factor accuracy on the basis of previously constructed color tube model. Using these expressions the probability of the tube fission in $n$ point is obtained that is the basis for calculation of inclusive spectra of produced hadrons.

  11. Prompt fission γ -ray spectrum characteristics from 240Pu(sf ) and 242Pu(sf )

    Science.gov (United States)

    Oberstedt, S.; Oberstedt, A.; Gatera, A.; Göök, A.; Hambsch, F.-J.; Moens, A.; Sibbens, G.; Vanleeuw, D.; Vidali, M.

    2016-05-01

    In this paper we present first results for prompt fission γ -ray spectra (PFGS) characteristics from the spontaneous fission (sf) of 240Pu and 242Pu. For 242Pu(sf ) we obtained, after proper unfolding of the detector response, an average energy per photon ɛ¯γ=(0.843 ±0.012 ) MeV, an average multiplicity M¯γ=(6.72 ±0.07 ) , and an average total γ -ray energy release per fission E¯γ ,tot = (5.66 ± 0.06) MeV. The 240Pu(sf ) emission spectrum was obtained by applying a so-called detector-response transformation function determined from the 242Pu spectrum measured in exactly the same geometry. The results are an average energy per photon ɛ¯γ=(0.80 ±0.07 ) MeV, the average multiplicity M¯γ = (8.2 ± 0.4), and an average total γ -ray energy release per fission E¯γ ,tot = (6.6 ± 0.5) MeV. The PFGS characteristics for 242Pu(sf ) are in very good agreement with those from thermal-neutron-induced fission on 241Pu and scales well with the corresponding prompt neutron multiplicity. Our results in the case of 240Pu(sf ), although drawn from a limited number of events, show a significantly enhanced average multiplicity and average total energy, but may be understood from a different fragment yield distribution in 240Pu(sf ) compared to that of 242Pu(sf ).

  12. Case of spontaneous ventriculocisternostomy

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Kanji; Yoshimoto, Hisanori; Harada, Kiyoshi; Uozumi, Tohru (Hiroshima Univ. (Japan). School of Medicine); Kuwabara, Satoshi

    1983-05-01

    The authors experienced a case of spontaneous ventriculocisternostomy diagnosed by CT scan with metrizamide and Conray. Patient was 23-year-old male who had been in good health until one month before admission, when he began to have headache and tinnitus. He noticed bilateral visual acuity was decreased about one week before admission and vomiting appeared two days before admission. He was admitted to our hospital because of bilateral papilledema and remarkable hydrocephalus diagnosed by CT scan. On admission, no abnormal neurological signs except for bilateral papilledema were noted. Immediately, right ventricular drainage was performed. Pressure of the ventricle was over 300mmH/sub 2/O and CSF was clear. PVG and PEG disclosed an another cavity behind the third ventricle, which was communicated with the third ventricle, and occlusion of aqueduct of Sylvius. Metrizamide CT scan and Conray CT scan showed a communication between this cavity and quadrigeminal and supracerebellar cisterns. On these neuroradiological findings, the diagnosis of obstructive hydrocephalus due to benign aqueduct stenosis accompanied with spontaneous ventriculocisternostomy was obtained. Spontaneous ventriculocisternostomy was noticed to produce arrest of hydrocephalus, but with our case, spontaneous regression of such symptoms did not appeared. By surgical ventriculocisternostomy (method by Torkildsen, Dandy, or Scarff), arrest of hydrocephalus was seen in about 50 to 70 per cent, which was the same results as those of spontaneous ventriculocisternostomy. It is concluded that VP shunt or VA shunt is thought to be better treatment of obstructive hydrocephalus than the various kinds of surgical ventriculocisternostomy.

  13. Isotopic fission fragment distributions as a deep probe to fusion-fission dynamics

    CERN Document Server

    Farget, F; Delaune, O; Tarasov, O B; Derkx, X; Schmidt, K -H; Amthor, A M; Audouin, L; Bacri, C -O; Barreau, G; Bastin, B; Bazin, D; Blank, B; Benlliure, J; Caceres, L; Casarejos, E; Chibihi, A; Fernandez-Dominguez, B; Gaudefroy, L; Golabek, C; Grevy, S; Jurado, B; Kamalou, O; Lemasson, A; Lukyanov, S; Mittig, W; Morrissey, D J; Navin, A; Pereira, J; Perrot, L; Rejmund, M; Roger, T; Saint-Laurent, M -G; Savajols, H; Schmitt, C; Sherill, B M; Stodel, C; Taieb, J; Thomas, J -C; Villari, A C

    2012-01-01

    During the fission process, the nucleus deforms and elongates up to the two fragments inception and their final separation at scission deformation. The evolution of the nucleus energy with deformation is determined by the macroscopic properties of the nucleus, and is also strongly influenced by the single-particle structure of the nucleus. The fission fragment distribution is a direct consequence of the deformation path the nucleus has encountered, and therefore is the most genuine experimental observation of the potential energy landscape of the deforming nucleus. Very asymmetric fusion-fission reactions at energy close to the Coulomb barrier, produce well-defined conditions of the compound nucleus formation, where processes such as quasi-fission, pre-equilibrium emission and incomplete fusion are negligible. In the same time, the excitation energy is sufficient to reduce significantly structural effects, and mostly the macroscopic part of the potential is responsible for the formation of the fission fragmen...

  14. Spontaneous Perforation of Pyometra

    Directory of Open Access Journals (Sweden)

    Begüm Yildizhan

    2006-01-01

    Full Text Available Pyometra is the accumulation of purulent material in the uterine cavity. Its reported incidence is 0.01–0.5% in gynecologic patients; however, as far as elderly patients are concerned, its incidence is 13.6% [3]. The most common cause of pyometra is malignant diseases of genital tract and the consequences of their treatment (radiotherapy. Other causes are benign tumors like leiomyoma, endometrial polyps, senile cervicitis, cervical occlusion after surgery, puerperal infections, and congenital cervical anomalies. Spontaneous rupture of the uterus is an extremely rare complication of pyometra. To our knowledge, only 21 cases of spontaneous perforation of pyometra have been reported in English literature since 1980. This paper reports an additional case of spontaneous uterine rupture.

  15. Constraints on Spontaneous Entrainment

    Directory of Open Access Journals (Sweden)

    Richardson Michael J.

    2011-12-01

    Full Text Available Past research has revealed that a person's rhythmic limb movements become spontaneously entrained to an environmental rhythm if a. visual information about the environmental rhythm is available and b. its frequency of the environmental rhythm is near that of the person's movements. Further, this research has demonstrated that if the eyes track the environmental stimulus, the spontaneous entrainment to the environmental rhythm is strengthened. Experiments were performed to investigate two hypotheses that could explain this eye-tracking enhancement of spontaneous entrainment. One hypothesis is that eye tracking allows for the pick up of important coordinative information at the turn-around points of a movement trajectory. Another hypothesis is that the limb movements entrain to the moving eyes through a neuromotor synergy linking the eyes and limb. Results of these experiments will help delineate the informational and dynamical constraints that can impact the acquisition of skilled actions.

  16. [Primary spontaneous pneumomediastinum].

    Science.gov (United States)

    Togashi, K; Hosaka, Y

    2007-12-01

    We report 5 cases of spontaneous pneumomediastinum. They were 4 men and 1 female with a mean age of 17 (14-25). Four patients developed sport-related pneumomediastinum and 1 patient had a karaoke-related condition. Primary spontaneous pneumomediasinum is a rare condition. In addition, there is no previous report describing karaoke-related spontaneous pneumomediastinum. Each of the patients experienced chest pain and/or neck pain before consulting our hospital. Chest roentgenogram and chest computed tomography showed pneumomediastinum without esophageal or tracheal injury. Four patients did not require hospitalization, but 1 patient was necessary to hospitalize for 7 days because of severe chest and neck pain. None of these 5 patients has had any recurrence for more than 1 year. Differentiating this entity from other diseases involving anterior chest pain is important.

  17. CfA3: 185 Type Ia Supernova Light Curves from the CfA

    CERN Document Server

    Hicken, Malcolm; Jha, Saurabh; Kirsher, Robert P; Matheson, Tom; Modjaz, Maryam; Rest, Armin; Wood-Vasey, W Michael

    2009-01-01

    We present multi-band photometry of 185 type-Ia supernovae (SN Ia), with over 11500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously-observed and reduced nearby SN Ia (z < 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of 0.02 mag or better in BVRIr'i' and roughly 0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SN Ia are sufficiently distinct from other SN Ia in their...

  18. NETs and CF Lung Disease: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Robert D. Gray

    2015-01-01

    Full Text Available Cystic Fibrosis (CF is the most common fatal monogenic disease among Caucasians. While CF affects multiple organ systems, the principle morbidity arises from progressive destruction of lung architecture due to chronic bacterial infection and inflammation. It is characterized by an innate immune defect that results in colonization of the airways with bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa from an early age. Within the airway microenvironment the innate immune cells including epithelial cells, neutrophils, and macrophages have all been implicated in the host defense defect. The neutrophil, however, is the principal effector cell facilitating bacterial killing, but also participates in lung damage. This is evidenced by a disproportionately elevated neutrophil burden in the airways and increased neutrophil products capable of tissue degradation, such as neutrophil elastase. The CF airways also contain an abundance of nuclear material that may be originating from neutrophils. Neutrophil extracellular traps (NETs are the product of a novel neutrophil death process that involves the expulsion of nuclear material embedded with histones, proteases, and antimicrobial proteins and peptides. NETs have been postulated to contribute to the bacterial killing capacity of neutrophils, however they also function as a source of proteases and other neutrophil products that may contribute to lung injury. Targeting nuclear material with inhaled DNase therapy improves lung function and reduces exacerbations in CF and some of these effects may be due to the degradation of NETs. We critically discuss the evidence for an antimicrobial function of NETs and their potential to cause lung damage and inflammation. We propose that CF animal models that recapitulate the human CF phenotype such as the CFTR−/− pig may be useful in further elucidating a role for NETs.

  19. Spontaneous Atraumatic Mediastinal Hemorrhage

    Directory of Open Access Journals (Sweden)

    Morkos Iskander BSc, BMBS, MRCS, PGCertMedEd

    2013-04-01

    Full Text Available Spontaneous atraumatic mediastinal hematomas are rare. We present a case of a previously fit and well middle-aged lady who presented with acute breathlessness and an increasing neck swelling and spontaneous neck bruising. On plain chest radiograph, widening of the mediastinum was noted. The bruising was later confirmed to be secondary to mediastinal hematoma. This life-threatening diagnostic conundrum was managed conservatively with a multidisciplinary team approach involving upper gastrointestinal and thoracic surgeons, gastroenterologists, radiologists, intensivists, and hematologists along with a variety of diagnostic modalities. A review of literature is also presented to help surgeons manage such challenging and complicated cases.

  20. Hume without Spontaneous Order

    Directory of Open Access Journals (Sweden)

    John Salter

    2015-01-01

    Full Text Available The question whether it is possible to be both a Humean and a contractarian arises from the interpretation of Hume as a theorist of spontaneous order, a theory that is usually taken to be incompatible with contractarianism. I argue that this interpretation is unconvincing and anachronistic. The real reason why it is problematic to view Hume as a contractarian is not because he is proponent of spontaneous order, but because he is a virtue-ethicist. I argue that Hume adopted and elaborated on the natural law account of the origins of property as conventional, but provided a different and separate account of the obligation to respect property rights.

  1. A sendmail. cf scheme for a large network

    Energy Technology Data Exchange (ETDEWEB)

    Darmohray, T.M.

    1991-08-14

    Like most large networked sites our users depend heavily on the electronic mail system for both internal and off-site communications. Unfortunately the sendmail.cf file, which is used to control the behavior of the sendmail program, is somewhat cryptic and difficult to decipher for the neophyte. So, on one hand you have a highly visible, frequently used utility, and on the other hand a not-so-easily acquired system administration forte. Here is the sendmail topology of our site, what premises we based it on, and the parts of the sendmail.cf files which support the topology.

  2. Snowmass CF1 Summary: WIMP Dark Matter Direct Detection

    CERN Document Server

    Cushman, P; McKinsey, D N; Robertson, H; Tate, T M P; Bauer, D; Borgland, A; Cabrera, B; Calaprice, F; Cooley, J; Empl, T; Essig, R; Figueroa-Feliciano, E; Gaitskell, R; Golwala, S; Hall, J; Hill, R; Hime, A; Hoppe, E; Hsu, L; Hungerford, E; Jacobsen, R; Kelsey, M; Lang, R F; Lippincott, W H; Loer, B; Luitz, S; Mandic, V; Mardon, J; Maricic, J; Maruyama, R; Mohapatra, R; Nelson, H; Orrell, J; Palladino, K; Pantic, E; Partridge, R; Ryd, A; Saab, T; Sadoulet, B; Schnee, R; Shepherd, W; Sonnenschein, A; Sorensen, P; Szydagis, M; Volansky, T; Witherell, M; Wright, D; Zurek, K

    2013-01-01

    As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.

  3. How to pass higher physics for CfE

    CERN Document Server

    Chambers, Paul; Mitchell, John

    2014-01-01

    Get your best grade with this guide to Higher Physics for CfE. We are working with SQA to gain endorsement for this title. This book contains all the advice and support you need to revise successfully for your Higher (for CfE) exam. It combines an overview of the course syllabus with advice from a top expert on how to improve exam performance, so you have the best chance of success. - Refresh your knowledge with complete course notes. - Prepare for the exam with top tips and hints on revision techniques. - Get your best grade with advice on how to gain those vital extra marks

  4. Anatomy of neck configuration in fission decay

    CERN Document Server

    Patra, S K; Satpathy, L

    2010-01-01

    The anatomy of neck configuration in the fission decay of Uranium and Thorium isotopes is investigated in a microscopic study using Relativistic mean field theory. The study includes $^{236}U$ and $^{232}Th$ in the valley of stability and exotic neutron rich isotopes $^{250}U$, $^{256}U$, $^{260}U$, $^{240}Th$, $^{250}Th$, $^{256}Th$ likely to play important role in the r-process nucleosynthesis in stellar evolution. Following the static fission path, the neck configurations are generated and their composition in terms of the number of neutrons and protons are obtained showing the progressive rise in the neutron component with the increase of mass number. Strong correlation between the neutron multiplicity in the fission decay and the number of neutrons in the neck is seen. The maximum neutron-proton ratio is about 5 for $^{260}$U and $^{256}$Th suggestive of the break down of liquid-drop picture and inhibition of the fission decay in still heavier isotopes. Neck as precursor of a new mode of fission decay li...

  5. Fusion-fission study at IUAC: Recent results

    Science.gov (United States)

    Pullanhiotan, Sugathan

    2016-10-01

    Several properties observed in heavy ion induced fission led to the conclusion that fission is not always originated from fully equilibrated compound nucleus. Soon after the collision of two nuclei, it forms a di-nuclear system than can fission before a compound nucleus is formed. This process termed quasi-fission is a major hurdle to the formation of heavier elements by fusion. Fission originated before complete equilibration showed anomalously large angular anisotropy and mass distribution wider than what is expected from compound nucleus fission. The standard statistical model fails to predict the outcome of quasi-fission and currently no dynamical model is fully developed to predict all the features of quasi-fission. Though much progress has been made in recent times, a full understanding of the fission dynamics is still missing. Experiments identifying the influence of entrance channel parameters on dynamics of fusion-fission showed contrasting results. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission dynamics using mass distribution, angular distribution and neutron multiplicity measurements in mass region around A ∼ 200. Recent measurement on mass distribution of fission fragment from reaction 19 F +206,208 Pb around fusion barrier energy showed the influence of multi-mode fission in enhancing the mass variance at low excitation energy. In this talk I will present some of these results.

  6. Electron and positron scattering from $CF_{3}$ I molecules below 600 eV a comparison with $CF_{3}$ H

    CERN Document Server

    Kawada, M K; Kimura, M

    2000-01-01

    The total cross-sections (TCSs) for electron and positron scattering from CF/sub 3/I molecules have been studied experimentally. A theoretical analysis based on the continuum multiple-scattering (CMS) method has been performed to understand the origin of resonances and the elastic cross-sections. The present TCS for electron scattering is found to be larger by about 20% than that of T. Underwood-Lemons, D.C. Winkler, J.A. Tossel, J.H. Moore [J. Chem. Phys. 100 (1994) 9117] although the general shape agrees well in the entire energy studied. The difference in the cross-sections for CF/sub 3/I and CF /sub 3/H is explained by the sizes and the dipole moments of these molecules. (20 refs).

  7. On spontaneous scalarization

    CERN Document Server

    Salgado, M; Nucamendi, U; Salgado, Marcelo; Sudarsky, Daniel; Nucamendi, Ulises

    1998-01-01

    We study in the physical frame the phenomenon of spontaneous scalarization that occurs in scalar-tensor theories of gravity for compact objects. We discuss the fact that the phenomenon occurs exactly in the regime where the Newtonian analysis indicates it should not. Finally we discuss the way the phenomenon depends on the equation of state used to describe the nuclear matter.

  8. Spontaneous transverse colon volvulus.

    Science.gov (United States)

    Sana, Landolsi; Ali, Gassara; Kallel, Helmi; Amine, Baklouti; Ahmed, Saadaoui; Ali, Elouer Mohamed; Wajdi, Chaeib; Saber, Mannaï

    2013-01-01

    We report a case of spontaneous transverse colon volvulus in a young healthy woman. It constitutes an unusual case since it occurred in a young healthy woman with a subacute onset and no aetiological factor has been found. Its diagnosis is still challenging. Prompt recognition with emergency intervention constitutes the key to successful outcome.

