WorldWideScience

Sample records for cerium oxide films

  1. Thin film ionic conductors based on cerium oxide

    International Nuclear Information System (INIS)

    Haridoss, P.; Hellstrom, E.; Garzon, F.H.; Brown, D.R.; Hawley, M.

    1994-01-01

    Fluorite and perovskite structure cerium oxide based ceramics are a class of materials that may exhibit good oxygen ion and/or protonic conductivity. The authors have successfully deposited thin films of these materials on a variety of substrates. Interesting orientation relationships were noticed between cerium oxide films and strontium titanate bi-crystal substrates. Near lattice site coincidence theory has been used to study these relationships

  2. Influences of the main anodic electroplating parameters on cerium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Zhao, E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Jianqing [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O{sub 2} and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce{sup 3+} goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce{sup 3+}, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N{sub 2} or O{sub 2} purged into the bath will result in film porosities and O{sub 2} favors cerium oxide particles and film generation.

  3. Influence of annealing on texture properties of cerium oxide thin films

    International Nuclear Information System (INIS)

    Arunkumar, P.; Suresh Babu, K.; Ramaseshan, R.; Dash, S.

    2013-01-01

    Future power demand needs an energy source with higher efficiency, better power density, clean energy and fuel flexibility. Solid oxide fuel cell (SOFC) is one of the potential sources for future needs. Though the polymer and direct methanol based electrolyte are much suitable, for versatile applications (portable devices) they are having major challenges such as design, platinum based catalyst, lower power density and fuel flexibility (free from hydrocarbons). However, in SOFC the high operating temperature is the only major issue. Operating temperature of SOFC could be reduced by proper selection of electrolyte material which should have minimum ionic conductivity of 0.1 Scm -1 at reduced activation energy. This can be achieved by thin film based doped cerium oxide electrolyte for SOFC, leads to Intermediate Temperature Solid Oxide Fuel Cell (ITSOFC). In the present work, we focus on the synthesis of cerium oxide and 20 mol % samarium doped cerium oxide (SDC) nanoparticles by co-precipitation method and to synthesis thin films of the same. Pellets of those powders were heat treated at different temperatures and used as targets for e-beam evaporation to fabricate thin film based electrolyte. Stoichiometry of both powders and thin films were confirmed by XRF and EPMA. GIXRD profiles of ceria and SDC thin films are shown below and a preferred orientation effect is observed in SDC films. In SDC films the X-ray peaks have a shift towards lower angles, due to the difference in ionic radii of Ce 4+ and Sm 3+ . The band gap of CeO 2 (2.88 eV) from optical absorption technique indicates the presence of Ce 3+ with Ce 4+ , indirectly shows the concentration of oxygen vacancies which is required for the thin film electrolyte

  4. Altering properties of cerium oxide thin films by Rh doping

    International Nuclear Information System (INIS)

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír

    2015-01-01

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO x thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO x thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce 4+ and Ce 3+ and rhodium occurs in two oxidation states, Rh 3+ and Rh n+ . We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO x thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO x thin films leads to preparing materials with different properties

  5. Nanoporous cerium oxide thin film for glucose biosensor.

    Science.gov (United States)

    Saha, Shibu; Arya, Sunil K; Singh, S P; Sreenivas, K; Malhotra, B D; Gupta, Vinay

    2009-03-15

    Nanoporous cerium oxide (CeO(2)) thin film deposited onto platinum (Pt) coated glass plate using pulsed laser deposition (PLD) has been utilized for immobilization of glucose oxidase (GOx). Atomic force microscopy studies reveal the formation of nanoporous surface morphology of CeO(2) thin film. Response studies carried out using differential pulsed voltammetry (DPV) and optical measurements show that the GOx/CeO(2)/Pt bio-electrode shows linearity in the range of 25-300 mg/dl of glucose concentration. The low value of Michaelis-Menten constant (1.01 mM) indicates enhanced enzyme affinity of GOx to glucose. The observed results show promising application of the nanoporous CeO(2) thin film for glucose sensing application without any surface functionalization or mediator.

  6. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    International Nuclear Information System (INIS)

    Panky, Sreedevi; Thandavan, Kavitha; Sivalingam, Durgajanani; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Jeyaprakash, Beri Gopalakrishnan; Rayappan, John Bosco Balaguru

    2013-01-01

    Nanostructured cerium oxide (CeO 2 ) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO 3 ) 3 ·6H 2 O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO 2 and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO 2 /TCO film to form the lipase/nano-CeO 2 /TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO 2 /TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO 2 /TCO film and hence the lipase/nano-CeO 2 /TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6

  7. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    Energy Technology Data Exchange (ETDEWEB)

    Panky, Sreedevi; Thandavan, Kavitha [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sivalingam, Durgajanani [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sethuraman, Swaminathan; Krishnan, Uma Maheswari [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Jeyaprakash, Beri Gopalakrishnan [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Rayappan, John Bosco Balaguru, E-mail: rjbosco@ece.sastra.edu [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India)

    2013-01-15

    Nanostructured cerium oxide (CeO{sub 2}) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO{sub 2} and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film to form the lipase/nano-CeO{sub 2}/TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO{sub 2}/TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film and hence the lipase/nano-CeO{sub 2}/TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp

  8. UV absorption by cerium oxide nanoparticles/epoxy composite thin films

    International Nuclear Information System (INIS)

    Dao, Ngoc Nhiem; Luu, Minh Dai; Nguyen, Quang Khuyen; Kim, Byung Sun

    2011-01-01

    Cerium oxide (CeO 2 ) nanoparticles have been used to modify properties of an epoxy matrix in order to improve the ultra-violet (UV) absorption property of epoxy thin films. The interdependence of mechanical properties, UV absorption property and the dispersed concentration of CeO 2 nanoparticles was investigated. Results showed that, by increasing the dispersed concentration of CeO 2 nanoparticles up to 3 wt%, tensile modulus increases while two other mechanical properties, namely tensile strength and elongation, decrease. The UV absorption peak and the absorption edges of the studied thin films were observed in the UV-Vis absorption spectra. By incorporating CeO 2 nanoparticles into the epoxy matrix, an absorption peak appears at around 318 nm in UV-Vis spectra with increasing CeO 2 concentration from 0.1 to 1.0 wt%. Scanning electron microscopy (SEM) images revealed that a good dispersion of nanoparticles in the epoxy matrix by an ultrasonic method was achieved

  9. Some Environmentally Relevant Reactions of Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Janoš Pavel

    2014-12-01

    Full Text Available Reactive forms of cerium oxide were prepared by a thermal decomposition of various precursors, namely carbonates, oxalates and citrates, commercially available nanocrystalline cerium oxide (nanoceria was involved in the study for comparison. Scanning electron microscopy (SEM and x-ray diffraction analysis (XRD were used to examine the morphology and crystallinity of the samples, respectively, whereas the Brunauer-Emmett-Teller (BET method of nitrogen adsorption was used to determine surface areas. Interactions of cerium oxide with some phosphorus-containing compounds were investigated. Some of the examined samples, especially those prepared by annealing from carbonate precursors, exhibited an outstanding ability to destroy highly toxic organophosphates, such as pesticides (parathion methyl, or nerve agents (soman, VX. There were identified some relations between the degradation efficiency of cerium oxides and their crystallinity. It was also shown that cerium oxide is able to destroy one of widely used flame retardants - triphenyl phosphate. A phosphatase-mimetic activity of various cerium oxides was examined with the aid of a standardized phosphatase test.

  10. Electrochemical reduction of cerium oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.; Serp, J.; Fouletier, J.

    2011-01-01

    This brief article describes a pyrochemical process that is used by CEA to turn actinide oxides into metal actinides. This process is applied to Cerium oxides (CeO 2 ) that simulate actinide oxides well chemically as cerium belongs to the lanthanide family. The process is in fact an electrolysis of cerium oxide in a bath of molten calcium chloride salt whose temperature is between 800 and 900 Celsius degrees. At those temperatures calcium chloride becomes a ionic liquid (Ca 2+ and Cl - ) that is a good electrical conductor and is particularly well-adapted as solvent to an electrolytic process. The electrolysis current allows the transformation of solvent Ca 2+ ions into metal calcium which, in turn, can reduce cerium oxide into metal cerium through chromatically. Experimental data shows the reduction of up to 90% of 10 g samples of CeO 2 in a 6 hour long electrolysis while the best reduction rate ever known was 80% so far. This result is all the more promising that cerium oxides are more difficult to reduce than actinide oxides from the thermodynamical perspective

  11. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    International Nuclear Information System (INIS)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss; Sadaiyandi, Karuppasamy; Mahendran, Manickam; Sagadevan, Suresh

    2016-01-01

    Cerium oxide (CeO 2 ) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  12. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss [Department of Physics, NPR College of Engineering and Technology, Natham, Dindigul, Tamil Nadu (India); Sadaiyandi, Karuppasamy [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivaganga, Tamil Nadu (India); Mahendran, Manickam [Department of Physics, Thiagarajar College of Engineering, Madurai, Tamil Nadu (India); Sagadevan, Suresh, E-mail: duraiphysics2011@gmail.com [Department of Physics, AMET University (India)

    2016-03-15

    Cerium oxide (CeO{sub 2}) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  13. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing.

    Science.gov (United States)

    Kaygusuz, Hakan; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; von Klitzing, Regine; Erim, F Bedia

    2017-12-01

    Wound dressings require good antiseptic properties, mechanical strength and, more trustably, natural material ingredients. Antimicrobial properties of cerium ions and chitosan are known and alginate based wound dressings are commercially available. In this study, the advantages of these materials were combined and alginate films were crosslinked with cerium(III) solution and chitosan added cerium(III) solution. Films were characterized by Fourier transform infrared spectroscopy (FTIR), light transmittance, scanning electron microscopy (SEM), swelling experiments, water vapor transmittance tests, and mechanical stretching tests. The antibacterial and physical properties of the films were compared with those of conventional calcium alginate films. Both cerium ion crosslinked and cerium ion-chitosan crosslinked alginate films gained antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Cerium alginate-chitosan films showed high resistance to being deformed elastically. Results show that cerium alginate-chitosan films can be flexible, ultraviolet-protecting, and antibacterial wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Study on photocatalytic performance of cerium-graphene oxide-titanium dioxide composite film for formaldehyde removal

    International Nuclear Information System (INIS)

    Li, Jia; Zhang, Quan; Lai, Alvin C.K.; Zeng, Liping

    2016-01-01

    In order to degrade in-car formaldehyde gas, graphene oxide (GO), cerium (Ce), and TiO_2 were organically combined by one-step sol-gel method. Then the mixed collosol was coated onto the surface of inorganic glass substrates to form Ce-GO-TiO_2 composite film by way of immersion, coating, and calcinations. The morphology and crystal structure of as-prepared Ce-GO-TiO_2 film were studied by a series of detection techniques. The photocatalytic performance of this film was analyzed by the degradation effect of formaldehyde under simulated sunlight. The results showed that the Ce-GO-TiO_2 film had the inbuilt mesoporous structure in the lamellar stacking with particles. When the doping amount of Ce and GO were 0.4 and 0.2% (mass ratio), the composite film can improve effectively the response to the visible light and its degradation rate for low concentration of formaldehyde was up to 83.8% in simulated sunlight for 7 h, which could be attributed to the co-function of Ce and GO. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis

    International Nuclear Information System (INIS)

    Clark, Andrea; Zhu Aiping; Sun Kai; Petty, Howard R.

    2011-01-01

    Catalytic nanoparticles represent a potential clinical approach to replace or correct aberrant enzymatic activities in patients. Several diseases, including many blinding eye diseases, are promoted by excessive oxidant stress due to reactive oxygen species (ROS). Cerium oxide and platinum nanoparticles represent two potentially therapeutic nanoparticles that de-toxify ROS. In the present study, we directly compare these two classes of catalytic nanoparticles. Cerium oxide and platinum nanoparticles were found to be 16 ± 2.4 and 1.9 ± 0.2 nm in diameter, respectively. Using surface plasmon-enhanced microscopy, we find that these nanoparticles associate with cells. Furthermore, cerium oxide and platinum nanoparticles demonstrated superoxide dismutase catalytic activity, but did not promote hemolytic or cytolytic pathways in living cells. Importantly, both cerium oxide and platinum nanoparticles reduce oxidant-mediated apoptosis in target cells as judged by the activation of caspase 3. The ability to diminish apoptosis may contribute to maintaining healthy tissues.

  16. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    Science.gov (United States)

    Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao

    2015-01-21

    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth.

  17. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    Science.gov (United States)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  18. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    Science.gov (United States)

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.

  19. Preparation of cerium oxide for lens polishing powder

    International Nuclear Information System (INIS)

    Injarean, Uthaiwan; Rodthongkom, Chouvana; Pichestapong, Pipat; Changkrurng, Kalaya

    2003-10-01

    Cerium is an element of rare earth group which is called lanthanide series. It is found in the ores like monazite and xenotime which are the tailings of tin mines in the south of Thailand. Cerium is used mostly as lens polishing powder besides the applications in other industries. In this study, cerium extracted from monazite ore breakdown by alkaline process was used for the preparation of lens polishing powder. Cerium hydroxide cake from the process was dissolved by hydrochloric acid and precipitated with oxalic acid. The oxalate precipitate then was calcined to oxide powder and its particle size was measured. Precipitation conditions being studied are concentration of feed cerium chloride solution, concentration of oxalic acid used for the precipitation, concentration of sulfuric acid used as precipitation control reagent and the precipitation temperature. It was found that the appropriate precipitation conditions yielded the fine oxide powder with particle size about 12μm. The oxide powder can be ground to the size of 1-3 μm which is suitable for making lens polishing powder

  20. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  1. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  2. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    International Nuclear Information System (INIS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-01-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO_2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  3. Calcination of the cerium concentrate to be cerium oxide

    International Nuclear Information System (INIS)

    Suyanti; MV Purwani

    2016-01-01

    Calcination of the cerium concentrate to be cerium oxide has done. The cerium concentrate were obtained from the Ce making process wear KBrO_3 and without using KBrO_3. The calcination were done with a variation of time 1, 2, 3 and 4 hours with the temperature variations of 700, 800 and 900°C. The easiest calcination of Ce concentrates to be CeO_2 containing majority of Ce(OH)_4 and contains least impurities as Th(OH)_4, (NH_4)_2Y(NO_3), H_4N_5O_1_2La, H_1_2N_3NdO_1_5 and N_3O_9Sm. On the calcination of Ce concentrates process results without using KBrO_3 1, the calcination temperature 900°C was obtained CeO_2 content of 73.53% for calcination time of 4 hours, has little difference when compared with the predictions and calculation result of complete calcination was equal 73.84%. (author)

  4. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    International Nuclear Information System (INIS)

    Shih, C.J.; Chen, Y.J.; Hon, M.H.

    2010-01-01

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol -1 .

  5. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chen, Y.J. [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hon, M.H. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2010-05-15

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol{sup -1}.

  6. Effect of cerium doping on the electrical properties of ultrathin indium tin oxide films for application in touch sensors

    International Nuclear Information System (INIS)

    Kang, Saewon; Cho, Sanghyun; Song, Pungkeun

    2014-01-01

    The electrical and microstructure properties of cerium doped indium tin oxide (ITO:Ce) ultrathin films were evaluated to assess their potential application in touch sensors. 10 to 150-nm ITO and ITO:Ce films were deposited on glass substrates (200 °C) by DC magnetron sputtering using different ITO targets (doped with CeO 2 : 0, 1, 3, 5 wt.%). ITO:Ce (doped with CeO 2 : 3 wt.%) films with thickness < 25 nm showed lower resistivity than ITO. This lower resistivity was accompanied by a significant increase in the Hall mobility despite a decrease in crystallinity. In addition, the surface morphology and wetting properties improved with increasing Ce concentration. This is related to an earlier transition from an island structure to continuous film formation caused by an increase in the initial nucleation density. - Highlights: • 10 to 150-nm InSnO 2 (ITO) and ITO:Ce thin films were deposited by sputtering. • ITO:Ce films with thickness < 25 nm showed lower resistivity than ITO. • Hall mobility was strongly affected by initial film formation. • Surface morphology and wetting property improved with increasing Ce concentration. • Such behavior is related to an earlier transition to continuous film formation

  7. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    International Nuclear Information System (INIS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-01-01

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields

  8. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-06-15

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  9. Preparation and characterization of gelatin/cerium(Ⅲ) film

    Institute of Scientific and Technical Information of China (English)

    黄崇军; 黄雅钦; 田娜; 童元建; 殷瑞贤

    2010-01-01

    A novel gelatin film with antibacterial activity was prepared by electrostatic crosslinking using cerium (Ⅲ) nitrate hexahydrate as the crosslinking agent. The structure and properties of the films were investigated by Fourier transform infrared spectra, tensile tests, thermogravimetric analysis, static drop contact angle and disc diffusion method. The results showed that cross-linking could not only improve the thermal and mechanical properties and lower the hydrophilic property of the films, but also make...

  10. Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Julie-Anne [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Markley, Tracey [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); CSIRO, Division of Materials Science and Technology, Clayton, Victoria (Australia); Forsyth, Maria, E-mail: maria.forsyth@deakin.edu.au [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Howlett, Patrick C. [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Hinton, Bruce R.W. [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Defence Science and Technology Organisation, Melbourne, Victoria (Australia)

    2011-02-03

    Graphical abstract: Scanning electron micrographs of microtomed surface shows pristine surface free of corrosion related 'mud cracking' inset for an inhibited AA7050 specimen when only 150 ppm Ce(dpp)3 is present in 0.1 M NaCl solution. Display Omitted Research highlights: > The thin film of hydrolysis products of Ce(dpp)3 and aluminium oxide is proposed to cause the inhibition. > The film consists of discrete Ce rich particles and a thin film over the matrix of Ce, P and Al oxides. > Discrete deposition of Ce is specifically influenced by Cu rich intermetallics. - Abstract: Cerium diphenyl phosphate (Ce(dpp){sub 3}) has previously been shown to be a strong corrosion inhibitor for aluminium-copper magnesium alloy AA2024-T3 and AA7075 in chloride solutions. Surface characterisation including SEM and ToF-SIMS coupled with electrochemical impedance spectroscopy (EIS) measurements are used to propose a mechanism of corrosion inhibition which appears to involve the formation of a complex oxide film of aluminium and cerium also incorporating the organophosphate component. The formation of a thin complex film consisting of hydrolysis products of the Ce(dpp){sub 3} compound and aluminium oxide is proposed to lead to the observed inhibition. SEM analysis shows that some intermetallics favour the creation of thicker deposits predominantly containing cerium oxide compounds.

  11. Atomic layer deposition of cerium oxide for potential use in diesel soot combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Tatiana V., E-mail: tatiana.ivanova@lut.fi, E-mail: ivanova.tatyana.v@gmail.com; Toivonen, Jenni; Maydannik, Philipp S.; Kääriäinen, Tommi; Sillanpää, Mika [ASTRaL Team, Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Homola, Tomáš; Cameron, David C. [R& D Centre for Low-Cost Plasma and Nanotechnology Surface Modification, Masaryk University, Kotlářská 267/2, 611 37 Brno (Czech Republic)

    2016-05-15

    The particulate soot emission from diesel motors has a severe impact on the environment and people's health. The use of catalytic convertors is one of the ways to minimize the emission and decrease the hazard level. In this paper, the activity of cerium oxide for catalytic combustion of diesel soot was studied. Thin films of cerium dioxide were synthesized by atomic layer deposition using tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)cerium [Ce(thd){sub 4}] and ozone as precursors. The characteristics of the films were studied as a function of deposition conditions within the reaction temperature range of 180–350 °C. Thickness, crystallinity, elemental composition, and morphology of the CeO{sub 2} films deposited on Si (100) were characterized by ellipsometry, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy, respectively. The growth rate of CeO{sub 2} was observed to be 0.30 Å/cycle at temperatures up to 250 °C with a slight increase to 0.37 Å/cycle at 300 °C. The effect of CeO{sub 2} films grown on stainless steel foil supports on soot combustion was measured with annealing tests. Based on the analysis of these, in catalytic applications, CeO{sub 2} has been shown to be effective in lowering the soot combustion temperature from 600 °C for the uncoated substrates to 370 °C for the CeO{sub 2} coated ones. It was found that the higher deposition temperatures had a positive effect on the catalyst performance.

  12. Thermal Treatment of Cerium Oxide and Its Properties: Adsorption Ability versus Degradation Efficiency

    Directory of Open Access Journals (Sweden)

    Pavel Janoš

    2014-01-01

    Full Text Available Cerium oxide belongs to the most important heterogeneous catalysts, but its applicability as so-called reactive sorbent for the degradation of toxic chemicals was only recently discovered. For these purposes, cerium oxide is prepared by precipitation of insoluble cerium salts (carbonates with a subsequent thermal decomposition. Properties of cerium oxide prepared from the carbonate precursor are strongly affected by the temperature during the calcination. Main physicochemical properties of cerium oxide (specific surface area, crystallinity, and surface chemistry were examined in dependence on the calcination temperature. As the adsorptive properties of CeO2 are undoubtedly of great importance in the abovementioned applications, the adsorption ability was studied using an azo dye Acid Orange 7 (AO7 as a model compound. The highest sorption efficiency towards AO7 exhibited sorbents prepared at temperatures below 700°C, which was attributed mainly to the presence of hydroxyl groups on the oxide surface. A strong correlation was found between an adsorption efficiency of cerium oxides and their degradation efficiency for organophosphate pesticide parathion methyl. The >Ce–OH groups on the sorbent surface are responsible for the dye binding by the surface-complexation mechanism, and probably also for the nucleophilic cleavage of the P–O–aryl bond in the pesticide molecule.

  13. Ultrathin, epitaxial cerium dioxide on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Flege, Jan Ingo, E-mail: flege@ifp.uni-bremen.de; Kaemena, Björn; Höcker, Jan; Schmidt, Thomas; Falta, Jens [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Bertram, Florian [Photon Science, Deutsches Elektronensynchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Wollschläger, Joachim [Department of Physics, University of Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)

    2014-03-31

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce{sub 2}O{sub 3} film may very effectively be converted at room temperature to almost fully oxidized CeO{sub 2} by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  14. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Joshua K.; Arcibar-Orozco, Javier A.; Bandosz, Teresa J., E-mail: tbandosz@ccny.cuny.edu

    2016-12-30

    Highlights: • Microporous zirconium-cerium (hydr) oxides were synthetized. • Ce presence narrowed the band gap of the materials. • The samples showed a high efficiency for removal of CEES vapors. • 1,2-Bis (ethyl thio) ethane and ethyl vinyl sulfide were the main reaction products. • 5% (Ce/Zr mol) addition of cerium oxide results in the best performing material. - Abstract: Highly porous cerium oxide modified Zr(OH){sub 4} samples were synthesized using a simple one stage urea precipitation method. The amorphicity level of zirconium hydroxide did not change upon addition of cerium oxide particles. A unique aspect of the cerium oxide-modified materials is the presence of both the oxide (CeO{sub 2}) and hydroxide (Zr(OH){sub 4}) phases resulting in a unique microporous structure of the final material. Extensive characterization using various chemical and physical methods revealed significant differences in the surface features. All synthesized materials were microporous and small additions of cerium oxide affected the surface chemistry. These samples were found as effective catalysts for a decontamination of mustard gas surrogate, 2-chloroethyl ethyl sulfide (CEES). Cerium oxide addition significantly decreased the band gap of zirconium hydroxide. Ethyl vinyl sulfide and 1,2-bis (Ethyl thio) ethane were identified as surface reaction products.

  15. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O' Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  16. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  17. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method

    Science.gov (United States)

    Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer

    2018-05-01

    The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.

  18. Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials.

    Science.gov (United States)

    Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B

    2017-11-01

    The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electron donating and acid-base properties of cerium oxide and its mixed oxides with alumina

    International Nuclear Information System (INIS)

    Sugunan, S.; Jalaja, J.M.

    1994-01-01

    The electron donating properties of cerium oxide activated at 300, 500 and 800 degC and of its mixed oxides with alumina were examined based on the adsorption of electron acceptors exhibiting different electron affinities. The surface acidity/basicity of the oxides was determined by titrimetry; the H 0,max values are given. The limit of electron transfer from the oxide surface lies within the region of 1.77 and 2.40 eV in terms of the electron affinity of the electron acceptor. Cerium oxide promotes the electron donor nature of alumina while leaving the limit of electron transfer unchanged. 2 tabs., 4 figs., 13 refs

  20. Comparison of the air oxidation behaviors of Zircaloy-4 implanted with yttrium and cerium ions at 500 deg. C

    International Nuclear Information System (INIS)

    Chen, X.W.; Bai, X.D.; Xu, J.; Zhou, Q.G.; Chen, B.S.

    2002-01-01

    As a valuable process for surface modification of materials, ion implantation is eminent to improve mechanical properties, electrochemical corrosion resistance and oxidation behaviors of varieties of materials. To investigate and compare the oxidation behaviors of Zircaloy-4, implantation of yttrium ion and cerium ion were respectively employed by using an MEVVA source at the energy of 40 keV with a dose ranging from 1x10 16 to 1x10 17 ions/cm 2 . Subsequently, weight gain curves of the different specimens including as-received Zircaloy-4 and Zircaloy-4 specimens implanted with the different ions were measured after oxidation in air at 500 deg. C for 100 min. It was obviously found that a significant improvement was achieved in the oxidation behaviors of implanted Zircaloy-4 compared with that of the as-received Zircaloy-4, and the oxidation behavior of cerium-implanted Zircaloy-4 was somewhat better than that of yttrium-implanted specimen. To obtain the valence and the composition of the oxides in the scale, X-ray photoemission spectroscopy was used in the present study. Glancing angle X-ray diffraction, employed to analyze the phase transformation in the oxide films, showed that the addition of yttrium transformed the phase from monoclinic zirconia to tetragonal zirconia, yet the addition of cerium transformed the phase from monoclinic zirconia to hexagonal zirconia. In the end, the mechanism of the improvement of the oxidation behavior was discussed

  1. Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions

    OpenAIRE

    Mehdi, Hasan; Bodor, Andrea; Lantos, Diana; Horváth, István T; De Vos, Dirk; Binnemans, Koen

    2007-01-01

    Use of imidazolium ionic liquids as solvents for organic transformations with tetravalent cerium salts as oxidizing agents was evaluated. Good solubility was found for ammonium hexanitratocerate(IV) (ceric ammonium nitrate, CAN) and cerium(IV) triflate in 1-alkyl-3-methylimidazolium triflate ionic liquids. Oxidation of benzyl alcohol to benzaldehyde in 1-ethyl-3-methylimidazolium triflate was studied by in-situ FTIR spectroscopy and 13C NMR spectroscopy on carbon-13-labeled benzyl alcohol. Ca...

  2. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Zachary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Padilla Cintron, Cristina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  3. Magnetic structural effect (MSE in epitaxial films of cerium oxide and lanthanum zirconate

    Directory of Open Access Journals (Sweden)

    Fatima Kh. Chibirova

    2015-06-01

    Full Text Available Increasing the critical current density in the second generation high-temperature superconducting wires (2G HTS is the major challenge for researchers and manufacturers of 2G HTS wires all over the world. We proposed a new approach to increase the number of percolation paths for supercurrent, i.e. increasing the number of low angle grain boundaries (<5° in the epitaxial superconducting YBCO layer by magnetic structural processing (MSP of buffer layers. New experimental results have been presented on the application of MSP for improving the structure and increasing the texture sharpness of buffer in electrical conducting element of 2G HTS wire. The influence of MCO on the structural and textural properties has been investigated in a buffer consisting of epitaxial films of cerium oxide CeO2 and lanthanum zirconate La2Zr2O7 in the CeO2/4La2Zr2O7 architecture. The influence of the magnetic processing of the epitaxial La2Zr2O7 buffer film on the shape of grains has been found. An atomic force microscopical study has shown that after magnetic processing the shape of grains improved significantly. A multilayer CeO2/4La2Zr2O7 buffer each layer of which was processed in a magnetic field has a high degree of orientation: only one diffraction peak with (200 indexes is observed in the X-ray spectrum. The X-ray settings of the (200 diffraction peak indicate a well developed epitaxial structure of CeO2 and La2Zr2O7 layers. The texture of the buffer is by more than 2° sharper than that of the Ni–5 at% W substrate.

  4. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Science.gov (United States)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  5. Methods study of homogeneity and stability test from cerium oxide CRM candidate

    International Nuclear Information System (INIS)

    Samin; Susanna TS

    2016-01-01

    The methods study of homogeneity and stability test from cerium oxide CRM candidate has been studied based on ISO 13258 and KAN DP. 01. 34. The purpose of this study was to select the test method homogeneity and stability tough on making CRM cerium oxide. Prepared 10 sub samples of cerium oxide randomly selected types of analytes which represent two compounds, namely CeO_2 and La_2O_3. At 10 sub sample is analyzed CeO_2 and La_2O_3 contents in duplicate with the same analytical methods, by the same analyst, and in the same laboratory. Data analysis results calculated statistically based on ISO 13528 and KAN DP.01.34. According to ISO 13528 Cerium Oxide samples said to be homogeneous if Ss ≤ 0.3 σ and is stable if | Xr – Yr | ≤ 0.3 σ. In this study, the data of homogeneity test obtained CeO_2 is Ss = 2.073 x 10-4 smaller than 0.3 σ (0.5476) and the stability test obtained | Xr - Yr | = 0.225 and the price is < 0.3 σ. Whereas for La_2O_3, the price for homogeneity test obtained Ss = 1.649 x 10-4 smaller than 0.3 σ (0.4865) and test the stability of the price obtained | Xr - Yr | = 0.2185 where the price is < 0.3 σ. Compared with the method from KAN, a sample of cerium oxide has also been homogenized for Fcalc < Ftable and stable, because | Xi - Xhm | < 0.3 x n IQR. Provided that the results of the evaluation homogeneity and stability test from CeO_2 CRM candidate test data were processed using statistical methods ISO 13528 is not significantly different with statistical methods from KAN DP.01.34, which together meet the requirements of a homogeneous and stable. So the test method homogeneity and stability test based on ISO 13528 can be used to make CRM cerium oxide. (author)

  6. Kinetics and mechanism of the oxidation of cerium in air at ambient temperature

    International Nuclear Information System (INIS)

    Wheeler, D.W.

    2016-01-01

    Highlights: • XRD and transverse sections suggest Ce_2O_3 forms on Ce before being overlaid by CeO_2. • XRD and oxide thickness measurements both indicate linear oxidation. • Extensive cracking on oxide surface which sustains continuing oxidation. • Electron microscopy has shown features indicative of nodular oxidation. • Oxide growth rate determined to be 0.1 μm day"−"1 under the conditions in this study. - Abstract: This paper describes a study of the oxidation of cerium in air at ambient temperature. Specimens were exposed for up to 60 days, during which they were analysed by X-ray diffraction (XRD) at regular intervals. Both XRD and oxide thickness measurements indicate linear oxidation over the duration of this study. Under the conditions employed in this study, the rate of oxide growth has been determined to be 0.1 μm day"−"1. The oxidation process appears to be assisted by extensive cracking in the oxide layer which acts as a non-protective film for the underlying metal.

  7. Optical properties of CeO 2 thin films

    Indian Academy of Sciences (India)

    Cerium oxide (CeO2) thin films have been prepared by electron beam evaporation technique onto glass substrate at a pressure of about 6 × 10-6 Torr. The thickness of CeO2 films ranges from 140–180 nm. The optical properties of cerium oxide films are studied in the wavelength range of 200–850 nm. The film is highly ...

  8. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  9. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  10. Synthesis of cerium oxide (CeO{sub 2}) nanoparticles using simple CO-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T. P., E-mail: farahamndjou@iauvaramin.ac.ir [Islamis Azad University, Varamin-Phisva Branch, Department of Physics, Varamin (Iran, Islamic Republic of)

    2016-11-01

    Synthesis of cerium oxide (CeO{sub 2}) nanoparticles was studied by new and simple co-precipitation method. The cerium oxide nanoparticles were synthesized using cerium nitrate and potassium carbonate precursors. Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (Sem), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (Ftir) and UV-Vis spectrophotometer. XRD pattern showed the cubic structure of the cerium oxide nanoparticles. The average particle size of CeO{sub 2} was around 20 nm as estimated by XRD technique and direct HRTEM observations. The surface morphological studies from Sem and Tem depicted spherical particles with formation of clusters. The sharp peaks in Ftir spectrum determined the existence of CeO{sub 2} stretching mode and the absorbance peak of UV-Vis spectrum showed the bandgap energy of 3.26 eV. (Author)

  11. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  12. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...

  13. Synthesis of cerium oxide catalysts supported on MCM-41 molecular sieve

    International Nuclear Information System (INIS)

    Souza, E.L.S.; Barros, T.R.B.; Sousa, B.V. de

    2016-01-01

    Porous materials have been widely studied as catalysts and catalyst support. The MCM-41 structure is the one that has been most studied because of its application possibilities in chemical processes. This work aimed to obtain and characterize cerium oxide catalysts supported on MCM-41 molecular sieve. The molecular sieve was synthesized by the conventional method with the following molar composition: 1 SiO2: 0.30 CTABr: NH3 11: 144 H2O. Then, 25% w/w cerium was incorporated into the MCM-41 using the wet impregnation process and the material obtained was activated by calcination. From the XRD patterns was confirmed the structure of the molecular sieve, and were identified the cerium oxide phases in its structure. The textural catalysts characteristics were investigated by isotherms of N2 adsorption/desorption (BET method). (author)

  14. Electrochemical reduction of cerium oxide into metal

    Energy Technology Data Exchange (ETDEWEB)

    Claux, Benoit [CEA, Valduc, F-21120 Is-sur-Tille (France); Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France); Serp, Jerome, E-mail: jerome.serp@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Fouletier, Jacques [Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France)

    2011-02-28

    The Fray Farthing and Chen (FFC) and Ono and Suzuki (OS) processes were developed for the reduction of titanium oxide to titanium metal by electrolysis in high temperature molten alkali chloride salts. The possible transposition to CeO{sub 2} reduction is considered in this study. Present work clarifies, by electro-analytical techniques, the reduction pathway leading to the metal. The reduction of CeO{sub 2} into metal was feasible via an indirect mechanism. Electrolyses on 10 g of CeO{sub 2} were carried out to evaluate the electrochemical process efficiency. Ca metal is electrodeposited at the cathode from CaCl{sub 2}-KCl solvent and reacts chemically with ceria to form not only metallic cerium, but also cerium oxychloride.

  15. Corrosion behaviour of nanometre sized cerium oxide and titanium oxide incorporated aluminium in NaCl solution

    International Nuclear Information System (INIS)

    Ashraf, P. Muhamed; Edwin, Leela

    2013-01-01

    Highlights: ► Corrosion resistant aluminium incorporated with nano oxides of cerium and titanium. ► 0.2% nano CeO 2 and 0.05% nano TiO 2 showed increased corrosion resistance. ► Nano TiO 2 concentration influenced the optimum performance of the material. ► Comparison of Micro and nano CeO 2 and TiO 2 aluminium showed the latter is best. - Abstract: The study highlights the development of an aluminium matrix composite by incorporating mixture of nanometre sized cerium oxide and titanium oxide in pure aluminium and its corrosion resistance in marine environment. The mixed nanometre sized oxides incorporated aluminium exhibited improved microstructure and excellent corrosion resistance. Corrosion resistance depends on the concentration of nanometre sized titanium oxide. Electrochemical characteristics improved several folds in nanometre sized mixed oxides incorporated aluminium than micrometre sized oxides incorporated aluminium.

  16. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    Science.gov (United States)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  17. Cerium and yttrium oxide nanoparticles are neuroprotective

    International Nuclear Information System (INIS)

    Schubert, David; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-01-01

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems

  18. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Chen, Wen-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Tien, Yin-Chun [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.t [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan1st Road, Kaohsiung 80708, Taiwan (China)

    2010-04-30

    Cerium oxide nanocrystallites were synthesized by a co-precipitation process at a relatively low temperature, using cerium (III) nitrate as the starting material in a water solution with pH in the range of 8-9. The effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K, by XRD analysis. When calcined at temperatures from 473 to 1273 K, face-centered cubic phase crystallization was observed by XRD. The crystallite size of the cerium oxide increased from 12.0 to 48 nm as the calcining temperature increased from 473 to 1273 K, in the pH range 8-9. The activation energy for the growth of cerium oxide nanoparticles was found to have very low values of 17.5 kJ/mol for pH = 8 and 16.0 kJ/mol for pH = 9.

  19. Preparation of high-purity cerium nitrate

    International Nuclear Information System (INIS)

    Avila, Daniela Moraes; Silva Queiroz, Carlos Alberto da; Santos Mucillo, Eliana Navarro dos

    1995-01-01

    The preparation of high-purity cerium nitrate has been carried out Cerium oxide has been prepared by fractioned precipitation and ionic exchange techniques, using a concentrate with approximately 85% of cerium oxide from NUCLEMON as raw material. Five sequential ion-exchange columns with a retention capacity of 170 g each have been used. The ethylenediamine-tetraacetic acid (EDTA) was used as eluent. The cerium content has been determined by gravimetry and iodometry techniques. The resulting cerium oxide has a purity > 99%. This material was transformed in cerium nitrate to be used as precursor for the preparation of Zirconia-ceria ceramics by the coprecipitation technique. (author)

  20. The properties of protective oxide scales containing cerium on alloy 800H in oxidizing and oxidizing/sulphidizing environments

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; Fransen, T.; Geerdink, Bert; Gellings, P.J.; Stroosnijder, M.F.

    1991-01-01

    The corrosion protection of oxide scales formed by electrophoretic deposition in a cerium-containing sol on Alloy 800H, a 32Ni-20Cr steel, followed by firing in air at 1123 K was studied in oxidizing and mixed oxidizing/sulphidizing environments at elevated temperatures. In particular, the influence

  1. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-01-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples...

  2. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    Directory of Open Access Journals (Sweden)

    Mirella Gutiérrez-Arzaluz

    2016-05-01

    Full Text Available We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce–Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  3. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    Science.gov (United States)

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  4. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  5. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  6. Thermally stimulated iron oxide transformations and magnetic behaviour of cerium dioxide/iron oxide reactive sorbents

    Czech Academy of Sciences Publication Activity Database

    Luňáček, J.; Životský, O.; Jirásková, Yvonna; Buršík, Jiří; Janoš, P.

    2016-01-01

    Roč. 120, OCT (2016), s. 295-303 ISSN 1044-5803 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Oxide -nano-composites * Mössbauer spectroscopy * TEM * Cerium oxide * Magnetic parameters Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.714, year: 2016

  7. Cerium concentrate and mixed rare earth chloride by the oxidative decomposition of bastnaesite in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Iijima, Toshio; Kato, Kazuhiro; Kuno, Toyohiko; Okuwaki, Akitsugu; Umetsu, Yoshiaki; Okabe, Taijiro

    1993-01-01

    Bastnaesite was treated in molten NaOH at 623-777 K for 10-60 min under atmosphere. Cerium-(III) in the ore was easily oxidized 95% or more within 30 min to give an oxidation product composed of solid solutions of CeO 2 -rich and CeO 2 -lean phases and Ce-free rare earth oxide phase. Simultaneously fluoride ion was removed 97% or more. Cerium concentrate was prepared from the oxidation product by leaching with 0.1-3 M HCl solution. The yield of cerium concentrate and the CeO 2 content reached 55-57% and 70-72%, respectively. Mixed rare earth chloride is composed of about 90% rare earth chloride and 10% alkaline earth chloride, and the contents of CeCl 3 , LaCl 3 , NdCl 3 , and PrCl 3 are 11.5, 58.5, 14.4, and 5.4%, respectively. The particle size of resulting cerium concentrate was fairly uniform and about 0.1 μm

  8. Thermodynamic Studies of the Phase Relationships of Nonstoichiometric Cerium Oxides at Higher Temperatures

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater-or-equal, slan......Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater...

  9. A cerium(IV)-carbon multiple bond

    Energy Technology Data Exchange (ETDEWEB)

    Gregson, Matthew; Lu, Erli; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T. [Nottingham Univ. (United Kingdom). School of Chemistry

    2013-12-02

    Straightforward access to a cerium(IV)-carbene complex was provided by one-electron oxidation of an anionic ''ate'' cerium(III)-carbene precursor, thereby avoiding decomposition reactions that plague oxidations of neutral cerium(III) compounds. The cerium(IV)-carbene complex is the first lanthanide(IV)-element multiple bond and involves a twofold bonding interaction of two electron pairs between cerium and carbon. [German] Auf direktem Wege zu einem Cer(IV)-Carbenkomplex gelangt man durch die Einelektronenoxidation einer anionischen Carben-Cerat(III)-Vorstufe. So werden Zersetzungsprozesse vermieden, die die Oxidation neutraler Cer(III)-Verbindungen erschweren. Der Cer(IV)-Carbenkomplex enthaelt die erste Lanthanoid(IV)-Element-Mehrfachbindung; dabei binden Cer und Kohlenstoff ueber zwei Elektronenpaare.

  10. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 50–60%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  11. Zirconia dispersion as a toughening agent in alumina - Influence of the cerium oxide

    International Nuclear Information System (INIS)

    Gritti, Olivier

    1987-01-01

    The improvement of mechanical properties of alumina can be obtained by fine dispersion of zirconia particles. The addition of cerium oxide as a stabilizer of the tetragonal phase has been examined. Different powder preparations, based on impregnation of the alumina powder by zirconium and cerium precursor salts, have been studied. Parameters, such as properties of alumina powder and cerium oxide content, for the production of reactive powders have been determined by two laboratory processes. The sintering of these powders in air at 1600 deg. C has resulted in dense materials with homogeneous microstructure. The mechanical properties, in particular the biaxial flexure strength and the toughness, have been determined in the temperature range 20 deg. C-900 deg. C. A reinforcement of about 80 pc in comparison with alumina is achieved. The optimal composition is (Al 2 O 3 ) 0.8 (ZrO 2 ) 0.18 (CeO 2 ) 0.02 . In the other hand, powder preparation by spray drying has been chosen for an approach to a larger scale process. The sintered ceramics made with these powders present a double microstructure which does not affect the mechanical properties. The presence of cerium oxide produces the following improvements: - increased mobility of the intergranular zirconia inclusions which results in a faster densification; - stabilization of a tetragonal phase without prohibiting the stress induced transformation; - increase of the critical sizes of the tetragonal → monoclinic transformation; - a large decrease in the transformation kinetic in water at 300 deg. C in comparison with that observed for alumina-zirconia doped with yttrium oxide. (author) [fr

  12. Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3

    International Nuclear Information System (INIS)

    Zheludkevich, M.L.; Serra, R.; Montemor, M.F.; Yasakau, K.A.; Salvado, I.M. Miranda; Ferreira, M.G.S.

    2005-01-01

    Nanostructured hybrid sol-gel coatings doped with cerium ions were investigated in the present work as pre-treatments for the AA2024-T3 alloy. The sol-gel films have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors. Additionally the hybrid sol was doped with zirconia nanoparticles prepared from hydrolyzed tetra-n-propoxyzirconium (TPOZ). Cerium nitrate, as corrosion inhibitor, was added into the hybrid matrix or into the oxide nanoparticles. The chemical composition and the structure of the hybrid sol-gel films were studied by XPS (X-ray photoelectron spectroscopy) and AFM (atomic force microscopy), respectively. The evolution of the corrosion protection properties of the sol-gel films was studied by EIS (electrochemical impedance spectroscopy), which can provide quantitative information on the role of the different pre-treatments. Different equivalent circuits, for different stages of the corrosion processes, were used in order to model the coating degradation. The models were supported by SEM (scanning electron microscopy) measurements. The results show that the sol-gel films containing zirconia nanoparticles present improved barrier properties. Doping the hybrid nanostructured sol-gel coatings with cerium nitrate leads to additional improvement of the corrosion protection. The zirconia particles present in the sol-gel matrix seem to act as nanoreservoirs providing a prolonged release of cerium ions. The nanostructured sol-gel films doped with cerium nitrate can be proposed as a potential candidate for substitution of the chromate pre-treatments for AA2024-T3

  13. Multifunctional cerium-based nanomaterials and methods for producing the same

    Science.gov (United States)

    O'Keefe, Matthew J.; Castano Londono, Carlos E.; Fahrenholtz, William G.

    2018-01-09

    Embodiments relate to a cerium-containing nano-coating composition, the composition including an amorphous matrix including one or more of cerium oxide, cerium hydroxide, and cerium phosphate; and crystalline regions including one or more of crystalline cerium oxide, crystalline cerium hydroxide, and crystalline cerium phosphate. The diameter of each crystalline region is less than about 50 nanometers.

  14. Study of cyclic oxidation for stainless steels AISI 309 T 253 M A, with low additions of cerium

    International Nuclear Information System (INIS)

    Velazquez F, G.L.; Martinez, M.; Ruiz, A.

    1998-01-01

    It has been detected that the addition of small amounts (<1%) of the so called 'reactive elements' such as Cerium to Fe-Cr alloys that was utilized in oxidating environment at high temperatures improving its resistance to oxidation under isothermal and cyclic conditions. In this work, it was evaluated the behavior under cyclic oxidation conditions for an austenitic stainless steel at chromium-nickel (253MA) with cerium addition, and comparing it with the AISI 310S austenitic stainless steel. The cyclic oxidation essays consist of five cycles by 24 hours each one, following of a cooling in air until ambient temperature from the temperatures of 850, 900 and 950 Centigrade, registering the gain mass of the specimen at end of each cycle. In order to this were prepared samples with dimensions of 20 mm. x 10 mm. x 1 mm. Later to the oxidation essays was evaluated the morphology of the corrosion products layer by scanning electron microscopy. The present phases were identified by X-ray diffraction and by chemical microanalysis by Dispersive energy (EDAX). The results obtained show that the steel with cerium addition, presents a higher adherence and resistance to the spalling noting that the cerium promotes the casting anchor of the oxides layer to matrix and by reducing the grain size of the layer improving its plasticity. Additionally the cerium promotes the preferential oxidation of the forming elements of protective layers like the chromium. (Author)

  15. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution

    International Nuclear Information System (INIS)

    Senisse, C.A.L.; Bergmann, C.P.; Alves, A.K.

