WorldWideScience

Sample records for cern neutron time

  1. Fluence measurement at the neutron time of flight experiment at CERN

    CERN Document Server

    Weiss, Christina; Jericha, Erwin

    At the neutron time of flight facility n_TOF at CERN a new spallation target was installed in 2008. In 2008 and 2009 the commissioning of the new target took place. During the summer 2009 a fission chamber of the Physikalisch Technische Bundesanstalt (PTB) Braunschweig was used for the neutron fluence measurement. The evaluation of the data recorded with this detector is the primary topic of this thesis. Additionally a neutron transmission experiment with air has been performed at the TRIGA Mark II reactor of the Atomic Institute of the Austrian Universities (ATI). The experiment was implemented to clarify a question about the scattering cross section of molecular gas which could not be answered clearly via the literature. This problem came up during the evaluations for n_TOF.

  2. Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF).

    Science.gov (United States)

    Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-10-15

    The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions. PMID:15524972

  3. Neutron capture cross section measurement of 151Sm at the CERN neutron time of flight facility (n_TOF).

    Science.gov (United States)

    Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Becvár, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Cortina, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Duran, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Furman, W; Goncalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, A; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stephan, C; Tagliente, G; Tain, J; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-10-15

    The151Sm(n,gamma)152Sm cross section has been measured at the spallation neutron facility n_TOF at CERN in the energy range from 1 eV to 1 MeV. The new facility combines excellent resolution in neutron time-of-flight, low repetition rates, and an unsurpassed instantaneous luminosity, resulting in rather favorable signal/background ratios. The 151Sm cross section is of importance for characterizing neutron capture nucleosynthesis in asymptotic giant branch stars. At a thermal energy of kT=30 keV the Maxwellian averaged cross section of this unstable isotope (t(1/2)=93 yr) was determined to be 3100+/-160 mb, significantly larger than theoretical predictions.

  4. The neutron Time-Of-Flight facility, n_TOF, at CERN (I): Technical Description

    CERN Document Server

    n_TOF, Collaboration

    2013-01-01

    The n_TOF facility is a spallation neutron source operating at CERN from 2001. It produces, thanks to the characteristics of the proton driver and of the massive Pb target, a wide energy, very high instantaneous neutron flux, which is employed for neutron-induced reactions measurement. The n TOF facility resumed operation in November 2008, after a 4 years stop due to radioprotection issues connected with the operation of the spallation target. It features a new lead spallation target with a more robust design a more efficient cooling, separate moderator circuit and a target area ventilation system. In this contribution technical details about this facility and its operation will be given, together with future perspective for the performances of the facility.

  5. The Proton Beams for the New Time-of-Flight Neutron Facility at the CERN-PS

    CERN Document Server

    Cappi, R; Métral, G

    2000-01-01

    The experimental determination of neutron cross sections in fission and capture reactions as a function of the neutron energy is of primary importance in nuclear physics. Recent developments at CERN and elsewhere have shown that many fields of research and development, such as the design of Accelerator-Driven Systems (ADS) for nuclear waste incineration, nuclear astrophysics, fundamental nuclear physics, dosimetry for radiological protection and therapy, would benefit from a better knowledge of neutron cross sections. A neutron facility at the CERN-PS has been proposed with the aim of carrying out a systematic and high resolution study of neutron cross sections through Time-Of-Flight (n-TOF) measurement. The facility requires a high intensity proton beam (about 0.7x1013 particles/bunch) distributed in a short bunch (about 25 ns total length) to produce the neutrons by means of a spallation process in a lead target. To achieve these characteristics, a number of complex beam gymnastics have to be performed. All...

  6. The data acquisition system of the neutron time-of-flight facility nTOF at CERN

    CERN Document Server

    Abbondanno, U; Alvarez, F; Alvarez, H; Andriamonje, Samuel A; Andrzejewski, J; Badurek, G; Baumann, P; Becvar, F; Benlliure, J; Berthomieux, E; Betev, B; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V Yu; Chiaveri, Enrico; Colonna, N; Cortés, G; Cortina-Gil, D; Couture, A; Cox, J; Dababneh, S; David, S; Dolfini, R; Domingo-Pardo, C; Durán, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Kölbl, H; Furman, W; Gonçalves, I; González-Romero, E M; Goverdovski, A A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Kerveno, M; Ketlerov, V; Köhler, P E; Konovalov, V; Krticka, M; Leeb, H; Lindote, A; Lopes, M I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez-Val, J M; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Peskov, Vladimir; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, Armando; Pretel, C; Quesada, J M; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, V; Schäfer, E; Soares, J C; Stephanq, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L M N; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín-Fernández, D; Vincente-Vincente, M; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2005-01-01

    The n_TOF facility at CERN has been designed for the measurement of neutron capture, fission and (n, multiplied by n) cross-sections with high accuracy. This requires a flexible and - due to the high instantaneous neutron flux - almost dead time free data acquisition system. A scalable and versatile data solution has been designed based on 8-bit flash-ADCs with sampling rates up to 2 GHz and 8 Mbyte memory buffer. The software is written in C and C++ and is running on PCs equipped with RedHat Linux.

  7. Neutron beam imaging with micromegas detectors in combination with neutron time-of-flight at the (nTOF) facility at CERN

    International Nuclear Information System (INIS)

    A bulk micromegas detector with the anode segmented in 2 orthogonal directions and equipped with a neutron/charged particle converter is employed at the neutron time-of-flight (nTOF) facility at CERN to determine the incident neutron beam profile and beam interception factor as a function of the neutron energy determined by the time of flight. Discrepancies between experimental results and simulations in the values of the beam interception factor range up to 12 % and are to be ascribed to a defect in the mesh of the bulk. Nevertheless the detector proved to be really useful for checking the alignment of the neutron beam optics of the facility. Measurements with a new pixelized bulk detector for the determination of the beam interception factor are for seen before the end of 2012

  8. Neutron resonance spectroscopy at n TOF at CERN

    OpenAIRE

    Calviño Tavares, Francisco; Cortés Rossell, Guillem Pere; Poch Parés, Agustí; Pretel Sánchez, Carme

    2007-01-01

    Neutron resonance spectroscopy plays an important role in the investigation of neutron induced reaction cross sections and nuclear structure in the MeV excitation range. Neutron time-of-flight facilities are the most used installations to explore neutron resonances. In this paper we describe the basic features of neutron resonance spectroscopy together with recent results from the time-of-flight facility n TOF at CERN.

  9. Neutron resonance spectroscopy at n-TOF at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    Neutron resonance spectroscopy plays an important role in the investigation of neutron induced reaction cross sections and nuclear structure in the MeV excitation range. Neutron time-of-flight facilities are the most used installations to explore neutron resonances. In this paper we describe the basic features of neutron resonance spectroscopy together with recent results from the time-of-flight facility n-TOF at CERN. (authors)

  10. Neutron capture cross section measurement of $^{151}Sm$ at the CERN neutron Time of Flight Facility (nTOF)

    CERN Document Server

    Abbondanno, U; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, Samuel A; Andrzejewski, J; Badurek, G; Baumann, P; Becvar, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Cortina-Gil, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Durán, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Kölbl, H; Furman, W; Gonçalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Isaev, S; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, Armando; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wissha, K

    2004-01-01

    The measurement of **1**5**1Sm(n, gamma)**1**5**2Sm (samarium) cross section showed improved performance of the new spallation neutron facility. It covered a wide energy range with good resolution, high neutron flux, low backgrounds and a favourable duty factor. The samarium cross section was found to be of great importance for characterizing neutron capture nucleosynthesis in asymptotic giant stars. The combination of these features provided a promising basis for a broad experimental program directed towards application in astrophysics and advanced nuclear technologies. (Edited abstract)

  11. Optically Stimulated Luminescence Materials for Wide-Spectrum Neutron Measurements at CERN

    CERN Document Server

    Ravotti, F; Idri, K; Vaillé, J R; Prevost, H; Dusseau, L

    2005-01-01

    For the first time, Optically Stimulated Luminescence (OSL) materials with enhanced neutron-sensitivity have been irradiated. The neutron irradiations were carried out in the accelerator-like environment of the IRRAD2 facility at CERN, Geneva, Switzerland and in the TRIGA reactor at JSI, Ljubljana, Slovenia. The results show the possibility to measure with high accuracy the thermal and the fast components of these two different neutron spectra by means of OSL materials doped with Boron or mixed with Polyethylene. The applicability of this technology in the measurement of the neutron components in the complex radiation environment expected at CERN LHC experiments is therefore demonstrated.

  12. Physics at the new CERN neutron beam line

    CERN Document Server

    Guerrero, C

    2014-01-01

    A new neutron beam line (n_TOF EAR - 2) is being built at CERN within the n_TOF facility. Compared to the existing 185 meters long time - of - flight beam line, the new one (which will operate in parallel) will feature a shorter flight of 20 meters, providing a 2 7 times more intense neutron flux extending from thermal to 300 MeV. The scientific program is now bein g discussed and the first detailed proposals will be refereed by February 2014. This contribution is devoted to present and discuss the expected performance of the facility, briefly, and the details of some of the first measureme nts foreseen for 2014 and 2015.

  13. The CERN n_TOF Facility: Neutron Beams Performances for Cross Section Measurements

    CERN Document Server

    Chiaveri, E; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Žugec, P

    2014-01-01

    This paper presents the characteristics of the existing CERN n\\_TOF neutron beam facility (n\\_TOF-EAR1 with a flight path of 185 meters) and the future one (n\\_TOF EAR-2 with a flight path of 19 meters), which will operate in parallel from Summer 2014. The new neutron beam will provide a 25 times higher neutron flux delivered in 10 times shorter neutron pulses, thus offering more powerful capabilities for measuring small mass, low cross section and/or high activity samples.

  14. A Micromegas Detector for Neutron Beam Imaging at the n_TOF Facility at CERN

    CERN Document Server

    Belloni, F; Berthoumieux, E; Calviani, M; Chiaveri, E; Colonna, N; Giomataris, Y; Guerrero, C; Gunsing, F; Iguaz, F J; Kebbiri, M; Pancin, J; Papaevangelou, T; Tsinganis, A; Vlachoudis, V; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Corté-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Marítnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A J M; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Žugec, P

    2014-01-01

    Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n\\_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements. These measurements need a perfect knowlodge of the incident neutron beam, in particular regarding its spatial profile. A position sensitive micromegas detector equipped with a B-10 based neutron/charged particle converter has been extensively used at the n\\_TOF facility for characterizing the neutron beam profile and extracting the beam interception factor for samples of different size. The boron converter allowed to scan the energy region of interest for neutron induced capture reactions as a function of the neutron energy, determined by the time of flight. Experimental ...

  15. Minimizing the background radiation in the new neutron time-of-flight facility at CERN FLUKA Monte Carlo simulations for the optimization of the n_TOF second experimental line

    CERN Document Server

    Bergström, Ida; Elfgren, Erik

    2013-06-11

    At the particle physics laboratory CERN in Geneva, Switzerland, the Neutron Time-of-Flight facility has recently started the construction of a second experimental line. The new neutron beam line will unavoidably induce radiation in both the experimental area and in nearby accessible areas. Computer simulations for the minimization of the background were carried out using the FLUKA Monte Carlo simulation package. The background radiation in the new experimental area needs to be kept to a minimum during measurements. This was studied with focus on the contributions from backscattering in the beam dump. The beam dump was originally designed for shielding the outside area using a block of iron covered in concrete. However, the backscattering was never studied in detail. In this thesis, the fluences (i.e. the flux integrated over time) of neutrons and photons were studied in the experimental area while the beam dump design was modified. An optimized design was obtained by stopping the fast neutrons in a high Z mat...

  16. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Science.gov (United States)

    Barbagallo, M.; Mastromarco, M.; Colonna, N.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2014-12-01

    The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  17. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-01-01

    Full Text Available The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  18. Experimental neutron capture data of 58Ni from the CERN n_TOF facility

    Directory of Open Access Journals (Sweden)

    Žugec P.

    2015-01-01

    Full Text Available The neutron capture cross section of 58Ni was measured at the neutron time of flight facility n_TOF at CERN, from 27 meV to 400 keV neutron energy. Special care has been taken to identify all the possible sources of background, with the so-called neutron background obtained for the first time using high-precision GEANT4 simulations. The energy range up to 122 keV was treated as the resolved resonance region, where 51 resonances were identified and analyzed by a multilevel R-matrix code SAMMY. Above 122 keV the code SESH was used in analyzing the unresolved resonance region of the capture yield. Maxwellian averaged cross sections were calculated in the temperature range of kT = 5 – 100 keV, and their astrophysical implications were investigated.

  19. Neutron Time-Of-Flight (n_TOF) experiment

    CERN Multimedia

    Brugger, M; Jericha, E; Cortes rossell, G P; Riego perez, A; Baccomi, R; Laurent, B G; Palomo pinto, F R; Griesmayer, E; Leeb, H; Dressler, M; Cano ott, D; Variale, V; Ventura, A; Carrillo de albornoz trillo, A; Lo meo, S; Andrzejewski, J J; Pavlik, A F; Kadi, Y; Zanni vlastou, R; Krticka, M; Weiss, C; Kokkoris, M; Cortes giraldo, M A; Perkowski, J; Losito, R; Audouin, L; Tain enriquez, J L; Tagliente, G; Wallner, A; Woods, P J; Mengoni, A; Guerrero sanchez, C G; Vlachoudis, V; Calviani, M; Reifarth, R; Mendoza cembranos, E; Balibrea correra, J; Quesada molina, J M; Praena rodriguez, A J; Schumann, M D; Tsinganis, A; Saxena, A; Rauscher, T; Leal cidoncha, E; Calvino tavares, F; Bondarenko, I; Mingrone, F; Gonzalez romero, E M; Colonna, N; Negret, A L; Chiaveri, E; Milazzo, P M; Ferro pereira goncalves, I M; De almeida carrapico, C A; Castelluccio, D M

    The neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.

  20. Two exercises about neutrino departure times at CERN

    OpenAIRE

    Berg, Bernd A.; Hoeflich, Peter

    2011-01-01

    Two simple exercises are solved, which educators can use to awake interest of their students in subtleties of the CERN Neutrino beam to Grand Sasso (CNGS) experiment. The first one is about the statistical error of the average departure time of neutrinos from CERN. The second one about a hypothetical bias in the departure times.

  1. Determination of the Neutron Fluence, the Beam Characteristics and the Backgrounds at the CERN-PS TOF Facility

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Quaranta, A; Koehler, P E

    2002-01-01

    In the scope of our programme we propose to start in July 2000 with measurements on elements of well known cross sections, in order to check the reliability of the whole experimental installation at the CERN-TOF facility. These initial exploratory measurements will provide the key-parameters required for the further experimentation at the CERN-TOF neutron beam. The neutron fluence and energy resolution will be determined as a function of the neutron kinetic energy by reproducing standard capture and fission cross sections. The measurements of capture cross sections on elements with specific cross section features will allow to us to disentangle the different components of backgrounds and estimate their level in the experimental area. The time-energy calibration will be determined and monitored with a set of monoenergetic filters as well as by the measurements of elements with resonance-dominated cross sections. Finally, in this initial phase the behaviour of several detectors scheduled in successive measureme...

  2. The new vertical neutron beam line at the CERN n-TOF facility design and outlook on the performance

    Energy Technology Data Exchange (ETDEWEB)

    Weiß, C., E-mail: christina.weiss@cern.ch [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Barros, S. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa (Portugal); Bergström, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Berthoumieux, E. [Commissariat à l’Énergie Atomique (CEA) Saclay – Irfu, Gif-sur-Yvette (France); Calviani, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Guerrero, C.; Sabaté-Gilarte, M. [Universidad de Sevilla (Spain); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA) (Greece); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 – IPN, Orsay (France); Bacak, M. [Atominstitut, Technische Universität Wien (Austria); Balibrea-Correa, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); and others

    2015-11-01

    At the neutron time-of-flight facility n-TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.

  3. Neutron cross-sections for advanced nuclear systems. The nTOF project at CERN

    International Nuclear Information System (INIS)

    In 2012, nuclear energy continued to play an important role in global electricity production. Despite a small reduction of the total generating nuclear power capacity after the accident at the Fukushima Daiichi nuclear power plant, a significant growth, between 35% and 100% by 2030, is foreseen in the use of nuclear energy worldwide. The knowledge of a wide variety of nuclear processes is a fundamental prerequisite in nuclear technology, as well as in other field of fundamental and applied Nuclear Physics. In particular, neutron-induced reactions play a key role in the operation of present nuclear reactors as well as in the design of future ones aiming at minimizing nuclear waste, such as Generation-IV reactors, ADS or reactors based on Th/U fuel cycle. The cross sections of a large number of neutron-induced reactions are requested with high accuracy to improve safety and efficiency of current reactors, and for the design of future generation systems. Since 2001 nTOF, an innovative neutron Time-Of-Flight facility, has been operating at CERN with the aim of addressing the needs of nuclear data for basic and applied nuclear Physics. An extensive program on both neutron induced fission and capture reactions has been carried out so far. Thanks to the well suited features of the nTOF neutron beam, such as the high instantaneous neutron flux, the high resolution and the wide energy range covered, from thermal to a few GeV, coupled with state-of-the-art detectors and data acquisition system, it has been possible to collect high accuracy and high resolution neutron cross-section data on a variety of isotopes, many of which radioactive. In particular, important results for nuclear technologies have been obtained on isotopes of U, Pu and minor actinides with long half life. Recently the construction of a new, high-flux measuring station has started. A 25 times higher fluence relative to the existing experimental area will allow to measure isotopes with short half life, as

  4. Neutron-induced fission fragment angular distribution at CERN n TOF: The Th-232 case

    CERN Document Server

    Tarrio, Diego; Paradela, Carlos

    This thesis work was done in the frame of the study of the neutron-induced fission of actinides and subactinides at the CERN n TOF facility using a fast Parallel Plate Avalanche Counters (PPACs) setup. This experimental setup provide us with an intense neutron beam with a white spectrum from thermal to 1 GeV and with an outstanding high resolution provided by its flight path of 185 m. In our experiment, fission events were identified by detection of both fission fragments in time coincidence in the two PPAC detectors flanking the corresponding target. This technique allowed us to discriminate the fission events from the background produced by α disintegration of radioactive samples and by particles produced in spallation reactions. Because PPAC detectors are insensitive to the γ flash, it is possible to reach energies as high as 1 GeV. The stripped cathodes provide the spatial position of the hits in the detectors, so that the emission angle of the fission fragments can be measured. Inside the reaction cham...

  5. Cern

    CERN Multimedia

    2009-01-01

    "La réparation de l'accélérateur géant de particules LHC, qui devrait redémarrer mi-novembre aprés une panne de plus d'un an, a coûté 23 millions d'euros, selon un haut responsable du Centre européen de recherche nucléaire (CERN), cité vendredi par les médias espagnols" (1 paragraph)

  6. Study of muon-induced neutron production using accelerator muon beam at CERN

    International Nuclear Information System (INIS)

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production

  7. Experimental tests of an advanced proton-to-neutron converter at ISOLDE-CERN

    CERN Document Server

    Gottberg, A; Luis, R; Ramos, J P; Seiffert, C; Cimmino, S; Marzari, S; Crepieux, B; Manea, V; Wolf, R N; Wienholtz, F; Kreim, S; Fedosseev, V N; Marsh, B A; Rothe, S; Vaz, P; Marques, J G; Stora, T

    2014-01-01

    The suppression of isobaric contaminations is of growing importance for many scientific programs using radioactive isotopes produced at isotope separation on-line (ISOL) facilities, such as ISOLDE-CERN. A solid tungsten proton-to-neutron converter has been used for ten years to produce neutron-rich fission fragments from an UC x target while suppressing the production of neutron-deficient isobaric contaminants. The remaining contamination is mainly produced by primary protons that are scattered by the heavy neutron converter and finally impinge on the UC x target itself. Therefore, the knowledge of the energy-dependant cross-sections of proton and neutron induced fission events is crucial in order to evaluate future converter concepts.

  8. Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-03-01

    Full Text Available The n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaigns.

  9. Instrument intercomparison in the pulsed neutron fieldsat the CERN HiRadMat facility

    CERN Document Server

    Aza, E; Cassell, C; Charitonidis, N; Harrouch, E; Manessi, G P; Pangallo, M; Perrin, D; Samara, E; Silari, M

    2014-01-01

    An intercomparison of the performances of active neutron detectors was carried out in pulsed neutron fi elds in the new HiRadMat facility at CERN. Five detectors were employed: four of them (two ionization chambers and two rem counters) are routinely employed in the CERN radiation monitoring system, while the fi fth is a novel instrument, called LUPIN, speci fi cally conceived for applications in pulsed neutron fi elds. The measurements were performed in the stray fi eld generated by a proton beam of very short duration with momentum of 440 GeV/c impinging on a dump. The beam intensity was steadily increased during the experiment by more than three orders of magnitude, with an H*(10) due to neutrons at the detector reference positions varying between a few nSv per burst and a few m Sv per burst, whereas the gamma contribution to the total H*(10) was negligible. The aim of the experiment was to evaluate the linearity of the detector response in extreme pulsed conditions as a function of the neutron burst in- t...

  10. Summer at CERN: a time to make friends

    CERN Multimedia

    2013-01-01

    Summer brings the opportunity for many of us to spend time enjoying the company of our families and friends. It also brings a new generation of young people to CERN – the summer students.   We often talk about the extended CERN community as a being like a big family, where the common bond is the science we do. The summer students who join us every year are in many ways the newest additions to this family. This year we have welcomed 276 students in total, with an impressive 133 from non-Member states. As usual they are joining in the learning experience that the programme offers and taking the opportunity to socialise. However, this year they are showing a particular enthusiasm for developing activities together that are linked to spreading the message about CERN. They’ve shown great support for the CERN Summer Student Webfest – now in its second year - where they were invited to work in teams and design web apps that will encourage the public to learn more abou...

  11. On the figure of merit in neutron time-of-flight measurements

    CERN Document Server

    Mengoni, Alberto; Frisoni, M; Magnani, M

    2002-01-01

    We address the task of evaluating the basic performances of neutron time-of-flight spectrometers, by means of an appropriate figure of merit. Calculations of neutron flux, energy resolution, and figure of merit are presented with a critical discussion on their definitions. The results of Monte Carlo simulations for two presently operating facilities, CERN n_TOF and GELINA, are commented and compared.

  12. Comparison of the performance of different instruments in the stray neutron field around the CERN Proton Synchrotron.

    Science.gov (United States)

    Aza, Eleni; Caresana, Marco; Cassell, Christopher; Colombo, Valeria; Damjanovic, Sanja; Gilardoni, Simone; Manessi, Giacomo Paolo; Pangallo, Michel; Perrin, Daniel; Silari, Marco

    2014-10-01

    This paper discusses an intercomparison campaign carried out in several locations around the CERN Proton Synchrotron. The locations were selected in order to perform the measurements in different stray field conditions. Various neutron detectors were employed: ionisation chambers, conventional and extended range rem counters, both commercial and prototype ones, including a novel instrument called LUPIN, specifically conceived to work in pulsed fields. The attention was focused on the potential differences in the instrument readings due to dead-time losses that are expected to affect most commercial units. The results show that the ionisation chambers and LUPIN agree well with the expected H*(10) values, as derived from FLUKA simulations, showing no relevant underestimations even in strongly pulsed fields. On the contrary, the dead-time losses of the other rem counters induced an underestimation in pulsed fields that was more important for instruments characterised by a higher dead time.

  13. Time-resolved neutron imaging at ANTARES cold neutron beamline

    OpenAIRE

    Tremsin, A.S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time...

  14. Estimates of neutron leakage through penetrations of the CERN intersecting storage rings by Monte Carlo albedo calculations

    CERN Document Server

    Routti, J T

    1975-01-01

    The monokinetic and multigroup Monte Carlo albedo methods applicable to estimating neutron leakage through penetrations in the shielding of high-energy accelerators are reviewed. They are used to calculate attenuation factors and dose levels in the tunnels of the CERN intersecting storage rings. (28 refs).

  15. Time-resolved neutron imaging at ANTARES cold neutron beamline

    CERN Document Server

    Tremsin, A S; Tittelmeier, K; Schillinger, B; Schulz, M; Lerche, M; Feller, W B

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and...

  16. Time-energy relation of the nTOF neutron beam standards revisited

    CERN Document Server

    Lorusso, G; Aerts, G; Alvarez-Pol, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Angelopoulos, Angelos; Assimakopoulos, P A; Badurek, G; Baumann, P; Becvar, F; Benlliure, J; Berthomieux, E; Bisceglie, E; Coceva, C; Calvino, P; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V Yu; Chiaveri, Enrico; Colonna, N; Cortés, G; Cortina-Gil, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Kölbl, H; Furman, W I; Gonçalves, I F; González-Romero, E M; Goverdovski, A A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Ioannides, K G; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Ketlerov, V; Kitis, G; Köhler, P E; Konovalov, V; Kossionides, E; Krticka, M; Leeb, H; Lindote, A; Lopes, M I; Lozano, M; Lukic, S; MOsconi, M; Marganiec, J; Marrone, S; Mastinu, P F; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Neves, F; O'Brien, S; Oberhummer, Heinz; Pancin, J; Paradela, C; Pavlik, A; Pavlopoulos, P; Perrot, L; Peskov, Vladimir; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, Armando; Pretel, C; Quesada, J M; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Savvidis, E; Soares, J C; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L M N; Terlizzi, R; Tsangas, N; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Wendler, H; Wiescher, M; Wisshak, K

    2004-01-01

    The accurate determination of neutron cross-sections as a function of the neutron energy at a time-of-flight facility requires a precise knowledge of the time-energy relation for the neutron beam. For the n _TOF neutron beam at CERN, produced by spallation of high-energy protons on a Pb target, the time-energy relation is connected to the production mechanism and to the subsequent moderation process. A calibration of the neutron energy scale is proposed based on detailed Monte Carlo simulations of the facility. This time-energy relation has been experimentally validated by means of dedicated measurements of standard energy resonances, from 1 eV to approximately 1 MeV. On the basis of the present measurements, it is proposed to correct the energy of the 1.3 eV resonance of /sup 193/Ir, which is commonly considered as an energy standard.

  17. Neutron Computed Tomography Using Real-Time Neutron Radiography.

    Science.gov (United States)

    Sulcoski, Mark Francis

    Conventional neutron radiography of an object records a two-dimensional distribution of the neutron beam intensity after it has passed through an object. The neutron radiograph, whether static film or real-time, may be considered a "shadow graph" of the object. In a shadow graph, internal structures in an object may mask one another making it difficult or impossible to precisely define the internals of the object. This problem can be solved by tomographic imaging. A real-time neutron radiography facility was constructed including the capability of neutron tomography. The neutron beam was measured for total neutron flux ((1.0 (+OR-) 0.2) x 10('11) n/(m('2)-sec)), gold cadmium ratio (52 (+OR-) 3) and effective neutron temperature (83(DEGREES)C (+OR -) 8(DEGREES)C). The angular divergence or nonparallelism of the neutron beam was measured to be \\2.3(DEGREES) (+OR -) 0.1(DEGREES) thereby providing a means of quantifying the collimator effectiveness. The resolution capabilities of both static film and real-time neutron radiographs were quantified using a Fourier transform algorithm to calculate the modulation transfer function of both types of radiographs. The contrast sensitivity of both types of radiographs was measured as 3.1% for film and 4.0% for real-time radiographs. Two tomography algorithms, the simultaneous iterative reconstruction technique (SIRT) and the convolution method, were programmed on an Intellect 100 Image Processing System. The SIRT algorithm was found to be too large and slow on the Intellect 100 to produce useful tomographs. The convolution method produced results near the theoretical resolution limits for a given number of projections. A tomographic resolution of at least 1.3 mm was demonstrated using 200 projections. Computer running time for the convolution method was found to be (TURN)30 seconds for each projection used. A series of experiments were conducted using the convolution method investigating the effect of high and low pass

  18. Silicon detectors for the neutron flux and beam profile measurements of the n_TOF facility at CERN

    Science.gov (United States)

    Musumarra, Agatino; Cosentino, Luigi; Barbagallo, Massimo; Colonna, Nicola; Damone, Lucia; Pappalardo, Alfio; Piscopo, Massimo; Finocchiaro, Paolo

    2016-09-01

    The demand of new and high precision cross section data for neutron-induced reactions is continuously growing, driven by the requirements from several fields of fundamental physics, as well as from nuclear technology, medicine, etc. Several neutron facilities are operational worldwide, and new ones are being built. In the coming years, neutron beam intensities never reached up to now will be available, thus opening new scientific and technological frontiers. Among existing facilities, n_TOF at CERN provides a high intensity pulsed neutron beam in a wide energy range (thermal to GeV) and with an extremely competitive energy resolution that also allows spectroscopy studies. In order to ensure high quality measurements, the neutron beams must be fully characterized as a function of the neutron energy, in particular by measuring the neutron flux and the beam transverse profile with high accuracy. In 2014 a new experimental area (EAR2), with a much higher neutron flux, has been completed and commissioned at n_TOF. In order to characterize the neutron beam in the newly built experimental area at n_TOF, two suitable diagnostics devices have been built by the INFN-LNS group. Both are based on silicon detectors coupled with 6Li converter foils, in particular Single Pad for the flux measurement and Position Sensitive (strips and others) for the beam profile. The devices have been completely characterized with radioactive sources and with the n_TOF neutron beam, fulfilling all the specifications and hence becoming immediately operational. The performances of these devices and their high versatility, in terms of neutron beam intensity, make them suitable to be used in both n_TOF experimental areas. A description of the devices and the main results obtained so far will be presented.

  19. Neutron-computer tomography using real-time neutron radiography

    International Nuclear Information System (INIS)

    A real-time neutron radiography facility was constructed including the capability of neutron tomography. The neutron beam was measured for total neutron flux ((1.0 +/- 0.2) x 1011 m/(m2-sec)), gold cadmium ratio (52 +/- 3) and effective neutron temperature (830C +/- 80C). The angular divergence or nonparallelism of the neutron beam was measured to be 2.30 +/- 0.10 thereby providing a means of quantifying the collimator effectiveness. The resolution capabilities of both static film and real-time neutron radiographs were quantified using a Fourier transform algorithm to calculate the modulation transfer function of both types of radiographs. The contrast sensitivity of both types of radiographs. The contrast sensitivity of both types of radiographs was measured as 3.1% for film and 4.0% for real-time radiographs. Two tomography algorithms, the simultaneous iterative reconstruction technique (SIRT) and the convolution method, were programmed on an Intellect 100 Image Processing System. The SIRT algorithm was found to be too large and slow on the Intellect 100 to produce useful tomographs. The convolution method produced results near the theoretical resolution limits for a given number of projections. A tomographic resolution of at least 1.3 mm was demonstrated using 200 projections. Computer running time for the convolution method was found to be ∼ 30 seconds for each projection used. A series of experiments were conducted using the convolution method investigating the effect of high and low pass filtering, diagonal line enhancement and contrast stretching on the finished tomographs. These experiments showed that spatial resolution is not generally improved by these filtering functions but contrast sensitivity of the tomographs is improved

  20. Time-resolved neutron imaging at ANTARES cold neutron beamline

    International Nuclear Information System (INIS)

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ∼ 0.8% at 5 meV and ∼ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks

  1. Onsager equations and time dependent neutron transport

    International Nuclear Information System (INIS)

    The diffusion of neutrons following an abrupt, localized temperature fluctuation can be conducted in the framework of Onsager-type transport equations. Considering Onsager equations as a generalized Fick's law, time-dependent particle and energy 'generalized diffusion equations' can be obtained. Aim of the present paper is to obtain the time-dependent diffusion Onsager-type equations for the diffusion of neutrons and to apply them to simple trial cases to gain a feeling for their behaviour. (author)

  2. Determination of neutron generation time in miniature neutron source reactor by measurement of neutronics transfer function

    Energy Technology Data Exchange (ETDEWEB)

    Hainoun, A.; Khamis, I. [Atomic Energy Commission, Damascus (Syria). Dept. of Physics

    2000-02-01

    The prompt neutron generation time {lambda} and the total effective fraction of delayed neutrons (including the effect of photoneutrons) {beta} have been experimentally determined for the miniature neutron source reactor (MNSR) of Syria. The neutron generation time was found by taking measurements of the reactor open-loop transfer function using newly devised reactivity-step-ejection method by the reactor pneumatic rabbit system. Small reactivity perturbations i.e. step changes of reactivity starting from steady state, were introduced into the reactor during operation at low power level i.e. zero-power. Relative neutron flux and reactivity versus time were obtained. Using transfer function analysis as well as least square fitting techniques and measuring the delayed neutrons fraction, the neutron generation time was determined to be 74.6{+-}1.57 {mu}s. Using the prompt jump approximation of neutron flux, the total effective fraction of delayed neutrons was measured and found to be 0.00783{+-}0.00017. Measured values of {lambda} and {beta} were found to be very consistent with calculated ones reported in the safety analysis report. (orig.)

  3. Determination of neutron generation time in miniature neutron source reactor by measurement of neutronics transfer function

    International Nuclear Information System (INIS)

    The prompt neutron generation time Λ and the total effective fraction of delayed neutrons (including the effect of photoneutrons) β have been experimentally determined for the miniature neutron source reactor (MNSR) of Syria. The neutron generation time was found by taking measurements of the reactor open-loop transfer function using newly devised reactivity-step-ejection method by the reactor pneumatic rabbit system. Small reactivity perturbations i.e. step changes of reactivity starting from steady state, were introduced into the reactor during operation at low power level i.e. zero-power. Relative neutron flux and reactivity versus time were obtained. Using transfer function analysis as well as least square fitting techniques and measuring the delayed neutrons fraction, the neutron generation time was determined to be 74.6±1.57 μs. Using the prompt jump approximation of neutron flux, the total effective fraction of delayed neutrons was measured and found to be 0.00783±0.00017. Measured values of Λ and β were found to be very consistent with calculated ones reported in the safety analysis report. (orig.)

  4. Time reversal invariance in polarized neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, E.G.

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 {times} 10{sup {minus}4} or better. With higher neutron flux a statistical sensitivity of the order 3 {times} 10{sup {minus}5} is ultimately expected. The decay of free polarized neutrons (n {yields} p + e + {bar v}{sub e}) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta ({sigma}{sub n} {center_dot} p{sub p} {times} p{sub e}). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.

  5. Real-Time Neutron Radiography at CARR

    Institute of Scientific and Technical Information of China (English)

    HE; Lin-feng; HAN; Song-bai; WANG; Hong-li; WU; Mei-mei; WEI; Guo-hai; WANG; Yu

    2012-01-01

    <正>A real-time detector system for neutron radiography based on CMOS camera has been designed for the thermal neutron imaging facility under construction at China Advanced Research Reactor (CARR). This system is equipped with a new scientific CMOS camera with 5.5 million pixels and speed up to 100 fps at full frame. The readout noise is less than 2.4 electron per pixel. It is capable of providing

  6. The CERN Canoe and Kayak Club has a swimming time

    CERN Multimedia

    2008-01-01

    The new Canoe and Kayak Club, which was formed at the start of the 2006 winter season, already has around twenty members, including some former top-level sportsmen. Catharine Noble, of the IT Department was ranked 13th overall in women’s British freestyle in 1997. Here she is performing a flat loop, a position that can be held for several seconds.Would you be interested in a spot of lunchtime canoeing or kayaking to break up a long working day? Or are you more of an evening sports enthusiast? The CERN Canoe and Kayak Club offers both options, as well as a choice of flat-water and white-water activities to suit all temperaments. With its calm waters and easy access for boats, the Peney nature reserve is ideal for beginners. Outings comprise a few exercises to acquire the techniques, as well as games to make the learning experience more fun and spontaneous. These waters are not only frequented by beginners, however, but also by thos...

  7. Experimental verification of neutron phenomenology in lead and of transmutation by adiabatic resonance crossing in accelerator driven systems A summary of the TARC Project at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C.A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J.I.; Cerro, E.; Moral, R.D.R.Del; Diez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernandez, R.; Galvez, J.; Garcia, J.; Geles, C.; Giorni, A.; Gonzalez, E.; Gonzalez, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Le Naour, C.; Lopez, C.; Loiseaux, J.M.; Martinez-Val, J.M.; Meplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Perez-Enciso, E.; Perez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P. E-mail: Jean-Pierre.Revol@cern.ch; Rubbia, C.; Rubio, J.A.; Sakelliou, L.; Saldana, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J.B.; Vieira, S.; Vlachoudis, V.; Zioutas, K

    2001-05-11

    The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (produced by 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3x3.3x3 m{sup 3} lead volume and neutron capture rates on long-lived fission fragments {sup 99}Tc and {sup 129}I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation.

  8. Experimental verification of neutron phenomenology in lead and of transmutation by adiabatic resonance crossing in accelerator driven systems a summary of the TARC project at CERN

    CERN Document Server

    Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; López, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifnecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, Alfredo; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, Juan Antonio; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin

    2001-01-01

    The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (produced by 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3*3.3*3 m/sup 3/ lead volume and neutron capture rates on long-lived fission fragments /sup 99/Tc and /sup 129/I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation. (9 refs).

  9. Time-energy relation of the n{sub T}OF neutron beam: energy standards revisited

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, G.; Colonna, N. E-mail: nicola.colonna@ba.infn.it; Marrone, S.; Tagliente, G.; Heil, M.; Cano-Ott, D.; Mosconi, M.; Moreau, C.; Mengoni, A.; Abbondanno, U.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Angelopoulos, A.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Becvar, F.; Benlliure, J.; Berthomieux, E.; Bisceglie, E.; Calvino, P.; Capote, R.; Cennini, P.; Chepel, V.; Chiaveri, E.; Coceva, C.; Cortes, G.; Cortina, D.; Couture, A.; Cox, J.; Dababneh, S.; Dahlfors, M.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Frais-Koelbl, H.; Furman, W.I.; Goncalves, I.F.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Herrera-Martinez, A.; Ioannides, K.G.; Isaev, S.; Jericha, E.; Kaeppeler, F.; Kadi, Y.; Karamanis, D.; Ketlerov, V.; Kitis, G.; Koehler, P.E.; Konovalov, V.; Kossionides, E.; Krticka, M.; Leeb, H.; Lindote, A.; Lopes, M.I.; Lozano, M.; Lukic, S.; Marganiec, J.; Mastinu, P.F.; Milazzo, P.M.; Molina-Coballes, A.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Paradela, C.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Peskov, V.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Policarpo, A.; Pretel, C.; Quesada, J.M.; Rapp, W.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Savvidis, E.; Soares, J.C.; Stephan, C.; Tain, J.L.; Tassan-Got, L.; Tavora, L.M.N.; Terlizzi, R.; Tsangas, N.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K

    2004-10-21

    The accurate determination of neutron cross-sections as a function of the neutron energy at a time-of-flight facility requires a precise knowledge of the time-energy relation for the neutron beam. For the n{sub T}OF neutron beam at CERN, produced by spallation of high-energy protons on a Pb target, the time-energy relation is connected to the production mechanism and to the subsequent moderation process. A calibration of the neutron energy scale is proposed based on detailed Monte Carlo simulations of the facility. This time-energy relation has been experimentally validated by means of dedicated measurements of standard energy resonances, from 1 eV to approximately 1 MeV. On the basis of the present measurements, it is proposed to correct the energy of the 1.3 eV resonance of {sup 193}Ir, which is commonly considered as an energy standard.

  10. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    International Nuclear Information System (INIS)

    controlled workplace field. The CERF (CERN-EU high-energy reference field) facility is a unique example of such a field, where a number of experimental campaigns and Monte Carlo simulations have been performed over the past years. With the aim of performing this kind of workplace performance test, four different ERBSS with different degrees of validation, operated by three groups (CERN, INFN-LNF and Politecnico of Milano), were exposed in two fixed positions at CERF. Using different unfolding codes (MAXED, GRAVEL, FRUIT and FRUIT SGM), the experimental data were analyzed to provide the neutron spectra and the related dosimetric quantities. The results allow assessing the overall performance of each ERBSS and of the unfolding codes, as well as comparing the performance of three ERRCs when used in a neutron field with energy distribution different from the calibration spectrum.

  11. Time collimation for elastic neutron scattering at a pulsed source

    International Nuclear Information System (INIS)

    Conditions for carrying out elastic neutron scattering experiments using the time-of-flight technique are considered. It is shown, that the employment of time dependent neutron beam collimation in the source-sample flight path increases the luminosity of the spectrometer under certain resolution restrictions. Time collimation modes are proposed for small-angle scattering and neutron reflection. (author) 8 figs., 3 refs

  12. Correlation Time-of-flight Spectrometry of Ultracold Neutrons

    OpenAIRE

    Novopoltsev, M. I.; Pokotilovski, Yu. N.

    2010-01-01

    The fearures of the correlation method used in time-of-flight spectrometry of ultracold neutrons are analyzed. The time-of-flight spectrometer for the energy range of ultracold neutrons is described, and results of its testing by measuring spectra of neutrons passing through interference filters are presented.

  13. Quantitative time resolved neutron imaging methods at the high flux neutron source FRM-II

    OpenAIRE

    Brunner, Johannes

    2007-01-01

    In the current work various new experimental methods and computation procedures in the field of neutron imaging are presented. These methods have a significant technical importance in non-destructive material investigations. With stroboscopic neutron radiography periodic processes can be investigated on a sub-millisecond time scale. This opens great opportunities for the study and the development of combustion engines. Energy selective time of flight neutron radiography at neutron spallation ...

  14. Real time neutron image processing system in NRF

    International Nuclear Information System (INIS)

    The neutron radiography facility was installed at the neutron radiography beam tube of the HANARO research reactor. The NRF is used for the nondestructive test to inspect and evaluate the material defect and homogeneity by detecting the transmitted neutron image in the nuclear as well as non-nuclear industry. To analyze the dynamical neutron image effectively and efficiently, the real-time image processing system was developed in background subtraction, normalization, geometry correction and beam uniformity, contrast control, filtering. The image quality test and dimension measurements were performed for the neutron beam purity and sensitivity indication. The NRF beam condition represents the highest beam quality for neutron radiography.

  15. Measurement of the Syrian MNSR delayed neutron fraction and neutron generation time by noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, I. E-mail: ikhamis@aec.org.sy; Hainoun, A.; Suleiman, W

    2003-02-01

    Delayed neutron fraction {beta} and prompt neutron generation time {lambda} were determined for the Miniature Neutron Source Reactor of Syria using noise analysis technique. Small reactivity perturbations, step-wise and impulse in time, were introduced into the reactor at low power level i.e. zero-power. Power and reactivity versus time were obtained. Using the generalized least square algorithm and transfer function analysis, measurement of both the delayed neutron fraction and the neutron generation time were made. The MNSR values obtained for the prompt neutron generation time and delayed neutron fraction are 78.3{+-}1.3 {mu}s and 7.94{+-}0.11x10{sup -3} respectively. Both measured values of {beta} and {lambda} were found to be very consistent with previously measured and calculated ones reported in the Safety Analysis Report.

  16. Measurement of the Syrian MNSR delayed neutron fraction and neutron generation time by noise analysis

    International Nuclear Information System (INIS)

    Delayed neutron fraction β and prompt neutron generation time Λ were determined for the Miniature Neutron Source Reactor of Syria using noise analysis technique. Small reactivity perturbations, step-wise and impulse in time, were introduced into the reactor at low power level i.e. zero-power. Power and reactivity versus time were obtained. Using the generalized least square algorithm and transfer function analysis, measurement of both the delayed neutron fraction and the neutron generation time were made. The MNSR values obtained for the prompt neutron generation time and delayed neutron fraction are 78.3±1.3 μs and 7.94±0.11x10-3 respectively. Both measured values of β and Λ were found to be very consistent with previously measured and calculated ones reported in the Safety Analysis Report

  17. Measurement of the Syrian MNSR delayed neutron fraction and neutron generation time by noise analysis

    International Nuclear Information System (INIS)

    Delayed neutron fraction beta and prompt neutron generation time LAMBDA were determined for the Miniature Neutron Source Reactor of Syria using noise analysis technique. Small reactivity perturbations, step-wise and impulse in time, were introduced into the reactor at low power level i.e. zero-power. Power and reactivity versus time were obtained. Using the generalized least square algorithm and transfer function analysis, measurement of both the delayed neutron fraction and the neutron generation time were made. The MNSR values obtained for the prompt neutron generation time and delayed neutron fraction are 78.3+-1.3 mu s and 7.94+-0.11x10 sup - sup 3 respectively. Both measured values of beta and LAMBDA were found to be very consistent with previously measured and calculated once reported in the Safety Analysis Report. (author)

  18. Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE, CERN

    Directory of Open Access Journals (Sweden)

    Clément E.

    2013-12-01

    Full Text Available A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N = 60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  19. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  20. Measurement and analysis of the $^{243}$Am neutron capture cross section at the n_TOF facility at CERN

    CERN Document Server

    Mendoza, E; Guerrero, C; Berthoumieux, E; Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Balibrea, J; Baumann, P; Becvar, F; Belloni, F; Calvino, F; Calviani, M; Capote, R; Carrapico, C; Carrillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant†, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; Gonz alez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Ketlerov, V; Kerveno, M; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lossito, R; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martınez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O’Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2014-01-01

    Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty. Method: The $^{243}$Am(n,$\\gamma$) cross section has been measured at the n_TOF facility at CERN with a BaF$_{2}$ Total Absorption Calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The $^{243}$Am(n,$\\gamma$) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature has been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty and suggest that this cross section is underestimate...

  1. TORCH - Cherenkov and Time-of-Flight PID Detector for the LHCb Upgrade at CERN

    Science.gov (United States)

    Föhl, K.; Brook, N.; Castillo García, L.; Conneely, T.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Milnes, J.; Piedigrossi, D.; Rademacker, J.; Ros Garcì a, A.; van Dijk, M.