  9. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    Science.gov (United States)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-10-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  10. Nuclear fission problem and Langevin equation

    Directory of Open Access Journals (Sweden)

    M Sakhaee

    2011-12-01

    Full Text Available  A combined dynamical and statistical model for fission was employed in our calculation. There is no doubt that a Langevin description plus a Monte Carlo treatment of the evaporation processes provide the most adequate dynamical description. In this paper, we would consider a strongly shaped dependent friction force and we use the numerical method rather than the analytical one. The objective of this article is to calculate the time dependent fission widths of the 224Th nucleus. The fission widths were calculated with both chaos-weighted wall friction (CWWF and wall friction (WF dissipations. The calculations are repeated for 100000 trajectories. The result was compared to the others' work. We use nuclear elongation coordinate with time and it is necessary to repeat the small steps many times to improve the accuracy.

  11. Energy partition in low energy fission

    CERN Document Server

    Mirea, M

    2011-01-01

    The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the another separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The fission path is obtained in the frame of the macroscopic-microscopic model. The single particle level schemes are obtained within the two center Woods-Saxon shell model. It is shown that the available intrinsic dissipated energy is not shared proportionally to the masses of the two fission fragments. If the heavy fragment possesses nucleon numbers close to the magic ones, the accumulated intrinsic excitation energy is lower than that of the light fragment.

  12. Solar vs. Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per

  13. Prompt fission neutron emission: Problems and challenges

    Directory of Open Access Journals (Sweden)

    Hambsch F.-J.

    2013-12-01

    Full Text Available This paper presents some of the challenges ahead of us even after 75 years of the discovery of the fission process and large progress made since then. The focus is on application orientation, which requires improved measurements on fission cross-sections and neutron and γ-ray multiplicities. Experimental possibilities have vastly improved the past decade leading to developments of highly sophisticated detector systems and the use of digital data acquisition and signal processing. The development of innovative fast nuclear reactor technology needs improved respective nuclear data. Advancements in theoretical modelling also require better experimental data. Theory has made progress in calculating fission fragment distributions (i.e. GEF code as well as prompt neutron and γ-ray emission to catch up with the improved experiments.

  14. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  15. Dissipative dynamics in quasi-fission

    CERN Document Server

    Oberacker, V E; Simenel, C

    2014-01-01

    Quasi-fission is the primary reaction mechanism that prevents the formation of superheavy elements in heavy-ion fusion experiments. Employing the time-dependent density functional theory approach we study quasi-fission in the systems $^{40,48}$Ca+$^{238}$U. Results show that for $^{48}$Ca projectiles the quasi-fission is substantially reduced in comparison to the $^{40}$Ca case. This partly explains the success of superheavy element formation with $^{48}$Ca beams. For the first time, we also calculate the repartition of excitation energies of the two fragments in a dynamic microscopic theory. The system is found in quasi-thermal equilibrium only for reactions with $^{40}$Ca. The differences between both systems are interpreted in terms of initial neutron to proton asymmetry of the colliding partners.

  16. Fission Enhanced diffusion of uranium in zirconia

    CERN Document Server

    Bérerd, N; Moncoffre, N; Sainsot, P; Faust, H; Catalette, H

    2005-01-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin $^{235}UO\\_2$ layer in direct contact with an oxidized zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 10$^{11}$ ions cm$^{-2}$ s$^{-1}$ and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10$^{-15}$ cm$^2$ s$^{-1}$ at 480$\\circ$C and compared to uranium thermal diffusion data in ZrO$\\_2$ in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  17. Phase Transition Induced Fission in Lipid Vesicles

    CERN Document Server

    Leirer, C; Myles, V M; Schneider, M F

    2010-01-01

    In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (Tfission of the neck, while the mother vesicle remains intact. Pearling tubes which formed upon heating break-up and decay into multiple individual vesicles which then diffuse freely. Finally we demonstrate that mimicking the intracellular bulk viscosity by increasing the bulk viscosity to 40cP does not affect the overall fission process, but leads to a significant decrease in size of the released vesicles.

  18. Research on Nuclear Reaction Network Equation for Fission Product Nuclides

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Nuclear Reaction Network Equation calculation system for fission product nuclides was developed. With the system, the number of the fission product nuclides at different time can be calculated in the different neutron field intensity and neutron energy spectra

  19. Solar Versus Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.

  20. CF-2光电子能谱的Franck-Condon分析%Simulation of negative ion photoelectron spectroscopy of CF2 and franck-condon analysis

    Institute of Scientific and Technical Information of China (English)

    张先燚; 孔祥蕾; 梁军; 李海洋

    2003-01-01

    在Born-Oppenheimer近似下,结合分子轨道从头算,采用谐振子模型和产生函数方法计算了CF2(X1A1)←CF-2(X2B1)跃迁的Franck-Condon因子.用迭代Franck-Condon分析(IFCA)方法对CF-2的光电子能谱进行了拟合,得到了基态CF-2的几何构型:r CF=0.142 9±0.000 1 nm,θFCF=101.10±0.01度.

  1. A Reflection on "The Language Learning Potential" of Written CF

    Science.gov (United States)

    Bitchener, John

    2012-01-01

    For more than 30 years, different opinions about whether written corrective feedback (CF) is a worthwhile pedagogical practice for L2 learning and acquisition have been voiced. Despite the arguments for and against its potential to help L2 learners acquire the target language and the inconclusive findings across studies that have sought answers to…

  2. Problems in the treatment of malabsorption in CF

    NARCIS (Netherlands)

    M. Sinaasappel (Maarten); J. Bouquet (Jan); H.J. Neijenst (H.)

    1985-01-01

    textabstractABSTRACT. Several factors play a role in the cause of malabsorption in CF. Besides the enzyme deficiency in the secretion of the exocrine pancreas, decreased bile‐salt concentration in the gut may also be an important factor in the fat malabsorption. The contribution to the fat absorptio

  3. Vibrational spectrum of CF4 isotopes in an algebraic model

    Indian Academy of Sciences (India)

    Joydeep Choudhury; Srinivasa Rao Karumuri; Nirmal Kumar Sarkar; Ramendu Bhattacharjee

    2009-11-01

    n this paper the stretching vibrational modes of CF4 isotopes are calculated up to first overtone using the one-dimensional vibron model for the first time. The model Hamiltonian so constructed seems to describe the C–F stretching modes accurately using a relatively small set of well-defined parameters.

  4. A fission-fragment-sensitive target for X-ray spectroscopy in neutron-induced fission

    CERN Document Server

    Ethvignot, T; Giot, L; Casoli, P; Nelson, R O

    2002-01-01

    A fission-fragment-sensitive detector built for low-energy photon spectroscopy applications at the WNR 'white' neutron source at Los Alamos is described. The detector consists of eight layers of thin photovoltaic cells, onto which 1 mg/cm sup 2 of pure sup 2 sup 3 sup 8 U is deposited. The detector serves as an active target to select fission events from background and other reaction channels. The fairly small thickness of the detector with respect to transmission of 20-50 keV photons permits the measurement of prompt fission-fragment X-rays. Results with the GEANIE photon spectrometer are presented.

  5. Uranium arc fission reactor for space propulsion

    Science.gov (United States)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    1991-01-01

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  6. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  7. Ionization Chamber for Prompt Fission Neutron Investigations

    OpenAIRE

    ZEYNALOV Sh.; ZEYNALOVA O. V.; Hambsch, Franz-Josef; Sedyshev, P.; SHVETSOV V.

    2014-01-01

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electro...

  8. Fission Yeast Cell Cycle Synchronization Methods.

    Science.gov (United States)

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells.

  9. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  10. Energy Partition in n+233U Fission Reaction

    Institute of Scientific and Technical Information of China (English)

    CHEN; Yong-jing; LIU; Ting-jin; SHU; Neng-chuan

    2012-01-01

    <正>The partition of the total excitation energy between the fission fragments for the n+233U fission reactions are analyzed with a semi-empirical model, and it is a key point for calculating the prompt fission neutron spectrum, and it is still a long-standing problem for nuclear fission, and attracts more and more attention. With the available experimental data, such as the average total number of emitted neutrons, the

  11. Spontaneous shrinkage of vestibular schwannoma

    Directory of Open Access Journals (Sweden)

    Rossana Romani

    2016-01-01

    Conclusion: Early WWR management can be associated with spontaneous shrinkage of VS over time. Prospective clinical study of larger numbers of such cases using the UK VS database may help to identify predictive factors for the spontaneous regression of VS.

  12. Overview of research by the fission group in Trombay

    Indian Academy of Sciences (India)

    R K Chourdhury

    2015-08-01

    Nuclear fission studies in Trombay began nearly six decades ago, with the commissioning of the APSARA research reactor. Early experimental work was based on mass, kinetic energy distributions, neutron and X-ray emission in thermal neutron fission of 235U, which were carried out with indigenously developed detectors and electronics instrumentation. With the commissioning of CIRUS reactor and the availability of higher neutron flux, advanced experiments were carried out on ternary fission, pre-scission neutron emission, fragment charge distributions, quarternary fission, etc. In the late eighties, heavy-ion beams from the pelletron-based medium energy heavy-ion accelerator were available, which provided a rich variety of possibilities in nuclear fission studies. Pioneering work on fragment angular distributions, fission time-scales, transfer-induced fission, -ray multiplicities and mass–energy correlations were carried out, providing important information on the dynamics of the fission process. More recently, work on fission fragment -ray spectroscopy has been initiated, to understand the nuclear structure aspects of the neutron-rich fission fragment nuclei. There have also been parallel efforts to carry out theoretical studies in the areas of shell effects, superheavy nuclei, fusion–fission dynamics, fragment angular distributions, etc. to complement the experimental studies. This paper will provide a glimpse of the work carried out by the fission group at Trombay in the above-mentioned topics.

  13. Developing an "atomic clock" for fission lifetime measurements

    NARCIS (Netherlands)

    Wilschut, H.W.E.M.; Kravchuk, V.

    2004-01-01

    The relevance of measuring fission lifetimes of hot nuclei is briefly discussed. It is shown that K X-ray emission prior to fission can be used to measure fission lifetimes. The preparation of the K-shell hole, the simultaneous nuclear excitation, and the analysis of the X-ray spectra is described.

  14. SYMMETRICAL AND ASYMMETRIC TERNARY FISSION OF HOT NUCLEI

    NARCIS (Netherlands)

    SIWEKWILCZYNSKA, K; WILCZYNSKI, J; LEEGTE, HKW; SIEMSSEN, RH; WILSCHUT, HW; GROTOWSKI, K; PANASIEWICZ, A; SOSIN, Z; WIELOCH, A

    1993-01-01

    Emission of a particles accompanying fusion-fission processes in the Ar-40 + Th-232 reaction at E(Ar-40) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measur

  15. Design and Simulation of High Radioactivity Fission Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    WANG; Qi

    2012-01-01

    <正>It is great effect that the fission neutron release in 239Pu(n, 2n) cross section measurement by using multi-unit gadolinium loaded liquid scintillation detector system, for the 239Pu fission cross section is larger than (n, 2n) cross section one order of magnitude. In order to deduct the effect of fission neutrons,

  16. Fission barrier heights in the A ∼ 200 mass region

    Indian Academy of Sciences (India)

    K Mahata

    2015-08-01

    Statistical model analysis is carried out for - and -induced fission reactions using a consistent description for fission barrier and level density in A ∼ 200 mass region. A continuous damping of shell correction with excitation energy is considered. Extracted fission barriers agree well with the recent microscopic–macroscopic model. The shell corrections at the saddle point were found to be insignificant.

  17. Fission yeast Rad52 phosphorylation restrains error prone recombination pathways.

    Directory of Open Access Journals (Sweden)

    Angela Bellini

    Full Text Available Rad52 is a key protein in homologous recombination (HR, a DNA repair pathway dedicated to double strand breaks and recovery of blocked or collapsed replication forks. Rad52 allows Rad51 loading on single strand DNA, an event required for strand invasion and D-loop formation. In addition, Rad52 functions also in Rad51 independent pathways because of its ability to promote single strand annealing (SSA that leads to loss of genetic material and to promote D-loops formation that are cleaved by Mus81 endonuclease. We have previously reported that fission yeast Rad52 is phosphorylated in a Sty1 dependent manner upon oxidative stress and in cells where the early step of HR is impaired because of lack of Rad51. Here we show that Rad52 is also constitutively phosphorylated in mus81 null cells and that Sty1 partially impinges on such phosphorylation. As upon oxidative stress, the Rad52 phosphorylation in rad51 and mus81 null cells appears to be independent of Tel1, Rad3 and Cdc2. Most importantly, we show that mutating serine 365 to glycine (S365G in Rad52 leads to loss of the constitutive Rad52 phosphorylation observed in cells lacking Rad51 and to partial loss of Rad52 phosphorylation in cells lacking Mus81. Contrariwise, phosphorylation of Rad52-S365G protein is not affected upon oxidative stress. These results indicate that different Rad52 residues are phosphorylated in a Sty1 dependent manner in response to these distinct situations. Analysis of spontaneous HR at direct repeats shows that mutating serine 365 leads to an increase in spontaneous deletion-type recombinants issued from mitotic recombination that are Mus81 dependent. In addition, the recombination rate in the rad52-S365G mutant is further increased by hydroxyurea, a drug to which mutant cells are sensitive.

  18. Fission Matrix Capability for MCNP Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a

  19. Spontaneous healing of spontaneous coronary artery dissection.

    Science.gov (United States)

    Almafragi, Amar; Convens, Carl; Heuvel, Paul Van Den

    2010-01-01

    Spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome and sudden cardiac death. It should be suspected in every healthy young woman without cardiac risk factors, especially during the peripartum or postpartum periods. It is important to check for a history of drug abuse, collagen vascular disease or blunt trauma of the chest. Coronary angiography is essential for diagnosis and early management. We wonder whether thrombolysis might aggravate coronary dissection. All types of treatment (medical therapy, percutaneous intervention or surgery) improve the prognosis without affecting survival times if used appropriately according to the clinical stability and the angiographic features of the involved coronary arteries. Prompt recognition and targeted treatment improve outcomes. We report a case of SCAD in a young female free of traditional cardiovascular risk factors, who presented six hours after thrombolysis for ST elevation myocardial infarction. Coronary angiography showed a dissection of the left anterior descending and immediate branch. She had successful coronary artery bypass grafting, with complete healing of left anterior descending dissection.

  20. Fission yeast meets a legend in Kobe: report of the Eighth International Fission Yeast Meeting.

    Science.gov (United States)

    Asakawa, Haruhiko; Yamamoto, Takaharu G; Hiraoka, Yasushi

    2015-12-01

    The Eighth International Fission Yeast Meeting, which was held at Ikuta Shrine Hall in Kobe, Japan, from 21 to 26 June 2015, was attended by 327 fission yeast researchers from 25 countries (190 overseas and 137 domestic participants). At this meeting, 124 talks were held and 145 posters were presented. In addition, newly developed database tools were introduced to the community during a workshop. Researchers shared cutting-edge knowledge across broad fields of study, ranging from molecules to evolution, derived from the superior model organism commonly used within the fission yeast community. Intensive discussions and constructive suggestions generated in this meeting will surely advance the understanding of complex biological systems in fission yeast, extending to general eukaryotes.

  1. Spontaneous Symmetry Probing

    CERN Document Server

    Nicolis, Alberto

    2011-01-01

    For relativistic quantum field theories, we consider Lorentz breaking, spatially homogeneous field configurations or states that evolve in time along a symmetry direction. We dub this situation "spontaneous symmetry probing" (SSP). We mainly focus on internal symmetries, i.e. on symmetries that commute with the Poincare group. We prove that the fluctuations around SSP states have a Lagrangian that is explicitly time independent, and we provide the field space parameterization that makes this manifest. We show that there is always a gapless Goldstone excitation that perturbs the system in the direction of motion in field space. Perhaps more interestingly, we show that if such a direction is part of a non-Abelian group of symmetries, the Goldstone bosons associated with spontaneously broken generators that do not commute with the SSP one acquire a gap, proportional to the SSP state's "speed". We outline possible applications of this formalism to inflationary cosmology.

  2. Spontaneous Rupture of Pyometra

    Directory of Open Access Journals (Sweden)

    Fatemeh Mallah

    2013-01-01

    Full Text Available Spontaneous perforation is a very rare complication of pyometra. The clinical findings of perforated pyometra are similar to perforation of the gastrointestinal tract and other causes of acute abdomen. In most cases, a correct and definite diagnosis can be made only by laparotomy. We report two cases of diffuse peritonitis caused by spontaneous perforated pyometra. The first case is a 78-year-old woman with abdominal pain for which laparotomy was performed because of suspected incarcerated hernia. The second case is a 61-year-old woman with abdominal pain for which laparotomy was performed because of symptoms of peritonitis. At laparotomy of both cases, 1 liter of pus with the source of uterine was found in the abdominal cavity. The ruptured uterine is also detected. More investigations revealed no malignancy as the reason of the pyometra.

  3. Spontaneous Perforation of Pyometra.

    Science.gov (United States)

    Sharma, Nalini; Singh, Ahanthem Santa; Bhaphiralyne, Wankhar

    2016-04-01

    Pyometra is collection of purulent material which occurs when there is interference with its normal drainage. It is an uncommon condition with incidence of 0.1 to 0.5% of all gynecological patients. Spontaneous rupture of uterus is an extremely rare complication of pyometra. A 65-year-old lady presented with pain abdomen and purulent vaginal discharge. Preoperative diagnosis of pyometra was made by magnetic resonance imaging (MRI). Laparotomy followed by peritoneal lavage and repair of perforation was performed. Although spontaneously perforated pyometra is rare, the condition must be borne in mind with regard to elderly women with acute abdominal pain. Preoperative diagnosis of perforated pyometra is absolutely essential. Computed tomography (CT) and MRI are diagnostic tools. In selected cases conservative approach at surgery can be opted.