    2012-01-01

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  16. Colloidal stabilization of cerium-gadolinium oxide (CGO) suspensions via rheology

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Bentzen, Janet Jonna

    2015-01-01

    colloidally stable state. The method was applied to explore the ability of four commercial dispersants (acidic affine, neutral, basic affine, and polyvinylpyrrolidone (PVP)) to disperse cerium-gadolinium oxide (CGO) in ethanol. Only the acidic affine and the PVP dispersants were found to efficiently disperse...

  17. Gas sensing behaviour of cerium oxide and magnesium aluminate

    Indian Academy of Sciences (India)

    Gas sensing behaviour of cerium oxide and magnesium aluminate composites ... A lone pairof the electron state was identified from the electro paramagnetic ... carbon monoxide (CO) (at 0.5, 1.0 and 1.5 bar) and ethanol (at 50 and 100 ppm) was ... The magnitude of the temperature varied linearly regardless of the gas ...

  18. The Roll of NaPSS Surfactant on the Ceria Nanoparticles Embedding in Polypyrrole Films

    Directory of Open Access Journals (Sweden)

    Simona Popescu

    2016-01-01

    Full Text Available Cerium oxide nanoparticles (CeO2 NPs in crystalline form have been synthesized by a coprecipitation method. CeO2 nanoparticles were then embedded in polypyrrole (PPy films during the electropolymerization of pyrrole (Py on titanium substrate. The influence of poly(sodium 4-styrenesulfonate (NaPSS surfactant used during polymerization on the embedding of CeO2 NPs in polypyrrole films was investigated. The new films were characterized in terms of surface analysis, wettability, electrochemical behaviour, and antibacterial effect. The surface and electrochemical characterization revealed the role of surfactant on PPy doping process cerium oxide incorporation. In the presence of surfactant, CeO2 NPs are preferentially embedded in the polymeric film while, without surfactant, the ceria nanoparticles are quasiuniformly spread as agglomerates onto polymeric films. The antibacterial effect of studied PPy films was substantially improved in the presence of cerium oxide and depends by the polymerization conditions.

  19. The production of UV Absorber amorphous cerium sulfide thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kariper, İshak Afşin, E-mail: akariper@gmail.com [Faculty of Education, Erciyes University, Kayseri (Turkey)

    2017-10-15

    This study investigates the production of cerium sulfide (CeSx) amorphous thin films on substrates (commercial glass) by chemical bath deposition at different pH levels. The transmittance, absorption, optical band gap and refractive index of the films are measured by UV/VIS Spectrum. According to XRD analysis, the films show amorphous structure in the baths with pH: 1 to 5. It has been observed that the optical and structural properties of the films depend on pH value of the bath. The optical band gap (2.08 eV to 3.16 eV) of the films changes with the film thickness (23 nm to 1144 nm). We show that the refractive index has a positive relationship with the film thickness, where the values of 1.93, 1.45, 1.42, 2.60 and 1.39 are obtained for the former, and 34, 560, 509, 23 and 1144 nm (at 550 nm wavelength) for the latter. We compare the optical properties of amorphous and crystal form of CeSx thin films. We show that the optical band gaps of the amorphous CeS{sub x} are lower than that of crystal CeS{sub x} . (author)

  20. Thermometric titrimetry Studies of the cerium(IV) oxidation of alpha-mercaptocarboxylic acids.

    Science.gov (United States)

    Alexander, W A; Mash, C J; McAuley, A

    1969-04-01

    The cerium(IV) oxidation of thioglycollic, thiolactic and thiomalic acids has been examined by thermometric titration. The titration curves indicate stoichiometries of more than 1 mole of cerium(IV) per mole of alpha-thiol, suggesting possible side-reactions. In the presence of methyl acrylate, however, the expected ratio is observed. The overall heat of each reaction has been derived. Only with a titration method of this kind where allowance can be made for side-reactions can the heats of reaction for these systems be measured.

  1. Effect of cerium oxide addition on electrical properties of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, D.M. [National Research Center, Dokki, Giza (Egypt). Dept. of Ceramics; Mounir, M. [Dept. of Physics, Cairo Univ., Giza (Egypt); Mahgoub, A.S. [Cairo Univ., Giza (Egypt). Dept. of Chemistry; Turky, G. [Dept. of Physics, National Research Center, Dokki, Giza (Egypt); El-Desouky, O.A. [Cer. Cleopatra Co., Ramadan City (Egypt)

    2002-07-01

    Mixtures of ZnO and Ce{sub 6} O{sub 11} as additive were prepared by solid state reaction from the calcined oxides with the following proportions: 0.03, 0.08, 0.1, 0.2 and 0.4 mole. Disc specimens 1.2 cm 5 cm in diameter and 0.3 cm thickness were processed under a force of 70 kN and fired at 1150 C/ 30 minutes. XRD revealed the presence of limited solid solution of cerium in ZnO, as evident from the shift in the peaks [0.03-0.04 A ] up to 0.1 mole addition and remains constant. SEM revealed the presence of inter-granular phase. EDAX showed it to be a mixture of ZnO and Ce{sub 6}O{sub 11}. Also cerium was detected in the ZnO grains confirming the XRD results. RCL circuit was used to measure the capacitance and resistance at different frequencies at room temperature. The dielectric constant and conductivity were calculated. The change in resistivity with temperature was followed up to 523 K. The change in dielectric strength with temperature at spot frequency of 10 kHz is demonstrated. The electrical conductivity was found to increase with the proportion of cerium oxide up to 0.2 mole then decreased. (orig.)

  2. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Cerium Oxide Microspheres via the Internal Gelation Process

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Jack Lee [ORNL; Chi, Anthony [ORNL

    2009-02-01

    A simple test tube methodology was used to determine optimum process parameters for preparing hydrous cerium oxide microspheres via the internal gelation process.1 Broth formulations of cerium ammonium nitrate [(NH4)2Ce(NO3)6], hexamethylenetetramine, and urea were found that can be used to prepare hydrous cerium oxide gel spheres in the temperature range of 60 to 90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations to be able to equate the test-tube gelation times to actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broth formulations.

  3. Determination of cerium

    International Nuclear Information System (INIS)

    Stepin, V.V.; Kurbatova, V.I.; Fedorova, N.D.

    1980-01-01

    Techniques of cerium determination in steels and alloys are developed. Amperometric method of determination which is based on Ce(4) titration by a solution of double salt of sulfuric Fe(2) and ammonium when cerium amount exceeds 0.01% is suggested. Cerium is oxidated to tetravalent state by KMnO 4 . The elements interfering with the determination (Cr, Ni etc.) are separated by means of deposition. When cerium content exceeds 0.005% in steels and alloys the determination is carried out using photometric method with arsenazo 3 in hydrochloric medium (pH 1.8-2.3). Optimum concentration is 5-50 μg [ru

  4. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants

    International Nuclear Information System (INIS)

    Barrios, Ana Cecilia; Rico, Cyren M.; Trujillo-Reyes, Jesica; Medina-Velo, Illya A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2016-01-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210 days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO_2, CA + nCeO_2) bulk cerium oxide (bCeO_2), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500 mg/kg, both the uncoated and CA + nCeO_2 increased shoot length by ~ 9 and ~ 13%, respectively, while bCeO_2 and CeAc decreased shoot length by ~ 48 and ~ 26%, respectively, compared with MPW (p ≤ 0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA + nCeO_2 at 250 mg/kg, but reduced by bCeO_2 at 62.5 mg/kg, compared with MPW. At 250 and 500 mg/kg, nCeO_2 increased Ce in roots by 10 and 7 times, compared to CA + nCeO_2, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO_2 nor CA + nCeO_2 affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125 mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500 mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO_2 at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO_2 at 62.5 mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO_2 on tomato plants. - Highlights: • At 500 mg/kg, coated and bare NPs increased stem length by 13 and 9%, respectively. • Coated NPs at 500 mg/kg increased CAT activity in

  5. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, Ana Cecilia [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Rico, Cyren M. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Trujillo-Reyes, Jesica [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Medina-Velo, Illya A. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States)

    2016-09-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210 days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO{sub 2}, CA + nCeO{sub 2}) bulk cerium oxide (bCeO{sub 2}), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500 mg/kg, both the uncoated and CA + nCeO{sub 2} increased shoot length by ~ 9 and ~ 13%, respectively, while bCeO{sub 2} and CeAc decreased shoot length by ~ 48 and ~ 26%, respectively, compared with MPW (p ≤ 0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA + nCeO{sub 2} at 250 mg/kg, but reduced by bCeO{sub 2} at 62.5 mg/kg, compared with MPW. At 250 and 500 mg/kg, nCeO{sub 2} increased Ce in roots by 10 and 7 times, compared to CA + nCeO{sub 2}, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO{sub 2} nor CA + nCeO{sub 2} affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125 mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500 mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO{sub 2} at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO{sub 2} at 62.5 mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO{sub 2} on tomato plants. - Highlights: • At 500 mg/kg, coated and bare NPs increased stem length by 13 and 9

  6. Cerium fluoride nanoparticles protect cells against oxidative stress

    International Nuclear Information System (INIS)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M.; Baranchikov, Alexander E.; Ryabova, Anastasia V.; Ivanov, Vladimir K.

    2015-01-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF 3 :Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF 3 nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF 3 and CeF 3 :Tb stable aqueous sols synthesis is proposed. • Naked CeF 3 nanoparticles are shown to be non-toxic and to protect cells from the action of H 2 O 2 . • CeF 3 and CeF 3 :Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus

  7. Cerium fluoride nanoparticles protect cells against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M. [Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv D0368 (Ukraine); Baranchikov, Alexander E. [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Ryabova, Anastasia V. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409 (Russian Federation); Ivanov, Vladimir K., E-mail: van@igic.ras.ru [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Tomsk State University, Tomsk 634050 (Russian Federation)

    2015-05-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF{sub 3}:Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF{sub 3} nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF{sub 3} and CeF{sub 3}:Tb stable aqueous sols synthesis is proposed. • Naked CeF{sub 3} nanoparticles are shown to be non-toxic and to protect cells from the action of H{sub 2}O{sub 2}. • CeF{sub 3} and CeF{sub 3}:Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus.

  8. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

  9. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium

    International Nuclear Information System (INIS)

    Silva, M.L.A. da; Varela, M.C.R.S.

    2016-01-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  10. The influence of cerium and yttrium ion implantation upon the oxidation behaviour of a 20% Cr/25% Ni/Nb stabilised stainless steel, in carbon dioxide, at 8250C

    International Nuclear Information System (INIS)

    Bennett, M.J.; Dearnaley, G.; Houlton, M.R.; Hawes, R.W.M.

    1982-01-01

    The influence of cerium and yttrium ion implantation upon the oxidation behaviour of a 20% Cr/25% Ni niobium stabilised stainless steel during up to 7 157h exposure to carbon dioxide, at 825 0 C has been examined. The doses ranged between 5 x 10 14 and 10 17 ions cm -2 . Above thresholds of between 5 x 10 14 and 5 x 10 15 yttrium and between 5 x 10 15 and 10 16 cerium ions cm -2 the implantation of both elements improved the oxidation resistance of the 20/25/Nb steel. Yttrium exerted the greater influence, reducing by a factor of two the attack after 7 157h. Up to 80% of the oxide formed on the 20/25/Nb steel spalled, particularly on thermal cycling. Cerium and yttrium implantation improved oxide adhesion by similar extents, which increased with ion dose such that with the highest doses, no spallation was measurable. The effect of the implanted elements derived from their incorporation within the oxide film. It was initiated by their promotion of the formation of an initial chromium-rich oxide layer, which had a finer grain size than that formed on the 20/25/Nb steel. Reduction in continuing attack was associated in part, with improved oxide adhesion, as this decreased the significant contribution to the attack of the 20/25/Nb steel from the reoxidation of spalled areas. (author)

  11. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  12. Correlation of the oxidation state of cerium in sol-gel glasses as a function of thermal treatment via optical spectroscopy and XANES studies.

    Science.gov (United States)

    Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K

    2004-07-01

    Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.

  13. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    International Nuclear Information System (INIS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce 2 O 3 and CeO 2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  14. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Niroumandrad, S. [Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce{sub 2}O{sub 3} and CeO{sub 2} was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  15. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    Science.gov (United States)

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  16. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, M. F. S.; Moraes, L. P. R.; Monteiro, N. K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte and in composite electrodes operating at low and intermediate temperatures. GDC exhibits high oxygen ion conductivity at a wide range of temperatures and displays a high...... resistance to carbon deposition when hydrocarbons are used as fuels. However, an inconvenience of ceria-based oxides is the high sintering temperature needed to obtain a fully dense ceramic body. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. The aqueous...

  17. Determination of trace amounts of cerium in silicate rocks based on its candoluminescence in a calcium oxide based matrix

    International Nuclear Information System (INIS)

    Belcher, R.; Nasser, T.A.K.; Polo-Diez, L.; Townshend, A.

    1977-01-01

    A very sensitive method for the determination of cerium (above 10 ng ml -1 ) has been developed (Belcher et al., Analyst;100:415(1975)), based on the measurement of the green candoluminescence produced by cerium in a calcium oxide-calcium sulphate matrix, with sulphuric acid as a coactivator, when the matrix is inserted into a hydrogen-nitrogen-air flame. This paper describes the application of this method to the determination of trace amounts of cerium in rocks. It involves the fusion of the sample with lithium metaborate, and does not require the isolation of cerium from other components of the rock, before measuring the candoluminescence intensity of the cerium. (author)

  18. Cerium and rare earth separation process

    International Nuclear Information System (INIS)

    Martin, M.; Rollat, M.

    1986-01-01

    An aqueous solution containing cerium III and rare earths is oxidized in the anodic compartment of an electrolytic cell, cerium IV is extracted by an organic solvent, the organic phase containing Ce IV is reduced in the catodic compartment of the same electrolytic cell and cerium III is extracted in a nitric aqueous phase [fr

  19. Evaluation of mechanically treated cerium (IV) oxides as corrosion inhibitors for galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Deflorian, F., E-mail: flavio.deflorian@ing.unitn.it [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Fedel, M.; Rossi, S. [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Kamarchik, P. [PPG Industries, Coatings Innovation Center, 4325 Rosanna Drive, Allison Park, PA 15101 (United States)

    2011-09-30

    The use of cerium salts as corrosion inhibitors for hot dip galvanized steel has been object of a numerous studies in the last few years. The role of cerium ions as corrosion inhibitors was proved: cerium is able to block the cathodic sites of the metal, forming insoluble hydroxides and oxides on the zinc surface. This fact leads to a dramatic decrease of the cathodic current densities and, therefore, to a reduction the overall corrosion processes. On the other hand, the potential of cerium oxides as corrosion inhibitors was also proposed. However, the real effectiveness of this kind of anticorrosive pigments has not been clarified yet. In this work cerium (IV) oxides are considered as corrosion inhibitors for galvanized steel. The corrosion inhibition mechanism of mechanically treated (milled) CeO{sub 2} alone and in combination with milled SiO{sub 2} nanoparticles was investigated. For this purpose milled CeO{sub 2}, CeO{sub 2} and SiO{sub 2} milled together and milled SiO{sub 2} particles were studied as corrosion inhibitors in water solution. Therefore, the different mechanically treated particles were dispersed in 0.1 M NaCl solution to test their effectiveness as corrosion inhibitors for galvanized steel. The galvanized steel was immersed in the different solutions and the corrosion inhibition efficiency of the different particles was measured by means of electrochemical techniques. For this purpose, electrochemical impedance spectroscopy (EIS) measurements were carried out, monitoring the evolution of the corrosion processes occurring at the metal surface with the immersion time in the solution. The effect of the different pigments was also investigated by carrying out anodic and cathodic polarization measurements. The polarization curves were acquired under conditions of varied pH. The experimental measurements suggest that the mechanical treatment performed on the SiO{sub 2} and CeO{sub 2} particles promote the formation of an effective corrosion pigment

  20. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  1. Nanoceria and bulk cerium oxide effects on the germination of asplenium adiantum-nigrum spores

    Directory of Open Access Journals (Sweden)

    Aranzazu Gomez-Garay

    2016-12-01

    Full Text Available Aim of study: The effect of cerium oxide engineered nanoparticles on the spore germination of the fern. Asplenium adiantum-nigrum. Area of study: France, Britanny Region, Finistére Department, Plougonvelin, in rocks near the sea. Material and methods: Asplenium spores were cultured in vitro on agar medium with Nano-CeO2 (less than 25 nm particle size and bulk-CeO2. The addition of each nano- and bulk particles ranged from 0 to 3000 mg L-1. Observations on rhizoidal and prothallial cells during first stages of gametophyte development were made. The No-Observed-Adverse-Effect concentration (NOAEC and Lowest-Observed-Adverse-Effect-Concentration (LOEC values for spore germination rate data were analyzed.  Main results: Germination was speeded up by 100 to 2000 mg L-1 nanoceria, while bulk cerium oxide had the same effect for 500 to 200 mg L-1 concentrations. Present results showed cellular damage in the protonema while rhizoid cells seemed not to be affected, as growth and membrane integrity remained. Research highlights: Both nanosized and bulk cerium oxide are toxic for the fern Asplenium adiantum-nigrum, although diverse toxicity patterns were shown for both materials. Diverse toxic effects have been observed: chloroplast membrane damage and lysis, cell wall and membrane disruption which leads to cell lysis; and alterations in morphology and development. Keywords: Nanoparticles; rhizoid; prothallus; chloroplast; fern.

  2. Nanoceria and bulk cerium oxide effects on the germination of asplenium adiantum-nigrum spores

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Garay, A.; Pintos, B.; Manzanera, J.A.; Prada, C.; Martin, L.; Gabriel y Galan, J.M.

    2016-07-01

    Aim of the study: The effect of cerium oxide engineered nanoparticles on the spore germination of the fern. Asplenium adiantum-nigrum. Area of study: France, Britanny Region, Finistére Department, Plougonvelin, in rocks near the sea. Material and methods: Asplenium spores were cultured in vitro on agar medium with Nano-CeO2 (less than 25 nm particle size) and bulk-CeO2. The addition of each nano- and bulk particles ranged from 0 to 3000 mg L-1. Observations on rhizoidal and prothallial cells during first stages of gametophyte development were made. The No-Observed-Adverse-Effect concentration (NOAEC) and Lowest-Observed-Adverse-Effect-Concentration (LOEC) values for spore germination rate data were analyzed. Main results: Germination was speeded up by 100 to 2000 mg L-1 nanoceria, while bulk cerium oxide had the same effect for 500 to 200 mg L-1 concentrations. Present results showed cellular damage in the protonema while rhizoid cells seemed not to be affected, as growth and membrane integrity remained. Research highlights: Both nanosized and bulk cerium oxide are toxic for the fern Asplenium adiantum-nigrum, although diverse toxicity patterns were shown for both materials. Diverse toxic effects have been observed: chloroplast membrane damage and lysis, cell wall and membrane disruption which leads to cell lysis; and alterations in morphology and development. (Author)

  3. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  4. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Anton L., E-mail: antonpopovleonid@gmail.com [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Popova, Nelly R. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Selezneva, Irina I. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Pushchino State Institute of Natural sciences, Pushchino, Moscow region (Russian Federation); Akkizov, Azamat Y. [Kabardino-Balkarian State University, Nalchik (Russian Federation); Ivanov, Vladimir K. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation)

    2016-11-01

    The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10{sup −3} M–10{sup −9} M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing. - Highlights: • Citrate-stabilized cerium oxide nanoparticles are shown to stimulate proliferation of primary embryonic cells in vitro. • Some of mechanisms involved in stimulating of the proliferation by CeO{sub 2} have been uncovered. • The most effective (optimal) concentration of CeO{sub 2} nanoparticles for stimulation of proliferation was determined.

  5. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes

    Czech Academy of Sciences Publication Activity Database

    Janos, P.; Henych, Jiří; Pelant, O.; Pilařová, V.; Vrtoch, L.; Kormunda, M.; Mazanec, K.; Štengl, Václav

    2016-01-01

    Roč. 304, MAR (2016), s. 259-268 ISSN 0304-3894 Institutional support: RVO:61388980 Keywords : Cerium oxide * Chemical warfare agents * Organophosphate compounds * Decontamination Subject RIV: CA - Inorganic Chemistry Impact factor: 6.065, year: 2016

  6. Simultaneous Patterning of Independent Metal/Metal Oxide Multi-Layer Films Using Two-Tone Photo-Acid Generating Compound Systems

    Directory of Open Access Journals (Sweden)

    Hideo Honma

    2012-10-01

    Full Text Available (1 The photo-induced solubility and positive-tone direct photo-patterning of iron, copper and lanthanides chelated with 4-(2-nitrobenzyloxycarbonylcatechol (NBOC or 4-(6-nitroveratryloxycarbonylcatechol (NVOC was investigated. Photo-patterning of iron, copper, cerium, samarium, europium, terbium, dysprosium, holmium, erbium and lutetium complexes was accomplished. Continuous films were formed by the pyrolysis of metal complex films at 500 °C. (2 Based on the difference in the photo-reaction excitation wavelength profile of NBOC and NVOC complexes, a short and simple method for simultaneous micro-patterning of two independent films on each side of a transparent glass substrate was developed. Using the developed procedure, indium tin oxide and/or titanium oxide films were formed on each side of a quartz substrate without use of resist or etching.

  7. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, Marina F. S.; P. R. Moraes, Leticia; Monteiro, Natalia K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte or in composite electrodes. The Ni/GDC cermet can be tuned as a catalytic layer, added to the conventional Ni/yttria-stabilized zirconia (YSZ), for the internal steam...... sintering temperature needed to obtain a fully dense ceramic body, which can result in undesired reactions with YSZ. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. Such a low temperature synthesis provides control over particle size and sinterability...

  8. Method of cerium separation from other lanthanides and yttrium

    International Nuclear Information System (INIS)

    Tran, Duc Hiep; Mostecky, J.

    1988-01-01

    Cerium is separated from a suspension produced during the aerial oxidation process. The suspension is subject to a cyclic process of two-stage fractional dissolution. Following the first dissolution, almost all cerium remains undissolved while 95% of the other lanthanides pass into the solution. The filtrate of the second stage of dissolution containing about 5% of ceriumm is returned for oxidation with the next batch of hydroxide mixed concentrate. Following oxidation, the two-stage fractional dissolution is repeated. This cycling provides quantitative cerium separation from other rare earth elements. (E.S.)

  9. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kartsonakis, I. A., E-mail: ikartsonakis@ims.demokritos.gr; Kontogiani, P.; Pappas, G. S.; Kordas, G. [NCSR ' DEMOKRITOS' , Sol-Gel Laboratory, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems (Greece)

    2013-06-15

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 {+-} 15 and 221 {+-} 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  10. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  11. Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films

    DEFF Research Database (Denmark)

    Esposito, Vincenzo; Ni, D. W.; Gualandris, Fabrizio

    2017-01-01

    Acceptor-doped nanocrystalline cerium oxide thin films are mechanically constrained nano-domains, with film/substrate interfacial strain and chemical doping deadlock mass diffusion. In contrast, in this paper we show that chemical elements result in highly unstable thin films under chemical...

  12. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    International Nuclear Information System (INIS)

    Ghosh, Swapankumar; Divya, Damodaran; Remani, Kottayilpadi C.; Sreeremya, Thadathil S.

    2010-01-01

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 o C. The activation energy for growth of CeO 2 nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO 2 particles in narrow size range. CeO 2 nanocrystals precipitated at 35 o C were further annealed at temperatures in the range 300-700 o C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  13. Preparation of high-purity cerium nitrate; Preparacao de nitrato de cerio de alta pureza

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Daniela Moraes; Silva Queiroz, Carlos Alberto da; Santos Mucillo, Eliana Navarro dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    The preparation of high-purity cerium nitrate has been carried out Cerium oxide has been prepared by fractioned precipitation and ionic exchange techniques, using a concentrate with approximately 85% of cerium oxide from NUCLEMON as raw material. Five sequential ion-exchange columns with a retention capacity of 170 g each have been used. The ethylenediamine-tetraacetic acid (EDTA) was used as eluent. The cerium content has been determined by gravimetry and iodometry techniques. The resulting cerium oxide has a purity > 99%. This material was transformed in cerium nitrate to be used as precursor for the preparation of Zirconia-ceria ceramics by the coprecipitation technique. (author) 2 tabs.

  14. Electronic state of cerium-based catalysts studied by spectroscopic methods (XPS, XAS)

    International Nuclear Information System (INIS)

    Le Normand, F.; Bernhardt, P.; Hilaire, L.; Kili, K.; Maire, G.; Krill, G.

    1987-01-01

    X-ray Photoelectron Spectroscopy (XPS) of the 3d core level of cerium and X-ray Absorption Spectroscopy (XAS) of the L III absorption edge of cerium have been used to study Pd/CeO 2 , Pd-Ce/γAl 2 O 3 and Ce/γAl 2 O 3 catalysts. The oxidation state of cerium was found to decrease with decreasing amounts of cerium on the surface. It was quite close to III for very low contents of cerium (2-3%). For higher cerium contents the oxidation state was nearer to IV but differences between the two methods were found, owing to the fact that XAS is a volume sensitive probe. The oxidation state of cerium was also lower for Pd-Ce/γAl 2 O 3 than for Ce/γAl 2 O 3 , suggesting the formation of Ce III OCl, chlorine coming from the precursor salt of palladium. 15 refs.; 5 figs.; 1 table

  15. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)

    2009-01-15

    Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)

  16. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    International Nuclear Information System (INIS)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-01-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol–gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue–black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  17. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  18. Structure and activity of tellurium-cerium oxide acrylonitrile catalysts

    International Nuclear Information System (INIS)

    Bart, J.C.J.; Giordano, N.

    1982-01-01

    Ammoxidation of propylene to acrylonitrile (ACN) was investigated over various silica-supported (Te,Ce)O catalysts at 360 and 440 0 C. The binary oxide system used consists of a single nonstoichiometric fluorite-type phase α-(Ce,Te)O 2 up to about 80 mole% TeO 2 and a tellurium-saturated solid solution β-(Ce,Te)O 2 at higher tellurium concentrations. The ACN yield varies almost linearly with the tellurium content of (Ce,Te)O 2 . The β-(Ce,Te)O 2 phase is the most active component of the system (propylene conversion and ACN selectivity at 440 C of 76.7 and 74%, respectively) and is slightly more selective to ACN than α-Te0 2 . Tellurium reduces the overoxidation properties of cerium and selective oxidation occurs through Te(IV)-bonded oxygen

  19. Properties of protective oxide scales containing cerium on Incoloy 800H in oxidizing and sulfidizing environments. I. Constant-extension-rate study of mechanical properties

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Fransen, T.; Geerdink, Bert; Gellings, P.J.

    1988-01-01

    The mechanical properties of ceramic coatings containing cerium oxide, prepared by the sol-gel method and used to protect Incoloy 800H against aggressive environments, are reported. Deformation and cracking behavior in oxidizing and sulfidizing environments has been investigated by

  20. Comparison of Titration ICP and XRF Spectrometry Methods in Determination of Cerium in Lens Polishing Powder

    International Nuclear Information System (INIS)

    Ninlaphruk, Sumalee; Pichestapong, Pipat; Mungpayabal, Harinate; Jiyavaranant, Thitima; Srisukho, Supapan; Chaisai, Prapassurn

    2004-10-01

    Three analytical methods in determination of cerium in cerium oxide separated from monazite ore for producing lens polishing powder were compared. These methods are titration ICP and XRF spectrometry techniques. The cerium oxide sample with estimated 45% cerium content needed to be digested and converted into solution before the analysis. The analytical results shown significantly no difference between each method. However, the titration method was found to be more convenient and suitable for quality control in the production of cerium oxide as it does not require standard cerium and the complicated analytical instruments

  1. Electro-catalytic oxidation of reactive Orange 107 using cerium doped oxides of Nd3+ nanoparticle

    International Nuclear Information System (INIS)

    Rajkumar, K.; Muthukumar, M.; Mangalaraja, R.V.

    2011-01-01

    A new rare earth doped cerium oxide powder was used as a catalyst to investigate the removal of colour and TOC from simulated wastewater of Reactive Orange 107. The electro oxidation process was carried out in the reactor in presence of an electrolyte NaCl. Graphite electrode was used as anode and cathode and electrolysis were carried out at a current density of 34.96 mAcm -2 with a catalyst concentration of 0.05g L -1 . In order to find the efficiency of nanocatalyst, experiments were also conducted without catalyst. From the experiment, it was found that complete colour removal was achieved on electrocatalytic oxidation as well as electro oxidation. When comparing the above processes, catalytic oxidation shows more efficient than electro oxidation. With respect to the degradation of the dye, catalytic oxidation shows more TOC removal than the oxidation taken place without catalyst. It infers that even though the electro-catalytic oxidation process achieves complete decolouration but it does not achieve complete mineralisation. The FTIR and GCMS studies confirmed the formation of by-products. (author)

  2. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Swapankumar, E-mail: swapankumar.ghosh2@mail.dcu.ie; Divya, Damodaran [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India); Remani, Kottayilpadi C. [Sree Neelakanda Government Sanskrit College, Department of Chemistry (India); Sreeremya, Thadathil S. [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India)

    2010-06-15

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 {sup o}C. The activation energy for growth of CeO{sub 2} nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO{sub 2} particles in narrow size range. CeO{sub 2} nanocrystals precipitated at 35 {sup o}C were further annealed at temperatures in the range 300-700 {sup o}C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  3. Effect of coating parameters on the microstructure of cerium oxide conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benedict Y.; Edington, Joe; O' Keefe, Matthew J

    2003-11-25

    The microstructure and morphology of cerium oxide conversion coatings prepared under different deposition conditions were characterized by transmission electron microscopy (TEM). The coatings were formed by a spontaneous reaction between a water-based solution containing CeCl{sub 3} and aluminum alloy 7075-T6 substrates. Microstructural characterization was performed to determine the crystallinity of the coatings and to obtain a better understanding of the deposition parameters on coating microstructure. The results of TEM imaging and electron diffraction analysis indicated that the as-deposited coating was composed of nanocrystalline particles of a previously unreported cerium compound. The particles of the coatings produced using glycerol as an additive were found to be much finer than those of the coatings prepared in the absence of glycerol. This indicates that glycerol may act as a grain refiner and/or growth inhibitor during coating deposition. After deposition, the coated panels were treated for 5 min in a phosphate sealing solution. The sealing treatment converted the as-deposited coating into hydrated cerium phosphate. Panels coated from solutions containing no glycerol followed by phosphate sealing performed poorly in salt fog tests. With glycerol addition, the corrosion resistance of the coatings that were phosphate sealed improved considerably, achieving an average passing rate of 85%.

  4. Simple preparation of fluorescent composite films based on cerium and europium doped LaF3 nanoparticles

    Science.gov (United States)

    Secco, Henrique de L.; Ferreira, Fabio F.; Péres, Laura O.

    2018-03-01

    The combination of materials to form hybrids with unique properties, different from those of the isolated components, is a strategy used to prepare functional materials with improved properties aiming to allow their application in specific fields. The doping of lanthanum fluoride with other rare earth elements is used to obtain luminescent particles, which may be useful to the manufacturing of electronic devices' displays and biological markers, for instance. The application of the powder of nanoparticles has limitations in some fields; to overcome this, the powder may be incorporated in a suitable polymeric matrix. In this work, lanthanum fluoride nanoparticles, undoped and doped with cerium and europium, were synthesized through the co-precipitation method in aqueous solution. Aiming the formation of solid state films, composites of nanoparticles in an elastomeric matrix, the nitrile rubber (NBR), were prepared. The flexibility and the transparency of the matrix in the regions of interest are advantages for the application of the luminescent composites. The composites were applied as films using the casting and the spin coating techniques and luminescent materials were obtained in the samples doped with europium and cerium. Scanning electron microscopy images showed an adequate dispersion of the particles in the matrix in both film formation techniques. Aggregates of the particles were detected in the samples which may affect the uniformity of the emission of the composites.

  5. Study on recovering directly the commercial cerium oxide and total of residue rare earths from Dongpao bastnasite concentrate

    International Nuclear Information System (INIS)

    Nguyen Trong Hung; Nguyen Thanh Chung; Luu Xuan Dinh

    2003-01-01

    A technology for decomposition roasting and sequential leaching processes of Dong Pao bastnasite concentrate to recover directly commercial cerium oxide and total of residue rare earth elements from the leaching solution of the roasted product have been investigated. The bastnasite concentrate is initially roasted at temperature range of 600 - 650 degC and for time of 4 hrs in order to decompose and convert the hardly soluble carbonate forms of ore into easily soluble oxide. The roasted solid is then leached with sulfuric acid solution of 6N at 60 degC for 4 hrs to convert rare earths in oxide and fluoride form into rare earth sulfate. The recovery yield of rare earths of these stages is more than 95%. The attention has especially been paid on recovering directly the commercial cerium oxide and total of residue rare earth element from the above leaching solution. Complex ions of CeSO 4 2+ , Ce(SO 4 ) 2 , Ce(SO 4 ) 3 2- and Ce(SO 4 ) 4 4- exist in aqueous solution of cerium (IV) sulfate. Based on the property, the method of ion - sieve with DOWEX cation resin column has been applied to estimating separation of the ceric complex anions from Ln(III). The survey showed that most of the ceric complex anions are separated from total of residue rare earths. The latter which are absorbed in the cation column are recovered by elution of HCl of 4N. The recovery yield of cerium can only be reached 20% but the purity of that is very high, can be reached 99.6%. About 5 kg of CeO 2 of high grade and 5 kg of TREO of commercial specification have been produced. (author)

  6. CeO2 thin film as a low-temperature formaldehyde sensor in mixed ...

    Indian Academy of Sciences (India)

    Administrator

    vapour sensing properties of the cerium oxide film in mixed environment were studied and reported. Keywords. .... The output signal from the op-amp is connected to a computer- controlled .... film as a function of formaldehyde concentration.

  7. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States); Trujillo-Reyes, Jesica [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Sun, Youping [Texas AgriLife Research Center at El Paso, Texas A& M University System, 1380 A & M Circle, El Paso, TX 79927 (United States); Barrios, Ana C. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Niu, Genhua [Texas AgriLife Research Center at El Paso, Texas A& M University System, 1380 A & M Circle, El Paso, TX 79927 (United States); Margez, Juan P. Flores- [Autonomous University of Ciudad Juarez, Departamento de Química y Biología, Instituto de Ciencias Biomédicas, Anillo envolvente PRONAF y Estocolmo, Ciudad Juarez, Chihuahua 32310, México (Mexico); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States)

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0–500 mg/kg cerium oxide nanoparticles (nano-CeO{sub 2}) under greenhouse condition. After 52 days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO{sub 2} exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65–111% with increasing nano-CeO{sub 2} concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5–250 mg/kg nano-CeO{sub 2} led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25–28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250 mg/kg nano-CeO{sub 2}. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO{sub 2} exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. - Highlights: • Ce translocation to leaves was facilitated by higher organic matter (OM) in soil. • Lower soil OM increased leaf cover area in nano-CeO{sub 2} exposed plants. • Nano-CeO{sub 2} effects on metabolic processes were more

  8. Defect states and room temperature ferromagnetism in cerium oxide nanopowders prepared by decomposition of Ce-propionate

    DEFF Research Database (Denmark)

    Mihalache, V.; Grivel, J. C.; Secu, M.

    2018-01-01

    . An improvement of ferromagnetism and intensity of defect-related PL emission was observed when annealing the products in which nanocrystalline cerium oxide coexists with Ce - oxicarbonate traces, Ce2O2CO3. The experimental results were explained based on the following considerations: room temperature......Four batches of cerium oxide powders (with nanocrystallite size of 6.9 nm–572 nm) were prepared from four precursor nanopowders by thermal decomposition of Ce-propionate and annealing in air between 250 °C–1200 °C for 10 min–240 min. Ceria formation reactions, structure, vibrational, luminescence...... and magnetic properties were investigated by differential scanning calorimetry, x-ray diffraction, electron microscopy, infrared spectroscopy, photoluminescence and SQUID. All the samples exhibit room temperature ferromagnetism, RTFM, (with coercivity, Hc, of 8 Oe - 121 Oe and saturation magnetization, Ms...

  9. Berkelium (4) and cerium (4) extraction with tertiary amines

    International Nuclear Information System (INIS)

    Milyukova, M.S.; Malikov, D.A.; Myasoedov, B.V.

    1978-01-01

    Oxidation of indicator quantities of berkelium and cerium by a mixture of silver nitrate and ammonium persulfate in the solutions of nitric and sulfuric acid has been examined. The stability of the elements in a tetravalent state and their extraction by the solutions of ternary amines have been investigated. It has been established that berkelium and cerium oxidation under these conditions occurs under the effect of ions of divalent silver which is formed owing to oxidation of monovalent silver by peroxide sulfate ions. The following supposition has been put forward: a difference in the behaviour of tetravalent berkelium and cerium during their extraction by ternary amines is explained by their different stability in this state, but not by the formation of complex compounds with nitrate ions

  10. Brain suppression of AP-1 by inhaled diesel exhaust and reversal by cerium oxide nanoparticles

    NARCIS (Netherlands)

    Lung, Shyang; Cassee, Flemming R; Gosens, Ilse; Campbell, Arezoo

    One of the uses of cerium oxide nanoparticles (nanoceria, CeO2) is as a diesel fuel additive to improve fuel efficiency. Gene/environment interactions are important determinants in the etiology of age-related disorders. Thus, it is possible that individuals on high-fat diet and genetic

  11. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Bandyopadhyay, Susmita [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Castillo-Michel, Hiram [European Synchrotron Radiation Facility, B.P. 220-38043 Grenoble, Cedex (France); Hernandez-Viezcas, Jose-Angel [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Sahi, Shivendra [Department of Biology, Western Kentucky University, Bowling Green, KY 42101 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States)

    2014-08-15

    Graphical abstract: - Highlights: • Kidney bean roots uptake nCeO{sub 2} primarily without biotransformation. • Cerium reached the root vascular tissues through gaps in the Casparian strip. • On longer exposure to high concentration, roots demonstrate stress response. • In leaves, guaiacol peroxidase plays a major role in ROS scavenging. - Abstract: Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO{sub 2}) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼8 ± 1 nm nCeO{sub 2} (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO{sub 2} exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO{sub 2}, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO{sub 2}/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leaf's guaiacol peroxidase activity was enhanced with nCeO{sub 2} exposure in order to maintain cellular homeostasis.

  12. Effective improvement of interface modified strontium titanate based solid oxide fuel cell anodes by infiltration with nano-sized palladium and gadolinium-doped cerium oxide

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2013-01-01

    The development of low temperature solid oxide fuel cell (SOFC) anodes by infiltration of Pd/Gd-doped cerium oxide (CGO) electrocatalysts in Nb-doped SrTiO3 (STN) backbones has been investigated. Modification of the electrode/electrolyte interface by thin layer of spin-coated CGO (400-500 nm) con...

  13. The evolution mechanism of the dislocation loops in irradiated lanthanum doped cerium oxide

    International Nuclear Information System (INIS)

    Miao, Yinbin; Aidhy, Dilpuneet; Chen, Wei-Ying; Mo, Kun; Oaks, Aaron; Wolf, Dieter; Stubbins, James F.

    2014-01-01

    Cerium dioxide, a non-radioactive surrogate of uranium dioxide, is useful for simulating the radiation responses of uranium dioxide and mixed oxide fuel (MOX). Controlled additions of lanthanum can also be used to form various levels of lattice oxide or anion vacancies. In previous transmission electron microscopy (TEM) experimental studies, the growth rate of dislocation loops in irradiated lanthanum doped ceria was reported to vary with lanthanum concentration. This work reports findings of the evolution mechanisms of the dislocation loops in cerium oxide with and without lanthanum dopants based on a combination of molecular statics and molecular dynamics simulations. These dislocation loops are found to be b=1/3〈111〉 interstitial type Frank loops. Calculations of the defect energy profiles of the dislocation loops with different structural configurations and radii reveal the basis for preference of nucleation as well as the driving force of growth. Frenkel pair evolution simulations and displacement cascade overlaps simulations were conducted for a variety of lanthanum doping conditions. The nucleation and growth processes of the Frank loop were found to be controlled by the mobility of cation interstitials, which is significantly influenced by the lanthanum doping concentration. Competition mechanisms coupled with the mobility of cation point defects were discovered, and can be used to explain the lanthanum effects observed in experiments

  14. Characterization of platinized and unplatinized cerium dioxide and other cerium containing catalyst supports

    International Nuclear Information System (INIS)

    Daniel, D.W.

    1984-01-01

    The adsorption of CO on platinized cerium dioxide has been investigated by FTIR (Fourier Transform Infrared Spectroscopy). Four active surface sites and two adsorption geometries were found for the oxidized catalyst. Although the metallic sites and both geometries, linear and bridged, were retained upon reduction the two cationic sites were not. During stepwise desorption, CO dissociates leaving behind adsorbed carbon inhibiting readsorption. At elevated temperatures CeO 2 oxidizes Pt. The large decrease in CO adsorption resulting from high temperature reduction was reversed by reoxidation. XPS (X-ray Photoelectron Spectroscopy) data provided no evidence of encapsulation and XRD (X-ray Diffraction) showed the retention of a constant particle size. The results were interpreted as electronic metal-support interaction. The addition of H 2 or D 2 to adsorbed CO at 25 0 C caused spillover of the CO onto the support and a decrease in CO band frequency. When O 2 was added to preadsorbed CO a new band associated with oxygen and CO coadsorbed on a single Pt atom appeared. Carbon dioxide dissociation at room temperature is proposed to occur via a Langmuir-Hinshelwood mechanism. CO adsorption on platinized titania, silica, ceria/titania, ceria/silica, and cerium titanate has also been studied by the same techniques. The adsorption/desorption behavior of the cerium/titania and the single oxide systems paralleled that of Pt/CeO 2

  15. Investigation of cerium salt/sulfuric acid anodizing technology for 1420 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Di Li; Yue Peng Deng; Bao Lan Guo; Guo Qiang Li [Beijing Univ. of Aeronautics and Astronautics (China). Dept. of Mater. Sci. and Eng.

    2000-07-01

    In this paper, the effect of cerium addition agent on the property of anodized coating of 1420 Al alloy has been studied by corrosion experiment (immersion test and neutral salt spray test), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and measurement of polarization curves. The result show that only pitting could be observed in all corrosion tests while intergranular corrosion and exfoliation corrosion did not appear on 1420 Al-Li alloys. When organic carboxylic acid S or the cerium (IV) salt was added into sulfuric acid anodizing electrolyte separately, there was no significant improvement in corrosion resistance of anodized film. However, in the case of adding them into sulfuric acid anodizing electrolyte together, the corrosion resistance of anodized film increased greatly owing to synergistic effect. The synergistic effect may relate to the formation of cerium-organic carboxylic acid S complex compound and its effects on film growth and film structure. (orig.)

  16. Analysis on porous aluminum anodic oxide film formed in Re-OA-H{sub 3}PO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Wang, H.W. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)]. E-mail: hwwang@sjtu.edu.cn

    2006-06-10

    An anodic porous film on aluminum was prepared in a mixed electrolyte of phosphoric acid and organic acid and cerium salt. The growth, morphology and chemical composition of the film were investigated. The results indicate that the growth of porous layers in this solution undergo three stages during anodizing, as in other conventional solution, while the whole growth rate is nonlinear. This electrolyte is sensitive to anodizing temperature, which affects current density in great degree. SEM indicates the surface morphology of film is strongly dependent on temperature and current density and its cross-section has two distinct oxide layers. Al, O and P are found in the film with different distribution in the two layers with EPMA. However, Ce has been detected on the outer surface with EDAX. XPS analysis on the electron binding energy of the component elements show the chemical composition of oxide film surface are Al{sub 2}O{sub 3}, Ce(OH) and some phosphates. The formation mechanics of Ce compound is also deduced.

  17. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.

    Science.gov (United States)

    Zhang, Weilan; Musante, Craig; White, Jason C; Schwab, Paul; Wang, Qiang; Ebbs, Stephen D; Ma, Xingmao

    2017-01-01

    Cerium oxide nanoparticles (CeO 2 NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO 2 NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops. For a few studies performed with soil grown plants, the impact of soil properties on the fate and transport of CeO 2 NPs was generally ignored even though numerous previous studies indicate that soil properties play a critical role in the fate and transport of environmental pollutants. The objectives of this study were to evaluate the soil fractionation and bioavailability of CeO 2 NPs to Raphanus sativus L (radish) in two soil types. Our results showed that the silty loam contained slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO 2 NPs concentration increased. CeO 2 NPs associated with silicate minerals or the residue fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions (r 2  = 0.98 and 0.78 for loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 (r 2  = 0.97 and 0.89 for loamy sand and silty loam respectively). Overall, the results demonstrated that soil properties are important factors governing the distribution of CeO 2 NPs in soil and subsequent bioavailability to plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Tomar, Monika; Gupta, Vinay

    2015-01-01

    The influence of Cerium doping on the structural and magnetic properties of BiFeO 3 thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi 1−x Ce x FeO 3 (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm −1 ) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm −1 ), shows a minor shift. Sudden evolution of Raman mode at 668 cm −1 , manifested as A 1 -tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M s ) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi 0.88 Ce 0.12 FeO 3 thin film found to exhibit better magnetic properties with M s =15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi 1−x Ce x FeO 3 thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical applications of such materials exhibiting pinching behavior are conferred

  19. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi (India)

    2015-03-15

    The influence of Cerium doping on the structural and magnetic properties of BiFeO{sub 3} thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi{sub 1−x}Ce{sub x}FeO{sub 3} (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm{sup −1}) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm{sup −1}), shows a minor shift. Sudden evolution of Raman mode at 668 cm{sup −1}, manifested as A{sub 1}-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M{sub s}) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi{sub 0.88}Ce{sub 0.12}FeO{sub 3} thin film found to exhibit better magnetic properties with M{sub s}=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi{sub 1−x}Ce{sub x}FeO{sub 3} thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical

  20. The iron and cerium oxide influence on the electric conductivity and the corrosion resistance of anodized aluminium

    International Nuclear Information System (INIS)

    Souza, Kellie Provazi de

    2006-01-01

    The influence of different treatments on the aluminum system covered with aluminum oxide is investigated. The aluminum anodization in sulphuric media and in mixed sulphuric and phosphoric media was used to alter the corrosion resistance, thickness, coverage degree and microhardness of the anodic oxide. Iron electrodeposition inside the anodic oxide was used to change its electric conductivity and corrosion resistance. Direct and pulsed current were used for iron electrodeposition and the Fe(SO 4 ) 2 (NH 4 ) 2 .6H 2 O electrolyte composition was changed with the addition of boric and ascorbic acids. To the sealing treatment the CeCl 3 composition was varied. The energy dispersive x-ray (EDS), the x-ray fluorescence spectroscopy (FRX) and the morphologic analysis by scanning electronic microscopy (SEM) allowed to verify that, the pulsed current increase the iron content inside the anodic layer and that the use of the additives inhibits the iron oxidation. The chronopotentiometric curves obtained during iron electrodeposition indicated that the boric and ascorbic acids mixture increased the electrodeposition process efficiency. The electrochemical impedance spectroscopy (EIE), the Vickers (Hv) microhardness measurements and morphologic analysis evidenced that the sealing treatment improves the corrosion resistance of the anodic film modified with iron. The electrical impedance (EI) technique allowed to prove the electric conductivity increase of the anodized aluminum with iron electrodeposited even after the cerium low concentration treatment. Iron nanowires were prepared by using the anodic oxide pores as template. (author)

  1. Studies on the promotion of nickel—alumina coprecipitated catalysts: III. Cerium oxide

    NARCIS (Netherlands)

    Lansink Rotgerink, H.G.J.; Slaa, J.C.; van Ommen, J.G.; Ross, J.R.H.