    2016-05-01

    TORCH is a large-area precision time-of-flight detector, based on Cherenkov light production and propagation in a quartz radiator plate, which is read out at its edges. TORCH is proposed for the LHCb experiment at CERN to provide positive particle identification for kaons, and is currently in the Research-and-Development phase. A brief overview of the micro-channel plate photon sensor development, the custom-made electronics, and an introduction to the current test beam activities is given. Optical readout solutions are presented for the potential use of BaBar DIRC bar boxes as part of the TORCH configuration in LHCb.

  2. TIME INTERVAL APPROACH TO THE PULSED NEUTRON LOGGING METHOD

    Institute of Scientific and Technical Information of China (English)

    赵经武; 苏为宁

    1994-01-01

    The time interval of neibouring neutrons emitted from a steady state neutron source can be treated as that from a time-dependent neutron source,In the rock space.the neutron flux is given by the neutron diffusion equation and is composed of an infinite number of “modes”,EaCh“mode”,is composed of two die-away curves.The delay action has been discussed and used to measure the time interval with only one detector in the experiment,Nuclear reactions with the time distribution due to different types of radiations observed in the neutron well-logging methods are presented with a view to getting the rock nuclear parameters from the time interval technique.

  3. The CERN Library

    CERN Multimedia

    Hester, Alec G

    1968-01-01

    Any advanced research centre needs a good Library. It can be regarded as a piece of equipment as vital as any machine. At the present time, the CERN Library is undergoing a number of modifications to adjust it to the changing scale of CERN's activities and to the ever increasing flood of information. This article, by A.G. Hester, former Editor of CERN COURIER who now works in the Scientific Information Service, describes the purposes, methods and future of the CERN Library.

  4. Time-gated energy-selected cold neutron radiography

    CERN Document Server

    McDonald, T E; Claytor, T N; Farnum, E H; Greene, G L; Morris, C

    1999-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as time-gated energy-selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross ...

  5. Time-resolved fast neutron imaging: simulation of detector performance

    OpenAIRE

    Vartsky, D.; Mor, I.; Goldberg, M B; Mardor, I.; Feldman, G.; Bar, D.; A. Shor; Dangendorf, V.; Laczko, G; Breskin, A.; Chechik, R.

    2004-01-01

    We have analyzed and compared the performance of two novel fast-neutron imaging methods with time-of-flight spectroscopy capability. Using MCNP and GEANT code simulations of neutron and charged-particle transport in the detectors, key parameters such as detection efficiency, the amount of energy deposited in the converter and the spatial resolution of both detector variants have been evaluated.

  6. Precision measurements with the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko; Ascher, Pauline; Borgmann, Christopher; Boehm, Christine; Eliseev, Sergey; Eronen, Tommi; George, Sebastian; Kisler, Dmitry; Naimi, Sarah [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Beck, Dietrich; Herfurth, Frank; Litvinov, Yuri; Minaya Ramirez, Enrique; Neidherr, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Breitenfeldt, Martin [Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200d - bus 2418, 3001 Heverlee (Belgium); Cakirli, Burcu [University of Istanbul, Department of Physics, 34134 Istanbul (Turkey); Cocolios, Thomas Elias [University of Manchester, Manchester (United Kingdom); Herlert, Alexander Josef [FAIR GmbH, Planckstr. 1, D-64291 Darmstadt (Germany); Kowalska, Magdalena [CERN, Geneva 23, 1211 Geneva (Switzerland); Kreim, Susanne [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); CERN, Geneva 23, 1211 Geneva (Switzerland); Lunney, David; Manea, Vladimir [CSNSM-IN2P3-CNRS, 91405 Orsay Campus, Bat. 104, 108 (France); Rosenbusch, Marco; Schweikhard, Lutz; Wienholtz, Frank; Wolf, Robert [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, Felix-Hausdorff-Str. 6, 17487 Greifswald (Germany); Stanja, Juliane; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany)

    2014-07-01

    The masses of exotic nuclides are among the most important input parameters for modern nuclear theory and astrophysical models. At the high-precision Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN, a multi-reflection time-of-flight mass spectrometer (MR-ToF-MS) in combination with a Bradbury-Nielsen gate (BNG) can be used to achieve high-resolution isobar purification with mass-resolving powers of 105 in a few tens of milliseconds. Furthermore, the MR-ToF device can be used as a spectrometer to determine the masses of nuclides with very low yields and short half-lives, where a Penning-trap mass measurement becomes impractical due to the lower transport efficiency and decay losses during the purification and measurement cycles. Recent cross-check experiments show that the MR-ToF MS allows mass measurements with uncertainties in the sub-ppm range. In a first application the mass measurements of the nuclides 53,54Ca was performed, delivered with production rates as low as 10/s and half-lives of only 90(6) ms. The nuclides serve as important benchmarks for testing modern chiral effective theory with realistic 3-body forces. The contribution presents the on-line mass spectrometer ISOLTRAP focusing on the new applications, which became possible after the implementation of the MR-ToF MS into the current setup. In particular, the mass measurements of the neutron-rich calcium isotopes up to A=54 are discussed. In addition, measurements of the isotonic potassium isotopes are reported.

  7. Measurement of the neutron capture cross section of U{sup 234} in n-TOF at CERN for Generation IV nuclear reactors; Mesure de la section efficace de capture neutronique de l'{sup 234}U a n-TOF au CERN pour les reacteurs nucleaires de generation 4

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2006-11-15

    Accurate and reliable neutron capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. In particular, the accurate knowledge of U{sup 234}(n,{gamma}) reaction cross section is required for the design and realization of nuclear power plants based on the thorium fuel cycle. We have measured the neutron capture cross section of U{sup 234}, with a 4{pi} BaF{sub 2} Total Absorption Calorimeter, at the recently constructed neutron time-of-flight facility n-TOF at CERN in the energy range from 0.03 eV to 1 MeV. Monte-Carlo simulations with GEANT4 and MCNPX of the detector response have been performed. After the background subtraction and correction with dead time and pile-up, the capture yield from 0.03 eV up to 1.5 keV was derived. The analysis of the capture yield in terms of R-matrix resonance parameters is discussed. We have identified 123 resonances and measured the resonance parameters in the energy range from 0.03 eV to 1.5 keV. The mean radiative width <{gamma}{sub {gamma}}> is found to be (38.2 {+-} 1.5) meV and the mean spacing parameter is (11.0 {+-} 0.2) eV, both values agree well with recommended values.

  8. Mapping of the thermal neutron distribution in the lead block assembly of the PS-211 experiment at CERN, using thermoluminescence and nuclear track detectors

    CERN Document Server

    Savvidis, E; Kitis, G

    2002-01-01

    The main purpose of the TARC (transmutation by adiabatic resonance crossing) experiment (PS-211), was to demonstrate the possibility to destroy efficiently long-lived fission fragments (LLFF) in accelerator driven systems (ADS). The experimental set-up which consisted of a lead block with dimensions 3.3 * 3.3 * 3 m/sup 3/, was installed in a CERN proton synchrotron (PS) beam line. The proton beam at 2.5 GeV/c and 3.5 GeV/c, was incident in the centre of the lead block assembly producing neutrons via spallation reactions. Neutron flux measurements are presented in the lead block assembly using thermoluminescence and nuclear track detectors. The results are in good agreement with Monte Carlo calculations as well as with the results of the other methods used in the framework of the TARC experiment. (5 refs).

  9. Mapping of the thermal neutron distribution in the lead block assembly of the PS-211 experiment at CERN, using thermoluminescence and nuclear track detectors.

    Science.gov (United States)

    Savvidis, E; Eleftheriadis, C A; Kitis, G

    2002-01-01

    The main purpose of the TARC (Transmutation by Adiabatic Resonance Crossing) experiment (PS-211), was to demonstrate the possibility to destroy efficiently Long-Lived Fission Fragments (LLFF) in Accelerator Driven Systems (ADS). The experimental set-up which consisted of a lead block with dimensions 3.3 x 3.3 x 3 m3, was installed in a CERN Proton Synchrotron (PS) beam line. The proton beam at 2.5 GeV/c and 3.5 GeV/c, was incident in the centre of the lead block assembly producing neutrons via spallation reactions. In this study, neutron flux measurements are presented in the lead block assembly using thermoluminescence and nuclear track detectors. The results are in good agreement with Monte Carlo calculations as well as with the results of the other methods used in the framework of the TARC experiment.

  10. Future Perspectives at CERN

    OpenAIRE

    Ellis, John

    2002-01-01

    Current and future experiments at CERN are reviewed,with emphasis on those relevant to astrophysics and cosmology. These include experiments related to nuclear astrophysics, matter-antimatter asymmetry, dark matter, axions, gravitational waves, cosmic rays, neutrino oscillations, inflation, neutron stars and the quark-gluon plasma. The centrepiece of CERN's future programme is the LHC, but some ideas for perspectives after the LHC are also presented.

  11. Real-time active cosmic neutron background reduction methods

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray‒induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory-Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the lowenergy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of manmade neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  12. Real-Time Active Cosmic Neutron Background Reduction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray-induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  13. Measurement of neutron induced fission of {sup 235}U, {sup 233}U and {sup 245}Cm with the FIC detector at the CERN n-TOF facility

    Energy Technology Data Exchange (ETDEWEB)

    Calviani, M.; Karadimos, D.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    A series of measurements of neutron induced fission cross section of various transuranic isotopes have been performed at the CERN n-TOF spallation neutron facility, in the energy range from thermal to nearly 250 MeV. The experimental apparatus consists in a fast ionization chamber (FIC), used as a fission fragment detector with a high efficiency. Good discrimination between alphas and fission fragments can be obtained with a simple amplitude threshold. In order to allow the monitoring of the neutron beam and to extract the n-TOF neutron flux, the well known cross section of the {sup 235}U(n,f) reaction, considered as a fission standard, has been used. Preliminary results for the cross section are shown for some selected isotopes such as {sup 235}U, {sup 233}U and {sup 245}Cm in the energy range from 0.050 eV to about 2 MeV. These results for {sup 235}U, {sup 233}U and {sup 245}Cm show results consistent with databases in the resonance region, with no normalization required for {sup 233}U. In the case of {sup 245}Cm, for the energy range between thermal and 20 eV, we obtained the first experimental data ever published, while showing a good agreement with previous data in the region above that value.

  14. CERN Holiday Gift Guide

    CERN Multimedia

    2013-01-01

    Do you have last-minute gifts to get? Stuck for ideas? The CERN Shop and the ATLAS and CMS secretariats have some wonderfully unique gifts and stocking-fillers for sale this year - perfect for the physics fanatics in your life. Let's take a look...   1. CERN Notebook, 10 CHF - 2. CERN Pop-up book, 30 CHF - 3. USB Stick 8GB, 25 CHF - 4. CERN Tumbler, 12 CHF 5. ATLAS 3D Viewer, 5 CHF - 6. ATLAS Puzzle, 15 CHF - 7. CMS Umbrella, 25 CHF   These gifts are all available at the CERN Shop, with the exception of the ATLAS 3D Viewer and the CMS umbrella, which are only available from the respective secretariats. Don’t forget! If you’re from CERN, you still have time to take advantage of a 10% off discount at the CERN shop. Offer ends 20 December.

  15. CERN is 25 years old

    CERN Document Server

    Anthoine, R

    1979-01-01

    Reviews the history of CERN, the European Organisation for Nuclear Research, which has just celebrated its twenty-fifth anniversary. The member states, the site (Geneva) and accelerators, and the research carried out are all discussed. Amongst the apparatus and research described are the SPS (Super Proton Synchrotron), the ISOLDE linear isotope separator, BEBC (Big European Bubble Chamber), and the ISR (Intersecting Storage Rings). Discoveries made since the founding of CERN include that of neutral currents, measurement of the magnetic characteristics of the muon to a great accuracy, creation of exotic atoms, neutrino analysis of proton and neutron structure, hadron classification, future/past time asymmetry in neutral kaons, and the first measurements of the lifetimes of charmed hadrons. Future projects considered include LEP, the Large Electron Positron Ring. (0 refs).

  16. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    CERN Document Server

    Arimoto, Y; Igarashi, Y; Iwashita, Y; Ino, T; Katayama, R; Kitahara, R; Kitaguchi, M; Matsumura, H; Mishima, K; Oide, H; Otono, H; Sakakibara, R; Shima, T; Shimizu, H M; Sugino, T; Sumi, N; Sumino, H; Taketani, K; Tanaka, G; Tanaka, M; Tauchi, K; Toyoda, A; Yamada, T; Yamashita, S; Yokoyama, H; Yoshioka, T

    2015-01-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  17. Studying Kinetics with Neutrons Prospects for Time-Resolved Neutron Scattering

    CERN Document Server

    Eckold, Götz; Nagler, Stephen E

    2010-01-01

    Neutrons are extremely versatile probes for investigating structure and dynamics in condensed matter. Due to their large penetration depth, they are ideal for in-situ measurements of samples situated in sophisticated and advanced environments. The advent of new high-intensity neutron sources and instruments, as well as the development of new real-time techniques, allows the tracking of transformation processes in condensed matter on a microscopic scale. The present volume provides a review of the state of the art of this new and exciting field of kinetics with neutrons

  18. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  19. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    International Nuclear Information System (INIS)

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility nTOF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed

  20. Development of a small, nanosecond timing fast neutron spectrometer

    International Nuclear Information System (INIS)

    A neutron spectrometer has been developed for use inside a fast neutron assembly. The spectrometer is small and insensitive to gamma radiation. An optical system was developed which could collect about 80 per cent of the light from an NE213 liquid scintillator and transmit it along a 450 mm quartz light guide to a high performance photomultiplier. To enable the detector to be used as a nanosecond timing spectrometer, several calibration measurements were made of the detector efficiency and response to monoenergetic neutrons

  1. Real‑time, fast neutron detection for stimulated safeguards assay

    International Nuclear Information System (INIS)

    The advent of low‑hazard organic liquid scintillation detectors and real‑time pulse‑shape discrimination (PSD) processing has suggested a variety of modalities by which fast neutrons, as opposed to neutrons moderated prior to detection, can be used directly to benefit safeguards needs. In this paper we describe a development of a fast‑neutron based safeguards assay system designed for the assessment of 235U content in fresh fuel. The system benefits from real‑time pulse‑shape discrimination processing and auto‑calibration of the detector system parameters to ensure a rapid and effective set‑up protocol. These requirements are essential in optimising the speed and limit of detection of the fast neutron technique, whilst minimising the intervention needed to perform the assay.

  2. Tests and calibration of NIF neutron time of flight detectors.

    Science.gov (United States)

    Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C

    2008-10-01

    The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.

  3. Tests of time reversal in neutron-nucleus scattering

    International Nuclear Information System (INIS)

    Experiments to test time-reversal invariance are discussed. The experiments are based on observables constructed from the momentum and spin vectors of epithermal neutrons and from the spin of an aligned or polarized target. It is shown that the proposed tests are detailed balance tests of time-reversal invariance. The status of the experiments is briefly reviewed. 14 refs., 5 figs

  4. Big research in new dimensions. Thinkers of our time about the actual elementary-particle physics at CERN

    International Nuclear Information System (INIS)

    The following topics are dealt with: Research from the highest energies to the smallest particles at CERN, the laborious way to the Large Hadronic Collider, CERN as accelerator of techniques, culture, and society, a philosophical and sociological perspective of questions concerning CERN, quark matter research at CERN, the FAIR facility for antiproton and ion research. (HSI)

  5. Timing and position response of a block detector for fast neutron time-of-flight imaging

    International Nuclear Information System (INIS)

    Our research effort seeks to improve the spatial and timing performance of a block detector made of a pixilated plastic scintillator (EJ-200), first demonstrated as part of Oak Ridge National Laboratory's Advanced Portable Neutron Imaging System. Improvement of the position and time response is necessary to achieve better resolution and contrast in the images of shielded special nuclear material. Time-of-flight is used to differentiate between gamma and different sources of neutrons (e.g., transmission and fission neutrons). Factors limiting the timing and position performance of the neutron detector have been revealed through simulations and measurements. Simulations have suggested that the degradation in the ability to resolve pixels in the neutron detector is due to those interactions occurring near the light guide. The energy deposition within the neutron detector is shown to affect position performance and imaging efficiency. This examination details how energy cuts improve the position performance and degrade the imaging efficiency. Measurements have shown the neutron detector to have a timing resolution of σ=238 ps. The majority of this timing uncertainty is from the depth-of-interaction (DOI) of the neutron which is confirmed by simulations and analytical calculations

  6. Use of a large time-compensated scintillation detector in neutron time-of-flight measurements

    Science.gov (United States)

    Goodman, Charles D.

    1979-01-01

    A scintillator for neutron time-of-flight measurements is positioned at a desired angle with respect to the neutron beam, and as a function of the energy thereof, such that the sum of the transit times of the neutrons and photons in the scintillator are substantially independent of the points of scintillations within the scintillator. Extrapolated zero timing is employed rather than the usual constant fraction timing. As a result, a substantially larger scintillator can be employed that substantially increases the data rate and shortens the experiment time.

  7. CERN, Geneva

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (pages 1-3) is being built at CERN, the European Centre for Nuclear Research near Geneva. CERN offers some extremely exciting opportunities to see "big bang" in action. (1 page)

  8. Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future

    CERN Document Server

    Cano-Ott, D; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Abbondanno, U; Vannini, G; Oshima, M; Gramegna, F; Wiescher, M; Pigni, M T; Wiendler, H; Mengoni, A; Quesada, J; Becvar, F; Rosetti, M; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Ketlerov, V; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Pavlopoulos, P; Karamanis, D; Krticka, M; Griesmayer, E; Jericha, E; Ferrari, A; Martinez, T; Oberhummer, H; Karadimos, D; Plompen, A; Mendoza, E; Terlizzi, R; Cortes, G; Cox, J; Voss, F; Pretel, C; Colonna, N; Berthoumieux, E; Dolfini, R; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Stephan, C; Tain, J L; Belloni, F; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Milazzo, P M; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Meaze, M H; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Konovalov, V; Kerveno, M; Marques, L; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Fujii, K; De Albornoz, A C; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Dillman, I; Assimakopoulos, P; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Vicente, M C; Praena, J; Baumann, P; Moreau, C; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Paradela, C; Audouin, L; Tassan-Got, L; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Isaev, S; Pancin, J; Papadopoulos, C; Tagliente, G; Alvarez, H; Haight, R; Goverdovski, A; Chepel, V; Plag, R; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Frais-Koelbl, H; Pavlik, A; Goncalves, I

    2011-01-01

    The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports {[}1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n\\_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) {[}4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.

  9. Neutron capture measuremetns on minor actinides at the n_TOF facility at CERN: past, present and future

    OpenAIRE

    Cano Ott, Daniel; Colonna, Nicola; Tagliente, G; Belloni, Fabio; Calviño Tavares, Francisco; Cortés Rossell, Guillem Pere; Poch Parés, Agustí; Pretel Sánchez, Carme

    2011-01-01

    The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity stud- ies and reports [1-3] have identi ed the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n TOF collaboration has initiated an ambitious exper- imental program for the measurement of neutron capture cross sections of minor actinides. Two e...

  10. Neutron time-of-flight and emission time diagnostics for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T. J.; Jimerson, J. L.; Berggren, R. R.; Faulkner, J. R.; Oertel, J. A.; Walsh, P. J.

    2001-01-01

    Current plans call for a system of current mode neutron detectors for the National Ignition Facility for extending the range of neutron yields below that of the neutron activation system, for ion-temperature measurements over a wide yield range, and for determining the average neutron emission time. The system will need to operate over a yield range of 10{sup 6} for the lowest-yield experiments to 10{sup 19} for high-yield ignited targets. The requirements will be satisfied using several detectors located at different distances from the target. This article presents a conceptual design for the NIF nToF system.

  11. CERN: Fixed target targets

    International Nuclear Information System (INIS)

    visible for the first time, and help explain the continuing dilemma of the dearth of solar neutrinos (December 1992, page 12). For the longer term future, a larger detector could provide an increased yield, boosting the neutrino capture rate by up to a factor of ten. Other, more spectacular, option is to shine the CERN neutrino beam towards a detector a long way off. Such a beam is practically unimpeded by matter and could pass right through the earth. Possible contenders for underground target stations equipped with big detectors are the Italian Gran Sasso laboratory, 730 kilometres south, or Superkamiokande, 8750 kilometres away in Japan. Other major ongoing 'flagship' SPS projects include the NA48 experiment to continue precision measurements on the still unexplained phenomenon of CP violation (March 1992, page 7) and the 'Spin Muon Collaboration' looking to probe the spin structure of the proton and the neutron using high energy muon beams (April 1992, page 21). Both these experiments address important physics issues. While SMC is already taking data, NA48 will not become operational until 1995, but should run then for more than three years. Elsewhere at the SPS, ongoing studies include a programme using hyperon beams, and a study of beauty particles (WA92) which would be hampered once the new neutrino programme starts. The spectroscopy of particles containing light quarks, although far from having solved all outstanding questions, is slowly coming to the end of its SPS career. The WA91 glueball search at the big Omega detector will continue taking data in 1994. The GAMS experiment took its final CERN data last year. One of the long-standing examples of CERN-Russian collaboration, GAMS earned its acronym from the Russian abbreviation for its characteristic large lead-glass arrays. GAMS experiments have run both at CERN and at Serpukhov's Institute for High Energy Physics near Moscow

  12. CERN Relay Race: the Shabbys win again, this time with music

    CERN Multimedia

    2005-01-01

    The Shabbys definitely seem unbeatable. They won the CERN Relay Race for the fifth consecutive year by a comfortable margin (picture below). It was a more neck-and-neck finish for second and third place but in the end Los Latinos Volantes came in second by a hair's breadth in front of Charmilles Technologies in third place, a reversal of last year's positions. For the less competitive participants, the Relay Race retains its traditional charm as a moment of relaxation and as an event in which taking part is more important than winning. In addition, even if the sun was noticeable by its absence, CERN's excellent Jazz Club band added a novel touch of colour and levity. Participants and spectators alike greatly appreciated their musical accompaniment on the finishing line! All the results are published in this issue on page 5 of the Staff Association section.

  13. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    CERN Document Server

    Doa, Changwoo; Stanley, Christopher; Gallmeier, Franz X; Doucet, Mathieu; Smith, Gregory S

    2013-01-01

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutrons energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (~20 meV) regardless of the incident neutron energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-depe...

  14. A real time scintillating fiber Time of Flight spectrometer for LINAC photoproduced neutrons

    Science.gov (United States)

    Maspero, M.; Berra, A.; Conti, V.; Giannini, G.; Ostinelli, A.; Prest, M.; Vallazza, E.

    2015-03-01

    The use of high-energy (> 8 MeV) LINear ACcelerators (LINACs) for medical cancer treatments causes the photoproduction of secondary neutrons, whose unwanted dose to the patient has to be calculated. The characterization of the neutron spectra is necessary to allow the dosimetric evaluation of the neutron beam contamination. The neutron spectrum in a hospital environment is usually measured with integrating detectors such as bubble dosimeters, Thermo Luminescent Dosimeters (TLDs) or Bonner Spheres, which integrate the information over a time interval and an energy one. This paper presents the development of a neutron spectrometer based on the Time of Flight (ToF) technique in order to perform a real time characterization of the neutron contamination. The detector measures the neutron spectrum exploiting the fact that the LINAC beams are pulsed and arranged in bunches with a rate of 100-300 Hz depending on the beam type and energy. The detector consists of boron loaded scintillating fibers readout by a MultiAnode PhotoMultiplier Tube (MAPMT). A detailed description of the detector and the acquisition system together with the results in terms of ToF spectra and number of neutrons with a Varian Clinac iX are presented.

  15. Time reversal invariance - a test in free neutron decay

    International Nuclear Information System (INIS)

    Time reversal invariance violation plays only a small role in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the T-violating ''D''-correlation in the decay of free neutrons. The triple-correlation Dσn·pe x pv involves three kinematic variables, the neutron spin, electron momentum, and neutrino (or proton) momentum, and changes sign under time reversal. This experiment detects the decay products of a polarized cold neutron beam with an octagonal array of scintillation and solid-state detectors. Data from first run at NIST's Cold Neutron Research Facility give a D-coefficient of -0.1 ± 1.3(stat.) ± 0.7(syst) x 10-3. This measurement has the greatest bearing on extensions to the Standard model that incorporate leptoquarks, although exotic fermion and lift-right symmetric models also allow a D as large as the present limit

  16. Time reversal invariance - a test in free neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Lising, Laura J.

    1999-05-18

    Time reversal invariance violation plays only a small role in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the T-violating ''D''-correlation in the decay of free neutrons. The triple-correlation D{sigma}{sub n}{center_dot}p{sub e} x p{sub v} involves three kinematic variables, the neutron spin, electron momentu, and neutrino (or proton) momentum, and changes sign under time reversal. This experiment detects the decay products of a polarized cold neutron beam with an octagonal array of scintillation and solid-state detectors. Data from first run at NIST's Cold Neutron Research Facility give a D-coefficient of -0.1 {+-} 1.3(stat.) {+-} 0.7(syst) x 10{sup -3}. This measurement has the greatest bearing on extensions to the Standard model that incorporate leptoquarks, although exotic fermion and lift-right symmetric models also allow a D as large as the present limit.

  17. Time reversal invariance - a test in free neutron decay

    CERN Document Server

    Lising, L J

    1999-01-01

    Time reversal invariance violation plays only a small role in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the T-violating ''D''-correlation in the decay of free neutrons. The triple-correlation D sigma sub n centre dot p sub e x p sub v involves three kinematic variables, the neutron spin, electron momentum, and neutrino (or proton) momentum, and changes sign under time reversal. This experiment detects the decay products of a polarized cold neutron beam with an octagonal array of scintillation and solid-state detectors. Data from first run at NIST's Cold Neutron Research Facility give a D-coefficient of -0.1 +- 1.3(stat.) +- 0.7(syst) x 10 sup - sup 3. This measurement has the greatest bearing on extensions to the Standard model that incorporate leptoquarks, although exotic fermion and lift-right symmetric models also allow a D as large as the pre...

  18. A time lens for high resolution neutron time of flight spectrometers

    OpenAIRE

    K. Baumann; Gaehler, R.; Grigoriev, P. D.; Kats, E.I.

    2005-01-01

    We examine in analytic and numeric ways the imaging effects of temporal neutron lenses created by traveling magnetic fields. For fields of parabolic shape we derive the imaging equations, investigate the time-magnification, the evolution of the phase space element, the gain factor and the effect of finite beam size. The main aberration effects are calculated numerically. The system is technologically feasible and should convert neutron time of flight instruments from pinhole- to imaging confi...

  19. Neutron Time of Flight Spectrometer for Velocity Selector Calibration

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Small angle neutron spectrometer on China Advanced Research Reactor (CARR) is located at neutron guide hall and is installed on the end of cold neutron guide. Velocity selector which can purify white light neutron beam into monochromatic neutron beam with wavelength

  20. Bubble masks for time-encoded imaging of fast neutrons.

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is induced-typically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gaps-bubbles-propagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  1. Bubble masks for time-encoded imaging of fast neutrons.

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  2. CERN Choir

    CERN Multimedia

    Staff Association

    2015-01-01

      Do you like singing? The CERN Choir is looking for basses and tenors Join us! Programme Spring Session 2015: Donizetti: Misere & Missa di Gloria e Credo Bellini: Salve Regina Bruckner: Requiem in D minor Next concert: Sunday 31 May 2015 at 17:00 Musicales de Comesières (GE) Rehearsals at CERN Main Auditorium, building 500 On Wednesdays from 20.00 to 22:00 Membership fee: January to June 150 CHF September to December: 100CHF Contact: Baudouin.bleus@cern.ch Facebook/Choeur-du-CERN

  3. The 1956 CERN Symposium

    CERN Document Server

    Jarlskog, Cecilia

    2014-01-01

    CERN, currently the largest organization in the world for particle physics, was founded in 1954. Originally located in Meyrin, at the outskirts of the city of Geneva in Switzerland, it has with time extended into neighboring France. The Theoretical Study Division of CERN, however, was created already in 1952, i.e., before the official inauguration of CERN. It was situated in Copenhagen. Christian Møller [1] was appointed (part-time) as the Director and there were two full time senior staff members, Gunnar Källén and Ben R. Mottelson. While constructing buildings and accelerators were in progress, an international conference was organized by CERN in the city of Geneva. This “CERN Symposium on High Energy Accelerators and Pion Physics”, 11–23 June 1956, attracted about 250 participants from outside CERN, among them at least 18 Nobel Laureates or future Laureates. Unfortunately, the participants from CERN are not listed in the Proceedings [2]. The conference focused on measuring devices such as bubbl...

  4. Real-Time System Supervision for the LHC Beam Loss Monitoring System at CERN

    CERN Document Server

    Zamantzas, C; Effinger, E; Emery, J; Jackson, S

    2014-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. The LHC BLM system is one of the most complex and large instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. In order to augment the dependability of the system several layers of supervision has been implemented internally and externally to the system. This paper describes the different methods employed to achieve the expected availability and system fault detection.

  5. Courrier CERN

    CERN Multimedia

    2015-01-01

    Example of the cover page of the French version of the CERN Courier; Courrier CERN from January 1962. The journal was published both in English and French up to volume 45, no. 5, June 2005. Since then there is a single-language edition where articles are published either in French or English with an abstract in the other language.

  6. Measurement of the $^{233}$U neutron capture cross section at the n_TOF facility at CERN

    CERN Document Server

    Carrapiço, Carlos; Berthoumieux, Eric; Gonçalves, Isabel; Gunsing, Frank

    2012-12-12

    The Thorium-Uranium (Th-U) fuel cycle has been envisaged as an alternative to the Uranium-Plutonium (U-Pu) fuel cycle for electricity generation using nuclear power reactors. Indeed, thorium can be used as a nuclear fuel, and several studies and R&D programs seem to provide evidence on the sustainability of the Th-U fuel cycle, due to (i) the natural abundance of Thorium, (ii) the improved proliferation resistance offered by the Th-U fuel cycle relative to the U-Pu fuel cycle, (iii) the better neutronics performance of the Th-U fuel cycle throughout the whole neutron energy range compared to the U-Pu fuel cycle, (iv) the lower radiotoxicity of the generated spent fuel in reactors with Th-U fuel cycle and, consequently (v) better economics and public acceptance of the reactors operated using the Th-U fuel cycle compared to those using the U-Pu fuel cycle (prior to the Generation IV nuclear reactors). In a nuclear reactor operated using the Th-U fuel cycle, $^{233}$U is a key nuclide governing the neutr...

  7. CERN & Society

    CERN Multimedia

    2016-01-01

    Non Member State Summer Students 2015 are interviewed about their decision to study STEM subjects, to apply for CERN NMSSS programme, their experience onsite @CERN and takeaways, their future goals and aspirations, offering also advice to fellow students.The Non Member State Summer Student Programme stands for a unique opportunity for students from all over the world to spend their summer at CERN in Geneva, getting involved in some of the world’s biggest experiments. For 8 weeks, summer students gather on-site at CERN and join in the day-to-day work of research. The Programme targets advanced undergraduate and beginning graduate students of physics, computing and engineering, particularly from developing countries. Participating students receive scientific training, attend lectures and work on laboratory-based projects alongside with CERN experts and fellow students.

  8. Parameters Affecting Temporal Resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    OpenAIRE

    Mor, I.; Vartsky, D.; Dangendorf, V.; Bar, D.; Feldman, G.; Goldberg, M B; Tittelmeier, K.; Bromberger, B.; Brandis, M.; Weierganz, M.

    2013-01-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the En = 1-10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window correspondi...

  9. The Design and Optimization Spectrometer with Double Diagnostics of a Neutron Time-of-Flight Scintillators for Neutron on EAST

    Institute of Scientific and Technical Information of China (English)

    张兴; 袁熙; 谢旭飞; 樊铁栓; 陈金象; 李湘庆

    2012-01-01

    Neutron energy spectrometry diagnosis plays an important role in magnetic con- finement fusion. A new neutron time-of-flight (TOF) spectrometer with double scintillators is designed and optimized for the EAST toknmak. A set of optimM parameters is obtained by Monte Carlo simulation, based on the GEANT4 and ROOT codes. The electronic setup of the measurement system is designed. The count rate capability is increased by introducing a flash ADC. The designed spectrometer with high resolution and efficiency is capable of being applied to fusion neutron diagnostics. Applications in mixed-energy and continuous energy neutron fields can also be considered.

  10. A detector for neutron imaging

    CERN Document Server

    Britton, C L; Wintenberg, A L; Warmack, R J; McKnight, T E; Frank, S S; Cooper, R G; Dudney, N J; Veith, G M; Stephan, A C

    2004-01-01

    A bright neutron source such as the Spallation Neutron Source (SNS) places extreme requirements on detectors including excellent 2-D spatial imaging and high dynamic range. Present imaging detectors have either shown position resolutions that are less than acceptable or they exhibit excessive paralyzing dead times due to the brightness of the source. High neutron detection efficiency with good neutron- gamma discrimination is critical for applications in neutron scattering research where the usefulness of the data is highly dependent on the statistical uncertainty associated with each detector pixel.. A detector concept known as MicroMegas (MicroMEsh GAseous Structure) has been developed at CERN in Geneva for high- energy physics charged-particle tracking applications and has shown great promise for handling high data rates with a rather low-cost structure. We are attempting to optimize the MicroMegas detector concept for thermal neutrons and have designed a 1-D neutron strip detector which we have tested In ...

  11. CERN permanent exhibitions

    CERN Multimedia

    2016-01-01

    Explore by yourself the issues CERN's physicists are trying to solve: given that the entire universe is made of particles, where do they come from? Why do they behave in the way they do? Discover the massive apparatus used by physicists at CERN, like the LHC, and see how each part works. And if you have more time on site, follow the LHC circuit at ground level to understand in situ this giant machine. Enter our exhibitions. Welcome!

  12. CERN expositions permanentes

    CERN Multimedia

    2016-01-01

    Explore by yourself the issues CERN's physicists are trying to solve: given that the entire universe is made of particles, where do they come from? Why do they behave in the way they do? Discover the massive apparatus used by physicists at CERN, like the LHC, and see how each part works. And if you have more time on site, follow the LHC circuit at ground level to understand in situ this giant machine. Enter our exhibitions. Welcome!

  13. Big research in new dimensions. Thinkers of our time about the actual elementary-particle physics at CERN; Grossforschung in neuen Dimensionen. Denker unserer Zeit ueber die aktuelle Elementarteilchenphysik am CERN

    Energy Technology Data Exchange (ETDEWEB)

    Kommer, Christoph (ed.) [Heidelberg Univ. (Germany); DKFZ, Heidelberg (Germany); Satz, Helmut [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Blanchard, Philippe [Bielefeld Univ. (Germany). Abt. Theoretische Physik

    2016-07-01

    The following topics are dealt with: Research from the highest energies to the smallest particles at CERN, the laborious way to the Large Hadronic Collider, CERN as accelerator of techniques, culture, and society, a philosophical and sociological perspective of questions concerning CERN, quark matter research at CERN, the FAIR facility for antiproton and ion research. (HSI)

  14. Neutron slowing-down time in finite water systems

    International Nuclear Information System (INIS)

    The influence of the size of a moderator system on the neutron slowing-down time has been investigated. The experimental part of the study was performed on six cubes of water with side lengths from 8 to 30 cm. Neutrons generated in pulses of about 1 ns width were slowed down from 14 MeV to 1.457 eV. The detection method used was based on registration of gamma radiation from the main capture resonance of indium. The most probable slowing-down times were found to be 778 +- 23 ns and 898 +- 25 ns for the smallest and for the largest cubes, respectively. The corresponding mean slowing-down times were 1205 +- 42 ns and 1311 +- 42 ns. In a separate measurement series the space dependence of the slowing-down time close to the source was studied. These experiments were supplemented by a theoretical calculation which gave an indication of the space dependence of the slowingdown time in finite systems. The experimental results were compared to the slowing-down times obtained from various theoretical approaches and from Monte Carlo calculations. All the methods show a decrease of the slowing-down time with decreasing size of the moderator. This effect was least pronounced in the experimental results, which can be explained by the fact the measurements are spatially dependent. The agreement between the Monte Carlo results and those obtained using the diffusion approximation or the age-diffusion theory is surprisingly good, especially for large systems. The P1 approximation, on the other hand, leads to an overestimation of the effect of the finite size on the slowing-down time. (author)

  15. New State of Matter created at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    New State of Matter created at CERN At a special seminar on 10 February, spokespersons from the experiments on CERN 's Heavy Ion programme presented compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely.

  16. Detectors for Time-of-Flight Fast-Neutron Radiography: 1. Neutron Counting Gas Detector

    OpenAIRE

    Dangendorf, V.; Breskin, A.; Chechik, R.; Goldberg, M; Laczko, G; Mor, I.; Reginatto, M.; Vartsky, D.

    2004-01-01

    One of our two methods for fast-neutron imaging with spectrometric capability is presented here. It is a neutron-counting technique based on a hydrogenous neutron converter coupled to Gaseous Electron Multipliers (GEM). The principles of the detection techniques and the optimization of the converter, electron amplification and the readout are described. Evaluation of the properties are derived from a experiment in a pulsed neutron beam of spectral distribution between 2 and 10 MeV

  17. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    Energy Technology Data Exchange (ETDEWEB)

    Do, Changwoo, E-mail: doc1@ornl.gov [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Heller, William T.; Stanley, Christopher [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Gallmeier, Franz X. [Instrument and Source Design Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Doucet, Mathieu [Neutron Data Analysis and Visualization Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Smith, Gregory S. [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-02-11

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutron's energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight (TOF) SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (∼20 meV) regardless of the incident neutron's energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-dependent, necessitating careful processing of the raw data into the SANS cross-section.

  18. Temperature dependent formation-time approach for $\\Upsilon$ suppression at energies available at the CERN Large Hadraon Collider

    CERN Document Server

    Ganesh, S

    2015-01-01

    We present here a comprehensive model to describe the bottomonium suppression data obtained from the CERN Large Hadron Collider (LHC) at center-of-mass energy of $\\sqrt{s_{NN}}=2.76$ TeV. We employ a quasiparticle model (QPM) equation of state for the quark-gluon plasma (QGP) expanding under Bjorken's scaling law. The current model includes the modification of the formation time based on the temperature of the QGP, color screening during bottomonium production, gluon induced dissociation and collisional damping due to the imaginary part of the potential between the $b\\bar b$ pair. We propose a method for determining the temperature-dependent formation time of bottomonia using the solution of the time-independent Schr\\"{o}dinger equation and compare it with another approach based on time-dependent Schr\\"{o}dinger wave equation simulation. We find that these two independent methods based on different axioms give similar results for the formation time. Cold nuclear matter effects and feed-down from higher resona...

  19. CERN Pensioners Association

    CERN Multimedia

    The GAC Committee

    2004-01-01

    Open Day To all CERN retired staff As part of the celebrations organised for the 50th anniversary of CERN, an Open Day will be held on Saturday 16 October 2004. Anyone willing to act as a guide, either to help and inform visitors at the reception points or to guide groups of visitors, sharing your knowledge with them, is invited to fill in the attached form. A preparatory meeting will be arranged for those who left CERN some time ago and whose knowledge of the site may no longer be quite up-to-date. The Open Day organisers need your help, which will be very much appreciated. We hope that many pensioners will participate. People with internet access may enrol directly without coming to CERN, http://www.cern.ch/CERN50/openday The GAC Committee OPEN DAY : CALL FOR VOLUNTEERS 16th October 2004 So now you are excited about the Open Day, how can you participate? As you can imagine, for such a large number of activities, we need many volunteers. Please return the following form to Elena Battis...

  20. CERN openlab Open Day

    CERN Multimedia

    Andrew Purcell

    2015-01-01

    CERN openlab is the unique public-private partnership between CERN and leading companies in the field of information and communication technology. The programme is now entering an exciting new phase and is expanding to include other public research organisations for the first time. A special event will be held at CERN to mark this occasion.   CERN openlab was created in 2001 and is now entering its fifth three-year phase (2015-2017). Its mission is to accelerate the development of cutting-edge solutions to be used by the scientific community to control the operations of complex machines and to analyse the vast amounts of data produced by physics experiments. During Run 2 of the LHC, it is expected that the CERN Data Centre will store more than 30 petabytes of data per year from the LHC experiments, which is equivalent to about 1.2 million Blu-ray discs, or 250 years of HD video. Testing in this demanding environment provides the companies collaborating in CERN openlab with valuable feedback o...

  1. Eberhard Widmann (Stefan Meyer Institute, Vienna) and Silke Federmann (Ph.D. Student from Vienna in the CERN-Austrian Ph.D. program) together with a microwave cavity developed by Silke at CERN. The cavity will be used for the first time to look for spin-flip transitions of antihydrogen atoms later this year.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Eberhard Widmann (Stefan Meyer Institute, Vienna) and Silke Federmann (Ph.D. Student from Vienna in the CERN-Austrian Ph.D. program) together with a microwave cavity developed by Silke at CERN. The cavity will be used for the first time to look for spin-flip transitions of antihydrogen atoms later this year.

  2. Search for time reversal violation in neutron decay

    International Nuclear Information System (INIS)

    The topic of this thesis is the implementation of an experimental setup designed to measure the R- and N-parameters in polarized neutron decay, together with the data analysis. Four observables are necessary for this measurement: the neutron polarization, the electron momentum and both transverse components of the electron polarization. These last two are measured using a Mott polarimeter. The other observables are determined using the same detectors. The precision to be reached on the R-parameter is 0.5%. A non zero value would sign a time reversal invariance violation and therefore would be a hint of physics beyond the Standard Model. This document presents the work done to prepare and optimize the experimental setup before the data acquisition run performed in 2004. Particular care was taken on the scintillator walls, used to trigger the acquisition and measure the electron energy. The second part concerns the implementation of methods to extract R and N from the data, and the study of the background recorded simultaneously. (author)

  3. Moderation of Neutrons Emitted by a Pulsed Source and Neutron Spectrometry Based on Slowing-Down Time

    International Nuclear Information System (INIS)

    Over the past ten years research has been going on at the P.N. Lebedev Physics Institute on the non-stationary moderation of neutrons in heavy media, the development of a method of neutron spectrometry based on the slowing-down time and the use of this method in studying the energy dependence of the cross-sections of nuclear reactions produced by neutrons with energy up to 30 keV. The authors review this work and discuss the results achieved. After a brief discussion of the theory of the non-stationary moderation and thermalization of neutrons the authors set forth the results of experimental studies of neutron moderation in graphite, iron and lead, and of neutron thermalization in lead. Using a pulsed neutron source and resonance detectors the distribution of slowing-down times was measured up to a series of fixed values for final neutron energy. The results are compared with theory, which takes into account the thermal motion of the moderator atoms; in the case of lead this thermal motion leads to a measurable spread in the slowing-down times at energies below 10 eV. The relationship between the mean velocity of neutrons in lead and the slowing-down time is measured in the subcadmium energy range and a comparison made with multigroup theory. The procedure for determining the energy dependence of neutron reaction cross-sections by slowing-down time is described and the potentialities of this method of spectrometry discussed. There follows a brief discussion of the results obtained in two fields of spectrometric measurement. Firstly, precise measurement of the relative excitation functions of the following reactions: He3(n, p), Li6(n, α), B10(n, α) and N14(n, p) - the most interesting results being the discovery of a constant negative component of the reaction cross-section and indications of the existence of an excited He4 level. Secondly, measurement of the energy dependence of averaged radiative capture cross-sections. Measurements carried out on a large

  4. CERN openlab enters fifth phase

    CERN Multimedia

    Andrew Purcell

    2015-01-01

    CERN openlab is a unique public-private partnership between CERN and leading ICT companies. At the start of this year, openlab officially entered its fifth phase, which will run until the end of 2017. For the first time in its history, it has extended beyond the CERN community to include other major European and international research laboratories.   Founded in 2001 to develop the innovative ICT systems needed to cope with the unprecedented computing challenges of the LHC, CERN openlab unites science and industry at the cutting edge of research and innovation. In a white paper published last year, CERN openlab set out the main ICT challenges it will tackle during its fifth phase, namely data acquisition, computing platforms, data storage architectures, computer management and provisioning, networks and connectivity, and data analytics. As it enters its fifth phase, CERN openlab is expanding to include other research laboratories. "Today, research centres in other disciplines are also st...

  5. An OpenMP Parallelisation of Real-time Processing of CERN LHC Beam Position Monitor Data

    CERN Document Server

    Renshall, H

    2012-01-01

    SUSSIX is a FORTRAN program for the post processing of turn-by-turn Beam Position Monitor (BPM) data, which computes the frequency, amplitude, and phase of tunes and resonant lines to a high degree of precision. For analysis of LHC BPM data a specific version run through a C steering code has been implemented in the CERN Control Centre to run on a server under the Linux operating system but became a real time computational bottleneck preventing truly online study of the BPM data. Timing studies showed that the independent processing of each BPMs data was a candidate for parallelization and the Open Multiprocessing (OpenMP) package with its simple insertion of compiler directives was tried. It proved to be easy to learn and use, problem free and efficient in this case reaching a factor of ten reductions in real-time over twelve cores on a dedicated server. This paper reviews the problem, shows the critical code fragments with their OpenMP directives and the results obtained.