  4. Spontaneous Rupture of Pyometra

    Science.gov (United States)

    Mallah, Fatemeh; Eftekhar, Tahere; Naghavi-Behzad, Mohammad

    2013-01-01

    Spontaneous perforation is a very rare complication of pyometra. The clinical findings of perforated pyometra are similar to perforation of the gastrointestinal tract and other causes of acute abdomen. In most cases, a correct and definite diagnosis can be made only by laparotomy. We report two cases of diffuse peritonitis caused by spontaneous perforated pyometra. The first case is a 78-year-old woman with abdominal pain for which laparotomy was performed because of suspected incarcerated hernia. The second case is a 61-year-old woman with abdominal pain for which laparotomy was performed because of symptoms of peritonitis. At laparotomy of both cases, 1 liter of pus with the source of uterine was found in the abdominal cavity. The ruptured uterine is also detected. More investigations revealed no malignancy as the reason of the pyometra. PMID:24024054

  5. Spontaneous recovery from acalculia.

    Science.gov (United States)

    Basso, Anna; Caporali, Alessandra; Faglioni, Pietro

    2005-01-01

    A topic much considered in research on acalculia was its relationship with aphasia. Far less attention has been given to the natural course of acalculia. In this retrospective study, we examined the relationship between aphasia and acalculia in an unselected series of 98 left-brain-damaged patients and the spontaneous recovery from acalculia in 92 acalculic patients with follow-up. There was a significant association between aphasia and acalculia although 19 participants exhibited aphasia with no acalculia and six acalculia with no aphasia. We observed significant improvement between a first examination carried out between 1 and 5 months post-onset and a second examination carried out between 3 and 11 months later (mean: 5 months). The mechanisms of spontaneous recovery are discussed.

  6. Spontaneous nephrocutaneous fistula

    Directory of Open Access Journals (Sweden)

    Alberto A. Antunes

    2004-08-01

    Full Text Available Spontaneous renal fistula to the skin is rare. The majority of cases develop in patients with antecedents of previous renal surgery, renal trauma, renal tumors, and chronic urinary tract infection with abscess formation. We report the case of a 62-year old woman, who complained of urine leakage through the skin in the lumbar region for 2 years. She underwent a fistulography that revealed drainage of contrast agent to the collecting system and images suggesting renal lithiasis on this side. The patient underwent simple nephrectomy on this side and evolved without intercurrences in the post-operative period. Currently, the occurrence of spontaneous renal and perirenal abscesses is extremely rare, except in patients with diabetes, neoplasias and immunodepression in general.

  7. Spontaneous Pneumomediastinum in Labor

    Science.gov (United States)

    Benlamkadem, Said; Labib, Smael; Harandou, Mustapha

    2017-01-01

    Spontaneous pneumomediastinum and subcutaneous emphysema also known as Hamman's syndrome is a very rare complication of labor that is often related to the valsalva maneuver during the labor. In most case, Hamman's syndrome is a self-limiting condition, rarely complicated unless there are underlying respiratory diseases. Chest X-ray can be a useful early diagnostic technique in severe clinical presentation. We report an uneventful pregnancy in a primigravid parturient, which was complicated in the late second stage of labor by the development of subcutaneous emphysema, pneumomediastinum, and mild pneumothorax. Spontaneous recovery occurred after four days of conservative management. This condition shows the major interest of labor analgesia especially locoregional techniques. PMID:28316849

  8. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  9. Spontaneous spinal epidural abscess.

    LENUS (Irish Health Repository)

    Ellanti, P

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  10. Spontaneous Flapping Flight

    Science.gov (United States)

    Vandenberghe, Nicolas; Zhang, Jun; Childress, Stephen

    2004-11-01

    As shown in an earlier work [Vandenberghe, et. al. JFM, Vol 506, 147, 2004], a vertically flapping wing can spontaneously move horizontally as a result of symmetry breaking. In the current experimental study, we investigate the dependence of resultant velocity on flapping amplitude. We also describe the forward thrust generation and how the system dynamically selects a Strouhal number by balancing fluid and body forces. We further compare our model system with examples of biological locomotion, such as bird flight and fish swimming.

  11. [Spontaneous bilateral Petit hernia].

    Science.gov (United States)

    Fontoura, Rodrigo Dias; Araújo, Emerson Silveira de; Oliveira, Gustavo Alves de; Sarmenghi Filho, Deolindo; Kalil, Mitre

    2011-01-01

    Petit's lumbar hernia is an uncommon defect of the posterior abdominal wall that represents less than 1% of all abdominal wall hernias. It is more often unilateral and founded in young females, rarely containing a real herniated sac. There are two different approaches to repair: laparoscopy and open surgery. The goal of this article is to report one case of spontaneous bilateral lumbar Petit's hernia treated with open surgery.

  12. Spontaneous Perforation of Pyometra

    OpenAIRE

    Sharma, Nalini; Singh, Ahanthem Santa; Bhaphiralyne, Wankhar

    2016-01-01

    Pyometra is collection of purulent material which occurs when there is interference with its normal drainage. It is an uncommon condition with incidence of 0.1 to 0.5% of all gynecological patients. Spontaneous rupture of uterus is an extremely rare complication of pyometra. A 65-year-old lady presented with pain abdomen and purulent vaginal discharge. Preoperative diagnosis of pyometra was made by magnetic resonance imaging (MRI). Laparotomy followed by peritoneal lavage and repair of perfor...

  13. Spontaneous bacterial peritonitis

    OpenAIRE

    Al Amri Saleh

    1995-01-01

    Spontaneous bacterial peritonitis (SBP) is an infection of the ascitic fluid without obvious intra-abdominal source of sepsis; usually complicates advanced liver disease. The pathogenesis of the disease is multifactorial: low ascitic protein-content, which reflects defi-cient ascitic fluid complement and hence, reduced opsonic activity is thought to be the most important pathogenic factor. Frequent and prolonged bacteremia has been considered as another pertinent cause of SBP. This disease is...

  14. Fission in intermediate energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S. (Los Alamos National Lab., NM (USA)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L. (Lawrence Livermore National Lab., CA (USA)); Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G. (Lawrence Berkeley Lab., CA (USA)); Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W. (Brookhaven National Lab., Upton, NY (USA)); Dichter, B.; Kaufman, S.; Videbaek, F. (Argonne National Lab. (USA)); Fraenkel, Z.; Mamane, G. (Weizmann Inst. of Science, Rehovoth (Israel)); Cebra, D.; Westfall, G.D. (Michigan State Univ., East Lansing (USA))

    1989-10-09

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.).

  15. Propagation of a constant velocity fission wave

    Science.gov (United States)

    Deinert, Mark

    2011-10-01

    The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.

  16. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  17. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  18. UBA domain containing proteins in fission yeast

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P;

    2003-01-01

    characterised on both the functional and structural levels. One example of a widespread ubiquitin binding module is the ubiquitin associated (UBA) domain. Here, we discuss the approximately 15 UBA domain containing proteins encoded in the relatively small genome of the fission yeast Schizosaccharomyces pombe...

  19. After Apollo: Fission Origin of the Moon

    Science.gov (United States)

    O'Keefe, John A.

    1973-01-01

    Presents current ideas about the fission process of the Moon, including loss of mass. Saturnian rings, center of the Moon, binary stars, and uniformitarianism. Indicates that planetary formation may be best explained as a destructive, rather than a constructive process. (CC)

  20. Formation of asteroid pairs by rotational fission.

    Science.gov (United States)

    Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A

    2010-08-26

    Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.

  1. Brownian shape motion: Fission fragment mass distributions

    Directory of Open Access Journals (Sweden)

    Sierk Arnold J.

    2012-02-01

    Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.

  2. Liquid uranium alloy-helium fission reactor

    Science.gov (United States)

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  3. Fission neutron output measurements at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Haight, Robert C [Los Alamos National Laboratory; Devlin, Matthew J [Los Alamos National Laboratory; Fotiadis, Nikolaos [Los Alamos National Laboratory; Laptev, Alexander [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Taddeucci, Terry N [Los Alamos National Laboratory; Tovesson, Fredrik [Los Alamos National Laboratory; Ullmann, J L [Los Alamos National Laboratory; Wender, Stephen A [Los Alamos National Laboratory; Bredeweg, T A [Los Alamos National Laboratory; Jandel, M [Los Alamos National Laboratory; Vieira, D J [Los Alamos National Laboratory; Wu, Ching - Yen [LLNL; Becker, J A [LLNL; Stoyer, M A [LLNL; Henderson, R [LLNL; Sutton, M [LLNL; Belier, Gilbert [BRUYERES-LE-CHATEL, FRANCE; Chatillon, A [BRUYERES-LE-CHATEL, FRANCE; Granier, Thierry [CEA, BRUYERES-LE-CHATEL, FRANCE; Laurent, Benoit [CEA, BRUYERES-LE-CHATEL, FRANCE; Taieb, Julien [CEA, BRUYERES-LE-CHATEL, FRANCE

    2010-01-01

    Accurate data for both physical properties and fission properties of materials are necessary to properly model dynamic fissioning systems. To address the need for accurate data on fission neutron energy spectra, especially at outgoing neutron energies below about 200 keV and at energies above 8 MeV, ongoing work at LANSCE involving collaborators from LANL, LLNL and CEA Bruyeres-le-Chatel is extending the energy range, efficiency and accuracy beyond previous measurements. Initial work in the outgoing neutron energy range from 1 to 7 MeV is consistent with current evaluations and provides a foundation for extended measurements. As part of these efforts, a new fission fragment detector that reduces backgrounds and improves timing has been designed fabricated and tested, and new neutron detectors are being assessed for optimal characteristics. Simulations of experimental designs are in progress to ensure that accuracy goals are met. Results of these measurements will be incorporated into evaluations and data libraries as they become available.

  4. Neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Pomp S.

    2012-02-01

    Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean

  5. The partial fission of fast spinning asteroids

    Science.gov (United States)

    Tardivel, Simon; Sanchez, Paul; Scheeres, Daniel J.

    2016-10-01

    The spin rates of asteroids systematically change over time due the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. Above a certain spin rate that depends on the body's density, regions of an asteroid can enter in tension, with components held to the body by cohesive forces. When the body fails, deformation or fission can occur. Catastrophic fission leading to complete disruption has been directly observed in active asteroid P/2013 R3. Partial fission, the loss of only part of the body, has been proposed as a mechanism for the formation of binaries and is explored here.The equatorial cavities of (341843) 2008 EV5 and of (185851) 2000 DP107 (a binary system) are consistent with a localized partial fission of the body (LPSC 2016 #1036). The examination of the gravity field of these bodies reveals that a mass placed within these cavities could be shed. In this mechanism, the outward pull of inertial forces creates an average stress at the cavity interface of ≈1 Pa for 2008 EV5 and ≈3 Pa for 2000 DP107 at spin periods of ≈3.15 h for the assumed densities of 1.3 g/cm3.This work continues the study of this partial, localized fission. Specifically, it addresses the issue of the low cohesion necessary to the mechanism. These cohesion values are typically lower than global strength values inferred on other asteroids (10 - 200 Pa), meaning that partial fission may occur prior to larger-scale deformations. Yet, several processes can explain the discrepancy, as they can naturally segregate particles by size. For instance, landslides or granular convection (Brazil nut effect) could bring larger boulders to the equator of the body, while finer particles are left at higher latitudes or sink to the center. Conversely, failure of the interior could bring boulders to the surface. The peculiar profile shape of these asteroids, shared by many binaries (e.g. 1999 KW4, 1996 FG3) may also be a clue of this heterogeneity, as this "spin top" shape is obtained in simulations with

  6. Specific fission J-window and angular momentum dependence of the fission barrier

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi

    1997-04-01

    A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.

  7. The Oklo natural reactor: Cumulative fission yields and retentivity of the symmetric mass region fission products

    Science.gov (United States)

    De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L.

    1980-10-01

    Solid source mass spectrometry has been used to determine the relative cumulative fission yields of five elements in three samples of uranium ore from reactor zones in the Oklo mine site. Eighteen fission chains covering the mass range from 105 ≤ A ≤ 130 have been measured for Pd, Ag, Cd, Sn and Te. These measurements have enabled a number of nuclear parameters to be calculated including the relative proportions of 235U, 238U and 239Pu involved in the fission process. The concentration of the five elements in the Oklo samples have also been measured using the stable isotope dilution technique. These values have then been compared to the estimates of the amount of these elements produced by fission under the conditions that are appropriate to the three samples. This procedure enables the retentivity of the elements in the reactor zones to be evaluated. Our work confirms the fact that Pd and Te are retained almost in their entirety in the samples, whereas the other three elements have been partially lost from the reactor site. Almost all the Cd fission products have been lost, and more than 50% of the Ag and Sn fission-produced material has been removed.

  8. Evolution of isotopic fission-fragment yields with excitation energy

    Directory of Open Access Journals (Sweden)

    Bazin D.

    2012-07-01

    Full Text Available Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism.

  9. Application of the dinuclear system model to fission process

    Directory of Open Access Journals (Sweden)

    Andreev A. V.

    2016-01-01

    Full Text Available A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron–induced fission of 239Pu.

  10. Processes for separating the noble fission gases xenon and krypton from waste gases from nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Henrich, E.; Hufner, R.; Weirich, F.

    1983-08-23

    A process is claimed for separating the noble fission gases xenon and krypton from a prepurified waste gas from a nuclear plant. The prepurified waste gas is brought into contact with liquid Cl/sub 2/CF/sub 2/ as an absorption agent in a first column at an operating pressure which is less than or equal to normal pressure, whereby Xe, Kr, N/sub 2/O, CO/sub 2/, O/sub 2/ and N/sub 2/ are absorbed by the agent. Subsequently, the liquid absorption agent containing the absorbed gases is heated to substantially the boiling temperature of Cl/sub 2/CF/sub 2/ at the operating pressure for vaporizing part of the liquid absorption agent and desorbing the absorbed Kr, N/sub 2/ and O/sub 2/ to thereby separate the Kr and Xe from one another. The desorbed Kr, N/sub 2/ and O/sub 2/ gases are separated from the vaporized absorption agent. The liquid absorption agent which has not been vaporized is treated to recover Xe, N/sub 2/O and CO/sub 2/. Waste gas containing Kr, N/sub 2/ and O/sub 2/ from the head of the first column is brought into contact with liquid Cl/sub 2/CF/sub 2/ as an absorption agent in a second column, at an operating pressure which is less than or equal to normal pressure, whereby Kr, N/sub 2/ and O/sub 2/ are absorbed. Subsequently, the liquid absorption agent in the second column containing the absorbed Kr, N/sub 2/ and O/sub 2/ is heated substantially the boiling temperature of the Cl/sub 2/CF/sub 2/ at the operating pressure for vaporizing part of the liquid absorption agent and desorbing the absorbed N/sub 2/ and O/sub 2/. The liquid Cl/sub 2/CF/sub 2/ which has not been vaporized is treated to recover KR. An apparatus is provided for performing the process.

  11. Theoretical and kinetic studies of the reactions of CF2HCFHCF2H and CF3CFHCFH2 with hydroxyl radicals

    Science.gov (United States)

    Gao, Hong; Liu, Jing-yao; Sun, Chia-chung

    2009-06-01

    The hydrogen abstraction reactions of fluoroalkane isomers CF2HCFHCF2H and CF3CFHCFH2 with the OH radicals have been studied theoretically by a dual-level direct dynamics method. Optimized geometries and frequencies of all the stationary points and extra points along the minimum-energy path are obtained at the BB1K/6-31+G(d,p) level of theory, and then the energy profiles are refined at G3(MP2) level of theory. Using the improved canonical variational transition-state theory (ICVT) with the small-curvature tunneling correction (SCT), the rate constants for each channel are calculated over a wide temperature range of 200-1000 K. Our results show that the tunneling correction plays an important role in the rate constant calculation in the low temperature range. The calculated ICVT/SCT rate constants are consistent with available experimental data. Our calculations indicate the contribution of the abstraction from the -CFH- group of isomeric compounds CF2HCFHCF2H and CF3CFHCFH2 to the overall reactions is quite different over the whole temperature range due to the effect of different groups at both sides of -CFH- group. Furthermore, to further reveal the thermodynamic properties, the enthalpies of formation of the two reactants CF2HCFHCF2H, and CF3CFHCFH2, and the product radicals CF2HCFCF2H, CF2HCFHCF2, CF3CFCFH2, and CF3CFHCFH are obtained by using isodesmic reactions.

  12. Fifty years of nuclear fission: Nuclear data and measurements series

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, J.E.

    1989-06-01

    This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.

  13. PipeCF:a DHT-based Collaborative Filtering recommendation system

    Institute of Scientific and Technical Information of China (English)

    SHEN Rui-min; YANG Fan; HAN Peng; XIE Bo

    2005-01-01

    Collaborative Filtering (CF) technique has proved to be one of the most successful techniques in recommendation systems in recent years. However, traditional centralized CF system has suffered from its limited scalability as calculation complexity increases rapidly both in time and space when the record in the user database increases. Peer-to-peer (P2P) network has attracted much attention because of its advantage of scalability as an alternative architecture for CF systems. In this paper, authors propose a decentralized CF algorithm, called PipeCF, based on distributed hash table (DHT) method which is the most popular P2P routing algorithm because of its efficiency, scalability, and robustness. Authors also propose two novel approaches: significance refinement (SR) and unanimous amplification (UA), to improve the scalability and prediction accuracy of DHT-based CF algorithm. The experimental data show that our DHT-based CF system has better prediction accuracy, efficiency and scalability than traditional CF systems.

  14. Symptoms, Diagnosis, Treatment & Living with CF | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... aggressive treatment. Prenatal Screening Prenatal genetic sampling by amniocentesis and chorionic villus can show CF in the ... samples tissue from the placenta to determine CF. Amniocentesis removes and tests a small amount of fluid ...

  15. Gladstone-Dale constant for CF4. [experimental design

    Science.gov (United States)

    Burner, A. W., Jr.; Goad, W. K.