    1988-01-01

    Three series of cerium-promoted nickel—alumina catalysts with different nickel-to-aluminium ratios each containing different amounts of cerium have been prepared and characterized. The calcination and reduction behaviour were found not to be altered by the presence of cerium. Part of the promoter

  2. Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.

    Science.gov (United States)

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex

    2013-10-01

    Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Bryant C. Nelson

    2016-05-01

    Full Text Available Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1 To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS and to act as antioxidant enzyme-like mimetics in solution; (2 To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3 To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

  4. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage

    Directory of Open Access Journals (Sweden)

    Claudia von Montfort

    2015-04-01

    Full Text Available Recently, it has been published that cerium (Ce oxide nanoparticles (CNP; nanoceria are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS-induced cell death and stimulate proliferation due to the antioxidative property of these particles.

  5. Chlorination and Carbochlorination of Cerium Oxide

    International Nuclear Information System (INIS)

    Esquivel, Marcelo; Bohe, Ana; Pasquevich, Daniel

    2000-01-01

    The chlorination and carbochlorination of cerium oxide were studied by thermogravimetry under controlled atmosphere (TG) in the 700 0 C 950 0 C temperature range.Both reactants and products were analyzed by X-ray diffraction (RX), scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). Thermodynamic calculations were performed by computer assisted software.The chlorination starts at a temperature close to 800 0 C.This reaction involves the simultaneous formation and evaporation of CeCl3.Both processes control the reaction rate and their kinetic may not be easily separated.The apparent chlorination activation energy in the 850 0 C-950 0 C temperature range is 172 to 5 kJ/ mole.Carbon transforms the CeO2-Cl2 into a more reactive system: CeO2-C-Cl2, where the effects of the carbon content, total flow rate and temperature were analyzed.The carbochlorination starting temperature is 700 0 C.This reaction is completed in one step controlled by mass transfer with an apparent activation energy of 56 to 5 kJ/mole in the 850 0 C-950 0 C temperature range

  6. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sanjay; Dosani, Talib; Karakoti, Ajay S.; Kumar, Amit; Seal, Sudipta; Self, William

    2011-10-01

    Cerium oxide nanoparticles (CeNPs) have shown promise as catalytic antioxidants in cell culture and animal models as both superoxide dismutase and catalase mimetics. The reactivity of the cerium (Ce) atoms at the surface of its oxide particle is critical to such therapeutic properties, yet little is known about the potential for a protein or small molecule corona to form on these materials in vivo. Moreover Ce atoms in these active sites have the potential to interact with small molecule anions, peptides, or sugars when administered in culture or animal models. Several nanomaterials have been shown to alter or aggregate under these conditions, rendering them less useful for biomedical applications. In this work we have studied the change in catalytic properties of CeNPs when exposed to various biologically relevant conditions in vitro. We have found that CeNPs are resistant to broad changes in pH and also not altered by incubation in cell culture medium. However to our surprise phosphate anions significantly altered the characteristics of these nanomaterials and shifted the catalytic behavior due to the binding of phosphate anions to cerium. Given the abundance of phosphate in biological systems in an inorganic form, it is likely that the action of CeNPs as a catalyst may be strongly influenced by the local concentration of phosphate in the cells and/or tissues in which it has been introduced.

  7. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Suegama, P.H. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Sarmento, V.H.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); Montemor, M.F. [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Benedetti, A.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); de Melo, H.G.; Aoki, I.V. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Santilli, C.V., E-mail: santilli@iq.unesp.b [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)

    2010-07-15

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  8. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    International Nuclear Information System (INIS)

    Suegama, P.H.; Sarmento, V.H.V.; Montemor, M.F.; Benedetti, A.V.; de Melo, H.G.; Aoki, I.V.; Santilli, C.V.

    2010-01-01

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  9. Using EIS to analyse samples of Al-Mg alloy AA5083 treated by thermal activation in cerium salt baths

    International Nuclear Information System (INIS)

    Bethencourt, M.; Botana, F.J.; Cano, M.J.; Marcos, M.; Sanchez-Amaya, J.M.; Gonzalez-Rovira, L.

    2008-01-01

    This paper describes a study undertaken of the morphological and anticorrosive characteristics of surface layers formed on the Al-Mg alloy AA5083 from solutions of Ce(III), by means of various heat treatments while immersed in baths of cerium salts. SEM/EDS studies have demonstrated the existence of a heterogeneous layer formed by a film of aluminium oxide/hydroxide on the matrix and a series of dispersed islands of cerium deposited on the cathodic intermetallics. With the object of evaluating the degree of protection provided by the layers formed and of characterising the particular contribution of the electrochemical response of the system in NaCl, the results obtained by means of EIS are presented and discussed

  10. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    Energy Technology Data Exchange (ETDEWEB)

    Cai Jingshun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Cao Fahe, E-mail: nelson_cao@zju.edu.cn [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Chang Linrong; Zheng Junjun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Zhang Jianqing; Cao Chunan [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-02-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  11. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    International Nuclear Information System (INIS)

    Cai Jingshun; Cao Fahe; Chang Linrong; Zheng Junjun; Zhang Jianqing; Cao Chunan

    2011-01-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  12. Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid.

    Science.gov (United States)

    Barrios, Ana Cecilia; Medina-Velo, Illya A; Zuverza-Mena, Nubia; Dominguez, Osvaldo E; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2017-01-01

    Little is known about the effects of surface modification on the interaction of nanoparticles (NPs) with plants. Tomato (Solanum lycopersicum L.) plants were cultivated in potting soil amended with bare and citric acid coated nanoceria (nCeO 2, nCeO 2 +CA), cerium acetate (CeAc), bulk cerium oxide (bCeO 2 ) and citric acid (CA) at 0-500 mg kg -1 . Fruits were collected year-round until the harvesting time (210 days). Results showed that nCeO 2 +CA at 62.5, 250 and 500 mg kg -1 reduced dry weight by 54, 57, and 64% and total sugar by 84, 78, and 81%. At 62.5, 125, and 500 mg kg -1 nCeO 2 +CA decreased reducing sugar by 63, 75, and 52%, respectively and at 125 mg kg -1 reduced starch by 78%, compared to control. The bCeO 2 at 250 and 500 mg kg -1 , increased reducing sugar by 67 and 58%. In addition, when compared to controls, nCeO 2 at 500 mg kg -1 reduced B (28%), Fe (78%), Mn (33%), and Ca (59%). At 125 mg kg -1 decreased Al by 24%; while nCeO 2 +CA at 125 and 500 mg kg -1 increased B by 33%. On the other hand, bCeO 2 at 62.5 mg kg -1 increased Ca (267%), but at 250 mg kg -1 reduced Cu (52%), Mn (33%), and Mg (58%). Fruit macromolecules were mainly affected by nCeO 2 +CA, while nutritional elements by nCeO 2 ; however, all Ce treatments altered, in some way, the nutritional quality of tomato fruit. To our knowledge, this is the first study comparing effects of uncoated and coated nanoceria on tomato fruit quality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  14. Synthesis of cerium oxide catalysts supported on MCM-41 molecular sieve; Sintese de catalisadores de oxido de cerio suportados na peneira molecular MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Souza, E.L.S.; Barros, T.R.B.; Sousa, B.V. de, E-mail: emylle.souza@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica

    2016-07-01

    Porous materials have been widely studied as catalysts and catalyst support. The MCM-41 structure is the one that has been most studied because of its application possibilities in chemical processes. This work aimed to obtain and characterize cerium oxide catalysts supported on MCM-41 molecular sieve. The molecular sieve was synthesized by the conventional method with the following molar composition: 1 SiO2: 0.30 CTABr: NH3 11: 144 H2O. Then, 25% w/w cerium was incorporated into the MCM-41 using the wet impregnation process and the material obtained was activated by calcination. From the XRD patterns was confirmed the structure of the molecular sieve, and were identified the cerium oxide phases in its structure. The textural catalysts characteristics were investigated by isotherms of N2 adsorption/desorption (BET method). (author)

  15. Electrospun cerium-based TiO2 nanofibers for photocatalytic oxidation of elemental mercury in coal combustion flue gas.

    Science.gov (United States)

    Wang, Lulu; Zhao, Yongchun; Zhang, Junying

    2017-10-01

    Photocatalytic oxidation is an attractive method for Hg-rich flue gas treatment. In the present study, a novel cerium-based TiO 2 nanofibers was prepared and selected as the catalyst to remove mercury in flue gas. Accordingly, physical/chemical properties of those nanofibers were clarified. The effects of some important parameters, such as calcination temperature, cerium dopant content and different illumination conditions on the removal of Hg 0 using the photocatalysis process were investigated. In addition, the removal mechanism of Hg 0 over cerium-based TiO 2 nanofibers focused on UV irradiation was proposed. The results show that catalyst which was calcined at 400 °C exhibited better performance. The addition of 0.3 wt% Ce into TiO 2 led to the highest removal efficiency at 91% under UV irradiation. As-prepared samples showed promising stability for long-term use in the test. However, the photoluminescence intensity of nanofibers incorporating ceria was significantly lower than TiO 2 , which was attributed to better photoelectron-hole separation. Although UV and O 2 are essential factors, the enhancement of Hg 0 removal is more obviously related to the participation of catalyst. The coexistence of Ce 3+ and Ce 4+ , which leads to the efficient oxidation of Hg 0 , was detected on samples. Hg 2+ is the final product in the reaction of Hg 0 removal. As a consequence, the emissions of Hg 0 from flue gas can be significantly suppressed. These indicate that combining photocatalysis technology with cerium-based TiO 2 nanofibers is a promising strategy for reducing Hg 0 efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco

    2012-01-01

    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors T...

  17. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  18. Co/Zr substitution in a cerium-zirconium oxide by catalytic steam reforming of bio-ethanol

    International Nuclear Information System (INIS)

    Vargas, J.C.; Thomas, S.; Roger, A.C.; Kiennemann, A.; Vargas, J.C.

    2006-01-01

    This work deals with the production of hydrogen by bio-ethanol catalytic steam reforming. The aim is to develop a catalyst active in ethanol conversion, selective in hydrogen and resistant to deactivation, particularly those induced by the formation of carbon deposition. The metal-support interaction being one of the keys of this challenge, catalysts in which a transition metal is inserted into an oxide by a liquid synthesis method (by the precursor method) have been developed. The initial insertion of cobalt into a cerium oxide-zirconia structure presents the advantages to increase the redox properties of the host oxide and to allow a stable reduction of a cobalt part while favoring the metal-support interaction. (O.M.)

  19. Effect of polyvinylpyrrolidone on cerium oxide nanoparticle characteristics prepared by a facile heat treatment technique

    Directory of Open Access Journals (Sweden)

    Anwar Ali Baqer

    Full Text Available An aqueous medium composed of polyvinylpyrrolidone (PVP and cerium nitrates at calcination temperature was utilised in the production of cerium oxide (CeO2 semiconductor nanoparticles. A variety of analytical approaches was utilized to examine the structural, morphological and optical characteristics of the resulting nanoparticles. Differential thermal (DTA and thermogravimetric (TGA analyses, indicated that the best calcination temperatures for achieving CeO2 nanoparticle production were more than 485 °C. The results from Fourier-transform infrared (FTIR verified the formation of a crystalline structure after calcination procedures were performed to remove residual organic compounds. Additionally, results from X-ray diffraction (XRD analysis confirmed the cubic fluorite structure of the CeO2 produced. Samples were also analysed by energy dispersive spectroscopy (EDXA which indicated the existence of O and Ce in the samples. Field emission scanning electron microscopy (FESEM was used in the characterisation of nanoparticle morphological features. Transmission electron microscopy (TEM was employed to estimate typical nanoparticle and distribution within sample. This analysis indicated that mean particle sizes were inversely correlated with PVP concentration, with nanoparticle sizes ranging between 12 ± 7 nm at 0.03 g/mL PVP and 6 ± 2 nm at 0.05 g/mL PVP. These results corroborated those obtained by XRD analysis. A UV–vis spectrophotometer was utilised in the demonstration of optical properties and to examine the band gap energy of samples. The potential UV-shielding properties of the nanoparticles were demonstrated by the observed blue shift of the estimated optical energy band, i.e. from 3.35 to 3.43 eV, whilst PL spectra results indicated that decreasing particle size was associated with diminishing photoluminescence intensity. Keywords: Cerium oxide nanoparticles, Heat treatment technique, Structural properties, Optical

  20. Effect of adduct formation on valent state of cerium in its ν-diketonates

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Martynenko, L.I.; Pechurova, N.I.; Snezhko, N.I.; Murav'eva, I.A.; Anufrieva, S.I.

    1982-01-01

    Physicochemical investigation of the system cerium (III, IV)-ν-diketone-additional ligand shows that ν-diketonate ability to adduct formation decreases in the series tenoyltrifluoro-acetonate > acetylacetonate > dibenzoylmethanate > benzoylmethanate. Adduct formation of the cerium (III, IV) ν-diketonates stabilizes cerium in trivalent condition, while oxidation degree 4+ is stable in tetrakis-ν-diketonates. The additional ligands are arranged in the series: tributhylphosphate < trioctyl-phosphineoxide < triphenylphosphineoxide < α, α'-dipyridyl < o-phenanthroline by the effect on cerium (III) stabilization in its ν-diketonates

  1. Photocatalytic Degradation of Malachite Green Using Nano-sized cerium-iron Oxide

    Directory of Open Access Journals (Sweden)

    K. L. Ameta

    2014-05-01

    Full Text Available Nano-sized cerium-iron oxide nanoparticles has been synthesized, characterized and explored as an efficient photocatalyst for the photocatalytic degradation of malachite green. The effects of different variables on degradation of dye were optimized such as the pH of the dye solution, dye concentration, amount of photocatalyst and light intensity. About 91% degradation of dye of 2×10-5 M concentration was observed after 2 hours at 8.5 pH and 600 Wm-2 light intensity. The reason for the high catalytic activity of the synthesized nanoparticles is ascribed to the high surface area which determines the active sites of the catalyst and accelerates the photocatalytic degradation.

  2. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jessica T. Dahle

    2015-01-01

    Full Text Available Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydroxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent. This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.

  3. Unusual kinetics of poly(ethylene glycol) oxidation with cerium(IV) ions in sulfuric acid medium and implications for copolymer synthesis.

    Science.gov (United States)

    Szymański, Jan K; Temprano-Coleto, Fernando; Pérez-Mercader, Juan

    2015-03-14

    The cerium(IV)-alcohol couple in an acidic medium is an example of a redox system capable of initiating free radical polymerization. When the alcohol has a polymeric nature, the outcome of such a process is a block copolymer, a member of a class of compounds possessing many useful properties. The most common polymer with a terminal -OH group is poly(ethylene glycol) (PEG); however, the detailed mechanism of its reaction with cerium(IV) remains underexplored. In this paper, we report our findings for this reaction based on spectrophotometric measurements and kinetic modeling. We find that both the reaction order and the net rate constant for the oxidation process depend strongly on the nature of the acidic medium used. In order to account for the experimental observations, we postulate that protonation of PEG decreases its affinity for some of the cerium(IV)-sulfate complexes formed in the system.

  4. Thermally stimulated iron oxide transformations and magnetic behaviour of cerium dioxide/iron oxide reactive sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Luňáček, J., E-mail: jiri.lunacek@vsb.cz [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Životský, O. [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Jirásková, Y. [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Buršík, J. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Janoš, P. [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2016-10-15

    The present paper is devoted to detailed study of the magnetically separable sorbents based on a cerium dioxide/iron oxide composite annealed at temperatures T{sub a} = 773 K, 873 K, and 973 K. The X-ray diffraction and high resolution transmission electron microscopy are used to determine the phase composition and microstructure morphology. Mössbauer spectroscopy at room (300 K) and low (5 K) temperatures has contributed to more exact identification of iron oxides and their transformations Fe{sub 3}O{sub 4} → γ-Fe{sub 2}O{sub 3} (ε-Fe{sub 2}O{sub 3}) → α-Fe{sub 2}O{sub 3} in dependence on calcination temperature. Different iron oxide phase compositions and grain size distributions influence the magnetic characteristics determined from the room- and low-temperature hysteresis loop measurements. The results are supported by zero-field-cooled and field-cooled magnetization measurements allowing a quantitative estimation of the grain size distribution and its effect on the iron oxide transformations. - Highlights: •Magnetically separable sorbents based on a CeO{sub 2}/Fe{sub 2}O{sub 3} composite were investigated. •Microstructure of sorbents was determined by XRD, TEM and Mössbauer spectroscopy. •Magnetic properties were studied by hysteresis loops at room- and low-temperatures. •Phase transitions of iron oxides with increasing annealing temperature are observed.

  5. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 2. of ISO 7097 describes procedures for determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with cerium(IV) and ISO 7097-1 uses a titration with potassium dichromate

  6. Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages.

    Science.gov (United States)

    Charbgoo, Fahimeh; Ramezani, Mohammad; Darroudi, Majid

    2017-10-15

    Cerium oxide nanoparticles (CNPs) contain several properties such as catalytic activity, fluorescent quencher and electrochemical, high surface area, and oxygen transfer ability, which have attracted considerable attention in developing high-sensitive biosensors. CNPs can be used as a whole sensor or a part of recognition or transducer element. However, reports have shown that applying these nanoparticles in sensor design could remarkably enhance detection sensitivity. CNP's outstanding properties in biosensors which go from high catalytic activity and surface area to oxygen transfer and fluorescent quenching capabilities are also highlighted. Herein, we discuss the advantages and disadvantages of CNPs-based biosensors that function through various detection modes including colorimetric, electrochemistry, and chemoluminescent regarding the detection of small organic chemicals, metal ions and biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of adduct formation on valent state of cerium in its. beta. -diketonates

    Energy Technology Data Exchange (ETDEWEB)

    Spitsyn, V.I.; Martynenko, L.I.; Pechurova, N.I.; Snezhko, N.I.; Murav' eva, I.A.; Anufrieva, S.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1982-04-01

    Physicochemical investigation of the system cerium (III, IV)-..beta..-diketone-additional ligand shows that ..beta..-diketonate ability to adduct formation decreases in the series tenoyltrifluoro-acetonate > acetylacetonate > dibenzoylmethanate > benzoylmethanate. Adduct formation of the cerium (III, IV) ..beta..-diketonates stabilizes cerium in trivalent condition, while oxidation degree 4+ is stable in tetrakis-..beta..-diketonates. The additional ligands are arranged in the series: tributhylphosphate < trioctyl-phosphineoxide < triphenylphosphineoxide < ..cap alpha.., ..cap alpha..'-dipyridyl < o-phenanthroline by the effect on cerium (III) stabilization in its ..beta..-diketonates.

  8. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick’s second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  9. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Science.gov (United States)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  10. Structural, morphological and optical properties of spray deposited Mn-doped CeO2 thin films

    International Nuclear Information System (INIS)

    Pavan Kumar, CH.S.S.; Pandeeswari, R.; Jeyaprakash, B.G.

    2014-01-01

    Highlights: • Spray deposited undoped and Mn-doped CeO 2 thin films were polycrystalline. • Complete changeover of surface morphology upon 4 wt% Mn doping. • 4 wt% Mn-doped CeO 2 thin film exhibited a hydrophobic nature. • Optical band-gap decreases beyond 2 wt% Mn doping. - Abstract: Cerium oxide and manganese (Mn) doped cerium oxide thin films on glass substrates were prepared by home built spray pyrolysis system. The effect of Mn doping on the structural, morphological and optical properties of CeO 2 films were studied. It was found that both the undoped and doped CeO 2 films were polycrystalline in nature but the preferential orientation and grain size changed upon doping. Atomic force micrograph showed a complete changeover of surface morphology from spherical to flake upon doping. A water contact angle result displayed the hydrophobic nature of the doped CeO 2 film. Optical properties indicated an increase in band-gap and a decrease in transmittance upon doping owing to Moss–Burstein effect and inverse Moss–Burstein effects. Other optical properties such as refractive index, extinction coefficient and dielectric constant as a function of doping were analysed and reported

  11. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    NARCIS (Netherlands)

    Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Duffin, Rodger; Krystek, Petra; Gosens, Ilse; Miller, Mark R.

    Bacground: Cerium oxide (CeO 2) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE -/-) mice were exposed by inhalation to diluted exhaust (1.7mg/m

  12. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    International Nuclear Information System (INIS)

    Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Duffin, Rodger; Krystek, Petra; Gosens, Ilse; Miller, Mark R.

    2012-01-01

    Background: Cerium oxide (CeO 2 ) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE −/− ) mice were exposed by inhalation to diluted exhaust (1.7 mg/m 3 , 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results: Addition of CeO 2 to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6–8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions: These results imply that addition of CeO 2 nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.

  13. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    Energy Technology Data Exchange (ETDEWEB)

    Cassee, Flemming R., E-mail: flemming.cassee@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); Campbell, Arezoo, E-mail: acampbell@westernu.edu [Western University of Health Sciences, Pomona, CA (United States); Boere, A. John F., E-mail: john.boere@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); McLean, Steven G., E-mail: smclean1@staffmail.ed.ac.uk [BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh (United Kingdom); Duffin, Rodger, E-mail: Rodger.Duffin@ed.ac.uk [MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh (United Kingdom); Krystek, Petra, E-mail: petra.krystek@philips.com [Philips Innovation Services, Eindhoven (Netherlands); Gosens, Ilse, E-mail: Ilse.gosens@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); Miller, Mark R., E-mail: Mark.Miller@ed.ac.uk [BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh (United Kingdom)

    2012-05-15

    Background: Cerium oxide (CeO{sub 2}) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE{sup -/-}) mice were exposed by inhalation to diluted exhaust (1.7 mg/m{sup 3}, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results: Addition of CeO{sub 2} to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions: These results imply that addition of CeO{sub 2} nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.

  14. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice.

    Science.gov (United States)

    Cassee, Flemming R; Campbell, Arezoo; Boere, A John F; McLean, Steven G; Duffin, Rodger; Krystek, Petra; Gosens, Ilse; Miller, Mark R

    2012-05-01

    Cerium oxide (CeO(2)) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Atherosclerosis-prone apolipoprotein E knockout (ApoE(-/-)) mice were exposed by inhalation to diluted exhaust (1.7 mg/m(3), 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Addition of CeO(2) to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. These results imply that addition of CeO(2) nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Oxidation films morphology

    International Nuclear Information System (INIS)

    Paidassi, J.

    1960-01-01

    After studying the oxidation of several pure polyvalent metals (Fe, Cu, Mn, Ni, U) and of their oxides at high temperature and atmospheric pressure, the author suggests how to modify the usual representation of the oxide film (a piling of different oxide layers, homogeneous on a micrographic scale with a equi-axial crystallisation, free of mechanical tensions, with flat boundary surfaces) to have it nearer to reality. In this first part, the author exposes the study of the real micrographic structure of the oxidation film and gives examples of precipitation in the oxides during the cooling of the oxidised sample. (author) [fr

  16. Fabrication of cerium-doped β-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors.

    Science.gov (United States)

    Li, Wenhao; Zhao, Xiaolong; Zhi, Yusong; Zhang, Xuhui; Chen, Zhengwei; Chu, Xulong; Yang, Hujiang; Wu, Zhenping; Tang, Weihua

    2018-01-20

    High-quality cerium-doped β-Ga 2 O 3 (Ga 2 O 3 :Ce) thin films could be achieved on (0001)α-Al 2 O 3 substrates using a pulsed-laser deposition method. The impact of dopant contents concentration on crystal structure, optical absorption, photoluminescence, and photoelectric properties has been intensively studied. X-ray diffraction analysis results have shown that Ga 2 O 3 :Ce films are highly (2¯01) oriented, and the lattice spacing of the (4¯02) planes is sensitive to the Ce doping level. The prepared Ga 2 O 3 :Ce films show a sharp absorption edge at about 250 nm, meaning a high transparency to deep ultraviolet (DUV) light. The photoluminescence results revealed that the emissions were in the violet-blue-green region, which are associated with the donor-acceptor transitions with the Ce 3+ and oxygen vacancies related defects. A simple DUV photodetector device with a metal-semiconductor-metal structure has also been fabricated based on Ga 2 O 3 :Ce thin film. A distinct DUV photoresponse was obtained, suggesting a potential application in DUV photodetector devices.

  17. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao; Li, Weiwei; Croue, Jean-Philippe

    2011-01-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  18. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  19. Simultaneous oxidation and adsorption of As(III) from water by cerium modified chitosan ultrafine nanobiosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingfan [School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China); Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Zhu, Tianyi [School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liu, Xin, E-mail: liuxin@ecust.edu.cn [School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Wenqing, E-mail: zhwqing@ecust.edu.cn [School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-05-05

    Highlights: • A novel ultrafine nanobiosorbent of cerium modified chitosan (Ce-CNB) was prepared. • The Ce-CNB possessed properties for simultaneous oxidation and adsorption As(III). • Adsorption of As(III) by Ce-CNB was in high efficiency. • Mechanisms for As(III) adsorption on Ce-CNB were elucidated. - Abstract: Since most existing arsenic removal adsorbents are difficult to effectively remove arsenite (As(III)), an urgent need is to develop an efficient adsorbent for removing As(III) from contaminated water. In this study, a novel ultrafine nanobiosorbent of cerium modified chitosan (Ce-CNB) with simultaneous oxidation and adsorption As(III) performance has been successfully developed. The resulting Ce-CNB with or without As(III) adsorption was characterized by FTIR, XRD, SEM, EDS, TEM, EMI and XPS analysis. Batch of adsorption experiments were performed to investigate the effects of various conditions on the As(III) adsorption. The adsorption behaviors were well described by the Langmuir isotherm and the pseudo-second-order kinetic model, with the maximum adsorption capacities of 57.5 mg g{sup −1}. The adsorption mechanisms for As(III) were (i) formed monodentate and bidentate complexes between hydroxyl groups and arsenite; and (ii) partial As(III) oxidized to As(V) followed by simultaneously adsorbed on the surface of Ce-CNB. This novel nanocomposite can be reused while maintaining a high removal efficiency and can be applied to treat 5.8 L of As(III)-polluted water with the effluent concentration lower than the World Health Organization standard, which suggests its great potential to remove As(III) from contaminated water.

  20. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes

    Energy Technology Data Exchange (ETDEWEB)

    Janoš, Pavel, E-mail: pavel.janos@ujep.cz [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic); Henych, Jiří [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic); Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Pelant, Ondřej; Pilařová, Věra; Vrtoch, Luboš [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic); Kormunda, Martin [Faculty of Sciences, University of Jan Evangelista Purkyně, České Mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Mazanec, Karel [Military Research Institute, Veslařská 230, 637 00 Brno (Czech Republic); and others

    2016-03-05

    Highlights: • Four synthetic routes were compared to prepare the nanoceria-based reactive sorbents. • The sorbents prepared by homogeneous hydrolysis destroy efficiently the soman and VX nerve agents. • Toxic organophosphates are converted to less-dangerous products completely within a few minutes. • Surface non-stoichiometry and −OH groups promote the destruction by the S{sub N}2 mechanism. - Abstract: Four different synthetic routes were used to prepare active forms of cerium oxide that are capable of destroying toxic organophosphates: a sol–gel process (via a citrate precursor), homogeneous hydrolysis and a precipitation/calcination procedure (via carbonate and oxalate precursors). The samples prepared via homogeneous hydrolysis with urea and the samples prepared via precipitation with ammonium bicarbonate (with subsequent calcination at 500 °C in both cases) exhibited the highest degradation efficiencies towards the extremely dangerous nerve agents soman (O-pinacolyl methylphosphonofluoridate) and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) and the organophosphate pesticide parathion methyl. These samples were able to destroy more than 90% of the toxic compounds in less than 10 min. The high degradation efficiency of cerium oxide is related to its complex surface chemistry (presence of surface −OH groups and surface non-stoichiometry) and to its nanocrystalline nature, which promotes the formation of crystal defects on which the decomposition of organophosphates proceeds through a nucleophilic substitution mechanism that is not dissimilar to the mechanism of enzymatic hydrolysis of organic phosphates by phosphotriesterase.

  1. Study of cyclic oxidation for stainless steels AISI 309 T 253 M A, with low additions of cerium; Estudio de la oxidacion ciclica de los aceros inoxidables AISI 309 T 253 MA, con pequenas adiciones de Cerio

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez F, G.L.; Martinez, M.; Ruiz, A. [Universidad Nacional Experimental Politecnica (UNEXPO) - Vicerrectorado de Puerto Ordaz, Centro de Estudios de Corrosion. Puerto Ordaz. venezuela (Venezuela)

    1998-12-31

    It has been detected that the addition of small amounts (<1%) of the so called `reactive elements` such as Cerium to Fe-Cr alloys that was utilized in oxidating environment at high temperatures improving its resistance to oxidation under isothermal and cyclic conditions. In this work, it was evaluated the behavior under cyclic oxidation conditions for an austenitic stainless steel at chromium-nickel (253MA) with cerium addition, and comparing it with the AISI 310S austenitic stainless steel. The cyclic oxidation essays consist of five cycles by 24 hours each one, following of a cooling in air until ambient temperature from the temperatures of 850, 900 and 950 Centigrade, registering the gain mass of the specimen at end of each cycle. In order to this were prepared samples with dimensions of 20 mm. x 10 mm. x 1 mm. Later to the oxidation essays was evaluated the morphology of the corrosion products layer by scanning electron microscopy. The present phases were identified by X-ray diffraction and by chemical microanalysis by Dispersive energy (EDAX). The results obtained show that the steel with cerium addition, presents a higher adherence and resistance to the spalling noting that the cerium promotes the casting anchor of the oxides layer to matrix and by reducing the grain size of the layer improving its plasticity. Additionally the cerium promotes the preferential oxidation of the forming elements of protective layers like the chromium. (Author)

  2. Kinetics of bromide catalysed oxidation of dextrose by cerium (IV) in aqueous sulphuric acid solution

    International Nuclear Information System (INIS)

    Sharma, J.; Sah, M.P.

    1994-01-01

    Kinetics of bromide catalysed oxidation of dextrose by Ce IV in aqueous sulphuric acid medium show first order dependence each in dextrose and cerium(IV). The reaction rate decreases on increasing the concentration of hydrogen ion. The increase in [HSO 4 - ] or [SO 4 2- ] decreases the rate. The bromide ion shows positive catalytic effect on the reaction rate. The value of activation energy has been calculated and a suitable mechanism confirming to the kinetic data is proposed. (author). 3 refs., 3 tabs

  3. Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium(IV) in sulfuric acid medium

    International Nuclear Information System (INIS)

    Ma Yongjun; Jin Xiaoyong; Zhou Min; Zhang Ziyu; Teng Xiulan; Chen Hui

    2003-01-01

    The chemiluminescence (CL) of the rhodamine B (RhB)-cerium(IV) system was investigated by flow-injection. Rhodamine B was suggested to be a suitable chemiluminescent reagent in acidic conditions. When the concentration of rhodamine B was 100 mg l -1 and cerium sulfate was 1.6 mmol l -1 in sulfuric acid, the chemiluminescent intensity was found to be highest by using 0.3 mol l -1 sulfuric acid as a carrier solution. The particular chemiluminescent system could tolerate such distinct acidic environments that it was utilized for detecting many compounds that are stable in acidic solutions. Furthermore, by virtue of IR, UV-Vis and luminescence spectroscopic measurements, the chemiluminescent behavior of rhodamine B was studied and a possible mechanism for this chemiluminescent reaction was proposed. The emitter was affirmed to be a radical species due to one of the oxidation products of RhB; the chemiluminescent emissive wavelength was about 425 nm

  4. Chemiluminescence behavior based on oxidation reaction of rhodamine B with cerium(IV) in sulfuric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yongjun; Jin Xiaoyong; Zhou Min; Zhang Ziyu; Teng Xiulan; Chen Hui

    2003-08-18

    The chemiluminescence (CL) of the rhodamine B (RhB)-cerium(IV) system was investigated by flow-injection. Rhodamine B was suggested to be a suitable chemiluminescent reagent in acidic conditions. When the concentration of rhodamine B was 100 mg l{sup -1} and cerium sulfate was 1.6 mmol l{sup -1} in sulfuric acid, the chemiluminescent intensity was found to be highest by using 0.3 mol l{sup -1} sulfuric acid as a carrier solution. The particular chemiluminescent system could tolerate such distinct acidic environments that it was utilized for detecting many compounds that are stable in acidic solutions. Furthermore, by virtue of IR, UV-Vis and luminescence spectroscopic measurements, the chemiluminescent behavior of rhodamine B was studied and a possible mechanism for this chemiluminescent reaction was proposed. The emitter was affirmed to be a radical species due to one of the oxidation products of RhB; the chemiluminescent emissive wavelength was about 425 nm.

  5. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates

    KAUST Repository

    Naganuma, Tamaki

    2014-01-01

    Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce3+ and Ce4+ ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce3+ ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce 3+ ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce3+ ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce 3+ to Ce4+ occurred at 350 °C in air. Highly concentrated Ce3+ ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce 3+ stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce3+ sites. This study also illuminates the potential interaction mechanisms of stable Ce3+ ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments. © The Royal Society of Chemistry 2014.

  6. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  7. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  8. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  9. Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method

    International Nuclear Information System (INIS)

    Liu, Haowen; Le, Qi

    2016-01-01

    In this present work, chemical precipitation method was employed for preparing cerium oxide. XRD, SEM, TEM, TGA/DTA and BET were used to investigate the structure, shape and formation mechanism, respectively. No impurities were detected. It was found that alcohol had obvious effection on the growth of the final sample. The shape of the precursor was retained after calcined at 500 °C. This result led to the possibility of an easy scale up to a commercial process. EIS and charge–discharge tests were carried out by using the as-prepared CeO_2 as an anode material for lithium ion batteries. Specially, the initial discharge specific capacity of the rhombus CeO_2 was about 529 mAh g"−"1 and stabilized reversibly at about 374 mAh g"−"1 after 50 cycles. It showed a promising usage as anode materials in lithium ion battery. - Highlights: • Chemical precipitation method was employed for the synthesis of cerium oxide. • Alcohol has obvious effection on the growth of the final sample. • The rhombus CeO_2 showed the better electrochemical properties as anode of lithium ion batteries.

  10. Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haowen, E-mail: liuhwchem@hotmail.com; Le, Qi

    2016-06-05

    In this present work, chemical precipitation method was employed for preparing cerium oxide. XRD, SEM, TEM, TGA/DTA and BET were used to investigate the structure, shape and formation mechanism, respectively. No impurities were detected. It was found that alcohol had obvious effection on the growth of the final sample. The shape of the precursor was retained after calcined at 500 °C. This result led to the possibility of an easy scale up to a commercial process. EIS and charge–discharge tests were carried out by using the as-prepared CeO{sub 2} as an anode material for lithium ion batteries. Specially, the initial discharge specific capacity of the rhombus CeO{sub 2} was about 529 mAh g{sup −1} and stabilized reversibly at about 374 mAh g{sup −1} after 50 cycles. It showed a promising usage as anode materials in lithium ion battery. - Highlights: • Chemical precipitation method was employed for the synthesis of cerium oxide. • Alcohol has obvious effection on the growth of the final sample. • The rhombus CeO{sub 2} showed the better electrochemical properties as anode of lithium ion batteries.

  11. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Röhder, Lena A. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Brandt, Tanja [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Behra, Renata, E-mail: Renata.behra@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland)

    2014-07-01

    Highlights: • Phosphate-dispersed CeO₂ NP did not affect photosynthetic yield in C. reinhardtii. • Agglomerated CeO₂ NP slightly decreased photosynthetic yield. • Cerium(III) was shown to affect photosynthetic yield and intracellular ROS level. • Slight effects of CeO₂ NP were caused by dissolved Ce³⁺ ions present in suspensions. • Wild type and cell wall free mutant of C. reinhardtii showed the same sensitivity. - Abstract: Cerium oxide nanoparticles (CeO₂ NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO₂ NP and effects on algae are largely unknown. In this study, the short term effects of CeO₂ NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO₂ NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO₂ NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO₂ NP had a surface charge of ~0 mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO₂ NP at pH 7.5 over 24 h. This effect was exploited to test CeO₂ NP dispersed in phosphate with a mean size of 140 nm and agglomerated in absence of phosphate with a mean size of 2000 nm. The level of dissolved cerium(III) in CeO₂ NP suspensions was very low and between 0.1 and 27 nM in all tested media. Exposure of C. reinhardtii to Ce(NO₃)₃ decreased the photosynthetic yield in a concentration dependent manner with EC₅₀ of 7.5 ± 0.84 μM for wild type and EC₅₀ of 6.3 ± 0.53 μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO₃)₃ with effective concentrations similar to those inhibiting photosynthesis. The agglomerated Ce

  12. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies:a review

    Institute of Scientific and Technical Information of China (English)

    何立莹; 苏玉民; 蒋兰宏; 石士考

    2015-01-01

    Nanostructured cerium oxide (CeO2) commonly known as nanoceria is a rare earth metal oxide, which plays a technologi-cally important role due to its versatile applications as automobile exhaust catalysts, oxide ion conductors in solid oxide fuel cells, electrode materials for gas sensors, ultraviolet absorbents and glass-polishing materials. However, nanoceria has little or weak lumi-nescence, and therefore its uses in high-performance luminescent devices and biomedical areas are limited. In this review, we present the recent advances of nanoceria in the aspects of synthesis, luminescence and biomedical studies. The CeO2 nanoparticles can be synthesized by solution-based methods including co-precipitation, hydrothermal, microemulsion process, sol-gel techniques, combus-tion reaction and so on. Achieving controlled morphologies and enhanced luminescence efficiency of nanoceria particles are quite es-sential for its potential energy- and environment-related applications. Additionally, a new frontier for nanoceria particles in biomedi-cal research has also been opened, which involves low toxicity, retinopathy, biosensors and cancer therapy aspects. Finally, the sum-mary and outlook on the challenges and perspectives of the nanoceria particles are proposed.

  13. Probing and tuning the size, morphology, chemistry and structure of nanoscale cerium oxide

    Science.gov (United States)

    Kuchibhatla, Satyanarayana Vnt

    Cerium oxide (ceria)-based materials in the nanoscale regime are of significant fundamental and technological interest. Nanoceria in pure and doped forms has current and potential use in solid oxide fuel cells, catalysis, UV-screening, chemical mechanical planarization, oxygen sensors, and bio-medical applications. The characteristic feature of Ce to switch between the +3 and +4 oxidation states renders oxygen buffering capability to ceria. The ease of this transformation was expected to be enhanced in the nanoceria. In most the practical scenarios, it is necessary to have a stable suspension of ceria nanoparticles (CNPs) over longer periods of time. However, the existing literature is confined to short term studies pertaining to synthesis and property evaluation. Having understood the need for a comprehensive understanding of the CNP suspensions, this dissertation is primarily aimed at understanding the behavior of CNPs in various chemical and physical environments. We have synthesized CNPs in the absence of any surfactants at room temperature and studied the aging characteristics. After gaining some understanding about the behavior of this functional oxide, the synthesis environment and aging temperature were varied, and their affects were carefully analyzed using various materials analysis techniques such as high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), and X-ray photoelectron spectroscopy (XPS). When the CNPs were aged at room temperature in as-synthesized condition, they were observed to spontaneously assemble and evolve as fractal superoctahedral structures. The reasons for this unique polycrystalline morphology were attributed to the symmetry driven assembly of the individual truncated octahedral and octahedral seed of the ceria. HRTEM and Fast Fourier Transform (FFT) analyses were used to explain the agglomeration behavior and evolution of the octahedral morphology. Some of the observations were supported by

  14. Structural, morphological and optical properties of spray deposited Mn-doped CeO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pavan Kumar, CH.S.S.; Pandeeswari, R.; Jeyaprakash, B.G., E-mail: jp@ece.sastra.edu

    2014-07-25

    Highlights: • Spray deposited undoped and Mn-doped CeO{sub 2} thin films were polycrystalline. • Complete changeover of surface morphology upon 4 wt% Mn doping. • 4 wt% Mn-doped CeO{sub 2} thin film exhibited a hydrophobic nature. • Optical band-gap decreases beyond 2 wt% Mn doping. - Abstract: Cerium oxide and manganese (Mn) doped cerium oxide thin films on glass substrates were prepared by home built spray pyrolysis system. The effect of Mn doping on the structural, morphological and optical properties of CeO{sub 2} films were studied. It was found that both the undoped and doped CeO{sub 2} films were polycrystalline in nature but the preferential orientation and grain size changed upon doping. Atomic force micrograph showed a complete changeover of surface morphology from spherical to flake upon doping. A water contact angle result displayed the hydrophobic nature of the doped CeO{sub 2} film. Optical properties indicated an increase in band-gap and a decrease in transmittance upon doping owing to Moss–Burstein effect and inverse Moss–Burstein effects. Other optical properties such as refractive index, extinction coefficient and dielectric constant as a function of doping were analysed and reported.

  15. Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, S.A. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz (Iran, Islamic Republic of); Ranjbar, Khalil, E-mail: k_ranjbar@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz (Iran, Islamic Republic of); Dehmolaei, R. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz (Iran, Islamic Republic of); Amirani, A.R. [12th Ghaem Street, Bld. Hashemzadeh, Shahrak Golestan, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Highlights: • Using friction stir processing, an effect of CNTs and CeO{sub 2} reinforcements on mechanical and corrosion properties of Al5083 alloy is reported. • The strength of Al5083 was increased by 42%, its matrix grain size reduced five times, and hardness was doubled by the incorporation of CNTs-CeO{sub 2} mixture in the volume ratio of 75-25 respectively. • Unlike the CNTs, incorporation of nanosized CeO{sub 2} particles resulted in remarkable increase in pitting resistance of the alloy. - Abstract: In the present investigation, friction stir processing (FSP) was utilized to incorporate Multi Walled Carbon Nano Tubes (MWCNT) and nanosized cerium oxide particles into the matrix of Al5083 alloy to form surface reinforced composites. The effect of these nanosized reinforcements either separately or in the combined form, on microstructural modification, mechanical properties and corrosion resistance of FSPed Al5083 surface composites was studied. A threaded cylindrical hardened steel tool was used with the rotation speeds of 600 and 800 rpm and travel speeds of 35 and 45 mm/min and a tilt angle of 5°. Mechanical properties and corrosion resistance of FSPed samples were evaluated and compared with the base alloy. The maximum tensile strength and hardness value were achieved for the hybrid composite containing a mixture of CNTs and cerium oxide in the volume ratio of 75-25, respectively, whereas a significant increase in pitting resistance of the base alloy was obtained when cerium oxide alone was incorporated. The corrosion behavior of the samples was investigated by potentiodynamic polarization tests and assessed in term of pitting potential and passivation range. Microstructural analysis carried out by using optical and electron microscopes showed that reinforcements are well dispersed inside the nugget zone (NZ), and remarkable grain refinement is gained. The study was aimed to fabricate surface composites with improved mechanical properties and

  16. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.; Das, Soumen C.; Seal, Sudipta; Erlichman, Joseph S.; Heckman, Karin L.; Ghibelli, Lina; Traversa, Enrico; McGinnis, James F.; Self, William Thomas

    2014-01-01

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  17. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  18. Pentacene ohmic contact on the transparent conductive oxide films

    International Nuclear Information System (INIS)

    Chu, Jian-An; Zeng, Jian-Jhou; Wu, Kuo-Chen; Lin, Yow-Jon

    2010-01-01

    Low-resistance ohmic contacts are essential to improve the performance of pentacene-based electronic and optoelectronic devices. In this study, we reported ohmic contact formation at the indium tin oxide (ITO)/pentacene and indium cerium oxide (ICO)/pentacene interfaces. According to the observed results from current-voltage and Kelvin probe measurements, we found that the lower contact resistivity of the ICO/pentacene sample than the ITO/pentacene sample may be attributed to the higher surface work function of ICO than ITO.

  19. Phase segregation in cerium-lanthanum solid solutions

    NARCIS (Netherlands)

    Belliere, V.; Joorst, G; Stephan, O; de Groot, FMF; Weckhuysen, BM

    2006-01-01

    Electron energy-loss spectroscopy (EELS) in combination with scanning transmission electron microscopy ( STEM) reveals that the La enrichment at the surface of cerium-lanthanum solid solutions is an averaged effect and that segregation occurs in a mixed oxide phase. This separation occurs within a

  20. Extraction-differential-photometric method to determine rare earths of cerium subgroup

    International Nuclear Information System (INIS)

    Askerov, D.N.; Gusejnov, I.K.; Melikov, A.A.

    1985-01-01

    The extraction - photometric method to determine great quantities of rare earths of the cerium subgroup as a complex with antipyrine A and diphenylguanidine is developed. Isobutyl and n-butyl alcohols are used as extractants. It is established that proportional dependence between relative optical density and concentration of rare earths of the cerium subgroup in the solution takes place in the concentration interval of 10.3-14.7 μg of rare earths in 1 ml of the solution. Determination error is+-1.12%. The technique is used to determine rare earths of the cerium subgroup in rare earth oxides of a mixed composition, as well as in monozite and loparite

  1. Ultrastructural Analysis of Human Breast Cancer Cells during Their Overtime Interaction with Cerium Oxide Nanoparticles

    KAUST Repository

    AlAbbadi, Shatha H.