  6. Neutron activation analysis of medieval and early modern times ceramics

    International Nuclear Information System (INIS)

    Provenience studies of medieval and early modern times ceramics from the Eastern Danube area of Austria have been performed by instrumental neutron activation analysis. All sherds examined were selected from pottery which was specially charactrized by pottery marks ('Cross Potent', 'Crossmark within a circle', 'Latin Cross', 'Cross Paty'). With respect to the chemical composition five different pottery groups could be evaluated by cluster analysis. Archaeological results: The'Cross Patent' was used by different potter's workshops whereas the 'Crossmark within a circle' was more likely restricted to one manufacture entre. The distribution of the 'Latin Cross' and The 'Cross Paty' over all five clusters indicated the usage of clay from different deposits. The assignment of the 'Cross Paty' exclusively to the area of Passau could be disproved. (Author)

  7. Vent'anni con il CERN

    CERN Multimedia

    2005-01-01

    The excellent relationship between Sanpaolo Imi and the CERN lasts for a long time; CERN is half-century old this year. The great interest of the bank for the advanced research sector is expressed also this way

  8. Time-of-flight discrimination between gamma-rays and neutrons by neural networks

    OpenAIRE

    Akkoyun, Serkan

    2012-01-01

    In gamma-ray spectroscopy, a number of neutrons are emitted from the nuclei together with the gamma-rays and these neutrons influence gamma-ray spectra. An obvious method of separating between neutrons and gamma-rays is based on the time-of-flight (tof) technique. This work aims obtaining tof distributions of gamma-rays and neutrons by using feed-forward artificial neural network (ANN). It was shown that, ANN can correctly classify gamma-ray and neutron events. Testing of trained networks on ...

  9. Generalization of the analytical solution of neutron point kinetics equations with time-dependent external source

    Science.gov (United States)

    Seidi, M.; Behnia, S.; Khodabakhsh, R.

    2014-09-01

    Point reactor kinetics equations with one group of delayed neutrons in the presence of the time-dependent external neutron source are solved analytically during the start-up of a nuclear reactor. Our model incorporates the random nature of the source and linear reactivity variation. We establish a general relationship between the expectation values of source intensity and the expectation values of neutron density of the sub-critical reactor by ignoring the term of the second derivative for neutron density in neutron point kinetics equations. The results of the analytical solution are in good agreement with the results obtained with numerical solution.

  10. Neutronics equations: Positiveness; compactness; spectral theory; time asymptotic behavior

    International Nuclear Information System (INIS)

    Neutronics equations are studied: the continuous model (with and without delayed neutrons) and the multigroup model. Asymptotic descriptions of these equations (t→+∞) are obtained, either by the Dunford method or by using semigroup perturbation techniques, after deriving the spectral theory for the equations. Compactness problems are reviewed, and a general theory of compact injection in neutronic functional space is derived. The effects of positiveness in neutronics are analyzed: the irreducibility of the transport semigroup, and the properties of the main eigenvalue (existence, nonexistence, frame, strict dominance, strict monotony in relation to all the parameters). A class of transport operators whose real spectrum can be completely described is shown

  11. Robot adventures at CERN

    CERN Multimedia

    2015-01-01

    Imagine if the CERN robots had an end-of-year party... From retrieving data tapes to handling material safely, the robots at CERN fulfill numerous tasks. Find out more: http://cern.ch/go/VjX7 Produced by: CERN Video Productions Director: Christoph M. Madsen Copyright © 2015 CERN. Terms of use: http://copyright.web.cern.ch/

  12. Isotope identification capabilities using time resolved prompt gamma emission from epithermal neutrons

    International Nuclear Information System (INIS)

    We present a concept of integrated measurements for isotope identification which takes advantage of the time structure of spallation neutron sources for time resolved γ spectroscopy. Time resolved Prompt Gamma Activation Analysis (T-PGAA) consists in the measurement of gamma energy spectrum induced by the radioactive capture as a function of incident neutron Time Of Flight (TOF), directly related with the energy of incident neutrons. The potential of the proposed concept was explored on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (U.K.). Through this new technique we show an increase in the sensitivity to specific elements of archaeometric relevance, through incident neutron energy selection in prompt γ spectra for multicomponent samples. Results on a standard bronze sample are presented

  13. CERN choir

    CERN Document Server

    2004-01-01

    Don't forget a special performance of Joseph Haydn's Creation, an oratorio in three parts, given by the CERN choir and the Annecy choir Pro Musica, this Sunday at 8.30 p.m. at the Grand Casino. Tickets (38 CHF) are available at Fnac Rive and Balexert.

  14. Time-resolved fast-neutron imaging with a pulse-counting image intensifier

    OpenAIRE

    Dangendorf, Volker; Lauck, Ronald; Kaufmann, Frank; Barnstedt, Juergen; Breskin, Amos; Jagutzki, Ottmar; Kraemer, Michael; Vartsky, David

    2006-01-01

    A new imaging method that combines high-efficiency fast-neutron detection with sub-ns time resolution is presented. This is achieved by exploiting the high neutron detection efficiency of a thick scintillator and the fast timing capability and flexibility of light-pulse detection with a dedicated image intensifier. The neutron converter is a plastic scintillator slab or, alternatively, a scintillating fibre screen. The scintillator is optically coupled to a pulse counting image intensifier wh...

  15. Time-dependent density-functional studies on strength functions in neutron-rich nuclei

    OpenAIRE

    Ebata, Shuichiro; Inakura, Tsunenori; Nakatsukasa, Takashi

    2013-01-01

    The electric dipole (E1) strength functions have been systematically calculated based on the time-dependent density functional theory (TDDFT), using the finite amplitude method and the real-time approach to the TDDFT with pairing correlations. The low-energy E1 strengths in neutron-rich isotopes show peculiar behaviors, such as sudden enhancement and reduction, as functions of the neutron numbers.They seem to be due to the interplay between the neutron shell effect and the deformation effect.

  16. Neutron noise analysis of BWR using time series analysis

    International Nuclear Information System (INIS)

    The main purpose of this paper is to give more quantitative understanding of noise source in neutron flux and to provide a useful tool for the detection and diagnosis of reactor. The space dependent effects of distributed neutron flux signals at the axial direction of two different strings are investigated by the power contribution ratio among neutron fluxes and the incoherent noise spectra of neutron fluxes derived from autoregressive spectra. The signals are measured on the medium sized commercial BWR of 460 MWe in Japan. From the obtained results, local and global noise sources in neutron flux are discussed. This method is indicated to be a useful tool for detection and diagnosis of anomalous phenomena in BWR. (orig./RW)

  17. Apprenticeship at CERN

    CERN Multimedia

    Staff Association

    2016-01-01

    In 1961, based on the finding that the evolution of the labour market created a growing need for qualified staff, a first agreement between the Republic and Canton of Geneva and CERN was signed. One of the objectives of this agreement was the vocational training of young electronics and physics laboratory technicians. CERN, an important stakeholder in the local economy, highlighted with this agreement its willingness to participate in the local social and economic development. The first apprentice arrived at CERN in 1965. In 1971, the apprenticeship centre was created; it now hosts over twenty apprentices in total and welcomes about six new apprentices each year. These apprenticeships are for young people aged between 15 and 21 years, coming from one of the CERN Member States, and having completed their mandatory education, e.g. 11th grade in Switzerland or 3ème in France. The training is divided between working time at CERN and one or two days per week at school (CFPT in Geneva for electronics or ...

  18. Cern Cricket Club

    CERN Multimedia

    Cern Cricket Club

    2014-01-01

      Cern Cricket Club The CERN Cricket Club 2014 season has started earlier than usual, with a game scheduled for the first time ever on Easter Sunday.  Due to repair work for the damage done to the ground because of the “Bosons&More” party at the end of September, all games until June have had to be scheduled away. Net practice, which normally takes place on the ground from mid-April, will not start until mid-June. The club is always looking for new players and newcomers will be made very welcome. Anyone who is interested in joining the club should sign up on our web site: http://cern.ch/Club-Cricket/    

  19. "The End of Time" released - a film partly shot at CERN

    CERN Multimedia

    2012-01-01

    Qu’est-ce que le temps ? Une réalité ? Une illusion ? Un concept ? Ces questions sont au coeur du nouveau film de Peter Mettler. Avec The End of Time, guidé par son intuition et sa capacité d’émerveillement, Peter Mettler projette à nouveau le familier dans une dimension extraordinaire et nous donne à voir l’invisible.   Dix ans après Gambling, gods and LSD, son prodigieux essai visuel sur la transcendance, Peter Mettler revient avec un film d’une profonde et rare beauté. Troisième opus d’une trilogie commencée avec Picture of light (1996), puis Gambling, gods and LSD (2002), The End of Time confirme l'attachement de Mettler à un cinéma exigeant, résolument virtuose et visionnaire. Synopsis : Défi envers l’insaisissable sujet du temps entre le dicible et l’...

  20. A neutron Albedo system with time rejection for landmine and IED detection

    Energy Technology Data Exchange (ETDEWEB)

    Kovaltchouk, V.D., E-mail: kovaltchoukv@bubbletech.ca [Bubble Technology Industries, Chalk River, Ontario (Canada); Andrews, H.R.; Clifford, E.T.H. [Bubble Technology Industries, Chalk River, Ontario (Canada); Faust, A.A. [Defense R and D Canada-Suffield, Medicine Hat, Alberta (Canada); Ing, H. [Bubble Technology Industries, Chalk River, Ontario (Canada); McFee, J.E. [Defense R and D Canada-Suffield, Medicine Hat, Alberta (Canada)

    2011-10-01

    A neutron Albedo system has been developed for imaging of buried landmines and improvised explosive devices (IEDs). It involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons that return. A scintillating {sup 6}Li loaded ZnS(Ag) screen with a sensitive area of 40 cmx40 cm is used as a thermal neutron detector. Scintillation light is captured by orthogonal arrays of wavelength-shifting fibers placed on either side of the scintillator surface and then transferred to X and Y multi-pixel PMTs. A timing circuit, used with pulsed neutron sources, records the time when a neutron detection takes place relative to an external synchronization pulse from the pulsed source. Experimental tests of the Albedo system performance have been done in a sand box with a {sup 252}Cf neutron source (no time gating) and with pulsed D-D (2.6 MeV) neutrons from the Defense R and D Ottawa Van de Graaff accelerator (with time gating). Information contained in the time evolution of the thermal neutron field provided improved detection capability and image reconstruction. The detector design is described and experimental results are discussed.

  1. Time-Dependent Neutron and Photon Dose-Field Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2005-08-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.

  2. Digital determination of TR-I control rod worths and time behaviour of neutron flux

    International Nuclear Information System (INIS)

    In this work, the control rod reactivity worth of the swimming-pool type reactor (TR-I) in CNAEM, Cekmece Nuclear Research and Training Centre has been measured digitally and the mean neutron lifetime has been estimated by a special miniature fission chamber with 60 nanosecond resolving time. The time behaviour of thermal neutrons is also compared with reactor control console results. (orig.)

  3. Calculation of the neutron importance and weighted neutron generation time using MCNIC method in accelerator driven subcritical reactors

    International Nuclear Information System (INIS)

    Highlights: • All reactor kinetic parameters are importance weighted quantities. • MCNIC method has been developed for calculating neutron importance in ADSRs. • Mean generation time has been calculated in spallation driven systems. -- Abstract: The difference between non-weighted neutron generation time (Λ) and the weighted one (Λ†) can be quite significant depending on the type of the system. In the present work, we will focus on developing MCNIC method for calculation of the neutron importance (Φ†) and importance weighted neutron generation time (Λ†) in accelerator driven systems (ADS). Two hypothetic bare and graphite reflected spallation source driven system have been considered as illustrative examples for this means. The results of this method have been compared with those obtained by MCNPX code. According to the results, the relative difference between Λ and Λ† is within 36% and 24,840% in bare and reflected illustrative examples respectively. The difference is quite significant in reflected systems and increases with reflector thickness. In Conclusion, this method may be used for better estimation of kinetic parameters rather than the MCNPX code because of using neutron importance function

  4. CERN internal communication is evolving

    CERN Document Server

    2016-01-01

    CERN news will now be regularly updated on the CERN People page (see here).      Dear readers, All over the world, communication is becoming increasingly instantaneous, with news published in real time on websites and social networks. In order to keep pace with these changes, CERN's internal communication is evolving too. From now on, you will be informed of what’s happening at CERN more often via the “CERN people” page, which will frequently be updated with news. The Bulletin is following this trend too: twice a month, we will compile the most important articles published on the CERN site, with a brand-new layout. You will receive an e-mail every two weeks as soon as this new form of the Bulletin is available. If you have interesting news or stories to share, tell us about them through the form at: https://communications.web.cern.ch/got-story-cern-website​. You can also find out about news from CERN in real time...

  5. Time analysis of the slow neutron field generated by the accelerating tube downhole

    International Nuclear Information System (INIS)

    Pulsed neutron logging (PNL) consists in the irradiation of rocks around the well by a pulsed periodic flux of fast neutrons generated by a portable accelerating tube and detection of thermal neutrons during pauses between the neutron pulses. The main aim of the PNL is determining the time distribution of thermal neutrons in the well and formation. At present the PNL response is considered as the sum of two exponentially decaying components, one related to the well and another one - to rock formation: J(t) = A1 exp (-λ1t) + A2 exp (-λ2t) . This is a result of homogenization of a neutron field in the borehole and formation space which is characterized by complicated radial structure and heterogeneous neutron properties. The time base of measurements T is subdivided into a set consisting of I narrow time windows Δt and the PNL response is formed as the series of neutron registration events Ni for each time window Δt with number i =1 to I (time neutron spectrum). Presented is a noise-immune algorithm for decomposition of the experimental time neutron spectrum into two components using the following overdetermined system of equations: Ni - Δt (λ1 + λ2) Σk=i Nk + (Δt)2 λ1λ2 Σk=i Σj=k Nj + [T - (i - 1) Δt][J'(T) - (λ1 + λ2) J(T)]Δt - J(T) Δt 0. Two amplitudes and two time decay constants of these components give an information about the neutron absorption cross-section and porosity of rocks. Presented are physical characteristics of new Russian PNL tools and examples illustrating the processing of PNL in oil wells. (author)

  6. CERN Shuttle

    CERN Multimedia

    General Infrastructure Services Department

    2011-01-01

    As of Monday 21 February, a new schedule will come into effect for the Airport Shuttle (circuit No. 4) at the end of the afternoon: Last departure at 7:00 pm from Main Buildig, (Bldg. 500) to Airport (instead of 5:10 p.m.); Last departure from Airport to CERN, Main Buildig, (Bldg. 500), at 7:30 p.m. (instead of 5:40 p.m.). Group GS-IS

  7. Quick algorithms for real-time discrimination of neutrons and gamma rays

    OpenAIRE

    Amiri, Moslem; Přenosil, Václav; Cvachovec, František; Matěj, Zdeněk; Mravec, Filip

    2014-01-01

    Several new methods for the digital discrimination of neutrons and gamma-rays in a mixed radiation field are presented. The methods introduced discriminate neutrons and gamma rays successfully in the digital domain. They are mathematically simple and exploit samples during the life time of the pulse, hence appropriate for field measurements. All these methods are applied to a set of mixed neutron and photon signals from a stilbene scintillator and their discrimination qualities are compared.

  8. A Differential Time-of-flight Spectrometer of Very Slow Neutrons

    CERN Document Server

    Pokotilovski, Yu N; Geltenbort, P; Brenner, Th

    2011-01-01

    A time-of-flight spectrometer of neutrons in the energy range (0.05 -- 2.5)$\\mu$eV is described. This spectrometer has been tested my measuring the total and differential neutron cross sections for a number of materials: Al, Cu, $^{6}$LiF, Si, Zr, teflon, polyethylene and liquid fluoropolymers, that are essential for experiments in the physics of ultracold neutrons.

  9. The new Athens center on data processing from the neutron monitor network in real time

    OpenAIRE

    Mavromichalaki; Souvatzoglou; Sarlanis; Mariatos; Gerontidou; Papaioannou; Plainaki; Tatsis; Belov; Eroshenko; Yanke

    2005-01-01

    International audience The ground-based neutron monitors (NMs) record galactic and solar relativistic cosmic rays which can play a useful key role in space weather forecasting, as a result of their interaction with interplanetary disturbances. The Earth's-based neutron monitor network has been used in order to produce a real-time prediction of space weather phenomena. Therefore, the Athens Neutron Monitor Data Processing Center (ANMODAP) takes advantage of this unique multi-directional dev...

  10. CERN openlab Open Day | 10 June

    CERN Multimedia

    2015-01-01

    CERN openlab is now entering an exciting new phase and is expanding to include other public research organisations for the first time. To mark this occasion, a first-of-its-kind ‘CERN openlab Open Day’ event will be held at CERN on 10 June 2015.   CERN openlab is a unique public-private partnership between CERN and leading ICT companies. Its mission is to accelerate the development of cutting-edge solutions to be used by CERN’s scientific community. The ‘CERN openlab Open Day’ event will take place in the Main Auditorium on 10 June and will be an opportunity to learn more about the work carried out through CERN openlab to help tackle the challenges faced by the scientific community. Find out more: http://indico.cern.ch/event/381083/

  11. A new neutron time-of-flight detector to measure the MeV neutron spectrum at the National Ignition Facility

    International Nuclear Information System (INIS)

    A new time-of-flight detector has been developed to measure the neutron spectrum at the National Ignition Facility. This detector allows for a more accurate measurement of the down scattered neutrons as well as the determination of the TT neutron spectrum. First measurements with this detector are being presented. (author)

  12. Managing the Real-time Behaviour of a Particle Beam Factory The CERN Proton Synchrotron Complex and its Timing System Principles

    CERN Document Server

    Bau, J C; Lewis, J; Philippe, J

    1998-01-01

    In the CERN 26 Gev Proton Synchrotron (PS) accelerator network, super-cycles are defined as sequences of different kinds of beams produced repetitively [Fig.1]. Each of these beams is characterised by attributes such as particle type, beam energy, its route through the accelerator network, and the final end user. The super-cycle is programmed by means of an editor through which the operational requirements of the physics programme can be described. Each beam in the normal sequence may later be replaced by a set of spare beams automatically depending on software and hardware interlocks and requests presented to the Master Timing Generator (MTG [Glos. 1]). The MTG calculates at run time how each beam is to be manufactured, and sends a telegram [Glos. 3] message to each accelerator, just before each cycle, describing what it should be doing now and during the next cycle. These messages, together with key machine timing events and clocks are encoded onto a timing distribution drop net where they are distributed a...

  13. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Oshinowo, Babatunde O. [Fermilab; Izraelevitch, Federico [Buenos Aires U.

    2016-10-17

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquires kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.

  14. Current status and future prospect of space and time reversal symmetry violation on low energy neutron reactions

    International Nuclear Information System (INIS)

    In this report, the papers on symmetry violation under space reflection and time reversal and neutron spin, neutron spin rotation and P-violation, parity nonconservation in neutron capture reaction, some advantage of the search for CP-violation in neutron scattering, dynamic polarization of 139La target, alexandrite laser for optical pumping, polarized 3He system for T- and P-violation neutron experiments, control of neutron spin in T-violation neutron experiment, symmetry regarding time and space and angular distribution and angular correlation of radiation and particle beams, T-violation due to low temperature nuclear polarization and axion exploration using nuclear transition are collected. (K.I.)

  15. Neutron production and time resolution of a new class moderator for pulsed neutron diffraction. Measurements and transport calculations

    International Nuclear Information System (INIS)

    Measurements of neutron pulse time-width and intensity have been carried out on grids of small moderators placed side by side and decoupled by cadmium strips; a moderator concept introduced by the authors through previous publications. Transport calculations are based on the standard reactor code DOT 3.5 with the ENDF-B IV nuclear data library. (orig.)

  16. Time-of-flight measurement of fast neutrons with Timepix detectors

    Science.gov (United States)

    Bergmann, B.; Nelson, R. O.; O'Donnell, J. M.; Pospisil, S.; Solc, J.; Takai, H.; Vykydal, Z.

    2014-05-01

    Timepix pixel detectors have been used to study the response of silicon hybrid pixel detectors to fast neutrons from a pulsed neutron beam at WNR FP30R, a 14 m long flight path, in the Los Alamos Neutron Science Center. Neutrons with kinetic energies up to 600 MeV were available. In order to enhance the conversion of neutrons to energetic charged particles, several converter foils and filters were attached to the 300 μm thick silicon sensor, i.e. polyethylene, polyethylene with aluminum, 6LiF, 6LiF with aluminum, aluminum. The Time-of-Arrival mode of the Timepix detectors has permitted the application of the Time-of-Flight (TOF) technique for the assignment of the detected interactions in the form of clusters (groups of adjacent pixels) in the pixel matrix, to the kinetic energies of the incident neutrons. It was found that, for lower neutron energies ( ~ MeV range) the cluster rates below the polyethylene and the polyethylene and aluminum region, produced by recoil protons, are a good measure for the mean kinetic energies of neutrons. For energies above 50 MeV nuclear reactions in the silicon dominate the detector response. In this energy range the shape of the clusters indicates the neutron kinetic energy.

  17. Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF.

    Science.gov (United States)

    Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Yu

    2012-10-01

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator∕photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y(n)) measurements from below 10(9) (DD) to nearly 10(15) (DT). The detectors initially demonstrated detector-to-detector Y(n) precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of ± 10% and precision of ± 1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y(n) measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

  18. CERN CAR CLUB

    CERN Multimedia

    Automobile club

    2009-01-01

    You are cordially invited to the next General Assembly of the CERN Car Club Tuesday 12 January 2010 at 5:45pm Bldg. 593 / room 11 As the end of 2009 is approaching, it is time to think about renewing your subscription. Therefore next time you are on the CERN-Meyrin site or at the Post Office counter don’t forget to fill in the payment slip to continue to be a part of our large family. The fee remains unchanged: 50 CHF. For those of you who are regular users of our equipment and who know of all the advantages that the club is in a position to offer, it seems pointless to give details, we are sure that many of you have made use of them and are satisfied. We remind you everyone working on CERN site is entitled to become a member of our club, this includes industrial support personnel and staff of companies which have a contract with CERN. If you are not yet a member, come and visit us! We will be happy to welcome you and show you the facilities, or you can visit our web site. The use of the club&...

  19. CERN's Guardian Angels

    CERN Multimedia

    2002-01-01

    Any trouble at CERN? The Technical Control Room operates the entire technical infrastructure of CERN every day, all year long. They deal with problems that go from simple water leaks to devastating power cuts.   The Technical Control Room with Kenneth Olesen and Mark Harvey, minutes before their starting time. This big room is probably the liveliest at CERN, since there's always someone there, everyday, all year long. Laurent Randot and Eric Lienard working in the Technical Control Room at CERN in building 212. They've started at 7 a.m. and today has been a relatively quiet day. There have been some microcuts in the electric net because of the wind. But these have been repaired rather quickly... The relief: It's 2.30 p.m. Time for Laurent Randot and Eric Lienard to show their colleagues Mark Harvey and Kenneth Olesen what has been going on during the morning. They are the next TCR team of the day. Mark Harvey and Kenneth Olesen start their working day. They will work until 11p.m., when another team wil...

  20. Parameters affecting temporal resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    Science.gov (United States)

    Mor, I.; Vartsky, D.; Dangendorf, V.; Bar, D.; Feldman, G.; Goldberg, M. B.; Tittelmeier, K.; Bromberger, B.; Brandis, M.; Weierganz, M.

    2013-11-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the En = 1-10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system.

  1. Parameters Affecting Temporal Resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    CERN Document Server

    Mor, I; Dangendorf, V; Bar, D; Feldman, G; Goldberg, M B; Tittelmeier, K; Bromberger, B; Brandis, M; Weierganz, M

    2013-01-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the En = 1-10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation. This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system.

  2. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    International Nuclear Information System (INIS)

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs

  3. Detection of buried explosives using portable neutron sources with nanosecond timing

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. E-mail: apl@atom.nw.ru; Evsenin, A.V.; Gorshkov, I.Yu.; Osetrov, O.I.; Vakhtin, D.N

    2004-07-01

    Significant reduction of time needed to identify hidden explosives and other hazardous materials by the 'neutron in, gamma out' method has been achieved by introducing timed (nanosecond) neutron sources--the so-called nanosecond neutron analysis technique. Prototype mobile device for explosives' detection based on a timed (nanosecond) isotopic {sup 252}Cf neutron source has been created. The prototype is capable of identifying 400 g of hidden explosives in 10 min. Tests have been also made with a prototype device using timed (nanosecond) neutron source based on a portable D-T neutron generator with built-in segmented detector of accompanying {alpha}-particles. The presently achieved intensity of the neutron generator is 5x10{sup 7} n/s into 4{pi}, with over 10{sup 6} of these neutrons being correlated with {alpha}-particles detected by the built-in {alpha}-particle detector. Results of measurements with an anti-personnel landmine imitator are presented.

  4. FOCUS: neutron time-of-flight spectrometer at SINQ: recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Mesot, J.; Holitzner, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Hempelmann, R. [Saarbruecken Univ. (Germany)

    1997-09-01

    At the Swiss neutron spallation source SINQ a time-of-flight spectrometer for cold neutrons is under construction. The design foresees a Hybrid solution combining a Fermi chopper with a doubly focusing crystal monochromator. During 1996 important progress has been made concerning the main spectrometer components such as the spectrometer housing and the detector system. (author) 2 figs., 3 refs.

  5. Real time neutronic evolution CNE (Embalse nuclear power plant)

    International Nuclear Information System (INIS)

    The simulator of the Embalse nuclear power plant uses a Point Reactor Model(PRM) for the neutronic evolution calculation. As this model is not conservative for transients produced by the sudden or localized reactivity insertion in big cores, it is convenient to use spatial models in these cases. In this report we show the results obtained using a nodal model (codes NODOS-TIEMPO). This model has been fitted against a more exact solution for the neutron flux and delayed neutron precursors. This has been done for the reactor at full power with nominal values for the reactivity control devices (liquid zones and adjusters rods). Transients corresponding to the global variation of the liquid zones and to the insertion of fresh fuel in some channels are shown. The results are compared with calculations made with the quasi-static model of the PUMA code. (author). 1 ref

  6. Time correlated measurements using plastic scintillators with neutron-photon pulse shape discrimination

    Science.gov (United States)

    Richardson, Norman E., IV

    nuclear and radiological material. Moreover, the production of 3He isotope as a byproduct of security programs was drastically decreased. This isotope shortage coupled with the disadvantages of relying on a detector that requires neutron moderation before the detection of fission neutrons, poses a significant challenge in supporting the existing detection systems and the development of future technologies. To address this problem, a reliable and accurate alternative technology to detect neutrons emitted in fissions must be developed. One such alternative technology that shows promise in this application is the use of scintillators based on solid state materials (plastics) which are sensitive to fast neutrons. However, plastic scintillators are also sensitive to photons. Hence, it is necessary to separate the neutron signals from the photon signals, using the pulse shape discrimination (PSD) analysis. The PSD is based on the comparison of the pulse shapes of digitized signal waveforms. This approach allows for the measurement of fast neutrons without the necessity of their moderation. Because the fission spectrum neutrons are mainly fast, methods employing fast neutron detection are applicable for the assay of fissile materials. In addition, the average time of scintillation of the plastic medium is much shorter than those of the gaseous counters, thus allowing scintillation detectors to be used in high count rate environments. Furthermore, the temporal information of the fast neutron detection using multiple sensors enables the time correlation analysis of the fission neutron multiplicity. The study of time correlation measurements of fast neutrons using the array of plastic scintillators is the basis of this work. The array of four plastic scintillator detectors equipped with the digital data acquisition and analysis system was developed. The digital PSD analysis of detector signals "on-the-fly" was implemented for the array. The time coincidence measurement technique

  7. Stamp in honour of CERN

    CERN Multimedia

    1966-01-01

    21 February 1966. The Swiss post office issued a stamp in CERN's honour. This stamp showed the flags of the thirteen Member States at the time arranged in the geometrical outline of Switzerland against a background of a track photograph.

  8. A heatwave at CERN

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    It's getting hot in Buildings 201 and 860, over-heating even... But no reason to panic! We're talking about the superheated water boilers of CERN's two heating plants, which heat all the buildings on the Meyrin and Prévessin sites.   View of the three boilers and the control centre of the Meyrin heating plant. CERN's two heating plants each comprise three gas* boilers, with generators of 15 MW in the case of Meyrin and 5 MW in the case of Prévessin. Both inject pressurised water, superheated to 125 degrees, into several kilometres of pipes, 22 km on the Meyrin site and 5 km in Prévessin. "A single boiler is sufficient most of the time but a second kicks in automatically during very cold weather, and a third is there on stand-by," explains Christophe Martel, head of the GS Department section responsible for CERN's heating and air-conditioning systems. All of CERN's buildings have a sub-station that receives the superheated water from the boilers an...

  9. CERN Women's club

    CERN Multimedia

    CERN Women's club

    2010-01-01

    The Welcome Center The Welcome Center website for CERN newcomers – and everyone else at CERN – has celebrated its first anniversary in operation. It began as a project to organize all the various information available at CERN into an easy to use site, with advice to help you make the most of your time here. It continues to be updated as new information becomes available. Lori Hakulinen and her helpers offer to meet with anyone who has questions. They can advise you on weekend activities, local restaurants and where to buy hard to find items or some of your favorite things from home, in addition to all of the practicalities you need to know, such as how to find housing or have a telephone installed, where to take language classes and much, much more. It’s all listed at: http://cern.ch/club-cwc-newcomers In general, meetings take place the first and third Thursdays in the month at Restaurant No. 1 in the Children’s Dining Room. (Please consult the Homepage for schedu...

  10. CERN – better than science fiction!

    CERN Multimedia

    2007-01-01

    From left to right: Allan Cameron (Production Designer), Sam Breckham (Location Manager), James Gillies (Head of Communication at CERN), Jacques Fichet (from the CERN Audiovisual Service), Rolf Landua (former spokesman of the ATHENA antihydrogen experiment at CERN and Head of CERN’s Education Group), Ron Howard, and Renilde Vanden Broeck (CERN press officer). The two-time Academy Award-winning American film director, Ron Howard, recently visited CERN for background research in preparation for his new film Angels and Demons, based on the book by Dan Brown. He also filmed the adaption of Brown’s bestselling novel The Da Vinci Code last year.

  11. CERN moves to http://home.cern

    CERN Multimedia

    2015-01-01

    A new top-level domain for CERN will be inaugurated next week, with the migration of the core website to http://home.cern.   The new home.cern webpage. The .cern top-level domain is intended for the exclusive use of CERN and its affiliates, and will soon be open for applications from within the community. Clear governance mechanisms for registration and management of .cern domains have been put in place. Applications for domains may be submitted by current members of the CERN personnel, and must be sponsored by a CERN entity such as a department, experiment, project or CERN-recognised experiment. For more information please refer to the registration policy. The acquisition of the .cern top-level domain was negotiated via ICANN’s new gTLD programme by a board comprising members of the CERN Legal Service, Communications group and IT department. .cern is one of over 1,300 new top-level domains that will launch over the coming months and years. The .cern domain nam...

  12. Determination of Dead Time of Neutron Counting System for Use of Reactor Start up

    Institute of Scientific and Technical Information of China (English)

    ZHAOYu-sen; ZHAOPeng-yu

    2003-01-01

    The dead time is important parameter of neutron counting system for use of reactor start up. It is relative to accurate determination of critical mass and the safety during reactor start up. So, it is important that dear time is measured accurately. There are many methods for measuring the dead time, but they are rare to be suitable for neutron counting system, which has wide variant range.

  13. UK @ CERN

    CERN Multimedia

    FI Department

    2008-01-01

    17 – 18 November 2008 9.00 a.m. - 5.00 p.m. on Monday 17 November 9.00 a.m. - 5.00 p.m. on Tuesday 18 November Individual meetings will take place in the technicians’ or engineers’ offices. The companies will contact relevant users/technicians but anyone wishing to arrange an appointment with a specific company can contact Caroline Laignel (mailto:caroline.laignel@cern.ch, tel. 73722). A list of the companies is available from all departmental secretariats and on the web at: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm List of companies: 1. Caburn MDC Europe Ltd. 2. Croft Engineering Services 3. Cryox Ltd. 4. Goodfellow Cambridge Ltd. 5. Gravatom Engineering Systems Ltd. 6. High Voltage Technology 7. Lilco Ltd. 8. Micro Metalsmiths Ltd. 9. Photek Ltd. 10. Shadow Robot Company 11. Sundance Multiprocessor Technology Ltd. 12. Tessella plc 13. Thermal Resources Management Ltd. 14. Torr Scientific Ltd. For further information please contact Mrs C. Laignel, FI-DI, tel. 7372...

  14. Pulse processing routines for neutron time-of-flight data

    CERN Document Server

    Žugec, P; Guerrero, C; Gunsing, F; Vlachoudis, V; Sabate-Gilarte, M; Stamatopoulos, A; Wright, T; Lerendegui-Marco, J; Mingrone, F; Ryan, J A; Warren, S G; Tsinganis, A; Barbagallo, M

    2016-01-01

    A pulse shape analysis framework is described, which was developed for n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN. The most notable feature of this new framework is the adoption of generic pulse shape analysis routines, characterized by a minimal number of explicit assumptions about the nature of pulses. The aim of these routines is to be applicable to a wide variety of detectors, thus facilitating the introduction of the new detectors or types of detectors into the analysis framework. The operational details of the routines are suited to the specific requirements of particular detectors by adjusting the set of external input parameters. Pulse recognition, baseline calculation and the pulse shape fitting procedure are described. Special emphasis is put on their computational efficiency, since the most basic implementations of these conceptually simple methods are often computationally inefficient.

  15. CERN firemen share their expertise

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Firemen from local fire brigades have been coming to CERN to learn modern fire-fighting techniques. The CERN firemen have some unique training equipment for two particularly dangerous fire hazards, flashover and backdraft. Backdraft occurs when a fire smoulders for a long time within a confined space. The gases produced by the embers fail to burn owing to a lack of oxygen. When the door of the room is opened, for example, the resulting inflow of oxygen causes a deflagration that may prove fatal. This series of photos shows the use of special apparatus to simulate the spectacular backdraft phenomenon, so that firemen training at CERN learn to understand it.

  16. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    Science.gov (United States)

    Hoffman, Adam J.; Lee, John C.

    2016-02-01

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  17. CERN Services Availability during the CERN Annual Closure 2011

    CERN Multimedia

    IT & GS Departments

    2011-01-01

    General Services: Most of the services provided by the GS Department that do not depend on continuous human presence will remain available during the CERN annual closure. Support levels are reduced during this period, in general the target reaction time for problems will be ½ day. Apart from the heating system, no interruptions are scheduled. In case of failure, the reaction time for restoration of services depends on the arrangements that have been made on a service by service level. Incidents will be documented at http://gssb.web.cern.ch/ For more detailed information please consult the service-portal (http://cern.ch/service-portal). Computing Services Most of the services provided by the IT Department - including WLCG production services - will remain available during the CERN annual closure. No interruptions are scheduled but in case of failure, the restoration of services cannot be guaranteed. Problems will be dealt with on a best effort basis only. However, please note: Experts shoul...

  18. Spallation Neutrons Used for Imaging in the Time and Energy Domain

    International Nuclear Information System (INIS)

    SINQ, the Swiss national source for neutron research, is based on the principle of spallation, where protons from a 590 MeV cyclotron are sent to a lead target with highest possible beam intensity. The proton beam current from the PSI’s cyclotron is of the order of 2 mA, corresponding to about 1 MW deposited beam power in the target region. SINQ is a large scale user facility. The spallation neutrons with initial energies of up to 100 MeV are slowed to thermal energies within the moderator tank filled with heavy water (D2O). Further reduction of the neutron energy can take place in the cold source, which is operated at about 25 K and is filled with liquid deuterium. Unlike similar spallation sources (SNS, Oak Ridge, United States of America; JPARC, Tokai, Japan; ISIS, Didcot, United Kingdom), SINQ is not a pulsed source but provides a constant neutron flux level. As such, it compares to a research reactor with about 15 MW of thermal power. Neutron imaging as an advanced technique for neutron research, applied studies and industrial testing is established at SINQ with two beamlines: NEUTRA for thermal neutrons and ICON for cold neutrons. This capability has only minor representation compared to the scattering facilities at SINQ, with about 15 such installations. Modern neutron imaging techniques are exclusively based on digital systems, where each pixel can be considered an individual neutron counter. Neutron imaging experiments are mainly performed in transmission mode where the comparison between the initial and transmitted radiation is used to describe the properties of the sample material in the beam. For standard applications, the full incident neutron spectrum is used, which delivers an energy average attenuation value. Recent developments at the SINQ imaging beamlines permit time dependent investigations, in particular of cyclic processes, with frames in the millisecond range. This option is of high interest for studying the injection of fuel into running

  19. President of Chile at CERN

    CERN Multimedia

    2007-01-01

    The President of Chile, Michelle Bachelet, in the ATLAS cavern with, from left to right, Peter Jenni, ATLAS Spokesman, Vivian Heyl, CONICYT President, and Robert Aymar, CERN Director-General. Robert Aymar, CERN Director-General, and Vivian Heyl, CONICYT President, signing a cooperation agreement between CERN and Chile’s Comisión Nacional de Investigación Científica y Tecnológica (CONICYT).The President of Chile, Michelle Bachelet, paid a visit to CERN during her three-day tour of Switzerland. The charismatic Michelle Bachelet and her large delegation were greeted by the CERN Director-General and then taken to see the ATLAS experiment and the LHC. She also took time to meet the Chilean community working at CERN, comprising several physicists in the Theory Group and the ATLAS experiment. The meeting was followed by the signing of a cooperation agreement between CERN and Chile’s Comisión Nacional de Investigación Científi...

  20. Time-of-flight diffraction at pulsed neutron sources: An introduction to the symposium

    International Nuclear Information System (INIS)

    In the 25 years since the first low-power demonstration experiments, pulsed neutron sources have become as productive as reactor sources for many types of diffraction experiments. The pulsed neutron sources presently operating in the United States, England, and Japan offer state of the art instruments for powder and single crystal diffraction, small angle scattering, and such specialized techniques as grazing-incidence neutron reflection, as well as quasielastic and inelastic scattering. In this symposium, speakers review the latest advances in diffraction instrumentation for pulsed neutron sources and give examples of some of the important science presently being done. In this introduction to the symposium, I briefly define the basic principles of pulsed neutron sources, review their development, comment in general terms on the development of time-of-flight diffraction instrumentation for these sources, and project how this field will develop in the next ten years

  1. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Science.gov (United States)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  2. Time-resolved Neutron-gamma-ray Data Acquisition for in Situ Subsurface Planetary Geochemistry

    Science.gov (United States)

    Bodnarik, Julie G.; Burger, Dan Michael; Burger, A.; Evans, L. G.; Parsons, A. M.; Schweitzer, J. S.; Starr R. D.; Stassun, K. G.

    2013-01-01

    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface elemental composition of planetary bodies in situ. Previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on neutrons produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.

  3. MR-ToF isobar separation for mass and life-time measurements of neutron-rich zinc at ISOLTRAP

    International Nuclear Information System (INIS)

    High-precision Penning-trap mass measurements of short-lived nuclei are performed with ISOLTRAP at the on-line isotope separator ISOLDE/CERN. An important prerequisite to achieve relative uncertainties of δm/m=10-8 is the availability of purely isobaric ion ensembles. To enhance the purity of radioactive ion beams, a multi-reflection time-of-flight mass separator developed at the University of Greifswald has recently been implemented at the ISOLTRAP setup. A mass resolving power of R=2.105 and a contaminant reduction of four orders of magnitude by use of a Bradbury-Nielsen ion gate have been achieved. The performance of the combined setup (including an RFQ ion buncher, the MR-ToF MS and the two Penning traps) in both offline tests as well as in first applications with radioactive ion beams is presented. Furthermore, the physics case and recent results of mass measurements of neutron-rich Zinc are shown.

  4. MR-ToF isobar separation for mass and life-time measurements of neutron-rich zinc at ISOLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Audi, Georges; Lunney, David; Wang, Meng [CSNSMIN2P3-CNRS, Universite de Paris Sud, Orsay (France); Beck, Dietrich; Herfurth, Frank; Kluge, Juergen; Ramirez, Enrique Minaya; Neidherr, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Blaum, Klaus; Boehm, Christine; Borgmann, Christopher; Cakirli, R. Burcu; Eliseev, Sergey [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Breitenfeldt, Martin [Leuven Univ. (Belgium). Inst. voor Kern- en Stralingsfysika; Cocolios, Thomas Elias; Kowalska, Magdalena [CERN, Geneva (Switzerland); George, Sebastian; Schwarz, Stefan [NSCL, Michigan State University, East Lansing, MI (United States); Herlert, Alexander [FAIR GmbH, Darmstadt (Germany); Kreim, Susanne [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); CERN, Geneva (Switzerland); Naimi, Sarah [RIKEN Research Facility (Japan); Rosenbusch, Marco; Schweikhard, Lutz; Wienholtz, Frank; Wolf, Robert N. [Ernst-Moritz-Arndt-Universitaet, Greifswald (Germany); Stanja, Juliane; Zuber, Kai [Technische Universitaet, Dresden (Germany)

    2012-07-01

    High-precision Penning-trap mass measurements of short-lived nuclei are performed with ISOLTRAP at the on-line isotope separator ISOLDE/CERN. An important prerequisite to achieve relative uncertainties of {delta}m/m=10{sup -8} is the availability of purely isobaric ion ensembles. To enhance the purity of radioactive ion beams, a multi-reflection time-of-flight mass separator developed at the University of Greifswald has recently been implemented at the ISOLTRAP setup. A mass resolving power of R=2.10{sup 5} and a contaminant reduction of four orders of magnitude by use of a Bradbury-Nielsen ion gate have been achieved. The performance of the combined setup (including an RFQ ion buncher, the MR-ToF MS and the two Penning traps) in both offline tests as well as in first applications with radioactive ion beams is presented. Furthermore, the physics case and recent results of mass measurements of neutron-rich Zinc are shown.

  5. Fission Multiplicity Detection with Temporal Gamma-Neutron Discrimination from Higher-Order Time Correlation Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Oberer, R.B.

    2002-11-12

    The current practice of nondestructive assay (NDA) of fissile materials using neutrons is dominated by the {sup 3}He detector. This has been the case since the mid 1980s when Fission Multiplicity Detection (FMD) was replaced with thermal well counters and neutron multiplicity counting (NMC). The thermal well counters detect neutrons by neutron capture in the {sup 3}He detector subsequent to moderation. The process of detection requires from 30 to 60 {micro}s. As will be explained in Section 3.3 the rate of detecting correlated neutrons (signal) from the same fission are independent of this time but the rate of accidental correlations (noise) are proportional to this time. The well counters are at a distinct disadvantage when there is a large source of uncorrelated neutrons present from ({alpha}, n) reactions for example. Plastic scintillating detectors, as were used in FMD, require only about 20 ns to detect neutrons from fission. One thousandth as many accidental coincidences are therefore accumulated. The major problem with the use of fast-plastic scintillation detectors, however, is that both neutrons and gamma rays are detected. The pulses from the two are indistinguishable in these detectors. For this thesis, a new technique was developed to use higher-order time correlation statistics to distinguish combinations of neutron and gamma ray detections in fast-plastic scintillation detectors. A system of analysis to describe these correlations was developed based on simple physical principles. Other sources of correlations from non-fission events are identified and integrated into the analysis developed for fission events. A number of ratios and metric are identified to determine physical properties of the source from the correlations. It is possible to determine both the quantity being measured and detection efficiency from these ratios from a single measurement without a separate calibration. To account for detector dead-time, an alternative analytical technique

  6. The Duke of York visits CERN

    CERN Multimedia

    2004-01-01

    The Duke of York chats before inaugurating the UK@CERN exhibition. From left to right: Robert Aymar, CERN's Director General, the Duke of York, and leading UK scientists at CERN: Jim Virdee, CMS deputy spokeman; theorist John Ellis ; and Steve Myers, head of the AB Department. On 23 November, the Duke of York visited CERN and, in his capacity as the UK's Special Representative for International Trade and Investment, inaugurated the UK@CERN Exhibition. This biennial trade show was initially held in 1968, the first such exhibition by a CERN member state. This year 22 companies displayed goods and services that could be of interest to CERN scientists. In his inaugural speech, the Duke emphasized that business between companies and CERN "is a two-way information flow with mutual benefits." The companies make sales but also benefit from technologies that CERN transfers to them. CERN benefits from the exchange, the Duke said, addressing CERN's scientists, because it "frees your time for what you do best: science....

  7. CERN access cards

    CERN Multimedia

    HR Department

    2007-01-01

    Holders of CERN access cards are reminded that the card is an official document. It is important to carry it with you at all times when you are on the site. This applies also to those on standby duty who are called out for emergency interventions. As announced in Weekly Bulletin 13/2006, any loss or theft of access cards must be declared to the competent external authorities.

  8. CERN Electronics Pool presentations

    CERN Multimedia

    2011-01-01

    The CERN Electronics Pool has organised a series of presentations in collaboration with oscilloscope manufacturers. The last one will take place according to the schedule below.   Time will be available at the end of the presentation to discuss your personal needs. The Agilent presentation had to be postponed and will be organised later. -     Lecroy: Thursday, 24 November 2011, in 530-R-030, 14:00 to 16:30.

  9. Time-resolved fast-neutron pinhole camera for studying thermonuclear plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R.W.; Weingart, R.C.