    1980-01-01

    The Gladstone-Dale constant, which relates the refractive index to density, was measured for CF4 by counting fringes of a two-beam interferometer, one beam of which passes through a cell containing the test gas. The experimental approach and sources of systematic and imprecision errors are discussed. The constant for CF4 was measured at several wavelengths in the visible region of the spectrum. A value of 0.122 cu cm/g with an uncertainty of plus or minus 0.001 cu cm/g was determined for use in the visible region. A procedure for noting the departure of the gas density from the ideal-gas law is discussed.

  16. Compound dual radiation action theory for 252Cf brachytherapy.

    Science.gov (United States)

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  17. Antibiotic therapy for stable non-CF bronchiectasis in adults

    DEFF Research Database (Denmark)

    Fjaellegaard, Katrine; Sin, Melda Dönmez; Browatzki, Andrea

    2016-01-01

    shown to improve QoL and exacerbation rate, whereas findings regarding sputum production, lung function and admissions have been conflicting. Evidence-based treatment algorithms for antibiotic treatment of stable non-CF BE will have to await large-scale, long-term controlled studies.......To provide an update on efficacy and safety of antibiotic treatments for stable non-cystic fibrosis (CF) bronchiectasis (BE). Systematic review based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines was done. Twenty-six studies (1.898 patients) fulfilled......, exacerbations and QoL, whereas studies on aztreonam revealed no significant clinical improvements in the outcomes of interest, including exacerbation rate. Adverse events, including bronchospasm, have been reported in association with tobramycin and aztreonam. Several antibiotic treatment regimens have been...

  18. Oxidation of fluorinated amorphous carbon (a-CF(x)) films.

    Science.gov (United States)

    Yun, Yang; Broitman, Esteban; Gellman, Andrew J

    2010-01-19

    Amorphous fluorinated carbon (a-CF(x)) films have a variety of potential technological applications. In most such applications these films are exposed to air and undergo partial surface oxidation. X-ray photoemission spectroscopy has been used to study the oxidation of fresh a-CF(x) films deposited by magnetron sputtering. The oxygen sticking coefficient measured by exposure to low pressures (<10(-3) Torr) of oxygen at room temperature is on the order of S approximately 10(-6), indicating that the surfaces of these films are relatively inert to oxidation when compared with most metals. The X-ray photoemission spectra indicate that the initial stages of oxygen exposure (<10(7) langmuirs) result in the preferential oxidation of the carbon atoms with zero or one fluorine atom, perhaps because these carbon atoms are more likely to be found in configurations with unsaturated double bonds and radicals than carbon atoms with two or three fluorine atoms. Exposure of the a-CF(x) film to atmospheric pressures of air (effective exposure of 10(12) langmuirs to O(2)) results in lower levels of oxygen uptake than the low pressure exposures (<10(7) langmuirs). It is suggested that this is the result of oxidative etching of the most reactive carbon atoms, leaving a relatively inert surface. Finally, low pressure exposures to air result in the adsorption of both nitrogen and oxygen onto the surface. Some of the nitrogen adsorbed on the surface at low pressures is in a reversibly adsorbed state in the sense that subsequent exposure to low pressures of O(2) results in the displacement of nitrogen by oxygen. Similarly, when an a-CF(x) film oxidized in pure O(2) is exposed to low pressures of air, some of the adsorbed oxygen is displaced by nitrogen. It is suggested that these forms of nitrogen and oxygen are bound to free radical sites in the film.

  19. Secondary scintillation in Ar-CF$_4$ mixtures

    CERN Document Server

    Beschi, Andrea

    2015-01-01

    In order to build a optical time projection chamber that can be used as a tracking detector, it is necessary to study the scintillation proprieties of gases in order to optimize the light emission. A detailed study of the scintillation of Ar-CF$_4$ mixtures at different concentrations has been performed to study the light emission of the gas in a triple GEM detector.

  20. Neutron shielding for a {sup 252} Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M. [Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Eduardo Gallego, Alfredo Lorente [Depto. de Ingenieria Nuclear, ETS Ingenieros Industriales, Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)]. e-mail: fermineutron@yahoo.com

    2006-07-01

    To determine the neutron shielding features of water-extended polyester a Monte Carlo study was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through inelastic collisions and absorption reactions. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide production induced by neutron activation must be considered. In this investigation the Monte Carlo method was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source. During calculations a detailed model for the {sup 252}Cf and the shield was utilized. To compare the shielding features of water extended polyester, the calculations were also made for the bare {sup 252}Cf in vacuum, air and the shield filled with water. For all cases the calculated neutron spectra was utilized to determine the ambient equivalent neutron dose at four sites around the shielding. In the case of water extended polyester and water shielding the calculations were extended to include the prompt gamma rays produced during neutron interactions, with this information the Kerma in air was calculated at the same locations where the ambient equivalent neutron dose was determined. (Author)

  1. Sub-library of Updated Fission Barrier Parameters(CENPL-FBP2)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fission barrier parameters are important to determine the fission character of a nucleus. The fission barrier parameters and fission level densities are key ingredients in calculations of not only fission cross section but also various cross sections, and spectra for the fissile nuclides, even heavy nuclides at higher incident energies. It is necessaries that the accuracy of fission barrier parameters requires even higher, and nuclides with fission barrier parameters can cover even wider nuclear range.

  2. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  3. Spontaneous bacterial peritonitis

    Directory of Open Access Journals (Sweden)

    Al Amri Saleh

    1995-01-01

    Full Text Available Spontaneous bacterial peritonitis (SBP is an infection of the ascitic fluid without obvious intra-abdominal source of sepsis; usually complicates advanced liver disease. The pathogenesis of the disease is multifactorial: low ascitic protein-content, which reflects defi-cient ascitic fluid complement and hence, reduced opsonic activity is thought to be the most important pathogenic factor. Frequent and prolonged bacteremia has been considered as another pertinent cause of SBP. This disease is associated with high mortality and recurrence. Therefore, orompt recognition and institution of therapy and plan of prophylaxis is vital.

  4. Spontaneous Thigh Compartment Syndrome

    Directory of Open Access Journals (Sweden)

    Khan, Sameer K

    2011-02-01

    Full Text Available A young man presented with a painful and swollen thigh, without any history of trauma, illness, coagulopathic medication or recent exertional exercise. Preliminary imaging delineated a haematoma in the anterior thigh, without any fractures or muscle trauma. Emergent fasciotomies were performed. No pathology could be identified intra-operatively, or on follow-up imaging. A review of thigh compartment syndromes described in literature is presented in a table. Emergency physicians and traumatologists should be cognisant of spontaneous atraumatic presentations of thigh compartment syndrome, to ensure prompt referral and definitive management of this limb-threatening condition. [West J Emerg Med. 2011;12(1:134-138].

  5. A parametric study of the output of the optically pumped continuous wave CF4 laser

    NARCIS (Netherlands)

    Hartemink, M.; Godfried, H.P.

    1993-01-01

    A parametric study of laser output versus CF4 pressure and temperature was performed and correlated with a model for the gain in the system, which includes the relevant relaxation processes. Lasing in CF4 was observed at temperatures below 170 K. Cooling the CF4 gas, the output power of the laser in

  6. Rate coefficients and reaction mechanism for the reaction of OH radicals with (E)-CF3CH═CHF, (Z)-CF3CH═CHF, (E)-CF3CF═CHF, and (Z)-CF3CF═CHF between 200 and 400 K: hybrid density functional theory and canonical variational transition state theory calculations.

    Science.gov (United States)

    Balaganesh, M; Rajakumar, B

    2012-10-11

    The rate coefficients of ((E)-CF(3)CH═CHF, (Z)-CF(3)CH═CHF, (E)-CF(3)CF═CHF, and (Z)-CF(3)CF═CHF) + OH reactions were computed using M06-2X/6-31+G(d,p) theory in the temperature range of 200 and 400 K. The possible reaction mechanisms of the ((E)-CF(3)CH═CHF, (Z)-CF(3)CH═CHF, (E)-CF(3)CF═CHF, and (Z)-CF(3)CF═CHF) + OH reactions were examined. The rate coefficients for the addition and abstraction reactions were calculated using canonical variational transition state theory (CVT) and conventional transition state theory (CTST), respectively, and we concluded that abstraction reactions are negligible within the temperature range and addition reactions take the lead role. The small curvature tunnelling (SCT) was included in the computation of the rate coefficients. The temperature dependent rate expressions (in cm(3) molecule(-1) s(-1)) of the (E)-CF(3)CH═CHF, (Z)-CF(3)CH═CHF, (E)-CF(3)CF═CHF, and (Z)-CF(3)CF═CHF + OH reactions between 200 and 400 K are presented. The atmospheric lifetimes and global warming potentials (GWPs) of the test molecules were computed using the rate coefficients obtained in this study, and it is concluded that these molecules are very short-lived in the Earth's atmosphere with low GWPs.

  7. 75 FR 77570 - Airworthiness Directives; General Electric Company CF6 Series Turbofan Engines

    Science.gov (United States)

    2010-12-13

    ... engine mount assembly (also known ] as Configuration 2). These engines are installed on, but not limited... Company CF6 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...) for General Electric (GE) CF6-45/-50 series and CF6-80A series turbofan engines with certain...

  8. Density Functional Studies of the C-F Bond Activation of CF3 Radical by Bare Co +

    Institute of Scientific and Technical Information of China (English)

    张冬菊; 刘成卜; 胡海泉; 刘永军

    2001-01-01

    The C—F bond activation mechanism of CF3 radical by bare Co + has been studied by density functional theory. Three local minima and two first-order saddle points were located for the potential energy surface (PES) of [Co, C, F3] + . The activation barrier involving C-F bond activation was calculated to be only 14.73 kJ/mol, while the largest barrier of 149.29 kJ/mol on the PES involves Co-C bond rupture.The bonding mechanism between Co + , C and F atoms were discussed based on Mulliken population. The relevant bond dissociation energy and thermochmistry data were calculated with the limited experimental values, and the results are in good agreement with the experimental findings.

  9. Pulsed eddy current inspection of CF-188 inner wing spar

    Science.gov (United States)

    Horan, Peter Francis

    Royal Canadian Air Force (RCAF) CF-188 Hornet aircraft engineering authorities have stated a requirement for a Non-Destructive Evaluation (NDE) technique to detect Stress Corrosion Cracking (SCC) in the inner wing spars without fastener or composite wing skin removal. Current radiographic inspections involve significant aircraft downtime, and Pulsed Eddy Current (PEC) inspection is proposed as a solution. The aluminum inner wing spars of CF-188 Hornet aircraft may undergo stress corrosion cracking (SCC) along the spar between the fasteners that secure carbon-fiber/ epoxy composite skin to the wing. Inspection of the spar through the wing skin is required to avoid wing disassembly. The thickness of the wing skin varies between 8 and 20 mm (0.3 to 0.8 inch) and fasteners may be either titanium or ferrous. PEC generated by a probe centered over a fastener, demonstrates capability of detecting simulated cracks within spars with the wing skin present. Comparison of signals from separate sensors, mounted to either side of the excitation coil, is used to detect differences in induced eddy current fields, which arise in the presence of cracks. To overcome variability in PEC signal response due to variation in 1) skin thickness, 2) fastener material and size, and 3) centering over fasteners, a large calibration data set is acquired. Multi-dimensional scores from a Modified Principal Components Analysis (PCA) of the data are reduced to one dimension (1D) using a Discriminant Analysis method. Under inspection conditions, calibrated PCA scores combined with discriminant analysis permit rapid real time go/no-go PEC detection of cracks in CF-188 inner wing spar. Probe designs using both pickup coils and Giant Magnetoresistive (GMR) sensors were tested on samples with the same ferrous and titanium fasteners found on the CF-188. Flaws were correctly detected at lift-offs of up to 21mm utilizing a variety of insulating skin materials simulating the carbon-fibre reinforced polymer

  10. Recent studies in heavy ion induced fission reactions

    Science.gov (United States)

    Choudhury, R. K.

    2001-08-01

    Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus--nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to

  11. Spontaneous telomere to telomere fusions occur in unperturbed fission yeast cells

    OpenAIRE

    Almeida, H.; Godinho Ferreira, M.

    2013-01-01

    Telomeres protect eukaryotic chromosomes from illegitimate end-to-end fusions. When this function fails, dicentric chromosomes are formed, triggering breakage-fusion-bridge cycles and genome instability. How efficient is this protection mechanism in normal cells is not fully understood. We created a positive selection assay aimed at capturing chromosome-end fusions in Schizosaccharomyces pombe. We placed telomere sequences with a head to head arrangement in an intron of a selectable marker co...

  12. A new role for myosin II in vesicle fission.

    Science.gov (United States)

    Flores, Juan A; Balseiro-Gomez, Santiago; Cabeza, Jose M; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

    2014-01-01

    An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis.

  13. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la

  14. Quantum Spontaneous Stochasticity

    CERN Document Server

    Eyink, Gregory L

    2015-01-01

    The quantum wave-function of a massive particle with small initial uncertainties (consistent with the uncertainty relation) is believed to spread very slowly, so that the dynamics is deterministic. This assumes that the classical motions for given initial data are unique. In fluid turbulence non-uniqueness due to "roughness" of the advecting velocity field is known to lead to stochastic motion of classical particles. Vanishingly small random perturbations are magnified by Richardson diffusion in a "nearly rough" velocity field so that motion remains stochastic as the noise disappears, or classical spontaneous stochasticity, . Analogies between stochastic particle motion in turbulence and quantum evolution suggest that there should be quantum spontaneous stochasticity (QSS). We show this for 1D models of a particle in a repulsive potential that is "nearly rough" with $V(x) \\sim C|x|^{1+\\alpha}$ at distances $|x|\\gg \\ell$ , for some UV cut-off $\\ell$, and for initial Gaussian wave-packet centered at 0. We consi...

  15. SABR Fusion-Fission Hybrid Studies

    Science.gov (United States)

    Stewart, Chris

    2012-03-01

    The Subcritical Advanced Burner Reactor (SABR) concept is a fast reactor comprised of a tokamak fusion neutron source based on ITER surrounded by an annular fission core adapted from Integral Fast Reactor designs. Previous work has examined SABR used to help close the nuclear fuel cycle by fissioning the transuranics from spent nuclear fuel. One focus of the present work is a SABR Breeder Reactor to achieve tritium self-sufficieny and a Pu breeding ratio significantly above 1 in order to provide fuel for SABR as well as for MOX-fueled LWR's and other fast reactors. Another focus of this research is the dynamic safety simulation of lloss-of-flow loss-of-heat-sink, loss-of-power, and positive reactivity accidents in the TRU fuel SABR burner reactor. The reactivity effect of thermal-induced bowing of fuel pins has been modeled, which is expected to provide passive safety.

  16. Nuclear Fission Investigation with Twin Ionization Chamber

    Science.gov (United States)

    Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.; Hambsch, F.-J.; Oberstedt, S.

    2011-11-01

    The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weighting potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.

  17. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  18. Decay spectroscopy of exotic fission products

    Science.gov (United States)

    Rykaczewski, Krzysztof

    2014-09-01

    The beta decay studies of exotic fission products have been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The scientific program was focused on the beta-strength function measurements and resulting new half-lives and beta-delayed neutron properties. These observables are important for nuclear structure analysis and modeling of the nucleosynthesis within rapid neutron capture process. The highlights include ten new beta half-lives and several Pn branching ratios including an observation of beta-delayed two-neutron emitter 86Ga. In addition, the measurements of the beta-strength within beta-gamma emission window were performed using a Modular Total Absorption Spectrometer for 22 fission products. These MTAS results are also important for the analysis of reactor anti-neutrino anomaly. The beta decay studies of exotic fission products have been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The scientific program was focused on the beta-strength function measurements and resulting new half-lives and beta-delayed neutron properties. These observables are important for nuclear structure analysis and modeling of the nucleosynthesis within rapid neutron capture process. The highlights include ten new beta half-lives and several Pn branching ratios including an observation of beta-delayed two-neutron emitter 86Ga. In addition, the measurements of the beta-strength within beta-gamma emission window were performed using a Modular Total Absorption Spectrometer for 22 fission products. These MTAS results are also important for the analysis of reactor anti-neutrino anomaly. Supported by the U.S. DOE Office of Nuclear Physics under Contracts DE-AC05-00R22725 (ORNL), DE-FG02-96ER40983 (UTK).

  19. Singlet fission: Towards efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Zdeněk; Wen, Jin [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic); Michl, Josef [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)

    2015-12-31

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  20. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  1. Capture and fission with DANCE and NEUANCE

    Science.gov (United States)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-01

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  2. Capture and fission with DANCE and NEUANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2015-12-15

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  3. Accurate fission data for nuclear safety

    CERN Document Server

    Solders, A; Jokinen, A; Kolhinen, V S; Lantz, M; Mattera, A; Penttila, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S

    2013-01-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons...

  4. Undergraduate Measurements For Fission Reactor Applications

    Science.gov (United States)

    Hicks, S. F.; Kersting, L. J.; Lueck, C. J.; McDonough, P.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Vanhoy, J. R.

    2011-06-01

    Undergraduate students at the University of Dallas (UD) have investigated elastic and inelastic neutron scattering cross sections on structural materials important for criticality considerations in nuclear fission processes. Neutrons scattered off of 23Na and NatFe were detected using neutron time-of-flight techniques at the University of Kentucky Low-Energy Nuclear Accelerator Facility. These measurements are part of an effort to increase the efficiency of power generation from existing fission reactors in the US and in the design of new fission systems. Students have learned the basics of how to operate the Model CN Van de Graaff generator at the laboratory, setup detectors and electronics, use data acquisition systems, and they are currently analyzing the angular dependence of the scattered neutrons for incident neutron energies of 3.57 and 3.80 MeV. Most students participating in the project will use the research experience as the material for their undergraduate research thesis required for all Bachelor of Science students at the University of Dallas. The first student projects on this topic were completed during the summer of 2010; an overview of student participation in this investigation and their preliminary results will be presented.