    2016-12-01

    Cerium oxide nanoparticles have been proposed as an anticancer agent, thanks to their ability of tuning the redox activity in accordance to different conditions, which lead to selective roles on healthy and cancer cells. Recent evidence suggested the ability of these nanoparticles to be toxic against cancer cells, while confer protection from oxidative stress, toward healthy cells. The main focus of this study was to determine the ultrastructural effects of cerium oxide nanoparticles over multiple incubation time of 1, 3, and 7 days on breast healthy and cancer cells. Cellular characterizations were carried out using electron microscopes, both transmission and scanning electron microscopes, while the viability assessments were performed by propidium iodide and trypan blue viability assays. The obtained results of the viability assays and electron microscopy suggested higher toxic effects on the cancer cell line viability by using a nanoceria dose of 300 μg/mL after 1 day of treatment. Such effects were shown to be preserved at 3 days, and in a longer time point of 7 days. On the contrary, the healthy cells underwent less effects on their viability at time point of 1 and 7 days. The 3 days treatment demonstrated a reduction on the number of cells that did not correlate with an increase of the dead cells, which suggested a possible initial decrease of the cell growth rate, which could be due to the high intracellular loading of nanoparticles. To conclude, the overall result of this experiment suggested that 300 μg/mL of CeO2 nanoparticles is the most suitable dose, within the range and the time point tested, which induces long-lasting cytotoxic effects in breast cancer cells, without harming the normal cells, as highlighted by the viability assays and ultrastructural characterization of electron microscopy analysis.

  2. Structure and properties of cerium oxides in bulk and nanoparticulate forms

    International Nuclear Information System (INIS)

    Gangopadhyay, Shruba; Frolov, Dmitry D.; Masunov, Artëm E.; Seal, Sudipta

    2014-01-01

    The experimental and computational studies on the cerium oxide nanoparticles, as well as stoichiometric phases of bulk ceria are reviewed. Based on structural similarities of these phases in hexagonal aspect, electroneutral and non-polar pentalayers are identified as building blocks of type A sesquioxide structure. The idealized core/shell structure of the ceria nanoparticles is described as dioxide core covered by a single pentalayer of sesquioxide, which explains the exceptional stability of subsurface vacancies in nanoceria. The density functional theory (DFT) predictions of the lattice parameters and elastic moduli for the Ce(IV) and Ce(III) oxides at the hybrid DFT level are also presented. The calculated values for both compounds agree with available experimental data and allow predicting changes in the lattice parameter with decreasing size of the nanoparticles. The lattice parameter is calculated as equilibrium between contraction of sesquioxide structure in the core, and expansion of dioxide structure in the shell of the nanoparticle. This is consistent with available XRD data on ceria NPs obtained in mild aqueous conditions. The core/shell model, however, breaks down when applied to the size dependence of lattice parameter in NPs obtained by the laser ablation techniques

  3. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  4. Procedure for the separation of cerium from rare earth phosphate mixtures

    International Nuclear Information System (INIS)

    Richter, H.; Grauss, H.; Schmitt, A.; Schade, H.; Lindeholz, M.; Lorenz, E.; Weickart, J.

    1986-01-01

    The invention is concerned with a procedure for the separation of cerium from rare earth concentrates originating from the partial neutralization of nitric crude phosphate decomposition solutions without preceding elimination of impurities from the raw material. The rare earth phosphates are treated with an excess of concentrated nitric acid through which the Ce 3+ , contained in the solution, is oxidized to Ce 4+ and precipitated as cerium(IV) phosphate by neutralization with alkalis

  5. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection

    International Nuclear Information System (INIS)

    Tam, Phuong Dinh; Thang, Cao Xuan

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO 2 nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO 2 nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) 6 ] 3−/4− as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 × 10 2 CFU/mL to 1.0 × 10 4 CFU/mL. The detection limit of the immunosensor was 1.0 × 10 2 CFU/mL. The immunosensor sensitivity was 56.82 Ω/CFU·mL −1 . Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. - Highlights: • A label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application was developed. • A linear response was found in the range of 1.0 × 10 2 CFU/mL to 1.0 × 10 4 CFU/mL. • The detection limit of the immunosensor was 1.0 × 10 2 CFU/mL. • The immunosensor sensitivity was 56.82 Ω/CFU.mL −1 .

  6. Stabilized chromium oxide film

    Science.gov (United States)

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  7. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    Science.gov (United States)

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  8. The use of cerium(IV) phosphate for the gravimetric determination and separation of cerium

    International Nuclear Information System (INIS)

    Masin, V.; Dolezal, J.

    1978-01-01

    A method for the gravimetric determination of cerium as Ce 3 (PO 4 ) 4 is described. Cerium can be separated from many metals in this form, as well as from permanganate and dichromate; the cerium separated can then be titrated with iron(II) solution. The method was verified for the determination of cerium in a rare earth concentrate. (Auth.)

  9. Influence of cerium, zirconium and boron on the oxidation resistance of heat-resistant steels in air

    International Nuclear Information System (INIS)

    Gala, A.; Schendler, W.

    1981-01-01

    Isothermal and cyclic oxidation experiments were carried out in air to investigate the influence of the minor elements such as Cerium, Zirkonium and Boron on the oxidation resistance of heat resistant ferritic and austenitic steels like X10Cr18, X10CrAl18 and X15CrNiSi2012. In the case of cyclicexperiments samples were exposed at constant temperatures for 100 h and then cooled to R.T. This cycle was repeated 10 times. The corrosion was determined as weight change and was continuously measured by a thermo-balance. The distribution of the alloying elements on the phase boundary scale/steel was examined by Scanning-Electron-Microscope. Addition of small amounts of Ce (0.3 wt-% max.) could reduce the oxidation rate in the case of isothermal and cyclic conditions. Zirkonium concentrations below 0.1 wt-% could have a beneficial effect, but at higher concentrations the oxidation rate increases with increasing amounts of Zr. Small Boron concentrations of 0.02 wt-% lead to catastrophic oxidation at temperatures above 1000 0 C. (orig.) [de

  10. Formation of a cerium conversion coating on magnesium alloy using ascorbic acid as additive. Characterisation and anticorrosive properties of the formed films

    OpenAIRE

    A.P. Loperena; I.L. Lehr; S.B. Saidman.

    2016-01-01

    Cerium-based conversion coatings were formed on AZ91D magnesium alloy by immersion of the substrate in solutions containing Ce(NO3)3, H2O2 and ascorbic acid (HAsc). The characterisation of the films was performed by electrochemical and surface analysis techniques such as SEM, EDS, X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The degree of corrosion protection achieved was evaluated in simulated physiological solution by the open circuit potential monitoring, polarisation tech...

  11. Procedure for the separation of cerium from crude phosphates and rare earth concentrates

    International Nuclear Information System (INIS)

    Richter, H.; Koenig, O.; Schmitt, A.; Grauss, H.; Freitag, S.

    1986-01-01

    The invention has to do with a procedure for the separation of cerium from crude phosphates and rare earth phosphate concentrates originating from the partial neutralization of nitric crude phosphate decomposition solutions. It is aimed at the cerium separation from the raw material at an early stage of reprocessing without preceding elimination of other components and impurities. The rare earth phosphate concentrates or crude phosphates are dissolved in nitric acid, the Ce 3+ is oxidized with potassium permanganate or magnanese(IV) hydroxide, and cerium(IV) phosphate is precipitated as pure substance by decreasing the acidity of the solution

  12. The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice

    Directory of Open Access Journals (Sweden)

    Nemmar A

    2017-04-01

    Full Text Available Abderrahim Nemmar,1 Suhail Al-Salam,2 Sumaya Beegam,1 Priya Yuvaraju,2 Badreldin H Ali3 1Department of Physiology, 2Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE; 3Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Al-Khod, Sultanate of Oman Abstract: Cerium oxide nanoparticles (CeO2 NPs, used as a diesel fuel catalyst, can be emitted into the ambient air, resulting in exposure to humans by inhalation. Recent studies have reported the development of lung toxicity after pulmonary exposure to CeO2 NPs. However, little is known about the possible thrombotic effects of these NPs. The present study investigated the acute (24 hours effect of intratracheal (IT instillation of either CeO2 NPs (0.1 or 0.5 mg/kg or saline (control on pulmonary and systemic inflammation and oxidative stress and thrombosis in mice. CeO2 NPs induced a significant increase of neutrophils into the bronchoalveolar lavage (BAL fluid with an elevation of tumor necrosis factor α (TNFα and a decrease in the activity of the antioxidant catalase. Lung sections of mice exposed to CeO2 NPs showed a dose-dependent infiltration of inflammatory cells consisting of macrophages and neutrophils. Similarly, the plasma levels of C-reactive protein and TNFα were significantly increased, whereas the activities of catalase and total antioxidant were significantly decreased. Interestingly, CeO2 NPs significantly and dose dependently induced a shortening of the thrombotic occlusion time in pial arterioles and venules. Moreover, the plasma concentrations of fibrinogen and plasminogen activator inhibitor-1 were significantly elevated by CeO2 NPs. The direct addition of CeO2 NPs (1, 5, or 25 µg/mL to mouse whole blood, collected from the inferior vena cava, in vitro neither caused significant platelet aggregation nor affected prothrombin time or partial

  13. One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method

    Science.gov (United States)

    Pujar, Malatesh S.; Hunagund, Shirajahammad M.; Desai, Vani R.; Patil, Shivaprasadgouda; Sidarai, Ashok H.

    2018-04-01

    We report the simple Co-precipitation method for the synthesis of Cerium oxide (CeO2) nanoparticles (NPs) in an ambient temperature. We have taken the Cerium (III) nitrate hexahydrate (Ce(NO3)3.6H2O) and Sodium hydroxide (NaOH) as the precursors. The obtained NPs were analyzed using the UV-Vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The obtained results signify that UV-Vis spectrum exhibited a well-defined absorption peak at 274 nm and the estimated energy gap (Eg) is 4.05 eV. The FT-IR analysis provides the supporting evidence for the presence of bonding of O-H, nitrates, alcohols and O-Ce-O vibrations. The XRD result reveals that the synthesized CeO2 NPs was crystallite with cubic phase structure and the estimated average crystallite size of CeO2 NPs using Scherer's and W-H method was significantly different due to their assumptions. Further, it is purposed to study their photocatalytic biological activities.

  14. Purification of cerium, neodymium and gadolinium for low background experiments

    Directory of Open Access Journals (Sweden)

    Boiko R.S.

    2014-01-01

    Full Text Available Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search, 136Ce (2β+ candidate with one of the highest Q2β. The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  15. Spectrophotometric determination of cerium with methylthymol blue in the presence of oxalate and cyanide as masking agents

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Martin, A; Izquierdo-Hornillos, R; Quejido-Cabezas, A J; Peral-Fernandez, J L [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas

    1983-04-01

    The spectrophotometric determination of cerium can be carried out by several methods, which involve either the formation of complexes of cerium(III) and cerium(IV) or the oxidation of suitable reagents by cerium(IV) and further measuring the intensity of the colour of the oxidised matter. The latter methods show a lack of selectivity and low sensitivity owing to the nature of the redox reaction. The methods that involve the formation of complexes have also been shown to have low selectivity and sensitivity. However, the most useful methods are those based on the complexes of cerium(III) with Xylenol Orange and Methylthymol Blue (MTB), but they are affected by many interferences. In this work the reaction of cerium(III) with MTB in the presence of oxalate and cyanide ions was studied at pH 10.2, which improves the sensitivity and the selectivity of the determination of cerium.

  16. Protection by Thermal and Chemical Activation with Cerium Salts of the Alloy AA2017 in Aqueous Solutions of NaCl

    Science.gov (United States)

    Bethencourt, Manuel; Botana, Francisco Javier; Cano, María José; González-Rovira, Leandro; Marcos, Mariano; Sánchez-Amaya, José María

    2012-01-01

    A wide variety of anticorrosive treatments for aluminum alloys that can be employed as "green" alternatives to those based on Cr(VI) are currently under development. This article reports a study of the morphological and anticorrosive characteristics of surface layers formed on the Al-Cu alloy AA2017 by immersion treatment in baths of cerium salt, accelerated by increased temperature and the employment of hydrogen peroxide. Scanning electron microscopy (SEM)/X-ray energy dispersive spectroscopy (XEDS) studies of the samples treated have demonstrated the existence of a heterogeneous layer formed by a film of aluminum oxide/hydroxide on the matrix, and a series of dispersed islands of cerium over the cathodic intermetallics. The protective efficacy has been evaluated using electrochemical techniques, linear polarizations (LP) and electrochemical impedance spectroscopy (EIS), and salt spray tests. The results obtained indicate that the layer provided good resistance to corrosion in media with chlorides, and the method gives a considerable reduction of the time required for the immersion treatments.

  17. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: phuongdinhtam@gmail.com; Thang, Cao Xuan, E-mail: thang.caoxuan@hust.edu.vn

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO{sub 2} nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO{sub 2} nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) {sub 6}] {sup 3−/4−} as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. The immunosensor sensitivity was 56.82 Ω/CFU·mL{sup −1}. Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. - Highlights: • A label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application was developed. • A linear response was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. • The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. • The immunosensor sensitivity was 56.82 Ω/CFU.mL{sup −1}.

  18. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    Science.gov (United States)

    Snow, Samantha J.; McGee, John; Miller, Desinia B.; Bass, Virginia; Schladweiler, Mette C.; Thomas, Ronald F.; Krantz, Todd; King, Charly; Ledbetter, Allen D.; Richards, Judy; Weinstein, Jason P.; Conner, Teri; Willis, Robert; Linak, William P.; Nash, David; Wood, Charles E.; Elmore, Susan A.; Morrison, James P.; Johnson, Crystal L.; Gilmour, Matthew Ian; Kodavanti, Urmila P.

    2014-01-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. PMID:25239632

  19. Evaluation of the role of oxidative stress, inflammation and apoptosis in the pulmonary and the hepatic toxicity induced by cerium oxide nanoparticles following intratracheal instillation in male Sprague-Dawley rats

    Science.gov (United States)

    Nalabotu, Siva Krishna

    The field of nanotechnology is rapidly progressing with potential applications in the automobile, healthcare, electronics, cosmetics, textiles, information technology, and environmental sectors. Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. With increased applications of nanotechnology, there are increased chances of exposure to manufactured nanomaterials. Recent reports on the toxicity of engineered nanomaterials have given scientific and regulatory agencies concerns over the safety of nanomaterials. Specifically, the Organization for Economic Co-operation and Development (OECD) has identified fourteen high priority nanomaterials for study. Cerium oxide (CeO2) nanoparticles are one among the high priority group. Recent data suggest that CeO2 nanoparticles may be toxic to lung cell lines in vitro and lung tissues in vivo. Other work has proposed that oxidative stress may play an important role in the toxicity; however, the exact mechanism of the toxicity, has to our knowledge, not been investigated. Similarly, it is not clear whether CeO2 nanoparticles exhibit systemic toxicity. Here, we investigate whether pulmonary exposure to CeO2 nanoparticles is associated with oxidative stress, inflammation and apoptosis in the lungs and liver of adult male Sprague-Dawley rats. Our data suggest that the intratracheal instillation of CeO2 nanoparticles can cause an increased lung weight to body weight ratio. Changes in lung weights were associated with the accumulation of cerium in the lungs, elevations in serum inflammatory markers, an increased Bax to Bcl-2 ratio, elevated caspase-3 protein levels, increased phosphorylation of p38-MAPK and diminished phosphorylation of ERK1/2-MAPK. Our findings from the study evaluating the possible translocation of CeO2 nanoparticles from the lungs to the liver suggest that CeO 2 nanoparticle exposure was associated with increased liver ceria levels, elevations in serum alanine transaminase

  20. Influence of hydroxyl content of binders on rheological properties of cerium-gadolinium oxide (CGO) screen printing inks

    DEFF Research Database (Denmark)

    Marani, Debora; Gadea, Christophe; Hjelm, Johan

    2015-01-01

    vinyl resins) were selected and characterized in solution via viscosimetry method. A high degree of hyper-entanglement was observed for ethyl cellulose polymers, whereas a mitigated effect characterized the two vinyl resins. Cerium-gadolinium oxides (CGO)-based inks, prepared using the selected binders......The influence of hydroxyl content of binders on rheological properties of screen printing inks is investigated. The actual amount of hydroxyl groups is correlated to the level of hyper-entanglement that characterizes the binders in solution. Three of the most used binders (ethyl cellulose, and two...

  1. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium; Caracterizacao de compositos ceramica-metal de niquel e oxido de cerio dopado com gadolinio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.L.A. da, E-mail: maria.andrade@pro.unifacs.br [Universidade Salvador (UNIFACS), BA (Brazil). Escola de Engenharia, Arquitetura e TI; Universidade Federal da Bahia (UFBA), BA (Brazil); Varela, M.C.R.S. [Universidade Federal da Bahia (UFBA), BA (Brazil)

    2016-07-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  2. Electrorefining of Cerium in LiCl-KCl Molten Salts

    International Nuclear Information System (INIS)

    Campbell-Kelly, R.P.; Paget, T.J.

    2010-01-01

    Electrorefining of cerium from cerium-gallium alloys has been demonstrated in lithium chloride-potassium chloride salts at temperatures below 500 deg. C, with excellent current efficiencies and high product yields. These experiments are being carried out as non-active trials for a process for the purification of impure actinide metals. The results reported show anodic current efficiencies consistently close to 100%, and in several experiments complete oxidation of the cerium in the feed occurred. The cathodic product is hard and metallic, and incorporates a significant amount of salt into its structure. The product can be consolidated into a dense, pure metal by melting under calcium chloride at 850 deg. C. The yield of this consolidation step varies between 16 and 75%, seeming to depend on the total mass of metal being consolidated and the quality of inert atmosphere. A small-scale electrochemical cell has been demonstrated which will be used in initial active experiments. (authors)

  3. Cerium oxalate precipitation

    International Nuclear Information System (INIS)

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs

  4. Coulometric microdetermination of organic compounds with manganese(III) and cerium(IV)

    International Nuclear Information System (INIS)

    Chateau-Gosselin, M.; Patriarche, G.J.

    1977-01-01

    The oxidation of compounds such as hydroquinon, p-aminophenol, paracetamol and phenacetin was performed using cerium(IV) and manganese(III) coulometrically electrogenerated. Quantitative results obtained are excellent even at the microscale level. (author)

  5. Oxidative decarboxylation of glycolic and phenylacetic acids with cerium(4) catalyzed by silver ions in the sulfuric acid media

    International Nuclear Information System (INIS)

    Venkatesvar Rao, G.; Nagardzhun Rao, Ch.; Sajprakash, P.K.

    1981-01-01

    Oxidative decarboxylation of glycolic and phenylacetic acids by cerium (4) in the presence of Ag + ions is studied. The Ce(4) order equals 1, glycolic acid order in the absence of a catalyst also equals 1 and is fractional (0.5) for a catalytic reaction. The phenylacetic acid order is fractional (0.75). The Ag + ion reaction order is fractional and constitutes 0.32 for glycolic and 0.36 for phenylacetic acids. The reaction mechanism is proposed [ru

  6. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-01-01

    Tungsten oxide (WO x ) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10 −4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO x -based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 10 6 , a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm 2 /V s was realized. Our results demonstrated that WO x -based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  7. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions.

    Science.gov (United States)

    Cao, Zhiming; Rossi, Lorenzo; Stowers, Cheyenne; Zhang, Weilan; Lombardini, Leonardo; Ma, Xingmao

    2018-01-01

    The ongoing global climate change raises concerns over the decreasing moisture content in agricultural soils. Our research investigated the physiological impact of two types of cerium oxide nanoparticles (CeO 2 NPs) on soybean at different moisture content levels. One CeO 2 NP was positively charged on the surface and the other negatively charged due to the polyvinylpyrrolidone (PVP) coating. The results suggest that the effect of CeO 2 NPs on plant photosynthesis and water use efficiency (WUE) was dependent upon the soil moisture content. Both types of CeO 2 NPs exhibited consistently positive impacts on plant photosynthesis at the moisture content above 70% of field capacity (θ fc ). Similar positive impact of CeO 2 NPs was not observed at 55% θ fc , suggesting that the physiological impact of CeO 2 NPs was dependent upon the soil moisture content. The results also revealed that V Cmax (maximum carboxylation rate) was affected by CeO 2 NPs, indicating that CeO 2 NPs affected the Rubisco activity which governs carbon assimilation in photosynthesis. In conclusion, CeO 2 NPs demonstrated significant impacts on the photosynthesis and WUE of soybeans and such impacts were affected by the soil moisture content. Graphical abstract Soil moisture content affects plant cerium oxide nanoparticle interactions.

  8. SU-E-T-279: Dose Enhancement Effect Due to Cerium Oxide Nanoparticles Employed as Radiation Protectants

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Z; Altundal, Y; Sajo, E [Univ Massachusetts Lowell, Lowell, MA (United States); Ngwa, W [Univ Massachusetts Lowell, Lowell, MA (United States); Brigham and Women’s Hospital, Dana Farber Cancer Institute, Harvard Medical, Boston, MA (United States)

    2015-06-15

    Purpose: The goal of radiotherapy is to maximize radiation dose to diseased cells while minimizing radiation damage to normal tissues. In order to minimize damage to normal tissues, cerium oxide nanoparticles (nanoceria) are currently considered as a radioprotectant. However, some studies have reported concerns that nanoceria can also lead to radiotherapy dose enhancement due to the high atomic number of cerium, especially when used in conjunction with kV energy and brachytherapy sources. In this study, this concern is investigated to determine if the concentrations of nanoceria employed in in-vivo studies to confer radioprotection can engender a significant dose enhancement. Methods: Radiation with energies ranging from 50kVp to 140kVp is investigated in this work along with brachytherapy sources Pd-103 and I-125. A previously established theoretical model is used to calculate the dose enhancement factor (DEF). In this model, each cell is assumed to be a voxel of size (10 µm, 10 µm, 10 µm) with nanoceria homogeneously distributed among them. Electron energy loss formula of Cole is used to calculate energy (and hence dose) deposited by photoelectrons and Auger electrons in each tissue voxel due to irradiation of nanoceria. The DEF is defined as the ratio of the dose with and without nanoparticles. Results: DEF calculation results are smaller than 1.02 with dosages of nanoceria smaller than 0.645 mg/g, which is shown to be sufficiently protective by some previous in-vitro and in-vivo experiments. The brachytherapy sources show higher DEF’s than kVp radiations. DEF peaks are consistent with K shell and L shell energies of cerium, 40 keV and 6 keV, respectively. Conclusion: The results show that for sufficiently radioprotective concentrations of nanoceria, there will be minimal DEF when used in conjunction with clinically applicable kV energy radiotherapy sources or brachytherapy sources.

  9. Influence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate

    International Nuclear Information System (INIS)

    Leino, Ewelina; Kumar, Narendra; Mäki-Arvela, Päivi; Aho, Atte; Kordás, Krisztián; Leino, Anne-Riikka; Shchukarev, Andrey; Murzin, Dmitry Yu.; Mikkola, Jyri-Pekka

    2013-01-01

    Synthesis of cerium (IV) oxide by means of room temperature precipitation method was carried out. The effect of preparation variables such as synthesis time, calcination temperature and pH of the solution on resulting CeO 2 properties was discussed. Moreover, the comparison of CeO 2 samples prepared in a static and rotation mode of synthesis is presented. The solid catalysts were characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscope, nitrogen physisorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy using pyridine as a probe molecule and temperature programmed desorption of CO 2 . Significant variations in physico-chemical properties of CeO 2 by varying the preparation conditions were observed. Furthermore, the catalytic performances of CeO 2 catalysts were compared in the synthesis of diethyl carbonate starting from ethanol and CO 2 using butylene oxide as a dehydrating agent. The dependence of CeO 2 properties on its catalytic activity is evaluated in detail. - Highlights: • Synthesis of cerium (IV) oxide by precipitation method. • Influence of synthesis time, calcination temperature, mode of stirring and solution pH on properties. • Characterization by XRD, SEM, TEM, nitrogen physisorption, XPS, FTIR. • Catalytic performance diethyl carbonate synthesis from ethanol and CO 2

  10. UV photodissociation spectroscopy of oxidized undecylenic acid films.

    Science.gov (United States)

    Gomez, Anthony L; Park, Jiho; Walser, Maggie L; Lin, Ao; Nizkorodov, Sergey A

    2006-03-16

    Oxidation of thin multilayered films of undecylenic (10-undecenoic) acid by gaseous ozone was investigated using a combination of spectroscopic and mass spectrometric techniques. The UV absorption spectrum of the oxidized undecylenic acid film is significantly red-shifted compared to that of the initial film. Photolysis of the oxidized film in the tropospheric actinic region (lambda > 295 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the observed photochemical activity. The presence of peroxides is confirmed by mass-spectrometric analysis of the oxidized sample and an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is observed. The data strongly imply the importance of photochemistry in aging of atmospheric organic aerosol particles.

  11. Laser patterning of superconducting oxide films

    International Nuclear Information System (INIS)

    Gupta, A.; Hussey, B.W.; Koren, G.; Cooper, E.I.; Jagannathan, R.

    1988-01-01

    The focused output of an argon ion laser (514.5 nm) has been used for wiring superconducting lines of Y/sub 1/Ba/sub 2/CU/sub 3/O/sub 7-δ/ using films prepared from nitrate and trifluoroacetate solution precursors. A stoichiometric solution of the precursors is sprayed or spun on to the substrate to form a film. The film is patterned by irradiating in selected areas to convert the irradiated layers to an intermediate oxide or fluoride state, the nonirradiated areas being unchanged. The nonirradiated areas are then dissolved away, leaving a pattern of the oxide or fluoride material. This patterned layer is converted to the superconducting 1-2-3 oxide in a subsequent annealing step. Maskless patterning of superconducting films has also been demonstrated by laser-assisted etching of the films in aqueous KOH solution. Although superconductivity is destroyed when the films are placed in solution, it can be restored after a brief anneal in oxygen

  12. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    International Nuclear Information System (INIS)

    Lee, Ching-Ting; Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-01

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g m change, threshold voltage V T change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature

  13. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Ting, E-mail: ctlee@ee.ncku.edu.tw; Lin, Yung-Hao; Lin, Jhong-Ham [Institute of Microelectronics, Department of Electrical Engineering, Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, Tainan, Taiwan (China)

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  14. Basic study on decontamination of TRU wastes with cerium mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    Ishii, Junichi; Kobayashi, Fuyumi; Uchida, Shoji; Sumiya, Masato; Kida, Takashi; Shirahashi, Koichi; Umeda, Miki; Sakuraba, Koichi

    2010-03-01

    At Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF), the cerium mediated electrolytic oxidation method which is a decontamination technique to decrease the radioactivity of TRU wastes to the clearance-level has been developed for the effective reduction of TRU wastes generated from the decommissioning of a nuclear fuel reprocessing facility and so on. This method corrodes the oxide layer and the surface of metallic TRU metal wastes by the strong oxidation power of Ce 4+ in nitric acid. In this study, parameter tests were conducted to optimize the solution condition of Ce 3+ initial concentrations and nitric acid concentrations. The target corrosion rate of metallic TRU wastes set to be 2 - 4 μm/h for the practical use of this method. Under the optimized solution condition, a dissolution test of stainless steel simulating wastes was carried out. From the result of the dissolution test, the average corrosion rate was 3.3 μm/h during the test time of 90 hours. Based on the supposition that the corrosion depth of metallic TRU wastes was 20 μm enough to achieve the clearance-level, the treatment time for the decontamination was about 6 hours. It was confirmed from the result that the decontamination could be performed within one day and the decontamination solution could repeatedly reuse 15 times. (author)

  15. Thermal decomposition study of uranyl nitrate and cerium hydroxide in a spray dryer

    International Nuclear Information System (INIS)

    Silva Wildhagen, G.R. da.

    1993-05-01

    A study, in a spray dryer system based on drying and thermal decomposition of uranyl nitrate solutions aiming the production of uranium trioxide adequate for the use in posterior steps of reduction and hydro fluorination in nuclear fuel cycle; and cerium hydroxide suspensions for the production of cerium oxide with high surface area is presented. Thus, the project and construction of a countercurrent spray dryer was elaborated for capacity of 10 Kg U O 3 /h and 3,5 k Ce O 2 /h. The methodology used in these experiments consisted in the analysis of several parameters (concentration and flow rate of the feed, atomization pressure and inlet temperature of the dryer) over the physical and chemical properties of the products. Using the obtained results, with the help of a mathematical model, it was developed the project of a continuous pilot unity for the production of uranium trioxide or cerium oxide, with capacity of 20 Kg U O 3 /h or 10 Kg Ce O 2 /h, respectively. (author)

  16. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Nalabotu SK

    2011-10-01

    Full Text Available Siva K Nalabotu1,2, Madhukar B Kolli1,2, William E Triest3,4, Jane Y Ma5, Nandini DPK Manne2,6, Anjaiah Katta1,2, Hari S Addagarla2, Kevin M Rice2,6–8, Eric R Blough1,2,6,7,91Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C Edwards School of Medicine; 2Center for Diagnostic Nanosystems, Marshall University; 3Pathology and Laboratory Medicine Service, Veterans Affairs Medical Center; 4Section of Pathology, Department of Anatomy and Pathology, Joan C Edwards School of Medicine, Marshall University, Huntington; 5Health Effects Laboratory Division, NIOSH, Morgantown; 6Department of Biological Sciences; 7School of Kinesiology, College of Health Professions, Marshall University; 8Biotechnology Department, West Virginia State University; 9Department of Cardiology, Joan C Edwards School of Medicine, Marshall University Huntington, WV, USABackground: Cerium oxide (CeO2 nanoparticles have been posited to have both beneficial and toxic effects on biological systems. Herein, we examine if a single intratracheal instillation of CeO2 nanoparticles is associated with systemic toxicity in male Sprague-Dawley rats.Methods and results: Compared with control animals, CeO2 nanoparticle exposure was associated with increased liver ceria levels, elevations in serum alanine transaminase levels, reduced albumin levels, a diminished sodium-potassium ratio, and decreased serum triglyceride levels (P < 0.05. Consistent with these data, rats exposed to CeO2 nanoparticles also exhibited reductions in liver weight (P < 0.05 and dose-dependent hydropic degeneration, hepatocyte enlargement, sinusoidal dilatation, and accumulation of granular material. No histopathological alterations were observed in the kidney, spleen, and heart. Analysis of serum biomarkers suggested an elevation of acute phase reactants and markers of hepatocyte injury in the rats exposed to CeO2 nanoparticles.Conclusion: Taken together, these data suggest that

  17. Electrical and optical properties of zinc oxide: thin films

    International Nuclear Information System (INIS)

    Zuhairusnizam Md Darus; Abdul Jalil Yeop Majlis; Anis Faridah Md Nor; Burhanuddin Kamaluddin

    1992-01-01

    Zinc oxide films have been prepared by high temperature oxidation of thermally evaporated zinc films on glass substrates. The resulting films are characterized using X-ray diffraction, optical absorption and electrical conductivity measurements. These zinc oxide films are very transparent and photoconductive

  18. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    Science.gov (United States)

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  19. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin filmsOxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  20. Structure and properties of the Mn doped CeO{sub 2} thin film grown on LaAlO{sub 3} (0 0 1) via a modified sol–gel spin-coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.com [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Department of Physics, Ismailia (Egypt); Al-Ghamdi, A.A. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Al-Agel, F.A. [Hail University, College of Science, Department of Physics, Hail (Saudi Arabia); Al-Arfaj, E. [Umm Alqura University, Department of Physics, Makkah (Saudi Arabia); Qaseem University, Physics Department, Qaseem (Saudi Arabia); Shokr, F.S. [King Abdulaziz University, Faculty of Science & Arts, Department of Physics, Rabigh (Saudi Arabia); Al-Gahtany, S.A. [King Abdulaziz University, Faculty of Science for Girls, Department of Physics, Jeddah (Saudi Arabia); Alshahrie, Ahmed [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Hafez, M. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Suez Canal University, Faculty of Science, Department of Physics, Ismailia (Egypt); Bronstein, L.M. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Indiana University, Department of Chemistry, Bloomington, IN 47405 (United States); Beall, Gary W. [King Abdulaziz University, Faculty of Science, Department of Physics, Jeddah (Saudi Arabia); Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2015-08-15

    Highlights: • Mn doped CeO{sub 2} was grown on LaAlO{sub 3} (0 0 1) via sol–gel technique. • The concentration of the Mn ions was varied from 1 to 13 at.%. • The incorporation of 7 at.% of Mn ions was found to provide formation of exceptionally smooth films. • This amount demonstrated the highest saturation magnetization of 1.75 μ{sub B}/Mn and coercive field of 487 Gauss. - Abstract: Here we report Mn doped cerium oxide films prepared on the LaAlO{sub 3} (0 0 1) substrate via an ethylene glycol modified sol–gel spin coating technique and evaluation of their properties as diluted magnetic semiconductors. Cerium oxide was selected because of its high dielectric constant and fluorite cubic structure, matching the silicon and lanthanum aluminate based electronic devices. The concentration of the Mn ions was varied from 1 to 13 at.% and the influence of this concentration on the structure, surface morphology, optical and magnetic properties of these films was studied using scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy, ellipsometric spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and magnetic measurements. The incorporation of 7 at.% of Mn ions was found to provide formation of exceptionally smooth films, demonstrating the highest saturation magnetization of 1.75 μ{sub B}/Mn and the coercive field of 487 Gauss. These properties are assigned to the conversion of Ce{sup 4+} to Ce{sup 3+} upon incorporation of Mn ions into the CeO{sub 2} structure and the oxidation of Mn{sup 2+} to Mn{sup 4+}, creating two oxygen vacancies to preserve the cubic structure of cerium oxide and promoting ferromagnetism.

  1. Chitosan/graphene oxide biocomposite film from pencil rod

    Science.gov (United States)

    Gea, S.; Sari, J. N.; Bulan, R.; Piliang, A.; Amaturrahim, S. A.; Hutapea, Y. A.

    2018-03-01

    Graphene Oxide (GO) has been succesfully synthesized using Hummber method from graphite powder of pencil rod. The excellent solubility of graphene oxide (GO)in water imparts its feasibilty as new filler for reinforcement hydrophilic biopolymers. In this research, the biocomposite film was fabricated from chitosan/graphene oxide. The characteristics of graphene oxide were investigated using Fourier Transform Infrared (FT-IR) and X-ray Diffraction (XRD). The results of the XRD showed graphene structur in 2θ, appeared at 9.0715°with interlayer spacing was about 9.74063Å. Preparation films with several variations of chitosan/graphene oxide was done by casting method and characterized by mechanical and morphological analysis. The mechanical properties of the tensile test in the film show that the film CS/GO (85: 15)% has the optimum Young’s modulus size of 2.9 GPa compared to other variations of CS / GO film. Morphological analysis film CS/GO (85:15)% by Scanning Electron Microscopy (SEM), the obtained biocomposites film showed fine dispersion of GO in the CS matrix and could mix each other homogeneously.

  2. Interface and oxide traps in high-κ hafnium oxide films

    International Nuclear Information System (INIS)

    Wong, H.; Zhan, N.; Ng, K.L.; Poon, M.C.; Kok, C.W.

    2004-01-01

    The origins of the interface trap generation and the effects of thermal annealing on the interface and bulk trap distributions are studied in detail. We found that oxidation of the HfO 2 /Si interface, removal of deep trap centers, and crystallization of the as-deposited film will take place during the post-deposition annealing (PDA). These processes will result in the removal of interface traps and deep oxide traps and introduce a large amount of shallow oxide traps at the grain boundaries of the polycrystalline film. Thus, trade-off has to be made in considering the interface trap density and oxide trap density when conducting PDA. In addition, the high interface trap and oxide trap densities of the HfO 2 films suggest that we may have to use the SiO 2 /HfO 2 stack or hafnium silicate structure for better device performance

  3. Nanocasted synthesis of magnetic mesoporous iron cerium bimetal oxides (MMIC) as an efficient heterogeneous Fenton-like catalyst for oxidation of arsenite.

    Science.gov (United States)

    Wen, Zhipan; Zhang, Yalei; Dai, Chaomeng; Sun, Zhen

    2015-04-28

    Magnetic mesoporous iron cerium bimetal oxides (MMIC) with large surface area and pore volume was synthesized via the hard template approach. This obtained MMIC was easily separated from aqueous solution with an external magnetic field and was proposed as a heterogeneous Fenton-like catalyst for oxidation of As(III). The MMIC presented excellent catalytic activity for the oxidation of As(III), achieving almost complete oxidation of 1000ppb As(III) after 60min and complete removal of arsenic species after 180min with reaction conditions of 0.4g/L catalyst, pH of 3.0 and 0.4mM H2O2. Kinetics analysis showed that arsenic removal followed the pseudo-first order, and the pseudo-first-order rate constants increased from 0.0014min(-1) to 0.0548min(-1) as the H2O2 concentration increased from 0.04mM to 0.4mM. On the basis of the effects of XPS analysis and reactive oxidizing species, As(III) in aqueous solution was mainly oxidized by OH radicals, including the surface-bound OHads generated on the MMIC surface which were involved in Fe(2+) and Ce(3+), and free OHfree generation by soluble iron ions which were released from the MMIC into the bulk solution, and the generated As(V) was finally removed by MMIC through adsorption. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  5. Assessment of the abatement of acelsulfame K using cerium doped ZnO as photocatalyst

    International Nuclear Information System (INIS)

    Calza, P.; Gionco, C.; Giletta, M.; Kalaboka, M.; Sakkas, V.A.; Albanis, T.; Paganini, M.C.

    2017-01-01

    Highlights: • Hydrothermal synthesis and characterization of Ce doped ZnO. • The abatement of ACE K is assessed in ultrapure water and in river water matrix. • Demonstrated higher degradation activity than P25 under visible light. • The degradation activity is less affected in river water than for P25. - Abstract: In the present study, we investigated the possibility to abate Acesulfame K, a persistent emerging contaminant, in aqueous media using zinc oxide based materials. For this purpose, bare and Ce-doped zinc oxide was prepared via an easy and cheap hydrothermal process using different cerium salts as precursors. Their photocatalytic performance was evaluated in different media, namely ultrapure and river water under both UV–vis and visible light. Commercial TiO_2 P25 was also employed and used as a reference photocatalyst for comparison purposes. The obtained results pointed out that cerium doped zinc oxide composites exhibit higher performance than TiO_2 P25, especially under visible light and in the presence of organic matter, when the activity of the latter is greatly depressed. In particular, ZnO doped with cerium (1%) was the most effective material, and could be a promising alternative to TiO_2 P25, especially in the treatment of natural waters.

  6. Effect of additions of cerium, lanthanum, and zirconium on the state of plantinum and the activity of aluminoplatinum catalysts for the complete oxidation of hydrocarbons

    International Nuclear Information System (INIS)

    Drozdov, V.A.; Davydov, A.A.; Popovskii, V.V.; Tsyrul'nikov, P.G.

    1986-01-01

    It is shown from an analysis of the diffuse reflectance spectra that additions of cerium, lanthanum or zirconium to aluminoplatinum catalyst stabilize the platinum in an oxidized state. This leads to a change in the specific catalytic activity (SCA) towards the total oxidation of methane and butane. The SCA of modified, reduced samples is greater than the SCA of samples that were calcined in air. This is because of the greater activity of metallic platinum compared to the ionic form

  7. Cerium and jojoba in engines?; Cerium et jojoba dans les moteurs?

    Energy Technology Data Exchange (ETDEWEB)

    Massy-Delhotel, E.

    1996-10-01

    The Belgium company CreaTel proposes a new system, called Forac, which can lead to a 10% reduction of fuel consumption in thermal engines together with a quasi-complete reduction of CO, HC, NOx pollutants and CO{sub 2} particulates emission. The system comprises a steam production device and an admission pipe with a cerium alloy whorl inside. The steam produced is mixed with the admission air and tears cerium particles from the inside of the admission pipe to the combustion chamber. The cerium particles act as a catalyst which favours the complete combustion of the fuel. The same company proposes also lubricant additives made from liquid jojoba wax which allow the reduction of pollutant emissions, fuel consumption and noise emissions of diesel engines. (J.S.)

  8. Destruction of commercial pesticides by cerium redox couple mediated electrochemical oxidation process in continuous feed mode

    International Nuclear Information System (INIS)

    Balaji, Subramanian; Chung, Sang Joon; Ryu, Jae-Yong; Moon, Il Shik

    2009-01-01

    Mediated electrochemical oxidation was carried out for the destruction of commercial pesticide formulations using cerium(IV) in nitric acid as the mediator electrolyte solution in a bench scale set up. The mediator oxidant was regenerated in situ using an electrochemical cell. The real application of this sustainable process for toxic organic pollutant destruction lies in its ability for long term continuous operation with continuous organic feeding and oxidant regeneration with feed water removal. In this report we present the results of fully integrated MEO system. The task of operating the continuous feed MEO system for a long time was made possible by continuously removing the feed water using an evaporator set up. The rate of Ce(IV) regeneration in the electrochemical cell and the consumption for the pesticide destruction was matched based on carbon content of the pesticides. It was found that under the optimized experimental conditions for Ce(III) oxidation, organic addition and water removal destruction efficiency of ca. 99% was obtained for all pesticides studied. It was observed that the Ce(IV) concentration was maintained nearly the same throughout the experiment. The stable operation for 6 h proved that the process can be used for real applications and for possible scale up for the destruction of larger volumes of toxic organic wastes.

  9. The study on preparation of high dispersion and pure cerium dioxide for producing automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Le Minh Tuan; Nguyen Trong Hung; Nguyen Thanh Chung

    2003-01-01

    The multi-stage counter-current solvent extraction process using TBP as the solvent has been carried out for purifying cerium and the ammonium carbonate precipitation method has been used to produce the cerium oxide of high dispersion and pure. The flow sheet of extraction system includes 3 extraction stages with O/A = 0.7,2 stripping stages and 4 scrubbing stages with O/A = 5. The condition for ammonium carbonate precipitation, drying and calcination have been investigated and a procedure that seem to be practically suitable to prepare cerium dioxide powder with great specific surface area for producing automotive exhaust catalyst has been proposed. (LMT)

  10. Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells

    Science.gov (United States)

    Xing, Zhou; Li, Shu-Hui; Wu, Bao-Shan; Wang, Xin; Wang, Lu-Yao; Wang, Tan; Liu, Hao-Ran; Zhang, Mei-Lin; Yun, Da-Qin; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2018-06-01

    Interface engineering that involves in the metal cathodes and the electron transport layers (ETLs) facilitates the simultaneous improvement of device performances and stability in perovskite solar cells (PSCs). Herein, low-temperature solution-processed cerium oxide (CeOx) films are prepared by a facile sol-gel method and employed as the interface layers between [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) and an Ag back contact to form PC61BM/CeOx double ETLs. The introduction of CeOx enables electron extraction to the Ag electrode and protects the underlying perovskite layer and thus improves the device performance and stability of the p-i-n PSCs. The p-i-n PSCs with double PC61BM/CeOx ETLs demonstrate a maximum power conversion efficiency (PCE) of 17.35%, which is superior to those of the devices with either PC61BM or CeOx single ETLs. Moreover, PC61BM/CeOx devices exhibit excellent stability in light soaking, which is mainly due to the chemically stable CeOx interlayer. The results indicate that CeOx is a promising interface modification layer for stable high-efficiency PSCs.

  11. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  12. Electrochemistry of hydrous oxide films

    International Nuclear Information System (INIS)

    Burke, L.D.; Lyons, M.E.G.

    1986-01-01

    The formation, acid-base properties, structural aspects, and transport processes of hydrous oxide films are discussed. Classical and nonclassical theoretical models of the oxide-solution interface are compared. Monolayer oxidation, behavior, and crystal growth of oxides on platinum, palladium, gold, iridium, rhodium, ruthenium, and some non-noble metals, including tungsten, are reviewed and compared

  13. Electrochromism of the electroless deposited cuprous oxide films

    International Nuclear Information System (INIS)

    Neskovska, R.; Ristova, M.; Velevska, J.; Ristov, M.

    2007-01-01

    Thin cuprous oxide films were prepared by a low cost, chemical deposition (electroless) method onto glass substrates pre-coated with fluorine doped tin oxide. The X-ray diffraction pattern confirmed the Cu 2 O composition of the films. Visible transmittance spectra of the cuprous oxide films were studied for the as-prepared, colored and bleached films. The cyclic voltammetry study showed that those films exhibited cathode coloring electrochromism, i.e. the films showed change of color from yellowish to black upon application of an electric field. The transmittance across the films for laser light of 670 nm was found to change due to the voltage change for about 50%. The coloration memory of those films was also studied during 6 h, ex-situ. The coloration efficiency at 670 nm was calculated to be 37 cm 2 /C

  14. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Krockenberger, Yoshiharu; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Suter, Andreas [PSI, Villingen (Switzerland); Wilhelm, Fabrice; Rogalev, Andrei [ESRF, Grenoble (France)

    2008-07-01

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films.

  15. Unidirectional oxide hetero-interface thin-film diode

    International Nuclear Information System (INIS)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-01-01

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10 5 at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10 2  Hz < f < 10 6  Hz, providing a high feasibility for practical applications

  16. Unidirectional oxide hetero-interface thin-film diode

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Youn Sang, E-mail: younskim@snu.ac.kr [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institute of Convergence Technology, Gyeonggi-do 443-270 (Korea, Republic of)

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  17. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S.; Ennaoui, E.A.; Lokhande, C.D.; Mueller, M.; Giersig, M.; Diesner, K.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-11-21

    The ultrasonic spray pyrolysis (USP) technique was employed to deposit ruthenium oxide thin films. The films were prepared at 190 C substrate temperature and further annealed at 350 C for 30 min in air. The films were 0.22 {mu} thick and black grey in color. The structural, compositional and optical properties of ruthenium oxide thin films are reported. Contactless transient photoconductivity measurement was carried out to calculate the decay time of excess charge carriers in ruthenium oxide thin films. (orig.) 28 refs.