    1976-02-02

    A fast-neutron pinhole camera with high detection efficiency and nanosecond time-resolution has been developed and applied to the investigation of the spatial and temporal distributions of DD- and DT-neutrons produced by thermonuclear plasmas. The pinhole consists of a specially designed 1.15 m long copper collimator with an effective aperture of 1 mm diameter. Several different types of spatial resolution detectors have been used at the image plane: (1) a multi-element, scintillation-photomultiplier system used for time-resolved measurements consisting of sixty-one individual detectors, (2) a scintillation-fiber-chamber coupled to a gated image-intensifier tube used for direct photographing of the neutron image, and (3) a propane bubble chamber used for time-integrated recording with a capability to distinguish DD- from DT-neutrons. Pulsed neutron sources with typical dimensions of 1 cm emitting of the order of 10/sup 12/ neutrons over a time period of 10-100 nsec have been investigated. A spatial resolution of 1 mm and a time resolution of approximately 10 nsec was achieved in the investigations of dense plasma compression phenomena.

  10. Development of a new time-amplitude converter with tunnel diodes for improving fast neutron spectrometry by time of flight

    International Nuclear Information System (INIS)

    New time-amplitude converter with Esaki diodes, the events being preselected before analysis, allows for realizing a fast neutron spectrometer by time-of-flight with an 1.5 * 10-9 s overall time resolution for 12C (n,n') at 14 MeV. (author)

  11. Fast neutron measurements at the nELBE time-of-flight facility

    Directory of Open Access Journals (Sweden)

    Junghansa A. R.

    2015-01-01

    Full Text Available The compact neutron-time-of-flight facility nELBE at the superconducting electron accelerator ELBE of Helmholtz-Zentrum Dresden-Rossendorf has been rebuilt. A new enlarged experimental hall with a flight path of up to 10 m is available for neutron time-of-flight experiments in the fast energy range from about 50 keV to 10 MeV. nELBE is intended to deliver nuclear data of fast neutron nuclear interactions e.g. for the transmutation of nuclear waste and improvement of neutron physical simulations of innovative nuclear systems. The experimental programme consists of transmission measurements of neutron total cross sections, elastic and inelastic scattering cross section measurements, and neutron induced fission cross sections. The inelastic scattering to the first few excited states in 56Fe was investigated by measuring the gamma production cross section with an HPGe detector. The neutron induced fission of 242Pu was studied using fast ionisation chambers with large homogeneous actinide deposits.

  12. LHCb: Beam and Background Monitoring and the Upgrade of the Timing and Fast Control System of the LHCb experiment at CERN

    CERN Multimedia

    Alessio, F

    2009-01-01

    The LHCb experiment at CERN is preparing for first real data taking, foreseen by the end of the year 2009 with the start-up of the LHC. A large amount of work of commissioning, tests and improvements of the full detector has been done in order to optimize its performance. During my first year as a Doctoral Student at CERN, I have been working on the timing and readout control of the LHCb experiment in the frame of the LHCb Online group. The group is responsible for the full data acquisition of the LHCb experiment, from the Front-End Electronics (FEE) to the storage of the data for offline analysis, as well as the Timing and Fast Control (TFC) system. The latter controls and distributes centrally timing and trigger information, as well as synchronous and asynchronous commands to the readout system. It is also responsible for receiving and adjusting the bunch and orbit clocks of the LHC machine and distributing it to the electronics of the whole experiment. It is of vital importance to assure that the timing o...

  13. Calibration of Time Of Flight Detectors Using Laser-driven Neutron Source

    OpenAIRE

    Mirfayzi, S. R.; Kar, S.; H. Ahmed; Krygier, A. G.; Green, A.; Alejo, A.; Clarke, R.; Freeman, R. R.; Fuchs, J.; Jung, D.; Kleinschmidt, A.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.

    2015-01-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irrad...

  14. Calibration of time of flight detectors using laser-driven neutron source.

    Science.gov (United States)

    Mirfayzi, S R; Kar, S; Ahmed, H; Krygier, A G; Green, A; Alejo, A; Clarke, R; Freeman, R R; Fuchs, J; Jung, D; Kleinschmidt, A; Morrison, J T; Najmudin, Z; Nakamura, H; Norreys, P; Oliver, M; Roth, M; Vassura, L; Zepf, M; Borghesi, M

    2015-07-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil. PMID:26233373

  15. Calibration of time of flight detectors using laser-driven neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mirfayzi, S. R.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Green, A.; Alejo, A.; Jung, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Krygier, A. G.; Freeman, R. R. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Clarke, R. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fuchs, J.; Vassura, L. [LULI, Ecole Polytechnique, CNRS, Route de Saclay, 91128 Palaiseau Cedex (France); Kleinschmidt, A.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt,Germany (Germany); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Norreys, P. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Oliver, M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Zepf, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Helmholtz Institut Jena, D-07743 Jena (Germany); Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic)

    2015-07-15

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  16. Calibration of Time Of Flight Detectors Using Laser-driven Neutron Source

    CERN Document Server

    Mirfayzi, S R; Ahmed, H; Krygier, A G; Green, A; Alejo, A; Clarke, R; Freeman, R R; Fuchs, J; Jung, D; Kleinschmidt, A; Morrison, J T; Najmudin, Z; Nakamura, H; Norreys, P; Oliver, M; Roth, M; Vassura, L; Zepf, M; Borghesi, M

    2015-01-01

    Calibration of three scintillators (EJ232Q, BC422Q and EJ410) in a time-of-flight (TOF) arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors are shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  17. A neutron time of flight spectrometer appropriate for D-T plasma diagnostics

    International Nuclear Information System (INIS)

    A neutron time-of-flight spectrometer with 2 m flight path for diagnostics of deuterium plasmas in JET is presently under construction. An upgrade of this spectrometer to make it appropriate for 14-MeV neutron spectroscopy is presented here. It is suggested to use backscattering in a deuterium based scintillator. The flight path length is 1-2 m and the efficiency is of the order of 2.10-5 cm-5 . Results from test of principle are presented with estimates for neutron and gamma backgrounds

  18. Ombud's Corner: Respect @ CERN

    CERN Multimedia

    Sudeshna Datta-Cockerill

    2014-01-01

    Since 2010 CERN has been a member of the Geneva-based association "Le respect, ça change la vie". Four years later and in conjunction with CERN’s celebration of its 60 years of ‘science for peace’, it is time to launch a new respectful workplace awareness campaign under the auspices of the Ombud.   Mutual respect is a basic pillar of peace. At CERN, we pride ourselves on our history, which started when a handful of Europe’s visionary scientists saw the opportunity that an international laboratory for fundamental research would present in bringing nations together. That idea has worked very well and, today, our success can be measured not only in terms of unprecedented scientific achievements but also in terms of training and education, and exemplary collaboration across borders, cultures and an extensive range of differences. In order for history to continue along these positive lines, and coming back to the awareness campai...

  19. CERN Courier goes digital

    CERN Multimedia

    Christine Sutton, CERN Courier editor

    2013-01-01

    The January/February 2013 issue of the CERN Courier offers a new way to access the content – the first digital edition of the magazine.   The CERN Courier dates back to August 1959, when the first issue appeared, consisting of 8 black-and-white pages. Since then it has seen many changes in design and layout, leading to the current full-colour editions of more than 50 pages on average. It went on the web for the first time in October 1998, when IOP Publishing took over the production work. Now, we have taken another step forward with a digital edition that provides yet another means to access the content beyond the web and print editions, which continue as before. To download the digital edition, click here. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up.

  20. Studies of parity and time reversal symmetries in neutron scattering from165Ho

    Science.gov (United States)

    Haase, D. G.; Gould, C. R.; Koster, J. E.; Roberson, N. R.; Seagondollar, L. W.; Soderstrum, J. P.; Schneider, M. B.; Zhu, X.

    1988-12-01

    We describe searches for parity and time reversal violations in the scattering of polarized neutrons from polarized and aligned165Ho targets. We have completed a search with 7.1 and 11.0 MeV neutrons for PoddTodd terms in the elastic scattering forward amplitude of the form s. ( I×K), where s is the neutron spin, I is the target spin and k is the neutron momentum vector. The target was a single crystal of holmium, polarized horizontally along its b axis by a 1 Tesla magnetic field. The neutrons were polarized vertically. Differences in the neutron transmission were measured for neutrons with spins parallel (antiparallel) to I×k. The P,T violating analyzing powers were found to be consistent with zero at the few 10-3 level: ρP,T(7.1 MeV)=-0.88 (±2.02) x 10-3, ρP,T(11.0 MeV)=-0.4 (±2.88) x 10-3. We have also attempted to find enhancements with MeV neutrons in P-violation due to the term s k. We are preparing an aligned target cryostat for investigations of PevenTodd terms {bd(Ik)(I×k)s} in neutron scattering. The target will be a single crystal cylinder of165Ho cooled to 100 mK in a bath of liquid helium and rotated by a shaft from a room temperature stepping motor. The cylinder will be oriented vertically and the alignment ( c) axis oriented horizontally. Warming or rotation of the sample allows one to separate effects that mimic the sought-after time reversal violating term.

  1. Bienvenue au CERN !

    CERN Multimedia

    CERN Press Office. Geneva

    1998-01-01

    CERN, the Laboratory which invented the World-Wide Web has re-invented its public Web site. The new face of CERN has gone live at http://www.cern.ch/ Public . CERN's new Web pages have been designed to give visitors an informative introduction to the fascinating world of particle physics. For those whose whirl around the Web only allows a short stop, there's the 'CERN in two minutes' page.

  2. Neutrons are flying

    CERN Multimedia

    2000-01-01

    View of the n_TOF tube with members of the design and construction team of the facility(from left to right: R. Magnin/LHC, E. Radermacher/EP, P. Cennini/EP and R. Cappi/PS). A new experimental facility was inaugurated at CERN on Wednesday 8 November. The neutron Time Of Flight (n_TOF) facility received its first protons from the PS at 10:55. With an intensity of 1 x 1011 protons per cycle on the n_TOF target, an intense neutron beam has been produced at CERN for the first time, opening the door to many new avenues of research including, for example, neutron induced cross-section measurements. The facility is an offspring of the work by Carlo Rubbia and his group on the novel idea of an Energy Amplifier. The basic idea was successfully tested at the PS with the FEAT experiment and later with the TARC experiment, where the feasibility of transmutation of long-lived products by Adiabatic Resonance Crossing (ARC) was confirmed. This led to the possibility of radio-isotope production for medical applications, fo...

  3. Signal and Noise Analysis in TRION -Time-Resolved Integrative Optical Fast Neutron Detector

    OpenAIRE

    Vartsky, D.; Feldman, G.; Mor, I.; Goldberg, M B; Bar, D.; Dangendorf, V.

    2008-01-01

    TRION is a sub-mm spatial resolution fast neutron imaging detector, which employs an integrative optical time-of-flight technique. The detector was developed for fast neutron resonance radiography, a method capable of detecting a broad range of conventional and improvised explosives. In this study we have analyzed in detail, using Monte-Carlo calculations and experimentally determined parameters, all the processes that influence the signal and noise in the TRION detector. In contrast to event...

  4. UK @ CERN

    CERN Multimedia

    FI Department

    2008-01-01

    17 – 18 November 2008 9.00 a.m. - 5.00 p.m. on Monday 17 November 9.00 a.m. - 5.00 p.m. on Tuesday 18 November Individual meetings will take place in the technicians’ or engineers’ offices. The companies will contact relevant users/technicians but anyone wishing to arrange an appointment with a specific company can contact Caroline Laignel (caroline.laignel@cern.ch, tel. 73722). A list of the companies is available from all departmental secretariats and on the web here. List of companies: 1. Caburn MDC Europe Ltd. 2. Croft Engineering Services 3. Cryox Ltd. 4. Goodfellow Cambridge Ltd. 5. Gravatom Engineering Systems Ltd. 6. High Voltage Technology 7. Lilco Ltd. 8. Micro Metalsmiths Ltd. 9. Photek Ltd. 10. Shadow Robot Company 11. Sundance Multiprocessor Technology Ltd. 12. Tessella plc 13. Thermal Resources Management Ltd. 14. Torr Scientific Ltd. For further information please contact Mrs C. Laignel, FI-DI, tel. 73722.

  5. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    Science.gov (United States)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-01

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for Tion and 10% for the neutron yield.

  6. Neutron intensity modulation and time-focusing with integrated Larmor and resonant frequency techniques

    Science.gov (United States)

    Zhao, Jinkui; Hamilton, William A.; Lee, Sung-Woo; Robertson, J. L.; Crow, Lowell; Kang, Yoon W.

    2015-09-01

    The analysis of neutron diffraction experiments often assumes that neutrons are elastically scattered from the sample. However, there is growing evidence that a significant fraction of the detected neutrons is in fact inelastically scattered, especially from soft materials and aqueous samples. Ignoring these inelastic contributions gives rise to inaccurate experimental results. To date, there has been no simple method with broad applicability for inelastic signal separation in neutron diffraction experiments. Here, we present a simple and robust method that we believe could be suited for this purpose. We use two radio frequency resonant spin flippers integrated with a Larmor precession field to modulate the neutron intensity and to encode the inelastic scattering information into the neutron data. All three components contribute to the spin encoding. The Larmor field serves several additional purposes. Its usage facilitates neutron time-focusing, eliminates the need for stringent magnetic shielding, and allows for compact setups. The scheme is robust, simple, and flexible. We believe that, with further improvements, it has the potential of adding inelastic signal discrimination capabilities to many existing diffraction instruments in the future.

  7. Neutron generator burst timing measured using a pulse shape discrimination plastic scintillator with silicon photomultiplier readout

    Science.gov (United States)

    Preston, R. M.; Eberhardt, J. E.; Tickner, J. R.

    2013-12-01

    An EJ-299-34 plastic scintillator with silicon photomultiplier (SiPM) readout was used to measure the fast neutron output of a pulsed Thermo-Fisher A-325 Deuterium-Tritium sealed tube neutron generator (STNG). The SiPM signals were handled by a prototype digital pulse processing system, based on a free-running analogue to digital converter feeding a digital signal processor (DSP). Pulse shape discrimination was used to distinguish between detected fast-neutrons and gammas. Pulse detection, timing, energy and shape were all processed by the DSP in real-time. The time-dependency of the neutron output of the STNG was measured for various pulsing schemes. The switch-on characteristics of the tube strongly depended on the operating settings, with the delay between pulse turn-on and the production of neutrons ranging between 13 μs to 74 μs for the tested pulse rates and duty cycles. This work will facilitate the optimization and modeling of apparatus that use the neutron generator's pulsing abilities.

  8. Calculation of the angular distribution of delay times in neutron scattering on 58Ni nuclei

    International Nuclear Information System (INIS)

    Angular distributions of average delay times and time variances are calculated for resonance-neutron scattering on 58Ni nuclei at neutron energies in the range E = 600−700 keV. The effect of the energy spectrum and polarization of the beam on the scattering-process time is discussed. The angular dependence of the time law is also considered for the decay of an intermediate compound nuclear system. It is shown that the results of stationary and nonstationary calculations are in good agreement.

  9. Calculation of the angular distribution of delay times in neutron scattering on {sup 58}Ni nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Prokopets, G. A., E-mail: gaprok@uos.net.ua [National University of Kyiv-Mohyla Academy (Ukraine)

    2011-05-15

    Angular distributions of average delay times and time variances are calculated for resonance-neutron scattering on {sup 58}Ni nuclei at neutron energies in the range E = 600-700 keV. The effect of the energy spectrum and polarization of the beam on the scattering-process time is discussed. The angular dependence of the time law is also considered for the decay of an intermediate compound nuclear system. It is shown that the results of stationary and nonstationary calculations are in good agreement.

  10. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  11. CrossRef The Second Beam-Line and Experimental Area at n_TOF: A New Opportunity for Challenging Neutron Measurements at CERN

    CERN Document Server

    Colonna, Nicola; Chiaveri, Enrico

    2015-01-01

    Since 2001, a wealth of neutron capture and neutron-induced fission reactions has been measured at n_TOF, providing an important contribution to a wide variety of research fields. The experimental activity is driven mostly by two motivations: on the one hand, capture reactions are studied with the aim of improving current models of stellar nucleosynthesis of heavy elements. A review of the needs related to nuclear astrophysics and the contribution of the n_TOF program can be found in [1, 2].

  12. Study of calculated and measured time dependent delayed neutron yields. [TX, for calculating delayed neutron yields; MATINV, for matrix inversion; in FORTRAN for LSI-II minicomputer

    Energy Technology Data Exchange (ETDEWEB)

    Waldo, R.W.

    1980-05-01

    Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of /sup 232/U, /sup 237/Np, /sup 238/Pu, /sup 241/Am, /sup 242m/Am, /sup 245/Cm, and /sup 249/Cf were studied for the first time. The delayed neutron emission from /sup 232/Th, /sup 233/U, /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 241/Pu, and /sup 242/Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from /sup 232/Th to /sup 252/Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables.

  13. Calculation of neutron die-away times in a large-vehicle portal monitor

    International Nuclear Information System (INIS)

    Monte Carlo methods have been used to calculate neutron die-away times in a large-vehicle portal monitor. These calculations were performed to investigate the adequacy of using neutron die-away time measurements to detect the clandestine movement of shielded nuclear materials. The geometry consisted of a large tunnel lined with He3 proportional counters. The time behavior of the (n,p) capture reaction in these counters was calculated when the tunnel contained a number of different tractor-trailer load configurations. Neutron die-away times obtained from weighted least squares fits to these data were compared. The change in neutron die-away time due to the replacement of cargo in a fully loaded truck with a spherical shell containing 240 kg of borated polyethylene was calculated to be less than 3%. This result together with the overall behavior of neutron die-away time versus mass inside the tunnel strongly suggested that measurements of this type will not provide a reliable means of detecting shielded nuclear materials in a large vehicle. 5 figures, 4 tables

  14. CERN, accelerator of motivation

    CERN Multimedia

    François Becler

    2014-01-01

    Have your dreams ever come true? My dream did, when I was lucky enough to be allowed into the world’s largest particle physics laboratory and spend five whole days there.   François, in front of LEP's DELPHI detector, displayed in the LHCb cavern. François was given the opportunity to visit the experiment during his placement at CERN. I’m a pupil in my last year at the Collège Jean-Jacques Rousseau in Saint-Julien-en-Genevois and was on a work experience placement at CERN from 16 to 20 December last year. I’m so happy I was chosen because working alongside physicists and engineers of all nationalities was like a dream come true. The first thing that impressed me was the size of the site, its infrastructures and facilities but also the fact that I was working in a prestigious, world-renowned organisation. I spent lots of time looking at the map and trying to find my way around... CERN's such a massive place ! Th...

  15. CERN GSM monitoring system

    CERN Multimedia

    Ghabrous Larrea, C

    2009-01-01

    As a result of the tremendous development of GSM services over the last years, the number of related services used by organizations has drastically increased. Therefore, monitoring GSM services is becoming a business critical issue in order to be able to react appropriately in case of incident. In order to provide with GSM coverage all the CERN underground facilities, more than 50 km of leaky feeder cable have been deployed. This infrastructure is also used to propagate VHF radio signals for the CERN’s fire brigade. Even though CERN’s mobile operator monitors the network, it cannot guarantee the availability of GSM services, and for sure not VHF services, where signals are carried by the leaky feeder cable. So, a global monitoring system has become critical to CERN. In addition, monitoring this infrastructure will allow to characterize its behaviour over time, especially with LHC operation. Given that commercial solutions were not yet mature, CERN developed a system based on GSM probes and an application...

  16. The Local-time variations of Lunar Prospector epithermal-neutron data

    CERN Document Server

    Teodoro, L F A; Eke, V E; Elphic, R E; Feldman, W C; Maurice, S; Siegler, M A; Paige, D A

    2015-01-01

    We assess local-time variations of epithermal-neutron count rates measured by the Lunar Prospector Neutron Spectrometer. We investigate the nature of these variations and find no evidence to support the idea that such variations are caused by diurnal variations of hydrogen concentration across the lunar surface. Rather we find an anticorrelation between instrumental temperature and epithermal-neutron count rate. We have also found that the measured counts are dependent on the temperatures of the top decimeters of the lunar subsurface as constrained by the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment temperature measurements. Finally, we have made the first measurement of the effective leakage depth for epithermal-neutrons of ~20 cm.

  17. The Real-Time Data Analysis and Decision System for Particle Flux Detection in the LHC Accelerator at CERN.

    CERN Document Server

    Zamantzas, C; Dehning, B

    2006-01-01

    The superconducting Large Hadron Collider (LHC) under construction at the European Organisation for Nuclear Research (CERN) is an accelerator unprecedented in terms of beam energy, particle production rate and also in the potential of self-destruction. Its operation requires a large variety of instrumentation, not only for the control of the beams, but also for the protection of the complex hardware systems. The Beam Loss Monitoring (BLM) system has to prevent the superconducting magnets from becoming normal conducting and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. For its operation, the system requires 3600 detectors to be placed at various locations around the 27 km ring. The measurement system is sub-divided to the tunnel electronics, which are responsible for acquiring, digitising and transmitting the data, and the surface electronics, which receive the data via 2 km optical data links, process, analyze, store and issue warning...

  18. New Converging Collimator for Cold Neutrons Time-Of-Flight Measurements

    Science.gov (United States)

    Naguib, K.; Sallam, O. H.; Salama, Mohamed

    An idea to design a new converging collimator for cold neutron time-of-flight measurements is presented. Using this new facility in combination with a neutron time-of-flight spectrometer, we may have neutron intensity gain factors about three times that obtained using the conventional straight slit collimators. Expressions for calculating the collimators dimensions as well as the intensity gain and the time resolution broading were presented.Translated AbstractEin neuer, konvergierender Kollimator für Flugzeitmessungen mit langsamen NeutronenDie Idee der Konstruktion eines neuen, konvergierenden Kollimators für Flugzeitmessungen mit langsamen Neutronen wird vorgestellt. Mit diesem neuen Gerät in Kombination mit einem Neutronenflugzeitspektrometer sollte sich ein Intensitätsgewinn von drei gegenüber konventionellen Anordnungen ergeben. Die Kollimatordimensionen, der Intensitätsgewinn und die Verbreiterung der Zeitauflösung werden berechnet.

  19. A scientific database for real-time Neutron Monitor measurements - taking Neutron Monitors into the 21st century

    Science.gov (United States)

    Steigies, Christian

    2012-07-01

    The Neutron Monitor Database project, www.nmdb.eu, has been funded in 2008 and 2009 by the European Commission's 7th framework program (FP7). Neutron monitors (NMs) have been in use worldwide since the International Geophysical Year (IGY) in 1957 and cosmic ray data from the IGY and the improved NM64 NMs has been distributed since this time, but a common data format existed only for data with one hour resolution. This data was first distributed in printed books, later via the World Data Center ftp server. In the 1990's the first NM stations started to record data at higher resolutions (typically 1 minute) and publish in on their webpages. However, every NM station chose their own format, making it cumbersome to work with this distributed data. In NMDB all European and some neighboring NM stations came together to agree on a common format for high-resolution data and made this available via a centralized database. The goal of NMDB is to make all data from all NM stations available in real-time. The original NMDB network has recently been joined by the Bartol Research Institute (Newark DE, USA), the National Autonomous University of Mexico and the North-West University (Potchefstroom, South Africa). The data is accessible to everyone via an easy to use webinterface, but expert users can also directly access the database to build applications like real-time space weather alerts. Even though SQL databases are used today by most webservices (blogs, wikis, social media, e-commerce), the power of an SQL database has not yet been fully realized by the scientific community. In training courses, we are teaching how to make use of NMDB, how to join NMDB, and how to ensure the data quality. The present status of the extended NMDB will be presented. The consortium welcomes further data providers to help increase the scientific contributions of the worldwide neutron monitor network to heliospheric physics and space weather.

  20. National Ignition Facility (NIF) Neutron time-of-flight (nTOF) Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, R A; Glebov, V Y; Moran, M J; McNaney, J M; Kilkenny, J D; Eckart, M; Zacharias, R A; Haslam, J J; Clancy, T J; Yeoman, M F; Warwas, D P; Sangster, T C; Stoeckl, C; Knauer, J; Horsfield, C J

    2010-05-13

    The first three of eighteen neutron time-of-flight (nTOF) channels have been installed at the National Ignition Facility (NIF). The role of these detectors includes yield, temperature, and bang time measurements. This article focuses on nTOF data analysis and quality of results obtained for the first set of experiments to use all 192 NIF beams. Targets produced up to 2 x 10{sup 10} 2.45-MeV neutrons for initial testing of the nTOF detectors. Differences in neutron scattering at the OMEGA laser facility where the detectors were calibrated and at NIF result in different response functions at the two facilities. Monte Carlo modeling shows this difference. The nTOF performance on these early experiments indicates the nTOF system with its full complement of detectors should perform well in future measurements of yield, temperature, and bang time.

  1. Calibration of a neutron time-of-flight multidetector system for an intensity interferometry experiment

    NARCIS (Netherlands)

    Ghetti, R; Colonna, N; Helgesson, J; Avdeichikov, [No Value; Golubev, P; Jakobsson, B; Tagliente, G; Brandenburg, S; Kravchuk, VL; Wilschut, HW; Kopecky, S; Anderson, EW; Nadel-Turonski, P; Westerberg, L; Bellini, [No Value; Sperduto, ML; Sutera, C

    2004-01-01

    We present the details of an experiment on light particle interferometry. In particular, we focus on a time-of-flight technique which uses a cyclotron RF signal as a start and a liquid scintillator time signal as a stop, to measure neutron energy in the range of En approximate to 1.8-150 MeV. This d

  2. Time-dependent thermal neutron field in two-region bounded systems

    International Nuclear Information System (INIS)

    A set of solutions of the time-dependent diffusion equation for two-region bounded systems in spherical and cylindrical geometries is presented. Two types of solutions are given for each geometry: the general solution and a solution for the case where the spatial distribution of the thermal neutron flux is constant inside the inner region. These solutions provide the theoretical background for the development of a new method of measuring the thermal neutron macroscopic absorption cross section. The theoretical description of the method worked out for small samples is in good agreement with the experimental results presented. The principles of measuring the neutron transport cross section using small samples and mathematical solutions are described. The possibility of applying a sinusoidally modulated neutron source is presented. Special attention is paid to proper averaging of the thermal neutron diffusion parameters and to the problem of boundary effects. The so-called thermal neutron average dynamic parameters have been used. Results obtained from the modified diffusion theory compare satisfactorily with those obtained form the one-speed transport and P3 theory approximations. (au) (56 refs.)

  3. Maintenance work on CERN mobile phone services

    CERN Multimedia

    2007-01-01

    Maintenance work on the CERN GSM services will be carried out by our mobile operator, Sunrise, from 8.00 p.m. on 25 June to 1 a.m. on 26 June. External calls from CERN mobile phones using the 333 prefix may be disrupted for 30 minutes during this time. Other type of calls, e.g. mobile to mobile or mobile to CERN fixed phones, will not be affected. Should you have any questions regarding this maintenance operation, please contact the switchboard by phone (76111) or e-mail (standard.telephone@cern.ch) Telecom Section IT/CS

  4. Hangout with CERN: Welcome to CERN (S01E01)

    CERN Multimedia

    Kahle, Kate

    2012-01-01

    In this first Hangout with CERN "Welcome to CERN" ATLAS physicist Steven Goldfarb, CERN theorist Alvaro De Rujula and Mick Storr from the CERN education group introduce CERN and answer some of the questions received via #askCERN on Twitter and Google+. Recorded live on 1st November 2012.

  5. Characterization of electron detectors by time-of-flight in neutron \\b{eta} decay experiments

    CERN Document Server

    Dubbers, Dirk

    2016-01-01

    Progress in neutron decay experiments requires better methods for the characterization of electron detectors. I show that for such \\b{eta}-decay studies, electron time-of-flight can be used for in-situ calibration of electron detectors. Energy resolution down to a few keV can be reached for the lower part of the electron spectrum in neutron decay, where conventional calibration methods come to their limit. Novel time-of-flight methods can also be used to perform a complete experiment on electron backscattering from their detectors.

  6. Neutron Moderation in the Oklo Natural Reactor and the Time Variation of alpha

    CERN Document Server

    Lamoreaux, S K

    2003-01-01

    In the analysis of the Oklo (gabon) natural reactor to test for a possible time variation of the fine structure constant alpha, a Maxwell-Boltzmann low energy neutron spectrum was assumed. We present here an analysis where a more realistic spectrum is employed and show that the most recent isotopic analysis of samples implies a non-zero change in alpha, over the last two billion years since the reactor was operating, of \\Delta\\alpha/\\alpha\\geq 2.2\\times 10^{-7} (6\\sigma confidence). Issues regarding the interpretation of the shifts of the low energy neutron resonances are discussed.

  7. Material recognition using neutron/gamma interrogation with time tagged fission sources

    Energy Technology Data Exchange (ETDEWEB)

    Hao, X.; Lunardon, M.; Moretto, S.; Stevanato, L.; Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Fabris, D.; Nebbia, G; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of)

    2009-07-01

    Material recognition is studied by measuring simultaneously the transmission of neutron and gamma rays produced by a time-tagged {sup 252}Cf source. The possibility to derive direct signatures to identify light elements (C,N,O) by using the measured transmission versus neutron time of flight is demonstrated. The yield of the transmitted gamma ray as a function of energy in the range 0.1-5.5 MeV provides high precision identification of the atomic number of the sample. A tomography system, currently under construction, is described. (authors)

  8. Preliminary energy-filtering neutron imaging with time-of-flight method on PKUNIFTY: A compact accelerator based neutron imaging facility at Peking University

    Science.gov (United States)

    Wang, Hu; Zou, Yubin; Wen, Weiwei; Lu, Yuanrong; Guo, Zhiyu

    2016-07-01

    Peking University Neutron Imaging Facility (PKUNIFTY) works on an accelerator-based neutron source with a repetition period of 10 ms and pulse duration of 0.4 ms, which has a rather low Cd ratio. To improve the effective Cd ratio and thus improve the detection capability of the facility, energy-filtering neutron imaging was realized with the intensified CCD camera and time-of-flight (TOF) method. Time structure of the pulsed neutron source was firstly simulated with Geant4, and the simulation result was evaluated with experiment. Both simulation and experiment results indicated that fast neutrons and epithermal neutrons were concentrated in the first 0.8 ms of each pulse period; meanwhile in the period of 0.8-2.0 ms only thermal neutrons existed. Based on this result, neutron images with and without energy filtering were acquired respectively, and it showed that detection capability of PKUNIFTY was improved with setting the exposure interval as 0.8-2.0 ms, especially for materials with strong moderating capability.

  9. Doing business with CERN

    CERN Multimedia

    2015-01-01

    The Procurement Service, in collaboration with the Communications group’s Design team, has recently launched a new information campaign targeted at companies wishing to supply their products and services to CERN. This campaign comprises:   A brochure, available in hard and soft copy:  http://procurement.web.cern.ch/brochures/doing-business-with-cern.   A 6-minute video overview: https://procurement-dev.web.cern.ch/doing-business-with-cern. This campaign is intended for Member State firms with whom CERN is yet to do business. The key objectives are: To emphasise that CERN can be considered a major customer across a wide range of activities;   To present CERN’s procurement procedures in a dynamic and digestible way;   To highlight the information available on CERN’s procurement website: http://procurement.web.cern.ch. Furthermore, a new section called “Having a contract with CERN” is also now ava...

  10. Virgin Galactic explores CERN

    CERN Multimedia

    2016-01-01

    Virgin Galactic visited CERN with a group of future astronauts and Sir Richard Branson. During their visit the group was shown around various experiments, including the Globe, SM18, AMS and the CERN Control Centre.

  11. CERN Shop Christmas Sale

    CERN Multimedia

    Visits & Exhibition Service/ETT-VE

    2001-01-01

    11-13.12.2001 Looking for Christmas present ideas? Come to the Reception Shop Special Stand in Meyrin, Main Building, ground floor, from Tuesday 11 to Thursday 13 December from 10.30 to 16.00. CERN Calendar 10.- CERN Sweat-shirts(M, L, XL) 30.- CERN T-shirt (M, L, XL) 20.- New CERN silk tie (2 colours) 35.- Fancy silk tie (blue, bordeau) 25.- Silk scarf (light blue, red, yellow) 35.- Swiss army knife with CERN logo 25.- CERN watch 25.- CERN baseball cap 15.- CERN briefcase 15.- Book 'Antimatter' (English) 35.- Book 'How the web was born' (English) 25.- The Search for Infinity (French, Italian, English, German) 40.-   If you miss this special occasion, the articles are also available at the Reception Shop in Building 33 from Monday to Saturday between 08.30 and 17.30 hrs.

  12. Neural networks based neutron emissivity tomography at JET with real-time capabilities

    International Nuclear Information System (INIS)

    Tomographic reconstruction techniques typically require computationally intensive algorithms which are not suitable for real-time application. This paper describes a framework to perform neutron emissivity tomography at the Joint European Torus (JET) using neural networks with successful results over a broad range of magnetic configurations, heating and fueling schemes. Application times in the μs time scale allows for real-time applicability of the method.

  13. Neural networks based neutron emissivity tomography at JET with real-time capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ronchi, E., E-mail: emanuele.ronchi@tsl.uu.s [JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Association EURATOM-VR, Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Conroy, S.; Andersson Sunden, E.; Ericsson, G.; Gatu Johnson, M.; Hellesen, C.; Sjoestrand, H.; Weiszflog, M. [JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Association EURATOM-VR, Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden)

    2010-02-01

    Tomographic reconstruction techniques typically require computationally intensive algorithms which are not suitable for real-time application. This paper describes a framework to perform neutron emissivity tomography at the Joint European Torus (JET) using neural networks with successful results over a broad range of magnetic configurations, heating and fueling schemes. Application times in the mus time scale allows for real-time applicability of the method.

  14. The Nuclear Physics Programme at CERN (1/3)

    CERN Document Server

    CERN. Geneva

    2013-01-01

    This lecture series will focus on the two major facilities at CERN for nuclear physics: ISOLDE and nToF. ISOLDE is one of the world's leading radioactive beam facilities which can produce intense beams of unstable nuclei. Some of these beams can also be re-acclerated to energies around the Coulomb barrier and undergo nuclear reactions in turn. ISOLDE can address a wide range of Physics from nuclear structure to nuclear astrophysics (the origin of the chemical elements) and fundamental physics. The second major facility is nToF which is a neutron time-of-flight facility. Intense neutron beams are used to study nuclear reactions important both for nuclear astrophysics and for present and future reactor cycles. An overview will be given of these two facilities including highlights of their Physics programmes and the perspectives for the future.

  15. Greece at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1997-01-01

    Greece, one of CERN*'s founding Member States, inaugurated its first Industrial Exhibition at the Meyrin site on Tuesday, 14 October. After a meeting with CERN's Director General, Professor Christopher Llewellyn Smith, Professor Emmanuel Frangoulis, the General Secretary of the Greek Ministry of Industry, accompanied by Prof Emmanuel Floratos, Greek delegate to CERN council visited the DELPHI experiment on the LEP collider, guided by Andromachi Tsirou, a Greek physicist.

  16. France at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Rolf Heuer, CERN Director General, visits the exhibition "La France au CERN". The exhibition France at CERN, organized by UBIFRANCE in collaboration with CERN's GS/SEM (Site Engineering and Management) service, took place from Monday 7 to Wednesday 9 June in the Main Building. The 36 French firms taking part came to present their products and technologies related to the Organization's activities. The next exhibition will be "Netherlands at CERN" in November.

  17. Neutron Moderation Studied by the Time-Dependent Reaction Rate Method

    International Nuclear Information System (INIS)

    Time dependent neutron spectra have been studied in water, ice and heavy water, using the 5.5-MeV Van de Graaff accelerator at Studsvik as a pulsed neutron source. The change of the spectrum with time,after the injection of the neutrons in the moderator, has been followed by the detection and time analysis of prompt gamma rays which come from the reaction between the flux and the neutron - capturing, spectrum indicators (with known capture cross-section) which have been distributed in small quantities in the moderator. Earlier measurements on the thermalization in water have been extended to the slowing-down region by the use of indium as a spectrum indicator and by measuring with a time resolution of 0.05 μs. The results are in good agreement with the theory for the slowing-down caused by collisions with free protons. The space-dependence near the source of the time-dependent neutron density has been compared with recent theoretical work. In ice the thermalization time constant has been measured. The value obtained, 5 μs, deviates only slightly from the earlier value obtained for water, after correction for the density difference. This implies only a small difference in the integral parameters of the scattering law for the two states of water. Time-dependent reaction rate curves have also been measured for heavy water, using a volume of 900 l and indium,cadmium and gadolinium as indicators. Von Dardel's trial function for the time-dependent density during slowing down has been verified. The thermalization proceeds with a time constant of 33 μs and has been completed after 200 μs. (author)

  18. Rietveld refinement with time-of-flight powder diffraction data from pulsed neutron sources

    International Nuclear Information System (INIS)

    The recent development of accelerator-based pulsed neutron sources has led to the widespread use of the time-of-flight technique for neutron powder diffraction. The properties of the pulsed source make possible unusually high resolution over a wide range of d spacings, high count rates, and the ability to collect complete data at fixed scattering angles. The peak shape and other instrument characteristics can be accurately modelled, which make Rietveld refinement possible for complex structures. In this paper we briefly review the development of the Rietveld method for time-of-flight diffraction data from pulsed neutron sources and discuss the latest developments in high resolution instrumentation and advanced Rietveld analysis methods. 50 refs., 12 figs., 14 tabs

  19. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    Energy Technology Data Exchange (ETDEWEB)

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinary differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.

  20. Spotlight on CERN

    CERN Multimedia

    CERN video productions

    2009-01-01

    Welcome to the Globe of Science and Innovation for the first "Spotlight on CERN" just a few weeks before the restart of the LHC machine. Today our guest is Mike Lamont, who is in charge of the Operations Group for the accelerator beams. This weekend, protons were injected into the LHC for the first time since September 2008. But before we talk about that, let's go back a few weeks and look at the previous stage, which involved testing the transfer lines of the injection tunnels TI2/TI8. Our video team was there to film this operation.

  1. Optimal timing of neutron irradiation for boron neutron capture therapy after intravenous infusion of sodium borocaptate in patients with glioblastoma

    International Nuclear Information System (INIS)

    Purpose: A cooperative study in Europe and Japan was conducted to determine the pharmacokinetics and boron uptake of sodium borocaptate (BSH: Na2B12H11SH), which has been introduced clinically as a boron carrier for boron neutron capture therapy in patients with glioblastoma. Methods and Materials: Data from 56 patients with glioblastoma who received BSH intravenous infusion were retrospectively reviewed. The pharmacokinetics were evaluated in 50 patients, and boron uptake was investigated in 47 patients. Patients received BSH doses between 12 and 100 mg/kg of body weight. For the evaluation, the infused boron dose was scaled linearly to 100 mg/kg BSH. Results: In BSH pharmacokinetics, the average value for total body clearance, distribution volume of steady state, and mean residence time was 3.6±1.5 L/h, 223.3±160.7 L, and 68.0±52.5 h, respectively. The average values of the boron concentration in tumor adjusted to 100 mg/kg BSH, the boron concentration in blood adjusted to 100 mg/kg BSH, and the tumor/blood boron concentration ratio were 37.1±35.8 ppm, 35.2±41.8 ppm, and 1.53±1.43, respectively. A good correlation was found between the logarithmic value of Tadj and the interval from BSH infusion to tumor tissue sampling. About 12-19 h after infusion, the actual values for Tadj and tumor/blood boron concentration ratio were 46.2±36.0 ppm and 1.70±1.06, respectively. The dose ratio between tumor and healthy tissue peaked in the same interval. Conclusion: For boron neutron capture therapy using BSH administered by intravenous infusion, this work confirms that neutron irradiation is optimal around 12-19 h after the infusion is started

  2. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Science.gov (United States)

    Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie

    2016-10-01

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  3. Time-of-flight mass measurements for nuclear processes in neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, Alfredo [National Superconducting Cyclotron Laboratory (NSCL); Matos, M. [Louisiana State University; Schatz, Hendrik [Michigan State University, East Lansing; Amthor, A. M. [National Superconducting Cyclotron Laboratory (NSCL); Bazin, D. [National Superconducting Cyclotron Laboratory (NSCL); Beard, Mary [University of Notre Dame, IN; Becerril, A. [National Superconducting Cyclotron Laboratory (NSCL); Brown, Edward [Michigan State University, East Lansing; Elliot, T [National Superconducting Cyclotron Laboratory (NSCL); Gade, A. [National Superconducting Cyclotron Laboratory (NSCL); Galaviz, D. [National Superconducting Cyclotron Laboratory (NSCL); George, S. [National Superconducting Cyclotron Laboratory (NSCL); Gupta, Sanjib [Indian Institute of Technology, Kanpur; Hix, William Raphael [ORNL; Lau, Rita [National Superconducting Cyclotron Laboratory (NSCL); Moeller, Peter [Los Alamos National Laboratory (LANL); Pereira, J. [National Superconducting Cyclotron Laboratory (NSCL); Portillo, M. [National Superconducting Cyclotron Laboratory (NSCL); Rogers, A. M. [National Superconducting Cyclotron Laboratory (NSCL); Shapira, Dan [ORNL; Smith, E. [Ohio State University; Stolz, A. [Michigan State University, East Lansing; Wallace, M. [Los Alamos National Laboratory (LANL); Wiescher, Michael [University of Notre Dame, IN

    2011-01-01

    The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Supercon- ducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the Sc Ni element range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of 61V, 63Cr, 66Mn, and 74Ni were measured for the first time with mass excesses of 30.510(890) MeV, 35.280(650) MeV, 36.900(790) MeV, and 49.210(990) MeV, respectively. With the measurement of the 66Mn mass, the location of the two dominant heat sources in the outer crust of accreting neutron stars, which exhibit so called superbursts, is now experimentally constrained. We find that the location of the 66Fe 66Mn electron capture transition occurs sig- nificantly closer to the surface than previously assumed because our new experimental Q-value is 2.1 MeV smaller than predicted by the FRDM mass model. The results also provide new insights into the structure of neutron-rich nuclei around N = 40.

  4. A Fast Pulsed Neutron Source for Time-of-Flight Detection of Nuclear Materials and Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Mahadevan; Bures, Brian; James, Colt; Madden, Robert [Alameda Applied Sciences Corporation, 3077 Teagarden Street, San Leandro, CA 94577 (United States); Hennig, Wolfgang; Breus, Dimitry; Asztalos, Stephen; Sabourov, Konstantin [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Lane, Stephen [NSF Center for Biophotonics and School of Medicine, University of California Davis, Sacramento CA, 95817 (United States)

    2011-12-13

    AASC has built a fast pulsed neutron source based on the Dense Plasma Focus (DPF). The more current version stores only 100 J but fires at {approx}10-50 Hz and emits {approx}10{sup 6}n/pulse at a peak current of 100 kA. Both sources emit 2.45{+-}0.1 MeV(DD) neutron pulses of {approx}25-40 ns width. Such fast, quasi-monoenergetic pulses allow time-of-flight detection of characteristic emissions from nuclear materials or high explosives. A test is described in which iron targets were placed at different distances from the point neutron source. Detectors such as Stilbene and LaBr3 were used to capture inelastically induced, 847 keV gammas from the iron target. Shielding of the source and detectors eliminated most (but not all) of the source neutrons from the detectors. Gated detection, pulse shape analysis and time-of-flight discrimination enable separation of gamma and neutron signatures and localization of the target. A Monte Carlo simulation allows evaluation of the potential of such a fast pulsed source for a field-portable detection system. The high rep-rate source occupies two 200 liter drums and uses a cooled DPF Head that is <500 cm{sup 3} in volume.

  5. Neutron time-of-flight spectroscopy measurement using a waveform digitizer

    Science.gov (United States)

    Liu, Long-Xiang; Wang, Hong-Wei; Ma, Yu-Gang; Cao, Xi-Guang; Cai, Xiang-Zhou; Chen, Jin-Gen; Zhang, Gui-Lin; Han, Jian-Long; Zhang, Guo-Qiang; Hu, Ji-Feng; Wang, Xiao-He

    2016-05-01

    The photoneutron source (PNS, phase 1), an electron linear accelerator (linac)-based pulsed neutron facility that uses the time-of-flight (TOF) technique, was constructed for the acquisition of nuclear data from the Thorium Molten Salt Reactor (TMSR) at the Shanghai Institute of Applied Physics (SINAP). The neutron detector signal used for TOF calculation, with information on the pulse arrival time, pulse shape, and pulse height, was recorded by using a waveform digitizer (WFD). By using the pulse height and pulse-shape discrimination (PSD) analysis to identify neutrons and γ-rays, the neutron TOF spectrum was obtained by employing a simple electronic design, and a new WFD-based DAQ system was developed and tested in this commissioning experiment. The DAQ system developed is characterized by a very high efficiency with respect to millisecond neutron TOF spectroscopy. Supported by Strategic Priority Research Program of the Chinese Academy of Science(TMSR) (XDA02010100), National Natural Science Foundation of China(NSFC)(11475245,No.11305239), Shanghai Key Laboratory of Particle Physics and Cosmology (11DZ2260700)

  6. Monitoring Short-term Cosmic-ray Spectral Variations Using Neutron Monitor Time-delay Measurements

    Science.gov (United States)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P.; Nutaro, T.; Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C.; Rujiwarodom, M.; Tooprakai, P.; Asavapibhop, B.; Bieber, J. W.; Clem, J.; Evenson, P.; Munakata, K.

    2016-01-01

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007-2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  7. MONITORING SHORT-TERM COSMIC-RAY SPECTRAL VARIATIONS USING NEUTRON MONITOR TIME-DELAY MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Nutaro, T.; Rujiwarodom, M.; Tooprakai, P. [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C. [Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Asavapibhop, B. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Bieber, J. W.; Clem, J.; Evenson, P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Munakata, K., E-mail: david.ruf@mahidol.ac.th [Physics Department, Shinshu University, Matsumoto, Nagano 390-8621 (Japan)

    2016-01-20

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007–2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  8. Neutron measurements with Time-Resolved Event-Counting Optical Radiation (TRECOR) detector

    Science.gov (United States)

    Brandis, M.; Vartsky, D.; Dangendorf, V.; Bromberger, B.; Bar, D.; Goldberg, M. B.; Tittelmeier, K.; Friedman, E.; Czasch, A.; Mardor, I.; Mor, I.; Weierganz, M.