  5. Simulating an Exploding Fission-Bomb Core

    Science.gov (United States)

    Reed, Cameron

    2016-03-01

    A time-dependent desktop-computer simulation of the core of an exploding fission bomb (nuclear weapon) has been developed. The simulation models a core comprising a mixture of two isotopes: a fissile one (such as U-235) and an inert one (such as U-238) that captures neutrons and removes them from circulation. The user sets the enrichment percentage and scattering and fission cross-sections of the fissile isotope, the capture cross-section of the inert isotope, the number of neutrons liberated per fission, the number of ``initiator'' neutrons, the radius of the core, and the neutron-reflection efficiency of a surrounding tamper. The simulation, which is predicated on ordinary kinematics, follows the three-dimensional motions and fates of neutrons as they travel through the core. Limitations of time and computer memory render it impossible to model a real-life core, but results of numerous runs clearly demonstrate the existence of a critical mass for a given set of parameters and the dramatic effects of enrichment and tamper efficiency on the growth (or decay) of the neutron population. The logic of the simulation will be described and results of typical runs will be presented and discussed.

  6. Comparisons of resistance of CF and Non-CF pathogens to Hydrogen Peroxide and Hypochlorous Acid Oxidants In Vitro

    Directory of Open Access Journals (Sweden)

    Ledet Elisa M

    2011-05-01

    Full Text Available Abstract Background Cystic fibrosis (CF lung disease has a unique profile of pathogens predominated by Pseudomonas aeruginosa (PsA and Staphylococcus aureus (SA. These microorganisms must overcome host immune defense to colonize the CF lungs. Polymorphonuclear neutrophils are a major component of the host defense against bacterial infection. A crucial microbicidal mechanism is the production of oxidants including hydrogen peroxide (H2O2 and hypochlorous acid (HOCl by neutrophils to achieve efficient bacterial killing. To determine to what degrees various CF pathogens resist the oxidants relative to non-CF pathogens, we compared the susceptibility of PsA, SA, Burkholderia cepacia (BC, Klebsiella pneumoniae (KP, and Escherichia coli (EC to various concentrations of H2O2 or HOCl, in vitro. The comparative oxidant-resistant profiles were established. Oxidant-induced damage to ATP production and cell membrane integrity of the microbes were quantitatively assessed. Correlation of membrane permeability and ATP levels with bacterial viability was statistically evaluated. Results PsA was relatively resistant to both H2O2 (LD50 = 1.5 mM and HOCl (LD50 = 0.035 mM. SA was susceptible to H2O2 (LD50 = 0.1 mM but resistant to HOCl (LD50 = 0.035 mM. Interestingly, KP was extremely resistant to high doses of H2O2 (LD50 = 2.5-5.0 mM but was very sensitive to low doses of HOCl (LD50 = 0.015 mM. BC was intermediate to resist both oxidants: H2O2 (LD50 = 0.3-0.4 mM and HOCl (LD50 = 0.025 mM. EC displayed the least resistance to H2O2 (LD50 = 0.2-0.3 mM and HOCl (LD50 = 0.015 mM. The identified profile of H2O2-resistance was KP > PsA > BC > EC > SA and the profile of HOCl-resistance PsA > SA > BC > EC > KP. Moreover, both oxidants affected ATP production and membrane integrity of the cells. However, the effects varied among the tested organisms and, the oxidant-mediated damage correlated differentially with the bacterial viability. Conclusions The order of HOCl

  7. PRAGMA-CF. A quantitative structural lung disease CT outcome in young children with cystic fibrosis

    DEFF Research Database (Denmark)

    Rosenow, Tim; Oudraad, Merel C.J.; Murray, Conor P.;

    2015-01-01

    (PRAGMA-CF), a quantitative measure of airways disease, and compared it to the commonly used CF-CT scoring method. METHODS: CT scans from the Australian Respiratory Early Surveillance Team for CF (AREST CF) cohort in Western Australia were included. PRAGMA-CF was performed by annotating a grid overlaid...... reliability, and thirty paired scans obtained at 1 and 3-years old were used for comparison with a validated standard and biological plausibility. MEASUREMENTS AND MAIN RESULTS: Intraobserver, intraclass correlation coefficients (95% confidence interval) for %Dis, %Bx and %TA were 0.93 (0.86 - 0.97), 0.93 (0...

  8. Atmospheric Chemistry of (CF3)2CF-C≡N: A Replacement Compound for the Most Potent Industrial Greenhouse Gas, SF6.

    Science.gov (United States)

    Sulbaek Andersen, Mads P; Kyte, Mildrid; Andersen, Simone Thirstrup; Nielsen, Claus J; Nielsen, Ole John

    2017-02-07

    FTIR/smog chamber experiments and ab initio quantum calculations were performed to investigate the atmospheric chemistry of (CF3)2CFCN, a proposed replacement compound for the industrially important sulfur hexafluoride, SF6. The present study determined k(Cl + (CF3)2CFCN) = (2.33 ± 0.87) × 10(-17), k(OH + (CF3)2CFCN) = (1.45 ± 0.25) × 10(-15), and k(O3 + (CF3)2CFCN) ≤ 6 × 10(-24) cm(3) molecule(-1) s(-1), respectively, in 700 Torr of N2 or air diluent at 296 ± 2 K. The main atmospheric sink for (CF3)2CFCN was determined to be reaction with OH radicals. Quantum chemistry calculations, supported by experimental evidence, shows that the (CF3)2CFCN + OH reaction proceeds via OH addition to -C(≡N), followed by O2 addition to -C(OH)═N·, internal H-shift, and OH regeneration. The sole atmospheric degradation products of (CF3)2CFCN appear to be NO, COF2, and CF3C(O)F. The atmospheric lifetime of (CF3)2CFCN is approximately 22 years. The integrated cross section (650-1500 cm(-1)) for (CF3)2CFCN is (2.22 ± 0.11) × 10(-16) cm(2) molecule(-1) cm(-1) which results in a radiative efficiency of 0.217 W m(-2) ppb(-1). The 100-year Global Warming Potential (GWP) for (CF3)2CFCN was calculated as 1490, a factor of 15 less than that of SF6.

  9. Carrot fiber (CF) composite films for antioxidant preservation: Particle size effect.

    Science.gov (United States)

    Idrovo Encalada, Alondra M; Basanta, Maria F; Fissore, Eliana N; De'Nobili, Maria D; Rojas, Ana M

    2016-01-20

    The effect of particle size (53, 105 and 210 μm) of carrot fiber (CF) on their hydration properties and antioxidant capacity as well as on the performance of the CF-composite films developed with commercial low methoxyl pectin (LMP) was studied. It was determined that CF contained carotenoids and phenolics co-extracted with polysaccharides (80%), rich in pectins (15%). CF showed antioxidant activity and produced homogeneous calcium-LMP-based composites. The 53-μm-CF showed the lowest hydration capability and produced the least elastic and deformable composite film due probably to CF bridged by calcium-crosslinked LMP chains. Antioxidant activity associated to the loaded CF was found in composites. When L-(+)-ascorbic acid (AA) was also loaded, its hydrolytic stability increased with the decrease in CF-particle size, showing the lowest stability in the 0%-CF- and 210 μm-CF-LMP films. Below ≈ 250 μm, the particle size determined the hydration properties of pectin-containing CF, affecting the microstructure and water mobility in composites.

  10. Negative Pion Induced Fission with Heavy Target Nuclei

    Institute of Scientific and Technical Information of China (English)

    G. Sher; Mukhtar A. Rana; S. Manzoor; M. I. Shahzad

    2011-01-01

    We investigate fission induced by negative pions in copper and bismuth targets using CR-39 dielectric track detectors. The target-detector assemblies in Air-geometric configuration were exposed at the AGS facility of Brookhaven National Laboratory, USA. The exposed detectors were chemically etched under appropriate etching conditions and scanned to collect data in the form of fission fragments tracks produced as a result of interaction of pions with the target nuclei. Using the track counts, the experimental fission cross sections for copper and bismuth have been measured at energies of 500, 672, 1068 and 1665 MeV and compared with the calculation using the Cascade-Exciton Model code (CEM95). The values of fission probability based on experimental fission cross-sections have been compared with the theoretically calculated values of fission probabilities obtained using the CEM95 code. Good agreement is observed between the measured and computed results.

  11. Spontaneous aortocaval fistula.

    Directory of Open Access Journals (Sweden)

    Rajmohan B

    2002-07-01

    Full Text Available Spontaneous aortocaval fistula is rare, occurring only in 4% of all ruptured abdominal aortic aneurysms. The physical signs can be missed but the presence of low back pain, palpable abdominal aortic aneurysm, machinery abdominal murmur and high-output cardiac failure unresponsive to medical treatment should raise the suspicion. Pre-operative diagnosis is crucial, as adequate preparation has to be made for the massive bleeding expected at operation. Successful treatment depends on management of perioperative haemodynamics, control of bleeding from the fistula and prevention of deep vein thrombosis and pulmonary embolism. Surgical repair of an aortocaval fistula is now standardised--repair of the fistula from within the aneurysm (endoaneurysmorraphy followed by prosthetic graft replacement of the aneurysm. A case report of a 77-year-old woman, initially suspected to have unstable angina but subsequently diagnosed to have an aortocaval fistula and surgically treated successfully, is presented along with a review of literature.

  12. Spontaneous Coronary Artery Dissection.

    Science.gov (United States)

    Tweet, Marysia S; Gulati, Rajiv; Hayes, Sharonne N

    2016-07-01

    Spontaneous coronary artery dissection is an important etiology of nonatherosclerotic acute coronary syndrome, myocardial infarction, and sudden death. Innovations in the catheterization laboratory including optical coherence tomography and intravascular ultrasound have enhanced the ability to visualize intimal disruption and intramural hematoma associated with SCAD. Formerly considered "rare," these technological advances and heightened awareness suggest that SCAD is more prevalent than prior estimates. SCAD is associated with female sex, young age, extreme emotional stress, or extreme exertion, pregnancy, and fibromuscular dysplasia. The clinical characteristics and management strategies of SCAD patients are different than for atherosclerotic heart disease and deserve specific consideration. This review will highlight recent discoveries about SCAD as well as describe current efforts to elucidate remaining gaps in knowledge.

  13. Prompt Fission Neutron Spectra of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  14. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 418 nuclides; (2) Covariance uncertainty data for 185 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions at higher energies for isotopes of F, Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new Decay Data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide

  15. Reactions of (CF3)3BCO with amines and phosphines.

    Science.gov (United States)

    Finze, Maik; Bernhardt, Eduard; Willner, Helge; Lehmann, Christian W

    2006-01-23

    Reactions of tris(trifluoromethyl)borane carbonyl, (CF(3))(3)BCO, with ammonia yielded either a mixture of [NH(4)][(CF(3))(3)BC(O)NH(2)], [NH(4)][(CF(3))(3)BCN], and [NH(4)](2)[{(CF(3))(3)BC(O)}(2)NH] or neat [NH(4)](2)[{(CF(3))(3)BC(O)}(2)NH] depending on the reaction conditions. The salt K[(CF(3))(3)BC(O)NH(2)] was obtained as the sole product from the reaction of NH(3) with K[(CF(3))(3)BC(O)F]. A simple synthesis for cyanotris(trifluoromethyl)borates, M[(CF(3))(3)BCN], was developed by dehydration of M[(CF(3))(3)BC(O)NH(2)] (M = [NH(4)], K) using phosgene. In addition, syntheses of the tris(trifluoromethyl)boron species [(CF(3))(3)BC(O)NH(n)()Pr](-), [(CF(3))(3)BC(O)NMe(2)](-), and (CF(3))(3)BC(O)NMe(3), as well as of (CF(3))(3)BC(O)PMe(3), were performed. All species were characterized by multinuclear NMR spectroscopy. As far as neat substances resulted, IR and Raman spectra were recorded and their thermal behaviors were studied by differential scanning calorimetry. The interpretation of reaction pathways, structures, and vibrational spectra are supported by DFT calculations. The solid-state structure of K(2)[{(CF(3))(3)BC(O)}(2)NH].2MeCN was determined by single-crystal X-ray diffraction.

  16. The wastes of nuclear fission; Les dechets de la fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Doubre, H. [Paris-11 Univ., Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3/CNRS, 91 - Orsay (France)

    2005-07-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  17. Proton induced fission of 181-Ta at relativistic energies

    CERN Document Server

    Ayyad, Y; Casarejos, E; Álvarez-Pol, H; Bacquias, A; Boudard, A; Caamaño, M; Enqvist, T; Föhr, V; Kelić-Heil, A; Kezzar, K; Leray, S; Paradela, C; Pérez-Loureiro, D; Pleskač, R; Tarrío, D

    2012-01-01

    Total fission cross sections of 181-Ta induced by protons at different relativistic energies have been measured at GSI, Darmstadt. The inverse kinematics technique used together with a dedicated set-up, made it possible to determine these cross sections with high accuracy. The new data obtained in this experiment will contribute to the understanding of the fission process at high excitation energies. The results are compared with data from previous experiments and systematics for proton-induced fission cross sections.

  18. Revision of the JENDL FP Fission Yield Data

    Directory of Open Access Journals (Sweden)

    Katakura Jun-ichi

    2016-01-01

    Full Text Available Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011 revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.

  19. Fission fragment mass distributions in reactions populating 200Pb

    CERN Document Server

    Chaudhuri, A; Ghosh, T K; Banerjee, K; Sadhukhan, Jhilam; Bhattacharya, S; Roy, P; Roy, T; Bhattacharya, C; Asgar, Md A; Dey, A; Kundu, S; Manna, S; Meena, J K; Mukherjee, G; Pandey, R; Rana, T K; Srivastava, V; Dubey, R; Kaur, Gurpreet; Saneesh, N; Sugathan, P; Bhattacharya, P

    2016-01-01

    The fission fragment mass distributions have been measured in the reactions 16O + 184W and 19F+ 181Ta populating the same compound nucleus 200Pb? at similar excitation energies. It is found that the widths of the mass distribution increases monotonically with excitation energy, indicating the absence of quasi-fission for both reactions. This is contrary to two recent claims of the presence of quasi-fission in the above mentioned reactions.

  20. Cadinane sesquiterpenoids from the basidiomycete Stereum cf. sanguinolentum BCC 22926.

    Science.gov (United States)

    Bunyapaiboonsri, Taridaporn; Yoiprommarat, Seangaroon; Nopgason, Rujirek; Komwijit, Somjit; Veeranondha, Sukitaya; Puyngain, Pucharapa; Boonpratuang, Thitiya

    2014-09-01

    Stereumins Q-U, together with known stereumins A, B, K, L, and N, as well as ent-strobilols E and G were isolated from the culture of Stereum cf. sanguinolentum BCC 22926. Their structures were elucidated by extensive spectroscopic analyses. The absolute configurations of stereumins A and Q, as well as ent-strobilol E were established by application of the modified Mosher's method. Stereumin T displayed antibacterial activity against Bacilluscereus with a MIC value of 3.97μM.

  1. Planned Closeout of the Cf-252 Loan/Lease Program

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Steven R [ORNL; Patton, Bradley D [ORNL

    2012-09-01

    New funding is sought to pursue planned closeout of the Cf-252 Loan Program. The work will be performed in phases. In the initial phase, users will be surveyed to determine whether they wish to take ownership of sources in their possession, or return them. In the second phase, sources will be recalled from non-DOE entities, and source ownership transfers will be performed. In the third phase, the remaining sources from DOE entities will be recalled. Initial funding of $350K is sought to fund the first phase, and to plan execution of the remaining phases given information collected from user surveys.

  2. Material recognition by using a tagged {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G. [Dipartimento di Fisica dell Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)], E-mail: viesti@pd.infn.it; Cossutta, L. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pino, F.; Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of)

    2008-08-11

    Material recognition by measuring simultaneously the transmission of neutron and gamma ray produced by a {sup 252}Cf source has been studied, determining the average atomic number resolving power. In addition, it is demonstrated the possibility to derive direct signatures able to identify light elements (C, N, O) using the measured transmission versus neutron time-of-flight. This allows one to determine the relevant elemental ratios (C/O and C/N) normally used to identify threat organic materials such as explosives and drugs.