  18. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  19. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  20. Pulsed laser deposition of bimetallic gold–platinum nanoparticles on cerium oxide and their characterisation by X-ray photoelectron spectroscopy and temperature-programmed desorption of isotopically labelled carbon monoxide

    Czech Academy of Sciences Publication Activity Database

    Plšek, Jan; Bastl, Zdeněk

    2013-01-01

    Roč. 109, MAR 2013 (2013), s. 109-118 ISSN 0021-9517 R&D Projects: GA ČR GA104/08/1501 Institutional support: RVO:61388955 Keywords : pulsed laser deposition * cerium oxide * Au-Pt nanostructures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.073, year: 2013

  1. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  2. SPH based modelling of oxide and oxide film formation in gravity die castings

    International Nuclear Information System (INIS)

    Ellingsen, K; M'Hamdi, M; Coudert, T

    2015-01-01

    Gravity die casting is an important casting process which has the capability of making complicated, high-integrity components for e.g. the automotive industry. Oxides and oxide films formed during filling affect the cast product quality. The Smoothed particle hydrodynamics (SPH) method is particularly suited to follow complex flows. The SPH method has been used to study filling of a gravity die including the formation and transport of oxides and oxide films for two different filling velocities. A low inlet velocity leads to a higher amount of oxides and oxide films in the casting. The study demonstrates the usefulness of the SPH method for an increased understanding of the effect of different filling procedures on the cast quality. (paper)

  3. Assessing Covalency in Cerium and Uranium Hexachlorides: A Correlated Wavefunction and Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Reece Beekmeyer

    2015-11-01

    Full Text Available The electronic structure of a series of uranium and cerium hexachlorides in a variety of oxidation states was evaluated at both the correlated wavefunction and density functional (DFT levels of theory. Following recent experimental observations of covalency in tetravalent cerium hexachlorides, bonding character was studied using topological and integrated analysis based on the quantum theory of atoms in molecules (QTAIM. This analysis revealed that M–Cl covalency was strongly dependent on oxidation state, with greater covalency found in higher oxidation state complexes. Comparison of M–Cl delocalisation indices revealed a discrepancy between correlated wavefunction and DFT-derived values. Decomposition of these delocalisation indices demonstrated that the origin of this discrepancy lay in ungerade contributions associated with the f-manifold which we suggest is due to self-interaction error inherent to DFT-based methods. By all measures used in this study, extremely similar levels of covalency between complexes of U and Ce in the same oxidation state was found.

  4. Formation of corrosion-resistant oxide film on uranium

    International Nuclear Information System (INIS)

    Petit, G.S.

    1976-01-01

    A vacuum heat-treatment method was developed for coating metallic uranium with an adherent protective film of uranium oxide. The film is prepared by vacuum heat-treating the metallic uranium at 625 0 C for 1 h while controlling the amount of oxygen being metered into the furnace. Uranium coupons with the protective film were exposed for several hundred hours in a corrosion test bath at 95 0 C and 100 percent RH without corroding. Film thicknesses ranging from 5 to 25 μm (0.0002 to 0.001 in.) were prepared and corrosion tested; the film thickness can be controlled to less than +-2.5 μm (+-0.0001 in.). The oxide film is hard, nonwetting, and very adherent. The resulting surface finish of the metal is equivalent to that of the original finish. The advantages of the oxide films over other protective coatings are given. 12 fig

  5. Plutonium oxide dissolution

    International Nuclear Information System (INIS)

    Gray, J.H.

    1992-01-01

    Several processing options for dissolving plutonium oxide (PuO 2 ) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO 2 typically generated by burning plutonium metal and PuO 2 produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO 2 in canyon dissolvers. The options involve solid solution formation of PuO 2 With uranium oxide (UO 2 ) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO 2 with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO 2 materials may warrant further study

  6. Surface modification of promising cerium oxide nanoparticles for nanomedicine applications

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-14

    Cerium oxide nanoparticles (CNPs) or nanoceria have emerged as a potential nanomedicine for the treatment of several diseases such as cancer. CNPs have a natural tendency to aggregate or agglomerate in their bare state, which leads to sedimentation in a biological environment. Since the natural biological environment is essentially aqueous, nanoparticle surface modification using suitable biocompatible hydrophilic chemical moieties is highly desirable to create effective aqueous dispersions. In this report, (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl)triethoxysilane was used as a functional, biocompatible organosilane to modify the surface of CNPs to produce promising nanoparticles which open substantial therapeutic avenues. The surface modified nanoparticles were produced in situ via an ammonia-induced ethylene glycol-assisted precipitation method and were characterized using complimentary characterization techniques. The interaction between the functional moiety and the nanoparticle was studied using powerful cross polarization/magic angle sample spinning solid state nuclear magnetic resonance spectroscopy. The surface-modified nanoparticles were extremely small and demonstrated a significant improvement in aqueous dispersibility. Moreover, the existence of a strong ionic coordination between the functional moiety and the surface of the nanoparticle was realised, indicating that the surface modified nanoceria are stable and that the nanoparticles should demonstrate an enhanced circulation time in a biological environment. The surface modification approach should be promising for the production of CNPs for nanomedicine applications. © The Royal Society of Chemistry.

  7. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite

    International Nuclear Information System (INIS)

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H.

    2014-01-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  8. Synthesis and electrical characterization of Graphene Oxide films

    International Nuclear Information System (INIS)

    Yasin, Muhammad; Tauqeer, T.; Zaidi, Syed M.H.; San, Sait E.; Mahmood, Asad; Köse, Muhammet E.; Canimkurbey, Betul; Okutan, Mustafa

    2015-01-01

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σ ac of the films was observed to be varied with angular frequency, ω as ω S , with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively

  9. Effect of cerium substitution on microstructure and Faraday rotation of Ce{sub x}Y{sub 3-x}Fe{sub 5}O{sub 12} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhvand, S.M.; Mozaffari, M.; Rozatian, A.S.H. [University of Isfahan, Department of Physics, Faculty of Science, Isfahan (Iran, Islamic Republic of); Hamidi, S.M. [Shahid Beheshti University, Laser and Plasma Research Institute, Evin, Tehran (Iran, Islamic Republic of); Tehranchi, M.M. [Shahid Beheshti University, Laser and Plasma Research Institute, Evin, Tehran (Iran, Islamic Republic of); Shahid Beheshti University, Department of Physics, Evin, Tehran (Iran, Islamic Republic of)

    2016-01-15

    In this work, cerium-substituted yttrium iron garnet (Ce{sub x}Y{sub 3-x}Fe{sub 5}O{sub 12}, x = 0.25-1) targets were fabricated by conventional ceramic method at different temperatures, and their crystal structures were investigated by X-ray diffraction method. The results showed that the minimum calcining temperature required to get single-phase targets depends on x value and decreased by increasing x value. Then, thin films of the targets were deposited on GGG (444) single-crystal substrates by pulsed laser deposition technique. Based on the previous studies, preferred (444) oriented Ce{sub x}Y{sub 3-x}Fe{sub 5}O{sub 12} thin films were fabricated under optimum conditions. Faraday rotation of the thin films was measured at 635 nm wavelength, and the results showed that Faraday rotation and sensitivity constant increased by increasing x value. Scanning electron microscope images showed that by increasing x value, cracks on the thin films' surface increased. Atomic force microscopy images showed that the films have smooth surfaces and the surface roughness decreased by increasing the x value. (orig.)

  10. Separation of pure Cerium oxides from rare earth compounds. Homogeneous precipitation using Urea-Hydrogen Peroxide

    International Nuclear Information System (INIS)

    Umeda, K.; Abrao, E.

    1975-01-01

    The obtainment of ceric oxide (CeO 2 ) of purity higher than 97% by application of homogeneous precipitation technique is described. The selective separation of cerium was reached by hydrolysis of urea in the presence of hydrogen peroxide, using a rare earths concentrate named rare earths chloride, a natural mixture of all lanthanides provenient from the industrialization of monazite. The best conditions for the preparation of CeO 2 of 94% purity are: 35-70g R 2 O 3 /1 and pH2,0 hydrolysis temperature: 88-90 0 C, urea/R 2 O 3 ratio: 4, H 2 O 2 /Ce 2 O 3 ratio: 1,5-5,0 and hydrolysis duration: 4 hours. A leaching procedure of the precipitate with 0,25-0,75M NHO 3 leads to a product of 97-99,5% CeO 2

  11. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  12. Electroluminescence Spectrum Shift with Switching Behaviour of Diamond Thin Films

    Institute of Scientific and Technical Information of China (English)

    王小平; 王丽军; 张启仁; 姚宁; 张兵临

    2003-01-01

    We report a special phenomenon on switching behaviour and the electroluminescence (EL) spectrum shift of doped diamond thin films. Nitrogen and cerium doped diamond thin films were deposited on a silicon substrate by microwave plasma-assisted chemical vapour deposition system and other special techniques. An EL device with a three-layer structure of nitrogen doped diamond/cerium doped diamond/SiO2 thin films was made. The EL device was driven by a direct-current power supply. Its EL character has been investigated, and a switching behaviour was observed. The EL light emission colour of diamond films changes from yellow (590nm) to blue (454 nm) while the switching behaviour appears.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this work, cerium oxide thin films were prepared using cerium chloride heptahydrate, ethanol and citric acid as an additive by sol–gel spin-coating technique and further characterized to study the various properties. Chemical composition of deposited films has been analysed by FTIR which shows existence of CeO2.

  14. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Arya A

    2013-11-01

    Full Text Available Aditya Arya,1 Niroj Kumar Sethy,1 Sushil Kumar Singh,2 Mainak Das,3 Kalpana Bhargava1 1Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, 2Functional Materials Division, Solid State Physics Laboratory, Defence Research and Development Organization, Delhi, 3Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India Background: Cerium oxide nanoparticles (nanoceria are effective at quenching reactive oxygen species (ROS in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. Methods: A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]. Animals were injected intraperitoneally with either a dose of 0.5 µg/kg body weight/week of nanoceria (T and T+H groups or vehicle (C and H groups for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Results: Spherical nanoceria of 7–10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated

  15. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie; Wang, Xinghui; Zhang, Qing; Li, Jingqi; Zhang, Xixiang

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  16. Mn-implanted, polycrystalline indium tin oxide and indium oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Vinnichenko, Mykola; Xu Qingyu; Buerger, Danilo; Zhou Shengqiang; Kolitsch, Andreas; Grenzer, Joerg; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Polycrystalline conducting, ca. 250 nm thick indium tin oxide (ITO) and indium oxide (IO) films grown on SiO 2 /Si substrates using reactive magnetron sputtering, have been implanted with 1 and 5 at.% of Mn, followed by annealing in nitrogen or in vacuum. The effect of the post-growth treatment on the structural, electrical, magnetic, and optical properties has been studied. The roughness of implanted films ranges between 3 and 15 nm and XRD measurements revealed a polycrystalline structure. A positive MR has been observed for Mn-implanted and post-annealed ITO and IO films. It has been interpreted by considering s-d exchange. Spectroscopic ellipsometry has been used to prove the existence of midgap electronic states in the Mn-implanted ITO and IO films reducing the transmittance below 80%.

  17. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Wang, Dapeng; Gao, Lixin; Zhang, Daquan, E-mail: zhdq@sh163.net

    2016-12-15

    Highlights: • Effectively prevent corrosion of AA5052 alloy by using the mixture of cerium nitrate and sodium dodecylbenzenesulfonate. • Synergistic mechanism of the combination of cerium nitrate and sodium dodecylbenzenesulfonate. • Structure of the complex formed between cerium ions and dodecylbenzenesulfonate. • The optimal adsorption model of dodecylbenzenesulfonate on the Al{sub 2}O{sub 3} and CeO{sub 2} surface. - Abstract: The synergistic inhibition effect of rare earth cerium nitrate and sodium dodecylbenzenesulfonate (DBS) on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results show that the single cerium nitrate or DBS has a limited inhibition effect against corrosion of AA5052 alloy. The combination cerium ions with DBS produced strong synergistic effect on corrosion inhibition for AA5052 alloy and rendered a negaitve shift of the corrosion potential. The formation of the complex of Al(DBS){sub 3} and Ce(DBS){sub 3} stabilized the passive film of Al{sub 2}O{sub 3} and CeO{sub 2}, retarding both the cathodic and anodic processes of AA5052 alloy corrosion reaction significantly.

  18. Nuclear microanalysis of oxide films on structural steel

    International Nuclear Information System (INIS)

    Istomin, I.V.; Karabash, V.A.; Maisyukov, V.D.; Sosnin, A.N.; Shorin, V.S.

    1989-01-01

    Studies of the behavior of structural materials in nuclear power plants have indicated the important role of oxide films on metals, especially metals of the iron group. The films may be formed as a result of the corrosion of the metal in an aggressive coolant. At the same time, some oxide films have anticorrosive properties and can be produced specially by the introduction of inhibitor-passivators, e.g., molecular oxygen, into the aggressive medium. Experimental data on the film growth rate make it possible to determine the kinetics of the oxidation process, the nature of the diffusion of the main components through the film, and the role of the phase transitions (crystal-chemical transformations) and point defects during the migration of oxygen and metal ions through the oxide. In this study nuclear microanalysis is used to measure the parameters of oxide films formed on 10Cr2Mo and 1Cr18Ni10Ti steels in steam in the temperature range 320-620C. In this method the film parameters in the general analysis of the energy spectra of deuterons back-scattered from iron nuclei and protons in the case of the 16 O(d,p 1 ) 17 O nuclear reaction. With this approach and an initial deuteron energy E o = 0.9 MeV the range of the measurable thickness t of the films is 0.001-1.5 mg/cm 2 . The data obtained not only confirm the high sensitivity of the nuclear microanalysis method but also demonstrate that it can be used for nondestructive quality control of the surface

  19. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Lin, Ya-Ping

    2011-01-01

    A nickel-oxide film with monodispersed open macropores was prepared on a stainless-steel substrate by electrophoretic deposition of a polystyrene-sphere monolayer followed by anodic electrodeposition of nickel oxy-hydroxide. The deposited films convert to cubic nickel oxide after annealing at 400 o C for 1 h. Galvanostatic charge and discharge results indicate that the nickel-oxide film with monodispersed open macropores is capable of delivering a higher capacity than the bare nickel-oxide film, especially in high-rate charge and discharge processes. The lithiation capacity of macroporous nickel oxide reaches 1620 mA h g -1 at 1 C current discharge and decreases to 990 mA h g -1 at 15 C current discharge. The presence of monodispersed open macropores in the nickel-oxide film might facilitate the electrolyte penetration, diffusion, and migration. Electrochemical reactions between nickel oxide and lithium ions are therefore markedly improved by this tailored film architecture.

  1. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  2. Preparation of molybdenum oxide thin films by MOCVD

    International Nuclear Information System (INIS)

    Guerrero, R. Martinez; Garcia, J.R. Vargas; Santes, V.; Gomez, E.

    2007-01-01

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 o C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 o C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of α-MoO 3 phase at deposition temperatures ranging from 400 to 560 o C (673-833 K). Crystalline α-MoO 3 films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 o C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance

  3. Preparation of molybdenum oxide thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, R. Martinez [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico); Garcia, J.R. Vargas [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico)]. E-mail: rvargasga@ipn.mx; Santes, V. [CIIEMAD-IPN, Miguel Othon de Mendizabal 485, Mexico 07700, D.F. (Mexico); Gomez, E. [Instituto de Quimica-UNAM, Circuito Exterior-Ciudad Universitaria, Mexico 04510, D.F. (Mexico)

    2007-05-31

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 {sup o}C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 {sup o}C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of {alpha}-MoO{sub 3} phase at deposition temperatures ranging from 400 to 560 {sup o}C (673-833 K). Crystalline {alpha}-MoO{sub 3} films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 {sup o}C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance.

  4. Photoconductivity of oxidized nanostructured PbTe(In) films

    International Nuclear Information System (INIS)

    Dobrovolsky, A A; Ryabova, L I; Khokhlov, D R; Dashevsky, Z M; Kasiyan, V A

    2009-01-01

    Photoconductivity of as-grown and oxidized nanocrystalline PbTe(In) films has been studied in the dc and ac modes at temperatures 4.2–300 K. The electric transport in the films is defined by two mechanisms: conductivity through barriers at grain boundaries and transport along inversion channels at the grain surface. Modification of the transport mechanisms induced by oxidation is considered. Relatively weak oxidation results in an increase in the contribution of grain barriers to conductivity followed by an enhancement of the photoconductivity amplitude. Instead, this contribution drops in the case of deep oxidation resulting in a photoresponse reduction. It is shown that the main mechanism of charge transport in deeply oxidized films at low temperatures is hopping along inversion channels at the grain surface. It is demonstrated that the photoconductive response of nanocrystalline materials may be optimized by variation of the oxidation level, measurement frequency and temperature

  5. Nucleation front instability in two-dimensional (2D) nanosheet gadolinium-doped cerium oxide (CGO) formation

    DEFF Research Database (Denmark)

    Marani, Debora; Moraes, Leticia Poras Reis; Gualandris, Fabrizio

    2018-01-01

    Herein we report for the first time the synthesis of ceramic–organic three-dimensional (3D) layered gadolinium-doped cerium oxide (Ce1−XGdXO2−δ, CGO) and its exfoliation into two-dimensional (2D) nanosheets. We adopt a water-based synthetic route via a homogenous precipitation approach at low...... temperatures (10–80 °C). The reaction conditions are tuned to investigate the effects of thermal energy on the final morphology. A low temperature (40 °C) morphological transition from nanoparticles (1D) to two-dimensional (2D) nanosheets is observed and associated with a low thermal energy transition of ca. 2.......6 kJ mol−1. For the 3D-layered material, exfoliation experiments are conducted in water/ethanol solutions. Systems at volume fractions ranging from 0.15 to 0.35 are demonstrated to promote under ultrasonic treatment the delamination into 2D nanosheets....

  6. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state

    International Nuclear Information System (INIS)

    Safi, M; Sarrouj, H; Berret, J-F; Sandre, O; Mignet, N

    2010-01-01

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), M W = 2000 g mol -1 ). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l -1 ). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.

  7. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state

    Science.gov (United States)

    Safi, M.; Sarrouj, H.; Sandre, O.; Mignet, N.; Berret, J.-F.

    2010-04-01

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), MW = 2000 g mol - 1). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l - 1). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.

  8. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state

    Energy Technology Data Exchange (ETDEWEB)

    Safi, M; Sarrouj, H; Berret, J-F [Matiere et Systemes Complexes, UMR 7057 CNRS, Universite Denis Diderot Paris VII, Batiment Condorcet, 10 rue Alice Domon et Leonie Duquet, F-75205 Paris (France); Sandre, O [UPMC Universite Paris VI-Laboratoire de Physico-chimie des Electrolytes, Colloides et Sciences Analytiques, UMR 7195 UPMC Universite Paris 6/CNRS/ESPCI Paristech, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Mignet, N, E-mail: jean-francois.berret@univ-paris-diderot.fr [CNRS UMR 8151, Faculte de Pharmacie, 4 avenue de l' Observatoire, F-75270 Paris (France)

    2010-04-09

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), M{sub W} = 2000 g mol{sup -1}). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l{sup -1}). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.

  9. Chemically abrupt interface between Ce oxide and Fe films

    International Nuclear Information System (INIS)

    Lee, H.G.; Lee, D.; Kim, S.; Kim, S.G.; Hwang, Chanyong

    2005-01-01

    A chemically abrupt Fe/Ce oxide interface can be formed by initial oxidation of an Fe film followed by deposition of Ce metal. Once a Ce oxide layer is formed on top of Fe, it acts a passivation barrier for oxygen diffusion. Further deposition of Ce metal followed by its oxidation preserve the abrupt interface between Ce oxide and Fe films. The Fe and Ce oxidation states have been monitored at each stage using X-ray photoelectron spectroscopy

  10. Study of cerium doped magnetite (Fe 3O 4:Ce)/PMMA nanocomposites

    Science.gov (United States)

    Padalia, Diwakar; Johri, U. C.; Zaidi, M. G. H.

    2012-03-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe 3O 4) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe 3O 4) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO 2) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature ( Tg). The magnetic results suggest that coercivity ( HC) and squareness ( Mr/ Ms) of the loop increases with increasing doping percent of cerium.

  11. Degradation of superconducting Nb/NbN films by atmospheric oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Wolfley, Steven L.; Young, Travis Ryan; Monson, Todd; Pearce, Charles Joseph; Lewis, Rupert M.; Clark, Blythe; Brunke, Lyle Brent; Missert, Nancy A.

    2017-03-01

    Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.

  12. Biomineralization-Inspired Synthesis of Cerium-Doped Carbonaceous Nanoparticles for Highly Hydroxyl Radical Scavenging Activity

    Science.gov (United States)

    Zou, Shenqiang; Zhu, Xiaofang; Zhang, Lirong; Guo, Fan; Zhang, Miaomiao; Tan, Youwen; Gong, Aihua; Fang, Zhengzou; Ju, Huixiang; Wu, Chaoyang; Du, Fengyi

    2018-03-01

    Cerium oxide nanoparticles recently have received extensive attention in biomedical applications due to their excellent anti-oxidation performance. In this study, a simple, mild, and green approach was developed to synthesize cerium-doped carbonaceous nanoparticles (Ce-doped CNPs) using bio-mineralization of bull serum albumin (BSA) as precursor. The resultant Ce-doped CNPs exhibited uniform and ultrasmall morphology with an average size of 14.7 nm. XPS and FTIR results revealed the presence of hydrophilic group on the surface of Ce-doped CNPs, which resulted in excellent dispersity in water. The CCK-8 assay demonstrated that Ce-doped CNPs possessed favorable biocompatibility and negligible cytotoxicity. Using H2O2-induced reactive oxygen species (ROS) as model, Ce-doped CNPs showed highly hydroxyl radical scavenging capability. Furthermore, flow cytometry and live-dead staining results indicated that Ce-doped CNPs protected cells from H2O2-induced damage in a dose-dependent effect, which provided a direct evidence for anti-oxidative performance. These findings suggest that Ce-doped CNPs as novel ROS scavengers may provide a potential therapeutic prospect in treating diseases associated with oxidative stress.

  13. Synthesis and characterization of cobaltite nanotubes for solid-oxide fuel cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, F; Baque, L; Troiani, H; Granada, M; Serquis, A, E-mail: aserquis@cab.cnea.gov.a [Instituto Balseiro-Centro Atomico Bariloche and CONICET, San Carlos de Bariloche (Argentina)

    2009-05-01

    La{sub 1-x}Sr{sub x}Co{sub 1-y}FeyO{sub 3-d}elta oxides are good candidates for solid oxide fuel cell (SOFC) cathodes because these materials present high ionic and electronic conductivity, and compatibility with Cerium Gadolinium Oxide (CGO) electrolytes allowing a lower operation temperature. In this work, we report the synthesis of La{sub 0.4}Sr{sub 0.6}Co{sub 0.8}Fe{sub 0.2}O{sub 3-d}elta (LSCF) nanotubes prepared by a porous polycarbonate membrane approach, obtaining different microstructures depending on sintering conditions. The structure and morphology of the nanotubes and deposited films were characterized by X-ray diffraction, transmission and scanning microscopy. Finally, we obtained nanostructured films of vertically aligned LSCF tubes deposited over the whole surface of CGO pellets with diameter up to 2.5cm in a direct and single step process.

  14. Local Structure of Cerium in Aluminophosphate and Silicophosphate Glasses

    International Nuclear Information System (INIS)

    Rygel, Jennifer L.; Chen, Yongsheng; Pantano, Carlo G.; Shibata, Tomohiro; Du, Jincheng; Kokou, Leopold; Woodman, Robert; Belcher, James

    2011-01-01

    The local structure of cerium in two systematic compositional series of glasses, nominally CeP 3 O 9 -AlP 3 O 9 and CeP 3 O 9 -SiP 2 O 7 , was interrogated using X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy. XPS revealed that, for glasses melted in air, ≥95% of cerium ions are Ce 3+ . This was independently confirmed using X-ray absorption near edge spectroscopy (XANES). Ce K-edge extended X-ray absorption fine structure (EXAFS) has been used to determine the local structure of Ce 3+ . Near the metaphosphate composition, cerium was found to have an average cerium coordination number of ∼7.0 and an average cerium-oxygen bond length of 2.41 (angstrom). The average cerium coordination number and average cerium-oxygen bond distance were found to increase with decreasing cerium concentration in both compositional series. Rare-earth clustering is suggested based on numerical calculations for glasses containing ≥14 and ≥15 mol% Ce 2 O 3 for the aluminophosphate and silicophosphate series, respectively.

  15. Protective effects of Curcuma longa against neurobehavioral and neurochemical damage caused by cerium chloride in mice.

    Science.gov (United States)

    Kadri, Yamina; Nciri, Riadh; Brahmi, Noura; Saidi, Saber; Harrath, Abdel Halim; Alwasel, Saleh; Aldahmash, Waleed; El Feki, Abdelfatteh; Allagui, Mohamed Salah

    2018-05-07

    Cerium chloride (CeCl 3 ) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl 3 , 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl 3 -treated mice. In addition, CeCl 3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl 3 -treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl 3 -induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl 3 -damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl 3 -induced damage in the brain.

  16. Electrochemical reduction of actinides oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.

    2011-01-01

    Reactive metals are currently produced from their oxide by multiple steps reduction techniques. A one step route from the oxide to the metal has been suggested for metallic titanium production by electrolysis in high temperature molten chloride salts. In the so-called FFC process, titanium oxide is electrochemically reduced at the cathode, generating O 2- ions, which are converted on a graphite anode into carbon oxide or dioxide. After this process, the spent salt can in principle be reused for several batches which is particularly attractive for a nuclear application in terms of waste minimization. In this work, the electrochemical reduction process of cerium oxide (IV) is studied in CaCl 2 and CaCl 2 -KCl melts to understand the oxide reduction mechanism. Cerium is used as a chemical analogue of actinides. Electrolysis on 10 grams of cerium oxide are made to find optimal conditions for the conversion of actinides oxides into metals. The scale-up to hundred grams of oxide is also discussed. (author) [fr

  17. Surface morphology study on chromium oxide growth on Cr films by Nd-YAG laser oxidation process

    International Nuclear Information System (INIS)

    Dong Qizhi; Hu Jiandong; Guo Zuoxing; Lian Jianshe; Chen Jiwei; Chen Bo

    2002-01-01

    Grain sized (60-100 nm) Cr 2 O 3 thin films were prepared on Cr thin film surfaces by Nd-YAG laser photothermal oxidation process. Surface morphology study showed crack-free short plateau-like oxide films formed. Increase of dislocation density after pulsed laser irradiation was found. Thin film external surfaces, grain boundaries and dislocations are main paths of laser surface oxidation. Pinning and sealing of grain boundary was the reason that deeper oxidation did not produce. Grain growth and agglomeration of Cr sub-layer yielded tensile stress on the surface Cr 2 O 3 thin film. It was the reason that short plateau-like surface morphology formed and cracks appeared sometimes. In oxygen annealing at 700 deg. C, grain boundaries were considered not to be pinned at the surface, mixture diffusion was main mechanism in growth of oxide. Compression stress development in whole film led to extrusion of grains that was the reason that multiple appearances such as pyramid-like and nutshell-like morphology formed

  18. Raman and XPS characterization of vanadium oxide thin films with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ureña-Begara, Ferran, E-mail: ferran.urena@uclouvain.be [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium); Crunteanu, Aurelian [XLIM Research Institute, UMR 7252, CNRS/Université de Limoges, Limoges (France); Raskin, Jean-Pierre [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium)

    2017-05-01

    Highlights: • Comprehensive study of the oxidation of VO{sub 2} thin films from R.T. up to 550 °C. • Phase changes and mixed-valence vanadium oxides formed during the oxidation process. • Reported Raman and XPS signatures for each vanadium oxide. • Monitoring of the current and resistance evolution at the surface of the films. • Oxidation model describing the evolution of the vanadium oxides and phase changes. - Abstract: The oxidation mechanisms and the numerous phase transitions undergone by VO{sub 2} thin films deposited on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates when heated from room temperature (R.T.) up to 550 °C in air are investigated by Raman and X-ray photoelectron spectroscopy. The results show that the films undergo several intermediate phase transitions between the initial VO{sub 2} monoclinic phase at R.T. and the final V{sub 2}O{sub 5} phase at 550 °C. The information about these intermediate phase transitions is scarce and their identification is important since they are often found during the synthesis of vanadium dioxide films. Significant changes in the film conductivity have also been observed to occur associated to the phase transitions. In this work, current and resistance measurements performed on the surface of the films are implemented in parallel with the Raman measurements to correlate the different phases with the conductivity of the films. A model to explain the oxidation mechanisms and phenomena occurring during the oxidation of the films is proposed. Peak frequencies, full-width half-maxima, binding energies and oxidation states from the Raman and X-ray photoelectron spectroscopy experiments are reported and analyzed for all the phases encountered in VO{sub 2} films prepared on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates.

  19. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-03

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  20. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-01-01

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  1. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    Directory of Open Access Journals (Sweden)

    Himansu Sekhar Nanda

    2016-11-01

    Full Text Available The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium-doped cerium oxide nanoparticles (SmCNPs as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy-ethoxy]-ethoxy}-hexyl triethoxysilane (MEEETES were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  2. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application

    Directory of Open Access Journals (Sweden)

    Hilal Ahmad Rather

    2018-06-01

    Full Text Available Skin wound healing involves a coordinated cellular response to achieve complete reepithelialisation. Elevated levels of reactive oxygen species (ROS in the wound environment often pose a hindrance in wound healing resulting in impaired wound healing process. Cerium oxide nanoparticles (CeNPs have the ability to protect the cells from oxidative damage by actively scavenging the ROS. Furthermore, matrices like nanofibers have also been explored for enhancing wound healing. In the current study CeNP functionalised polycaprolactone (PCL-gelatin nanofiber (PGNPNF mesh was fabricated by electrospinning and evaluated for its antioxidative potential. Wide angle XRD analysis of randomly oriented nanofibers revealed ∼2.6 times reduced crystallinity than pristine PCL which aided in rapid degradation of nanofibers and release of CeNP. However, bioactive composite made between nanoparticles and PCL-gelatin maintained the fibrous morphology of PGNPNF upto 14 days. The PGNPNF mesh exhibited a superoxide dismutase (SOD mimetic activity due to the incorporated CeNPs. The PGNPNF mesh enhanced proliferation of 3T3-L1 cells by ∼48% as confirmed by alamar blue assay and SEM micrographs of cells grown on the nanofibrous mesh. Furthermore, the PGNPNF mesh scavenged ROS, which was measured by relative DCF intensity and fluorescence microscopy; and subsequently increased the viability and proliferation of cells by three folds as it alleviated the oxidative stress. Overall, the results of this study suggest the potential of CeNP functionalised PCL-gelatin nanofibrous mesh for wound healing applications.

  3. Effects of Cerium Oxide Nanoparticles on Sorghum Plant Traits

    Science.gov (United States)

    Mu, L.; Chen, Y.; Darnault, C. J. G.; Rauh, B.; Kresovich, S.; Korte, C.

    2015-12-01

    Nanotechnology and nanomaterials are considered as the development of the modern science. However, besides with that wide application, nanoparticles arouse to the side effects on the environment and human health. As the catalyst of ceramics and fuel industry, Cerium (IV) oxide nanoparticles (CeO2 NPs) can be found in the environment following their use and life-cycle. Therefore, it is critical to assess the potential effects that CeO2 NPs found in soils may have on plants. In this study, CeO2 NPs were analyzed for the potential influence on the sorghum [Sorghum bicolor (L.) Moench] (Reg. no. 126) (PI 154844) growth and traits. The objectives of this research were to determine whether CeO2 NPs impact the sorghum germination and growth characteristics. The sorghum was grown in the greenhouse located at Biosystems Research Complex, Clemson University under different CeO2 NPs treatments (0mg; 100mg; 500mg; 1000mg CeO2 NPs/Kg soil) and harvested around each month. At the end of the each growing period, above ground vegetative tissue was air-dried, ground to 2mm particle size and compositional traits estimated using near-infrared spectroscopy. Also, the NPK value of the sorghum tissue was tested by Clemson Agriculture Center. After the first harvest, the result showed that the height of above ground biomass under the nanoparticles stress was higher than that of control group. This difference between the control and the nanoparticles treatments was significant (F>F0.05; LSD). Our results also indicated that some of the compositional traits were impacted by the different treatments, including the presence and/or concentrations of the nanoparticles.

  4. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  5. Exposure to Cerium Oxide Nanoparticles Is Associated With Activation of Mitogen-activated Protein Kinases Signaling and Apoptosis in Rat Lungs

    Directory of Open Access Journals (Sweden)

    Kevin M. Rice

    2015-05-01

    Full Text Available Objectives: With recent advances in nanoparticle manufacturing and applications, potential exposure to nanoparticles in various settings is becoming increasing likely. No investigation has yet been performed to assess whether respiratory tract exposure to cerium oxide (CeO2 nanoparticles is associated with alterations in protein signaling, inflammation, and apoptosis in rat lungs. Methods: Specific-pathogen-free male Sprague-Dawley rats were instilled with either vehicle (saline or CeO2 nanoparticles at a dosage of 7.0 mg/kg and euthanized 1, 3, 14, 28, 56, or 90 days after exposure. Lung tissues were collected and evaluated for the expression of proteins associated with inflammation and cellular apoptosis. Results: No change in lung weight was detected over the course of the study; however, cerium accumulation in the lungs, gross histological changes, an increased Bax to Bcl-2 ratio, elevated cleaved caspase-3 protein levels, increased phosphorylation of p38 MAPK, and diminished phosphorylation of ERK-1/2-MAPK were detected after CeO2 instillation (p<0.05. Conclusions: Taken together, these data suggest that high-dose respiratory exposure to CeO2 nanoparticles is associated with lung inflammation, the activation of signaling protein kinases, and cellular apoptosis, which may be indicative of a long-term localized inflammatory response.

  6. Precursors for use in vapour and solution phase thermolysis routes to II-VI thin films and nanodispersed oxide materials

    International Nuclear Information System (INIS)

    Chunggaze, M.

    1999-12-01

    -7 are formed in the vapour phase from (3) and (4). Compounds (3), (4) and (7) also form significant quantities of diethyl diselenide (EtSe 2 Et), as detected by GC-MS; whereas (5) and (6) do not. A series of precursors with pendant amine functions have also been synthesised in an effort to reduce the degree of association seen in the simple parent diethyl-dithiocarbamates. The preparation of nanocrystalline titanium dioxide and cerium oxide powders, which are used in dye-sensitised photovoltaic cells (Graetzel cells) and as catalysts respectively were prepared by the thermolysis of a series of suitable single source precursor in a thermolysing/passivating solvent such as tri-octyl-phosphine oxide (TOPO). The nano-particulate oxides formed have the unique property of being coated with TOPO and hence are stable in the solid form without leading to aggregation and are re-dispersible in organic solvents. The oxides formed were generally amorphous in nature and required further annealing to induce crystallinity. Other routes to preparing nano-porous titanium dioxide such as aerosol assisted CVD were also used in an attempt to deposit nano-porous films of titanium dioxide. Cerium oxide particles were synthesised at relatively low thermolysis temperatures (200-300 deg C) and were characterised to exist in the fluorite phase (CeO 2 ). The interaction of TOPO with the precursor was found to aid in lowering the thermolysing temperatures as well as favour the growth of the CeO 2 particles. Lowering the thermolysis temperature to 100 deg C allowed for the preparation of the pyramidal Ce 2 O 3 particles. (author)

  7. Nanocasted synthesis of magnetic mesoporous iron cerium bimetal oxides (MMIC) as an efficient heterogeneous Fenton-like catalyst for oxidation of arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhipan [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang, Yalei, E-mail: zhangyalei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Dai, Chaomeng [College of Civil Engineering, Tongji University, Shanghai 200092 (China); Sun, Zhen [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-04-28

    Highlights: • MMIC with large surface area and pore volume was synthesized via the hard template. • MMIC could be easily separated from aqueous solution with an external magnetic field. • MMIC presented excellent catalytic activity for the oxidation of As(III). • As(III) was mainly oxidized by surface-bound ·OH{sub ads} and free ·OH{sub free} radicals. • MMIC played a dual function role for the arsenic removal in aqueous solution. - Abstract: Magnetic mesoporous iron cerium bimetal oxides (MMIC) with large surface area and pore volume was synthesized via the hard template approach. This obtained MMIC was easily separated from aqueous solution with an external magnetic field and was proposed as a heterogeneous Fenton-like catalyst for oxidation of As(III). The MMIC presented excellent catalytic activity for the oxidation of As(III), achieving almost complete oxidation of 1000 ppb As(III) after 60 min and complete removal of arsenic species after 180 min with reaction conditions of 0.4 g/L catalyst, pH of 3.0 and 0.4 mM H{sub 2}O{sub 2}. Kinetics analysis showed that arsenic removal followed the pseudo-first order, and the pseudo-first-order rate constants increased from 0.0014 min{sup −1} to 0.0548 min{sup −1} as the H{sub 2}O{sub 2} concentration increased from 0.04 mM to 0.4 mM. On the basis of the effects of XPS analysis and reactive oxidizing species, As(III) in aqueous solution was mainly oxidized by ·OH radicals, including the surface-bound ·OH{sub ads} generated on the MMIC surface which were involved in ≡Fe{sup 2+} and ≡Ce{sup 3+}, and free ·OH{sub free} generation by soluble iron ions which were released from the MMIC into the bulk solution, and the generated As(V) was finally removed by MMIC through adsorption.

  8. Thick-film effects in the oxidation and hydriding of zirconium alloys

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1989-08-01

    One of the fundamental discoveries involving radiation effects on the oxidation of Zircaloy in low-oxygen aqueous environments is the influence of thick oxide films. Zircaloy oxidation rates in low-oxygen (hydrogen-rich) coolants initially proceed at relatively low rates, often almost uninfluenced by radiation. Marked upturns in oxidation rate have signaled the onset of radiation effects. The radiation effects appear to correlate with a threshold oxide thickness. Results of the test reactor experiments lead to formulation of the Thick-Film Hypothesis: beyond a threshold oxide thickness, radiolysis of water that infiltrates oxide cracks and pores controls the oxidation rate; radiation creates microenvironments inside the oxide film, producing highly oxidizing conditions, that are no longer suppressed by the coolant-borne hydrogen. Upturns in oxidation rate on high-exposure Zircaloy pressure tubes add confirmatory evidence for the thick-film effect. This paper summarizes the early evidence for thick-film behavior, including oxidation and hydriding trends, updates confirmatory evidence from Zircaloy reactor and fuel assembly components, and highlights other observations from the test reactor series that have potential fundamental significance to explanations of radiation effects on Zircaloy. 23 refs., 10 figs

  9. Atomic layer deposition of calcium oxide and calcium hafnium oxide films using calcium cyclopentadienyl precursor

    International Nuclear Information System (INIS)

    Kukli, Kaupo; Ritala, Mikko; Sajavaara, Timo; Haenninen, Timo; Leskelae, Markku

    2006-01-01

    Calcium oxide and calcium hafnium oxide thin films were grown by atomic layer deposition on borosilicate glass and silicon substrates in the temperature range of 205-300 o C. The calcium oxide films were grown from novel calcium cyclopentadienyl precursor and water. Calcium oxide films possessed refractive index 1.75-1.80. Calcium oxide films grown without Al 2 O 3 capping layer occurred hygroscopic and converted to Ca(OH) 2 after exposure to air. As-deposited CaO films were (200)-oriented. CaO covered with Al 2 O 3 capping layers contained relatively low amounts of hydrogen and re-oriented into (111) direction upon annealing at 900 o C. In order to examine the application of CaO in high-permittivity dielectric layers, mixtures of Ca and Hf oxides were grown by alternate CaO and HfO 2 growth cycles at 230 and 300 o C. HfCl 4 was used as a hafnium precursor. When grown at 230 o C, the films were amorphous with equal amounts of Ca and Hf constituents (15 at.%). These films crystallized upon annealing at 750 o C, showing X-ray diffraction peaks characteristic of hafnium-rich phases such as Ca 2 Hf 7 O 16 or Ca 6 Hf 19 O 44 . At 300 o C, the relative Ca content remained below 8 at.%. The crystallized phase well matched with rhombohedral Ca 2 Hf 7 O 16 . The dielectric films grown on Si(100) substrates possessed effective permittivity values in the range of 12.8-14.2

  10. Corrosion of Zn5Al and Zn55Al alloys with cerium, praseodymium and neodymium

    International Nuclear Information System (INIS)

    Alikhanova, S.D.

    2017-01-01

    The present work is devoted to corrosion of Zn5Al and Zn55Al alloys with cerium, praseodymium and neodymium. The purpose of present work is elaboration of optimal composition of zinc-aluminium alloys Zn5Al and Zn55Al alloyed by rare-earth metals of cerium subgroup which are used as anode covers for protection of steel from corrosion. Therefore, the regularities of change of corrosion-electrochemical properties in various corrosive mediums have been determined; processes mechanisms of high temperature oxidation of alloys in solid state have been studied; in the products of alloys oxidation their phase components have been defined and their role in the corrosion process have been revealed; the optimal compositions of zinc-aluminium alloys alloyed by rare earth metals, which are protected by two patents of the Republic of Tajikistan have been elaborated.

  11. Sputtered indium oxide films

    International Nuclear Information System (INIS)

    Gillery, F.H.

    1986-01-01

    A method is described for depositing on a substrate multiple layer films comprising at least one primary layer of a metal oxide and at least one primary layer of a metal other than the metal of the oxide layer. The improvement described here comprises improving the adhesion between the metal oxide and metal layers by depositing between the layers an intermediate metal-containing layer having an affinity for both the metal and metal oxide layers. An article of manufacture is described comprising a nonmetallic substrate, and deposited thereon in any order: a. at least one coating layer of metal; b. at least one coating layer of an oxide of a metal other than the metal of the metal layer; and c. deposited between the metal and metal oxide layers an intermediate metal-containing layer having an affinity for both the metal and metal oxide layers

  12. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  13. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  14. Indirect flow injection determination of N-acetyl-L-cysteine using cerium(IV) and ferroin

    International Nuclear Information System (INIS)

    Vieira, Heberth Juliano; Fatibello-Filho, Orlando

    2005-01-01

    An indirect flow injection spectrophotometric procedure is proposed for the determination of N-acetyl-L-cysteine in pharmaceutical formulations. In this system, ferroin ([Fe(II)-(fen) 2 ] 2+ ) in excess, with a strong absorption at 500 nm, is oxidized by cerium(IV) yielding cerium(III) and [Fe(III)-(fen) 2 ] 3+ (colorless), thus producing a baseline. When N-acetyl-L-cysteine solution is introduced into the flow injection system, it reacts with cerium(IV) increasing the analytical signal in proportion to the drug concentration. Under optimal experimental conditions, the linearity of the analytical curve for N-acetyl-L-cysteine ranged from 6.5x10 -6 to 1.3x10 -4 mol L -1 . The detection limit was 5.0x10 -6 mol L -1 and recoveries between 98.0 and 106% were obtained. The sampling frequency was 60 determinations per hour and the RSD was smaller than 1.4% for 2.2x10 -5 mol L -1 N-acetyl-L-cysteine. (author)

  15. Corrosion behaviors in physiological solution of cerium conversion coatings on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Cui Xiufang; Yang Yuyun; Liu Erbao; Jin Guo; Zhong Jinggao; Li Qingfen

    2011-01-01

    In this paper, a non-toxic Ce-based conversion coating was obtained on the surface of bio-medical AZ31 magnesium alloys. The micro-morphology of the coating prepared with optimal technical parameters and immersed in physiological solution (Hank's solution) in different time was observed by scanning electron microscopy (SEM), composition of the cerium conversion coating and corrosion products in Hank's solution were characterized by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS), respectively. In addition, the corrosion property in Hank's solution was studied by electrochemical experiment and immersion test. The results show that the dense Ce-based conversion coating is obtained on the surface of AZ31 magnesium alloys in optimal technical parameters and the conversion coating consists of a mass of trivalent and tetravalent cerium oxides. The cerium conversion coating can provide obvious protection of magnesium alloys and can effectively reduce the degradation speed in Hank's solution. Also the degradation products have little influence on human body.

  16. The kinetics of the cerium(IV)-uranium(IV) reaction at low sulfate concentrations

    International Nuclear Information System (INIS)

    Michaille, P.; Kikindai, T.

    1977-01-01

    The rate of oxidation of uranium(IV) by cerium(IV) was measured with a stopped-flow spectrophotometer at sulfuric acid concentrations of 2 x 10 -6 to 0.5 M. At a constant hydrogen ion concentration of 0.5 M, the maximum rate constant was observed for 2 x 10 -3 M sulfuric acid; at that concentration, two sulfate ions were involved in the activated complex. The dependence of the rate constant on the hydrogen ion concentration showed that the reaction paths involving one or two sulfate ions also involved one hydroxyl ion, whereas one hydrogen ion was involved in the five sulfate dependent path. Spectrophotometric measurements supported the existence of a hydrolyzed monosulfatocomplex of cerium(IV). (author)

  17. Yttrium and lanthanum recovery from low cerium carbonate, yttrium carbonate and yttrium concentrate

    International Nuclear Information System (INIS)

    Vasconcelos, Mari Estela de

    2006-01-01

    In this work, separation, enrichment and purification of lanthanum and yttrium were performed using as raw material a commercial low cerium rare earth concentrate named LCC (low cerium carbonate), an yttrium concentrate named 'yttrium carbonate', and a third concentrated known as 'yttrium earths oxide. The first two were industrially produced by the late NUCLEMON - NUCLEBRAS de Monazita e Associados Ltda, using Brazilian monazite. The 'yttrium earths oxide' come from a process for preparation of lanthanum during the course of the experimental work for the present thesis. The following techniques were used: fractional precipitation with urea; fractional leaching of the LCC using ammonium carbonate; precipitation of rare earth peroxycarbonates starting from the rare earth complex carbonates. Once prepared the enriched rare earth fractions the same were refined using the ion exchange chromatography with strong cationic resin without the use of retention ion and elution using the ammonium salt of ethylenediaminetetraacetic acid. With the association of the above mentioned techniques were obtained pure oxides of yttrium (>97,7%), lanthanum (99,9%), gadolinium (96,6%) and samarium (99,9%). The process here developed has technical and economic viability for the installation of a large scale unity. (author)

  18. Metabolism of cerium 144 in rat. Distribution - elimination - dosimetry; Metabolisme du cerium 144 chez le rat. Distribution - elimination - dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Remy, Jacques

    1959-07-01

    This academic report concerns a study during which cerium 144 has been intravenously injected to three-month old rats under the form of cerium chloride in aqueous solution with pH of 9,5. Rats have then been sacrificed at different times after the injection, and organ or tissue samplings have been performed to study the isotope distribution in their bodies. This allowed the calculation of internal irradiation doses locally received by the animal, and also to identify critical organs with respect to cerium 144. Thus, until the twentieth day after injection, liver is the critical organ. After, it is the skeleton, for the rest of the animal's life. The bone internal irradiation is the highest danger for an internal cerium 144 contamination, due to threats on body hematopoietic functions [French] Le Cerium 144 est injecte a des rats de trois mois par voie intraveineuse, sous forme de chlorure en solution aqueuse a pH = 9,5. Une telle solution est colloidale. Les rats sont sacrifies par groupe de 5 a des temps differents apres l'injection et des prelevements d'organes ou de tissus sont effectues qui permettent d'etudier la distribution de l'isotope dans l'organisme. Cette etude de la distribution du Cerium 144 dans l'organiqme du rat a permis egalement le calcul des doses d'irradiation interne recues localement par l'animal. Ces donnees permettent de definir les organes critiques de l'organisme pour le Cerium 144: Jusqu'au 20eme jour l'organe critique est le foie. Ce sera ensuite le squelette, et ce, pendant toute la vie de l'animal. L'irradiation interne de l'os constitue, en raison des menaces qu'elle comporte pour les fonctions hematopoietiques de l'organisme, le plus grand danger d'une contamination interne par le Cerium 144.