    2012-04-01

    Results are presented from the latest experiment with a new neutron/gamma detector, a Time-Resolved, Event-Counting Optical Radiation (TRECOR) detector. It is composed of a scintillating fiber-screen converter, bending mirror, lens and Event-Counting Image Intensifier (ECII), capable of specifying the position and time-of-flight of each event. TRECOR is designated for a multipurpose integrated system that will detect Special Nuclear Materials (SNM) and explosives in cargo. Explosives are detected by Fast-Neutron Resonance Radiography, and SNM by Dual Discrete-Energy gamma-Radiography. Neutrons and gamma-rays are both produced in the 11B(d,n+γ)12C reaction. The two detection modes can be implemented simultaneously in TRECOR, using two adjacent radiation converters that share a common optical readout. In the present experiment the neutron detection mode was studied, using a plastic scintillator converter. The measurements were performed at the PTB cyclotron, using the 9Be(d,n) neutron spectrum obtained from a thick Be-target at Ed ~ 13 MeV\\@. The basic characteristics of this detector were investigated, including the Contrast Transfer Function (CTF), Point Spread Function (PSF) and elemental discrimination capability.

  9. In the CERN Library

    CERN Multimedia

    1963-01-01

    Seen in this picture is Noria Christophoridou, librarian of the Greek Atomic Energy Commission, who has been sent by her government to CERN for a year to widen her experience of library and documentation services. In the photograph she is providing information to Kurt Gottfried, a CERN visiting scientist from Harvard University, who is spending a year with CERN's Theory Division

  10. 2005 CERN Relay Race

    CERN Document Server

    Patrice Loiez

    2005-01-01

    The CERN Relay Race takes place each year in May and sees participants from all areas of the CERN staff. The winners in 2005 were The Shabbys with Los Latinos Volantes in second and Charmilles Technologies a close third. To add a touch of colour and levity, the CERN Jazz Club provided music at the finishing line.

  11. CERN Photowalk 2015

    CERN Multimedia

    2015-01-01

    CERN is organising a Photowalk on Friday 25 September 2015. At this event a few selected photographers will get the chance to come to CERN, the European Organization for Nuclear Research, for an exclusive behind-the-scenes tour of the laboratory. For more information: http://photowalk2015.web.cern.ch/

  12. 2008 annual CERN Road Race

    CERN Multimedia

    2008-01-01

    Dear runners, The 2008 annual CERN Road Race will be held on Wednesday 24 September at 6.00 p.m. This 5.4 km race consists of 3 laps of a 1.8 km circuit in the West Area of the Meyrin site and is open to everyone working at CERN and their families. Past races have attracted runners of all speeds, with times ranging from under 17 to over 34 minutes. The race is run on a handicap basis, with starting times staggered to ensure that (in theory) all runners finish together. However, if the popularity of the race continues to grow (95 runners took part last year), its format may be modified to a classic single start. For more information and to complete the online entry form, go to http://club-running.web.cern.ch

  13. Robert Aymar, Director-General of CERN

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    Robert Aymar, photographed in 2003 before taking his position as Director-General at CERN, succeeding Luciano Maiani in 2004. At this time, Aymar was director of the International Thermonuclear Experimental Reactor (ITER) although he had already been involved with developments at CERN, chairing the External Review Committee, set up in 2001 in response to the increased cost of the LHC.

  14. Upgrade of the CERN telephone exchange

    CERN Multimedia

    2006-01-01

    As part of the upgrade of telephone services, maintenance work will be carried out on the CERN switching centre between 8.00 p.m. and 10.00 p.m. on Monday 9 October. Telephone services may be disrupted and possibly even interrupted during this time. We apologise in advance for any inconvenience this may cause. CERN TELECOM Service

  15. Neutron capture cross section of $^{232}Th$ measured at the nTOF facility at CERN in the unresolved resonance region up to 1 MeV

    CERN Document Server

    Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, P A; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carillo de Albornoz, A; Cennini, P; Chepel, V Yu; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Gonçalves, I; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F K; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Taliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2006-01-01

    We have measured the neutron capture reaction yield of /sup 232energy range from 1 eV to 1 MeV. The average capture cross section has been extracted in the energy range from 4 keV up to 1 MeV with an overall accuracy better than 4%. An independent IAEA evaluation shows good agreement with the data. The average cross section has been expressed in terms of average resonance parameters using the partial waves script l=0,1, and 2.

  16. The new Athens center on data processing from the neutron monitor network in real time

    Directory of Open Access Journals (Sweden)

    Mavromichalaki

    2005-11-01

    Full Text Available The ground-based neutron monitors (NMs record galactic and solar relativistic cosmic rays which can play a useful key role in space weather forecasting, as a result of their interaction with interplanetary disturbances. The Earth's-based neutron monitor network has been used in order to produce a real-time prediction of space weather phenomena. Therefore, the Athens Neutron Monitor Data Processing Center (ANMODAP takes advantage of this unique multi-directional device to solve problems concerning the diagnosis and forecasting of space weather. At this moment there has been a multi-sided use of neutron monitors. On the one hand, a preliminary alert for ground level enhancements (GLEs may be provided due to relativistic solar particles and can be registered around 20 to 30 min before the arrival of the main part of lower energy particles responsible for radiation hazard. To make a more reliable prognosis of these events, real time data from channels of lower energy particles and X-ray intensity from the GOES satellite are involved in the analysis. The other possibility is to search in real time for predictors of geomagnetic storms when they occur simultaneously with Forbush effects, using hourly, on-line accessible neutron monitor data from the worldwide network and applying a special method of processing. This chance of prognosis is only being elaborated and considered here as one of the possible uses of the Neutron Monitor Network for forecasting the arrival of interplanetary disturbance to the Earth. The achievements, the processes and the future results, are discussed in this work.

  17. Monte Carlo calculation of neutron generation time in critical reactor and subcritical reactor with an external source

    International Nuclear Information System (INIS)

    The neutron generation time Λ plays an important role in the reactor kinetics. However, it is not straightforward nor standard in most continuous energy Monte Carlo codes which are able to calculate the prompt neutron lifetime lp directly. The difference between Λ and lp are sometimes very apparent. As very few delayed neutrons are produced in the reactor, they have little influence on Λ. Thus on the assumption that no delayed neutrons are produced in the system, the prompt kinetics equations for critical system and subcritical system with an external source are proposed. And then the equations are applied to calculating Λ with pulsed neutron technique using Monte Carlo. Only one fission neutron source is simulated with Monte Carlo in critical system while two neutron sources, including a fission source and an external source, are simulated for subcritical system. Calculations are performed on both critical benchmarks and subcritical system with an external source and the results are consistent with the reference values. (author)

  18. Romania's flag raised at CERN

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A ceremony was held for the raising of the Romanian flag alongside the flags of CERN’s 21 other Member States.   The Romanian flag is raised alongside the flags of CERN’s other Member States, in the presence of the Romanian President, CERN’s Director-General, the President of the CERN Council and a large Romanian delegation. (Image: Maximilien Brice/ Sophia Bennett/CERN) On Monday, 5 September, the Romanian flag was raised in front of CERN for the first time, marking the country’s accession to Membership of the Organization. The blue, yellow and red flag joined those of the other 21 Member States of CERN in a ceremony attended by the President of Romania, Klaus Iohannis, the Romanian Minister for Education and Scientific Research, Mircea Dumitru, and several other members of the President’s office, the government and academia in Romania. The country officially became a CERN Member State on 17 July 2016, after 25 years of collaboration between the...

  19. Is timing noise important in the gravitational wave detection of neutron stars?

    OpenAIRE

    Jones, D. I.

    2004-01-01

    In this paper we ask whether the phenomenon of timing noise long known in electromagnetic pulsar astronomy is likely to be important in gravitational wave (GW) observations of spinning-down neutron stars. We find that timing noise is strong enough to be of importance only in the young pulsars, which must have larger triaxialities than theory predicts for their GW emission to be detectable. However, assuming that their GW emission is detectable, we list the pulsars for which timing noise is im...

  20. Collide@CERN Geneva

    CERN Document Server

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  1. CERN Photo club

    CERN Multimedia

    CERN Photo club

    2016-01-01

    The CERN Photo Club organizes in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016. Send your three best pictures at  Photo.Contest@cern.ch with a short description explaining the images. Further information on the Photo club website: http://photoclub.web.cern.ch/content/photo-contest-october-2016

  2. Britain at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1996-01-01

    On 8 October, H.E. Mr David Beattie, British Ambassador to Switzerland, Mr John R. Nichols, H.M. Consul-General in Geneva and, Prof. Christopher Llewellyn Smith, CERN*'s Director General, formally opened the industrial exhibition of thirty-three British hi-tech companies at CERN, which takes place from 8 to 11 October, 1996. The exhibition offers British companies the opportunity to display their products in fields that are of immediate importance to the scientists, engineers and technicians working at CERN, and also to scientists from non-Member States who take part in research projects at CERN.

  3. CERN Cricket Club

    CERN Multimedia

    CERN Cricket Club

    2010-01-01

    CERN Cricket Club Match Reports The cricket season is well under way, despite the weather, and several matches have been played. The match reporters have, however, found it too difficult to limit their reports to ¼ of a page, hence the reports have not appeared in the bulletin. All reports can be found at http://cern.ch/Club-Cricket/reports/reports.html The list of forthcoming matches can be consulted at http://cern.ch/Club-Cricket/fixtures.html Further information about the CERN Cricket Club can be found at http://cern.ch/Club-Cricket/

  4. Neutron Time-of-Flight Quantification of Water Desorption Isotherms of Montmorillonite

    DEFF Research Database (Denmark)

    Gates, Will P.; Bordallo, Heloisa N.; Aldridge, Laurence P.;

    2012-01-01

    The multiple energy states of water held by surfaces of a clay mineral can be effectively probed with time-of-flight and fixed elastic window neutron scattering. We used these techniques to quantitatively differentiate water types, including rotational and translational diffusions, in Ca- and Na-...

  5. Neutron moderation in the Oklo natural reactor and the time variation of α

    Science.gov (United States)

    Lamoreaux, S. K.; Torgerson, J. R.

    2004-06-01

    In previous analyses of the Oklo (Gabon) natural reactor to test for a possible time variation of the fine-structure constant α, a Maxwell-Boltzmann low energy neutron spectrum was assumed. We present here an analysis where a more realistic spectrum is employed and show that the most recent isotopic analysis of samples implies a decrease in α, over the last 2×109 years since the reactor was operating, of (αpast-αnow)/α⩾4.5×10-8 (6σ confidence). Issues regarding the interpretation of the shifts of the low energy neutron absorption resonances are discussed.

  6. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA.

    Science.gov (United States)

    Glebov, V Yu; Forrest, C; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Caggiano, J A; Carman, M L; Clancy, T J; Hatarik, R; McNaney, J; Zaitseva, N P

    2012-10-01

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  7. A time-of-flight neutron reflectometer for surface and interfacial studies

    International Nuclear Information System (INIS)

    A time-of-flight neutron reflectometer constructed for surface and interfacial studies, and installed at the ISIS pulsed neutron source, is described. One of its important design features is its inclined incident beam, since this allows both liquid and solid surface phenomena to be investigated. Measurements are presented to show the performance of the instrument, and new representative results, which include studies of liquid surfaces, Langmuir-Blodgett films, and thin film multilayers, are included as illustrations of the scientific potential of the method. (author)

  8. Study on neutron diffusion and time dependence heat ina fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    The purpose of this work is to model the neutron diffusion and heat transfer for a Fluidized Bed Nuclear Reactor and its solution by Laplace Transform Technique with numerical inversion using Fourier Series. Also Gaussian quadrature and residues techniques were applied for numerical inversion. The neutron transport, diffusion, and point Kinetic equation for this nuclear reactor concept are developed. A matricial and Taylor Series methods are proposed for the solution of the point Kinetic equation which is a time scale problem of Stiff type

  9. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    International Nuclear Information System (INIS)

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 109 counts/s. Because a maximum total neutron emission rate over 1 × 1016 n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design

  10. Calculation of the reactor neutron time of flight spectrum by convolution technique

    Institute of Scientific and Technical Information of China (English)

    Cheng Jin-Xing; Ouyang Xiao-Ping; Zheng Yi; Zhang An-Hui; Ouyang Mao-Jie

    2008-01-01

    It is a very complex and tlme-consuming process to simulate the nuclear reactor neutron spectrum from the reactor core to the export channel by applying a Monte Carlo program. This paper presents a new method to calculate the neutron spectrum by using the convolution technique which considers the channel transportation as a linear system and the transportation scattering as the response function. It also applies Monte Carlo Neutron and Photon Transport Code (MCNP) to simulate the response function numerically. With the application of convolution technique to calculate thespectrum distribution from the core to the channel, the process is then much more convenient only with the simple numerical integral numeration. This saves computer time and reduces some trouble in re-writing of the MCNP program.

  11. Design of a north pole Neutron Time-of-Flight (NTOF) system at NIF

    Science.gov (United States)

    Caggiano, J. A.; Barbosa, F.; Clancy, T. J.; Eckart, M. J.; Grim, G.; Hartouni, E. P.; Hatarik, R.; Khater, H.; Lee, A.; Sampson, M.; Sayre, D. B.; Yeamans, C.; Yeoman, M.

    2016-05-01

    A north pole NTOF system for neutron spectroscopy is being implemented at the NIF. The design is centered around a fast scintillator with low mass housing fielded 21.6m from target chamber center at θ=18°,ϕ=304°. The line-of-sight (LOS) features a primary port collimator, two secondary collimators in the intervening concrete floors, and a beam dump with a backscatter shield. Because the detector is being fielded on the roof of the NIF building, diagnostic options such as optical and electrical attenuation are remotely controlled, saving setup time and increasing shot rate. The expected performance of the diagnostic is excellent with high sensitivity to both high-energy reaction-in-flight neutrons as well as lower energy down-scattered neutrons.

  12. A highly efficient neutron time-of-flight detector for inertial confinement fusion experiments

    Science.gov (United States)

    Izumi, N.; Yamaguchi, K.; Yamagajo, T.; Nakano, T.; Kasai, T.; Urano, T.; Azechi, H.; Nakai, S.; Iida, T.

    1999-01-01

    We have developed the highly efficient neutron detector system MANDALA for the inertial-confinement-fusion experiment. The MANDALA system consists of 842 elements plastic scintillation detectors and data acquisition electronics. The detection level is the yield of 1.2×105 for 2.5 MeV and 1×105 for 14.1 MeV neutrons (with 100 detected hits). We have calibrated the intrinsic detection efficiencies of the detector elements using a neutron generator facility. Timing calibration and integrity test of the system were also carried out with a 60Co γ ray source. MANDALA system was applied to the implosion experiments at the GEKKO XII laser facility. The integrity test was carried out by implosion experiments.

  13. Time Dependent DD Neutrons Measurement Using a Single Crystal Chemical Vapor Deposition Diamond Detector on EAST

    Science.gov (United States)

    Du, Tengfei; Peng, Xingyu; Chen, Zhongjing; Hu, Zhimeng; Ge, Lijian; Hu, Liqun; Zhong, Guoqiang; Pu, Neng; Chen, Jinxiang; Fan, Tieshuan

    2016-09-01

    A single crystal chemical vapor deposition (scCVD) diamond detector has been successfully employed for neutron measurements in the EAST (Experimental Advanced Superconducting Tokamak) plasmas. The scCVD diamond detector coated with a 5 μm 6LiF (95% 6Li enriched) layer was placed inside a polyethylene moderator to enhance the detection efficiency. The time-dependent neutron emission from deuteron plasmas during neutral beam injection (NBI) heating was obtained. The measured results are compared with that of fission chamber detectors, which always act as standard neutron flux monitors. The scCVD diamond detector exhibits good reliability, stability and the capability to withstand harsh radiation environments despite its low detection efficiency due to the small active volume. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106004 and 2012GB101003) and National Natural Science Foundation of China (No. 91226102)

  14. Study of elastic and inelastic neutron cross-sections using time of flight technique

    International Nuclear Information System (INIS)

    High precision neutron scattering data has become increasingly important in the development of nuclear reactors and accelerator systems, astrophysics and space system design, radiation therapy and isotope production, and for shielding considerations. Previous evaluations of the neutron cross-section standards were completed in 1987 and disseminated as NEANDC/INDC and other databases. R-matrix model fits for the light elements and non-model least-squares fits for the heavy elements were the basis of the combined fits for all of the data. Some important reactions and constants are not considered standards, but assist greatly in the determination of the standard cross-sections and reduce their uncertainties. The focus of the present work is to measure elastic and inelastic neutron differential scattering cross-sections for 23Na using Time of Flight Technique for a range of energies with a high accuracy level

  15. CERN honours Georges Charpak

    CERN Multimedia

    2009-01-01

    CERN pays tribute to the work of Georges Charpak at a colloquium in honour of his 85th birthday. var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0753-kbps-480x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-Multirate-200-to-753-kbps-480x360.wmv', 'false', 480, 360, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-posterframe-480x360-at-10-percent.jpg', '1167500', true, 'Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4'); Watch the video conference of Georges Charpak.   On 9 March CERN’s Main Auditorium was the venue for a fascinating and moving celebration marking the 85th birthday of Georges Charpak, who was awarded the Nobel Prize for Physics in 1992 for his inven...

  16. CERN scientific book fair 2010

    CERN Multimedia

    CERN Library

    2010-01-01

    The CERN Bookshop and CERN Library invite you to attend the 2010 CERN Book Fair, a two-day scientific event offering you the opportunity to meet key publishers and to browse and purchase books at significant discounts.   Some twelve companies will be present and will bring with them a selection of titles in physics, technology, mathematics, engineering, computing and popular science. You are welcome to come along and meet the publishers’ representatives or simply have a look to the books on offer. The Fair will take place in the Main Building (bldg. 500) on the ground floor near the Restaurant 1 on Tuesday 7th and Wednesday 8th September. Participating or represented publishers include: Cambridge University Press, EPFL Press – PPUR, Oxford University Press, Imperial College Press, McGraw-Hill, Oxford University Press, Pearson Education, Princeton University Press, Springer, Taylor and Francis, Wiley, World Scientific. Fair opening times: Tuesday 7 September 9:00 &ndash...

  17. CERN Scientific Book Fair 2013

    CERN Multimedia

    CERN Library

    2013-01-01

    The CERN Bookshop and CERN Library invite you to attend the 2013 CERN Book Fair, a two-day scientific event offering you the opportunity to meet key publishers and to browse and purchase books at significant discounts.   Key publishers will present a selection of titles in physics, technology, mathematics, engineering, computing and popular science. You are welcome to come along and meet the publishers’ representatives or simply have a look at the books on sale. The fair will take place in the Main Building (Bldg. 500) on the ground floor near Restaurant 1 on Monday 9 and Tuesday 10 September. Participating or represented publishers include: Oxford University Press, Princeton University Press, Springer, Wiley, and World Scientific-Imperial College Press. Fair opening times:  - Monday 9 September 9:00 - 18:00  - Tuesday 10 September 9:00 - 18:00

  18. The Evolution of CERN EDMS

    CERN Document Server

    Wardzinska, Aleksandra; Bray, Rachel; Delamare, Christophe; Arza, Griselda Garcia; Krastev, Tsvetelin; Pater, Krzysztof; Suwalska, Anna; Widegren, David

    2015-01-01

    Large-scale long-term projects such as the LHC require the ability to store, manage, organize and distribute large amounts of engineering information, covering a wide spectrum of fields. This information is a living material, evolving in time, following specific lifecycles. It has to reach the next generations of engineers so they understand how their predecessors designed, crafted, operated and maintained the most complex machines ever built.This is the role of CERN EDMS. The Engineering and Equipment Data Management Service has served the High Energy Physics Community for over 15 years. It is CERN's official PLM (Product Lifecycle Management), supporting engineering communities in their collaborations inside and outside the laboratory. EDMS is integrated with the CAD (Computer-aided Design) and CMMS (Computerized Maintenance Management) systems used at CERN providing tools for engineers who work in different domains and who are not PLM specialists.Over the years, human collaborations and machines grew in si...

  19. CERN theorist gets a Heineman

    CERN Multimedia

    2006-01-01

    A CERN theorist is among the recipients of the American Physical Society's annual Dannie Heineman Prize for Mathematical Physics. The 2006 recipients of the Dannie Heineman Prize. From left to right : Peter van Nieuwenhuizen of the Stony Brook University (New York), Sergio Ferrara of CERN and Daniel Freedman of the Massachusetts Institute of Technology. Picture taken in Rome in June 2005. The 2006 prize recognises the development of supergravity by Sergio Ferrara of CERN, Daniel Freedman of the Massachusetts Institute of Technology and Peter van Nieuwenhuizen of the State University of New York, Stony Brook. The trio won the award for constructing and developing the first super-symmetric extension of Einstein's theory of general relativity. By providing a special class of field theories for the low-energy manifestation of superstrings, supergravity has played an important role in theoretical physics in the last thirty years. This is not the first time that supergravity has won an award. In 1993, the trio ...

  20. Technical infrastructure monitoring at CERN

    CERN Document Server

    Stowisek, Jan; Suwalska, Anna

    2006-01-01

    The Technical Infrastructure Monitoring system (TIM) is used to monitor and control CERN's technical services from the CERN Control Centre (CCC). The system's primary function is to provide CCC operators with reliable real-time information about the state of the laboratory's extensive and widely distributed technical infrastructure. TIM is also used to monitor all general services required for the operation of CERN's accelerator complex and the experiments. A flexible data acquisition mechanism allows TIM to interface with a wide range of technically diverse installations, using industry standard protocols wherever possible and custom designed solutions where needed. The complexity of the data processing logic, including persistence, logging, alarm handling, command execution and the evaluation of datadriven business rules is encapsulated in the system's business layer. Users benefit from a suite of advanced graphical applications adapted to operations (synoptic views, alarm consoles, data analysis tools etc....

  1. 50 years CERN Courier Celebration

    CERN Multimedia

    2009-01-01

    The 50th anniversary of the first publication of the CERN Courier provided the opportunity for a modest celebration on 2 September 2009. All six of the principal editors that the magazine has had over its 50-years history met together for the first time. After getting acquainted and reacquainted over lunch, they gathered in the library at CERN to answer questions about the production of the magazine over the years. From left to right, from the present editor to the first one: Christine Sutton, James Gillies, Gordon Fraser, Brian Southworth, Alec Hester and Roger Anthoine.

  2. Neutrino oscillation experiments at CERN

    International Nuclear Information System (INIS)

    Two proposals for neutrino oscillation experiments have been submitted at CERN at this time. A Padova-Pisa-Athens-Wisconsin group proposes to use BEBC to observe ν/sub e/ events in a nearly pure ν/sub μ/ beam, and the CERN-Dortmund-Heidelberg-Saclay group proposes to use the neutrino detector presently installed in the SPS high energy neutrino beam to look for the disappearance of ν/sub μ/. The main features of the two experiments are presented and discussed

  3. 2013 CERN Road Race

    CERN Multimedia

    Klaus Hanke

    2013-01-01

    The 2013 edition of the annual CERN Road Race will be held on Wednesday 18 September at 18.15.   The 5.5 km race takes place over 3 laps of a 1.8 km circuit in the West Area of the Meyrin site, and is open to everyone working at CERN and their families. There are runners of all speeds, with times ranging from under 17 to over 34 minutes, and the race is run on a handicap basis, by staggering the starting times so that (in theory) all runners finish together. Children (< 15 years) have their own race over 1 lap of 1.8 km. As usual, there will be a “best family” challenge (judged on best parent + best child). Trophies are awarded in the usual men’s, women’s and veterans’ categories, and there is a challenge for the best age/performance. Every adult will receive a souvenir prize, financed by a registration fee of 10 CHF. Children enter free (each child will receive a medal). More information, and the online entry form, can be found at: htt...

  4. 2013 CERN Road Race

    CERN Multimedia

    Klaus Hanke

    2013-01-01

    The 2013 annual CERN Road Race will be held on Wednesday 18 September at 6.15 p.m.   The 5.5 km race takes place over 3 laps of a 1.8 km circuit in the West Area of the Meyrin site, and is open to everyone working at CERN and their families. There are runners of all speeds, with times ranging from under 17 to over 34 minutes, and the race is run on a handicap basis, by staggering the starting times so that (in theory) all runners finish together. Children (< 15 years) have their own race over 1 lap of 1.8 km. As usual, there will be a “best family” challenge (judged on best parent and best child). Trophies are awarded in the usual men’s, women’s and veterans’ categories, and there is a challenge for the best age/performance. Every adult will receive a souvenir prize, financed by a registration fee of 10 CHF. Children enter free (each child will receive a medal). More information, and the online entry form, can be found here.

  5. Detection of renal cell carcinoma using neutron time of flight spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Rodrigo S.; Yoriyaz, Helio, E-mail: rodrigossviana@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lakshmanan, Manu N.; Agasthya, Greeshma A.; Kapadia, Anuj J. [Duke University Medical Center, Durham, NC, (United States). Ravin Advanced Imaging Labs, Radiology

    2013-07-01

    The diagnosis of renal cell carcinoma (RCC) is challenging because the symptoms accompanying it are not unique to the disease, and can therefore be misdiagnosed as other diseases. Due to this characteristic, detection of renal cancer is incidental most of time, occurring via abdominal radiographic examinations unrelated to the disease. Presently, biopsy, which is invasive and an unpleasant procedure for the patient, is the most commonly used technique to diagnose RCC. In this study, we demonstrate the application of a novel noninvasive technique for detecting and imaging RCC in vivo. The elemental composition of biological tissues including kidneys has been investigated using a new technique called Neutron Stimulated Emission Computed Tomography (NSECT). This technique is based on detecting the energy signature emitted by the stable isotopes of elements in the body, which are stimulated to emit gamma radiation via inelastic neutron scattering. Methods for improving detection sensitivity and reducing dose, such as time-of-flight neutron spectroscopy have been explored. MCNP5 simulations were used to model the NSECT scanning of the human kidney where the energy and time of arrival of gamma photons were recorded in an ideal detector placed around the human torso. A 5 MeV collimated neutron beam was used to irradiate the kidney containing an RCC lesion. The resulting spectra were resolved in 100 picosecond and 1 keV time and energy bins, respectively. The preliminary results demonstrate the ability to localize the lesion through neutron time of flight spectroscopy and generate a tomographic image at a low dose to the patient. (author)

  6. Multi-purpose fast neutron spectrum analyzer with real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Sulyaev, Yu.S., E-mail: sulyaev@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kvashnin, A.N. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Rovenskikh, A.F. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Burdakov, A.V.; Grishnyaev, E.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation)

    2013-08-21

    Diagnostics of hot ion component of plasma on the products of fusion reactions is widely used on thermonuclear facilities. In case of employment of neutron spectrometers, based on organics scintillators, there is advanced technique developed to eliminate neutron pulses from gamma background—digital pulse shape discrimination. For every DPSD application it is necessary to use the fast (2–5 ns) and precise (12 bit) transient ADC unit with large amount of onboard memory for storing every digitized scintillation pulses during shot time. At present time the duration of hot thermonuclear plasma burning in large tokamaks approximate to 1 min, and this requires very high onboard memory capacity (∼100 GB). This paper describes a neutron spectrum analyzer with real-time DPSD algorithm, implemented to ADC unit. This approach saves about two orders of onboard memory capacity, gives the possibility of instant use of outcome to feedback systems. This analyzer was tested and calibrated with help of {sup 60}Co and {sup 252}Cf radiation sources, and deuterium neutron generator.

  7. Comedy Collider presents: No cause for conCERN

    CERN Multimedia

    Traczyk, Piotr

    2014-01-01

    Comedy Collider presents: No cause for conCERN was the highly anticipated follow up to LHComedy: CERN After Dark, starring an entirely new ensemble of comedy talent. Time: 13th June 2014, 19:30 for 20:00 Location: Globe of Science and Innovation, CERN, Geneva, Switzerland

  8. A digital data acquisition system for a time of flight neutron diffuse scattering instrument

    International Nuclear Information System (INIS)

    Full text. We describe the design of a digital data acquisition system built for acquiring and storing the information produced by a neutron diffuse scattering apparatus. This instrument is based on the analysis of pulsed subthermal neutron which are scattered by a solid or liquid sample, measured as function of the scattered neutron wavelength and momentum direction. The time of flight neutron intensities on 14 different angular detector positions and two fission chambers must be analyzed simultaneously for each neutron burst. A PC controlled data acquisition board system was built based on two parallel multiscannning units, each with its own add-one counting unit, and a common base time generator. The unit plugs onto the ISA bus through an interface card. Two separate counting units were designed, to avoid possible access competition between low counting rate counters at off-axis positions and the higher rate frontal 0 deg and beam monitoring counters. the first unit contains logic for 14 independent and simultaneous multi scaling inputs, with 128 time channels and dwell time per channel of 5, 10 or 20 microseconds. Sweep trigger is synchronized with an electric signal from a coil sensing the rotor. The second unit contains logic for four additional multi scalers using the same external synchronizing signal, similar in all others details to the previously described multi scalers. Basic control routines for the acquisitions were written in C and a program for spectrum display and user interface was written in C++ for a Windows 3.1 OS. A block diagram of the system is presented

  9. Cf-252 based neutron radiography using real-time image processing system

    International Nuclear Information System (INIS)

    For compact Cf-252 based neutron radiography, a real-time image processing system by particle counting technique has been developed. The electronic imaging system consists of a supersensitive imaging camera, a real-time corrector, a real-time binary converter, a real-time calculator for centroid, a display monitor and a computer. Three types of accumulated NR image; ordinary, binary and centroid images, can be observed during a measurement. Accumulated NR images were taken by the centroid mode, the binary mode and ordinary mode using of Cf-252 neutron source and those images were compared. The centroid mode presented the sharpest image and its statistical characteristics followed the Poisson distribution, while the ordinary mode showed the smoothest image as the averaging effect by particle bright spots with distributed brightness was most dominant. (author)

  10. Cern collisions light up Copenhagen

    CERN Multimedia

    Banks, Michael

    2010-01-01

    "Anyone passing by the Niels Bohr Institute in Copenhagen, Denmark, might be startled by some strange moving lights on the facade of the institute's main building. In fact, the dancing beams show, almost in real time, collisions form the Atlas experiment at Cern's Large Hadron Collider (LHC)" (1 paragraph)

  11. Maintenance of CERN telephone exchanges

    CERN Multimedia

    2005-01-01

    A maintenance of CERN telephone exchanges will be performed on 21st, 22nd, 23rd, 24th of September from 7 p.m. to 9 p.m. Disturbances or even interruptions of telephony services may occur during this lapse of time. We apology in advance for any inconveniences that this may cause.

  12. Neutron monitors and muon detectors for solar modulation studies: 2. $\\phi$ time series

    OpenAIRE

    Ghelfi, A.; Maurin, D.; Cheminet, A.; Derome, L.; G. Hubert; Melot, F.

    2016-01-01

    The level of solar modulation at different times (related to the solar activity) is a central question of solar and galactic cosmic-ray physics. In the first paper of this series, we have established a correspondence between the uncertainties on ground-based detectors count rates and the parameter $\\phi$ (modulation level in the force-field approximation) reconstructed from these count rates. In this second paper, we detail a procedure to obtain a reference $\\phi$ time series from neutron mon...

  13. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    CERN Document Server

    Baudron, Anne-Marie A -M; Maday, Yvon; Riahi, Mohamed Kamel; Salomon, Julien

    2014-01-01

    We present a parareal in time algorithm for the simulation of neutron diffusion transient model. The method is made efficient by means of a coarse solver defined with large time steps and steady control rods model. Using finite element for the space discretization, our implementation provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch-Maurer-Werner (LMW) benchmark [1].

  14. Time-of-flight mass measurements for nuclear processes in neutron star crusts

    CERN Document Server

    Estrade, A; Schatz, H; Amthor, A M; Bazin, D; Beard, M; Becerril, A; Brown, E F; Cyburt, R; Elliot, T; Gade, A; Galaviz, D; George, S; Gupta, S S; Hix, W R; Lau, R; Lorusso, G; Moller, P; Pereira, J; Portillo, M; Rogers, A M; Shapira, D; Smith, E; Stolz, A; Wallace, M; Wiescher, M

    2011-01-01

    The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Superconducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the scandium -- nickel range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of $^{61}${V}, $^{63}${Cr}, $^{66}${Mn}, and $^{74}${Ni} were measured for the first time with mass excesses of $-30.510(890)$ MeV, $-35.280(650)$ MeV, $-36.900(790)$ MeV, and $-49.210(990)$ MeV, respectively. With the measurement of the $^{66}$Mn mass, the locations of the two dominant electron capture heat sources in the outer crust of accreting neutron stars that exhibit superbursts are now experimentally constrained. We find that the location of the $^{66}$Fe$\\rightarrow^{66}$Mn electron capture transition occurs signi...

  15. Late time cooling of neutron star transients and the physics of the inner crust

    CERN Document Server

    Deibel, Alex; Brown, Edward F; Reddy, Sanjay

    2016-01-01

    An accretion outburst onto a neutron star transient heats the neutron star's crust out of thermal equilibrium with the core. After the outburst the crust thermally relaxes toward equilibrium with the neutron star core and the surface thermal emission powers the quiescent X-ray light curve. Crust cooling models predict that thermal equilibrium of the crust will be established $\\approx 1000 \\, \\mathrm{d}$ into quiescence. Recent observations of the cooling neutron star transient MXB 1659-29, however, suggest that the crust did not reach thermal equilibrium with the core on the predicted timescale and continued to cool after $\\approx 2500 \\, \\mathrm{d}$ into quiescence. Because the quiescent light curve reveals successively deeper layers of the crust, the observed late time cooling of MXB 1659-29 depends on the thermal transport in the inner crust. In particular, the observed late time cooling is consistent with a low thermal conductivity layer near the depth predicted for nuclear pasta that maintains a temperat...

  16. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    Science.gov (United States)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  17. CERN Table Tennis Club

    CERN Multimedia

    CERN Table Tennis Club

    2014-01-01

    CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014   The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...

  18. Preserving CERN's legacy

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    At CERN, scientists from all over the world design and build innovative instruments to be implemented in the cutting-edge machines used in high-energy physics. Those instruments go on to become part of the world’s most powerful accelerators, Nobel-prize-winning detectors, unique antimatter machines, the first web servers… These are historical pieces and belong to our common heritage. But, what happens to them once they are no longer in use?   New endeavours consistently require new technical developments, and the list of “old” objects belonging to a laboratory like CERN increases over time. As innovative as they might have been when they were created, they are often bulky, sometimes very delicate, and do not always look like everyday tools when they are dismantled. How best to deal with them? “A database of objects suitable for scientific exhibitions has been available on CDS for many years,” says Gigi Rolandi, Chair of CER...

  19. EUCYS prizewinner visits CERN

    CERN Multimedia

    Jennifer Toes

    2016-01-01

    Young Turkish student Baris Volkan Gürses visited CERN from 4 to 8 July after winning the prize in the 2015 European Contest for Young Scientists (EUCYS).    Baris Volkan Gürses, EUCYS prizewinner, visiting the Microcosm. After winning both regional and national competitions in Turkey, 18-year-old student Baris Volkan Gürses competed against 169 young scientists and was awarded a visit to CERN by EIROforum for his physics project in EUCYS 2015. His project, entitled “Generation of artificial gravity by using electrostatic force for prevention of muscle atrophy and osteoporosis occurring in gravity-free environments”, focused on the design of a mechanism to help with the impact of spaceflight on the human body. “My objective was to eliminate the negative effects of a gravity-free environment on astronauts who stay in space for longer periods of time, like in the International Space Station,” explained Volkan. &...

  20. Thomas Kibble visits CERN

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    Emeritus Professor Sir Thomas W.B. Kibble, from Imperial College London visited LHC for the first time last week and delivered a colloquium on the genesis of electroweak unification and the Brout-Englert-Higgs mechanism.   From left to right: Jim Virdee, Tiziano Camporesi, Tom Kibble and Austin Ball on the visit to CMS. On his way back from Trieste, where he received the Abdus Salam International Centre for Theoretical Physics' Dirac Medal, Tom Kibble stopped by CERN for his first visit to the LHC. Kibble had a standing invitation from Jim Virdee, former CMS spokesperson, who is also a researcher from Imperial College London. Peter Jenni (left) and Tom Kibble tour the ATLAS detector. (Image: Erwan Bertrand) Kibble made the trip to CERN a family outing and brought along 14 relatives,  including his children and grandchildren. He visited the ATLAS detector with Peter Jenni, its former spokesperson, on Friday 10 October. In the afternoon, Kibble delivered a colloquium in the...

  1. CERN Yachting club

    CERN Document Server

    CERN Yachting club

    2015-01-01

    Surely among the most active sports clubs within CERN, the Yachting Club has had a steadily increasing membership over a decade; it is now around 350 but new members are always welcome, especially now at the beginning of a season. Indeed, with the Lottery for places in courses which are one of our highlights, membership has jumped since mid-March. The Lottery is always heavily oversubscribed, which we like to think represents its good reputation for quality of teaching and good fun at the same time. Now those lucky new students are in contact with their teachers, will be buying wetsuits in some cases (dinghy and catamaran courses), joining us for the launch of the fleet (see calendar on website at http://yachting.web.cern.ch/yachting/ycc_home.html ) and  – in many cases – learning sailing as complete beginners. Those Lottery-unlucky can still plan a fun season, with our Thursday Practice evenings, where we can almost always place everyone on a boat for an outing.   ...

  2. Celebrating diversity at CERN

    CERN Multimedia

    2014-01-01

    With international women’s day coming up on 8 March, along with the recent appointment of a new Diversity Programme Leader, it seems timely to take a look at how far we’ve come over recent years in promoting gender equality at CERN. In short, the news is good, but we still have some way to travel.   CERN does not have a policy of positive discrimination, but rather one of presenting a level playing field. We work to ensure, for example, that the diversity of candidates presented for interview reflects the diversity of applicants. It’s an approach that is having the desired effect. Overall, the percentage of female staff members has risen from 17% to 20% over the last decade, with parity being achieved among professional administrators and significant advances being made among research and applied physicists, engineers and technicians. At recruitment, our approach is working: we’re managing to attract growing numbers of women. This brings us to the phen...

  3. New auditorium for CERN

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    Since September 2009 the PH and GS Departments have been working very closely together on the renovation project for Building 222. The building is now being transformed into an auditorium with a seating capacity of 200. Work began on 15 November 2009 and will be completed just in time for the first conferences.   The conference room in B222 a few days ago. After 20 years as premises for the filtering and purification of CERN's drinking water and three years as a hall for the reception tests and testing of electronic equipment for the LHC experiments, Building 222 is about to get another new lease of life. Only the Main Auditorium and the Globe have seating capacities in excess of 200 at CERN. “The problem of the lack of conference rooms with such a seating capacity was raised at the end of 2008 by the PH Department, which proposed this idea. The project was entrusted to the GS Department in 2009,” explains Barthélemy Gossuin, an engineer in the GS Department who is...

  4. Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Peng [Center for Durability and Sustainability Studies of Shandong Province, Qingdao Technological University, 11 Fushun Road, Qingdao 266033 (China); Wittmann, Folker H., E-mail: wittmann@aedificat.de [Center for Durability and Sustainability Studies of Shandong Province, Qingdao Technological University, 11 Fushun Road, Qingdao 266033 (China); Aedificat Institute Freiburg, Schlierbergstr. 80, D-79100 Freiburg (Germany); Zhao Tiejun [Center for Durability and Sustainability Studies of Shandong Province, Qingdao Technological University, 11 Fushun Road, Qingdao 266033 (China); Lehmann, Eberhard H.; Vontobel, Peter [Neutron Imaging and Activation Group, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer For the first time water movement in cement-based materials could be quantified in a non-destructive way. Black-Right-Pointing-Pointer neutron radiography has a sensitivity and a spatial resolution unknown so far. Black-Right-Pointing-Pointer Results are essential for prediction of service life. Black-Right-Pointing-Pointer Results will contribute to more durable and more ecological construction. - Abstract: Service life of reinforced concrete structures is often limited by penetration of water and compounds dissolved in water into concrete. Concrete can be damaged in this way and corrosion of steel reinforcement can be initiated. There is an urgent need to study water penetration into concrete in order to better understand deterioration mechanisms and to find appropriate ways to improve durability. Neutron radiography provides us with an advanced non-destructive technique with high spatial resolution and extraordinary sensitivity. In this contribution, neutron radiography was successfully applied to study the process of water absorption of two types of concrete with different water-cement ratios, namely 0.4 and 0.6. The influence cracks and of water repellent treatment on water absorption has been studied on mortar specimens. It is possible to visualize migration of water into concrete and other cement-based composites and to quantify the time-dependent moisture distributions as function of time with high spatial resolution by means of neutron radiography. Water penetration depth obtained from neutron radiography is in good agreement with corresponding values obtained from capillary suction tests. Surface impregnation of concrete with silane prevents capillary uptake of water. Even fine cracks are immediately filled with water as soon as the surface gets in contact. Results provide us with a solid basis for a better understanding of deteriorating processes in concrete and other cement-based materials.

  5. Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete

    International Nuclear Information System (INIS)

    Highlights: ► For the first time water movement in cement-based materials could be quantified in a non-destructive way. ► neutron radiography has a sensitivity and a spatial resolution unknown so far. ► Results are essential for prediction of service life. ► Results will contribute to more durable and more ecological construction. - Abstract: Service life of reinforced concrete structures is often limited by penetration of water and compounds dissolved in water into concrete. Concrete can be damaged in this way and corrosion of steel reinforcement can be initiated. There is an urgent need to study water penetration into concrete in order to better understand deterioration mechanisms and to find appropriate ways to improve durability. Neutron radiography provides us with an advanced non-destructive technique with high spatial resolution and extraordinary sensitivity. In this contribution, neutron radiography was successfully applied to study the process of water absorption of two types of concrete with different water–cement ratios, namely 0.4 and 0.6. The influence cracks and of water repellent treatment on water absorption has been studied on mortar specimens. It is possible to visualize migration of water into concrete and other cement-based composites and to quantify the time-dependent moisture distributions as function of time with high spatial resolution by means of neutron radiography. Water penetration depth obtained from neutron radiography is in good agreement with corresponding values obtained from capillary suction tests. Surface impregnation of concrete with silane prevents capillary uptake of water. Even fine cracks are immediately filled with water as soon as the surface gets in contact. Results provide us with a solid basis for a better understanding of deteriorating processes in concrete and other cement-based materials.

  6. CernVM-FS - beyond LHC computing

    Science.gov (United States)

    Condurache, C.; Collier, I.

    2014-06-01

    In the last three years the CernVM File System has transformed the distribution of experiment software to WLCG sites. CernVM-FS removes the need for local installations jobs and performant network fileservers at sites and it often improves performance at the same time. Now established and proven to work at scale, CernVM-FS is beginning to perform a similar role for non-LHC computing. The deployment of CernVM-FS service at RAL Tier-1 is presented, as well as the proposed development of a network of Stratum-0 and Stratum-1 replicas somewhat modelled upon the infrastructure developed to support the WLCG computing. A case study of one non-LHC Virtual Organization is also included, describing their use of the CernVM-FS Stratum-0 service, along with a web interface intended to be used as a tool to upload software at Stratum-0 sites.

  7. 2015 CERN-Fermilab HCP Summer School

    CERN Multimedia

    2015-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the tenth edition, from 24 June to 3 July 2015. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Lecture Topics include: Statistics in HEP, Heavy Flavour, Heavy Ion, Standard Model, Higgs searches and measurements, BSM theory, BSM searches, Top physics, QCD and Monte Carlos, Accelerators, Detectors for the future, Trigger and DAQ, Dark Matter Astroparticle, and two special lectures on Future Colliders, and 20 years after the top discovery. Calendar and Details: Mark your calendar for  24 June - 3 July 2015, when CERN will welcome students to t...

  8. Colloquium: Measuring the neutron star equation of state using x-ray timing

    Science.gov (United States)

    Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Lamb, Frederick K.; Miller, M. Coleman; Morsink, Sharon; Özel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W.; Stella, Luigi; Tolos, Laura; van der Klis, Michiel

    2016-04-01

    One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photons propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermonuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of

  9. X-ray Timing of Neutron Stars, Astrophysical Probes of Extreme Physics

    CERN Document Server

    Arzoumanian, Z; Cordes, J; Gendreau, K; Lai, D; Lattimer, J; Link, B; Lommen, A; Miller, C; Ray, P; Rutledge, R; Strohmayer, T; Wilson-Hodge, C; Wood, K

    2009-01-01

    The characteristic physical timescales near stellar-mass compact objects are measured in milliseconds. These timescales -- the free-fall time, the fastest stable orbital period, and stellar spin periods -- encode the fundamental physical properties of compact objects: mass, radius, and angular momentum. The characteristic temperature of matter in the vicinity of neutron stars is such that the principal electromagnetic window into their realms is the X-ray band. Because of these connections to the fundamental properties of neutron stars, X-ray timing studies remain today the most direct means of probing their structure and dynamics. While current X-ray observatories have revealed many relevant and fascinating phenomena, they lack the sensitivity to fully exploit them to uncover the fundamental properties of compact objects and their extreme physics. With this white paper, we summarize and highlight the science opportunities that will accompany an order-of-magnitude improvement in X-ray timing sensitivity, a go...