  3. Stakeholder Analysis for the CF Counter-IED Training Courses

    Science.gov (United States)

    2010-05-01

    Canada, as represented by the Minister of National Defence, 2010 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la...Element #1a Wedding guests arrived Yes MTP #1c Insufficient critique of answer 1 CoachScript MTP #1c Acquired SA Element #1b No cell phone activity...Acq MTP #2b Cultural sensitivity 0 CoachScript MTP #2b Acquired SA Element #2a Recent CF activity displaced ins Yes MTP #2c Insufficient critique of

  4. Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores

    Science.gov (United States)

    Lardy, Sophie; Fortin, Daniel; Pays, Olivier

    2016-01-01

    Many gregarious species display rapid fission-fusion dynamics with individuals frequently leaving their groups to reunite or to form new ones soon after. The adaptive value of such ephemeral associations might reflect a frequent tilt in the balance between the costs and benefits of maintaining group cohesion. The lack of information on the short-term advantages of group fission, however, hampers our understanding of group dynamics. We investigated the effect of group fission on area-restricted search, a search tactic that is commonly used when food distribution is spatially autocorrelated. Specifically, we determine if roe deer (Capreolus capreolus) improve key aspects of their extensive search mode immediately after fission. We found that groups indeed moved faster and farther over time immediately after than before fission. This gain was highest for the smallest group that resulted from fission, which was more likely to include the fission’s initiator. Sex of group members further mediated the immediate gain in search capacity, as post-fission groups moved away at farthest rate when they were only comprised of males. Our study suggests that social conflicts during the extensive search mode can promote group fission and, as such, can be a key determinant of group fission-fusion dynamics that are commonly observed in gregarious herbivores. PMID:27907143

  5. Tropospheric photooxidation of CF3CH2CHO and CF3(CH22CHO initiated by Cl atoms and OH radicals

    Directory of Open Access Journals (Sweden)

    J. Albaladejo

    2009-11-01

    Full Text Available The absolute rate coefficients for the tropospheric reactions of chlorine (Cl atoms and hydroxyl (OH radicals with CF3CH2CHO and CF3(CH22CHO were measured as a function of temperature (263–371 K and pressure (50–215 Torr of He by pulsed UV laser photolysis techniques. Vacuum UV resonance fluorescence was employed to detect and monitor the time evolution of Cl atoms. Laser induced fluorescence was used in this work as a detection of OH radicals as a function of reaction time. No pressure dependence of the bimolecular rate coefficients, kCl and kOH, was found at all temperatures. At room temperature kCl and kOH were (in 10−11 cm3 molecule−1 s−1: kCl(CF3CH2CHO = (1.55±0.53; kCl(CF3(CH22CHO = (3.39±1.38; kOH(CF3CH2CHO = (0.259±0.050; kOH(CF3(CH22CHO = (1.28±0.24. A slightly negative temperature dependence of kCl was observed for CF3CH2CHO and CF3(CH22CHO, and kOH(CF3CH2CHO. In contrast, kOH(CF3(CH22CHO did not exhibit a temperature dependence in the studied ranged. Arrhenius expressions for these reactions were: kCl(CF3CH2CHO =(4.4±1.0 × 10−11 exp{−(316±68/T} cm3 molecule−1 s−1, kCl(CF3(CH22CHO = (2.9±0.7 × 10−10 exp{−625±80/T} cm3 molecule−1 s−1, kOH(CF3CH2CHO = (7.8±2.2 × 10−12 exp{−(314±90/T} cm3 molecule−1 s−1. The atmospheric impact of the homogeneous removal by OH radicals and Cl atoms of these fluorinated aldehydes is discussed in terms of the global atmospheric lifetimes, taking into account different degradation pathways. The calculated lifetimes show that atmospheric oxidation of CF3(CH2xCHO are globally dominated by OH radicals, however reactions initiated by Cl atoms can act as a source of free radicals at dawn in the troposphere.

  6. Spontaneous pneumomediastinum and Ecstasy abuse.

    OpenAIRE

    Pittman, J A; Pounsford, J C

    1997-01-01

    Ecstasy is an illegal recreationally used drug. A case of a young woman who had taken this drug and was found to have a spontaneous pneumomediastinum is reported. The association of spontaneous pneumomediastinum with drug abuse is discussed. The possible mechanism for this complication of Ecstasy, which has not been previously reported, is discussed.

  7. Screening for spontaneous preterm birth

    NARCIS (Netherlands)

    van Os, M.A.; van Dam, A.J.E.M.

    2015-01-01

    Preterm birth is the most important cause of perinatal morbidity and mortality worldwide. In this thesis studies on spontaneous preterm birth are presented. The main objective was to investigate the predictive capacity of mid-trimester cervical length measurement for spontaneous preterm birth in a l

  8. Pregnancy outcome following spontaneous abortions

    Directory of Open Access Journals (Sweden)

    Swati Agrawal

    2015-12-01

    Conclusions: Previous history of spontaneous abortion is associated with adverse pregnancy outcome. There is increased risk of abortion, preterm delivery, need for caesarean sections and fetal loss in cases of previous spontaneous abortions. These complications and fetal loss can be reduced by booking the patients and giving due antenatal care. [Int J Reprod Contracept Obstet Gynecol 2015; 4(6.000: 1891-1893

  9. Spontaneous low frequency oscillation studies in gallium arsenide fast photoconductors

    CERN Document Server

    Foulon, F; Brullot, B; Petit, P; Bergonzo, P; Rubbelynck, C

    1999-01-01

    We have investigated the influence of spontaneous low frequency oscillations (LFO, f approx 0.01 Hz) occurring at high electric field (>1 kV/cm) in resistive photoconductors (PCD) made from semi-insulating GaAs on the response of the PCDs under pulsed gamma-ray irradiation (E approx 1.2 MeV, tau sub F sub W sub H sub M =30 ns). The PCDs were fabricated using GaAs from five commercially available sources. The PCDs were irradiated with fission neutrons in order to reduce their response time down to less than 100 ps. The amplitude of the LFOs was found to be related to the carrier lifetime, and thus defect concentration in the GaAs material. It was larger for material exhibiting high carrier lifetime. Increasing the localised defect concentration, such as EL2 type defect, through GaAs irradiation with fission neutrons was found to decrease the amplitude of the LFOs. PCDs irradiated at high neutron doses (>1x10 sup 1 sup 5 neutrons/cm sup 2) showed no LFOs. It is suggested that interactions between the propagatin...

  10. Ultrastructural features of the benthic dinoflagellate Ostreopsis cf. ovata (Dinophyceae).

    Science.gov (United States)

    Escalera, Laura; Benvenuto, Giovanna; Scalco, Eleonora; Zingone, Adriana; Montresor, Marina

    2014-05-01

    The toxic benthic dinoflagellate Ostreopsis cf. ovata has considerably expanded its distribution range in the last decade, posing risks to human health. Several aspects of this species are still poorly known. We studied ultrastructural features of cultivated and natural populations of Ostreopsis cf. ovata from the Gulf of Naples (Mediterranean Sea) using confocal laser scanning, and scanning and transmission electron microscopy. New information on the morphology and location of several sulcal plates was gained and a new plate designation is suggested that better fits the one applied to other Gonyaulacales. The microtubular component of the cytoskeleton, revealed using an anti-β-tubulin antibody, consisted of a cortical layer of microtubules arranged asymmetrically in the episome and in the hyposome, complemented by a complex inner microtubular system running from the sulcal area towards the internal part of the cell. The conspicuous canal was delimited by two thick, burin-shaped lobes ending in a tubular ventral opening. The canal was surrounded by mucocysts discharging their content into it. A similar structure has been reported in other benthic and planktonic dinoflagellates and may be interpreted as an example of convergent evolution in species producing large amounts of mucus.

  11. Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae).

    Science.gov (United States)

    Kühdorf, Katja; Münzenberger, B; Begerow, D; Gómez-Laurito, J; Hüttl, R F

    2015-02-01

    Arbutoid mycorrhizal plants are commonly found as understory vegetation in forests worldwide where ectomycorrhiza-forming trees occur. Comarostaphylis arbutoides (Ericaceae) is a tropical woody plant and common in tropical Central America. This plant forms arbutoid mycorrhiza, whereas only associations with Leccinum monticola as well as Sebacina sp. are described so far. We collected arbutoid mycorrhizas of C. arbutoides from the Cerro de la Muerte (Cordillera de Talamanca), Costa Rica, where this plant species grows together with Quercus costaricensis. We provide here the first evidence of mycorrhizal status for the Ascomycete Leotia cf. lubrica (Helotiales) that was so far under discussion as saprophyte or mycorrhizal. This fungus formed arbutoid mycorrhiza with C. arbutoides. The morphotype was described morphologically and anatomically. Leotia cf. lubrica was identified using molecular methods, such as sequencing the internal-transcribed spacer (ITS) and the large subunit (LSU) ribosomal DNA regions, as well as phylogenetic analyses. Specific plant primers were used to confirm C. arbutoides as the host plant of the leotioid mycorrhiza.

  12. The chromospherically--active binary CF Tuc revisited

    CERN Document Server

    Dogru, D; Dogru, S S; Zola, S

    2009-01-01

    New high-resolution spectra, of the chromospherically active binary system CF Tuc, taken at the Mt. John University Observatory in 2007, were analyzed using two methods: cross-correlation and Fourier--based disentangling. As a result, new radial velocity curves of both components were obtained. The resulting orbital elements of CF Tuc are: $a_{1}{\\sin}i$=$0.0254\\pm0.0001$ AU, $a_{2}{\\sin}i$=$0.0228\\pm0.0001$ AU, $M_{1}{\\sin}i$=$0.902\\pm0.005$ $M_{\\odot}$, and $M_{2}{\\sin}i$=$1.008\\pm0.006$ $M_{\\odot}$. The cooler component of the system shows H$\\alpha$ and CaII H & K emissions. Our spectroscopic data and recent $BV$ light curves were solved simultaneously using the Wilson-Devinney code. A dark spot on the surface of the cooler component was assumed to explain large asymmetries observed in the light curves. The following absolute parameters of the components were determined: $M_{1}$=$1.11\\pm0.01$ $M_{\\odot}$, $M_{2}$=$1.23\\pm0.01$ $M_{\\odot}$, $R_{1}$=$1.63\\pm0.02$ $R_{\\odot}$, $R_{2}$=$3.60\\pm0.02$ $R_{\\o...

  13. CfA Nearby Supernova Ia Light Curves

    Science.gov (United States)

    Hicken, Malcolm; Berlind, P.; Blondin, S.; Calkins, M.; Challis, P.; Esquerdo, G.; Everett, M.; Fernandez, J.; Jha, S.; Kirshner, R. P.; Latham, D.; Modjaz, M.; Rest, A.; Wood-Vasey, M.

    2007-12-01

    Type Ia supernovae (SN Ia) are central in measuring the accelerated expansion of the Universe and the properties of the underlying dark energy. Nearby SN Ia are compared with distant ones to establish the history of cosmic expansion. In fact, current efforts in SN Ia cosmology are constrained by the limited number of well-observed nearby SN Ia. A significantly improved sample of nearby SN Ia, fully covering the space of Ia properties, is needed to maximize the utility of high-redshift SN Ia. Our ongoing project at the CfA has collected such a set of 170 SN Ia. We have used the FLWO 1.2m telescope. About half of our objects were observed in UBVRI with the 4Shooter camera and have an average of 10 epochs each while the other half was taken in UBVr'i' with the Keplercam instrument and have an average of 17 epochs each. We have now reduced this sample of over 25000 images and present calibrated light curves of these SN Ia along with an analysis of their properties. The CfA Supernova program is supported in part by the National Science Foundation through grant AST-0606772 to Harvard University.

  14. Mechanism of Ternary Fission in System 197Au+197Au at 15 AMeV

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>For very heavy nuclear systems there is very clear evidence for fission into three comparable mass fragments. The responsible mechanisms for this type of fission are the direct ternary fission and

  15. Transcriptome Analysis of the Cf-12-Mediated Resistance Response to Cladosporium fulvum in Tomato

    Science.gov (United States)

    Xue, Dong-Qi; Chen, Xiu-Ling; Zhang, Hong; Chai, Xin-Feng; Jiang, Jing-Bin; Xu, Xiang-Yang; Li, Jing-Fu

    2017-01-01

    Cf-12 is an effective gene for resisting tomato leaf mold disease caused by Cladosporium fulvum (C. fulvum). Unlike many other Cf genes such as Cf-2, Cf-4, Cf-5, and Cf-9, no physiological races of C. fulvum that are virulent to Cf-12 carrying plant lines have been identified. In order to better understand the molecular mechanism of Cf-12 gene resistance response, RNA-Seq was used to analyze the transcriptome changes at three different stages of C. fulvum infection (0, 4, and 8 days post infection [dpi]). A total of 9100 differentially expressed genes (DEGs) between 4 and 0 dpi, 8643 DEGs between 8 and 0 dpi and 2547 DEGs between 8 and 4 dpi were identified. In addition, we found that 736 DEGs shared among the above three groups, suggesting the presence of a common core of DEGs in response to C. fulvum infection. These DEGs were significantly enriched in defense-signaling pathways such as the calcium dependent protein kinases pathway and the jasmonic acid signaling pathway. Additionally, we found that many transcription factor genes were among the DEGs, indicating that transcription factors play an important role in C. fulvum defense response. Our study provides new insight on the molecular mechanism of Cf resistance to C. fulvum, especially the unique features of Cf-12 in responding to C. fulvum infection. PMID:28105042

  16. An atmospheric photochemical source of the persistent greenhouse gas CF4

    Science.gov (United States)

    Jubb, Aaron M.; McGillen, Max R.; Portmann, Robert W.; Daniel, John S.; Burkholder, James B.

    2015-11-01

    A previously uncharacterized atmospheric source of the persistent greenhouse gas tetrafluoromethane, CF4, has been identified in the UV photolysis of trifluoroacetyl fluoride, CF3C(O)F, which is a degradation product of several halocarbons currently present in the atmosphere. CF4 quantum yields in the photolysis of CF3C(O)F were measured at 193, 214, 228, and 248 nm, wavelengths relevant to stratospheric photolysis, to be (75.3 ± 1) × 10-4, (23.7 ± 0.4) × 10-4, (6.6 ± 0.2) × 10-4, and ≤0.4 × 10-4, respectively. A 2-D atmospheric model was used to estimate the contribution of the photochemical source to the global CF4 budget. The atmospheric photochemical production of CF4 from CF3CH2F (HFC-134a), CF3CHFCl (HCFC-124), and CF3CCl2F (CFC-114a) per molecule emitted was calculated to be (1-2.5) × 10-5, 1.0 × 10-4, and 2.8 × 10-3, respectively. Although CF4 photochemical production was found to be relatively minor at the present time, the identified mechanism demonstrates that long-lived products with potential climate impacts can be formed from the atmospheric breakdown of shorter-lived source gases.

  17. Molecular distinction between true centric fission and pericentric duplication-fission

    NARCIS (Netherlands)

    Perry, J; Nouri, S; La, P; Daniel, A; Wu, ZH; Purvis-Smith, S; Northrop, E; Choo, KHA; Slater, HR

    2005-01-01

    Centromere (centric) fission, also known as transverse or lateral centric misdivision, has been defined as the splitting of one functional centromere of a metacentric or submetacentric chromosome to produce two derivative centric chromosomes. It has been observed in a range of organisms and has been

  18. Fission neutron spectra measurements at LANSCE - status and plans

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory; Noda, Shusaku [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Devlin, Matt [Los Alamos National Laboratory; Chatillon, Audrey [CEA-FRANCE; Granier, Thierry [CEA-FRANCE; Taieb, Julien [CEA-FRANCE; Laurent, Benoit [CEA-FRANCE; Belier, Gilbert [CEA-FRANCE; Becker, John A [LLNL; Wu, Ching - Yen [LLNL

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  19. Some aspects of the nuclear fission process; Quelques aspects du processus de fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Netter, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    In the following report one can find first a short general view on the present situation of our knowledge concerning the nuclear fission process, namely on the nucleus going through the saddle-point. Then there are some aspects connected with the excitation energy of the fissioning nucleus. The measurements made at Saclay on the fast neutron fission cross-section of U{sup 233}, U{sup 235}, Pu{sup 239}, U{sup 238} are described at the beginning of this work. It appears that for U{sup 233} there is some characteristic shape modulation of the cross-section curve, in relation with the collective excited state of the deformed nucleus at the saddle-point. Good evidence of this is also given by the study of the relative fission rate with emission of long-range particles; it appears also that this ternary fission rate does not change substantially for neutron between thermal energy and 2 MeV, but that is very lower for the compound nucleus U{sup 239} than for even-even compound nuclei. At the end there are some experiments on the strong 4,5 MeV gamma-ray originated by slow neutron absorption in U{sup 235}. Time-of-flight device is used to establish that this 4,5 MeV gamma-ray seems mostly connected with radiative capture. (author) [French] Le present travail debute par un apercu de l'etat actuel de nos connaissances sur le processus de fission nucleaire, notamment sur le passage par le point-seuil. Puis sont evoques des aspects lies au niveau d'energie d'excitation auquel est porte le noyau qui subit la fission. Les mesures de sections efficaces de fission induite dans {sup 233}U, {sup 235}U, {sup 239}Pu et {sup 238}U par des neutrons rapides effectuees a Saclay sont decrites en premier lieu; elles font apparaitre pour {sup 233}U une ondulation caracteristique du role des etats collectifs d'excitation du noyau deforme au point-seuil. Des experiences sur la fission avec emission de particules de long parcours confirment cet aspect tout en demontrant que

  20. Ceramics in fission and fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1986-04-01

    The role of ceramic components in fission and fusion reactors is described. Almost all of the functions normally performed by ceramics, except mechanical, are required of nuclear ceramics. The oxides of uranium and plutonium are of predominant importance in nuclear applications, but a number of other ceramics play peripheral roles. The unique service conditions under which nuclear ceramics must operate include intense radiation fields, high temperatures and large temperature gradients, and aggressive chemical environments. Examples of laboratory research designed to broaden understanding of the behavior of uranium dioxide in such conditions are given. The programs described include high temperature vaporization, diffusional processes, and interaction with hydrogen.

  1. Spontaneous subgaleal aerocele.

    Science.gov (United States)

    Ibe, M O N; Onu, D O; Igwe, N N

    2014-01-01

    Apart from reporting about a case of spontaneous subgaleal aerocele this paper looks at the possible causes and management also. A 35-year-old Igbo-Nigerian female, about 4 weeks post-natal, with a 10-month old steadily and gradually enlarging mass around the back of her head, including both temporal regions was referred to us. Plain skull radiographs showed air in this mass. Needle puncture produced air leading to immediate and complete flattening of the lesion. A few hours after this procedure while still in the hospital premises, she had generalized convulsions, for which she was hospitalized and treated. With no further attacks, her request for discharge the following day was granted. At the next visit, 7 days later, there was a re-accumulation, which was treated the same way as previously and with the same result. She has not reported back since then, though she was advised to visit us again in 7 day-time. This lesion should be considered when masses on the head are presented. Our health institutions should have adequate investigative facilities.

  2. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  3. Fission energy program of the US Department of Energy, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Robert L.