  19. A kinetic and mechanistic study on the oxidation of l-methionine and N-acetyl l-methionine by cerium(IV in sulfuric acid medium

    Directory of Open Access Journals (Sweden)

    T. Sumathi

    2016-09-01

    Full Text Available The kinetics of oxidation of l-methionine and N-acetyl l-methionine by Ce(IV in sulfuric acid–sulfate media in the range of 288.1–298.1 K has been investigated. The major oxidation products of methionine and N-acetyl l-methionine have been identified as methionine sulfoxide and N-acetyl methionine sulfoxide. The major oxidation products have been confirmed by qualitative analysis and boiling point. The reaction was first order with respect to l-methionine, N-acetyl l-methionine and Ce(IV. Increase in [H+], ionic strength and HSO4- did not affect the reaction rate. Under the experimental conditions, Ce4+ was the effective oxidizing species of cerium. Increase in dielectric constant of the medium decreased the reaction rate. Under nitrogen atmosphere, the reaction system can initiate polymerization of acrylonitrile, indicating the generation of free radicals. Activation parameters associated with the overall reaction have been calculated.

  20. Determination of plutonium in nitric acid solutions - Method by oxidation by cerium(IV), reduction by iron(II) ammonium sulfate and amperometric back-titration with potassium dichromate

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate analytical method for determining plutonium in nitric acid solutions. Plutonium is oxidized to plutonium(VI) in a 1 mol/l nitric acid solution with cerium(IV). Addition of sulfamic acid prevents nitrite-induced side reactions. The excess of cerium(IV) is reduced by adding a sodium arsenite solution, catalysed by osmium tetroxide. A slight excess of arsenite is oxidized by adding a 0.2 mol/l potassium permanganate solution. The excess of permanganate is reduced by adding a 0.1 mol/l oxalic acid solution. Iron(III) is used to catalyse the reduction. A small excess of oxalic acid does not interfere in the subsequent plutonium determination. These reduction and oxidation stages can be followed amperometrically and the plutonium is left in the hexavalent state. The sulfuric acid followed by a measured amount of standardized iron(II) ammonium sulfate solution in excess of that required to reduce the plutonium(VI) to plutonium(IV) is added. The excess iron(II) and any plutonium(III) formed to produce iron(III) and plutonium(IV) is amperometrically back-titrated using a standard potassium dichromate solution. The method is almost specifically for plutonium. It is suitable for the direct determination of plutonium in materials ranging from pure product solutions, to fast reactor fuel solutions with a uranium/plutonium ratio of up to 10:1, either before or after irradiation

  1. Lithium insertion in sputtered vanadium oxide film

    DEFF Research Database (Denmark)

    West, K.; Zachau-Christiansen, B.; Skaarup, S.V.

    1992-01-01

    were oxygen deficient compared to V2O5. Films prepared in pure argon were reduced to V(4) or lower. The vanadium oxide films were tested in solid-state lithium cells. Films sputtered in oxygen showed electrochemical properties similar to crystalline V2O5. The main differences are a decreased capacity...

  2. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    Science.gov (United States)

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects.

    Science.gov (United States)

    Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming

    2018-03-06

    This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.

  4. Spark counting technique with an aluminium oxide film

    International Nuclear Information System (INIS)

    Kawai, H.; Koga, T.; Morishima, H.; Niwa, T.; Nishiwaki, Y.

    1980-01-01

    Automatic spark counting of etch-pits on a polycarbonate film produced by nuclear fission fragments is now used for neutron monitoring in several countries. A method was developed using an aluminium oxide film instead of a polycarbonate as the neutron detector. Aluminium oxide films were prepared as follows: A cleaned aluminium plate as an anode and a nickel plate as a cathode were immersed in dilute sulfuric acid solution and electric current flowed between the electrodes at 12degC for 10-30 minutes. Electric current density was about 10 mA/cm 2 . The aluminium plate was then kept in boiling water for 10-30 minutes for sealing. The thickness of the aluminium oxide layer formed was about 1μm. The aluminium plate attached to a plate of suitable fissionable material, such as uranium or thorium, was irradiated with neutrons and set in a usual spark counter for fission track counting. One electrode was the aluminium plate and the other was an aluminized polyester sheet. Sparked pulses were counted with a usual scaler. The advantage of using spark counting with an aluminium oxide film for neutron monitoring is rapid measurement of neutron exposure, since chemical etching which is indispensable for spark counting with a polycarbonate detector film, is not needed. (H.K.)

  5. Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation

    Science.gov (United States)

    Lin, M. C.; Wang, G.; Guo, L. Q.; Qiao, L. J.; Volinsky, Alex A.

    2013-09-01

    Electro-mechanical coupling phenomenon in oxidation film on stainless steel has been discovered by using current-sensing atomic force microscopy, along with the I-V curves measurements. The oxidation films exhibit either ohmic, n-type, or p-type semiconductor properties, according to the obtained I-V curves. This technique allows characterizing oxidation films with high spatial resolution. Semiconductor properties of oxidation films must be considered as additional stress corrosion cracking mechanisms.

  6. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    International Nuclear Information System (INIS)

    Goubard, F.; Vidal, F.; Bazzi, R.; Tillement, O.; Chevrot, C.; Teyssie, D.

    2007-01-01

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd 2 O 3 . These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films

  7. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    Science.gov (United States)

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Surface and sub-surface thermal oxidation of thin ruthenium films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Kokke, S.; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low

  9. Electrochemical characterization of oxide film formed at high temperature on Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Geogy J., E-mail: gja@barc.gov.in [Materials Science Division, BARC, Mumbai 400 085 (India); Bhambroo, Rajan [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India); Kain, V. [Materials Science Division, BARC, Mumbai 400 085 (India); Shekhar, R. [CCCM, BARC, Hyderabad 500 062 (India); Dey, G.K. [Materials Science Division, BARC, Mumbai 400 085 (India); Raja, V.S. [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer GD-QMS studies of high temperature oxide film formed on Alloy 690. Black-Right-Pointing-Pointer Defect density reduced with increase in temperature. Black-Right-Pointing-Pointer Electrochemical behaviour of oxide film correlated to the Cr-content in oxide. - Abstract: High temperature passivation studies on Alloy 690 were carried out in lithiated water at 250 Degree-Sign C, 275 Degree-Sign C and 300 Degree-Sign C for 72 h. The passive films were characterized by glow discharge-quadrupole mass spectroscopy (GD-QMS) for compositional variation across the depth and micro laser Raman spectroscopy for oxide composition on the surface. The defect density in the oxide films was established from the Mott-Schottky analysis using electrochemical impedance spectroscopy. Electrochemical experiments at room temperature in chloride medium revealed best passivity behaviour by the oxide film formed at 300 Degree-Sign C for 72 h. The electrochemical studies were correlated to the chromium (and oxygen) content of the oxide films. Autoclaving at 300 Degree-Sign C resulted in the best passive film formation on Alloy 690 in lithiated water.

  10. Valence instabilities in cerium intermetallics

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1982-01-01

    The primary purpose of this investigation was to study the magnetic behaviour of cerium in intermetallic compounds, that show an IV behaviour, e.g. CeSn 3 . In the progress of the investigations, it became of interest to study the effect of changes in the lattice of the IV compound by substituting La or Y for Ce, thus constituting the Cesub(1-x)Lasub(x)Sn 3 and Cesub(1-x)Ysub(x)Sn 3 quasibinary systems. A second purpose was to examine the possibility of introducing instabilities in the valency of a trivalent intermetallic cerium compound: CeIn 3 , also by La and Y-substitutions in the lattice. Measurements on the resulting Cesub(1-x)Lasub(x)In 3 and Cesub(1-x)Ysub(x)In 3 quasibinaries are described. A third purpose was to study the (gradual) transition from a trivalent cerium compound into an IV cerium compound. This was done by examining the magnetic properties of the CeInsub(x)Snsub(3-x) and CePbsub(x)Snsub(3-x) systems. Finally a new possibility was investigated: that of the occurrence of IV behaviour in CeSi 2 , CeSi, and in CeGa 2 . (Auth.)

  11. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    International Nuclear Information System (INIS)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T.; McGlone, J.M.; Landau, N.P.; Wager, J.F.; Stickle, W.F.; Herman, G.S.

    2015-01-01

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni ( 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  12. CuOX thin films by direct oxidation of Cu films deposited by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    D. Santos-Cruz

    Full Text Available Thin films of Cu2O and CuO oxides were developed by direct oxidation of physical vapor deposited copper films in an open atmosphere by varying the temperature in the range between 250 and 400 °C. In this work, the influence of oxidation temperature on structural, optical and electrical properties of copper oxide films has been discussed. The characterization results revealed that at lower temperatures (<300 °C, it is feasible to obtained coper (I oxide whereas at temperatures higher than 300 °C, the copper (II oxide is formed. The band gap is found to vary in between 1.54 and 2.21 eV depending on the oxidation temperature. Both oxides present p-type electrical conductivity. The carrier concentration has been increased as a function of the oxidation temperature from 1.61 × 1012 at 250 °C to 6.8 × 1012 cm−3 at 400 °C. The mobility has attained its maximum of 34.5 cm2 V−1 s−1 at a temperature of 300 °C, and a minimum of 13.8 cm2 V−1 s−1 for 400 °C. Finally, the resistivity of copper oxide films decreases as a function of oxidation temperature from 5.4 × 106 to 2.4 × 105 Ω-cm at 250 and 400 °C, respectively. Keywords: PVD, Oxidizing annealed treatment, Non-toxic material

  13. Determination of silver and cerium in the liver and the kidney from a severely burned infant treated with silver sulfadiazine and cerium nitrate

    International Nuclear Information System (INIS)

    Hirakawa, Keiko

    1983-01-01

    Silver and cerium in the liver and the kidney from severely burned infant were analyzed by neutron activation method. The patient was treated topically with cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for 3 months. Then, the treatment with these drugs was stopped because o f abdominal distention. The patient died 1 month after the cessation of the treatment with these drugs. The tissue specimens, blank liver sample and reference standards were irradiated with TRIGA MARK II Reactor of Rikkyo University. About 1 month after the irradiation, the activities were measured with a Ge(Li) detector coupled to a 4096 channel pulse height analyzer. A large amount of silver was detected both in the liver and in the kidney and a trace of cerium only in the liver. A considerable amount of silver was detected in the liver and its quantity was about 1600 times more than that of normal livers reported by Hamilton, Minski and Cleary (1972 -- 73). Neither silver nor cerium were detected in the blank liver. These results suggest that prolonged topical chemotherapy of cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for the extensive burn injuries causes considerable absorption of silver and cerium into the liver and the kidney. (author)

  14. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  15. Thermodynamic Aspects of Gasification Derived Syngas Desulfurization, Removal of Hydrogen Halides and Regeneration of Spent Sorbents Based on La2O3/La2O2CO3 and Cerium Oxides.

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Leitner, J.; Havlica, Jaromír; Pohořelý, Michael; Brynda, Jiří; Šyc, Michal; Chyou, Y.-P.; Chen, P.-Ch.

    2017-01-01

    Roč. 197, JUN 1 (2017), s. 277-289 ISSN 0016-2361 R&D Projects: GA ČR GC14-09692J Institutional support: RVO:67985858 Keywords : cerium oxides * dehalogenation * thermodynamics Subject RIV: DI - Air Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.601, year: 2016

  16. Photoconduction in silicon rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Lopez, J A; Carrillo-Lopez, J; Flores-Gracia, F J; Garcia-Salgado, G [CIDS-ICUAP, Benemerita Universidad Autonoma de Puebla. Ed. 103 D and C, col. San Manuel, Puebla, Pue. Mexico 72570 (Mexico); Aceves-Mijares, M; Morales-Sanchez, A, E-mail: jluna@buap.siu.m, E-mail: jluna@inaoep.m [INAOE, Luis Enrique Erro No. 1, Apdo. 51, Tonantzintla, Puebla, Mexico 72000 (Mexico)

    2009-05-01

    Photoconduction of silicon rich oxide (SRO) thin films were studied by current-voltage (I-V) measurements, where ultraviolet (UV) and white (Vis) light illumination were applied. SRO thin films were deposited by low pressure chemical vapour deposition (LPCVD) technique, using SiH{sub 4} (silane) and N{sub 2}O (nitrous oxide) as reactive gases at 700 {sup 0}. The gas flow ratio, Ro = [N{sub 2}O]/[SiH{sub 4}] was used to control the silicon excess. The thickness and refractive index of the SRO films were 72.0 nm, 75.5 nm, 59.1 nm, 73.4 nm and 1.7, 1.5, 1.46, 1.45, corresponding to R{sub o} = 10, 20, 30 and 50, respectively. These results were obtained by null ellipsometry. Si nanoparticles (Si-nps) and defects within SRO films permit to obtain interesting photoelectric properties as a high photocurrent and photoconduction. These effects strongly depend on the silicon excess, thickness and structure type. Two different structures (Al/SRO/Si and Al/SRO/SRO/Si metal-oxide-semiconductor (MOS)-like structures) were fabricated and used as devices. The photocurrent in these structures is dominated by the generation of carriers due to the incident photon energies ({approx}3.0-1.6 eV and 5 eV). These structures showed large photoconductive response at room temperature. Therefore, these structures have potential applications in optoelectronics devices.

  17. Study of cerium doped magnetite (Fe3O4:Ce)/PMMA nanocomposites

    International Nuclear Information System (INIS)

    Padalia, Diwakar; Johri, U.C.; Zaidi, M.G.H.

    2012-01-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe 3 O 4 ) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe 3 O 4 ) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO 2 ) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature (T g ). The magnetic results suggest that coercivity (H C ) and squareness (M r /M s ) of the loop increases with increasing doping percent of cerium.

  18. Influence of oxidation state on the pH dependence of hydrous iridium oxide films

    International Nuclear Information System (INIS)

    Steegstra, Patrick; Ahlberg, Elisabet

    2012-01-01

    Many electrochemical reactions taking place in aqueous solution consume or produce protons. The pH in the diffusion layer can therefore be significantly altered during the reaction and there is a need for in situ pH measurements tracing this near surface pH. In the present paper the rotating ring disc technique was used to measure near surface pH changes during oxygen reduction, utilising hydrous iridium oxide as the pH sensing probe. Before such experiments a good understanding of the pH sensing properties of these films is required and the impact of the oxidation state of the film on the pH sensing properties was investigated as well as the influence of solution redox species. The pH sensitivity (depicted by dE/dpH) was found to depend on the average oxidation state of the film in a manner resembling the cyclic voltammetry response. In all cases the pH response is “supernernstian” with more than one proton per electron. The origin of this behaviour is discussed in the context of acid-base properties of the film and the existence of both hydrous and anhydrous oxide phases. The pH response depends also on the redox properties of the solution but can be optimised for various purposes by conditioning the film at different potentials. This was clearly illustrated by adding hydrogen peroxide, an intermediate in the oxygen reduction reaction, to the solution. It was shown that hydrous iridium oxide can be used as a reliable in situ pH sensor provided that care is taken to optimise the oxidation state of the film.

  19. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration

    Energy Technology Data Exchange (ETDEWEB)

    Cardillo, Dean [Institute for Superconducting and Electronic Materials, AIIM Facility, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2500 (Australia); Konstantinov, Konstantin, E-mail: konstan@uow.edu.au [Institute for Superconducting and Electronic Materials, AIIM Facility, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2500 (Australia); Devers, Thierry [Centre de Recherche sur la Matière Divisée, Institut de Physique, site de Chartres, Université d’Orléans (France)

    2013-11-15

    Highlights: • Possible application of cerium-doped α-hematite as ultraviolet filter. • Nanoparticles obtained through co-precipitation technique using various cerium doping levels followed by annealing. • Comprehensive materials characterisation utilizing XRD, DSC/TGA, STEM, UV–vis spectroscopy. • Increasing cerium content reduces particle sizing and alters morphology. • Solubility of cerium in hematite seen between 5 and 10% doping, 10% cerium doping greatly enhances attenuation in ultraviolet region and increases optical bandgap. - Abstract: Metal oxide nanoparticles have potential use in energy storage, electrode materials, as catalysts and in the emerging field of nanomedicine. Being able to accurately tailor the desirable properties of these nanoceramic materials, such as particle size, morphology and optical bandgap (E{sub g}) is integral in the feasibility of their use. In this study we investigate the altering of both the structure and physical properties through the doping of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with cerium at a range of concentrations, synthesised using a one-pot co-precipitation method. This extremely simple synthesis followed by thermal treatment results in stable Fe{sub 2−x}Ce{sub x}O{sub y} nanoceramics resulting from the burning of any unreacted precursors and transformation of goethite-cerium doped nanoparticle intermediate. The inclusion of Ce into the crystal lattice of these α-Fe{sub 2}O{sub 3} nanoparticles causes a significantly large reduction in mean crystalline size and alteration in particle morphology with increasing cerium content. Finally we report an increase optical semiconductor bandgap, along with a substantial increase in the ultraviolet attenuation found for a 10% Ce-doping concentration which shows the potential application of cerium-doped hematite nanocrystals to be used as a pigmented ultraviolet filter for cosmetic products.

  20. The role of polymer films on the oxidation of magnetite nanoparticles

    Science.gov (United States)

    Letti, C. J.; Paterno, L. G.; Pereira-da-Silva, M. A.; Morais, P. C.; Soler, M. A. G.

    2017-02-01

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe3O4-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe3O4-np/PSS)n with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe3O4-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe3O4-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe3O4-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite.

  1. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  2. The role of polymer films on the oxidation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Letti, C.J. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Paterno, L.G. [Universidade de Brasilia, Instituto de Quimica, 70910-000 Brasilia, DF (Brazil); Pereira-da-Silva, M.A. [Instituto de Fisica de São Carlos, USP, 13560-9700 São Carlos, SP (Brazil); Centro Universitario Central Paulista – UNICEP, 13563-470 São Carlos, SP (Brazil); Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Soler, M.A.G., E-mail: soler@unb.br [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil)

    2017-02-15

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe{sub 3}O{sub 4}-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe{sub 3}O{sub 4}-np/PSS){sub n} with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe{sub 3}O{sub 4}-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe{sub 3}O{sub 4}-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite. - Graphical abstract: Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films avoids the oxidation and phase transformation of nanosized magnetite. - Highlights: • (Fe{sub 3}O{sub 4}-np/PSS){sub n} nanofilms, with n=2 up to 25, where layer-by-layer assembled. • The influence of film architecture on the Fe{sub 3}O{sub 4}-np oxidation was investigated through Raman spectroscopy. • Encapsulation of Fe{sub 3}O{sub 4}-np by PSS showed to be very efficient to avoid the Fe{sub 3}O{sub 4}-np oxidation.

  3. Membrane assisted liquid-liquid extraction of cerium

    International Nuclear Information System (INIS)

    Soldenhoff, K.M.

    2000-02-01

    Membrane assisted liquid-liquid extraction of cerium was investigated, with emphasis placed on the study of the reaction chemistry and the kinetics of non-dispersive solvent extraction and stripping with microporous membranes. A bulk liquid membrane process was developed for the purification of cerium(IV) from sulfate solutions containing other rare earth elements. The cerium process was studied in both a flat sheet contained liquid membrane configuration and with hollow fibre contactors. Di-2-ethylhexyl phosphoric acid (DEHPA) was identified as a suitable extractant for cerium(IV) from sulfuric acid solution, with due consideration of factors such as extraction ability, resistance to degradation, solvent selectivity and potential for sulfate transfer into a strip solution. A detailed study of the extraction of cerium(IV) with DEHPA defined the extraction reaction chemistry. The Ce/DEHPA/sulfate system was also investigated with a flat sheet bulk liquid membrane configuration, using both sulfuric and hydrochloric acid as receiver solutions. These tests identified that hydrophobic membranes provide better mass transfer for extraction and hydrophilic membranes are better for stripping. The presence of an impurity, mono 2-ethylhexyl phosphoric acid (MEHPA), was found to have a dramatic accelerating effect on the rate of the chemical extraction reaction. This was attributed to its higher interfacial activity and population compared to DEHPA, and the fact that MEHPA was also found to be an active carrier for cerium(IV). The mass transfer rate of membrane assisted extraction and stripping of cerium, using hydrophobic and hydrophilic microporous membranes, respectively, was investigated using a modified Lewis-type cell. It was quantitatively demonstrated that the extraction process was mainly controlled by membrane diffusion and the stripping process was controlled by the chemical reaction rate, with membrane diffusion becoming important at low distribution coefficients

  4. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Goubard, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)]. E-mail: fabrice.goubard@u-cergy.fr; Vidal, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Bazzi, R. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Tillement, O. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Nano-H, 23 rue Royal, 69001 Lyon (France); Chevrot, C. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Teyssie, D. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)

    2007-10-15

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd{sub 2}O{sub 3}. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.

  5. An investigation of the use of cerium and polyhedral oligomeric silsesquioxanes for the protection of polymeric epoxy compounds in the low Earth orbit environment

    Science.gov (United States)

    Piness, Jessica Miriam

    with the epoxy-amine matrix. A sedimented layer of the most incompatible POSS moiety was observed at the bottom of bars at the highest loading level of 5 wt% POSS. It was concluded that POSS could form a sedimented layer in this epoxy during cure. Epoxy amine materials containing POSS derivatives were tested by exposure to atomic oxygen at NASA Glenn Research Center with each POSS derivative present in separate samples at 2.5 wt% loading levels. Mass loss did not decrease against an unfilled control and glassification was not observed, leading to the conclusion that POSS could not be effectively concentrated at a surface to reduce degradation given the methods used. Taking this into account, the study transitioned into seeking ways to integrate highly UV absorbent cerium compounds with POSS. This part of the study is reported in Chapter IV. It was anticipated that POSS with a polar pendant group would interact through intermolecular forces with cerium (IV) oxide and produce a suspension that could be cured at the surface of polymers. However, in every experiment, the cerium (IV) oxide was not dispersed. However, a homogeneous dispersion of a cerium-containing compound was achieved by combining trisilanol phenyl POSS with cerium (III) nitrate hexahydrate. NMR and mass spectrometry showed that the mixture of Cerium nitrate and trisilanol phenyl POSS did not result in the formation of a chemical compound but FTIR studies indicated the presence of hydrogen bonding between the POSS silanols and cerium-associated water. The resulting material was termed "CePOSS". CePOSS was more UV absorbent in the UVc region than POSS or other cerium compounds as measured by solution UV-vis spectroscopy. In addition, CePOSS could be mixed into a POSS-epoxy coating, after pre-blending with poly(ethylene glycol) POSS, to produce films that were essentially opaque in the UV region below a wavelength of about 300 nm, and transparent in the visible region above 300 nm. The discovery of a 'window

  6. Study of oxide/metal/oxide thin films for transparent electronics and solar cells applications by spectroscopic ellipsometry

    Directory of Open Access Journals (Sweden)

    Mihaela Girtan

    2017-05-01

    Full Text Available A comprehensive study of a class of Oxide/Metal/Oxide (Oxide = ITO, AZO, TiO2 and Bi2O3, Metal = Au thin films was done by correlating the spectrophotometric studies with the ellispometric models. Films were deposited by successive sputtering from metallic targets In:Sn, Zn:Al, Ti and Bi in reactive atmosphere (for the oxide films and respective inert atmosphere (for the metallic Au interlayer films on glass substrates. The measurements of optical constants n—the refractive index and k—the extinction coefficient, at different incident photon energies for single oxide films and also for the three layers films oxide/metal/oxide samples were made using the spectroscopic ellipsometry (SE technique. The ellipsometry modelling process was coupled with the recorded transmission spectra data of a double beam spectrophotometer and the best fitting parameters were obtained not only by fitting the n and k experimental data with the dispersion fitting curves as usual is practiced in the most reported data in literature, but also by comparing the calculated the transmission coefficient from ellipsometry with the experimental values obtained from direct spectrophotometry measurements. In this way the best dispersion model was deduced for each sample. Very good correlations were obtained for the other different thin films characteristics such as the films thickness, optical band gap and electrical resistivity obtained by other measurements and calculation techniques. The ellipsometric modelling, can hence give the possibility in the future to predict, by ellipsometric simulations, the proper device architecture in function of the preferred optical and electrical properties.

  7. Obtainment of cerium dioxide for use as spectrochemical standard

    International Nuclear Information System (INIS)

    Silva Queiroz, C.A. da; Hespanhol, E.C.B.; Abrao, A.

    1992-01-01

    This paper describes a simple method for cerium separation and purification. Cerium is previously precipitated with N H 3 /air/H 2 O 2 system in a mixed chlorides solution obtained from Brazilian monazite treatment. The cerium fraction as cerium chloride is run down throughout a strong cationic resin bed and then the rare earth impurities separation is done by elution of the resin with separation ammonium salt of EDTA. None retainer ion is used in the purification technique by ion exchange. (author)

  8. Selected cerium phase diagrams

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Verkade, M.E.

    1974-09-01

    A compilation of cerium alloy phase equilibria data based on the most reliable information available is presented. The binary systems selected are those of cerium with each of the following twenty nine elements which might be commonly found in steels: Al, Sb, As, Bi, Ca, C, Cr, Co, Nb, Cu, Fe, Pb, Mg, Mn, Mo, Ni, N, O, P, Se, Si, Ag, S, Te, Sn, Ti, W, and Zn. A brief discussion, a summary of crystal lattice parameters where applicable, and a list of references is included for each element surveyed. (U.S.)

  9. Thermodynamic Aspects of Gasification Derived Syngas Desulfurization, Removal of Hydrogen Halides and Regeneration of Spent Sorbents Based on La2O3/La2O2CO3 and Cerium Oxides.

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Leitner, J.; Havlica, Jaromír; Pohořelý, Michael; Brynda, Jiří; Šyc, Michal; Chyou, Y.-P.; Chen, P.-Ch.

    2017-01-01

    Roč. 197, JUN 1 (2017), s. 277-289 ISSN 0016-2361 R&D Projects: GA ČR GC14-09692J Institutional support: RVO:67985858 Keywords : cerium oxides * dehalogenation * thermodynamic s Subject RIV: DI - Air Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.601, year: 2016

  10. Valence control of cobalt oxide thin films by annealing atmosphere

    International Nuclear Information System (INIS)

    Wang Shijing; Zhang Boping; Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping

    2011-01-01

    The cobalt oxide (CoO and Co 3 O 4 ) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH 3 OCH 2 CH 2 OH and Co(NO 3 ) 2 .6H 2 O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co 3 O 4 thin film was obtained by annealing in air at 300-600, and N 2 at 300, and transferred to CoO thin film by raising annealing temperature in N 2 . The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  11. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    International Nuclear Information System (INIS)

    Han, Jianjun; Lu, Haifeng; Zhang, Jie; Feng, Shengyu

    2012-01-01

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (–CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: ► Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. ► Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. ► These materials show good irradiation resistance and mechanical properties at same time.

  12. Impedance measurements on oxide films on aluminium obtained by pulsed tensions

    Energy Technology Data Exchange (ETDEWEB)

    Belmokre, K. [Lab. of Applied Chemical, Dept. of Chemie, Skikda University, BP 26 - 21000 Skikda (Algeria); Azzouz, N. [Dept. of Industrial Chemie, Jijel University Center, 18000 Jijel (Algeria); Hannani, A. [Lab. Electrochem. Corros. Institute of Chemical USTHB Alger (Algeria); Pagetti, J. [Lab. LCMI, Franche-Comte - University UFR Sciences and Technical 16, Gray street - 25030 Besancon Cedex (France)

    2003-01-01

    We have performed this study on oxide films sealed or not in boiling water. The films are first obtained on type 1050 A aluminium substrate by pulsed tensions anodizing technique, in a sulfuric acid solution. Afterwards the, Electrochemical Impedance Spectroscopy (EIS) is employed to appreciate the films behaviour in a neutral solution of 3.5% K{sub 2}SO{sub 4}, in which the interface processes interest only the ageing phenomenon of the oxide films and not their corrosion. We have also attempted a correlation between pulse parameters of anodization and the electrical parameters characterizing these films. The sealing influence on ageing has been studied as well. For all films, ageing is appreciated using impedance diagrams evolution versus time. The results show: - the existence of two capacitive loops confirming the presence of two oxide layers characteristic of oxide films obtained in a sulfuric acid medium. The first loop, at high frequencies, is related to the external porous layer and the second one, at lower frequencies, is related to the internal barrier layer. - the thickness of the barrier layer varies between 25 and 40 nm in relation with the electrical pulse parameters. - the sealing acts favorably against anodic oxide films ageing. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  13. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  14. Electrodeposited porous and amorphous copper oxide film for application in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Patake, V.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, (M.S.) (India); Joshi, S.S. [Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, (M.S.) (India); Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: l_chandrakant@yahoo.com; Joo, Oh-Shim [Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: joocat@kist.rre.kr

    2009-03-15

    In present study, the porous amorphous copper oxide thin films have been deposited from alkaline sulphate bath. The cathodic electrodeposition method was employed to deposit copper oxide film at room temperature on stainless steel substrate. Their structural and surface morphological properties were investigated by means of X-ray diffraction (XRD) and scanning electron micrograph (SEM), respectively. To propose this as a new material for possible application in the supercapacitor, its electrochemical properties have been studied in aqueous 1 M Na{sub 2}SO{sub 4} electrolyte using cyclic voltammetry. The structural analysis from XRD pattern showed the formation of amorphous copper oxide film on the substrate. The surface morphological studies from scanning electron micrographs revealed the formation of porous cauliflower-like copper oxide film. The cyclic voltammetric curves showed symmetric nature and increase in capacitance with increase in film thickness. The maximum specific capacitance of 36 F g{sup -1} was exhibited for the 0.6959 mg cm{sup -2} film thickness. This shows that low-cost copper oxide electrode will be a potential application in supercapacitor.

  15. Characterization of zirconium alloy oxidation films by alternating current impedance

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1984-01-01

    Kinetics of zirconium alloy oxidation are highly nonlinear. The results of electrochemical measurements and electron microscopy support the existence of porosity in oxide films formed on zirconium alloys in high temperature aqueous environments. Analytical treatment is presented relating oxidation kinetics to the thickness and distribution of nonporous elements within the oxide. This analysis illustrates that both the level and distribution of porosity within the oxide factor into oxidation kinetics. The barrier layer model can provide a basis for predicting the effect of environmental changes on oxidation rate. In addition, it demonstrates the need for further research into porosity generation mechanisms in oxide films

  16. Characterization of zirconium alloy oxidation films by alternating current impedance

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1983-11-01

    Kinetics of zirocnium alloy oxidation are highly nonlinear. The results of electrochemical measurements and electron microscopy support the existence of porosity in oxide films formed on zirconium alloys in high temperature aqueous environments. Analytical treatment is presented relating oxidation kinetics to the thickness and distribution of nonporous elements within the oxide. This analysis illustrates that both the level and distribution of porosity within the oxide factor into oxidation kinetics. The barrier layer model can provide a basis for predicting the effect of environmental changes on oxidation rate. In addition, it demonstrates the need for further research into porosity generation mechanisms in oxide films

  17. On the mechanism of self-deceleration of the thin oxide film growth

    CERN Document Server

    Mukhambetov, D G

    2002-01-01

    The objective of this work was to investigate the kinetics of the two-phase oxide film growth on the alpha-Fe surface at temperatures of 650-750 K. We experimentally determined that the film thickness (h)-time oxidation (tau) relationship in the range denoted above is a logarithmic function, whereas Cabrera and Mott's theory gives a square law of film growth. In our work, analytical treatment of experimental data was made based on this theory, but we propose that self-deceleration of the film growth is caused not by attenuation of the electric intensity in the film because of an increase of h but by the shielding influence of the space charge of diffusing ions and electrons in that oxide film. With that purpose in view, the Debye shielding distance for plasma substance state in the oxide film was taken into consideration. The logarithmic law of oxide film growth was derived. Estimated calculations of this law's parameters were made that quantitatively correspond with literature data. The results obtained were...

  18. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation

    International Nuclear Information System (INIS)

    Yang, P.; Leng, Y.X.; Zhao, A.S.; Zhou, H.F.; Xu, L.X.; Hong, S.; Huang, N.

    2006-01-01

    Our recent investigation suggested that Ti-O thin film could be a newly developed antithrombotic material and its thromboresistance could be related to its physical properties of wide gap semiconductor. In this work, titanium oxide film was modified by phosphorus ion implantation and succeeding vacuum annealing. RBS were used to investigate phosphorus distribution profile. Contact angle test results show that phosphorus-doped titanium oxide film becomes more hydrophilic after higher temperature annealing, while its electric conductivity increases. Antithrombotic property of phosphorus-doped titanium oxide thin films was examined by clotting time and platelet adhesion tests. The results suggest that phosphorus doping is an effective way to improve the bloodcompatibility of titanium oxide film, and it is related to the changes of electron structure and surface properties caused by phosphorus doping

  19. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    Science.gov (United States)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  20. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  1. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    Science.gov (United States)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.

  2. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...... with pH values in the range from pH 2 to 11 have generally given etch rates below 0.04 Å h-l. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex situ...... annealing O2 in the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallization lines are hard to cover. Sputtered tantalum oxide...

  3. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p......H values in the range from pH 2-11 have generally given etch rates below 0.04 Å/h. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex-situ annealing in O2...... the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallisation lines are hard to cover. Sputtered tantalum oxide exhibits high...

  4. Aluminum oxide film thickness and emittance

    International Nuclear Information System (INIS)

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55 degrees C) moderator for about a year. The average moderator temperature was assumed to be 30 degrees C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 μm ± 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 μm ± 11%. Total hemispherical emittance is predicted to be 0.69 at 96 degrees C, decreasing to 0.45 at 600 degrees C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values

  5. Growth and surface characterization of sputter-deposited molybdenum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle V.; Atuchin, Victor V.; Kesler, V. G.; Kochubey, V. A.; Pokrovsky, L. D.; Shutthanandan, V.; Becker, U.; Ewing, Rodney C.

    2007-04-15

    Molybdenum oxide thin films were produced by magnetron sputtering using a molybdenum (Mo) target. The sputtering was performed in a reactive atmosphere of argon-oxygen gas mixture under varying conditions of substrate temperature (Ts) and oxygen partial pressure (pO2). The effect of Ts and pO2 on the growth and microstructure of molybdenum oxide films was examined in detail using reflection high-energy electron diffraction (RHEED), Rutherford backscattering spectrometry (RBS), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) measurements. The analyses indicate that the effect of Ts and pO2 on the microstructure and phase of the grown molybdenum oxide thin films is remarkable. RHEED and RBS results indicate that the films grown at 445 *C under 62.3% O2 pressure were stoichiometric and polycrystalline MoO3. Films grown at lower pO2 were nonstoichiometric MoOx films with the presence of secondary phase. The microstructure of the grown Mo oxide films is discussed and conditions were optimized to produce phase pure, stoichiometric, and highly textured polycrystalline MoO3 films.

  6. Two-phase titration of cerium(3) by permanganate

    International Nuclear Information System (INIS)

    Lazarev, A.I.; Lazareva, V.I.; Gerko, V.V.

    1986-01-01

    Reaction of cerium (3) and permanganate was investigated at a room temperature depending on PH, concentrations of pyrophosphate, cerium (3), tetraphenylphosphonium and foreign compounds. Selective method of two-phase titration determination of cerium (3) by permanganate without using silver compounds, preliminary separation of chlorides, nitrates, was developed. The method was tested using alloys based on iron, nickel, REE, copper, cobalt (S r ≤0.008). Correctness is proved with method of standard additives

  7. Photoconductivity of reduced graphene oxide and graphene oxide composite films

    International Nuclear Information System (INIS)

    Liang, Haifeng; Ren, Wen; Su, Junhong; Cai, Changlong

    2012-01-01

    A photoconductive device was fabricated by patterning magnetron sputtered Pt/Ti electrode and Reduced Graphene Oxide (RGO)/Graphene Oxide (GO) composite films with a sensitive area of 10 × 20 mm 2 . The surface morphology of as-deposited GO films was observed by scanning electronic microscopy, optical microscopy and atomic force microscopy, respectively. The absorption properties and chemical structure of RGO/GO composite films were obtained using a spectrophotometer and an X-ray photoelectron spectroscopy. The photoconductive properties of the system were characterized under white light irradiation with varied output power and biased voltage. The results show that the resistance decreased from 210 kΩ to 11.5 kΩ as the irradiation power increased from 0.0008 mW to 625 mW. The calculated responsiveness of white light reached 0.53 × 10 −3 A/W. Furthermore, the device presents a high photo-conductivity response and displays a photovoltaic response with an open circuit voltage from 0.017 V to 0.014 V with irradiation power. The sources of charge are attributed to efficient excitation dissociation at the interface of the RGO/GO composite film, coupled with cross-surface charge percolation.

  8. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jianjun [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Lu, Haifeng, E-mail: lhf@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Jie [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Feng, Shengyu, E-mail: fsy@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2012-09-14

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (-CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: Black-Right-Pointing-Pointer Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. Black-Right-Pointing-Pointer Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. Black-Right-Pointing-Pointer These materials show good irradiation resistance and mechanical properties at same time.

  9. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications.

    Science.gov (United States)

    Gunduz, O; Gode, C; Ahmad, Z; Gökçe, H; Yetmez, M; Kalkandelen, C; Sahin, Y M; Oktar, F N

    2014-07-01

    The fabrication and characterization of bovine hydroxyapatite (BHA) and cerium oxide (CeO2) composites are presented. CeO2 (at varying concentrations 1, 5 and 10wt%) were added to calcinated BHA powder. The resulting mixtures were shaped into green cylindrical samples by powder pressing (350MPa) followed by sintering in air (1000-1300°C for 4h). Density, Vickers microhardness (HV), compression strength, scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were performed on the products. The sintering behavior, microstructural characteristics and mechanical properties were evaluated. Differences in the sintering temperature (for 1wt% CeO2 composites) between 1200 and 1300°C, show a 3.3% increase in the microhardness (564 and 582.75HV, respectively). Composites prepared at 1300°C demonstrate the greatest compression strength with comparable results for 5 and 10wt% CeO2 content (106 and 107MPa) which are significantly better than those for 1wt% and those that do not include any CeO2 (90 and below 60MPa, respectively). The results obtained suggest optimal parameters to be used in preparation of BHA and CeO2 composites, while also highlighting the potential of such materials in several biomedical engineering applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  11. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  12. Valence control of cobalt oxide thin films by annealing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shijing [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhang Boping, E-mail: bpzhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China)

    2011-02-01

    The cobalt oxide (CoO and Co{sub 3}O{sub 4}) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH{sub 3}OCH{sub 2}CH{sub 2}OH and Co(NO{sub 3}){sub 2}.6H{sub 2}O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co{sub 3}O{sub 4} thin film was obtained by annealing in air at 300-600, and N{sub 2} at 300, and transferred to CoO thin film by raising annealing temperature in N{sub 2}. The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  13. Spark counting technique of alpha tracks on an aluminium oxide film

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Kawai, Hiroshi

    1984-01-01

    We have tried to use aluminium oxide film as a neutron detector film with a spark counter for neutron monitoring in the mixed field of neutron and gamma-rays near a reactor. The merits of this method are that (1) aluminium oxide is good electric insulator, (2) any desired thickness of the film can be prepared, (3) chemical etching of the thin film can be dispensed with. The relation between spark counts and numbers of alpha-particles which entered the aluminium oxide film 1 μm thick was linear in the range of 10 5 -10 7 alpha-particles. The sensitivity(ratio of the spark counts to irradiated numbers of alpha-particles) was approximately 10 -3 . (author)

  14. Intrinsic stress of bismuth oxide thin films: effect of vapour chopping and air ageing

    International Nuclear Information System (INIS)

    Patil, R B; Puri, R K; Puri, V

    2008-01-01

    Bismuth oxide thin films of thickness 1000 A 0 have been prepared by thermal oxidation (in air) of vacuum evaporated bismuth thin films (on glass substrate) at different oxidation temperatures and duration. Both the vapour chopped and nonchopped bismuth oxide thin films showed polycrystalline and polymorphic structure. The monoclinic bismuth oxide was found to be predominant in both the cases. The effect of vapour chopping and air exposure for 40 days on the intrinsic stress of bismuth oxide thin films has been studied. The vapour chopped films showed low (3.92 - 4.80 x 10 9 N/m 2 ) intrinsic stress than those of nonchopped bismuth oxide thin films (5.77 - 6.74 x 10 9 N/m 2 ). Intrinsic stress was found to increase due to air ageing. The effect of air ageing on the vapour chopped films was found low. The vapour chopped films showed higher packing density. Higher the packing density, lower the film will age. The process of chopping vapour flow creates films with less inhomogenety i.e. a low concentration of flaws and non-planar defects which results in lower intrinsic stress

  15. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Boshui, Chen, E-mail: boshuichen@163.com; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-30

    Graphical abstract: - Highlights: • Monodispersed stearic acid-capped cerium borate composite nanoparticles were prepared by hydrothermal method. Their morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics were also characterized. • The surface-capped cerium borate nanoparticles exhibited excellent dispersing stability in rapeseed oil. As new lubricating additives, they were also outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil in biodegradable rapeseed oil. The results presented in this paper would be of important significance for developing green lubricants and lubricant additives. • The prominent tribological performances of SA/CeBO{sub 3} in rapeseed oil were investigated and attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species on the tribo-surfaces. - Abstract: Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO{sub 3}, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO{sub 3} were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO{sub 3} as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO{sub 3} were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO{sub 3} nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent

  16. Ferroelectric properties of Bi3.25Ce0.75Ti3O12 thin films prepared by a liquid source misted chemical deposition

    International Nuclear Information System (INIS)

    Jeon, M.K.; Chung, H.J.; Kim, K.W.; Oh, K.S.; Woo, S.I.

    2005-01-01

    Cerium-substituted bismuth titanate (Bi 3.25 Ce 0.75 Ti 3 O 12 (BCT)) films were deposited on the Pt(111)/SiO 2 /Si(100) substrates by a liquid source misted chemical deposition technique. This film showed X-ray diffraction patterns that crystallization along the (006) direction was suppressed and did not contain any other oxides. The remnant polarization of this film increased with increase in annealing temperature. The 2P r and 2E c values of the BCT film annealed at 700 deg. C were 19.72 μC/cm 2 and 357 kV/cm, respectively. 2P r value of this film decreased by less than 5% of the initial value after 7 x 10 9 read/write switching cycles at a frequency of 1 MHz

  17. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  18. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    International Nuclear Information System (INIS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-01-01

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  19. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  20. The iron and cerium oxide influence on the electric conductivity and the corrosion resistance of anodized aluminium; A influencia do ferro e do oxido de cerio sobre a condutividade eletrica e a resistencia a corrosao do aluminio anodizado

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Kellie Provazi de

    2006-07-01

    The influence of different treatments on the aluminum system covered with aluminum oxide is investigated. The aluminum anodization in sulphuric media and in mixed sulphuric and phosphoric media was used to alter the corrosion resistance, thickness, coverage degree and microhardness of the anodic oxide. Iron electrodeposition inside the anodic oxide was used to change its electric conductivity and corrosion resistance. Direct and pulsed current were used for iron electrodeposition and the Fe(SO{sub 4}){sub 2}(NH{sub 4}){sub 2}.6H{sub 2}O electrolyte composition was changed with the addition of boric and ascorbic acids. To the sealing treatment the CeCl{sub 3} composition was varied. The energy dispersive x-ray (EDS), the x-ray fluorescence spectroscopy (FRX) and the morphologic analysis by scanning electronic microscopy (SEM) allowed to verify that, the pulsed current increase the iron content inside the anodic layer and that the use of the additives inhibits the iron oxidation. The chronopotentiometric curves obtained during iron electrodeposition indicated that the boric and ascorbic acids mixture increased the electrodeposition process efficiency. The electrochemical impedance spectroscopy (EIE), the Vickers (Hv) microhardness measurements and morphologic analysis evidenced that the sealing treatment improves the corrosion resistance of the anodic film modified with iron. The electrical impedance (EI) technique allowed to prove the electric conductivity increase of the anodized aluminum with iron electrodeposited even after the cerium low concentration treatment. Iron nanowires were prepared by using the anodic oxide pores as template. (author)

  1. EXAFS and XANES analysis of plutonium and cerium edges from titanate ceramics for fissile materials disposal

    International Nuclear Information System (INIS)

    Fortner, J. A.; Kropf, A. J.; Bakel, A. J.; Hash, M. C.; Aase, S. B.; Buck, E. C.; Chamerlain, D. B.