  10. Calibration of a neutron time-of-flight multidetector system for an intensity interferometry experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ghetti, R. E-mail: roberta.ghetti@nuclear.lu.se; Colonna, N.; Helgesson, J.; Avdeichikov, V.; Golubev, P.; Jakobsson, B.; Tagliente, G.; Brandenburg, S.; Kravchuk, V.L.; Wilschut, H.W.; Kopecky, S.; Anderson, E.W.; Nadel-Turonski, P.; Westerberg, L.; Bellini, V.; Sperduto, M.L.; Sutera, C

    2004-01-11

    We present the details of an experiment on light particle interferometry. In particular, we focus on a time-of-flight technique which uses a cyclotron RF signal as a start and a liquid scintillator time signal as a stop, to measure neutron energy in the range of E{sub n}{approx}1.8-150 MeV. This dynamic range (up to 300 ns) is much larger than the beam bunch separation (54 ns) of the AGOR cyclotron (KVI). However, the problem of a short burst period is overcome by using the time information obtained from a fast projectile fragment phoswich detector. The complete analysis procedure to extract the final neutron kinetic energy spectra, is discussed.

  11. Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, A. S., E-mail: Ajsen@fysik.dtu.dk; Salewski, M.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.; Rasmussen, J.; Stejner, M. [Association Euratom - DTU, Technical University of Denmark, Department of Physics, Kgs. Lyngby (Denmark); Eriksson, J.; Ericsson, G.; Hjalmarsson, A. [Association Euratom - VR, Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)

    2014-11-15

    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR.

  12. Statistics of quantum beats in the time dependence of the neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Prokopets, G.A.; Prokopets, A.G. [National University of Kyiv-Mohyla Academy, Physics and Mathematics Department, Kyiv (Ukraine)

    2011-12-15

    The numerical calculations of the delay time distributions for the neutron scattering have been carried out. The scattering of the short wave packet of neutrons with the broad energy interval 500-800 keV by {sup 58}Ni nuclei has been studied. The decay curves and average times of the compound scattering were found as for the forward scattering as for the specific spin-parity states. The time oscillations of the decay curves were identified as quantum beats that were caused by the interference of the excited resonance set. The statistical analysis of the frequency spectra of the decay curves oscillations has been carried out. The behavior of the examined statistical observables turns out to be close to the Poisson law. (orig.)

  13. Statistics of quantum beats in the time dependence of the neutron scattering

    International Nuclear Information System (INIS)

    The numerical calculations of the delay time distributions for the neutron scattering have been carried out. The scattering of the short wave packet of neutrons with the broad energy interval 500-800 keV by 58Ni nuclei has been studied. The decay curves and average times of the compound scattering were found as for the forward scattering as for the specific spin-parity states. The time oscillations of the decay curves were identified as quantum beats that were caused by the interference of the excited resonance set. The statistical analysis of the frequency spectra of the decay curves oscillations has been carried out. The behavior of the examined statistical observables turns out to be close to the Poisson law. (orig.)

  14. TIM CERN

    CERN Multimedia

    2016-01-01

    -What it is TIM, Train Inspection Monorail for the LHC -What is it used for Real time measurements and inspections along the LHC tunnel -How is it working Autonomous vehicle following pre-defined missions Embedded fail safe control and different measurement technologies Runs on battery with autonomous charging mechanism when stands still -Some interesting/curious information about it Adaptive speed up to 6 km/h Monitoring of tunnel structure, oxygen, communication bandwidth and temperature Equipped with a radioprotection probe for radiation mapping of the LHC Provides visual and infrared imaging of the LHC Compact design to be able to cross the LHC sector and ventilation doors Several different wagons can be integrated for specific missions 2 TIM units currently running in the LHC and parked waiting for commands in the CMS bypass

  15. Young Artists@ CERN

    CERN Document Server

    2004-01-01

    In view of 50th anniversary of CERN, about 20 young artists will be visiting CERN from 26 to 31 January to learn about the laboratory's research and the mysterious world of particle physics. The impressions they take home will be the main inspiration for the artwork they will then produce for an exhibition to be inaugurated in October 2004 as part of CERN's 50th anniversary celebration. We are looking for scientists who are interested in the Art-Science synergy and who can volunteer to discuss their work at CERN to these young artists during this week (25-31/01). Please contact renilde.vanden.broeck@cern.ch if you are interested. The project is called Young Artists@ CERN and for more information look at this website: http://www.hep.ucl.ac.uk/~andy/CERNart/

  16. CERN and the environment

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    New webpages answer common questions about CERN and the environment.   One of the new public webpages dedicated to CERN and the environment. Do your neighbours ever ask you about CERN’s environmental impact? And about radiation in particular? If so, the answers to those questions can now be found online on a new set of public webpages dedicated to CERN and the environment. These pages, put together by the Occupational Health, Safety and Environmental Protection (HSE) unit and the groups responsible for CERN's site maintenance, contain a wealth of information on topics linked to the environment, such as biodiversity at CERN, waste management, ionising radiation, and water and electricity consumption. “CERN forms part of the local landscape, with its numerous sites and scientific activities. It’s understandable that people living nearby have questions about the impact of these activities and it’s important that we respond with complete transp...

  17. German visits to CERN

    CERN Multimedia

    2007-01-01

    State secretary to Germany's Federal Ministry of Education and Research, Frieder Meyer-Krahmer, with CERN's Director-General Robert Aymar.On 21 February, Professor Frieder Meyer-Krahmer, State Secretary to Germany's Federal Ministry of Education and Research, came to CERN. He visited the ALICE and ATLAS experiments and the computing centre before meeting the CERN's Director-General, some German physicists and members of the top management. The Minister of Science, Research and the Arts of the Baden-Württemberg regional government, Peter Frankenberg, and CERN's Director-General, Robert Aymar, signing an agreement on education. In the background: Sigurd Lettow, CERN's Director of Finance and Human Resources, and Karl-Heinz Meisel, Rector of the Fachhochschule Karlsruhe. The Minister of Science, Research and the Arts of the Baden-Württemberg regional government, Prof. Peter Frankenberg, visited CERN on 23 February. He was accompanied by the Rector of the Fachhochschule Karlsruhe, Prof. Karl-Heinz Meisel, and b...

  18. Germany at CERN

    CERN Multimedia

    2005-01-01

    From left to right: Maximilian Metzger, CERN's Secretary-General, Hermann Schunck, Director at the German Federal Ministry of Education and Research, and Robert Aymar, CERN's Director-General, talking to Wolfgang Holler from Butting, one of the companies at the "Germany at CERN" exhibition. Far right : Susanne-Corinna Langer-Greipl from BMBF, delegate to the CERN Finance Committee. For three days, CERN's Main Building was transformed into a showcase for German industry. Twenty-nine companies from sectors related to particle physics (electrical engineering, vacuum and low temperature technology, radiation protection, etc.) were here for the ninth "Germany at CERN" exhibition, organised by the German Federal Ministry of Education and Research (BMBF), which gave them the opportunity to meet scientists and administrators from the Laboratory. On 1 March the exhibition was visited by a German delegation headed by Dr Hermann Schunck, Director at BMBF.

  19. CERN Cricket club

    CERN Multimedia

    CERN Cricket club

    2015-01-01

    The CERN Cricket Club 2015 season begins soon, the first net practice is scheduled (weather permitting) for Thursday April 16th, at 18:00! The club is always looking for new players and newcomers will be made very welcome. Anyone who is interested in joining the club should sign up on our web site: http://cern.ch/Club-Cricket/ or turn up for net practice, which takes place each Thursday evening from April 16th (apart from CERN official holidays) until the end of September (starting at 18:00 to around 19:30) at the CERN Prévessin site: http://club-cricket.web.cern.ch/Club-Cricket/CERN-Ground.html The first match will be at home on Sunday, April 19th against Rhone CC from Lyon.

  20. CERN - better than science fiction!

    CERN Multimedia

    2007-01-01

    From left to right: Allan Cameron (Production Designer), Sam Breckham (Location Manager), James Gillies (Head of Communication at CERN), Jacques Fichet (from the CERN audiovisual service), Rolf Landua (former spokesman of the ATHENA antihydrogen experiment at CERN and Head of CERN's Education Group), Ron Howard, and Renilde Vanden Broeck (CERN press officer).

  1. The CERN PC farm

    CERN Multimedia

    Serge Bellegarde

    2005-01-01

    Housed in the CERN Computer Centre, these banks of computers process and store data produced on the CERN systems. When the LHC starts operation in 2008, it will produce enough data every year to fill a stack of CDs 20 km tall. To handle this huge amount of data, CERN has also developed the Grid, allowing the processing power to be shared between computer centres around the world.

  2. Sharing resources@CERN

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The library is launching a 'sharing resources@CERN' campaign, aiming to increase the library's utility by including the thousands of books bought by individual groups at CERN. This will improve sharing of information among CERN staff and users. Photo 01: L. to r. Eduardo Aldaz, from the PS division, Corrado Pettenati, Head Librarian, and Isabel Bejar, from the ST division, read their divisional copies of the same book.

  3. CERN Relay Race

    CERN Document Server

    CERN Running Club

    2010-01-01

    The CERN relay race will take place around the Meyrin site on Thursday 20 May, starting at 12.15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on the route, and how to register your team for the relay race, can be found at: https://espace.cern.ch/Running-Club/CERN-Relay

  4. Radiation protection at CERN

    OpenAIRE

    Forkel-Wirth, Doris; Roesler, Stefan; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

    2013-01-01

    This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

  5. Measuring the neutron star equation of state using X-ray timing

    CERN Document Server

    Watts, Anna L; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Lamb, Frederick K; Miller, M Coleman; Morsink, Sharon; Özel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W; Stella, Luigi; Tolos, Laura; van der Klis, Michiel

    2016-01-01

    One of the primary science goals of the next generation of hard X-ray timing instruments is to determine the equation of state of the matter at supranuclear densities inside neutron stars, by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modelling. The flux we observe from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, giving rise to a pulsation. Information about mass and radius is encoded into the pulse profile via relativistic effects, and tight constraints on mass and radius can be obtained. The second technique involves characterising the spin distribution of accreting neutron stars. The most rapidly rotating stars provide a very clean constraint, since the mass-shedding limit is a function of mass and radius. However the overall spin distribution also provides a guide to the torque mechanisms in operation and th...

  6. Impulse responses of visible phototubes used in National Ignition Facility neutron time of flight diagnostics

    Science.gov (United States)

    Datte, P. S.; Eckart, M.; Moore, A. S.; Thompson, W.; Vergel de Dios, G.

    2016-11-01

    Neutron-induced visible scintillation in neutron time of flight (NToF) diagnostics at the National Ignition Facility (NIF) is measured with 40 mm single stage micro-channel plate photomultipliers and a 40 mm vacuum photodiode, outside the neutron line of sight. In NIF experiments with 14 MeV neutron yields above Y > 10 × 1015 these tubes are configured to deliver of order 1 nC of charge in the nominally 5 ns NToF into a 50 Ω load. We have examined a number of 40 mm tubes manufactured by Photek Ltd. of St. Leonards on Sea, UK, to determine possible changes in the instrument impulse response as a function of signal charge delivered in 1 ns. Precision NToF measurements at approximately 20 m require that we characterize changes in the impulse response moments to <40 ps for the first central moment and ˜2% rms for the square root of the second central moment with ˜500 ps value. Detailed results are presented for three different diode configurations.

  7. AMOR – the time-of-flight neutron reflectometer at SINQ/PSI

    Indian Academy of Sciences (India)

    Mukul Gupta; T Gutberlet; J Stahn; P Keller; D Clemens

    2004-07-01

    The apparatus for multioptional reflectometry (AMOR) at SINQ/PSI is a versatile reflectometer operational in the time-of-flight (TOF) mode (in a wavelength range of 0.15 nm > > 1.3 nm) as well as in the monochromatic ( - 2) mode with both polarized and unpolarized neutrons. AMOR is designed to perform reflectometry measurements in horizontal sample-plane geometry which allows studying both solid–liquid and liquid–liquid interfaces. A pulsed cold neutron beam from the end position of the neutron guide is produced by a dual-chopper system (side-by-side) having two windows at 180° and rotatable with a maximum frequency of 200 Hz. In the TOF mode, the chopper frequency, width of the gating window and the chopper–detector distance can be selected independently providing a wide range of -resolution ( / = 1–10%). Remanent FeCoV/Ti : N supermirrors are used as polarizer/analyzer with a polarization efficiency of ∼ 97%. For the monochromatic wavelength mode, a Ni/Ti multilayer is used as a monochromator, giving ∼ 50% reflectivity at a wavelength of 0.47 nm. In the present work, a detailed description of the instrument and setting-up of the polarization option is described. Results from some of the recent studies with polarized neutrons and measurements on liquid surfaces are presented.

  8. Detection of hidden explosives by using tagged neutron beams with sub-nanosecond time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Pesente, Silvia; Nebbia, Giancarlo; Lunardon, Marcello; Viesti, Giuseppe E-mail: giuseppe.viesti@pd.infn.it; Sudac, Davorin; Nad, Karlo; Blagus, Sasha; Valkovic, Vladivoj

    2004-10-01

    Non-destructive inspection of luggage has been simulated in laboratory conditions by using a 14 MeV tagged neutron beam and BaF{sub 2} scintillation detectors (Tagged Neutron Inspection System, TNIS). The tagged neutron beam is produced by detecting the associated alpha particle emitted in the D+T reaction by means of a YAP:Ce scintillator. The TNIS intrinsic time resolution has been measured to be {delta}t=0.9 ns [FWHM], which allows inspection of a minimum voxel of 5 cm depth along the neutron flight path. This characteristic is demonstrated by identifying graphite and water samples hidden inside a hard plastic suitcase filled with background material. Finally, explosive devices such as small anti-personnel or anti-tank landmines have been inspected when placed inside the suitcase. In the case of relatively large explosive objects such as an anti-tank landmine, the system is capable of testing directly the TNT charge inside the device, separating this material from the external plastic case. Further developments of the TNIS concept are discussed.

  9. Switch of the incoming CERN Telecom operator

    CERN Multimedia

    2004-01-01

    The CERN numbering plan (from 022 767 0000 to 022 767 9999) actually owned by Swisscom will be transferred to Sunrise on the 15th of April 2004 between 6:30 to 7:30. During this action, the following disruptions may happen: • External calls to CERN internal fixed phones may be cut at any time for several minutes. • External calls made from CERN mobiles using "333" may be cut at any time for several minutes. At 7:30, once this action is done, the normal status should be recovered.

  10. CERN exhibition attracts over 100,000 visitors in Belgrade

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    “This must be an 'all-time record',” says Ray Lewis, CERN travelling exhibition manager. “In all my time with the various permanent and travelling exhibitions that have taken place locally and within our Member States I have never experienced such figures.”   Zarko Obradovic (left), Serbian Minister of Education, Science and Technology, and Rolf Heuer (right), CERN Director-General, at the CERN travelling exhibition in Belgrade. Indeed, in approximately 20 days of exhibition time about 120,000 people, mainly school visiters and the general public, visited the 100 m2 CERN mini-exhibition. It was set up in the centre of Belgrade in October, in association with the meeting of the Restricted European Committee for Future Accelerators (RECFA). After attending the RECFA meeting, CERN's Director-General Rofl Heuer opened the CERN exhibition on the evening of 19 October. Lectures about CERN were held every afternoon, and two public de...

  11. Britain at CERN

    CERN Multimedia

    2000-01-01

    H. E. Mr Christopher Hulse, Ambassador of United Kingdom in Switzerland, CERN Director General Luciano Maiani, Sir David Wright, Chief Executive of British Trade International and Roger Cashmore, CERN Director of research visit the Britain at CERN exhibition. From 14 to 17 November 30 British companies exhibited leading edge technologies at CERN. This is Britain's 18th exhibition at CERN since 1968. Out of the 30 companies, which attended the Britain at CERN exhibition in 1998, 25 have received an order or a contract relating to CERN during the last two years. The exhibition was inaugurated on Tuesday by Sir David Wright, Chief Executive of British Trade International. He was accompanied by H.E. Mr Christopher Hulse CMG, OBE, Her Majesty's Ambassador to Switzerland, and Mr. David Roberts, Deputy Head of Mission and Director of Trade Promotion at the British Embassy in Bern. CERN Director-General, Professor Luciano Maiani, underlined the major contribution of British physicists to CERN, pointing out the fact ...

  12. Integrity at CERN

    CERN Document Server

    Department, HR

    2015-01-01

    In the fulfillment of its mission, CERN relies upon the trust and material support of its Member States and partners, and is committed to exercising exemplary stewardship of the resources with which it is entrusted. Accordingly, CERN expects the highest level of integrity from all its contributors (whether members of the personnel, consultants, contractors working on site, or persons engaged in any other capacity at or on behalf of CERN). Integrity is a core value of CERN, defined in the Code of Conduct as “behaving ethically, with intellectual honesty and being accountable for one’s own actions”.

  13. Temporary Polarisation Insert for a Time-of-Flight Neutron Reflectometer

    CERN Document Server

    Kreuzpaintner, Wolfgang; Moulin, Jean-François; Wiedemann, Birgit; Ye, Jingfan; Mayr, Sina; Paul, Amitesh; Haese, Martin; Pomm, Matthias; Böni, Peter

    2016-01-01

    The suitability of a transportable 3He-spin filter as broadband polariser for a Time-of-Flight neutron reflectometer in combination with a proposed characterisation method for 3He-spin filters is presented. Both, the experimental simplicity and the data treatment procedure for extracting the spin-up and spin-down neutron reflectivity from measurements obtained for a time dependent 3He polarisation, are shown. For benchmarking, the extraction of a very weak magnetic signal from reflectivity data, measured on the magnetic heterostructure Fe(1nm)/Cu(20nm)/Si(substrate) in an externally applied magnetic field of 30 mT is demonstrated and compared to similar measurements on Cu(20nm)/Si(substrate), which show no magnetic signal.

  14. Time-resolved small-angle neutron scattering of a micelle-to-vesicle transition

    Energy Technology Data Exchange (ETDEWEB)

    Egelhaaf, S.U. [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France); Schurtenberger, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-04-01

    Amphiphilic molecules spontaneously self-assemble in solution to form a variety of aggregates. Only limited information is available on the kinetics of the structural transitions as well as on the existence of non-equilibrium or metastable states. Aqueous mixtures of lecithin and bile salt are very interesting biological model-systems which exhibit a spontaneous transition from polymer-like mixed micelles to vesicles upon dilution. The small-angle neutron scattering (SANS) instrument D22, with its very high neutron flux and the broad range of scattering vectors covered in a single instrumental setting, allowed us for the first time to perform time-resolved scattering experiments in order to study the micelle-to-vesicle transition. The temporal evolution of the aggregate structures were followed and detailed information was obtained even on molecular length-scales. (author). 5 refs.

  15. Water ingress into a casein film quantified using time-resolved neutron imaging.

    Science.gov (United States)

    Metwalli, E; Hermes, H E; Calzada, E; Kulozik, U; Egelhaaf, S U; Müller-Buschbaum, P

    2016-03-01

    The migration of water into a casein film was probed with neutron radiography. From the neutron transmission images, the evolution of the water saturation profiles was extracted. The results indicate that the water influx is dominated by imbibition but also contains a diffusional component. The time dependence of the water ingress was quantified using a diffusion-like equation previously also applied to imbibition. A water transport coefficient D = 0.9 × 10(-9) m(2) s(-1) was found. This value and direct observation of the images indicate that the time taken for a typical adhesive casein-based layer to become saturated with water is of the order of hours. PMID:26862596

  16. Neutron xyz - polarization analysis at a time-of-flight instrument

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, Georg [ORNL; Stewart, John Ross [ISIS Facility, Rutherford Appleton Laboratory; Andersen, Ken [ESS

    2015-01-01

    When implementing a dedicated polarization analysis setup at a neutron time-of-flight instrument with a large area detector, one faces enormous challenges. Nevertheless, significant progress has been made towards this goal over the last few years. This paper addresses systematic limitations of the traditional method that is used to make these measurements, and a possible strategy to overcome these limitations. This will be important, for diffraction as well as inelastic experiments, where the scattering occurs mostly out-of-plane.

  17. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    Science.gov (United States)

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands.

  18. The response time analysis of high log neutron flux rate for heavy water reactors

    International Nuclear Information System (INIS)

    The heavy water reactor such as Wolssung no. 1 has a protection/safety system named special safety system. The system has four safety systems ; shutdown no. 1, shutdown no. 2, emergency core cooling system and containment system. In this paper, the response time of high log neutron flux rate, one of the reactor trip loops of shutdown no.1/no.2, was analysed based on the description of final safety analysis report and compared to the plant measurement

  19. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    Science.gov (United States)

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. PMID:23500651

  20. Parameters’ Covariance in Neutron Time of Flight Analysis – Explicit Formulae

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, M. [NSTec; Blair, J. [NSTec

    2014-12-01

    We present here a method that estimates the parameters’ variance in a parametric model for neutron time of flight (NToF). The analytical formulae for parameter variances, obtained independently of calculation of parameter values from measured data, express the variances in terms of the choice, settings, and placement of the detector and the oscilloscope. Consequently, the method can serve as a tool in planning a measurement setup.

  1. Chasseur de rayons cosmiques au CERN

    CERN Multimedia

    Brouet, Anne-Muriel

    2003-01-01

    Alvaro de Rújula swims every day in the macro and the microspace. At CERN since 25 years, he shares his time between his appointment as a professor in Boston and his researches to satisfy his scientific curiosity

  2. Study of the $^{234}$U(n,f) fission fragment angular distribution at the CERN n_TOF facility

    CERN Document Server

    Cidoncha-Leal, E; Paradela, C; Tarrío, D; Leong, L S; Audouin, L; Tassan-Got, L; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Becvár, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krticka, M; Kroll, J; Lampoudis, C; Langer, C; Lederer, C; Leeb, H; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T; Zugec, P

    2014-01-01

    The angular distribution of the f ssion fragments (FFAD) produced in neutron- induced reactions of actinides have been measured with a f ssion detection setup based on parallel-plate avalanche counters (PPACs) at the Neutron Time- Of-Flight (n_TOF) facility at CERN. The main features of the setup and pre- liminary results are reported here forthe 234 U(n,f)reaction measurement show- ing a high concordance with previous data, while providing new results up to 100 MeV.

  3. New radiation protection calibration facility at CERN.

    Science.gov (United States)

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations.

  4. Towards the CERN of tomorrow

    CERN Multimedia

    2009-01-01

    The Council working group on the geographical and scientific enlargement of CERN met for the first time during the week of 9 March. It was a good meeting, setting the pace for what promises to be a very important process. A timetable for meetings and consultations has been put in place, and all being well we can look forward to recommendations being made at the December meeting of Council this year. Since my talk to the CERN staff in January, much has been made of my statement that nothing is off the table, so I’d like to make it clear what that means. The CERN Convention is required reading for my job. It’s a remarkably concise and prescient document, as relevant today as it was when it was written over half a century ago. If you haven’t already done so, I strongly recommend that you read it. The Convention states that the Organization shall "provide for collaboration among European States", and goes on to say that CERN should ...

  5. Applications of a micro-pixel chamber (μPIC) based, time-resolved neutron imaging detector at pulsed neutron beams

    International Nuclear Information System (INIS)

    The realization of high-intensity, pulsed spallation neutron sources such as J-PARC in Japan and SNS in the US has brought time-of-flight (TOF) based neutron techniques to the fore and spurred the development of new detector technologies. When combined with high-resolution imaging, TOF-based methods become powerful tools for direct imaging of material properties, including crystal structure/internal strain, isotopic/temperature distributions, and internal and external magnetic fields. To carry out such measurements in the high-intensities and high gamma backgrounds found at spallation sources, we have developed a new time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber (μPIC) coupled with a field-programmable-gate-array-based data acquisition system. The detector combines 100μm-level (σ) spatial and sub-μs time resolutions with low gamma sensitivity of less than 10−12 and a rate capability on the order of Mcps (mega-counts-per-second). Here, we demonstrate the application of our detector to TOF-based techniques with examples of Bragg-edge transmission and neutron resonance transmission imaging (with computed tomography) carried out at J-PARC. We also consider the direct imaging of magnetic fields with our detector using polarized neutrons.

  6. Maintenance of the CERN telephone exchanges

    CERN Multimedia

    TS Department

    2008-01-01

    Maintenance work will be carried out on the CERN telephone exchanges between 8 p.m. and midnight on 3 December. During this time, the fixed-line telephone and audio-conference services may be disrupted. However, the CCC and the Fire Brigade will be reachable at all times. Mobile telephone services (GSM) will not be affected by this work. For further details please contact mailto:Netops@cern.ch.

  7. Maintenance of the CERN telephone exchanges

    CERN Multimedia

    TS Department

    2008-01-01

    Maintenance work will be carried out on the CERN telephone exchanges between 8 p.m. and midnight on 3 December. During this time, the fixed-line telephone and audio-conference services may be disrupted. However, the CCC and the Fire Brigade will be reachable at all times. Mobile telephone services (GSM) will not be affected by this work. For further details please contact Netops@cern.ch.

  8. Measurement of low energy neutron spectrum below 10 keV with the slowing down time method

    Science.gov (United States)

    Maekawa, F.; Oyama, Y.

    1996-02-01

    No general-purpose method of neutron spectrum measurement in the energy region around eV has been established so far. Neutron spectrum measurement in this energy region was attempted by applying the slowing down time (SDT) method, for the first time, inside two types of shield for fusion reactors, type 316 stainless steel (SS316) and SS316/water layered assemblies, incorporating with pulsed neutrons. In the SS316 assembly, neutron spectra below 1 keV were measured with an accuracy less than 10%. Although application of the SDT method was expected very difficult for SS316/water assembly since it contained lightest atoms of hydrogen, the measurement demonstrated that the SDT method was still effective for such shield assembly. The SDT method was also extended to thermal flux measurement in the SS316/water assembly. The present study demonstrated that the SDT method was effective for neutron spectrum measurement in the energy region around eV.

  9. Silicon detectors for monitoring neutron beams in n-TOF beamlines.

    Science.gov (United States)

    Cosentino, L; Musumarra, A; Barbagallo, M; Colonna, N; Damone, L; Pappalardo, A; Piscopo, M; Finocchiaro, P

    2015-07-01

    During 2014, the second experimental area (EAR2) was completed at the n-TOF neutron beam facility at CERN (n-TOF indicates neutron beam measurements by means of time of flight technique). The neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target. The resulting neutron beam covers the energy range from thermal to several GeV. In this paper, we describe two beam diagnostic devices, both exploiting silicon detectors coupled with neutron converter foils containing (6)Li. The first one is based on four silicon pads and allows monitoring of the neutron beam flux as a function of the neutron energy. The second one, in beam and based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely, a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices were characterized with radioactive sources and also tested at the n-TOF facility at CERN. The wide energy and intensity range they proved capable of sustaining made them attractive and suitable to be used in both EAR1 and EAR2 n-TOF experimental areas, where they became immediately operational. PMID:26233385

  10. Punctualizaciones del CERN

    CERN Document Server

    2002-01-01

    "Viene de la pagina anterior. Puntualizaciones del CERN. La valoracion que me merece la aprobacion en el Consejo de Ministros el 24 de mayo de un acuerdo de colaboracion entre el MCYT y el CERN para el proyecto de neutrinos al Gran Sasso es positiva" (1 page).

  11. Integration of CERN staff

    CERN Document Server

    1965-01-01

    An example of the integration of CERN staff in the neighbouring communes is provided by the hamlet of Bugnon at St-Genis-Pouilly (Ain), FRance. The CERN installation on the Swiss site are visible on the left in the background. Behind them the Saleve mountain in Haute-Savoie.

  12. UK Mission to CERN

    CERN Multimedia

    2004-01-01

    At the end of June, nine experts from UK industry visited CERN to study techniques for developing distributed computing systems and to look at some specific applications. In a packed three-day programme, almost 40 CERN experts presented a comprehensive survey of achievements.

  13. CERN's Early History Revisited

    CERN Multimedia

    Schopper, Herwig Franz; Krige, Gerhard John

    2005-01-01

    As a member of the group of historians charged to write the history of the founding of CERN, John Krige particularly underlines the important role I.I. Rabi played. The first author, former Director General of CERN add a few comments. S.A. Khan gives precisions about the role played by E. Amaldi and P. Auger; then J. Krige replies

  14. Romanian Visit to CERN

    CERN Multimedia

    2001-01-01

    Romanian Minister for Foreign Affairs, Mr Mircea Dan Geoana, visited CERN on 30 March to discuss collaboration between his country and the Laboratory. Above, Mr Dan Geoana signs the visitors' book in the presence of CERN Director General Luciano Maiani and Mrs Anda Flip, Ambassador and permanent representative of Romania at the United Nations.

  15. CERN openlab Open Day

    CERN Multimedia

    Purcell, Andrew Robert

    2015-01-01

    The CERN openlab Open Day took place on 10 June, 2015. This was the first in a series of annual events at which research and industrial teams from CERN openlab can present their projects, share achievements, and collect feedback from their user communities.

  16. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  17. Child Care at CERN

    CERN Document Server

    CERN, Child Care Initiative

    2008-01-01

    This is a document summarizing a survey of child care needs of CERN staff and users which was performed in February 2008 by the CERN Child Care Initiative. The document presents the analysis of this data. Conclusions on the minimal facilities size are derived and possible funding source at the European Union are discussed.

  18. ESO: The CERN Years

    CERN Multimedia

    Schaeffer, A

    2012-01-01

    In 1970, CERN and ESO signed a collaboration agreement for the construction of the Observatory’s first telescope. That same year, ESO’s Telescope Division and Sky Atlas laboratory settled on the CERN site in Meyrin. Let’s turn back to the beginnings of this lasting and fruitful alliance.

  19. SNM neutron detection using a time-gated synthetic aperture hybrid approach

    International Nuclear Information System (INIS)

    This work focuses on using forward and adjoint transport in a hybrid application of 3-D deterministic (PENTRAN) and Monte Carlo (MCNP5) codes to model a series of neutron detector blocks. These blocks, or 'channels, ' contain a unique set of moderators with 4 atm He-3 detectors tuned to detect and profile a gross energy spectrum of a passing neutron (SNM) source. Ganging the units together as a large area system enables one to apply time gating the source-detector response to maximize signal to noise responses from a passing source with minimal background; multiple units may be positioned as a collective synthetic aperture detector array to be used as a way of performing real time neutron spectroscopy for detecting special nuclear materials in moving vehicles. The initial design, detector response coupling, confirmation of initial design functionality using adjoint transport calculations, and realistic simulation using PENTRAN and MCNP5 are presented. Future work will include optimization and application to realistic scenarios and additional sources. (authors)

  20. Superfluid Friction and Late-time Thermal Evolution of Neutron Stars

    CERN Document Server

    Larson, M B; Larson, Michelle B.; Link, Bennett

    1998-01-01

    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of $3\\times 10^6$ and $2\\times 10^7$ yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of $\\bar\\omega\\sim 0.6$ rad s$^{-1}$ for PSR 1929+10 and $\\sim 0.02$ rad s$^{-1}$ for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by pinning of superfluid vortices to the inner crust lattice with strengths of fluctuations or quantum tunneling. For thermally-activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rot...

  1. Some aspects of time domain reflectometry, neutron scattering, and capacitance methods for soil water content measurement

    International Nuclear Information System (INIS)

    Soil-water measurements encounter particular problems related to the physics of the method used. For time domain reflectometry (TDR), these relate to wave form shape changes caused by soil, soil water, and TDR probe properties. Methods of wave form interpretation that overcome these problems are discussed and specific computer algorithms are presented. Neutron scattering is well understood, but calibration methods remain critical to accuracy and precision, and are discussed with recommendations for field calibration and use. Capacitance probes tend to exhibit very small radii of influence, thus are sensitive to small-scale changes in soil properties, and are difficult or impossible to field calibrate. Field comparisons of neutron and capacitance probes are presented. (author)

  2. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography

    International Nuclear Information System (INIS)

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. - Highlights: ► The water drainage process in porous asphalt was studied using neutron radiography. ► Despite similar mix designs, different processes of water transport were established. ► Water transport within porous asphalt showed filled dead end pores and water islands

  3. CERN Access Cards and Access Authorisations

    CERN Multimedia

    2003-01-01

    From the 01/05/2003, all problems relating to access cards and refusal of access to any zone, building or experiment within CERN must be addressed to the Centrale de Surveillance des Accès (CSA building 120) on 78877 or send an e-mail to Access.Surveillance@cern.ch. The responsibles for CERN access control have put into place a procedure with the CSA, Service Enregistrement and the Technical Control Room, to make sure that all problems get resolved in a proper and timely manner.

  4. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    International Nuclear Information System (INIS)

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark

  5. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    Energy Technology Data Exchange (ETDEWEB)

    Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Maday, Yvon, E-mail: maday@ann.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions and Institut Universitaire de France, F-75005, Paris (France); Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); Brown Univ, Division of Applied Maths, Providence, RI (United States); Riahi, Mohamed Kamel, E-mail: riahi@cmap.polytechnique.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CMAP, Inria-Saclay and X-Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Salomon, Julien, E-mail: salomon@ceremade.dauphine.fr [CEREMADE, Univ Paris-Dauphine, Pl. du Mal. de Lattre de Tassigny, F-75016, Paris (France)

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.

  6. Lectures for CERN pensioners

    CERN Multimedia

    GS Department

    2009-01-01

    The CERN Medical Service and the Pensioners Association are pleased to invite CERN pensioners to a series of lectures given by professors and specialists from the Teaching Hospitals and the Faculty of Medicine of the University of Geneva on the following topic: PROMOTION OF OPTIMUM BRAIN AGEING The lectures will take place in the Main CERN Auditorium (Building 60) from 2.30 p.m. to 4.30 p.m. on the following dates: Thursday 15 January 2009: Diagnosing and treating Alzheimer’s disease Pr Gabriel GOLD Wednesday 25 February 2009: What is the brain reserve? Speaker’s name to be announced at a later date. The lectures will be given in French, with transparencies in English, and will be followed by a wide-ranging debate with the participants. CERN Medical Service - Pensioners Association - CERN-ESO (GAC-EPA)

  7. Romanian President Visits CERN

    CERN Multimedia

    2001-01-01

    Director General Luciano Maiani watches as Romanian President Ion Iliescu signs the CERN guest book. On Friday the 12th of October, Romanian President Ion Iliescu arrived at CERN and was warmly greeted by Director General Luciano Maiani at the steps of building 500. After initial greetings and a general presentation of the laboratory, President Iliescu and his entourage embarked on a whistle stop tour of the CERN facilities. They visited the CMS magnet assembly hall and civil engineering work where presentations were made by CMS spokesperson Michel Della Negra and the ATLAS Tile Calorimeter where the president was introduced to Romanian physicists working here at CERN. Michel Della Negra explains some of the general principles behind CMS to President Iliescu during his visit last week. The Romanian teams working on CERN projects make very visible contributions, for example to the construction of the ATLAS experiment and to the preparation of its eventual scientific exploitation. 'Those of us on the ATLAS ...

  8. CERN in the park

    CERN Multimedia

    2002-01-01

    CERN will be the centre of debate at a 'Café scientifique' on Monday 29 April. The aim of the Cafés scientifiques, which are organised by the association of Bancs Publics, is to kindle discussion between ordinary people and specialists in a scientific field. This Monday, Maurice Bourquin, President of the CERN Council, Hans Hoffmann, Director of Technology Transfer and Scientific Computing at CERN, Gilbert Guignard, a physicist at CERN, and Ruhal Floris, who teaches mathematical didactics at the University of Geneva, will explain the usefulness and contributions to science of the world's biggest laboratory for particle physics. What is CERN for? Monday 29 April at 18.30 Musée d'histoire des sciences, Geneva (in the park Perle du Lac) Entry free Wine and buffet after the discussion

  9. France at CERN

    CERN Multimedia

    2001-01-01

    From 19 to 22 June, for the 8th edition of France at CERN, 31 French companies presented their latest technology to the Laboratory. Demonstrating the latest in French technology during France at CERN. The France at CERN exhibition was inaugurated by Mr. Bernard Frois, Director of the Department Energy, Transport, Environment and Natural Resources at the Technology Directorate of the Ministry of Research. 'France is happy to be a Member of CERN, which is a successful example of the construction of scientific Europe,' he declared during the inauguration, 'this exhibition is an excellent opportunity to put fundamental research and advanced technology in contact.' Mr. Philippe Petit, French Ambassador to Switzerland, and Mr. Alexandre Defay, technical adviser of the Minister of Research, were also present to represent France and its industry. Representing CERN at the 19 June opening of the exhibition was Claude Detraz, who said, 'I hope that this exhibition will make it possible to weave stronger links between ...

  10. CERN Mobility Survey

    CERN Multimedia

    GS Department

    2011-01-01

    The Institute of Shipping and Transport of the University of the Aegean and the National Technical University of Athens are partners with CERN in a study of mobility patterns between and within the CERN sites and to that effect have realized a mobility survey dedicated to the CERN community.         The study aims to understand: How you presently get around the CERN sites; What problems you encounter regarding mobility; What your needs are; What improvements you’d like to see; What measures you would like to see implemented most. The replies we receive will enable us to define a general policy promoting the diversity of mobility at CERN and to establish and quantify the strategic actions to be implemented for both the short and medium term. The objectives of the transport mobility plans are to: Facilitate mobility within and between the CERN sites by identifying adequate solutions in response to individual ...

  11. Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN n_TOF

    CERN Document Server

    Tarrío, D; Audouin, L; Duran, I; Paradela, C; Tassan-Got, L; Le Naour, C; Bacri, C O; Petitbon, V; Mottier, J; Caamano, M; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cértes-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2014-01-01

    A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (n_TOF) facility at CERN. The detectors and the samples were tilted 45 1 with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the 232 Th(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup

  12. Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real time

    International Nuclear Information System (INIS)

    In this thesis, we have first developed a time dependent 3D neutron transport solver on unstructured meshes with discontinuous Galerkin finite elements spatial discretization. The solver (called MINARET) represents in itself an important contribution in reactor physics thanks to the accuracy that it can provide in the knowledge of the state of the core during severe accidents. It will also play an important role on vessel fluence calculations. From a mathematical point of view, the most important contribution has consisted in the implementation of modern algorithms that are well adapted for modern parallel architectures and that significantly decrease the computing times. A special effort has been done in order to efficiently parallelize the time variable by the use of the parareal in time algorithm. For this, we have first analyzed the performances that the classical scheme of parareal can provide when applied to the resolution of the neutron transport equation in a reactor core. Then, with the purpose of improving these performances, a parareal scheme that takes more efficiently into account the presence of other iterative schemes in the resolution of each time step has been proposed. The main idea consists in limiting the number of internal iterations for each time step and to reach convergence across the parareal iterations. A second phase of our work has been motivated by the following question: given the high degree of accuracy that MINARET can provide in the modeling of the neutron population, could we somehow use it as a tool to monitor in real time the population of neutrons on the purpose of helping in the operation of the reactor? And, what is more, how to make such a tool be coherent in some sense with the measurements taken in situ? One of the main challenges of this problem is the real time aspect of the simulations. Indeed, despite all of our efforts to speed-up the calculations, the discretization methods used in MINARET do not provide simulations

  13. Music, videos and the risk for CERN

    CERN Multimedia

    IT Department

    2010-01-01

    Do you like listening to music while working? What about watching videos during leisure time? Sure this is fun. Having your colleagues participating in this is even more fun. However, this fun is usually not free. There are music and film companies who earn their living from music and videos. Thus, if you want to listen to music or watch films at CERN, make sure that you own the proper rights to do so (and you have the agreement of your supervisor to do this during working hours). Note that these rights are personal: You usually do not have the right to share this music or these videos with third parties without violating copyrights. Therefore, making copyrighted music and videos public, or sharing music and video files as well as other copyrighted material, is forbidden at CERN --- and also outside CERN. It violates the CERN Computing Rules (http://cern.ch/ComputingRules) and it contradicts CERN's Code of Coduct (https://cern.ch/hr-info/codeofconduct.asp) which expects each of us to behave ethically and be ...

  14. Determination of the time resolution for neutron scintillation detectors by multi-coincidence measurement

    Institute of Scientific and Technical Information of China (English)

    LI Yong-Ming; RUAN Xi-Chao; ZHOU Sin; MA Zhong-Yuan

    2011-01-01

    Based on the multi-coincidence measurement, the time resolution of three liquid scintillation detectors (BC501A) were determined strictly by solving the coincidence equations, where the influence from electronics estimated by self coincidence measurement as well as the background had been considered. The result of this work agreed well with the result that was deduced from the traditional method, and it will be helpful to analyze the energy resolution of neutron time of flight spectra measured by using such detectors at CIAE (China Institute of Atomic Energy).

  15. A time-dependent Fokker-Planck code for neutron rate interpretations

    International Nuclear Information System (INIS)

    A time dependent code for neutron rate interpretation of neutral beam heated tokamak plasmas has been developed. The code is based on a Fokker-Planck model and is comparatively fast. It includes tail-tail fusion reaction rates, which are important but often neglected since they are difficult to calculate. Results from the code are presented for test cases in order to illustrate some of its features. Finally, time-dependent calculations for a Joint European Torus (JET) discharge are presented and the interpretation calculation for the dilution nD/ne are shown to be in very good agreement with the experimental results. (Author)

  16. Development of a Time-resolved Neutron Imaging Detector Based on the {\\mu}PIC Micro-Pixel Chamber

    OpenAIRE

    Parker, Joseph D.; Harada, Masahide; Hattori, Kaori; Iwaki, Satoru; Kabuki, Shigeto; Kishimoto, Yuji; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nishimura, Hironobu; Oku, Takayuki; Sawano, Tatsuya; Shinohara, Takenao

    2013-01-01

    We have developed a prototype time-resolved neutron imaging detector employing a micro-pattern gaseous detector known as the micro-pixel chamber ({\\mu}PIC) coupled with a field-programmable-gate-array-based data acquisition system. Our detector system combines 100{\\mu}m-level spatial and sub-{\\mu}s time resolutions with a low gamma sensitivity of less than 10^-12 and high data rates, making it well suited for applications in neutron radiography at high-intensity, pulsed neutron sources. In th...

  17. CERN hosts training event on international management

    CERN Multimedia

    2007-01-01

    CERN held its first training event on international management at the Globe on 2 October, sharing its expertise with high-level Swiss managers as part of their year-long part-time executive training programme on advanced management. CERN is often talked about in terms of impressive statistics: the coldest place in the universe, the largest accelerator, the greatest volume of data. Whilst the science is undeniably remarkable, it is backed by a management infrastructure that has to be as cutting-edge as the research it supports. On 2 October, the Learning and Development section of HR organised an event for 60 delegates to come to CERN to learn about international management from those who have taken on the management challenges at the heart of this unique institution. It was the first time that CERN had prepared such an event. SKU, a non-profit organisation, approached our management training team to arrange the event as part of a wee...

  18. Neutron CT with a multi-detector system leading to drastical reduction of the measuring time

    International Nuclear Information System (INIS)

    By means of numerical simulation methods and their verification with measurements it could be shown that such a detector system can be realized for a line beam and 1-2 detectors per cm. With the maximum available beam width of the fast neutron field at the FRM approximately 20 detectors can be used leading to a reduction of the measuring time to 0,5 - 1 hour. A multi detector system for a line beam of thermal neutrons was constructed, tested and used for CT-measurements. This detector system for the measurement of thinner layers with better spatial resolution could be realized. The electronic discrimination between neutrons and gamma rays has been improved. This discrimination was used in all CT-measurements to get transmission values of both kinds of radiation and to reconstruct to complementary CT-images. The use of a polyenergetic radiation causes spectral shifts in the transmission spectrum leading to artifacts in the reconstructed CT-image. The transmission values must be spectral corrected before image reconstruction, because the image artifacts complicate the image evaluation or make it impossible. A new energy selective procedure for the online spectral correction was developed. This method is based on the concept to measure additionally to the integral transmission value his pulse height spectrum and to do the correction depending on the changes in this pulse height spectrum. (orig./HP)

  19. Feasibility Study of Neutron Dose for Real Time Image Guided Proton Therapy: A Monte Carlo Study

    CERN Document Server

    Kim, Jin Sung; Kim, Daehyun; Shin, EunHyuk; Chung, Kwangzoo; Cho, Sungkoo; Ahn, Sung Hwan; Ju, Sanggyu; Chung, Yoonsun; Jung, Sang Hoon; Han, Youngyih

    2015-01-01

    Two full rotating gantry with different nozzles (Multipurpose nozzle with MLC, Scanning Dedicated nozzle) with conventional cyclotron system is installed and under commissioning for various proton treatment options at Samsung Medical Center in Korea. The purpose of this study is to investigate neutron dose equivalent per therapeutic dose, H/D, to x-ray imaging equipment under various treatment conditions with monte carlo simulation. At first, we investigated H/D with the various modifications of the beam line devices (Scattering, Scanning, Multi-leaf collimator, Aperture, Compensator) at isocenter, 20, 40, 60 cm distance from isocenter and compared with other research groups. Next, we investigated the neutron dose at x-ray equipments used for real time imaging with various treatment conditions. Our investigation showed the 0.07 ~ 0.19 mSv/Gy at x-ray imaging equipments according to various treatment options and intestingly 50% neutron dose reduction effect of flat panel detector was observed due to multi- lea...