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.

  4. Half-lives for proton emission, alpha decay, cluster radioactivity, and cold fission processes calculated in a unified theoretical framework

    CERN Document Server

    Duarte, S B; Guzmán, F; Di Marco, A; García, F; Rodríguez, O; Gonçalves, M

    2002-01-01

    Half-life values of spontaneous nuclear decay processes are presented in the framework of the effective liquid drop model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer (VMAS) and Werner-Wheeler's inertia coefficient (WW). The calculated half lives of ground-state to ground-state transitions for proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. These comparisons show that the ELDM is a very efficient model to describe these different decay processes in a same, unified, theoretical framework. A table listing the predicted half-life values, tau sub c , is presented for all possible cases of spontaneous nuclear breakup such that -7.30 -17.0, where tau is the total half life of the parent nucleus.

  5. Spontaneous Baryogenesis without Baryon Isocurvature

    CERN Document Server

    De Simone, Andrea

    2016-01-01

    We propose a new class of spontaneous baryogenesis models that does not produce baryon isocurvature perturbations. The baryon chemical potential in these models is independent of the field value of the baryon-generating scalar, hence the scalar field fluctuations are blocked from propagating into the baryon isocurvature. We demonstrate this mechanism in simple examples where spontaneous baryogenesis is driven by a non-canonical scalar field. The suppression of the baryon isocurvature allows spontaneous baryogenesis to be compatible even with high-scale inflation.

  6. Acupuncture Treatment for Spontaneous Polyhidrosis

    Institute of Scientific and Technical Information of China (English)

    WANG wei-zhi; ZHAO Liang

    2008-01-01

    objective;To compare the therapeutic effects of acupuncture and western medicine on spontaneous polyhidrosis.Methods;Acupuncture at Huatuojiaji points was used to treat 30 cases of spontaneous polyhidrosis and the western medicine was used treat 26 cases for comparison.Results;The total effective rate of the fomler was 96.7%and that of the latter 57.7%.The difference in therapeutic effect between the two groups was significant(P<0.01).Conclusion;The thempeutic effect of acupuncture at Huatuojiaji points on spontaneous polyhidrosis was better than that of western medicine.

  7. Monte Carlo simulation based toy model for fission process

    Science.gov (United States)

    Kurniadi, Rizal; Waris, Abdul; Viridi, Sparisoma

    2016-09-01

    Nuclear fission has been modeled notoriously using two approaches method, macroscopic and microscopic. This work will propose another approach, where the nucleus is treated as a toy model. The aim is to see the usefulness of particle distribution in fission yield calculation. Inasmuch nucleus is a toy, then the Fission Toy Model (FTM) does not represent real process in nature completely. The fission event in FTM is represented by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. By adopting the nucleon density approximation, the Gaussian distribution is chosen as particle distribution. This distribution function generates random number that randomizes distance between particles and a central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. The yield is determined from portion of nuclei distribution which is proportional with portion of mass numbers. By using modified FTM, characteristic of particle distribution in each fission event could be formed before fission process. These characteristics could be used to make prediction about real nucleons interaction in fission process. The results of FTM calculation give information that the γ value seems as energy.

  8. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D. [Argonne National Lab., IL (United States)

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  9. Metal cluster fission: jellium model and Molecular dynamics simulations

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia;

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18^2+ ...

  10. Fission Product Neutron Cross Section Library and Its Reliability Assessment

    Institute of Scientific and Technical Information of China (English)

    QIAN; Jing; SUN; Zheng-jun; LIU; Ting-jin; SHU; Neng-chuan

    2013-01-01

    A complete library of neutron cross section data has been developed for fission product nuclides.It contains data for 1 121 fission product nuclides of mass number A from 66 to 172 and atomic numbers Z from 22 to 72,where involves a lot of very short-lived radioactive ones.The data were taken from better

  11. Fission-track ages from the Precambrian of Shropshire.

    Science.gov (United States)

    Naeser, C.W.; Toghill, P.; Ross, R.J.

    1982-01-01

    Four samples of Longmyndian and Uriconian strata from S of Shrewsbury, England have been processed for apatite and/or zircon fission-track ages. The resultant ages illustrate how depth of burial may affect fission-track ages. The analytical procedures followed were as described in Naeser (1979).-from Authors

  12. Exciton Correlations in Intramolecular Singlet Fission.

    Science.gov (United States)

    Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Appavoo, Kannatassen; Steigerwald, Michael L; Campos, Luis M; Sfeir, Matthew Y

    2016-06-15

    We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.

  13. Rate constants for the reaction of CF3O radicals with hydrocarbons at 298 K

    DEFF Research Database (Denmark)

    Kelly, C.; Treacy, J.; Sidebottom, H.W.;

    1993-01-01

    Rate constant ratios of the reactions of CF3O radicals with a number of hydrocarbons have been determined at 298 +/- 2 K and atmospheric pressure using a relative rate method. Using a previously determined value k(CF30 + C2H6) = 1.2 x 10(-12) cm3 molecule-1 s-1 these rate constant ratios provide......-1. The importance of the reactions of CF3O radicals with hydrocarbons under atmospheric conditions is discussed....

  14. Fission of highly excited nuclei investigated in complete kinematic measurements

    Directory of Open Access Journals (Sweden)

    Rodríguez-Sánchez J.L.

    2013-12-01

    Full Text Available Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections.

  15. Determining isotopic distributions of fission products with a penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Karvonen, P.; Eronen, T.; Elomaa, V.V.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Peraejaervi, K.; Rahaman, S.; Rinta-Antila, S.; Saastamoinen, A.; Sonoda, T.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2010-04-15

    A novel method to determine independent yields in particle-induced fission employing the ion guide technique and ion counting after a Penning trap has been developed. The method takes advantage of the fact that a Penning trap can be used as a precision mass filter, which allows an unambiguous identification of the fission fragments. The method was tested with 25MeV and 50MeV proton-induced fission of {sup 238}U. The data is internally reproducible with an accuracy of a few per cent. A satisfactory agreement was obtained with older ion guide yield measurements in 25MeV proton-induced fission. The results for Rb and Cs yields in 50MeV proton-induced fission agree with previous measurements performed at an isotope separator equipped with a chemically selective ion source. (orig.)

  16. Simple estimate of fission rate during JCO criticality accident

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro [Faculty of Studies on Contemporary Society, Aichi Shukutoku Univ., Nagakute, Aichi (Japan)

    2000-03-01

    The fission rate during JCO criticality accident is estimated from fission-product (FP) radioactivities in a uranium solution sample taken from the preparation basin 20 days after the accident. The FP radioactivity data are taken from a report by JAERI released in the Accident Investigation Committee. The total fission number is found quite dependent on the FP radioactivities and estimated to be about 4x10{sup 16} per liter, or 2x10{sup 18} per 16 kgU (assuming uranium concentration 278.9 g/liter). On the contrary, the time dependence of the fission rate is rather insensitive to the FP radioactivities. Hence, it is difficult to determine the fission number in the initial burst from the radioactivity data. (author)

  17. Fission fragment mass distributions via prompt -ray spectroscopy

    Indian Academy of Sciences (India)

    L S Danu; D C Biswas; B K Nayak; R K Choudhury

    2015-09-01

    The distribution of fragment masses formed in nuclear fission is one of the most striking features of the process. Such measurements are very important to understand the shape evolution of the nucleus from ground state to scission through intermediate saddle points. The fission fragment mass distributions, generally obtained via conventional methods (i.e., by measuring the energy and/or the velocity of the correlated fission fragments) are limited to a mass resolution of 4–5 units. On the other hand, by employing the -ray spectroscopy, it is possible to estimate the yield of individual fission fragments. In this work, determination of the fission fragment mass distribution by employing prompt -ray spectroscopy is described along with the recent results on 238U(18O, f) and 238U(32S, f) systems.

  18. ISOLDE experiment explores new territory in nuclear fission

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    An international collaboration led by the University of Leuven, Belgium, exploiting ISOLDE’s radioactive beams, has recently discovered an unexpected new type of asymmetric nuclear fission, which challenges current theories. The surprising result opens the way for new nuclear structure models and further theories to elucidate the question.   Resonance Ionization Laser Ion Source (RILIS) in action at ISOLDE. RILIS was instrumental in providing the pure beam necessary for the successful nuclear fission experiment. In nuclear fission, the nucleus splits into two fragments (daughter nuclei), releasing a huge amount of energy. Nuclear fission is exploited in power plants to produce energy. From the fundamental research point of view, fission is not yet fully understood decades after its discovery and its properties can still surprise nuclear physicists. The way the process occurs can tell us a lot about the internal structure of the nucleus and the interactions taking place inside the com...

  19. Modelling the widths of fission observables in GEF

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.

    2013-03-01

    Full Text Available The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.

  20. Effective decay time of CF4 secondary scintillation

    Science.gov (United States)

    Margato, L. M. S.; Morozov, A.; Fraga, M. M. F. R.; Pereira, L.; Fraga, F. A. F.

    2013-07-01

    We report on the time evolution of CF4 secondary scintillation in the pressure range from 1 to 5 bar. Two types of MSGC plates were used for generation of the secondary scintillation in electron avalanches. Time spectra of the scintillation were recorded using several broadband and interference filters in the wavelength range from 220 to 800 nm. The visible emission (450-800 nm) shows a mono-exponential profile with a decay time of ~ 15 ns. The UV emission (220-450 nm) exhibits two components. The fast component has an effective decay time ranging from ~ 2 ns (1 bar) to ~ 10 ns (3-5 bar), while the slow component shows a decay time of ~ 40 ns. The slow component accounts for not more than 10% of the integrated UV emission intensity.

  1. Evaluation of Li/CF(x)Cells For Aerospace Applications

    Science.gov (United States)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    2007-01-01

    Panasonic commercialized LiICF(x) cell technology in the 1970's. This technology was a promising primary battery for Aerospace applications such as: Exploration missions, Launch vehicles, Tools and more. This technology offers Wide operation temperature range, Low self-discharge and High specific energy CF(x) cathode material has a theoretical specific energy of 2260 Wh/Kg. Specific energy however achieved as of now is only 10% of theoretical value unless used at a very low rate of C/1000. Research both at Government Labs and Industries is currently in progress to improve the performance. This viewgraph presentation describes the cells, and reviews the results of some of the research using tables and charts.

  2. The dissociative recombination of fluorocarbon ions: II. CF{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, O [PALMS, UMR No 6627 du CNRS, Universite de Rennes I, 35042 Rennes (France); Mitchell, J B A [PALMS, UMR No 6627 du CNRS, Universite de Rennes I, 35042 Rennes (France); LeGarrec, J L [PALMS, UMR No 6627 du CNRS, Universite de Rennes I, 35042 Rennes (France); Florescu-Mitchell, A I [PALMS, UMR No 6627 du CNRS, Universite de Rennes I, 35042 Rennes (France); Rebrion-Rowe, C [PALMS, UMR No 6627 du CNRS, Universite de Rennes I, 35042 Rennes (France); Svendsen, A [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); El Ghazaly, M A [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Andersen, L H [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Ehlerding, A [Department of Physics, Stockholm University, Alba Nova, SE-106 91, Stockholm (Sweden); Viggiano, A A [Air Force Research Laboratory, Space Vehicles Directorate, 29 Randolph Road, Hanscom AFB, MA 01731 (United States); Hellberg, F [Department of Physics, Stockholm University, Alba Nova, SE-106 91, Stockholm (Sweden); Thomas, R D [Department of Physics, Stockholm University, Alba Nova, SE-106 91, Stockholm (Sweden); Zhaunerchyk, V [Department of Physics, Stockholm University, Alba Nova, SE-106 91, Stockholm (Sweden); Geppert, W D [Department of Physics, Stockholm University, Alba Nova, SE-106 91, Stockholm (Sweden); Montaigne, H [Department of Physics, Stockholm University, Alba Nova, SE-106 91, Stockholm (Sweden); Kaminska, M [Swietokrzyska Academy, 25-406 Kielce (Poland); Oesterdahl, F [Department of Physics, Royal Institute of Technology, Alba Nova, SE-106 91, Stockholm (Sweden); Larsson, M [Department of Physics, Stockholm University, Alba Nova, SE-106 91, Stockholm (Sweden)

    2005-05-28

    The dissociative recombination and excitation of CF{sup +} have been measured at the ASTRID and CRYRING storage rings. Though examination of the available potential energy curves would suggest that the recombination rate would be large for this ion, in fact a rate constant of 5.2 {+-} 1.0 x 10{sup -8} (T{sub e}/300){sup -0.8} cm{sup 3} s{sup -1} was found. The recombination cross section at low energies falls off to a minimum at 0.5 eV centre-of-mass collision energy but exhibits resonances at energies above this. The dissociative excitation cross section leading to C{sup +} + F was also measured and this displays an onset beginning at about 7 eV.

  3. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  4. Detection of extragalactic CF+ toward PKS1830-211 -- Chemical differentiation in the absorbing gas

    CERN Document Server

    Muller, S; Black, J H; Amano, T

    2016-01-01

    We report the first extragalactic detection of CF+, the fluoromethylidynium ion, in the z=0.89 absorber toward PKS1830-211. We estimate an abundance of ~3E-10 relative to H2 and that ~1% of fluorine is captured in CF+. The absorption line profile of CF+ is found to be markedly different from that of other species observed within the same tuning, and is notably anti-correlated with CH3OH. On the other hand, the CF+ profile resembles that of [C I]. Our results are consistent with expected fluorine chemistry and point to chemical differentiation in the column of absorbing gas.

  5. Assessment of CF lung disease using motion corrected PROPELLER MRI: a comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Ciet, Pierluigi [General Hospital Ca' Foncello, Radiology Department, Treviso (Italy); Sophia Children' s Hospital, Pediatric Pulmonology Erasmus MC, Rotterdam (Netherlands); Erasmus MC, Radiology, Rotterdam (Netherlands); Serra, Goffredo; Catalano, Carlo [University of Rome ' ' Sapienza' ' , Radiology, Rome (Italy); Bertolo, Silvia; Morana, Giovanni [General Hospital Ca' Foncello, Radiology Department, Treviso (Italy); Spronk, Sandra [Erasmus MC, Radiology, Rotterdam (Netherlands); Erasmus MC, Epidemiology, Rotterdam (Netherlands); Ros, Mirco [Ca' Foncello Hospital, Pediatrics, Treviso (Italy); Fraioli, Francesco [University College London (UCL), Institute of Nuclear Medicine, London (United Kingdom); Quattrucci, Serena [University of Rome Sapienza, Pediatrics, Rome (Italy); Assael, M.B. [Azienda Ospedaliera di Verona, Verona CF Center, Verona (Italy); Pomerri, Fabio [University of Padova, Department of Medicine-DIMED, Padova (Italy); Tiddens, Harm A.W.M. [Sophia Children' s Hospital, Pediatric Pulmonology Erasmus MC, Rotterdam (Netherlands); Erasmus MC, Radiology, Rotterdam (Netherlands)

    2016-03-15

    To date, PROPELLER MRI, a breathing-motion-insensitive technique, has not been assessed for cystic fibrosis (CF) lung disease. We compared this technique to CT for assessing CF lung disease in children and adults. Thirty-eight stable CF patients (median 21 years, range 6-51 years, 22 female) underwent MRI and CT on the same day. Study protocol included respiratory-triggered PROPELLER MRI and volumetric CT end-inspiratory and -expiratory acquisitions. Two observers scored the images using the CF-MRI and CF-CT systems. Scores were compared with intra-class correlation coefficient (ICC) and Bland-Altman plots. The sensitivity and specificity of MRI versus CT were calculated. MRI sensitivity for detecting severe CF bronchiectasis was 0.33 (CI 0.09-0.57), while specificity was 100 % (CI 0.88-1). ICCs for bronchiectasis and trapped air were as follows: MRI-bronchiectasis (0.79); CT-bronchiectasis (0.85); MRI-trapped air (0.51); CT-trapped air (0.87). Bland-Altman plots showed an MRI tendency to overestimate the severity of bronchiectasis in mild CF disease and underestimate bronchiectasis in severe disease. Motion correction in PROPELLER MRI does not improve assessment of CF lung disease compared to CT. However, the good inter- and intra-observer agreement and the high specificity suggest that MRI might play a role in the short-term follow-up of CF lung disease (i.e. pulmonary exacerbations). (orig.)

  6. Reactions of CF3O radicals with selected alkenes and aromatics under atmospheric conditions

    DEFF Research Database (Denmark)

    Kelly, C.; Sidebottom, H.W.; Treacy, J.;

    1994-01-01

    Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed.......Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed....

  7. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  8. Spontaneous intraorbital hematoma: case report

    Directory of Open Access Journals (Sweden)

    Vinodan Paramanathan

    2010-12-01

    Full Text Available Vinodan Paramanathan, Ardalan ZolnourianQueen's Hospital NHS Foundation Trust, Burton on Trent, Staffordshire DE13 0RB, UKAbstract: Spontaneous intraorbital hematoma is an uncommon clinical entity seen in ophthalmology practice. It is poorly represented in the literature. Current evidence attributes it to orbital trauma, neoplasm, vascular malformations, acute sinusitis, and systemic abnormalities. A 65-year-old female presented with spontaneous intraorbital hematoma manifesting as severe ocular pains, eyelid edema, proptosis, and diplopia, without a history of trauma. Computer tomography demonstrated a fairly well defined extraconal lesion with opacification of the paranasal sinuses. The principal differential based on all findings was that of a spreading sinus infection and an extraconal tumor. An unprecedented finding of a spontaneous orbital hematoma was discovered when the patient was taken to theater. We discuss the rarity of this condition and its management.Keywords: hemorrhage, ophthalmology, spontaneous, intra-orbital, hematoma

  9. Evaluation of fission product yields from fission spectrum n+239Pu using a meta analysis of benchmark data

    Science.gov (United States)

    Chadwick, Mark B.