    1999-01-01

    We report x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra from the plutonium L III edge and XANES from the cerium L II edge in prototype titanate ceramic hosts. The titanate ceramics studied are based upon the hafnium-pyrochlore and zirconolite mineral structures and will serve as an immobilization host for surplus fissile materials, containing as much as 10 weight % fissile plutonium and 20 weight % (natural or depleted) uranium. Three ceramic formulations were studied: one employed cerium as a ''surrogate'' element, replacing both plutonium and uranium in the ceramic matrix, another formulation contained plutonium in a ''baseline'' ceramic formulation, and a third contained plutonium in a formulation representing a high-impurity plutonium stream. The cerium XANES from the surrogate ceramic clearly indicates a mixed III-IV oxidation state for the cerium. In contrast, XANES analysis of the two plutonium-bearing ceramics shows that the plutonium is present almost entirely as Pu(IV) and occupies the calcium site in the zirconolite and pyrochlore phases. The plutonium EXAFS real-space structure shows a strong second-shell peak, clearly distinct from that of PuO 2 , with remarkably little difference in the plutonium crystal chemistry indicated between the baseline and high-impurity formulations

  2. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss liver after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Directory of Open Access Journals (Sweden)

    Ana Cristina Nunes

    2015-12-01

    Full Text Available At present cerium oxide nanoparticles (CeO2 NP have numerous applications ranging from industry to the household, leading to its wide distribution namely in the aquatic environment. The hereby study aimed to assess the toxic effects of CeO2 NPs in Oncorhynchus mykiss liver following an acute exposure (96h to three different concentrations (0.25, 2.5 and 25 mg/L in terms of the genotoxicity (comet assay, oxidative stress response (Catalase CAT; Glutathione S-Transferases GSTs; Thiobarbituric Acid Reactive Substances TBARS and histopathology. CeO2 NP exposure resulted in genotoxic damage in all exposure treatments, inhibition of CAT in the highest concentration and histopathological changes in all exposure concentrations with predominance of progressive and circulatory alterations. However TBARS and GSTs showed no significant differences comparatively to the control (unexposed group. The results suggest that CeO2 NP are able to cause genotoxicity, biochemical impairment and histological alterations in the liver of rainbow trout.

  3. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    Science.gov (United States)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  4. Bordoni relaxation and magnetic transformation in cerium and cerium-lanthanum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Postnikov, V S; Polner, G L; Sharshakov, I M

    1975-11-01

    The internal friction in pure cerium and cerium-base alloys with 2.5 and 12 weight percent of lanthanum added at temperature ranging from 4.2 deg up to 77/sup 0/K is described. Amplitude-independent internal friction has been measured with an inverse torsion pendulum with a specimen oscillation frequency of 1-30 hz in vacuum not less than 1.10/sup -5/ torr. A temperature of the specimen has been determined with a capacitance-type sensor and a gas gage. A curve showing the dependence of internal friction upon a temperature of pure cerium has two distinct peaks; the first at 12.5/sup 0/K, the second at 45/sup 0/K. The 12.5/sup 0/K peak is accounted for by a transition of antiferromagnetic ..beta..-Ce into a paramagnetic state. The 45/sup 0/K peak is a Bordoni maximum. The paper describes an influence of additions, specimen oscillation frequency variations, deformation and annealing upon the peak behavor. Added lanthanum reduces not only a peak temperature but a height as well. Studies of the 45/sup 0/K peak have shown that its temperature location depends upon the specimen oscillation frequency. As the frequency increases the peak tends to a range of high temperatures which confirms its relaxation nature.

  5. Growth and surface characterization of sputter-deposited molybdenum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, C.V. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: ramanacv@umich.edu; Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Technical Centre, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kochubey, V.A. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pokrovsky, L.D. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Shutthanandan, V. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Becker, U. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ewing, R.C. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2007-04-15

    Molybdenum oxide thin films were produced by magnetron sputtering using a molybdenum (Mo) target. The sputtering was performed in a reactive atmosphere of an argon-oxygen gas mixture under varying conditions of substrate temperature (T {sub s}) and oxygen partial pressure (pO{sub 2}). The effect of T {sub s} and pO{sub 2} on the growth and microstructure of molybdenum oxide films was examined in detail using reflection high-energy electron diffraction (RHEED), Rutherford backscattering spectrometry (RBS), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) measurements. The analyses indicate that the effect of T {sub s} and pO{sub 2} on the microstructure and phase of the grown molybdenum oxide thin films is remarkable. RHEED and RBS results indicate that the films grown at 445 deg. C under 62.3% O{sub 2} pressure were stoichiometric and polycrystalline MoO{sub 3}. Films grown at lower pO{sub 2} were non-stoichiometric MoO {sub x} films with the presence of secondary phase. The microstructure of the grown Mo oxide films is discussed and conditions were optimized to produce phase pure, stoichiometric, and highly textured polycrystalline MoO{sub 3} films.

  6. Native oxidation of ultra high purity Cu bulk and thin films

    International Nuclear Information System (INIS)

    Iijima, J.; Lim, J.-W.; Hong, S.-H.; Suzuki, S.; Mimura, K.; Isshiki, M.

    2006-01-01

    The effect of microstructure and purity on the native oxidation of Cu was studied by using angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and spectroscopic ellipsometry (SE). A high quality copper film prepared by ion beam deposition under a substrate bias voltage of -50 V (IBD Cu film at V s = -50 V) showed an oxidation resistance as high as an ultra high purity copper (UHP Cu) bulk, whereas a Cu film deposited without substrate bias voltage (IBD Cu film at V s = 0 V) showed lower oxidation resistance. The growth of Cu 2 O layer on the UHP Cu bulk and both types of the films obeyed in principle a logarithmic rate law. However, the growth of oxide layer on the IBD Cu films at V s = 0 and -50 V deviated upward from the logarithmic rate law after the exposure time of 320 and 800 h, respectively. The deviation from the logarithmic law is due to the formation of CuO on the Cu 2 O layer after a critical time

  7. Dissolution properties of cerium dibutylphosphate corrosion inhibitors

    NARCIS (Netherlands)

    Soestbergen, van M.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The corrosion inhibitor cerium dibutylphosphate, Ce(dbp)3, prevents corrosion by cerium and dbp deposition at the alkaline cathode and acidic anode respectively. The pH dependent Ce(dbp)3 solubility seems to play an essential role in the inhibition degree. We found that Ce(dbp)3 scarcely dissolves

  8. The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation

    Science.gov (United States)

    Awad, M. A.; Raaif, M.

    2018-05-01

    Nanoparticles of TiO2 were successfully prepared from pre-sputtered Ti films using the controlled thermal oxidation. The effect of oxidation temperature on structural, morphological and optical properties in addition to photocatalysis activity of the sputtered films was tested and explained. Analysis of XRD and EDAX elucidated the enhancement in crystallization and oxygen content with the increase of oxidation temperature. SEM depicted the formation of very fine nanoparticles with no specific border on the films oxidized at 550 and 600 °C, whilst crystallites with larger size of approximately from 16 to 23 nm have been observed for the film oxidized at 650 °C. Both optical transmission and refractive index were increased with increasing the oxidation temperature. A red shift in the absorption edge was obtained for the films oxidized at 650 °C compared to that oxidized at 600 °C. The photocatalysis tests demonstrated the priority of 600 °C nanoparticle films to decompose methyl orange (MO) more than 650 °C treated film.

  9. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  10. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P., E-mail: phorak@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Bejsovec, V.; Vacik, J.; Lavrentiev, V. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Vrnata, M. [Department of Physics and Measurements, The University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Kormunda, M. [Department of Physics, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Danis, S. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2016-12-15

    Highlights: • A rapid oxidation process of thin copper films. • Sheet resistance up to 10{sup 9} Ω/◊. • Mixed oxide phase at 200 °C with significant hydroxide presence. • Gas sensing response to 1000 ppm of hydrogen and methanol vapours. • Increased sensitivity with Pd and Au catalyst to hydrogen and methanol, respectively. - Abstract: Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C–600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C–600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu{sub 2}O phase was identified. However, the oxidation at 200 °C led to a more complicated composition − in the depth Cu{sub 2}O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH){sub 2}. A limited amount of Cu{sub 2}O was also found in samples annealed at 600 °C. The sheet resistance R{sub S} of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing R{sub S} was measured in the range 2.64 MΩ/□–2.45 GΩ/□. The highest R{sub S} values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the {sup 16}O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed

  11. Strain-induced phenomenon in complex oxide thin films

    Science.gov (United States)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  12. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  13. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    International Nuclear Information System (INIS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn 3 O 4 , corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells

  14. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    International Nuclear Information System (INIS)

    Ma, Jane; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M.; Demokritou, Philip; Castranova, Vincent

    2015-01-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO 2 ) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO 2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO 2 or CeO 2 coated with a nano layer of amorphous SiO 2 (aSiO 2 /CeO 2 ) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO 2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO 2 but not aSiO 2 /CeO 2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO 2 (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO 2 coating significantly reduced CeO 2 -induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO 2 /CeO 2 -exposed lungs up to 3 days after exposure, suggesting that aSiO 2 dissolved off the CeO 2 core, and some of the CeO 2 was transformed to CePO 4 with time. These results demonstrate that aSiO 2 coating reduce CeO 2 -induced inflammation, phospholipidosis and fibrosis. - Highlights: • Both CeO 2 and aSiO 2 /CeO 2 particles were detected in the respective particle-exposed lungs. • The

  15. Modification of oxide films by ion implantation: TiO2-films modified by Ti+ and O+ as example

    International Nuclear Information System (INIS)

    Schultze, J.W.; Elfenthal, L.; Leitner, K.; Meyer, O.

    1988-01-01

    Oxide films can be modified by ion implantation. Changes in the electrochemical properties of the films are due to the deposition profile of the implanted ion, ie doping and stoichiometric changes, as well as to the radiation damage. The latter is due to the formation of Frenkel defects and at high concentrations to a complete amorphization of the oxide film. TiOsub(x)-films with 1 + - and O + -ions into anodic oxide films on titanium. The electrode capacity shows always the behaviour of an n-type semiconductor with an almost constant flatband potential but a strong maximum donor concentration at about 3% Ti + concentration. Oxygen implantation, on the other hand, causes a small increase of donor concentration only at high concentration of O + . Electron transfer reactions show strong modifications of the electronic behaviour of the oxide film with a maximum again at 3% titanium. Photocurrent spectra prove the increasing amorphization and show interband states 2.6 eV above the VB or below the CB. During repassivation measurements at various potentials different defects formed by Ti + - and O + -implantation become mobile. A tentative model of the band structure is constructed which takes into account the interband states due to localised Ti + - and O + -ions. The modification of ion implanted oxide films is compared with the effects of other preparation techniques. (author)

  16. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane Y.C., E-mail: jym1@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Ma, Joseph K. [School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Castranova, Vincent [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States)

    2014-07-15

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO{sub 2}) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO{sub 2} on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO{sub 2} and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO{sub 2} induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO{sub 2} and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO{sub 2}, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO{sub 2} were significantly larger than CeO{sub 2} or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO{sub 2} reflects the combination of DEP-exposure plus CeO{sub 2}-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO{sub 2} induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO{sub 2} in the combined exposure. Using CeO{sub 2} as diesel fuel catalyst may cause health concerns. - Highlights: • DEP induced acute lung inflammation and switched immune response from Th1 to Th2. • DEP induced lung granulomas were not affected by the presence of CeO{sub 2}. • CeO{sub 2} induced sustained lung

  17. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  18. Swelling of a Zirconium Oxide Film

    International Nuclear Information System (INIS)

    Henderson, Mark; Hawley, Adrian; White, John; Rennie, Adrian

    2005-01-01

    Full text: The structural changes that cause the change in the interlayer spacing of a surfactanttemplated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 Aangstroem on a lattice parameter of about 36 Aangstroem. The (001) and (002) diffraction peaks positions, widths and areas of a swollen film were then monitored by neutron diffraction as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals. (authors)

  19. Films of double oxides of zirconium and iron

    International Nuclear Information System (INIS)

    Kozik, V.V.; Borilo, L.P.; Shul'pekov, A.M.

    2000-01-01

    Films of double oxides of zirconium and iron were prepared by the method of precipitation from film-forming alcohol solutions of zirconium oxychloride and iron chloride with subsequent thermal treatment. Using the methods of X-ray phase and differential thermal analyses, conductometry and optical spectroscopy, basic chemical processes occurring in the film-forming solutions and during thermal treatment are studied alongside with phase composition and optical characteristics of the films prepared. The composition-property diagrams of the given system in a thin-film state are plotted [ru

  20. Oxidation behaviour of Ti2AIN films composed mainly of nanolaminated MAX phase.

    Science.gov (United States)

    Wang, Q M; Garkas, W; Renteria, A Flores; Leyens, C; Kim, K H

    2011-10-01

    In this paper, we reported the oxidation behaviour of Ti2AIN films on polycrystalline Al2O3 substrates. The Ti2AIN films composed mainly of nanolaminated MAX phase was obtained by first depositing Ti-Al-N films using reactive sputtering of two elemental Ti and Al targets in Ar/N2 atmosphere and subsequent vacuum annealing at 800 degrees C for 1 h. The Ti2AIN films exhibited excellent oxidation resistance and thermal stability at 600-900 degrees C in air. Very low mass gain was observed. At low temperature (600 degrees C), no oxide crystals were observed on film surface. Blade-like Theta-Al2O3 fine crystals formed on film surfaces at 700-800 degrees C. At high temperature (900 degrees C), firstly Theta-Al2O3 formed on film surface and then transformed into alpha-Al2O3. At 700-900 degrees C, a continuous Al2O3 layer formed on Ti2AIN films surface, acting as diffusion barrier preventing further oxidation attack. The mechanism of the excellent oxidation resistance of Ti2AIN films was discussed based on the experimental results.

  1. Preparation and utilization of metal oxide fine powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Soo; Jang, Hee Dong; Lim, Young Woong; Kim, Sung Don; Lee, Hi Sun; Lee, Hoo In; Kim, Chul Joo; Shim, Gun Joo; Jang, Dae Kyu [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Metal oxide fine powders finds many applications in industry as new materials. It is very much necessary for the development of such powders to improve the domestic industry. The purpose of present research is to develop a process for the preparation and utilization of metal oxide fine powder. This project is consisted of two main subjects. (1) Production of ultrafine metal oxide powder: Ultrafine metal oxide powder is defined as a metal oxide powder of less than 100 nanometer in particle size. Experiments for the control of particle size and distributions in the various reaction system and compared with results of (2 nd year research). Various reaction systems were adopted for the development of feasible process. Ultrafine particles could be prepared even higher concentration of TiCl{sub 4} and lower gas flowrate compared to TiCl{sub 4}-O{sub 2} system in the TiCl{sub 4}-Air-H{sub 2}O system. Ultrafine Al{sub 2}O{sub 3} powders also prepared with the change of concentration and gas flowrate. Experiments on the treatment of surface characteristics of ultrafine TiO{sub 2} powders were investigated using esterification and surface treating agents. A mathematical model that can predict the particle size and distribution was also developed. (2) Preparation of cerium oxide for high-grade polishing powder: Used cerium polishing powder was recycled for preparation of high grade cerium oxide polishing powder. Also, cerium hydroxide which was generated as by-product in processing of monazite ore was used as another material. These two materials were leached respectively by using acid, and the precipitate was gained in each leached solution by adjusting pH of the solution, and by selective crystallization. These precipitates were calcined to make high grade cerium oxide polishing powder. The effect of several experimental variables were investigated, and the optimum conditions were obtained through the experiments. (author). 81 refs., 49 figs., 27 tabs.

  2. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Science.gov (United States)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  3. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  4. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  5. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    International Nuclear Information System (INIS)

    Lee, Kyuha; Kim, A-Young; Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young; Lee, Joong Kee

    2014-01-01

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO 4 salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode

  6. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  7. A novel Graphene Oxide film: Synthesis and Dielectric properties

    Science.gov (United States)

    Canimkurbey, Betul; San, Sait Eren; Yasin, Muhammad; Köse, Muhammet Erkan

    In this work, we used Hummers method to synthesize Graphene Oxide (GO) and its parallel plate impedance spectroscopic technique to investigate dielectric properties. Graphene Oxide films were coated using drop casting method on ITO substrate. To analyze film morphology, atomic force microscopy was used. Dielectrics measurements of the samples were performed using impedance analyzer (HP-4194) in frequency range (100 Hz to 10MHz) at different temperatures. It was observed that the films' AC conductivity σac varied with angular frequency, ω as ωS, with Sdirect current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Using solution processed Graphene Oxide will provide potential for organic electronic applications through its photon absorption and transmittance capability in the visible range and excellent electrical parameters.

  8. Study of cerium doped magnetite (Fe{sub 3}O{sub 4}:Ce)/PMMA nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Padalia, Diwakar, E-mail: Padalia.diwakar@gmail.com [Department of Physics, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand (India); Johri, U.C. [Department of Physics, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand (India); Zaidi, M.G.H. [Supercritical Fluid Processing Laboratory, Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand (India)

    2012-03-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe{sub 3}O{sub 4}) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe{sub 3}O{sub 4}) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO{sub 2}) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature (T{sub g}). The magnetic results suggest that coercivity (H{sub C}) and squareness (M{sub r}/M{sub s}) of the loop increases with increasing doping percent of cerium.

  9. Cerium(III) pivalate [Ce(Piv)3(HPiv)3]2: synthesis, crystal structure, and thermal stability

    International Nuclear Information System (INIS)

    Khudyakov, M.Yu.; Kuz'mina, N.P.; Pisarevskij, A.P.; Martynenko, L.I.

    2002-01-01

    Complex [Ce(Piv) 3 (HPiv) 3 ] 2 was prepared by precipitation of cerium(III) nitrate aqueous solution with salt NH 4 (Piv) (HPiv = pivalic acid) and subsequent recrystallization from 5% HPiv solution in hexane. According to data of X-ray diffraction analysis and IR spectroscopy crystal structure of the complex is built of centrally symmetric dimers, in which cerium atoms are bound by four bridge pivalate ligands. Thermal analysis suggests that heating of the complex in nitrogen atmosphere results first in splitting off six HPiv molecules in the range of 90-190 deg C and then in thermolysis of Ce(Piv) 3 formed at 290-450 deg C. Sublimation of Ce(Piv) 3 occurs in the range of 290-350 deg C along with thermolysis during heating in vacuum (0.01 mm Hg), which permits preparing CeO 2 films by the method of chemical precipitation from gaseous phase [ru

  10. Cerium-modified Aurivillius-type sodium lanthanum bismuth titanate with enhanced piezoactivities

    International Nuclear Information System (INIS)

    Wang Chunming; Zhao Liang; Wang Jinfeng; Zheng Limei; Du Juan; Zhao Minglei; Wang Chunlei

    2009-01-01

    The electrical, piezoelectric and dielectric properties of cerium-modified Aurivillius-type sodium lanthanum bismuth titanate (Na 0.5 La 0.5 Bi 4 Ti 4 O 15 , NLBT) ceramics were investigated. It was found the piezoelectric activities of NLBT ceramics were significantly improved by cerium modification. The piezoelectric coefficient d 33 and Curie temperature T c for the 0.50 wt.% cerium-modified NLBT were found to be 29 pC/N and 573 deg. C, respectively. The reasons for piezoelectric activities improvement by cerium modification were given. A small dielectric abnormity was observed in NLBT ceramics, which can be suppressed by cerium modification.

  11. Effects of iron content on electrical resistivity of oxide films on Zr-base alloys

    International Nuclear Information System (INIS)

    Kubo, Toshio; Uno, Masayoshi

    1991-01-01

    Measurements of electrical resistivity were made for oxide films formed by anodic oxidation and steam oxidation (400degC/12 h) on Zr plates with different Fe contents. When the Fe content was higher than about 1,000 ppm the electrical resistivity of the steam oxide films was almost equivalent to that of the anodic oxide films, while at lower Fe content the former exhibited lower electrical resistivity than the latter by about 1∼3 orders of magnitude. The anodic oxide film was an almost homogeneous single oxide layer. The steam oxide films, on the other hand, were composed of duplex oxide layers. The oxide layer formed in the vicinity of the oxide/metal interface had higher electrical resistivity than the near-surface oxide layer by about 1∼4 orders of magnitude. The oxide layer in the vicinity of the interface could act as a protective film against corrosion and its electrical resistivity is one important factor controlling the layer protectiveness. The electrical resistivity of the oxide/metal interfacial layer was strongly dependent on the Fe content. One possible reason for Fe to improve the corrosion resistance is that Fe ions would tend to stabilize the tetragonal (or cubic) phase and consequently suppress the formation of open pores and cracks in the interfacial layer. (author)

  12. A nanogravimmetric investigation of the charging processes on ruthenium oxide thin films and their effect on methanol oxidation

    International Nuclear Information System (INIS)

    Santos, M.C.; Cogo, L.; Tanimoto, S.T.; Calegaro, M.L.; Bulhoes, L.O.S

    2006-01-01

    The charging processes and methanol oxidation that occur during the oxidation-reduction cycles in a ruthenium oxide thin film electrode (deposited by the sol-gel method on Pt covered quartz crystals) were investigated by using cyclic voltammetry, chronoamperometry and electrochemical quartz crystal nanobalance techniques. The ruthenium oxide rutile phase structure was determined by X-ray diffraction analysis. The results obtained during the charging of rutile ruthenium oxide films indicate that in the anodic sweep the transition from Ru(II) to Ru(VI) occurs followed by proton de-intercalation. In the cathodic sweep, electron injection occurs followed by proton intercalation, leading to Ru(II). The proton intercalation/de-intercalation processes can be inferred from the mass/charge relationship which gives a slope close to 1 g mol -1 (multiplied by the Faraday constant) corresponding to the molar mass of hydrogen. From the chronoamperometric measurements, charge and mass saturation of the RuO 2 thin films was observed (440 ng cm -2 ) during the charging processes, which is related to the total number of active sites in these films. Using the electrochemical quartz crystal nanobalance technique to study the methanol oxidation reaction at these films was possible to demonstrate that bulk oxidation occurs without the formation of strongly adsorbed intermediates such as CO ads , demonstrating that Pt electrodes modified by ruthenium oxide particles can be promising catalysts for the methanol oxidation as already shown in the literature

  13. Friction behaviour of anodic oxide film on aluminum impregnated with molybdenum sulfide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maejima, M.; Saruwatari, K. [Fujikura Ltd., Tokyo (Japan); Takaya, M. [Faculty of Engineering, Chiba Institute of Technology 17-1, Tsudanuma 2-Chome, 275-0016, Narasino-shi Chiba (Japan)

    2000-10-23

    In order to improve the lubricity and wear resistance of aluminum anodic oxide films, it is necessary to ensure the film layers are dense to prevent cracking, and to harden the films as well as reduce the shear stress of the film surfaces. From this view point, lubricious, hard anodic oxide films have been studied in the past, but fully satisfactory results have yet to be realized. In this paper, we report on our study of the re-anodizing of anodic oxide film in an aqueous solution of (NH)MoS. Molybdenum sulfide and compounds filled the 20-nm diameter pores of the film, creating internal stress which compressed the film, suppressing the occurrence of cracks and reducing the friction coefficient. (orig.)

  14. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  15. Microstructure and protection characteristics of the naturally formed oxide films on Mg–xZn alloys

    International Nuclear Information System (INIS)

    Song, Yingwei; Han, En-Hou; Dong, Kaihui; Shan, Dayong; Yim, Chang Dong; You, Bong Sun

    2013-01-01

    Highlights: •The oxide films on Mg–xZn alloys consist of similar chemical composition. •The higher Zn content results in the thicker but higher defect of the oxide films. •The oxide films exhibit different protection performance under various potentials. -- Abstract: The naturally formed oxide films on Mg–2Zn and Mg–5Zn alloys were investigated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The oxide films on the both alloys present a similar chemical composition, consisting of surface layer of basic magnesium carbonate and MgO following with MgO and ZnO, but the oxide film on Mg–5Zn is thicker and contains more defects. The protection performance of the oxide film on Mg–5Zn is worse under open circuit potential but better in a suitable anodic potential scope compared with that on Mg–2Zn alloy

  16. Magnetic properties of partially oxidized Fe films

    Science.gov (United States)

    Garcia, Miguel Angel; Lopez-Dominguez, Victor; Hernando, Antonio

    Hybrid magnetic nanostructures exhibit appealing properties due to interface and proximity effects. A simple and interesting system of hybrid magnetic nanomaterials are partially oxidized ferromagnetic films. We have fabricated Fe films by thermal evaporation and performed a partial oxidation to magnetite (Fe3O4) by annealing in air at different times and temperatures. The magnetic properties of the films evolve from those of pure metallic iron to pure magnetite, showing intermediate states where the proximity effects control the magnetic behavior. At some stages, the magnetization curves obtained by SQUID and MOKE magnetometry exhibit important differences due to the dissimilar contribution of both phases to the magneto-optical response of the system This work has been supported by the Ministerio Español de Economia y Competitividad (MINECO) MAT2013-48009-C4-1. V.L.D and M.A.G. acknowledges financial support from BBVA foundation.

  17. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    Energy Technology Data Exchange (ETDEWEB)

    Denayer, Jessica [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Bister, Geoffroy [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Simonis, Priscilla [Laboratory LPS, University of Namur, rue de bruxelles 61, 5000 Namur (Belgium); Colson, Pierre; Maho, Anthony [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Aubry, Philippe [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Vertruyen, Bénédicte [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Lardot, Véronique; Cambier, Francis [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Cloots, Rudi [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium)

    2014-12-01

    Highlights: • Surfactant-assisted USP: a novel and low cost process to obtain high quality nickel oxide films, with or without lithium dopant. • Increased uniformity and reduced light scattering thanks to the addition of a surfactant. • Improved electrochromic performance (coloration efficiency and contrast) for lithium-doped films by comparison with the undoped NiO film. - Abstract: Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  18. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Science.gov (United States)

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  19. Specific Features of the Response of Cerium to Pulsed Actions

    Science.gov (United States)

    Atroshenko, S. A.; Zubareva, A. N.; Morozov, V. A.; Savenkov, G. G.; Utkin, A. V.

    2018-02-01

    Experimental studies of cerium at high rates and nanosecond durations of action have been performed. The isomorphic phase transition was studied upon shock compression. The spall strength of cerium has been determined. Cerium demonstrates anomalous compressibility upon dynamic loading. Stress waves dampen under action of a high-current electron beam due to the energy dissipation during fragmentation and twinning.

  20. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    Science.gov (United States)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  1. The Preparation and Property of Graphene /Tin Oxide Transparent Conductive Film

    Directory of Open Access Journals (Sweden)

    SUN Tao

    2017-02-01

    Full Text Available Graphene doped tin oxide composites were prepared with SnCIZ·2HZ 0 and graphene oxide as raw materials with sol-gel method and then spincoated on the quartz glass to manufacture a new transparent conductive film. The composite film was characterized with X-ray diffraction(XRDand scanning electron microscopy(SEM analysis. XRD results show that the graphene oxide was successfully prepared with Hummers method. The graphene layers and particulate SnOZ can be clearly observed in SEM photos. The transmittance and conductivity of the thin films were tested with ultraviolet visible spectrophotometer and Hall effect measurement. The results show that the transmittivity of composite film in visible region is more than 90% and surface square resistance is 41 S2/口.The graphene/ SnOZ film exhibits a higher performance in transparence and conductivity than commercial FTO glass.

  2. Oxide films in laser additive manufactured Inconel 718

    International Nuclear Information System (INIS)

    Zhang, Y.N.; Cao, X.; Wanjara, P.; Medraj, M.

    2013-01-01

    A continuous-wave 5 kW fiber laser welding system was used in conduction mode to deposit Inconel® alloy 718 (IN718) by employing filler wire on as-serviced IN718 parent material (PM) substrates. The direct laser deposited (DLD) coupons and as-serviced IN718 PM were then evaluated through tensile testing. To understand the failure mechanisms, the tensile fracture surfaces of the as-serviced IN718 PM, DLD and DLD-PM samples were analyzed using scanning electron microscopy. The fracture surfaces revealed the presence of both Al 2 O 3 and Cr 2 O 3 films, although the latter was reasoned to be the main oxide in IN718. Both the experimental observations and thermodynamic analysis indicated that oxidation of some alloying elements in IN718 cannot be completely avoided during manufacturing, whether in the liquid state under vacuum (for casting, the electron beam melting, welding and/or deposition) or with inert gas protection (for welding or laser deposition). The exposed surface of the oxide film on the fracture surface has poor wetting with the metal and thus can constitute a lack of bonding or a crack with either the metal and/or another non-wetted side of the oxide film. On the other hand, the wetted face of the oxide film has good atom-to-atom contact with the metal and may nucleate some intermetallic compounds, such as Laves, Ni 3 Nb-δ, Nb-rich MC and γ′ compounds. The potential of their nucleation on Cr 2 O 3 was assessed using planar disregistry. Coherent planes were found between these intermetallics and Cr 2 O 3

  3. Copper oxide thin films anchored on glass substrate by sol gel spin coating technique

    Science.gov (United States)

    Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha

    2018-05-01

    Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.

  4. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  5. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  6. Ion beam analysis of PECVD silicon oxide thin films

    International Nuclear Information System (INIS)

    Fernandez-Lima, F.; Rodriguez, J.A.; Pedrero, E.; Fonseca Filho, H.D.; Llovera, A.; Riera, M.; Dominguez, C.; Behar, M.; Zawislak, F.C.

    2006-01-01

    A study of ion beam analysis techniques of plasma enhanced chemical vapor deposited (PECVD) silicon oxide thin films (1 μm thick) obtained from silane (SiH 4 ) and nitrous oxide (N 2 O) is reported. The film, elemental composition and surface morphology were determined as function of the reactant gas flow ratio, R = [N 2 O]/[SiH 4 ] in the 22-110 range using the Rutherford backscattering spectrometry, nuclear reaction analysis and atomic force microscopy techniques. The density of the films was determined by combining the RBS and thickness measurements. All the experiments were done at a deposition temperature of 300 deg. C. In all the cases almost stoichiometric oxides were obtained being the impurity content function of R. It was also observed that physical properties such as density, surface roughness and shape factor increase with R in the studied interval

  7. Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications

    International Nuclear Information System (INIS)

    Yoo, Jeong Eun; Park, Jiyoung; Cha, Gihoon; Choi, Jinsub

    2013-01-01

    The anodization of niobium in an aqueous mixture of H 3 PO 4 and HF in the potential range from 2.5 to 30 V for 2 h at 5 °C was performed, demonstrating that anodic porous niobium oxide film with a thickness of up to 2000 nm, including a surface dissolution layer, can be obtained by controlling the applied potential and composition of the electrolytes. Specifically, surface dissolution-free porous niobium oxide film with a thickness of 800 nm can be prepared in a low electrolyte concentration. The surface dissolution is observed when the concentration ratio of HF (wt.%):H 3 PO 4 (M) was more than 2:1. The discontinuous layers in the niobium oxide film were observed when the thickness was higher than 500 nm, which was ascribed to the large volume expansion of the niobium oxide grown from the niobium metal. The anodic porous niobium oxide film was used as the cathode for lithium-ion batteries in the potential range from 1.2 to 3.0 V at a current density of 7.28 × 10 − 6 A cm −2 . The first discharge capacity of ca. 53 μA h cm − 2 was obtained in 800 nm thick niobium oxide without a surface dissolution layer. - Highlights: ► Anodic porous niobium oxide film with a thickness of 2000 nm was obtained. ► Surface dissolution-free porous niobium oxide film was prepared. ► The niobium oxide film was used as the cathode for lithium-ion batteries

  8. Cerium oxide nanozyme modulate the ‘exercise’ redox biology of skeletal muscle

    Science.gov (United States)

    Arya, Aditya; Sethy, Niroj Kumar; Gangwar, Anamika; Bhargava, Neelima; Dubey, Amarish; Roy, Manas; Srivastava, Gaurav; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2017-05-01

    ‘Exercise’ is a double-edged sword for the skeletal muscle. Small amount of ROS generated during mild exercise, is essential for normal force generation; whereas large quantity of ROS generated during intense exercise, may cause contractile dysfunction, resulting in muscle weakness and fatigue. One of the key question in skeletal muscle physiology is ‘could antioxidant therapy improve the skeletal muscle endurance? A question, which has resulted in contradictory experimental findings till this date. This work has addressed this ‘very question’ using a synthetic, inorganic, antioxidant nano-material viz., ‘cerium oxide nanozyme’ (CON). It has been introduced in the rat by intramuscular injection, and the skeletal muscle endurance has been evaluated. Intramuscular injections of CON, concurrent with exercise, enhanced muscle mass, glycogen and ATP content, type I fiber ratio, thus resulting in significantly higher muscle endurance. Electron microscope studies confirmed the presence of CON in the vicinity of muscle mitochondria. There was an increase in the number and size of the muscle mitochondria in the CON treated muscle, following exercise, as compared to the untreated group with only exercised muscle. Quantitative proteomics data and subsequent biological network analysis studies, identified higher levels of oxidative phosphorylation, TCA cycle output and glycolysis in CON supplemented exercised muscle over only exercised muscle. This was further associated with significant increase in the mitochondrial respiratory capacity and muscle contraction, primarily due to higher levels of electron transport chain proteins like NDUFA9, SDHA, ATP5B and ATP5D, which were validated by real-time PCR and western blotting. Along with this, persistence of CON in muscle was evaluated with ICP-MS analysis, which revealed clearance of the particles after 90 d, without exhibiting any inflammation or adverse affects on the health of the experimental animals. Thus a

  9. Effect of Thickness on the Morphology and Corrosion Behavior of Cerium-Based Conversion Coatings on AZ31B Magnesium Alloy

    Science.gov (United States)

    Castano, Carlos E.; Maddela, Surender; O'Keefe, Matthew J.; Wang, Yar-Ming

    Cerium-based conversion coatings (CeCCs) were deposited onto AZ31B magnesium alloy substrates using a spontaneous reaction of CeCl3, H2O2 and gelatin in a water-based solution. The coating thickness was adjusted by controlling the immersion time in the deposition solution. Prior to deposition, the AZ31B substrates were treated using an acid pickling in nitric acid and then an alkaline cleaning in sodium metasilicate pentahydrate. After deposition, the coated samples were immersed in a phosphate bath that converted cerium oxide/hydroxide into cerium phosphate. Electrochemical impedance spectroscopy, potentiodynamic polarization and neutral salt spray testing studies indicated that 100 nm thick CeCC had better corrosion performance than 400 nm coatings. Characterization of the CeCCs by transmission electron microscopy (TEM) revealed a three layer structure with different compositions.

  10. Preparation and characterization of vanadium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, O.; Plesch, G. [Comenius University of Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, 84215 Bratislava (Slovakia); Roch, T. [Comenius University of Bratislava, Faculty of Mathematics Physics and Informatics, Department of Experimental Physics, 84248 Bratislava (Slovakia)

    2013-04-16

    The thermotropic VO{sub 2} films have many applications, since they exhibit semiconductor-conductor switching properties at temperature around 70 grad C. Vanadium oxide thin films were prepared via sol-gel method. Spin coater was used to depose these films on Si/SiO{sub 2} and lime glass substrates. Thin films of V{sub 2}O{sub 5} can be reduced to metastable VO{sub 2} thin films at the temperature of 450 grad C under the pressure of 10{sup -2} Pa. These films are then converted to thermotropic VO{sub 2} at 700 grad C in argon under normal pressure. (authors)

  11. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    International Nuclear Information System (INIS)

    Predoi, D.; Ciobanu, C.S.; Radu, M.; Costache, M.; Dinischiotu, A.; Popescu, C.; Axente, E.; Mihailescu, I.N.; Gyorgy, E.

    2012-01-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: ► Hybrid, dextran-iron oxide nanoparticles and thin films. ► Laser immobilization. ► Biocompatibility of dextran-iron oxide nanoparticles.

  12. Investigation of structural, morphological and electrical properties of APCVD vanadium oxide thin films

    International Nuclear Information System (INIS)

    Papadimitropoulos, Georgios; Trantalidis, Stelios; Tsiatouras, Athanasios; Vasilopoulou, Maria; Davazoglou, Dimitrios; Kostis, Ioannis

    2015-01-01

    Vanadium oxide films were chemically vapor deposited (CVD) on oxidized Si substrates covered with CVD tungsten (W) thin films and on glass substrates covered with indium tin oxide (ITO) films, using vanadium(V) oxy-tri-isopropoxide (C 9 H 21 O 4 V) vapors. X-ray diffraction (XRD) measurements showed that the deposited films were composed of a mixture of vanadium oxides; the composition was determined mainly by the deposition temperature and less by the precursor temperature. At temperatures up to 450 C the films were mostly composed by monoclinic VO 2 . Other peaks corresponding to various vanadium oxides were also observed. X-ray microanalysis confirmed the composition of the films. The surface morphology was studied with atomic force microscopy (AFM) and scanning electron microscopy (SEM). These measurements revealed that the morphology strongly depends on the used substrate and the deposition conditions. The well-known metal-insulator transition was observed near 75 C for films mostly composed by monoclinic VO 2 . Films deposited at 450 C exhibited two transitions one near 50 C and the other near 60 C possibly related to the presence of other vanadium phases or of important stresses in them. Finally, the vanadium oxide thin films exhibited significant sensory capabilities decreasing their resistance in the presence of hydrogen gas with response times in the order of a few seconds and working temperature at 40 C. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. A contribution to the radiologic findings in cerium pneumoconiosis

    International Nuclear Information System (INIS)

    Hecht, F.M.; Wesch, H.; Deutsches Krebsforschungszentrum, Heidelberg

    1980-01-01

    Report on a 69 year old man, who had been employed as photographer in the printing industry and who had been exposed to Cerium for 40 years. The chest X-ray which was performed 9 years after the end of the exposure displayes striate densities of the lungs, which must be considered as a late stage of Cerium-pneumoconiosis. The changes which were found fulfill the code 't 1/0 RO, RM, RU, LO, LM, LU, p 0/1 RO, RM, LO, LM, em, tbu' according to the 'ILO U/C 1971 classification of pneumoconiosis'. The diagnosis could be substantiated by measureing Cerium in the lung parenchyma qualitatively and quantitatively using neutrone activating analysis. The radiolgic findings of the Cerium pneumoconiosis are discussed. (orig.) [de

  14. The growth and evolution of thin oxide films on delta-plutonium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Flores, Harry G [Los Alamos National Laboratory; Pugmire, David L [Los Alamos National Laboratory

    2009-01-01

    The common oxides of plutonium are the dioxide (PuO{sub 2}) and the sesquioxide (Pu{sub 2}O{sub 3}). The structure of an oxide on plutonium metal under air at room temperature is typically described as a thick PuO{sub 2} film at the gas-oxide interface with a thinner PuO{sub 2} film near the oxide-metal substrate interface. In a reducing environment, such as ultra high vacuum, the dioxide (Pu{sup 4+}; O/Pu = 2.0) readily converts to the sesquioxide (Pu{sup 3+}; O/Pu = 1.5) with time. In this work, the growth and evolution of thin plutonium oxide films is studied with x-ray photoelectron spectroscopy (XPS) under varying conditions. The results indicate that, like the dioxide, the sesquioxide is not stable on a very clean metal substrate under reducing conditions, resulting in substoichiometric films (Pu{sub 2}O{sub 3-y}). The Pu{sub 2}O{sub 3-y} films prepared exhibit a variety of stoichiometries (y = 0.2-1) as a function of preparation conditions, highlighting the fact that caution must be exercised when studying plutonium oxide surfaces under these conditions and interpreting resulting data.

  15. Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation

    International Nuclear Information System (INIS)

    Kim, K.H.; Ryue, Y.G.; Kwak, K.K.; Hong, K.P.; Kim, D.H.

    2007-01-01

    A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an incineration process. An experiment to evaluate the applicability of the above two processes and to establish the conditions to operate the pilot-scale system has been carried out by changing the concentration of the catalyst and EDTA, the operational current density, the operating temperature, and the electrolyte concentration. As for the results, silver mediated oxidation was more effective in destructing the EDTA wastes than the cerium mediated oxidation process. For a constant volume of the EDTA wastes, the treatment time for the cerium-mediated oxidation was 9 hours and its conversion ratio of EDTA to water and CO 2 was 90.2 % at 80 deg. C, 10 A, but the treatment time for the silver-mediated oxidation was 3 hours and its conversion ratio was 89.2 % at 30 deg. C, 10 A. (authors)

  16. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  17. Fabrication of ultra-thin cerium oxide layers on Ru(0001) single crystal surfaces. Scanning tunneling microscopic and photoelectron spectroscopic studies on growth, structure and properties; Herstellung ultraduenner Ceroxidschichten auf Ru(0001)-Einkristallflaechen. Rastertunnelmikroskopische und photoelektronenspektroskopische Untersuchungen zu Wachstum, Struktur und Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bouchtaoui, Mustapha

    2016-12-07

    The thesis at hand aims at a study of structure and properties of well-defined ultrathin CeO{sub 2} films supported on Ru(0001). Such systems may serve as model systems in heterogenous catalysis. The epitaxial growth of ceria films on Ru(0001) surface has been achieved by electron beam evaporation of metal Cer at low background oxygen pressure of 10{sup -6} mbar under ultrahigh-vacuum conditions at room temperature. Cerium oxide qualifies for proper oxygen-storage in oxidation reactions, and hence it widely used in heterogenous catalysis. The oxidation begins with the adsorption of CO on the CeO{sub 2}(111) surface, and it ends with participation of lattice oxygen leading to vacancy formation and CO{sub 2} desorption. We investigate the geometric structure by means of scanning tunneling microscopy and low energy electron diffraction. The coverage of 2.5 monolayers (ML) was sufficient to cover the substrate almost completely. We further analysed the interaction of CO with the CeO{sub 2}/Ru(0001) and the Pt/CeO{sub 2}/Ru(0001) systems. During the interaction process the ratio of Ce{sup 4+} and Ce{sup 3+} changes significantly. This ratio change as well as the effect of Pt evaporated onto the surface with respect to the reducibility of CeO{sub 2}/Ru(0001) in CO environment has been studied by X-ray photoemission spectroscopy and it has been confirmed with thermal desorption spectroscopy. It is revealed that the Pt-Nanoparticles with a height from 7.15 Aa to 9.73 Aa clearly enhances the reducibility of CeO{sub 2}.

  18. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyuha [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, A-Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-09-15

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO{sub 4} salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode.

  19. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  20. Modified cermet fuel electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  1. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Ou, Sin-Liang; Wuu, Dong-Sing; Fu, Yu-Chuan; Liu, Shu-Ping; Horng, Ray-Hua; Liu, Lei; Feng, Zhe-Chuan

    2012-01-01

    Highlights: ► The β-Ga2O3 thin films are prepared by pulsed laser deposition. ► The substrate temperature affects the structural, optical and etching properties of the grown films. ► The optical transmittance and band gap of the films increased with increasing the substrate temperature. ► The etching treatments for gallium oxide are performed in 49 mol% HF solution at room temperature. ► The gallium oxide thin film grown at 400 °C has the highest etching rate of 490 nm s −1 . - Abstract: The gallium oxide films were deposited on (0 0 1) sapphire at various substrate temperatures from 400 to 1000 °C by pulsed laser deposition using a KrF excimer laser. The etching treatments for as-grown gallium oxide were performed in a 49 mol% HF solution at room temperature. The structural, optical and etching properties of the grown films were investigated in terms of high resolution X-ray diffraction, optical transmittance, atomic force microscopy, and X-ray photoelectron spectroscopy. The phase transition from amorphous to polycrystalline β-Ga 2 O 3 structure was observed with increasing growth temperature. From the optical transmittance measurements, the films grown at 550–1000 °C exhibit a clear absorption edge at deep ultraviolet region around 250–275 nm wavelength. It was found that the optical band gap of gallium oxide films increased from 4.56 to 4.87 eV when the substrate temperature increased from 400 to 1000 °C. As the substrate temperature increases, the crystallinity of gallium oxide film is enhanced and the etching rate is decreased. The high etching rate of 490 nm s −1 for gallium oxide film grown at 400 °C could be due to its amorphous phase, which is referred to higher void ratio and looser atomic structure.

  2. Remote plasma-enhanced metalorganic chemical vapor deposition of aluminum oxide thin films

    NARCIS (Netherlands)

    Volintiru, I.; Creatore, M.; Hemmen, van J.L.; Sanden, van de M.C.M.

    2008-01-01

    Aluminum oxide films were deposited using remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/trimethylaluminum mixtures. Initial studies by in situ spectroscopic ellipsometry demonstrated that the aluminum oxide films deposited at temperatures

  3. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  4. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Predoi, D.; Ciobanu, C.S. [National Institute for Physics of Materials, P.O. Box MG 07, Bucharest, Magurele (Romania); Radu, M.; Costache, M.; Dinischiotu, A. [Molecular Biology Center, University of Bucharest, 91-95 Splaiul Independentei, 76201, Bucharest 5 (Romania); Popescu, C.; Axente, E.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Gyorgy, E., E-mail: egyorgy@cin2.es [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Consejo Superior de Investigaciones Cientificas, Centre d' Investigacions en Nanociencia i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra (Spain)

    2012-02-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Hybrid, dextran-iron oxide nanoparticles and thin films. Black-Right-Pointing-Pointer Laser immobilization. Black-Right-Pointing-Pointer Biocompatibility of dextran-iron oxide nanoparticles.

  5. Elucidation of the electrochromic mechanism of nanostructured iron oxides films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lobato, M.A.; Martinez, Arturo I.; Castro-Roman, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Campus Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coah. 25900 (Mexico); Perry, Dale L. [Mail Stop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Escobar-Alarcon, L. (Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico)

    2011-02-15

    Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. {alpha}-Fe{sub 2}O{sub 3} to Fe(OH){sub 2} and subsequently to {delta}-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (author)

  6. Optimum deposition, structure, and properties of tantalum oxide films

    International Nuclear Information System (INIS)

    Lin, Y.C.

    1985-01-01

    Amorphous, ductile, and uniform Ta 2 O 5 films that acted as diffusion barriers were developed by sputter depositing Ta metal on Al single crystals (99.99%) and subsequently anodizing these thin films. The morphology, microstructure, composition and properties were characterized by scanning and transmission electron microscopy, surface and Fourier transform infrared spectroscopy, X-ray diffraction, and fluorescence. Superior corrosion resistance in a water saturated Cl 2 atmosphere was provided by Ta 2 O 5 coating on Al single crystal substrates but not on Al alloys. The strong Ta-O bond, the non-porous nature of the film and good adhesion to the substrate are attributed to the outstanding corrosion resistance of these oxide coatings. Al alloy surfaces are not protected, since the anodic film formed over grain boundaries, processing lines and emergent precipitates is poorly adherent, thus providing loci for corrosion. These problems were eliminated by casting a 400 A layer of tantalum oxyhydroxide polymer from ethanol solution onto Al substrate and curing to a Ta 2 O 5 layer that effectively resisted attack by wet Cl 2 . The mechanical properties of Ta 2 O 5 films on Al alloys were studied at various pH's by in-situ fatigue loading coupled with electrochemical measurements of corrosion potential and corrosion current. These results indicate the fatigue resistance of this oxide film effectively protects the underlying metal from strong HCl solution attack. The very unusual ductility and high corrosion resistance of Ta 2 O 5 films could be related to the graphite-like structure that exists in the amorphous state of this oxide

  7. In situ Oxidation of Ultrathin Silver Films on Ni(111)

    International Nuclear Information System (INIS)

    Meyer, A.; Flege, I.; Senanayake, S.; Kaemena, B.; Rettew, R.; Alamgir, F.; Falta, J.