  20. Commissioning of the IDS Neutron Detector and $\\beta$-decay fast-timing studies at IDS

    CERN Document Server

    Piersa, Monika

    2016-01-01

    The following report describes my scientific activities performed during the Summer Student Programme at ISOLDE. The main part of my project was focused on commissioning the neutron detector dedicated to nuclear decay studies at ISOLDE Decay Station (IDS). I have participated in all the steps needed to make it operational for the IS609 experiment. In the testing phase, we obtained expected detector response and calibrations confirmed its successful commissioning. The detector was mounted in the desired geometry at IDS and used in measurements of the beta-delayed neutron emission of $^8$He. After completing aforementioned part of my project, I became familiar with the fast-timing method. This technique was applied at IDS in the IS610 experiment performed in June 2016 to explore the structure of neutron-rich $^{130-134}$Sn nuclei. Since the main part of my PhD studies will be the analysis of data collected in this experiment, the second part of my project was dedicated to acquiring knowledge about technical de...

  1. Signal and Noise Analysis in TRION -Time-Resolved Integrative Optical Fast Neutron Detector

    CERN Document Server

    Vartsky, D; Mor, I; Goldberg, M B; Bar, D; Dangendorf, V

    2009-01-01

    TRION is a sub-mm spatial resolution fast neutron imaging detector, which employs an integrative optical time-of-flight technique. The detector was developed for fast neutron resonance radiography, a method capable of detecting a broad range of conventional and improvised explosives. In this study we have analyzed in detail, using Monte-Carlo calculations and experimentally determined parameters, all the processes that influence the signal and noise in the TRION detector. In contrast to event-counting detectors where the signal-to-noise ratio is dependent only on the number of detected events (quantum noise), in an energy-integrating detector additional factors, such as the fluctuations in imparted energy, number of photoelectrons, system gain and other factors will contribute to the noise. The excess noise factor (over the quantum noise) due to these processes was 4.3, 2.7, 2.1, 1.9 and 1.9 for incident neutron energies of 2, 4, 7.5, 10 and 14 MeV, respectively. It is shown that, even under ideal light colle...

  2. Capability of coupled 3-D neutronics/thermalhydraulic models to simulate spatial-time effects

    International Nuclear Information System (INIS)

    Last advancements in computer technology made possible the incorporation on full three-dimensional reactor core model into system transient codes. Best-estimate simulations of interactions between reactor core behavior and plant dynamics have been allowed with 3D neutronics/thermalhydraulic coupled codes. Among these codes, the RELAP5-3D has been applied to the Main Steam Line Break accident to perform three-dimensional core behavior analysis. The advantage of using a 3-D neutronics/thermalhydraulic codes is more evident in the study of strongly asymmetric transient for which simple neutron point kinetic and 1-D thermalhydraulic models are not able to provide an acceptable physical representation of the phenomena that occur in the core. The main objective of this document is to demonstrate the capability to simulated complex spatial-time effects with 3-D coupled codes. Different core nodalizations and coupling schemes have been set up. This has shown that the methodology adopted and the computational tools allow accounting for different detail levels in the core representation. (author)

  3. Study of building materials impregnation processes by quasi-real-time neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, T. [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Rant, J. [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Apih, V. [National Building and Civil Engineering Institute, Ljubljana (Slovenia); Glumac, B. [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    1999-11-03

    Neutron radiography (NR) is a useful non-destructive method for determination of hydrogen content in various building and technical materials. Monitoring of transport processes of moisture and hydrogenous liquids in porous building materials is enabled by fast, quasi-real-time NR methods based on novel imaging plate neutron detectors (IP-NDs). Hydrogen content in the samples is determined by quantitative analysis of measured profiles of neutron attenuation in the samples. Detailed description of quantitative NR method is presented by the authors in another accompanying contribution at this conference. Deterioration of building materials is originated by different processes that all require presence of water therefore it is essential to limit or prevent the transport of water through the porous material. In this presentation, results of a study of clay brick impregnation by silicone based hydrophobic agents will be presented. Quantitative results obtained by NR imaging successfully explained the processes that occur during the impregnation of porous materials. Efficiency of hydrophobic treatment was quantitatively evaluated.

  4. EFQPSK Versus CERN: A Comparative Study

    Science.gov (United States)

    Borah, Deva K.; Horan, Stephen

    2001-01-01

    This report presents a comparative study on Enhanced Feher's Quadrature Phase Shift Keying (EFQPSK) and Constrained Envelope Root Nyquist (CERN) techniques. These two techniques have been developed in recent times to provide high spectral and power efficiencies under nonlinear amplifier environment. The purpose of this study is to gain insights into these techniques and to help system planners and designers with an appropriate set of guidelines for using these techniques. The comparative study presented in this report relies on effective simulation models and procedures. Therefore, a significant part of this report is devoted to understanding the mathematical and simulation models of the techniques and their set-up procedures. In particular, mathematical models of EFQPSK and CERN, effects of the sampling rate in discrete time signal representation, and modeling of nonlinear amplifiers and predistorters have been considered in detail. The results of this study show that both EFQPSK and CERN signals provide spectrally efficient communications compared to filtered conventional linear modulation techniques when a nonlinear power amplifier is used. However, there are important differences. The spectral efficiency of CERN signals, with a small amount of input backoff, is significantly better than that of EFQPSK signals if the nonlinear amplifier is an ideal clipper. However, to achieve such spectral efficiencies with a practical nonlinear amplifier, CERN processing requires a predistorter which effectively translates the amplifier's characteristics close to those of an ideal clipper. Thus, the spectral performance of CERN signals strongly depends on the predistorter. EFQPSK signals, on the other hand, do not need such predistorters since their spectra are almost unaffected by the nonlinear amplifier, Ibis report discusses several receiver structures for EFQPSK signals. It is observed that optimal receiver structures can be realized for both coded and uncoded EFQPSK

  5. CERN: Digitally open, too

    CERN Multimedia

    Computer Security Team

    2013-01-01

    The Open Days are here!! From tomorrow onwards, we will be welcoming thousands of people to CERN. No barriers, no boundaries!   For decades, we have welcomed researchers and visitors from around the world to work at CERN, discuss physics research and attend our training sessions, lectures and conferences. This is how fundamental research should be conducted!!! But have you ever noticed how you are welcome at CERN in the digital world, too? Once you are affiliated and are registered with CERN, you receive a CERN computing account and e-mail address.  You can register your laptops, PCs and smartphones to use our (wireless) network, you can easily create your personal webpage, and profit from a vast disk space for file storage (AFS and DFS). CERN is indeed an Open Campus and not only during the Open Days. CERN is an Open Campus in the digital world. This digital Open Campus culture is exactly the reason why “computer security” has been dele...

  6. CERN honours its guides

    CERN Multimedia

    2004-01-01

    At the end of January, CERN's guides were rewarded for their devotion to the Laboratory. They have a passion for their work, know CERN inside-out and for 40 years have shown people of all ages and nationalities, from all walks of life, around the Laboratory. Who are they? Why, the CERN guides, of course. On 27 January, ten of CERN's 180 guides received special honours for their impressive number of guided tours in 2003. Presenting the awards in the Microcosm hall, CERN's Director-General Robert Aymar congratulated the winners on the key role they play with respect to the general public. "CERN would be nothing without you who show them its activities," he stressed. CERN's Director-General Robert Aymar congratulates Alberto Ribon for his tally of over 40 visits in the course of 2003.One of the prizes was the book «The Particle Odyssey». Here the book's co-author Christine Sutton dedicates it for Sijin Qian. Tzanko Spassoff (PH) and retired staff members Klaus Batzner and Antonio Francano wo...

  7. CERN in 2030

    CERN Multimedia

    Laëtitia Pedroso

    2011-01-01

    A competition will soon be launched to select the architect, urban planner or landscape designer to undertake the first phase of redevelopment of the parking area by the flagpoles, between Entrances A and B. This will be the first stage in a wider development project aimed at sprucing up the CERN site and enhancing its image. Work to create a pleasant and harmonious area at the CERN entrance will start in 2013 while preparatory work for other developments inside the CERN site has already begun…   CERN as it is today.  By 2030, CERN will be a greener place, much like a university campus. The arrival of the tramway on 30 April will be an opportunity to forge ahead with the urban plan aimed at rejuvenating the CERN site and redefining how it is organised. "Nearly sixty years after CERN's first buildings went up, this plan will help transform the site and give it a welcoming, friendly face, a bit like a university campus," explains Thierry Chanard, urban plannin...

  8. Le Japon devient observateur au CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1995-01-01

    A Japanese delegation, lead by Mr. Kaoru Yosano, Japan's Minister of Monbusho, (Ministry of Education, Science and Culture), was warmly applauded by the delegates of CERN's Member States when it entered the Council Chamber for the first time as an official Observer. Mr. Yosano, thanked the CERN Council for unanimously agreeing to grant Japan Official Observer Status and also accepting Japan's offer to contribute to the Large Hadron Collider (LHC) project.

  9. People and things. CERN Courier, Dec 1991, v. 31(10)

    International Nuclear Information System (INIS)

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: ; The pulsed muon facility at the UK Rutherford Appleton Laboratory's ISIS neutron source is to be substantially upgraded under the European Commission's Large Installations Plan. ; On 1 November at CERN, a cooperation agreement was signed which provides a framework for Australia and CERN to develop reciprocal scientific and technical cooperation

  10. La Hollande au CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1995-01-01

    On 17 October the third industrial exhibition, "Holland at CERN" was officially opened by Dr R.J. van Duinen, President of the Dutch Organisation for Scientific Research (NWO). In his opening speech he encouraged scientific organisations such as CERN to take full advantage of industry's ability to design and invent new processes and equipment stressing that the purpose of the "Holland at CERN" exhibition was not simply to sell equipment, but to establish an efficient cross-fertilisation between fundamental science and industry.

  11. A fast large-area position-sensitive time-of-flight neutron detection system

    International Nuclear Information System (INIS)

    A new position-sensitive time-of-flight neutron detection and histograming system has been developed for use at the Intense Pulsed Neutron Source. Spatial resolution of roughly 1 cm x 1 cm and time-of-flight resolution of ∼1 μsec are combined in a detection system which can ultimately be expanded to cover several square meters of active detector area. This system is based on the use of arrays of cylindrical one-dimensional position-sensitive proportional counters, and is capable of collecting the x-y-t data and sorting them into histograms at time-averaged data rates up to ∼300,000 events/sec over the full detector area and with instantaneous data rates up to more than fifty times that. Numerous hardware features have been incorporated to facilitate initial tuning of the position encoding, absolute calibration of the encoded positions, and automatic testing for drifts. 7 refs., 11 figs., 1 tabs

  12. New life for CERN's first accelerator

    CERN Document Server

    Anaïs Schaeffer

    2011-01-01

    Building 300 right in the middle of the CERN site houses a special "antique": the Laboratory's very first accelerator. After several years in the wilderness following its decommissioning in 1990, the Synchrocyclotron is set to take on a new lease of life in the near future, this time as a visitor attraction.   The Synchrocyclotron as it was in 1975; it will be restored to this configuration for public viewing. The Synchrocyclotron (SC) began operation in 1957, two years before the PS was commissioned. Running at an energy of 600 MeV and producing beams of protons, neutrons, muons and pions, it helped to further research in the nuclear physics field for no fewer than 33 years, providing beams for various decay experiments as well as the muon capture experiment (*). Since the SC was decommissioned in 1990, three of its four buildings (160, 161 and 301) have been converted into offices for members of the ALICE collaboration, but the shielded hall housing the machine it...

  13. Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times

    Science.gov (United States)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.

    2013-08-01

    Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.

  14. Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)

    Science.gov (United States)

    Swank, Jean

    2008-01-01

    Astrophysical X-rays bring information about location, energy, time, and polarization. X-rays from compact objects were seen in the first explorations to vary in time. Eclipses and pulsations have simple explanations that identified the importance of X-ray binaries and magnetic neutron stars in the first decade of X-ray astronomy. The dynamics of accretion onto stellar and supermassive black holes and onto neutron stars with relatively low magnetic fields shows up as more complex variations, quasi-periodic oscillations, noise with characteristic frequency spectra, broad-band changes in the energy spectra. To study these variations, RXTE instruments needed to have large area and operational flexibility to find transient activity and observe when it was present. Proportional counters and Phoswich scintillators provided it in a modest mission that has made textbook level contributions to understanding of compact objects. The first seen, and the brightest known, X-ray binary, Sco X-1 is one of a class of neutron stars with low mass companions. Before RXTE, none of these had been seen to show pulsations, though they were hypothesized to be the precursors of radio pulsars with millisecond periods and low magnetic fields. RXTE's large area led to identifying coherent millisecond pulsars in a subset which are relatively faint transients. It also led to identifying short episodes of pulsation during thermonuclear bursts, in sources where a steady signal is not seen. The X-ray stage verifies the evolution that produces millisecond radio pulsars.Masses and radii of neutron stars are being determined by various techniques, constraining the equation of state of matter at nuclear densities. Accretion should lead to a range of neutron star masses. An early stage of superstrong magnetic field neutron stars is now known to produce X-ray and gamma-ray bursts in crust quakes and magnetic field reconnection releases of energy. Soft Gamma Repeaters, Anomolous X-ray Pulsars, and high

  15. GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco

    Science.gov (United States)

    Ouardi, A.; Machmach, A.; Alami, R.; Bensitel, A.; Hommada, A.

    2011-09-01

    Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities. In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]). The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×10 11 ncm 2/s. This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted. The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line ( http://www.info.cern.ch/asd/geant4/geant4.html[4]). To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al 2O 3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al 2O 3) filters, respectively. To get a good cadmium ratio, GEANT 4 simulations were used to

  16. Princess of Thailand returns to CERN

    CERN Multimedia

    Stefania Pandolfi

    2015-01-01

    On Tuesday, 17 November 2015, HRH Princess Maha Chakri Sirindhorn of Thailand visited CERN. Princess Sirindhorn was visiting the Laboratory for the fifth time, following her last visit in 2010.   Princess Maha Chakri Sirindhorn of Thailand (center) witnesses the signing of the collaboration agreement between CERN and SLRI, represented by Rolf Heuer (right) and Professor Sarawut Sujitjorn (left) respectively. The Princess was accompanied by a delegation that included the Director of the Synchrotron Light Research Institute (SLRI) in Thailand, Professor Sarawut Sujitjorn, and a large group of Thailand’s Diplomatic Representatives in Switzerland. Upon her arrival, Princess Sirindhorn was welcomed by CERN Director-General Rolf Heuer and the Director-General Designate, Fabiola Gianotti. At CERN, the Princess was given a brief update on the Laboratory’s activities since her last visit, in April 2010. Later on, she witnessed the signature of the f...

  17. The CERN n_TOF facility: a unique tool for nuclear data measurement

    Science.gov (United States)

    Mingrone, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Ganesan, S.; Garcia-Rios, A. A.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; Gonzàlez, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Lo Meo, S.; Lonsdale, S.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-06-01

    The study of the resonant structures in neutron-nucleus cross-sections, and therefore of the compound-nucleus reaction mechanism, requires spectroscopic measurements to determine with high accuracy the energy of the neutron interacting with the material under study. To this purpose, the neutron time-of-flight facility n_TOF has been operating since 2001 at CERN. Its characteristics, such as the high intensity instantaneous neutron flux, the wide energy range from thermal to few GeV, and the very good energy resolution, are perfectly suited to perform high-quality measurements of neutron-induced reaction cross sections. The precise and accurate knowledge of these cross sections plays a fundamental role in nuclear technologies, nuclear astrophysics and nuclear physics. Two different measuring stations are available at the n_TOF facility, called EAR1 and EAR2, with different characteristics of intensity of the neutron flux and energy resolution. These experimental areas, combined with advanced detection systems lead to a great flexibility in performing challenging measurement of high precision and accuracy, and allow the investigation isotopes with very low cross sections, or available only in small quantities, or with very high specific activity. The characteristics and performances of the two experimental areas of the n_TOF facility will be presented, together with the most important measurements performed to date and their physics case. In addition, the significant upcoming measurements will be introduced.

  18. A method for simulating real-time neutron populations, materials and geometries using the GEANT4 Monte Carlo toolkit

    International Nuclear Information System (INIS)

    GEANT4 is a Monte Carlo particle physics toolkit that simulates elementary particles moving through matter. GEANT4 allows a population of neutrons to be tracked in a multiplying medium as the population and the medium evolve. However, the population must be artificially stabilized so that it neither explodes nor vanishes. We present a stabilization method where the simulation is divided into short time intervals and the population is renormalized at the end of each interval. This method was used with a simple sphere of U235 to calculate the effective neutron multiplication factor (keff) from the continuous evolution of the neutron population. (author)

  19. Rhodium SPND's Error Reduction using Extended Kalman Filter combined with Time Dependent Neutron Diffusion Equation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hun; Park, Tong Kyu; Jeon, Seong Su [FNC Technology Co., Ltd., Yongin (Korea, Republic of)

    2014-05-15

    The Rhodium SPND is accurate in steady-state conditions but responds slowly to changes in neutron flux. The slow response time of Rhodium SPND precludes its direct use for control and protection purposes specially when nuclear power plant is used for load following. To shorten the response time of Rhodium SPND, there were some acceleration methods but they could not reflect neutron flux distribution in reactor core. On the other hands, some methods for core power distribution monitoring could not consider the slow response time of Rhodium SPND and noise effect. In this paper, time dependent neutron diffusion equation is directly used to estimate reactor power distribution and extended Kalman filter method is used to correct neutron flux with Rhodium SPND's and to shorten the response time of them. Extended Kalman filter is effective tool to reduce measurement error of Rhodium SPND's and even simple FDM to solve time dependent neutron diffusion equation can be an effective measure. This method reduces random errors of detectors and can follow reactor power level without cross-section change. It means monitoring system may not calculate cross-section at every time steps and computing time will be shorten. To minimize delay of Rhodium SPND's conversion function h should be evaluated in next study. Neutron and Rh-103 reaction has several decay chains and half-lives over 40 seconds causing delay of detection. Time dependent neutron diffusion equation will be combined with decay chains. Power level and distribution change corresponding movement of control rod will be tested with more complicated reference code as well as xenon effect. With these efforts, final result is expected to be used as a powerful monitoring tool of nuclear reactor core.

  20. Rhodium SPND's Error Reduction using Extended Kalman Filter combined with Time Dependent Neutron Diffusion Equation

    International Nuclear Information System (INIS)

    The Rhodium SPND is accurate in steady-state conditions but responds slowly to changes in neutron flux. The slow response time of Rhodium SPND precludes its direct use for control and protection purposes specially when nuclear power plant is used for load following. To shorten the response time of Rhodium SPND, there were some acceleration methods but they could not reflect neutron flux distribution in reactor core. On the other hands, some methods for core power distribution monitoring could not consider the slow response time of Rhodium SPND and noise effect. In this paper, time dependent neutron diffusion equation is directly used to estimate reactor power distribution and extended Kalman filter method is used to correct neutron flux with Rhodium SPND's and to shorten the response time of them. Extended Kalman filter is effective tool to reduce measurement error of Rhodium SPND's and even simple FDM to solve time dependent neutron diffusion equation can be an effective measure. This method reduces random errors of detectors and can follow reactor power level without cross-section change. It means monitoring system may not calculate cross-section at every time steps and computing time will be shorten. To minimize delay of Rhodium SPND's conversion function h should be evaluated in next study. Neutron and Rh-103 reaction has several decay chains and half-lives over 40 seconds causing delay of detection. Time dependent neutron diffusion equation will be combined with decay chains. Power level and distribution change corresponding movement of control rod will be tested with more complicated reference code as well as xenon effect. With these efforts, final result is expected to be used as a powerful monitoring tool of nuclear reactor core

  1. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, J.C. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France)

    2001-07-01

    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  2. 8-channel system for neutron-nuclear investigations by time-of-flight method

    International Nuclear Information System (INIS)

    In connection with commissioning of the IREN pulsed resonance neutron source, new electronics and appropriate software are developed for registration of time-of-flight spectra with small width of the channel (10 ns). The hardware-software system is intended for research of the IREN neutron beam characteristics, properties of new detectors, and also for performance of precision experiments under conditions of low intensity or registration of rare events. The time encoder is the key element of the system hardware. It is developed on the basis of the Cypress-technologies. The unit can measure time intervals for signals intensity up to 105 for each of eight inputs. Using a USB interface provides system mobility. The TOF System Software includes the control program, driver software layer, data sorting program and data processing utilities and other units, performed as executable applications. The interprocess communication between units is provided by network and/or by specially designed interface based on the mechanism of named files mapped into memory. This method provides fastest possible communication between processes. The developed methods of integrating the executable components into a system provide a distributed system, improve the reusing of the software and provide the ability to assemble the system by the user

  3. Open Compute Project at CERN

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The Open Compute Project, OCP ( http://www.opencompute.org/), was launched by Facebook in 2011 with the objective of building efficient computing infrastructures at lowest possible cost. The technologies are released as open hardware design, with the goal to develop servers and data centers following the model traditionally associated with open source software projects. We have been following the OCP project for some time and decided to buy two OCP twin servers in 2013 to get some hands-on experience. The servers have been tested and compared with our standard hardware regularly acquired through large tenders. In this presentation we will give some relevant results from this testing and also discuss some of the more important differences that can matter for a larger deployment at CERN. Finally it will outline the details for a possible project for a larger deployment of OCP hardware for production use at CERN.

  4. Cryogenics at CERN

    CERN Document Server

    Passardi, Giorgio

    2002-01-01

    The use of cryogenics at CERN was originated (in the 1960s) by High Energy Physics detectors requiring low temperature technologies to achieve the desired performance and indicates a sustained trend during the entire evolution of the CERN experimental program. More recently (in the 1980s) the need of cryogenics for CERN accelerators has shown an impressive increase due to the development of superconducting accelerating cavities and high field bending magnets. Today, the two largest detectors (ATLAS and CMS) of the LHC accelerator ask for a considerable variety of cryogenic equipments and the 27 km LHC magnets ring requires the largest 1.8 K helium refrigeration and distribution systems in the world. The status of CERN cryogenics is briefly reviewed including those systems not related to the LHC complex.

  5. Open Hardware at CERN

    CERN Multimedia

    CERN Knowledge Transfer Group

    2015-01-01

    CERN is actively making its knowledge and technology available for the benefit of society and does so through a variety of different mechanisms. Open hardware has in recent years established itself as a very effective way for CERN to make electronics designs and in particular printed circuit board layouts, accessible to anyone, while also facilitating collaboration and design re-use. It is creating an impact on many levels, from companies producing and selling products based on hardware designed at CERN, to new projects being released under the CERN Open Hardware Licence. Today the open hardware community includes large research institutes, universities, individual enthusiasts and companies. Many of the companies are actively involved in the entire process from design to production, delivering services and consultancy and even making their own products available under open licences.

  6. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  7. CERN recognises LHC suppliers

    CERN Multimedia

    2002-01-01

    CERN has just presented the first awards recognising LHC suppliers. The Russian institute BINP, the Belgian firm Cockerill-Sambre and the US company Wah-Chang are the recipients of the first 'Golden Hadrons'.

  8. PACMAN at CERN

    CERN Multimedia

    2015-01-01

    PACMAN Particle Accelerator Components Metrology and Alignment to the Nanometre scale. PACMAN is an Innovative Doctoral Program Network, offering training to 10 Early Stage Researchers hosted by CERN thanks to The European Commission FP7 Marie Curie Actions.

  9. YOUR LIFE@CERN

    CERN Multimedia

    Guinot, Genevieve

    2016-01-01

    Balancing work and home life, getting support for your family and thriving in an inclusive and respectful workplace: find out more about the support structures in place to enhance your working life@CERN!

  10. CERN scientists predict supernova

    CERN Multimedia

    2003-01-01

    "A team of theoretical physicists working at CERN and the Technion Institute of Technology in Israel has developed a theory to account for the mysterious gamma ray bursts that come from the depths of the Universe" (1/2 page).

  11. Fusion Revisits CERN

    CERN Multimedia

    2001-01-01

    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  12. Industrial Activity at CERN

    CERN Document Server

    Kowalik, G

    2000-01-01

    The decrease in the number of CERN staff creates the need for optimization of the non-core, infrastructure-related activities. An industrial, service-orientated approach has long been considered as an appropriate way to cope with the problem of diminishing resources. This paper presents industrial and service activity issues at CERN based on the experience of the exploitation of the power network. The most important problems linked to the application of the industrial approach to the exploitation of equipment in the CERN research environment are covered. These include the interface between accelerators and electrical exploitation services, external and internal regulations, sharing of responsibility between CERN staff and external contractors, continuous modification of clients' requirements, the balance between the cost of accelerator downtime versus the cost of infrastructure upgrade. A benchmarking through a comparison with a big industrial manufacturer is followed by recommendations for possible improveme...

  13. Iran approaches CERN

    CERN Multimedia

    2002-01-01

    Members of Parliament from the Islamic Republic of Iran visit SM18. From left to right : Ali Mojtahed-Shabestari, Deputy Ambassador of the Islamic Republic of Iran in Geneva, Diether Blechschmidt, from CERN, Abdol-Rahim Baharvand and Hossain Amiri, from the Iranian Parliament, Norbert Siegel, from CERN, Hossain Afarideh, Rasool Seddighi and Ahmad Shirzad from the Iranian Parliament. Five members of the Parliament of the Islamic Republic of Iran visited CERN for three days at the beginning of May. All of them have PhD's in Physics, as well as holding their job in politics. They are involved in legislation for science, research and education funding in Iran. Apart from their interest in CERN in general, they were especially attracted to the CMS detector, since an Iranian contribution to the LHC is now starting through a collaboration with the Institute for Studies in Theoretical Physics and Mathematics in Tehran.

  14. Safety at CERN

    CERN Document Server

    2009-01-01

    Safety is an integral part of our working lives, and should be in our minds whatever job we do at CERN. Ultimately, safety is the responsibility of the Director General – your safety is my concern. That’s why I have this week appointed a new Safety Policy Committee (SAPOCO) that reflects the new Organizational structure of CERN. CERN’s Staff Rules and Regulations clearly lay out in chapter 3 the scope of safety at CERN as well as my responsibilities and yours in safety matters. At CERN, safety is considered in the broadest sense, encompassing occupational Health and Safety, environmental protection, and the safety of equipment and installations. It is my responsibility to put appropriate measures in place to ensure that these conditions are met. And it is the responsibility of us all to ensure that we are fully conversant with safety provisions applicable in our areas of work and that we comply with them. The appointment of a n...

  15. CERN Science and Technology

    OpenAIRE

    Di Meglio, Alberto

    2015-01-01

    A high-level overview of the relationship between science and technology at CERN and the impact of technology on research with a focus on ICT technologies. Presented as a 12-minute "power-talk" at CIOCity 2015, Brussels

  16. La nascita del CERN

    CERN Multimedia

    Fidecaro, Giuseppe

    2004-01-01

    CERN was born on 30th September 1954, after the ratification of the Convention by the Member States. After the war, there was a need for international collaboration to rebuild the half-destroyed Europe (2 pages)

  17. CERN stationery rejuvenated

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    With the introduction of CERN’s new graphic charter, our complete range of official communications stationery has been redesigned. Discover the newly harmonised and standardised range of CERN stationery.   As the Director-General announced in Bulletin 41-42/2012, a new graphic charter is now in force at CERN. The graphics team has taken this opportunity to redesign all the official CERN stationery, such as business cards, correspondence cards, letterheads, envelopes and file holders, all of which will now boast the same, unified format. In keeping with CERN’s new graphic charter, even the business cards have had a makeover: of a better quality than their predecessors, they now elegantly display the CERN colours (namely the familiar Pantone 286 blue). These new cards, which all follow a standardised format, help to project a standardised corporate image of the Organization. Order them online now! As the Director-General highlighted, “it's increasingly imp...

  18. Indian President visits CERN

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    On 1 October, her Excellency Mrs Pratibha Devisingh Patil, President of India, picked CERN as the first stop on her official state visit to Switzerland. Accompanied by a host of Indian journalists, a security team, and a group of presidential delegates, the president left quite an impression when she visited CERN’s Point 2!   Upon arrival, Pratibha Patil was greeted by CERN Director General Rolf Heuer, as well as senior Indian scientists working at CERN, and various department directors. After a quick overview of the Organization, Rolf Heuer and the President addressed India’s future collaboration with CERN. India is currently an Observer State of the Organization, and is considering becoming an Associate Member State. A short stop in LHC operations gave Steve Myers and the Accelerator team the opportunity to take the President on a tour through the LHC tunnel. From there, ALICE’s Tapan Nayak and Spokesperson Paolo Giubellino took Pratibha Patil to the experiment&am...

  19. Ex / Noise / CERN / Deerhoof

    CERN Multimedia

    CERN, SM18,

    2015-01-01

    Indie rockers Deerhoof battled with the noise of CERN’s magnet test facilities on 30 August 2015. The band visited CERN at the invitation of ATLAS physicist James Beacham, whose pilot project Ex/Noise/CERN collides experimental music artists with experimental particle physics. Credits: -Producer- CERN Video Productions James Beacham François Briard -Director- Noemi Caraban -Camera- Yann Krajewski Piotr Traczyk Noemi Caraban -Crane operator- Antonio Henrique Jorge-Costa -Live recording at CERN- Mixing at Rec studio/Geneva By Serge Morattel -Infography- Daniel Dominguez Noemi Caraban -Deerhoof- John Dieterich Satomi Matsuzaki Ed Rodriguez Greg Saunier w/Deron Pulley SPECIAL THANKS TO: Michal Strychalski Marta Bajko Maryline Charrondiere Luca Bottura Christian Giloux Rodrigue Faes Mariane Catallon Georgina Hobgen Hailey Reissman Marine Bass

  20. Britain exhibition at CERN

    CERN Multimedia

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  1. Star spotting at CERN

    CERN Multimedia

    2008-01-01

    This June, two American celebrities (and physics enthusiasts!) came to CERN. Brian Cox gave Mike Einziger (right), lead guitarist with the rock band Incubus, the star treatment in the ATLAS cavern. Jesse Dylan embraces the spirit of ATLAS! Mike Einziger, lead guitarist with the rock band Incubus, visited CERN on Friday 13 June between concerts in Finland and England. Einziger, a lifelong science enthusiast descended into the ATLAS and CMS caverns and visited the SM18 test magnet facility during his brief tour of CERN. Einziger learned about the LHC through watching online lectures from University of Manchester and ATLAS physicist Brian Cox, and was thrilled to have the chance to see the detectors in person. The musician has created an orchestral piece, inspired in part by the work being done at CERN for the LHC, which will have its debut in Los Angeles on 23 August. Just over a week earlier, Jesse Dylan, Hollywood film director a...

  2. CERN confirms LHC schedule

    CERN Multimedia

    2003-01-01

    The CERN Council held its 125th session on 20 June. Highlights of the meeting included confirmation that the LHC is on schedule for a 2007 start-up, and the announcement of a new organizational structure in 2004.

  3. CERN meets Facebook

    CERN Document Server

    2012-01-01

    Social networking sites like LinkedIn, MySpace, Google+ and Facebook are on the rise. In particular, the life of youngsters revolves more and more around these sites as they facilitate communication, networking and the exchange of niceties. Who does not today already have an account registered with one of them? A Facebook profile can contain photos, listings of hobbies, job information, preferences…   The on-going effort to externalise some of CERN's computing resources continues, and in order to promote a unified interface for personal information, CERN has decided to establish a partnership with Facebook starting on 1stApril. "CERN is a public and trustworthy international organisation, and as such, our staff and users have nothing to hide from the general public," said Alexi Spiner (IT), project leader responsible for this migration: * The computer profiles of all CERN users will be integrated into the Facebook portal; * In addition, we will also ...

  4. CERN at ESOF 2016

    CERN Document Server

    James Gillies

    2016-01-01

    CERN had a major presence at the ESOF2016 conference this week, largely in collaboration with our EIROforum partners. A keynote session featuring the CERN Director-General, Fabiola Gianotti, EMBL Director-General, Iain Mattaj, and ESO Director for Science, Rob Ivison, and chaired by BBC science correspondent Pallab Ghosh debated the value of European collaboration in science.   The focal point of EIROforum’s presence was a stand highlighting the societal benefit of EIROforum science. (Image: Matt Wilkinson Photography/ ESOF 2016) A double session covered the science of the EIROs, with ATLAS physicist Claire Lee representing CERN, and there was a session exploring the ways that the EIROforum organisations create business value locally, with the leader of the Knowledge Transfer group, Giovanni Anelli, representing CERN. The focal point of EIROforum’s presence was a stand highlighting the societal benefit of EIROforum science. Side events linked to the stand discussed subjects su...

  5. An artistic look at CERN

    CERN Document Server

    2009-01-01

    The Japanese artist Mariko Mori visited CERN on 25 May. She met several scientists and found the visit very inspiring. CERN is becoming increasingly popular among artists of all kinds, from filmmakers to photographers, illustrators etc. Mariko Mori is not new to science-inspired artistic works; in 2006 she made Tom Na H-iu, a 3.2 m high glass sculpture illuminated by an internal LED connected in real time to the Super-Kamiokande neutrino detector in Japan. "When I worked with Super-Kamiokande I already had Tom Na H-iu in my mind; this time I am visiting CERN for my personal research", says Mori. "The LHC is a fantastic instrument whose challenge is to find the reality that we don’t know yet. In a way, art is also about creating new reality, although using a completely different approach. For me it is very important to gather information on what the whole scientific world is searching and reaching for: the truth of our existence, the...

  6. CERN Courier has a new look

    CERN Multimedia

    Christine Sutton

    2011-01-01

    During more than 50 years of existence, CERN’s well-known magazine has changed several times in appearance. Now, for the first time since the 1990s, it has a new look for the new decade.   The new cover of the CERN Courier. Originally conceived as an internal newsletter, the CERN Courier first appeared in August 1959 in an edition of 8 pages with a print run of 1000. From the start it generated interest outside CERN, with its articles not only on CERN but also about particle physics around the world. The number of copies doubled in the first 6 months in response to the external demand. As CERN prepares to welcome new Member States in the coming years, it’s even more fitting that the magazine should continue to address a global readership, now totalling some 25,000 and extending throughout the many countries that have an interest in particle physics. It’s therefore important that the CERN Courier should remain appealing to this extensive audience, both visually and i...

  7. Experimental verification of a method to create a variable energy neutron beam from a monoenergetic, isotropic source using neutron elastic scatter and time of flight

    Science.gov (United States)

    Whetstone, Zachary D.; Flaska, Marek; Kearfott, Kimberlee J.

    2016-08-01

    An experiment was performed to determine the neutron energy of near-monoergetic deuterium-deuterium (D-D) neutrons that elastically scatter in a hydrogenous target. The experiment used two liquid scintillators to perform time of flight (TOF) measurements to determine neutron energy, with the start detector also serving as the scatter target. The stop detector was placed 1.0 m away and at scatter angles of π/6, π/4, and π/3 rad, and 1.5 m at a scatter angle of π/4 rad. When discrete 1 ns increments were implemented, the TOF peaks had estimated errors between -21.2 and 3.6% relative to their expected locations. Full widths at half-maximum (FWHM) ranged between 9.6 and 20.9 ns, or approximately 0.56-0.66 MeV. Monte Carlo simulations were also conducted that approximated the experimental setup and had both D-D and deuterium-tritium (DT) neutrons. The simulated results had errors between -17.2 and 0.0% relative to their expected TOF peaks when 1 ns increments were applied. The largest D-D and D-T FWHMs were 26.7 and 13.7 ns, or approximately 0.85 and 4.98 MeV, respectively. These values, however, can be reduced through manipulation of the dimensions of the system components. The results encourage further study of the neutron elastic scatter TOF system with particular interest in application to active neutron interrogation to search for conventional explosives.

  8. CERN, Accelerating Science

    CERN Multimedia

    De Melis, Cinzia

    2015-01-01

    What is the Universe made of? Where did it come from, where is it going and why does it behave the way it does? These are some of the questions that CERN set out to address when a small number of pioneering scientists created Europe’s first scientific international organization. Founded in 1954, in the aftermath of the Second World War, CERN is not only a first-class centre for fundamental research but also a pioneering adventure in international collaboration.

  9. Germany at CERN

    CERN Multimedia

    2001-01-01

    The Eighth Exhibition of German Industry, "Germany at CERN" started this week and offers German companies the opportunity to establish professional contacts with CERN. From left to right in the foreground: Maximilian Metzger (BMBF), Bettinna Schöneseffen (BMBF), Karl-Heinz Kissler (SPL division leader), Horst Wenninger, and Hans Hoffman. Behind and to the right of Karl-Heinz Kissler is His Excellency Mr Walter Lewalter, Ambassador and permanent representative of Germany to the UN office in Geneva.

  10. Cern Women's Club

    CERN Multimedia

    Cern Women's Club

    2014-01-01

      CERN WOMEN’S CLUB   Coffee Morning Tuesday 10th  June 2014, 12:30   Annual Club Lunch at the restaurant “Le Coq Rouge” in St-Genis-Pouilly Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://web.cern.ch/Club-WomensClub/

  11. Cern women's club

    CERN Multimedia

    Club des cernoises

    2014-01-01

    CERN WOMEN’S CLUB Coffee Morning Tuesday 13th  May 2014, 9:30 Bldg 504,  (Restaurant No 2 – DSR) 1st Floor, Club Room 3   Annual General Meeting Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://cern.ch/Club-WomensClub/

  12. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering

    KAUST Repository

    Ruocco, N.

    2016-05-27

    We present a small angle neutron scattering (SANS) investigation of a blend composed of a dendritic polymer and a linear matrix with comparable viscosity in start-up of an elongational flow at Tg + 50. The two-generation dendritic polymer is diluted to 10% by weight in a matrix of a long well-entangled linear chains. Both components consist of mainly 1,4-cis-polyisoprene but differ in isotopic composition. The resulting scattering contrast is sufficiently high to permit time-resolved measurements of the system structure factor during the start-up phase and to follow the retraction processes involving the inner sections of the branched polymer in the nonlinear deformation response. The outer branches and the linear matrix, on the contrary, are in the linear deformation regime. The linear matrix dominates the rheological signature of the blend and the influence of the branched component can barely be detected. However, the neutron scattering intensity is predominantly that of the (branched) minority component so that its dynamics is clearly evident. In the present paper, we use the neutron scattering data to validate the branch point withdrawal process, which could not be unambiguously discerned from rheological measurements in this blend. The maximal tube stretch that the inner branches experience, before the relaxed outer arm material is incorporated into the tube is determined. The in situ scattering experiments demonstrate for the first time the leveling-off of the strain as the result of branch point withdrawal and chain retraction directly on the molecular level. We conclude that branch point motion in the mixture of architecturally complex polymers occurs earlier than would be expected in a purely branched system, presumably due to the different topological environment that the linear matrix presents to the hierarchically deep-buried tube sections. © 2016 American Chemical Society.

  13. Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust

    CERN Document Server

    Meisel, Z; Ahn, S; Bazin, D; Brown, B A; Browne, J; Carpino, J F; Chung, H; Cyburt, R H; Estradé, A; Famiano, M; Gade, A; Langer, C; Matoš, M; Mittig, W; Montes, F; Morrissey, D J; Pereira, J; Schatz, H; Schatz, J; Scott, M; Shapira, D; Sieja, K; Smith, K; Stevens, J; Tan, W; Tarasov, O; Towers, S; Wimmer, K; Winkelbauer, J R; Yurkon, J; Zegers, R G T

    2016-01-01

    We present the mass excesses of 59-64Cr, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomic mass excess of -33.48(44) MeV. We find a significantly different two-neutron separation energy S2n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N=38. Additionally, we extend the S2n trend for chromium to N=40, revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-art shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell, including the g9/2 and d5/2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A=64 isobaric...

  14. CERN Library | Agnes Chavez @ CERN | 3 May

    CERN Multimedia

    CERN Library

    2016-01-01

    Agnes Chavez is an artist and educator participating in a two-week research stay through the ATLAS Experiment at CERN.   Tuesday 3 May at 4 p.m. CERN Library (52 1-052) Artist/educator, Agnes Chavez will share video outcomes from Projecting Particles, an Art + Science + Education collaboration with ATLAS. The Sci-Art project combines the International Masterclass with Projection Art in a series of teen-led youth workshops and projection events. In this presentation Chavez will share her vision and describe the research and development behind the project, now in its third year.  For the Projecting pARTicles series of art installations she has formed an interdisciplinary team of programmers, artists, scientists and educators to investigate how we can create art and education interventions inspired by emerging particle physics theories. Chavez’s art experiments with data visualization, sound and projections to create participatory environments. She collaborates with programmers t...

  15. Yachting Club CERN

    CERN Multimedia

    Yachting Club CERN

    2010-01-01

    New President, new committee, new season The YCC General Meeting was a long time ago, November, but elected itself a new President, Alex Cerri, and a Committee with a few changes as well. It also remembered to thank outgoing President Tomasz Ładziński for his excellent leadership and personal hard work over many seasons. And then we rounded off the evening with the Closing Dinner and awards of prizes: skippers, crew-member, and photographic cultminations of a very enjoyable season. This new Committee has met a couple of times already, and planned the season carefully: check it out on http://yachting.web.cern.ch/yachting/ . We are highlighting a Winter Evening next week: see the Blog on the opening page, and join us for some insights on owning, running, sailing, an Atlantic cruiser - solo! It is also not too early to contemplate signing up for a course: not just newcomers, but those moving from the early experiences in to more demanding boats. We are planning courses very similar to the previous season, pl...

  16. CREATIVE COLLISIONS: ARTS @CERN

    CERN Document Server

    CERN. Geneva

    2012-01-01

    In 2000, CERN hosted Signatures of the Invisible – one of the landmark initiatives in arts and science. In 2012, CERN is now initiating its own science/arts programme Collide@CERN in different arts disciplines. The first of these is in digital arts, and the international competition to find the winning artist is called the Prix Ars Electronica Collide@CERN. It was announced September 2011 at CERN’s first collaboration with an international arts festival – Ars Electronica in Linz. The competition attracted over 395 entries from 40 countries around the world. The winning artist, Julius Von Bismarck, will begin his two month residency here at CERN next month. Ariane Koek who leads on this initiative, discusses the residency programme, as well as the background about Art@CERN. History has shown that particle physics and the arts are great inspiration partners. The publication of the paper by Max Planck which gave birth to quantum mechanics as well as those by Einstein, heavily influenced some of the grea...

  17. CERN Relay Race

    CERN Multimedia

    Running Club

    2010-01-01

    This year’s CERN Relay Race will take place around the Meyrin site on Thursday 20th May at 12h00. This annual event is for teams of 6 runners covering distances of 1000m, 800m, 800m, 500m, 500m and 300m respectively. Teams may be entered in the Seniors, Veterans, Ladies, Mixed or Open categories. The registration fee is 10 CHF per runner, and each runner receives a souvenir prize. As usual, there will be a programme of entertainments from 12h in the arrival area, in front of the Restaurant no. 1. Drinks, food, CERN club information and music will be available for the pleasure of both runners and spectators. The race starts at 12h15, with results and prize giving at 13:15.   For details of the race, and of how to sign up a team, please visit: https://espace.cern.ch/Running-Club/CERN-Relay The event is organised by the CERN Running Club with the support of the CERN Staff Association.  

  18. Sharing resources@CERN

    CERN Multimedia

    2002-01-01

    The library is launching a 'sharing resources@CERN' campaign, aiming to increase the library's utility by including the thousands of books bought by individual groups at CERN. This will improve sharing of information among CERN staff and users. Until now many people were unaware that copies of the same book (or standard, or journal) are often held not only by the library but by different divisions. (Here Eduardo Aldaz, from the PS division, and Isabel Bejar, from the ST division, read their divisional copies of the same book.) The idea behind the library's new sharing resources@CERN' initiative is not at all to collect the books in individual collections at the CERN library, but simply to register them in the Library database. Those not belonging to the library will in principle be unavailable for loan, but should be able to be consulted by anybody at CERN who is interested. "When you need a book urgently and it is not available in the library,' said PS Division engineer Eduardo Aldaz Carroll, it is a sham...

  19. CERN In Focus

    CERN Document Server

    CERN audiovisual service

    2008-01-01

    First edition 2008 of Cern in Focus. On behalf of the audiovisual team, a selection of the latest videos filmed at CERN. Every six weeks, we will bring you the latest in CERN's activities, from LHC start up to the Computing Grid, featuring the experiments and many other goings-on at CERN. The agenda of this first edition of CERN in Focus features the visit of the prime minister of Malta, Lawrence Gonzi... CMS and the final descent of the YE-1 end cap... The departure of UA1 magnets to Japan... The start up of sectors 4 and 5... And finally, in our sports round up... We'll talk about football. New in brief this month... The final bolt is in place : On 7th November, in the bowels of the LHC tunnel, CERN's Director General Robert Aymar tightened a gold-plated bolt for the last arc interconnection of sector 1-2. This symbolic gesture marks the completion of all the arc interconnections of the LHC. Last welding work: it was never going to be an easy task. On this day last year just one sector had been completed,...

  20. Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter

    CERN Document Server

    Parizzi, A A; Klose, F

    2002-01-01

    A computer program for modeling the neutron spin-flip process in a novel time-of-flight (TOF) spin-resonance energy filter has been developed. The software allows studying the applicability of the device in various areas of spallation neutron scattering instrumentation, for example as a dynamic TOF monochromator. The program uses a quantum-mechanical approach to calculate the local spin-dependent spectra and is essential for optimizing the magnetic field profiles along the resonator axis. (orig.)