    2009-10-01

    Los Alamos conducted a dual fission-chamber experiment in the 1970s in the Bigten critical assembly to determine fission product data in a fast (fission neutron spectrum) environment, and this defined the Laboratory's fission basis today. We describe how the data from this experiment are consistent with other benchmark fission product yield measurements for 95,97Zr, 140Ba, 143,144Ce, 137Cs from the NIST-led ILRR fission chamber experiments, and from Maeck's mass-spectrometry data. We perform a new evaluation of the fission product yields that is planned for ENDF/B-VII.1. Because the measurement database for some of the FPs is small—especially for 147Nd and 99Mo—we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data. The %-relative changes compared to ENDF/B-VI are small for some FPs (less than 1% for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (3%) and 147Nd (5%). We suggest an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average energies.

  10. Spontaneous ischaemic stroke in dogs

    DEFF Research Database (Denmark)

    Gredal, Hanne Birgit; Skerritt, G. C.; Gideon, P.

    2013-01-01

    Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms.......Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms....

  11. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Narek [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.

  12. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  13. Calculated half-lives and kinetic energies for spontaneous emission of heavy ions from nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Greiner, W.; Depta, K.; Ivascu, M.; Mazilu, D.; Sandulescu, A.

    1986-05-01

    The most probable decays by spontaneous emission of heavy ions are listed for nuclides with Z = 47--106 and total half-lives>1 ..mu..sec. Partial half-lives, branching ratios relative to ..cap alpha.. decay, kinetic energies, and Q values are estimated by using the analytical superasymmetric fission model, a semiempirical formula for those ..cap alpha..-decay lifetimes which have not been measured, and the new Wapstra--Audi mass tables. Numerous ''stable'' nuclides with Z>40 are found to be metastable with respect to the new decay modes. The current experimental status is briefly reviewed.

  14. Fission Product Yields from Fission Spectrum n+ 239Pu for ENDF/B-VII.1

    Science.gov (United States)

    Chadwick, M. B.; Kawano, T.; Barr, D. W.; Mac Innes, M. R.; Kahler, A. C.; Graves, T.; Selby, H.; Burns, C. J.; Inkret, W. C.; Keksis, A. L.; Lestone, J. P.; Sierk, A. J.; Talou, P.

    2010-12-01

    We describe a new cumulated fission product yield (FPY) evaluation for fission spectrum neutrons on plutonium that updates the ENDF/B-VI evaluation by England and Rider, for the forthcoming ENDF/B-VII.1 database release. We focus on FPs that are needed for high accuracy burnup assessments; that is, for inferring the number of fissions in a neutron environment. Los Alamos conducted an experiment in the 1970s in the Bigten fast critical assembly to determine fission product yields as part of the Interlaboratory Reaction Rate (ILRR) collaboration, and this has defined the Laboratory's fission standard to this day. Our evaluation includes use of the LANL-ILRR measurements (not previously available to evaluators) as well as other Laboratory FPY measurements published in the literature, especially the high-accuracy mass spectrometry data from Maeck and others. Because the measurement database for some of the FPs is small — especially for 99Mo — we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data, using R-value ratio measurements. The meta-analysis supports the FP measurements from the LANL-ILRR experiment. Differences between our new evaluations and ENDF/B-VI are small for some FPs (less than 1-2%-relative for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (4%-relative) and 147Nd (5%-relative, at 1.5 MeV) respectively. We present evidence for an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average neutron energies in Los Alamos' fast critical assemblies. Accounting for such FPY neutron energy dependencies is important if one wants to reach a goal of determining the number of fissions to accuracies of 1-2%. An evaluation of the energy-dependence of fission product yields is given for all A values based on systematical trends in the measured data, with a focus on

  15. Report on simulation of fission gas and fission product diffusion in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division

    2016-07-22

    In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving XeU3O cluster recombines quickly with irradiation induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher

  16. Report on simulation of fission gas and fission product diffusion in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division

    2016-07-22

    In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving XeU3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher

  17. Hereditary and histologic characteristics of the CF1/b cac mouse cataract model.

    Science.gov (United States)

    Kondo, Tomohiro; Nagai, Hiroaki; Kawashima, Takamune; Taniguchi, Yusuke; Koyabu, Nozomu; Takeshita, Ai; Kusakabe, Ken-Takeshi; Okada, Toshiya

    2014-10-01

    A substrain of mice originating from the CF1 strain (an outbred colony) reared at Osaka Prefecture University (CF1/b cac mice) develops cataracts beginning at 14 d old. Affected mice were fully viable and fertile and had developed cataracts by 22 d of age. The incidence of cataracts did not differ between male and female mice. Histologically, 14-wk-old CF1/b cac mice showed vacuolated lens epithelial cells, swollen lens fibers, many pyknotic nuclei, and vacuolation of the lens cortex. To elucidate the mode of inheritance, we analyzed heterozygous mutants hybrids generated from CF1/b cac and wildtype BALB/c mice and the offspring of the backcrossed heterozygous mutants. None of the heterozygous mutants was affected, but the ratio of affected to unaffected mice was 1:3 among the offspring of the heterozygous mutants. The initial genomewide screen of 20 affected backcrossed offspring (CF1/b cac × [CF1/b cac × BALB/c]) indicated that the mutant gene resides on chromosome 16. For further mapping, we used affected progeny of CF1/b cac × (CF1/b cac × MSM/Ms) mice. We concluded that the cataracts in CF1/b cac mice are inherited through an autosomal recessive mutation and that the mutant gene is located on mouse chromosome 16 between D16Mit5 and D16Mit92 and between D16Mit92 and D16Mit201. The mapping of the mutant gene of the CF1/b cac mice to mouse chromosome 16 provides the positional information necessary to identify the candidate gene responsible for the CF1/b cac phenotype.

  18. I. Fission Probabilities, Fission Barriers, and Shell Effects. II. Particle Structure Functions

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Kexing [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In Part I, fission excitation functions of osmium isotopes 185,186, 187, 189 Os produced in 3He +182,183, 184, 186W reactions, and of polonium isotopes 209,210, 211, 212Po produced in 3He/4He + 206, 207, 208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15x 10–21 sec and 25x 10–21 sec for 0s and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the ~-particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that subtracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  19. The Relationship among Spontaneity, Impulsivity, and Creativity

    Science.gov (United States)

    Kipper, David A.; Green, Doreen J.; Prorak, Amanda

    2010-01-01

    The present study was designed to investigate two characteristics of spontaneity, its relationship to creativity and to impulsivity. We hypothesized a positive relationship between spontaneity and creativity, consistent with Moreno, 1953 "canon of spontaneity-creativity." We also predicted a negative relationship between spontaneity and…

  20. Fission-product SiC reaction in HTGR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, F.

    1981-07-13

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels.

  1. Single particle fluorescence burst analysis of epsin induced membrane fission.

    Science.gov (United States)

    Brooks, Arielle; Shoup, Daniel; Kustigian, Lauren; Puchalla, Jason; Carr, Chavela M; Rye, Hays S

    2015-01-01

    Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.

  2. Modelling animal group fission using social network dynamics.

    Science.gov (United States)

    Sueur, Cédric; Maire, Anaïs

    2014-01-01

    Group life involves both advantages and disadvantages, meaning that individuals have to compromise between their nutritional needs and their social links. When a compromise is impossible, the group splits in order to reduce conflict of interests and favour positive social interactions between its members. In this study we built a dynamic model of social networks to represent a succession of temporary fissions involving a change in social relations that could potentially lead to irreversible group fission (i.e. no more group fusion). This is the first study that assesses how a social network changes according to group fission-fusion dynamics. We built a model that was based on different parameters: the group size, the influence of nutritional needs compared to social needs, and the changes in the social network after a temporary fission. The results obtained from this theoretical data indicate how the percentage of social relation transfer, the number of individuals and the relative importance of nutritional requirements and social links influence the average number of days before irreversible fission occurs. The greater the nutritional needs and the higher the transfer of social relations during temporary fission, the fewer days will be observed before an irreversible fission. It is crucial to bridge the gap between the individual and the population level if we hope to understand how simple, local interactions may drive ecological systems.

  3. Angular distribution in the neutron-induced fission of actinides

    Directory of Open Access Journals (Sweden)

    Leong L.S.

    2013-12-01

    Full Text Available Above 1 MeV of incident neutron energy the fission fragment angular distribution (FFAD has generally a strong anisotropic behavior due to the combination of the incident orbital momentum and the intrinsic spin of the fissioning nucleus. This effect has to be taken into account for the efficiency estimation of devices used for fission cross section measurements. In addition it bears information on the spin deposition mechanism and on the structure of transitional states. We designed and constructed a detection device, based on Parallel Plate Avalanche Counters (PPAC, for measuring the fission fragment angular distributions of several isotopes, in particular 232Th. The measurement has been performed at n_TOF at CERN taking advantage of the very broad energy spectrum of the neutron beam. Fission events were recognized by back to back detection in coincidence in two position-sensitive detectors surrounding the targets. The detection efficiency, depending mostly on the stopping of fission fragments in backings and electrodes, has been computed with a Geant4 simulation and validated by the comparison to the measured case of 235U below 3 keV where the emission is isotropic. In the case of 232Th, the result is in good agreement with previous data below 10 MeV, with a good reproduction of the structures associated to vibrational states and the opening of second chance fission. In the 14 MeV region our data are much more accurate than previous ones which are broadly scattered.

  4. Nuclear fission and the transuranium elements

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs.

  5. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  6. Structural materials for fission & fusion energy

    Directory of Open Access Journals (Sweden)

    Steven J. Zinkle

    2009-11-01

    Full Text Available Structural materials represent the key for containment of nuclear fuel and fission products as well as reliable and thermodynamically efficient production of electrical energy from nuclear reactors. Similarly, high-performance structural materials will be critical for the future success of proposed fusion energy reactors, which will subject the structures to unprecedented fluxes of high-energy neutrons along with intense thermomechanical stresses. Advanced materials can enable improved reactor performance via increased safety margins and design flexibility, in particular by providing increased strength, thermal creep resistance and superior corrosion and neutron radiation damage resistance. In many cases, a key strategy for designing high-performance radiation-resistant materials is based on the introduction of a high, uniform density of nanoscale particles that simultaneously provide good high temperature strength and neutron radiation damage resistance.

  7. Detecting fission from special nuclear material sources

    Science.gov (United States)

    Rowland, Mark S.; Snyderman, Neal J.

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  8. Lasers from fission. [nuclear pumping feasibility experiments

    Science.gov (United States)

    Schneider, R. T.; Thom, K.; Helmick, H. H.

    1975-01-01

    The feasibility of the nuclear pumping of lasers was demonstrated in three experiments conducted independently at three different laboratories. In this context nuclear pumping of lasers is understood to be the excitation of a laser by the kinetic energy of the fission fragments only. A description is given of research concerned with the use of nuclear energy for the excitation of gas lasers. Experimental work was supplemented by theoretical research. Attention is given to a nuclear pumped He-Xe laser, a nuclear pumped CO laser, and a neon-nitrogen laser pumped by alpha particles. Studies involving uranium hexafluoride admixture to laser media are discussed along with research on uranium hexafluoride-fueled reactors.

  9. (Fuel, fission product, and graphite technology)

    Energy Technology Data Exchange (ETDEWEB)

    Stansfield, O.M.

    1990-07-25

    Travel to the Forschungszentrum (KFA) -- Juelich described in this report was for the purpose of participating in the annual meeting of subprogram managers for the US/DOE Umbrella Agreement for Fuel, Fission Product, and Graphite Technology. At this meeting the highlights of the cooperative exchange were reviewed for the time period June 1989 through June 1990. The program continues to contribute technology in an effective way for both countries. Revision 15 of the Subprogram Plan will be issued as a result of the meeting. There was interest expressed by KFA management in the level of support received from the NPR program and in potential participation in the COMEDIE loop experiment being conducted at the CEA.

  10. Reflections on the discovery of fission

    Energy Technology Data Exchange (ETDEWEB)

    Peieris, Rudolf (Oxford Univ. (UK). Dept. of Theoretical Physics)

    1989-12-28

    In this article an eminent scientist looks back on the fifty years since the discovery of nuclear fission. Starting with Enrico Fermi's work with neutrons in the 1930s, the author then introduces Neils Bohr's ideas about atomic structure. The puzzle of what happens when uranium was bombarded by neutrons was gradually unravelled. Finally by 1939 it was becoming realised that the uranium nucleus had split in two. Gradually physicists began to speculate on the possibility of harnessing some of the energy stored in the nucleus and on the idea of a chain reaction. As the end of the decade approached, workers in the field combined with military forces to develop a weapon based on this reaction, the Manhatton Project. The author notes how fast an obscure, esoteric piece of physics research, can be taken up into the military and political area. (UK).

  11. Fission Surface Power System Initial Concept Definition

    Science.gov (United States)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk

  12. Absolute fission yields in the fast neutron induced fission of sup 2 sup 3 sup 3 U by track etch combined with gamma-ray spectrometry

    CERN Document Server

    Ramaswami, A; Kalsi, P C; Dange, S P

    2003-01-01

    The absolute fission yields of twenty seven fission products were determined in the fast neutron induced fission of sup 2 '3 sup 3 U, employing track etch in combination with gamma-ray spectrometry. The total number of fissions was measured by registering the fission tracks on a small strip of lexan, a solid state track detector. The fission products were analysed by gamma-ray spectrometry. The measured yield values were compared to the ENDF/B-VI compilation and show a good agreement. (author)

  13. Data of evolutionary structure change: 1CF5B-2JJRA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1CF5B-2JJRA 1CF5 2JJR B A DVNFDLSTATAKTYTKFIEDFRATLPFSHKVYDIPLLYS...ID> A 2JJRA SYFFNEASATE LEU CA 336 2JJR A 2JJRA...Chain> 2JJR A 2JJRA...bChain>A 2JJRA GKVTS-DIALL

  14. Data of evolutionary structure change: 1CF8L-1MCEA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1CF8L-1MCEA 1CF8 1MCE L A DIVLTQSPTIMSVSPGEKVTLTCSASSSV--SSNYVYWY...DINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC- PSALTQ-PPSASGSLGQSVTI...ntryChain> 1MCE A 1MCEA A 1MCEA KVTVLGQPKAN 1MCE A 1MCEA KPSKQ-SNNKY

  15. Chronic Pseudomonas aeruginosa infection definition: EuroCareCF Working Group report

    DEFF Research Database (Denmark)

    Pressler, T; Bohmova, C; Conway, S;

    2011-01-01

    Chronic pulmonary infection with P. aeruginosa develops in most patients with cystic fibrosis (CF); by adulthood 80% of patients are infected and chronic P. aeruginosa infection is the primary cause of increased morbidity and mortality in CF. Chronic infection is preceded by an intermittent stage...

  16. Data of evolutionary structure change: 1E4XI-1CF8H [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1E4XI-1CF8H 1E4X 1CF8 I H QVQLQQPGAELVKPGPSVKLSCKASGFTFT-NYWMHWVK...EEE EEEEEEEEEE EEEEEEE EEEEEE - 0 1E4X... I 1E4XI...A 262 ASP CA 228 THR CA 300 ARG CA 287 1E4X... I 1E4XI

  17. Corrective Feedback (CF) and English-Major EFL Learners' Ability in Grammatical Error Detection and Correction

    Science.gov (United States)

    Asassfeh, Sahail M.

    2013-01-01

    Corrective feedback (CF), the implicit or explicit information learners receive indicating a gap between their current, compared to the desired, performance, has been an area of interest for EFL researchers during the last few decades. This study, conducted on 139 English-major prospective EFL teachers, assessed the impact of two CF types…

  18. Influence of oligomeric silsesquioxane coating treatment on interfacial properties of CF/PAA composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuezhong; HUANG Yudong; WANG Tianyu; HU Lijiang

    2007-01-01

    Carbon fibres (CF) were modified with different oligomeric silsesquioxane (SSO) coatings to improve the interfacial property of carbon fibres/polyarylacetylene (CF/PAA).The interlaminar shear strength (ILSS) of CF/PAA was tested to determine the effect of the treatment.Atomic force microscopy (AFM) in force modulation mode was adopted to study the cross-section surface of unidirectional CF/PAA composites and the relative stiffness of various phases, including CF,interphase and resin.The probability histogram and line distribution of CF/PAA cross-section surface relative stiffness,obtained from the statistical analysis of relative stiffness image,were used to compare and study the interface characterizations of composites.The results show that the ILSS increases effectively and the effects on interfacial characterizations are distinguished from each other in accor-dance with the CF surface modified with different SSO coatings owing to the various structures.Cage oligomeric silsesquioxane,including large organic groups (methacryl isobutyl-POSS),has better treatment result.AFM observa-tions lead to the conclusion that an interfacial transition layer with different morphology and stiffness appears in CF/PAA composites after being treated by the SSO coatings of different structures.It can be inferred that the appearance of the transition layer may contribute to the improvement of fibre/matrix adhesion.

  19. Fission of actinides using a table-top laser

    CERN Document Server

    Schwoerer, H; Sauerbrey, R; Galy, J; Magill, J; Rondinella, V; Schenkel, R; Butz, T

    2003-01-01

    Powerful table-top lasers are now available in the laboratory and can be used to induce nuclear reactions. We report the first demonstration of nuclear fission using a high repetition rate table-top laser with intensities of 10 sup 2 sup 0 W/cm sup 2. Actinide photo-fission has been achieved in both sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th from the high-energy Bremsstrahlung radiation produced by laser acceleration of electrons. The fission products were identified by time-resolved gamma-spectroscopy. (authors)

  20. Chemical state of fission products in irradiated uranium carbide fuel

    Science.gov (United States)

    Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko

    1987-12-01

    The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.