  1. TAR-1 A programme for the determination of time behaviour of neutron density on a thermal reactor

    International Nuclear Information System (INIS)

    This programme, written for the UNIVAC-UCT of J.E.N., obtain the time behaviour of neutron density as a function of both positive and negative step change in reactivity. These results are obtained from solutions of the space-independent kinetic equations of a bare thermal reactor based on the Fermi continuous slowing down model and using six groups of delayed neutrons. (Author) 3 refs

  2. Neutron monitors and muon detectors for solar modulation studies: 2. $\\phi$ time series

    CERN Document Server

    Ghelfi, A; Cheminet, A; Derome, L; Hubert, G; Melot, F

    2016-01-01

    The level of solar modulation at different times (related to the solar activity) is a central question of solar and galactic cosmic-ray physics. In the first paper of this series, we have established a correspondence between the uncertainties on ground-based detectors count rates and the parameter $\\phi$ (modulation level in the force-field approximation) reconstructed from these count rates. In this second paper, we detail a procedure to obtain a reference $\\phi$ time series from neutron monitor data. We show that we can have an unbiased and accurate $\\phi$ reconstruction ($\\Delta\\phi/\\phi\\simeq 10\\%$). We also discuss the potential of Bonner spheres spectrometers and muon detectors to provide $\\phi$ time series. Two by-products of this calculation are updated $\\phi$ values for the cosmic-ray database and a web interface to retrieve and plot $\\phi$ from the 50's to today (\\url{http://lpsc.in2p3.fr/crdb}).

  3. Periodic modulation in pulse arrival times from young pulsars: a renewed case for neutron star precession

    CERN Document Server

    Kerr, Matthew; Johnston, Simon; Shannon, Ryan

    2015-01-01

    In a search for periodic variation in the arrival times of pulses from 151 young, energetic pulsars, we have identified seven cases of modulation consistent with one or two harmonics of a single fundamental with time-scale 0.5-1.5 yr. We use simulations to show that these modulations are statistically significant and of high quality (sinusoidal) even when contaminated by the strong stochastic timing noise common to young pulsars. Although planetary companions could induce such modulation, the large implied masses and 2:1 mean motion resonances challenge such an explanation. Instead, the modulation is likely to be intrinsic to the pulsar, arising from quasi-periodic switching between stable magnetospheric states, and we propose that precession of the neutron star may regulate this switching.

  4. Simulation of Instability at Transition Energy with a New Impedance Model for CERN PS

    CERN Document Server

    Wang, Na; Biancacci, Nicolo; Migliorati, Mauro; Persichelli, Serena; Sterbini, Guido

    2016-01-01

    Instabilities driven by the transverse impedance are proven to be one of the limitations for the high intensity reach of the CERN PS. Since several years, fast single bunch vertical instability at transition energy has been observed with the high intensity bunch serving the neu-tron Time-of-Flight facility (n-ToF). In order to better understand the instability mechanism, a dedicated meas-urement campaign took place. The results were compared with macro-particle simulations with PyHEADTAIL based on the new impedance model developed for the PS. Instability threshold and growth rate for different longitu-dinal emittances and beam intensities were studied.

  5. Structures of RbD and CsD by time-of-flight neutron diffraction

    International Nuclear Information System (INIS)

    Rubidium deuteride, RbD, Mr=87.47, cubic, Fmanti 3m, a=5.9705(2) A, (10 K), a=6.0210(2) A (300 K), V=212.83 A3 (10 K), V=218.27(2) A3 (300 K), Z=4, Dx=2.66 g cm-3 (300 K), neutron time-of-flight, Rietveld refinement, wRp, Rp, reduced χ2 are 0.045, 0.031, 3.99 (10 K), respectively, and 0.052, 0.037, 2.19 (300 K), respectively. Caesium deuteride, CsD, Mr=134.92, cubic, Fmanti 3m, a=6.3741(3) A, V=258.97(4) A3, Z=4, Dx=3.46 g cm-3, 300 K, neutron time-of-flight, Rietveld refinement, wRp, Rp, reduced χ2 are 0.070, 0.048, 1.30, respectively. RbD and CsD were confirmed to have the B1 (rocksalt) structure. (orig.)

  6. Time-dependent, compositionally driven convection in the oceans of accreting neutron stars

    CERN Document Server

    Medin, Zach

    2014-01-01

    We discuss the effect of chemical separation as matter freezes at the base of the ocean of an accreting neutron star, and the subsequent enrichment of the ocean in light elements and inward transport of heat through convective mixing. We extend the steady-state results of Medin & Cumming 2011 to transiently accreting neutron stars, by considering the time-dependent cases of heating during accretion outbursts and cooling during quiescence. Convective mixing is extremely efficient, flattening the composition profile in about one convective turnover time (weeks to months at the base of the ocean). During accretion outbursts, inward heat transport has only a small effect on the temperature profile in the outer layers until the ocean is strongly enriched in light elements, a process that takes hundreds of years to complete. During quiescence, however, inward heat transport rapidly cools the outer layers of the ocean while keeping the inner layers hot. We find that this leads to a sharp drop in surface emission...

  7. Water distribution in a sorption enhanced methanation reactor by time resolved neutron imaging.

    Science.gov (United States)

    Borgschulte, A; Delmelle, R; Duarte, R B; Heel, A; Boillat, P; Lehmann, E

    2016-06-29

    Water adsorption enhanced catalysis has been recently shown to greatly increase the conversion yield of CO2 methanation. However, the joint catalysis and adsorption process requires new reactor concepts. We measured the spatial water distribution in a model fixed bed reactor using time resolved neutron imaging. Due to the high neutron attenuation coefficient of hydrogen, the absorbed water in the sorption catalyst gives a high contrast allowing us to follow its formation and map its distribution. At the same time, the product gas was analysed by FTIR-gas analysis. The measurements provided crucial insights into the future design of sorption reactors: during the sorption enhanced reaction, a reaction front runs through the reactor. Once the extension of the reaction front reaches the exhaust, the conversion rate of sorption enhanced methanation decreases. The existence of a reaction front running through the reactor is prerequisite for a high conversion rate. We give a simple model of the experimental results, in particular the conditions, under which a reaction front is established. In particular the latter effect must be taken into account for the dimensions of a large scale reactor. PMID:26791100

  8. Effect of double false pulses in calibrated neutron coincidence collar during measuring time-correlated neutrons from PuBe neutron sources

    International Nuclear Information System (INIS)

    Effect of double false pulses of preamplifiers in neutron coincidence collar was investigated to explain non-parallel shape of calibrated D/S–MPu curves of two commercial neutron coincidence collars, JCC-31 and JCC-13. Two curves, which were constructed from D/S ratio (doubles and singles count rate), and Pu content MPu, of the same set of secondary standard PuBe neutron sources, should be parallel. Non-parallelism rises doubt about usability of the method based on this curve for determination of Pu content in PuBe neutron sources. We have shown in three steps that the problem originates from double false pulses of preamplifiers in JCC-13. First we used a pulse train diagram for analyzing the non-parallel shape, second we used Rossi-Alpha distribution measured by pulse train recorder developed in our institute and finally, we investigated the effect of inserted noise pulses. This implies a new type of QA test option in traditional multiplicity shift registers for excluding presence of double false pulses

  9. High-energy neutron-induced fission cross sections of natural lead and bismuth-209

    OpenAIRE

    Calviño Tavares, Francisco; Cortés Rossell, Guillem Pere; Poch Parés, Agustí; Pretel Sánchez, Carme

    2011-01-01

    The CERN Neutron Time-Of-Flight (n TOF) facility is well suited to measure small neutron- induced ssion cross sections, as those of subactinides. The cross section ratios of natPb and 209Bi relative to 235U and 238U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the ssion events. The present experiment provides the rst results for neutron-induced ssion up to 1 GeV for natPb and 209Bi. A good agreement with previous exper...

  10. CERN computing equipment for Senegal

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    On 26 May, CERN once again had the honour of donating computing equipment to a foreign institute.   This time, around 100 servers and five network hubs were sent to Senegal, making it the seventh country, after Morocco, Ghana, Bulgaria, Serbia, Egypt and the Philippines, to receive a donation of computing equipment from the Organization. The official ceremony was held at CERN on 26 May in the presence of the Director-General, Rolf Heuer, and Senegal's ambassador to Geneva, Fodé Seck, who both expressed their enthusiasm for the project. The equipment is intended for Cheikh Anta Diop University (UCAD) in Dakar and will be of particular use to students attending the African School of Fundamental Physics and its Applications (ASP 2014) taking place from 3 to 23 August, for which CERN is a partner. The ASP allows a large number of African students to hone their skills in high-energy physics and to forge professional links with fellow physicists in Africa and Europe. ...

  11. Powering CERN and the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN's electricity network is denser than that of the Canton of Geneva, is powered by two different national grids and has to provide users with an availability rate as close to 100% as possible. To ensure the smooth running of the machines throughout the period of LHC physics operation, the teams from the EN Department are implementing a continuous programme of consolidation and modernisation on all the Laboratory's sites, but the biggest projects will have to wait until the long technical shutdown scheduled for 2013.   An electrical installation at CERN. CERN's annual electricity consumption is around one terawatt hour (TWh), which roughly corresponds to a fifth of the consumption of the Canton of Geneva. However, during periods when all the machines are operating at the same time, our demand can reach the equivalent of a third of Geneva's total consumption. While the grid of the Geneva public utility company SIG (Services Industriels de Genève) covers distances of around 50 km, the ...

  12. 1970: ESO arrives at CERN

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    In 1970, CERN and ESO signed a collaboration agreement for the construction of the Observatory’s first telescope. That same year, ESO’s Telescope Division and Sky Atlas laboratory settled on the CERN site in Meyrin. Let’s turn back to the beginnings of this lasting and fruitful alliance.   Martin Cullum, ESO physicist from 1973 to 2009 In 1974, when I attended my first international conference on behalf of ESO, the first thing people asked was: “Where are you from?” “ESO,” I would say. The response: ‘'What on Earth is ESO?” Nowadays, people I meet seem to know more about ESO than I do! It is clear that ESO profited enormously from its sojourn at CERN. The wise decision of the ESO Director General at the time, Adriaan Blaauw, to move to Geneva allowed ESO to build up its technical expertise to be able to build world-beating projects like the VLT, which has undoubtedly been the most exciting scientif...

  13. Combined proton-recoil and neutron time-of-flight spectrometer for 14 MeV neutrons

    International Nuclear Information System (INIS)

    The main effort put into this work is the foundation of a reliable physical basis for a 12-16 MeV neutron-spectrometer at JET. The essential problem is the amount of scatterer that can be incorporated without losing resolution. We have found two possible methods, the use of a pure hydrogen scatterer and the use of a polyethylene foil scatterer. The pure hydrogen solution gives a very complicated spectrometer with large detectors. The polyethylene solution is limited by the thickness and the width of the foil. We judge the solution with the polyethylene foil to be the most promising one for a reliable spectrometer. However, a large foil area is needed. This gives a spectrometer design with an annular foil, an annular neutron detection system, and a central proton-detector. An efficiency of 10-6 counts/s per n/cm2,s at the foil can be obtained with a resolution in the order of 100 keV for 14 MeV neutrons. Following the General Requirements given in the contract of this work, we concluded that an instrument with the desired properties can be made. The instruments is able to give useful information about the plasma from plasma temperatures of about 5 keV. (Authors)

  14. Spotlight on CERN : Recruitment and professions at CERN

    CERN Multimedia

    CERN video productions

    2010-01-01

    Spotlight on CERN No. 3 Recruitment and professions at CERN Welcome to the Globe of Science and Innovation for this third edition of "Spotlight on CERN". When one thinks about professions at CERN, what springs to mind? Physicists? Engineers? In fact, the smooth operation of the Organisation relies on a diversity of professions and this in itself, poses a real challenge in terms of recruitment in CERN member states. Today, to tell us more about this challenge and about CERN professions in general, we welcome James Purvis, Head of the HR Recruitment, Programmes and Monitoring group, and Lore Taillieu, leader of the group's Recruitment section.

  15. When CERN travels abroad

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    For the first time the new CERN travelling exhibition has gone abroad. The venue is Torino, in Italy, where it is being shown at the Museum of Natural Science in the framework of the activities of the EuroScience Open Forum (ESOF 2010). Soon after the event, the exhibition will fly to Copenhagen. The CERN traveling exhibition was inaugurated in 2009. The new ‘Accelerating Science’ exhibition was inaugurated in 2009 as part of the celebrations to mark the 450th anniversary of the University of Geneva. “CERN’s travelling exhibition is an important tool for outreach in our Member states as it carries the main messages that constitute the backbone of the Laboratory’s education and communication policy”, explains Rolf Landua, head of the Education Group, which manages the exhibition. “The 2010 European Science Open Forum in Torino will gather a lot of experts and visitors from the general public who will be able to experience in an ...

  16. Electronic Recruitment at CERN

    CERN Multimedia

    2004-01-01

    The Human Resources Department switches to electronic recruitment. From now on whenever you are involved in a recruitment action you will receive an e-mail giving you access to a Web folder. Inside you will find a shortlist of applications drawn up by the Human Resources Department. This will allow you to consult the folder, at the same time as everyone else involved in the recruitment process, for the vacancy you are interested in. This new electronic recruitment system, known as e-RT, will be introduced in a presentation given at 10 a.m. on 11 February in the Main Auditorium. Implemented by AIS (Administrative Information Services) and the Human Resources Department, e-RT will cover vacancies open in all of CERN's recruitment programmes. The electronic application system was initially made available to technical students in July 2003. By December it was extended to summer students, fellows, associates and Local Staff. Geraldine Ballet from the Recruitment Service prefers e-RT to mountains of paper! The Hu...

  17. CERN on show

    CERN Multimedia

    2012-01-01

    Last week I was in Ankara to discuss Turkish accession to CERN, and to take part in the opening of CERN’s main travelling exhibition at the Middle East Technical University. I was astonished at the crowds of people the exhibition drew in, and I’m told that it’s a similar story wherever it goes. Our smaller exhibition stands are also much in demand across our Member States.   You don’t have to travel to Ankara, however, to experience the same phenomenon – just go to Building 33 any time from Monday to Saturday and you’ll get the idea. But although we’ve worked hard over recent years to increase our capacity for visits to a level approaching 80,000 per year, there’s still a long waiting list. And that’s a problem. The success of the Visits Service rests on the goodwill of all the CERNois who volunteer to be guides, as well as those who graciously allow increasing numbers of visitors into their workplaces...

  18. Real-time neutron scattering investigations of biological signal transduction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    May, Roland [Institut Laue-Langevinx, Grenoble Cedex (France); Hendriks, Johnny [Vrije Universiteit Amsterdam, Amsterdam (Netherlands); Crielaard, Wim [Swammerdam Institute for Life Sciences and Academic Center for Dentistry, University of Amsterdam, Amsterdam (Netherlands)

    2005-07-01

    During their catalytic cycle, proteins involved in biological signal transduction undergo unexpectedly large conformational changes, which are at the core of their biological functioning. Until now it has been extremely difficult to obtain experimental insight into the nature of these conformational changes. Mathematical modeling and time-resolved X-ray crystallography have resulted in probable routes along which these conformational changes may take place, but so far this fundamental biological phenomenon has hardly been tackled experimentally. Here, we report on an attempt to observe structural changes in Photoactive Yellow Protein with time-resolved small-angle neutron scattering using diffractometer D22 at the high-flux reactor of the Institut Laue-Langevin, Grenoble, France.

  19. Internal flow measurements of the SSME fuel preburner injector element using real time neutron radiography

    Science.gov (United States)

    Lindsay, John T.; Elam, Sandy; Koblish, Ted; Lee, Phil; Mcauliffe, Dave

    1990-01-01

    Due to observations of unsteady flow in the Space Shuttle Main Engine fuel preburner injector element, several flow studies have been performed. Real time neutron radiography tests were recently completed. This technique provided real time images of MiL-c-7024 and Freon-22 flow through an aluminum liquid oxygen post model at three back pressures (0, 150, and 545 psig) and pressure drops up to 1000 psid. Separated flow appeared only while operating at back pressures of 0 and 150 psig. The behavior of separated flow was similar to that observed for water in a 3x acrylic model of the LOX post. On the average, separated flow appeared to reattach near the exit of the post when the ratio of pressure drop to supply pressure was about 0.75.

  20. Development of an ion time-of-flight spectrometer for neutron depth profiling

    Science.gov (United States)

    Cetiner, Mustafa Sacit

    Ion time-of-flight spectrometry techniques are investigated for applicability to neutron depth profiling. Time-of-flight techniques are used extensively in a wide range of scientific and technological applications including energy and mass spectroscopy. Neutron depth profiling is a near-surface analysis technique that gives concentration distribution versus depth for certain technologically important light elements. The technique uses thermal or sub-thermal neutrons to initiate (n, p) or (n, alpha) reactions. Concentration versus depth distribution is obtained by the transformation of the energy spectrum into depth distribution by using stopping force tables of the projectiles in the substrate, and by converting the number of counts into concentration using a standard sample of known dose value. Conventionally, neutron depth profiling measurements are based on charged particle spectrometry, which employs semiconductor detectors such as a surface barrier detector (SBD) and the associated electronics. Measurements with semiconductor detectors are affected by a number of broadening mechanisms, which result from the interactions between the projectile ion and the detector material as well as fluctuations in the signal generation process. These are inherent features of the detection mechanism that involve the semiconductor detectors and cannot be avoided. Ion time-of-flight spectrometry offers highly precise measurement capabilities, particularly for slow particles. For high-energy low-mass particles, measurement resolution tends to degrade with all other parameters fixed. The threshold for more precise ion energy measurements with respect to conventional techniques, such as direct energy measurement by a surface barrier detector, is directly related to the design and operating parameters of the device. Time-of-flight spectrometry involves correlated detection of two signals by a coincidence unit. In ion time-of-flight spectroscopy, the ion generates the primary input

  1. Time development and flux dependence of neutron-irradiation induced defects in silicon pad detectors

    CERN Document Server

    Zontar, D; Kramberger, G; Mikuz, M

    1999-01-01

    1x1 cm sup 2 silicon pad p sup + -n-n sup + detectors were irradiated with fast neutrons from the TRIGA research reactor in Ljubljana to fluences from 5x10 sup 1 sup 3 to 10 sup 1 sup 4 n/cm sup 2. The observed time development of annealing of the full-depletion voltage (FDV) could be fitted by a constant and two exponentials. The characteristic time of the fast component is 4 h, independent of temperature in the interval 0-15 deg. C. A comparison of MESA and planar pad detectors shows a 20-30% lower FDV for the MESA. A search for a flux dependence of the radiation damage was performed in the range from 2x10 sup 8 to 5x10 sup 1 sup 5 n/cm sup 2 s and no systematic differences were observed.

  2. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    Science.gov (United States)

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; Bell, P.; Bionta, R.; Cerjan, C.; Gatu Johnson, M.; Kilkenny, J. D.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.

    2016-11-01

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ˜20 ps and energy resolution of ˜100 keV for total neutron yields above ˜1016. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ˜20 ps.

  3. Search for solar axions with the Time Projection Chamber of the CERN Axion Solar Telescope with 4-Helium as buffer gas

    CERN Document Server

    Ruz, J; García Irastorza, I

    CAST (CERN Axion Solar Telescope) is a helioscope looking for axions coming from the solar core to the Earth. The experiment, located at CERN, is based on the Primakoff effect and uses a magnetic field of 9 Tesla provided by a decommissioned LHC magnet. CAST is able to follow the Sun during sunrise and sunset and, therefore, different X-ray detectors are mounted on both ends of the magnet waiting for a photon from axion-to-photon conversion due to the Primakoff effect. During its First Phase, which concluded in 2004, the TPC detector of CAST looked for axions with masses up to 0.02 eV. By using a Helium-4 buffer gas, CAST's TPC detector has been able to re-establish the coherence needed to scan for axions with masses up to 0.39 eV, technique that allows CAST to look into the theoretical regions for axions.

  4. Dynamic neutron depolarization system for the investigation of time dependent magnetic effects

    International Nuclear Information System (INIS)

    To study magnetic after-effects in ferro- and superparamagnetic materials within a range of about 100 μs - 10s a so-called dynamic neutron depolarization system has been developed that is currently installed at the polarized beam facility of the TRIGA Mark II reactor, Vienna. It allows to measure the time dependence of the polarization change of an initially fully polarized neutron beam on its transmission through a sample exposed to a pulsed magnetic field. A split-pair coil mounted directly on the nitrogen shield of a specially designed helium/nitrogen bath cryostat can be energized up to a maximal induction of 0.25T at a slope of about 103 Ts-1. Sample temperatures in the ranges of 4.2-15K and 77-120K can be established. In order to minimize eddy currents the coil suspension as well as the sample holder are sliced radially. The maximal repetition frequency of the field pulses is 100 Hz which is the upper limit of the multiscaler system we use for a synchronized registration of the beam polarization. First measurements are dealing with the superparamagnetic system Cu-1%Co where single domain cobalt precipitations are expected to give rise to relaxation phenomena well observable with this method. (author)

  5. Non-destructive investigation of a time capsule using neutron radiography and X-ray fluorescence

    Science.gov (United States)

    MacDonald, B. L.; Vanderstelt, J.; O'Meara, J.; McNeill, F. E.

    2016-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. This study applied two techniques: X-ray fluorescence and neutron radiography, for the investigation of a capped, tubular metal object recovered from an urban construction site in Gore Park, Hamilton, Canada. The site is an urban park containing a World War I commemorative monument that underwent renovation and relocation. Historical documentation suggested that the object buried underneath the monument was a time capsule containing a paper document listing the names of 1800 Canadians who died during WWI. The purpose of this study was to assess the condition of the object, and to verify if it was what the historical records purported. XRF analysis was used to characterize the elemental composition of the metal artifact, while neutron radiography revealed that its contents were congruent with historical records and remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage.

  6. Neutron-induced fission cross sections of 233U and 243Am in the energy range 0.5 Mev En 20 MeV @ n_TOF

    CERN Document Server

    Belloni, F; Milazzo, P M; Calviani, M; Colonna, N; Mastinu, P; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvár, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Koehler, P; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vazl, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2011-01-01

    Neutron-induced fission cross-sections of actinides have been recently measured at the neutron time of flight facility n_TOF at CERN in the frame of a research project involving isotopes relevant for nuclear astrophysics and nuclear technologies. Fission fragments are detected by a gas counter with good discrimination between nuclear fission products and background events. Neutron-induced fission cross-sections of 233U and 243Am were determined relative to 235U. The present paper reports the results obtained at neutron energies between 0.5 and 20 MeV.

  7. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  8. CERN Phonebook evolution

    CERN Multimedia

    Sébastien Dellabella

    2012-01-01

    Consolidating phonebooks at CERN We have had many phonebooks in the past, Xwho (now decommissioned), the NICE phonebook on Windows PCs, and more recently the web site people.cern.ch. However, diversity doesn’t always equate to improved efficiency or quality. So in order to reduce the maintenance effort and to improve the user experience, we have consolidated these various phonebooks into a single web application: phonebook.cern.ch Motivations for change The NICE Phonebook was introduced in the year 2000 when Windows 95 was the major desktop platform. Since then, a lot has changed not only in technology and the desktop landscape but also in the variety of devices used to access the data (notably smartphones and tablets). Updating the NICE phonebook is slow. Once the master database is modified it can take up to two days for the data to propagate to the application. Thus, we are now planning the retirement of the NICE phonebook application. The new Phonebook.cern.ch The new phonebook.cern.ch...

  9. Lectures for CERN pensioners

    CERN Multimedia

    SC Unit

    2008-01-01

    The CERN Medical Service and the Pensioners Association are pleased to invite CERN pensioners to a series of lectures given by professors and specialists from the Teaching Hospitals and the Faculty of Medicine of the University of Geneva on the following topic: PROMOTION OF OPTIMUM BRAIN AGEING The lectures will take place in the Main CERN Auditorium (Building 60) from 2.30 p.m. to 4.30 p.m. on the following dates: Wednesday 12 November 2008: Assessing the extent of brain ageing Dr Dina ZEKRY Friday 12 December 2008: Can memory decline be prevented? Pr Jean-Pierre MICHEL Thursday 15 January 2009: Diagnosing and treating Alzheimer’s disease Pr Gabriel GOLD Wednesday 25 February 2009: What is the brain reserve? Speaker’s name to be announced at a later date The lectures will be given in French, with transparencies in English, and will be followed by a wide-ranging debate with the participants. CERN Medical Service - Pensioners Association - CERN-ESO (GAC-EPA)

  10. Spaceflight participant visits CERN!

    CERN Multimedia

    Kathryn Coldham

    2016-01-01

    On 15 July, CERN welcomed spaceflight participant Anousheh Ansari.   Anousheh Ansari’s grin stretches from ear to ear, during an intriguing conversation with Nobel laureate Samuel C.C. Ting at AMS POCC. (Image: Maximilien Brice/CERN) Iranian-American Anousheh Ansari was the first-ever female spaceflight participant, spending eight days on the International Space Station (ISS) in 2006. She now has a new addition to her list of extraordinary sights ­– the home of the world’s largest particle accelerator: CERN.   On 15 July, Anousheh Ansari came to CERN and, unsurprisingly, visited the control room of the experiment attached to the ISS: the AMS. At the AMS Payload Operations Control Centre (AMS POCC) on CERN’s Prévessin site, she met the Nobel laureate Samuel Ting, spokesperson of the AMS experiment. Ansari and her accompanying guests were thrilled to expand their knowledge about CERN, its research and its...

  11. EU Commissioner visits CERN

    CERN Document Server

    2005-01-01

    European Commissioner Viviane Reding in front of one of the computers showing how the Grid works and, from left to right, Robert Aymar, CERN's Director-General, Wolfgang von Rüden, Head of the Information Technology Department, and Bob Jones, the newly appointed director of the EGEE project since 1st November. Viviane Reding, European Commissioner for Information Society and Media, visited CERN on 28 October. Accompanied throughout by CERN's Director-General, Robert Aymar, and the Head of the Information Technology Department, Wolfgang von Rüden, the Commissioner visited the ATLAS cavern before going on to the Information Technology Department, where she was given a complete overview of CERN's activities in the strategic field of Grid computing. Viviane Reding's visit coincided with the end of the EGEE (Enabling Grids for E-sciencE) conference, which took place in Pisa in Italy. Co-ordinated by CERN and funded by the European Commission, the EGEE project aims to set up a worldwide grid infrastructure for sc...

  12. CERN television news

    CERN Multimedia

    2002-01-01

    CERN events brought right to your desktop by the new video bulletin.   CERN now has its very own news broadcast , or rather 'webcast', with a host of special reports and even a star presenter. From today onwards, just go to the Bulletin's web page, click on the 'video news' link and sit back and enjoy the latest news about CERN, presented in images by Wendy Korda. The ten-minute newscast in both French and English, the Organization's two official languages, presents interviews, pictures of experiments and computer-generated graphics, bringing you right up to date with some of the Laboratory's latest stories. The show concludes with a selection of the best snapshots taken by the CERN Photo Lab. So every one or two months CERN's Audio-Video Service (ETT/DH) will be putting together a video news report that you can watch on your own desktop computer. Daniel Boileau, Patrick Gilbert de Vautibault and Jacques Fichet, the Service's three technicians, came up with the idea of producing this regular feat...

  13. CERN CAR STICKERS

    CERN Multimedia

    Service Accueil et Controle d'Accès; ST Division

    1999-01-01

    In accordance with Operational Circular n¡ 2, paragraph 21, CERN car stickers are to be renewed. The new stickers are now available and will be valid for a year.Youare therefore requested:either to obtain them from the distribution points for new stickers (see below); or to send us the application form below, duly completed, via the internal mail; or to complete the application form directly via the Web at the address: http://cern.ch/registration-stickers. Each vehicle has to carry a sticker and needs a separate application form.Vehicles bearing CERN diplomatic plates (CD07, 431K and CD series) do not need a sticker for access to the CERN areas.Thank you.List of distribution points:Registration Service (bldg 55 1st floor), open from 07h30 to 16h30. Building 33 (entrance hall), open from 08h00 to 18h00. Building 120 (ground floor), outside working hours.Name Surname CERN identification number Vehicle registration plates Country issuing the plates Vehicle ma...

  14. CERN Relay Race

    CERN Multimedia

    2009-01-01

    The CERN relay race, now in its 39th year, is already a well-known tradition, but this year the organizers say the event will have even more of a festival feeling. Just off the starting line of the CERN relay race.For the past few years, spectators and runners at the CERN relay race have been able to enjoy a beer while listening to music from the CERN music and jazz clubs. But this year the organizers are aiming for "even more of a festival atmosphere". As David Nisbet, President of the CERN running club and organizer of the relay race, says: "Work is not just about getting your head down and doing the theory, it’s also about enjoying the company of your colleagues." This year, on top of music from the Santa Luis Band and the Canettes Blues Band, there will be demonstrations from the Aikido and softball clubs, a stretching session by the Fitness club, as well as various stalls and of course, the well-earned beer from AGLUP, the B...

  15. Radiography at CERN

    CERN Multimedia

    HSE Unit

    2014-01-01

    What is industrial radiography? It is a non-destructive method with a wide variety of applications, such as inspecting the quality of a weld. It uses high-energy radioactive sources or an X-ray generator.   Is this inspection technique used at CERN? Yes, it is widely used at CERN by the EN-MME Group, which outsources the work to one or more companies, depending on the workload. Is it possible to carry out radiography anywhere at CERN? Yes, it is possible to carry out radiography in any building/accelerator/experiment area at CERN (including in areas which are not normally subject to radiological hazards). When is radiography carried out? It normally takes place outside of working hours (7 p.m. to 6 a.m.). How will I know if radiography is taking place in my building? If this activity is planned in a CERN building, notices will be affixed to all of its main entrance doors at least 24 hours in advance. What are the risks? There is a risk of exposure to very high levels of radiation, dep...

  16. On 23 November, the Duke of York visited CERN and, in his capacity as the UK's Special Representative for International Trade and Investment, inaugurated the UK@CERN Exhibition.

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    In his inaugural speech, the Duke emphasized that business between companies and CERN "is a two-way information flow with mutual benefits." The companies make sales but also benefit from technologies that CERN transfers to them. CERN benefits from the exchange, the Duke said, addressing CERN's scientists, because it "frees your time for what you do best: science."

  17. Tritium release from neutron irradiated beryllium: Kinetics, long-time annealing and effect or crack formation

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe, (Germany)

    1995-09-01

    Since beryllium is considered as one of the best neutron multiplier materials in the blanket of the next generation fusion reactors, several studies have been started to evaluate its behaviour under irradiation during both operating and accidental conditions. Based on safety considerations, tritium produced in beryllium during neutron irradiation represents one important issue, therefore it is necessary to investigate tritium transport processes by using a comprehensive mathematical model and comparing its predictions with well characterized experimental tests. Because of the difficulties in extrapolating the short-time tritium release tests to a longer time scale, also long-time annealing experiments with beryllium samples from the SIBELIUS irradiation. have been carried out at the Forschungszentrum Karlsruhe. Samples were annealed up to 12 months at temperatures up to 650{degrees}C. The inventory after annealing was determined by heating the samples up to 1050{degrees}C with a He+0.1 vo1% H{sub 2} purge gas. Furthermore, in order to investigate the likely effects of cracks formation eventually causing a faster tritium release from beryllium, the behaviour of samples irradiated at low temperature (40-50{degrees}C) but up to very high fast neutron fluences (0.8-3.9{center_dot}10{sup 22} cm{sup -2}, E{sub n}{ge}1 MeV) in the BR2 reactor has been investigated. Tritium was released by heating the beryllium samples up to 1050{degrees}C and purging them with He+0.1 vo1% H{sub 2}. Tritium release from high-irradiated beryllium samples showed a much faster kinetics than from the low-irradiated ones, probably because of crack formation caused by thermal stresses in the brittle material and/or by helium bubbles migration. The obtained experimental data have been compared with predictions of the code ANFIBE with the goal to better understand the physical mechanisms governing tritium behaviour in beryllium and to assess the prediction capabilities of the code.

  18. Dalai Lama at CERN

    International Nuclear Information System (INIS)

    On 30 August CERN turned aside from its usual day-to-day preoccupations when Director-General Herwig Schopper played host to the Dalai Lama of Tibet and his entourage during the holy man's 1983 visit to Europe. In welcoming his visitor, Professor Schopper stressed the role of particle physics in helping to understand man's place in the cosmos, and how the Dalai Lama's interest would further the interrelation of science, philosophy and religion. The Dalai Lama visited the UA 1 experiment (rolled back into its 'garage' during the present fixed target operations at CERN) and the large installations for the neutrino experiments in the West Area of the SPS machine. There was an intriguing exchange of views with CERN theorists, who described how science has continually modified our view of the world around us

  19. Safety alarms at CERN

    CERN Document Server

    Ninin, P; Henny, L

    1998-01-01

    In order to operate the CERN accelerators complex safely, the acquisition, transport and management of safety alarms is of crucial importance. The French regulatory authority [Direction de Sûreté des Installations Nucléaires de Base (INB)] defines them as Level 3 alarms; they represent as such a danger for the life and require an immediate intervention of the Fire Brigade. Safety alarms are generated by fire and flammable gas detection systems, electrical emergency stops, and other safety related systems. Level 3 alarms are transmitted for reliability reasons to their operation centre: the CERN Safety Control Room (SCR) using two different media: the hard-wired network and a computer based system. The hard-wired networks are connected to local panels summarizing in 34 security areas the overall CERN geography. The computer based system offers data management facilities such as alarm acquisition, distribution, archiving and information correlation. The Level 3 alarms system is in constant evolution in order...

  20. CERN's new safety policy

    CERN Multimedia

    2014-01-01

    The documents below, published on 29 September 2014 on the HSE website, together replace the document SAPOCO 42 as well as Safety Codes A1, A5, A9, A10, which are no longer in force. As from the publication date of these documents any reference made to the document SAPOCO 42 or to Safety Codes A1, A5, A9 and A10 in contractual documents or CERN rules and regulations shall be deemed to constitute a reference to the corresponding provisions of the documents listed below.   "The CERN Safety Policy" "Safety Regulation SR-SO - Responsibilities and organisational structure in matters of Safety at CERN" "General Safety Instruction GSI-SO-1 - Departmental Safety Officer (DSO)" "General Safety Instruction GSI-SO-2 - Territorial Safety Officer (TSO)" "General Safety Instruction GSI-SO-3 - Safety Linkperson (SLP)" "General Safety Instruction GSI-SO-4 - Large Experiment Group Leader In Matters of Safety (LEXGLI...

  1. CERN welcomes European science

    CERN Multimedia

    2002-01-01

    On 3 and 4 October CERN will host a special workshop for Marie Curie fellows. This programme is a key plank in the EU's strategy for creating a European research area.     With thousands of scientists from all over the continent working together, CERN is already an exemplary European science showcase. On 3 and 4 October, the Laboratory will contribute further to unifying all European science by hosting a special workshop for EU-funded Marie Curie fellows. This scheme gives young researchers from around the continent the mobility to go to wherever Europe's best facilities in their chosen field happen to be. The event that will take place at CERN, entitled 'Special workshop of Marie Curie Fellows on research and training in physics and technology', organised together with the European Commission, is a continuation of a series of workshops with the aim, among others, of promoting young researchers, supporting their training and mobility, and facilitating the interdisciplinary dissemination of knowledge. Dur...

  2. CERN UN Roundtable

    CERN Document Server

    CERN. Geneva; Del Rosso, Antonella; Gillies, James

    2014-01-01

    In the spirit of strengthening links and sharing best practices among the two Organizations, UNOG and CERN will be jointly organizing a round table discussion on the issue of “The challenge of communicating science and technology to the world: issues and solutions”. It is hoped that the discussions can highlight the experience of various organizations and institutions in their efforts to communicate and inform in several languages on topics – science and technology – that are often perceived as distant and arduous by the layman. ==>> Please note that registrations are now closed. It is not necessary to register for this event if you plan to watch it live on http://webcast.cern.ch. Send your questions to the speakers by email to: question@cern.ch

  3. CMS Centre at CERN

    CERN Multimedia

    2007-01-01

    A new "CMS Centre" is being established on the CERN Meyrin site by the CMS collaboration. It will be a focal point for communications, where physicists will work together on data quality monitoring, detector calibration, offline analysis of physics events, and CMS computing operations. Construction of the CMS Centre begins in the historic Proton Synchrotron (PS) control room. The historic Proton Synchrotron (PS) control room, Opened by Niels Bohr in 1960, will be reused by CMS to built its control centre. TThe LHC@FNAL Centre, in operation at Fermilab in the US, will work very closely with the CMS Centre, as well as the CERN Control Centre. (Photo Fermilab)The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Contro...

  4. CHOEUR DU CERN

    CERN Document Server

    CHOEUR DU CERN

    2010-01-01

    Les répétitions du chœur du CERN reprendront le mercredi 15 septembre à 20.00 heures à l’amphithéâtre principal – bâtiment 500. Au programme la préparation de notre concert de Noël avec la Missa Brevis, KV115, de Léopold Mozart et de la musique de Noël d’Europe. Les personnes qui aiment chanter, notamment des sopranes et des ténors, sont les bienvenues. Pour tout contact s’adresser à : Baudouin Bleus - (tél.CERN 767 82 44) -(baudouin.bleus@cern.ch) ou Martin Gatehouse ( martin.gatehouse@wanadoo.fr) ou Jean-Paul Diss (jean-pauldiss@wanadoo.fr).  

  5. CERN Relay Race

    CERN Multimedia

    2005-01-01

    The CERN Relay Race will take place around the Meyrin site on Wednesday 18 May between 12.15 and 12.35. This year, weather permitting, there will be some new attractions in the start/finish area on the field behind the Main Building. You will be able to: listen to music played by the CERN Jazz Club; buy drinks at the bar organised by the CERN Running Club; buy lunch served directly on the terrace by the restaurant Novae. ATTENTION: concerning traffic, the recommendations are the same as always: If possible, please avoid driving on the site during this 20 minute period. If you do meet runners in your car, please STOP until they all have passed. Thank you for your understanding.

  6. Kandinsky College Visits CERN

    CERN Document Server

    CERN Video productions; Angelos Alexopoulos

    2012-01-01

    This video documents the visit of nine senior high school students of the Kandinsky College in Nijmegen (Netherelands) to CERN. The students visited many of CERN's experimental facilities, took part in a Cloud Chamber workshop, attended talks and roundtable discussions of SpacePart12 and worked on the evaluation of the Microcosm exhibition as part of a school inquiry-based research project. The students and their teacher, Paul de Haas (a participant of the High School Teachers 2012 Programme at CERN) were connected with Prof. Christine Kourkoumelis and George Vasileiadis at the University of Athens and learned hands-on how to analyse real physics events, including Higgs-like ones, from the ATLAS experiment at the LHC using the HYPATIA Applet.

  7. Hydrogen release from sodium alanate observed by time-resolved neutron backscattering.

    Science.gov (United States)

    Léon, Aline; Wuttke, Joachim

    2011-06-29

    Innermolecular motion in Na(3)AlH(6) gives rise to a Lorentzian spectrum with a wavenumber-independent width of about 1  µeV at 180 °C, which is probably due to the rotation of AlH(6) tetrahedra. There is no such quasielastic line in NaAlH(4) or NaH. Based on this finding, time-resolved measurements on the neutron backscattering spectrometer SPHERES were used to monitor the decomposition kinetics of sodium alanate, [Formula: see text] NaH. Both reaction steps were found to be accelerated by autocatalysis, most likely at the surfaces of Na(3)AlH(6) and NaH crystallites.

  8. Hydrogen release from sodium alanate observed by time-resolved neutron backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Aline [Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Wuttke, Joachim, E-mail: aline.leon@kit.edu, E-mail: j.wuttke@fz-juelich.de [Juelich Centre for Neutron Science JCNS, Forschungszentrum Juelich GmbH, Outstation at FRM II, Lichtenbergstrasse 1, 85747 Garching (Germany)

    2011-06-29

    Innermolecular motion in Na{sub 3}AlH{sub 6} gives rise to a Lorentzian spectrum with a wavenumber-independent width of about 1 {mu}eV at 180 {sup 0}C, which is probably due to the rotation of AlH{sub 6} tetrahedra. There is no such quasielastic line in NaAlH{sub 4} or NaH. Based on this finding, time-resolved measurements on the neutron backscattering spectrometer SPHERES were used to monitor the decomposition kinetics of sodium alanate, NaAlH{sub 4{yields}}Na{sub 3}AlH{sub 6{yields}} NaH. Both reaction steps were found to be accelerated by autocatalysis, most likely at the surfaces of Na{sub 3}AlH{sub 6} and NaH crystallites.

  9. Electric dipole response of neutron-rich Calcium isotopes in relativistic quasiparticle time blocking approximation

    CERN Document Server

    Egorova, Irina A

    2016-01-01

    New results for electric dipole strength in the chain of even-even Calcium isotopes with the mass numbers A = 40 - 54 are presented. Starting from the covariant Lagrangian of Quantum Hadrodynamics, spectra of collective vibrations (phonons) and phonon-nucleon coupling vertices for $J \\leq 6$ and normal parity were computed in a self-consistent relativistic quasiparticle random phase approximation (RQRPA). These vibrations coupled to Bogoliubov two-quasiparticle configurations (2q$\\otimes$phonon) form the model space for the calculations of the dipole response function in the relativistic quasiparticle time blocking approximation (RQTBA). The results for giant dipole resonance in the latter approach are compared to those obtained in RQRPA and to available data. Evolution of the dipole strength with neutron number is investigated for both high-frequency giant dipole resonance (GDR) and low-lying strength. Development of a pygmy resonant structure on the low-energy shoulder of GDR is traced and analyzed in terms...

  10. Real-time observations of lithium battery reactions-operando neutron diffraction analysis during practical operation.

    Science.gov (United States)

    Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji

    2016-01-01

    Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries. PMID:27357605

  11. Time-dependent non-gaussianity of glassy copolyester observed through elastic incoherent neutron scattering

    International Nuclear Information System (INIS)

    Complete text of publication follows. The dynamical heterogeneity of glasses gives rise to different mean square displacements a of different atoms indifferent directions. The simplest way to measure it is a measurement of the incoherent elastic neutron scattering as a function of the momentum vector Q. As the dynamical heterogeneity becomes stronger, the deviation from a simple exp(-αQ2) law becomes more obvious. As long as the deviations are small, one can describe these deviations by the expression exp(-αQ2+α2A0Q2/2), where the nongaussianity A0 is a dimensionless measure of the mean square deviation of the mean square displacement of different atoms. In this presentation, time-dependent observations on the nongaussianity A0 are presented which has been performed by changing the energy resolution of spectrometers. (author)

  12. Background optimization for the neutron time-of-flight spectrometer NEAT

    Science.gov (United States)

    Günther, G.; Russina, M.

    2016-08-01

    The neutron time-of-flight spectrometer NEAT at BER II is currently undergoing a major upgrade where an important aspect is the prevention of parasitic scattering to enhance the signal-to-noise ratio. Here, we discuss the impact of shielding to suppress parasitic scattering from two identified sources of background: the sample environment and detector tubes. By means of Monte Carlo simulations and a modification of the analytical model of Copley et al. [Copley and Cook, 1994], the visibility functions of instrument parts are computed for different shielding configurations. According to three selection criteria, namely suppression of background, transmission and detection limit, the parameters of an oscillating radial collimator are optimized for NEAT's default setup. Moreover, different configurations of detector shielding are discussed to prevent cross-talk within the radial detector system.

  13. Real-time observations of lithium battery reactions—operando neutron diffraction analysis during practical operation

    Science.gov (United States)

    Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji

    2016-01-01

    Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries. PMID:27357605

  14. Analyzer of neutron flux in real time; Analizador de flujo neutronico en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Carrillo M, R.A.; Balderas, E.G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    With base in the study of the real signals of neutron flux of instability events occurred in the Laguna Verde nuclear power plant where the nucleus oscillation phenomena of the reactor are in the 0 to 2.5 Hz range, it has been seen the possibility about the development a surveillance and diagnostic equipment capable to analyze in real time the behavior of nucleus in this frequencies range. An important method for surveillance the stability of the reactor nucleus is the use of the Power spectral density which allows to determine the frequencies and amplitudes contained in the signals. It is used an instrument carried out by LabVIEW graphic programming with a data acquisition card of 16 channels which works at Windows 95/98 environment. (Author)

  15. Poland at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    On 17 October 2000, the second Polish industrial and technological exhibition opens at CERN*. The first one was held five years ago and nine of the companies that were present then have come back again this year. Six of those companies were awarded contracts with CERN in 1995. Three Polish officials were present at the Opening Ceremony today: Mrs Malgorzata Kozlowska, Under-secretary of State in the State Committee for Scientific Research, Mr Henryk Ogryczak, Under-secretary of State in Ministry of Economy and Prof. Jerzy Niewodniczanski, President of National Atomic Energy Agency.

  16. CERN Relay Race

    CERN Document Server

    2008-01-01

    The CERN relay race will take place around the Meyrin site on Thursday 5 June starting at 12:15 p.m. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on how to register your team for the relay race are given on the Staff Association Bulletin web site. You can access the online registration form at: http://cern.ch/club-running-relay/form.html

  17. The significance of Cern

    CERN Multimedia

    Weisskopf,V

    Le Prof. V.Weisskopf, DG du Cern de 1961 à 1965, est né à Vienne, a fait ses études à Göttingen et a une carrière académique particulièrement riche. Il a travaillé à Berlin, Copenhague et Berlin et est parti aux Etats Unis pour participer au projet Manhattan et était Prof. au MTT jusqu'à 1960. Revenu en Europe, il a été DG du Cern et lui a donné l'impulsion que l'on sait.

  18. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    You are running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual sessions of this course will take place on 12 December 2008 and 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  19. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2009-01-01

    Are you running Vista on your new PC – or are you planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual session of this course will take place on 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  20. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    You are running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced using Windows XP. The next bilingual sessions of this course will take place on December 12, 2008 and January 30, 2009. Register using our catalogue : http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at Technical.Training@cern.ch