    2011-01-01

    Oxidation of silver films of one- and two-monolayer thicknesses on the Ni(111) surface was investigated by low-energy electron microscopy at temperatures of 500 and 600 K. Additionally, intensity-voltage curves were measured in situ during oxidation to reveal the local film structure on a nanometer scale. At both temperatures, we find that exposure to molecular oxygen leads to the destabilization of the Ag film with subsequent relocation of the silver atoms to small few-layer-thick silver patches and concurrent evolution of NiO(111) regions. Subsequent exposure of the oxidized surface to ethylene initiates the transformation of bilayer islands back into monolayer islands, demonstrating at least partial reversibility of the silver relocation process at 600 K.

  8. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite; Estudo de filme de grafeno/oxido de grafeno obtido por reducao quimica parcial do oxido de grafite

    Energy Technology Data Exchange (ETDEWEB)

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H., E-mail: juliagascho@hotmail.com [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2014-07-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  9. Adsorption of Some Hazardous Radionuclides on Cerium(IV) Antimonate

    International Nuclear Information System (INIS)

    Aly, H.F.; Zakaria, E.S.; Shady, S.A.; El-Naggar, I.M.

    1999-01-01

    Cerium(IV) antimonate had been prepared by the dropwise addition of 0.6 M antimony pentachloride and 0.6 M cerium ammonium nitrate solutions by a molar radio of Ce/Sb 0.75. Exchange isotherms for H +/ Co 2+ , H +/ Cs +, H +/ Zn 2+ , H +/ Sr 2+ and H +/ Eu 3+ have been determined at 25, 40 and 60 degree. Besides it was proved that europium is physically adsorbed while zinc, strontium, cobalt and cesium are chemically adsorbed. Moreover, the heat of adsorption of zinc, strontium, cobalt and cesium on cerium(IV) antimonate had been calculated and indicated that cerium(IV) antimonate is of endothermic behaviour towards these ions. Also the distribution coefficients of these ions were determined and it was found that the selectivity in the order: Eu 3+ >Sr 2+ > Cs +> Na +

  10. Metabolism of cerium 144 in rat. Distribution - elimination - dosimetry

    International Nuclear Information System (INIS)

    Remy, Jacques

    1959-01-01

    This academic report concerns a study during which cerium 144 has been intravenously injected to three-month old rats under the form of cerium chloride in aqueous solution with pH of 9,5. Rats have then been sacrificed at different times after the injection, and organ or tissue samplings have been performed to study the isotope distribution in their bodies. This allowed the calculation of internal irradiation doses locally received by the animal, and also to identify critical organs with respect to cerium 144. Thus, until the twentieth day after injection, liver is the critical organ. After, it is the skeleton, for the rest of the animal's life. The bone internal irradiation is the highest danger for an internal cerium 144 contamination, due to threats on body hematopoietic functions [fr

  11. Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Anna R. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Rajagopalan, Ramakrishnan [Department of Engineering, The Pennsylvania State University, Dubois, PA 15801 (United States); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Carter, Joshua D. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States)

    2014-04-01

    The good stability, cyclability and high specific capacitance of manganese oxide (MnO{sub x}) has recently promoted a growing interest in utilizing MnO{sub x} in asymmetric supercapacitor electrodes. Several literature reports have indicated that thin film geometries of MnO{sub x} provide specific capacitances that are much higher than bulk MnO{sub x} powders. Plasma enhanced chemical vapor deposition (PECVD) is a versatile technique for the production of metal oxide thin films with high purity and controllable thickness. In this work, MnO{sub x} thin films deposited by PECVD from a methylcyclopentadienyl manganese tricarbonyl precursor are presented and the effect of processing conditions on the quality of MnO{sub x} films is described. The film purity and oxidation state of the MnO{sub x} films were studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Preliminary electrochemical testing of MnO{sub x} films deposited on carbon fiber electrodes in aqueous electrolytes indicates that the PECVD synthesized films are electrochemically active. - Highlights: • Plasma enhanced chemical vapor deposition of manganese oxide thin films. • Higher plasma power and chamber pressure increase deposition rate. • Manganese oxide thin films are electrochemically active. • Best electrochemical performance observed for pure film with low stress • Lower capacitance observed at higher scan rates despite thin film geometry.

  12. Investigation of AA2024-T3 surfaces modified by cerium compounds: A localized approach

    International Nuclear Information System (INIS)

    Paussa, L.; Andreatta, F.; De Felicis, D.; Bemporad, E.; Fedrizzi, L.

    2014-01-01

    Highlights: •The precipitation of cerium compounds occurs on the entire AA2024-T3 surface. •The matrix is less involved in the cerium precipitation. •Cerium intensely precipitates on Mg-rich IM particles. •The electrochemical behavior of Mg-rich IM particles influences the mechanism of cerium precipitation. -- Abstract: The precipitation of cerium compounds on polished AA2024-T3 surfaces was investigated following an electrochemical and microstructural localized approach. It was found that cerium precipitation occurs on the entire surface covering intermetallic particles and the matrix as well. The matrix is the region where the precipitation of cerium is less favoured. The highest amount of cerium was observed on magnesium-rich intermetallic particles. The localized analyses suggest that precipitation of cerium on magnesium-rich intermetallic particles could happen following two mechanisms: the former based on a potential reversal of the intermetallic particles and the latter due to a partial magnesium dissolution

  13. Continuous precipitation of mineral products: influence of mixing conditions on the co-precipitation of cerium-zirconium mixed oxides

    International Nuclear Information System (INIS)

    Di Patrizio, Nicolas

    2015-01-01

    An automated experimental set-up with rapid mixers is used to study the influence of mixing conditions on the co-precipitation of cerium-zirconium mixed oxides. The intensity of mixing is controlled by the inlet flow rates of the reacting solutions. An engulfment model is used to estimate a mixing time from the measurement of a segregation index by the Villermaux-Dushman reaction system. Three geometries of Hartridge Roughton mixers are compared. Mixing performance is better when a separate mixing chamber upstream of a narrower outlet pipe is present. A better mixing decreases the maximal reducibility temperature of the material and increases the crystal strains of the particles calcined at 1100 C. This is probably due to a better homogenization of the particles content. The important incorporation of nitrates in the particle at the outlet of the mixers shows precipitation occurs while the mixing process is not finished. This experimental result was confirmed by numerical simulation and an estimation of sur-saturations during the mixing process. (author)

  14. Study of thin metal films and oxide materials for nanoelectronics applications

    OpenAIRE

    De Los Santos Valladares, Luis

    2012-01-01

    Appendix A Pages 132-134 have been removed from this online version of the thesis for publisher copyright reasons. These had contained page images from the cover of Nanotechnology, Vol. 21, Nov 2010 and its corresponding web alert Different types of thin metal films and oxide materials are studied for their potential application in nanoelectronics: gold and copper films, nickel nanoelectrodes, oxide nanograin superconductors, carboxyl ferromagnetic microspheres and graphene oxide...

  15. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  16. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Energy Technology Data Exchange (ETDEWEB)

    Bláha, Michal, E-mail: blaha@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Prokeš, Jan [Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8 (Czech Republic); Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)

    2017-06-15

    Aniline was oxidized with three strong inorganic oxidants (ammonium peroxydisulfate, cerium(IV) sulfate, potassium dichromate), two weak inorganic oxidants (iron(III) chloride, silver nitrate), and one organic oxidant (p-benzoquinone) in aqueous solutions of methanesulfonic acid (MSA) of various concentration. Whereas oxidation of aniline with ammonium peroxydisulfate yielded high-molecular-weight conducting polyaniline (PANI) in the whole acidity range, the oxidation with cerium(IV) sulfate led also to a single product close to PANI with considerably lower molecular weight and lower conductivity. Potassium dichromate gave PANI only at high concentration of MSA. The use of iron(III) chloride yielded composite mixtures of PANI and low-molecular-weight aniline oligomers. The oxidation of aniline with silver nitrate led to composites of silver and an organic part, which was constituted either by aniline oligomers or conducting polyaniline or both. p-Benzoquinone as oxidant produced mainly aniline oligomers with poor conductivity and 2,5-dianilino-p-benzoquinone-like structure detected in FTIR and Raman spectra when oxidation proceeded with weak oxidants. A general model of oxidation with strong and weak oxidants was formulated. - Highlights: • Comparison of aniline oxidation with oxidants of different redox potential. • UV–vis, FTIR and Raman spectroscopies combined with size-exclusion chromatography. • The contents of polymer and oligomers were analyzed and discussed. • General model of aniline oxidation with strong and weak oxidants was formulated.

  17. Annealing effects on the structural and optical properties of vanadium oxide film obtained by the hot-filament metal oxide deposition technique (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, Jair; Silva, Paulo Rogerio Catarini da, E-mail: scarmini@uel.br, E-mail: prcsilva@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Gelamo, Rogerio Valentim, E-mail: rogelamo@gmail.com [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil); Moraes, Mario Antonio Bica de, E-mail: bmoraes@mailhost.ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2017-01-15

    Vanadium oxide films amorphous, nonstoichiometric and highly absorbing in the optical region were deposited on ITO-coated glass and on silicon substrates, by the hot-filament metal oxide deposition technique (HFMOD) and oxidized by ex-situ annealing in a furnace at 200, 300, 400 and 500 deg C, under an atmosphere of argon and rarefied oxygen. X-ray diffraction, Raman and Rutherford backscattering spectroscopy as well as optical transmission were employed to characterize the amorphous and annealed films. When annealed at 200 and 300 deg C the as-deposited opaque films become transparent but still amorphous. Under treatments at 400 and 500 deg C a crystalline nonstoichiometric V{sub 2}O{sub 5} structure is formed. All the annealed films became semiconducting, with their optical absorption coefficients changing with the annealing temperature. An optical gap of 2.25 eV was measured for the films annealed at 400 and 500 deg C. The annealing in rarefied oxygen atmosphere proved to be a useful and simple ex-situ method to modulate the structural and optical properties of vanadium oxide films deposited by HFMOD technique. This technique could be applied to other amorphous and non-absorbing oxide films, replacing the conventional and sometimes expensive method of modulate desirable film properties by controlling the film deposition parameters. Even more, the HFMOD technique can be an inexpensive alternative to deposit metal oxide films. (author)

  18. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane, E-mail: jym1@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Cohen, Joel M.; Demokritou, Philip [Harvard TH Chan School of Public Health, Harvard University, Boston, MA (United States); Castranova, Vincent [School of Pharmacy, West Virginia University, Morgantown, WV (United States)

    2015-10-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO{sub 2}) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO{sub 2} by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO{sub 2} or CeO{sub 2} coated with a nano layer of amorphous SiO{sub 2} (aSiO{sub 2}/CeO{sub 2}) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO{sub 2} coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO{sub 2} but not aSiO{sub 2}/CeO{sub 2} exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO{sub 2} (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO{sub 2} coating significantly reduced CeO{sub 2}-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO{sub 2}/CeO{sub 2}-exposed lungs up to 3 days after exposure, suggesting that aSiO{sub 2} dissolved off the CeO{sub 2} core, and some of the CeO{sub 2} was transformed to CePO{sub 4} with time. These results demonstrate that aSiO{sub 2} coating reduce CeO{sub 2}-induced inflammation, phospholipidosis and fibrosis. - Highlights: • Both

  19. Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Maryam Siadat

    2009-11-01

    Full Text Available Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO2, tungsten oxide (WO3 and indium oxide (In2O3 were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD. The morphology studied with scanning electron microscopy (SEM and atomic force microscopy (AFM shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H2S (10 ppm at low operating temperatures (100 and 200 °C and the best response in terms of Rair/Rgas is given by Cu-SnO2 films (2500 followed by WO3 (1200 and In2O3 (75. Moreover, all the films exhibit no cross-sensitivity to other reducing (SO2 or oxidizing (NO2 gases.

  20. Oxidant-Dependent Thermoelectric Properties of Undoped ZnO Films by Atomic Layer Deposition

    KAUST Repository

    Kim, Hyunho

    2017-02-27

    Extraordinary oxidant-dependent changes in the thermoelectric properties of undoped ZnO thin films deposited by atomic layer deposition (ALD) have been observed. Specifically, deionized water and ozone oxidants are used in the growth of ZnO by ALD using diethylzinc as a zinc precursor. No substitutional atoms have been added to the ZnO films. By using ozone as an oxidant instead of water, a thermoelectric power factor (σS) of 5.76 × 10 W m K is obtained at 705 K for undoped ZnO films. In contrast, the maximum power factor for the water-based ZnO film is only 2.89 × 10 W m K at 746 K. Materials analysis results indicate that the oxygen vacancy levels in the water- and ozone-grown ZnO films are essentially the same, but the difference comes from Zn-related defects present in the ZnO films. The data suggest that the strong oxidant effect on thermoelectric performance can be explained by a mechanism involving point defect-induced differences in carrier concentration between these two oxides and a self-compensation effect in water-based ZnO due to the competitive formations of both oxygen and zinc vacancies. This strong oxidant effect on the thermoelectric properties of undoped ZnO films provides a pathway to improve the thermoelectric performance of this important material.

  1. Hybrid manganese oxide films for supercapacitor application prepared by sol-gel technique

    International Nuclear Information System (INIS)

    Chen, Chin-Yi; Wang, Sheng-Chang; Tien, Yue-Han; Tsai, Wen-Ta; Lin, Chung-Kwei

    2009-01-01

    Hybrid films were prepared by adding various concentrations of meso-carbon microbeads (MCMB) during sol-gel processing of manganese oxide films. The heat-treated films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In addition, electrochemical performance of the MCMB-added Mn-oxide hybrid coatings was evaluated by cyclic voltammetry (CV) and compared with its unadded counterpart. Experimental results showed that Mn-oxide films exhibited a mixture of Mn 2 O 3 and Mn 3 O 4 phases. The higher the heat-treatment temperature, the more Mn 2 O 3 can be observed. The specific capacitance of the unadded Mn-oxide electrodes is 209 F/g. Because the MCMB particles provide more interfacial surface area for electrochemical reactions, a significant improvement can be noticed by adding MCMB in Mn-oxide coatings. The 300 o C heat-treated hybrid Mn-oxide coating with a Mn/MCMB ratio of 10/1 exhibits the highest value of 350 F/g, showing a ∼ 170% increase in specific capacitance.

  2. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  3. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source

    International Nuclear Information System (INIS)

    Hwang, Man-Soo; Seob Jeong, Heui; Kim, Won Mok; Seo, Yong Woon

    2003-01-01

    Multilayer coatings consisting of metal layers sandwiched between transparent conducting oxide layers are widely used for flat panel display electrodes and electromagnetic shield coatings for plasma displays, due to their high electrical conductivity and light transmittance. The electrical and optical properties of these multilayer films depend largely on the surface characteristics of the transparent conducting oxide thin films. A smoother surface on the transparent conducting oxide thin films makes it easier for the metal layer to form a continuous film, thus resulting in a higher conductivity and visible light transmittance. Indium tin oxide (ITO) and zinc oxide (ZnO) films were co-deposited using a dual magnetron sputter and a bipolar pulse power supply to decrease the surface roughness of the transparent conducting oxide films. The symmetric pulse mode of the power supply was used to simultaneously sputter an In 2 O 3 (90 wt %) : SnO 2 (10 wt %) target and a ZnO target. We varied the duty of the pulses to control the ratio of ITO : ZnO in the thin films. The electrical and optical properties of the films were studied, and special attention was paid to the surface roughness and the crystallinity of the films. By co-depositing ITO and ZnO at a pulse duty ratio of ITO:ZnO=45:45 using a dual magnetron sputter and a bipolar pulse power supply, we were able to obtain amorphous transparent conducting oxide films with a very smooth surface which had a Zn-rich buffer layer under a In-rich surface layer. All of the films exhibited typical electrical and optical properties of transparent conducting oxide films deposited at room temperature

  4. Structural and photoluminescent properties of a composite tantalum oxide and silicon nanocrystals embedded in a silicon oxide film

    International Nuclear Information System (INIS)

    Díaz-Becerril, T.; Herrera, V.; Morales, C.; García-Salgado, G.; Rosendo, E.; Coyopol, A.; Galeazzi, R.; Romano, R.; Nieto-Caballero, F.G.; Sarmiento, J.

    2017-01-01

    Tantalum oxide crystals encrusted in a silicon oxide matrix were synthesized by using a hot filament chemical vapor deposition system (HFCVD). A solid source composed by a mixture in different percentages of Ta 2 O 5 and silicon (Si) powders were used as reactants. The films were grown at 800 °C and 1000 °C under hydrogen ambient. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) at room temperature. From the XPS results it was confirmed the formation of a mixture of Tantalum oxide, silicon oxide and Si nanoparticles (Ta 2 O 5- SiO 2 -Si(nc)) as seen from the Si (2p) and Ta (4f) lines corresponding to Si + and Ta + states respectively. Ta 2 O 5 and Si nanocrystals (Si-NCs) embedded in the silicon oxide films were observed on HRTEM images which corroborate the XPS results. Finally the emission properties of the films exhibited a broad band from 400 to 850 nm caused by the independent PL properties of tantalum oxide and Si-NCs that compose the film. The intensity of the emissions was observed to be dependent on both temperature of deposition and the ratio Ta 2 O 5 /Si, used as initial reactants. Results from this work might supply useful data for the development of future light emitter devices.

  5. Oxide films on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Shih, T.-S.; Liu, J.-B.; Wei, P.-S.

    2007-01-01

    Magnesium alloys are very active and readily ignite during heating and melting. In this study, we discuss the combustion of magnesium and magnesium alloys and propose prospective anti-ignition mechanisms for magnesium alloys during the heating process. When magnesium and magnesium alloys were heated in air, the sample surfaces produced layers of thermally formed oxides. These thermally formed oxides played an important role in affecting the combustion of the magnesium and magnesium alloys. When magnesium was heated in air, brucite that formed in the early stage was then transformed into periclase by dehydroxylation. By extending the heating time, more periclase formed and increased in thickness which was associated with microcracks formation. When magnesium was heated in a protective atmosphere (SF 6 ), a film of MgF 2 formed at the interface between the oxide layer and the Mg substrate. This film generated an anti-ignition behavior which protected the substrate from oxidation. When solution-treated AZ80 alloy was heated, spinel developed at the interface between the thermally formed oxide layer and the Mg substrate, improving the anti-ignition properties of the substrate. In addition, we also explain the effects of beryllium in an AZB91 alloy on the ignition-proofing behavior

  6. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    Science.gov (United States)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  7. Picosecond laser registration of interference pattern by oxidation of thin Cr films

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, Vadim; Yarchuk, Michail [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation); Zakoldaev, Roman, E-mail: zakoldaev@gmail.com [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation); Gedvilas, Mindaugas; Račiukaitis, Gediminas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius (Lithuania); Kuzivanov, Michail; Baranov, Alexander [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation)

    2017-05-15

    Highlights: • Periodical patterning of thin films was achieved by combining two technologies. • Selective chemical etching was combined with laser-induced oxidation. • Formation of the protective oxide layer prevented of chromium film from etching. • 1D binary grating with the chromium stripe width of 750 nm was fabricated. - Abstract: The laser oxidation of thin metallic films followed by its selective chemical etching is a promising method for the formation of binary metal structures on the glass substrates. It is important to confirm that even a single ultrashort laser pulse irradiation is able to create the protective oxide layer that makes possible to imprint the thermochemical image. Results of the thermo-chemical treatment of thin chromium films irradiated by picosecond laser pulse utilizing two and four beam interference combined with the chemical etching are presented. The spatial resolution of this method can be high enough due to thermo-chemical sharpening and can be close to the diffraction limit. Micro-Raman spectroscopy was applied for characterization of the chemical composition of the protective oxide layers formed under atmospheric conditions on the surface of thin chromium films.

  8. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm 2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  9. Lattice dynamics of α-cerium

    International Nuclear Information System (INIS)

    Smith, G.S.

    1985-01-01

    The lattice dynamics of the fcc α-phase of cerium metal was investigated using inelastic neutron scattering techniques. This phase of cerium is an example of a mixed-valent system. Various physical properties of α-Ce suggest that there may be coupling between the phonons and the f d transitions associated with the mixed valence phenomenon. These measurements of the dispersion curves provide important information about the electron-phonon interaction in this phase of cerium. These studies were not performed in the past because single crystals of α-Ce were not available. We were able to prepare a single α-Ce crystal using a high temperature, high pressure technique. The sample was of sufficient size for inelastic neutron scattering experiments, but the measurements were complicated because of the large mosaic spread (approx.7.0 0 ) of the crystal. It was possible, however, to obtain a set of dispersion curves along the [00zeta], [zeta,zeta,0], and [zeta,zeta,zeta] symmetry directions. Comparison of the dispersion curves with those of fcc γ-Ce indicate that the branches exhibit anomalous features that may be related to the mixed-valence effects

  10. Using cerium anomaly as an indicator of redox reactions in constructed wetland

    Science.gov (United States)

    Liang, R.

    2013-12-01

    The study area, Chiayi County located in southern Taiwan, has highly developed livestock. The surface water has very low dissolved oxygen and high NH4. Under the situation, constructed wetland becomes the most effective and economic choice to treat the wastewater in the natural waterways. Hebao Island free surface constructed wetland started to operate in late 2006. It covers an area of 0.28 km2 and is subdivided into 3 major cells, which are sedimentation cell, 1st aeration cell with rooted plants and 2nd aeration cell with float plants. The water depth of cells ranges from 0.6 m to 1.2 m. The total hydraulic retention time is about a half day. In this study, the water samples were sequentially collected along the flow path. The results of hydrochemical analysis show that the untreated inflow water can be characterized with enriched NH4 (11 ppm), sulfate (6 ppm) and arsenic (50 ppb). The removal efficiency of NH4 in the first two cells is arsenic is still higher than the permissible limits recommended by WHO (10 ppb). The wetland operation should be tuned to take more arsenic away in the future. As demonstrated in the above, oxidation reaction is the most dominant mechanism to remove pollutants from the wastewater; therefore, dissolved oxygen is traditionally considered as an important indicator to evaluate the operation efficiency of wetland. However, it would need longer time to achieve equilibrium state of redox reaction involving dissolved oxygen due to the slower reaction rate. For example, the input water in this study has fairly high dissolved oxygen (5 ppm) but the NH4 content is still high, which indicates a non-equilibrium condition. In this study, the cerium anomaly is alternatively utilized to evaluate the water redox state. The results demonstrate that the input water has the negative cerium anomaly of -0.16. Along the flow path, the cerium negative anomaly does not change in the first two cells and dramatically becomes -0.23 in cell 3. The trend of

  11. Effect of thermal annealing of lead oxide film

    International Nuclear Information System (INIS)

    Hwang, Oh Hyeon; Kim, Sang Su; Suh, Jong Hee; Cho, Shin Hang; Kim, Ki Hyun; Hong, Jin Ki; Kim, Sun Ung

    2011-01-01

    Oxygen partial pressure in a growth process of lead oxide determines chemical and physical properties as well as crystalline structure. In order to supply oxygen, two ring-shape suppliers have been installed in a growth chamber. Films have been deposited using vacuum thermal evaporation from a raw material of yellow lead oxide powder (5N). Growth rate is controlled to be about 400 A/s, and film thickness more than 50 μm has been achieved. After deposition, the film is annealed at various temperatures under an oxygen atmosphere. In this study, an optimum growth condition for a good X-ray detector has been achieved by fine control of oxygen flow-rate and by thermal treatment. An electrical resistivity of 4.5x10 12 Ω cm is measured, and is comparable with the best data of PbO.

  12. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  13. Degradation of zinc oxide thin films in aqueous environment. Pt. II. Coated films

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, L. de; Mitton, D.B.; Monetta, T.; Bellucci, F. [Naples Univ. (Italy). Dept. of Materials and Production Engineering; Springer, J. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2001-12-01

    cn Part I of this research, the degradation mechanism of two different bare ZnO thin films was assessed. Degradation of the electrical properties of ZnO as well as changes in morphology were observed for both films. In the current paper, the degradation of zinc oxide thin films coated with protective acrylic paint is addressed during exposure to (i) an aqueous 3.5% NaCl solution at 85 C and (ii) a standard damp heat test at 85% R.H. and 85 C. Electrical and electrochemical techniques were employed to monitor zinc oxide degradation during exposure to the test environments. Electrochemical Impedance Spectroscopy was employed to investigate the delamination phenomena at the ZnO/coating interface and a simple equivalent circuit was developed to quantitatively measure the delamination ratio. The effect of different silane based adhesion promoters (glycidil-oxypropyl-trimethoxy-silane and aminopropyl-trimethoxy-silane) was also investigated. (orig.)

  14. Metallic oxide switches using thick film technology

    Science.gov (United States)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  15. Fabrication and evaluation of green-light emitting Ta2O5:Er, Ce co-sputtered thin films

    Directory of Open Access Journals (Sweden)

    K. Miura

    2015-01-01

    Full Text Available Erbium and cerium co-doped tantalum-oxide (Ta2O5:Er, Ce thin films were fabricated using radio-frequency co-sputtering of Ta2O5, Er2O3, and CeO2 for the first time. Enhanced green-light emission due to Er3+ that seems to be sensitized by Ce3+ was observed from the film annealed at 900 °C for 20 min. From XRD measurements of the films, the β-Ta2O5 (orthorhombic, δ-Ta2O5 (hexagonal, and (201 Ta2O5 phases seem to be very important for obtaining green PL from them. Such Ta2O5:Er, Ce co-sputtered films can be used as high-refractive-index materials of autocloned photonic crystals that can be applied to novel green-light-emitting devices, and they will also be used as multi-functional coating films that can work both as anti-reflection and down-conversion films for realizing high-efficiency silicon solar cells.

  16. Fabrication of birnessite-type layered manganese oxide films for super capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.K.; Dorval-Douville, G.; Favier, F. [Montpellier-2 Univ., LAMMI, UMR CNRS 5072, 34 (France)

    2004-07-01

    Birnessite-type layered manganese oxide films were anodically deposited at the surface of an inexpensive stainless steel. MnSO{sub 4} plating solutions were used at various potentials and for various durations. X-ray diffraction and scanning electron microscopy were used to examine the material structure and surface morphologies of obtained manganese oxide films. The capacitive characteristics and stability of these oxides were systematically investigated by means of cyclic voltammetry method in aqueous electrolytes. Deposition conditions affected the oxides structure and morphologies, and consequently greatly affected their electrochemical capacitance performance. (authors)

  17. Stepwise hydrochloric acid extraction of monazite hydroxides for the recovery of cerium lean rare earths, cerium, uranium and thorium

    International Nuclear Information System (INIS)

    Swaminathan, T.V.; Nair, V.R.; John, C.V.

    1988-01-01

    Monazite sand is normally processed by the caustic soda route to produce mixed rare earth chloride, thorium hydroxide and trisodium phosphate. Bulk of the mixed rare earth chloride is used for the preparation of FC catalysts. Recently some of the catalyst producers have shown preference to cerium depleted (lanthanum enriched) rare earth chloride rather than the natural rare earth chloride obtained from monazite. Therefore, a process for producing cerium depleted rare earth chloride, cerium, thorium and uranium from rare earth + thorium hydroxide obtained by treating monazite, based on stepwise hydrochloric acid extraction, was developed in the authors laboratory. The process involves drying of the mixed rare earth-thorium hydroxide cake obtained by monazite-caustic soda process followed by stepwise extraction of the dried cake with hydrochloric acid under specified conditions

  18. Electrodeposition of Manganese-Nickel Oxide Films on a Graphite Sheet for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hae-Min Lee

    2014-01-01

    Full Text Available Manganese-nickel (Mn-Ni oxide films were electrodeposited on a graphite sheet in a bath consisting of manganese acetate and nickel chloride, and the structural, morphological, and electrochemical properties of these films were investigated. The electrodeposited Mn-Ni oxide films had porous structures covered with nanofibers. The X-ray diffractometer pattern revealed the presence of separate manganese oxide (g-MnO2 and nickel oxide (NiO in the films. The electrodeposited Mn-Ni oxide electrode exhibited a specific capacitance of 424 F/g in Na2SO4 electrolyte. This electrode maintained 86% of its initial specific capacitance over 2000 cycles of the charge-discharge operation, showing good cycling stability.

  19. Swelling of a mesostructured zirconium oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.J. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); Rennie, A.R. [Uppsala University, Studsvik Neutron Research Laboratory, S-611 82 Nykoeping (Sweden); Hawley, A.M. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia); White, J.W. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)]. E-mail: jww@rsc.anu.edu.au

    2006-11-15

    The structural changes that cause the change in interlayer spacing of a surfactant-templated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 A on a lattice parameter of about 36 A. The (0 0 1) and (0 0 2) diffraction peak widths, positions and areas of a swollen film were monitored as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals.

  20. Thermoluminescent response of aluminium oxide thin films subject to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, A.; Escobar A, L.; Camps, E.; Villagran, E.; Gonzalez, P.R

    2006-07-01

    The thermoluminescent (TL) properties of amorphous aluminium oxide thin films (thicknesses as low as 0.3 {mu}m) subjected to gamma (Co-60) irradiation are reported. Aluminium oxide thin films were prepared by laser ablation from an Al{sub 2}O{sub 3} target using a Nd: YAG laser with emission at the fundamental line. The films were exposed to gamma radiation (Co-60) in order to study their TL response. Thermoluminescence glow curves exhibited two peaks at 110 and 176 C. The high temperature peak shows good stability and 30% fading in the first 5 days after irradiation. A linear relationship between absorbed dose and the thermoluminescent response for doses span from 150 mGy to 100 Gy was observed. These results suggest that aluminium oxide thin films are suitable for detection and monitoring of gamma radiation. (Author)

  1. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-11-15

    Graphical abstract: - Highlights: • Anodic luminescence is correlated to the existence of morphological defects in the oxide. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. • Oxide films formed under spark discharging are crystallized and composed of Nb{sub 2}O{sub 5}. • Photocatalytic activity and photoluminescence of Nb{sub 2}O{sub 5} films increase with time. - Abstract: This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb{sub 2}O{sub 5} hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  2. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    Science.gov (United States)

    Martinson, Alex B.; Kim, In Soo

    2017-09-26

    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film. The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.

  3. Y-Ba-Cu-O superconducting film on oxidized silicon

    International Nuclear Information System (INIS)

    Gupta, R.P.; Khokle, W.S.; Dubey, R.C.; Singhal, S.; Nagpal, K.C.; Rao, G.S.T.; Jain, J.D.

    1988-01-01

    We report thick superconducting films of Y-Ba-Cu-O on oxidized silicon substrates. The critical temperatures for onset and zero resistance are 96 and 77 K, respectively. X-ray diffraction analysis predicts 1, 2, 3 composition and orthorhombic phase of the film

  4. Cholesterol photosensitised oxidation of horse meat slices stored under different packaging films.

    Science.gov (United States)

    Boselli, Emanuele; Rodriguez-Estrada, Maria Teresa; Ferioli, Federico; Caboni, Maria Fiorenza; Lercker, Giovanni

    2010-07-01

    The effect of the type of packaging film (transparent vs. light-protecting red film) was evaluated on the formation of cholesterol oxidation products (COPs) in refrigerated horse meat slices stored in retail conditions under light exposure for 8h. In meat wrapped with a transparent film, COPs increased from 233 (control) to 317 microg/g of fat, whereas the red film delayed cholesterol oxidation and offered protection against COPs formation, since COPs decreased from 173 (control) to 139 microg/g of fat after 8h of light exposure. In addition, light opened the epoxy ring and led to the formation of triol, which was actually absent at T(0.) A proper packaging film may represent a useful strategy to retard oxidative degradation in a light-sensitive, high pigment- and fat-containing food, such as horse meat. Copyright 2010. Published by Elsevier Ltd.

  5. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of steel in H2SO4 solution: Weight loss, electrochemical, UV-vis, FTIR, XPS, and AFM approaches

    International Nuclear Information System (INIS)

    Li Xianghong; Deng Shuduan; Fu Hui; Mu Guannan; Zhao Ning

    2008-01-01

    The synergism between rare earth cerium(IV) ion and vanillin (4-hydroxy-3-methoxy-benzaldehyde) on the corrosion of cold rolled steel (CRS) in 1.0 M H 2 SO 4 solution at five temperatures ranging from 20 to 60 deg. C was first studied by weight loss and potentiodynamic polarization methods. The inhibited solutions were analyzed by ultraviolet and visible spectrophotometer (UV-vis). The adsorbed film of CRS surface containing optimum doses of the blends Ce 4+ -vanillin was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The results revealed that vanillin had a moderate inhibitive effect, and the inhibition efficiency (IE) increased with the vanillin concentration. The adsorption of vanillin obeyed Temkin adsorption isotherm. Polarization curves showed that vanillin was a mixed-type inhibitor in sulfuric acid, while prominently inhibited the cathodic reaction. For the cerium(IV) ion, it had a negligible effect, and the maximum IE was only about 20%. However, incorporation of Ce 4+ with vanillin improved significantly the inhibition performance. The IE for Ce 4+ in combination with vanillin was higher than the summation of IE for single Ce 4+ and single vanillin, which was synergism in nature. A high inhibition efficiency, 98% was obtained by a mixture of 25-200 mg l -1 vanillin and 300-475 mg l -1 Ce 4+ . UV-vis showed that the new complex of Ce 4+ -vanillin was formed in 1.0 M H 2 SO 4 for Ce 4+ combination with vanillin. Polarization studies showed that the complex of Ce 4+ -vanillin acted as a mixed-type inhibitor, which drastically inhibits both anodic and cathodic reactions. FTIR and XPS revealed that a protective film formed in the presence of both vanillin and Ce 4+ was composed of cerium oxide and the complex of Ce 4+ -vanillin. The synergism between Ce 4+ and vanillin could also be evidenced by AFM images. Depending on the results, the synergism mechanism was discussed

  6. Characterization of thin CeO{sub 2} films electrochemically deposited on HOPG

    Energy Technology Data Exchange (ETDEWEB)

    Faisal, Firas [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Toghan, Arafat, E-mail: arafat.toghan@yahoo.com [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Chemistry Department, Faculty of Science, South Valley University, 83523 Qena (Egypt); Khalakhan, Ivan; Vorokhta, Mykhailo; Matolin, Vladimír [Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 747/2, 180 00 Prague 8 (Czech Republic); Libuda, Jörg [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)

    2015-09-30

    Graphical abstract: - Highlights: • Preparation of proton exchange membrane fuel cells catalyst using electrochemical thin film deposition. • Electrodeposition thin films of CeO{sub 2} on HOPG substrates. • The samples were characterized by in-situ AFM and ex-situ XPS. • XPS results reveal that the electrochemically deposited cerium oxide films are stoichiometric. • Exposing the films to ambient air, cracking structures are formed. - Abstract: Electrodeposition is widely used for industrial applications to deposit thin films, coatings, and adhesion layers. Herein, CeO{sub 2} thin films were deposited on a highly oriented pyrolytic graphite (HOPG) substrate by cathodic electrodeposition. The influence of the deposition parameters on the yield and on the film morphology is studied and discussed. Morphology and composition of the electrodeposited films were characterized by in-situ atomic force microscopy (AFM), scanning electron microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). By AFM we show that the thickness of CeO{sub 2} films can be controlled via the Ce{sup 3+} concentration in solution and the deposition time. After exposing the films to ambient air, cracking structures are formed, which were analyzed by AFM in detail. The chemical composition of the deposits was analyzed by XPS indicating the formation of nearly stoichiometric CeO{sub 2}.

  7. Cerium-doped scintillating fused-silica fibers

    Science.gov (United States)

    Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P.; Faulkner, J.; Kunori, S.

    2018-04-01

    We report on a set of measurements made on (scintillating) cerium-doped fused-silica fibers using high-energy particle beams. These fibers were uniformly embedded in a copper absorber in order to utilize electromagnetic showers as a source of charged particles for generating signals. This new type of cerium-doped fiber potentially offers myriad new applications in calorimeters in high-energy physics, tracking systems, and beam monitoring detectors for future applications. The light yield, pulse shape, attenuation length, and light propagation speeds are given and discussed. Possible future applications are also explored.

  8. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian [College of Pharmacy, Third Military Medical University, Chongqing 400038 (China); Zhou, Lan; Liu, Jie; Yang, Lu; Zou, Ling; Xiang, Junyu; Dong, Shiwu [School of Biomedical Engineering, Third Military Medical University, Chongqing 400038 (China); Yang, Xiaochao, E-mail: xcyang@tmmu.edu.cn [School of Biomedical Engineering, Third Military Medical University, Chongqing 400038 (China)

    2017-04-30

    Highlights: • The CNPs synthesized by microwave irradiation have more reactive hot spots than that synthesized by convective heating. • The CNPs synthesized by microwave irradiation exhibited higher SOD activity than that synthesized by convective heating. • The CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress. - Abstract: Cerium oxide nanoparticles (CNPs) have been intensively explored for biomedical applications in recent few years due to the versatile enzyme mimetic activities of the nanoparticles. However, the control of CNPs quality through the optimization of synthesis conditions remains largely unexplored as most of the previous studies only focus on utilizing the catalytic activities of the nanoparticles. In the present study, CNPs with size about 5 nm were synthesized by thermal decomposition method using traditional convective heating and recently developed microwave irradiation as heating source. The quality of CNPs synthesized by the two heating manner was evaluated. The CNPs synthesized by convective heating were slightly smaller than that synthesized by microwave irradiation heating. The cores of the CNPs synthesized by the two heating manner have similar crystal structure. While the surface subtle structures of the CNPs synthesized by two heating manner were different. The CNPs synthesized by microwave irradiation have more surface reactive hot spot than that synthesized by convective heating as the nanoparticles responded more actively to the redox environment variation. This difference resulted in the higher superoxide dismutase (SOD) mimetic activity of CNPs synthesized by microwave irradiation heating than that of the convective heating. Preliminary experiments indicated that the CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress due to the higher SOD mimetic activity of the nanoparticles.

  9. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques

    International Nuclear Information System (INIS)

    He, Jian; Zhou, Lan; Liu, Jie; Yang, Lu; Zou, Ling; Xiang, Junyu; Dong, Shiwu; Yang, Xiaochao

    2017-01-01

    Highlights: • The CNPs synthesized by microwave irradiation have more reactive hot spots than that synthesized by convective heating. • The CNPs synthesized by microwave irradiation exhibited higher SOD activity than that synthesized by convective heating. • The CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress. - Abstract: Cerium oxide nanoparticles (CNPs) have been intensively explored for biomedical applications in recent few years due to the versatile enzyme mimetic activities of the nanoparticles. However, the control of CNPs quality through the optimization of synthesis conditions remains largely unexplored as most of the previous studies only focus on utilizing the catalytic activities of the nanoparticles. In the present study, CNPs with size about 5 nm were synthesized by thermal decomposition method using traditional convective heating and recently developed microwave irradiation as heating source. The quality of CNPs synthesized by the two heating manner was evaluated. The CNPs synthesized by convective heating were slightly smaller than that synthesized by microwave irradiation heating. The cores of the CNPs synthesized by the two heating manner have similar crystal structure. While the surface subtle structures of the CNPs synthesized by two heating manner were different. The CNPs synthesized by microwave irradiation have more surface reactive hot spot than that synthesized by convective heating as the nanoparticles responded more actively to the redox environment variation. This difference resulted in the higher superoxide dismutase (SOD) mimetic activity of CNPs synthesized by microwave irradiation heating than that of the convective heating. Preliminary experiments indicated that the CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress due to the higher SOD mimetic activity of the nanoparticles.

  10. Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors

    Science.gov (United States)

    Ali, F. M.; Kershi, R. M.; Sayed, M. A.; AbouDeif, Y. M.

    2018-06-01

    Polymer blend films based on Polyvinyl alcohol (PVA)/Poly(vinylpyrrolidone) (PVP) doped with different concentration of cerium ions [(PVA/PVP)-x wt.% Ce3+] (x = 3%, 5%, 10% and 15%) were prepared by the conventional solution casting technique. The characteristics of the prepared polymer composite films were studied using X-ray diffraction (XRD), FT-IR and UV-Vis. spectroscopy. The XRD patterns of the investigated samples revealed a clear reduction on the structural parameters such as crystallinity degree and cluster size D of the doped PVA/PVP blend films compared with the virgin one whereas there is no big difference in the d spacing of the product composite films. Significant changes in FT-IR spectra are observed which reveal an interactions between the cerium ions and PVA/PVP blends. The absorption spectra in the ultraviolet-visible region showed a wide red shift in the fundamental absorption edge of (PVA/PVP)-x wt. % Ce3+ composites. The optical gap Eg gradually decreased from 4.54 eV for the undoped PVA/PVP film to 3.10 eV by increasing Ce3+ ions content. The optical dispersion parameters have been analyzed according to Wemple-Didomenico single oscillator model. The dispersion energy Ed, the single oscillator energy Eo, the average inter-band oscillator wavelength λo and the static refractive index no are strongly affected by cerium ions doping. Cerium ions incorporation in PVA/PVP blend films leads to a significant increase in the refractive index and decrease in the optical gap. These results are likely of great important in varieties of applications including polymer waveguides, organic semiconductors, polymer solar cells and optoelectronics devices.

  11. Structural and photoluminescent properties of a composite tantalum oxide and silicon nanocrystals embedded in a silicon oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Becerril, T., E-mail: tomas.diaz.be@gmail.com; Herrera, V.; Morales, C.; García-Salgado, G.; Rosendo, E.; Coyopol, A., E-mail: acoyopol@gmail.com; Galeazzi, R.; Romano, R.; Nieto-Caballero, F.G.; Sarmiento, J.

    2017-04-15

    Tantalum oxide crystals encrusted in a silicon oxide matrix were synthesized by using a hot filament chemical vapor deposition system (HFCVD). A solid source composed by a mixture in different percentages of Ta{sub 2}O{sub 5} and silicon (Si) powders were used as reactants. The films were grown at 800 °C and 1000 °C under hydrogen ambient. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) at room temperature. From the XPS results it was confirmed the formation of a mixture of Tantalum oxide, silicon oxide and Si nanoparticles (Ta{sub 2}O{sub 5-}SiO{sub 2}-Si(nc)) as seen from the Si (2p) and Ta (4f) lines corresponding to Si{sup +} and Ta{sup +} states respectively. Ta{sub 2}O{sub 5} and Si nanocrystals (Si-NCs) embedded in the silicon oxide films were observed on HRTEM images which corroborate the XPS results. Finally the emission properties of the films exhibited a broad band from 400 to 850 nm caused by the independent PL properties of tantalum oxide and Si-NCs that compose the film. The intensity of the emissions was observed to be dependent on both temperature of deposition and the ratio Ta{sub 2}O{sub 5}/Si, used as initial reactants. Results from this work might supply useful data for the development of future light emitter devices.

  12. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Celia L. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Depablos-Rivera, Osmary, E-mail: osmarydep@yahoo.com [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Silva-Bermudez, Phaedra [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Instituto Nacional de Rehabilitación, Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, D.F. (Mexico); Muhl, Stephen [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1 (France); Camps, Enrique [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, kilómetro 36.5. La Marquesa, Municipio de Ocoyoacac, CP 52750, Estado de México (Mexico); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico)

    2015-03-02

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi{sub 2}O{sub 3} thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi{sub 2}O{sub 3} phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi{sub 2}O{sub 3} thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV.

  13. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    International Nuclear Information System (INIS)

    Gomez, Celia L.; Depablos-Rivera, Osmary; Silva-Bermudez, Phaedra; Muhl, Stephen; Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre; Camps, Enrique; Rodil, Sandra E.

    2015-01-01

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi 2 O 3 thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi 2 O 3 phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi 2 O 3 thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV

  14. Tungsten oxide thin films obtained by anodisation in low electrolyte concentration

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Nadja B.D. da [Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Capão do Leão, s/n, Pelotas, RS (Brazil); Pazinato, Julia C.O. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Sombrio, Guilherme; Pereira, Marcelo B.; Boudinov, Henri [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Gündel, André; Moreira, Eduardo C. [Universidade Federal do Pampa, Travessa 45, 1650 Bagé, RS (Brazil); Garcia, Irene T.S., E-mail: irene.garcia@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS (Brazil)

    2015-03-02

    Tungsten oxide nanostructured films were grown on tungsten substrates by anodisation under a fixed voltage and with sodium fluoride as electrolyte. The effect of the anion chloride and the influence of the modifying agent disodium hydrogen phosphate in the tungsten oxide films were also investigated. The structural characterisation of the films was performed by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The band gap was determined through diffuse reflectance spectroscopy. The thin films were photoluminescent and emitted in the range of 300 to 630 nm when irradiated at 266 nm. The synthesised films efficiently degraded of methyl orange dye in the presence of hydrogen peroxide and 250 nm radiation. The modifying agent was responsible for the improvement of the photocatalytic activity. Films with similar photocatalytic performance were obtained when the system sodium fluoride and disodium hydrogen phosphate were replaced by sodium chloride. The porous structure and low band gap values were responsible for the photocatalytic behaviour. - Highlights: • Tungsten oxide thin films were obtained by anodisation of tungsten in aqueous media. • The performance of the NaCl, NaF and NaF/Na{sub 2}HPO{sub 4} as electrolytes was investigated. • The relation between structure and optical behaviour has been discussed. • Films obtained with NaCl and NaF/Na{sub 2}HPO{sub 4} present similar photocatalytic activity.

  15. Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties.

    Science.gov (United States)

    Ingole, S M; Navale, S T; Navale, Y H; Bandgar, D K; Stadler, F J; Mane, R S; Ramgir, N S; Gupta, S K; Aswal, D K; Patil, V B

    2017-05-01

    Nanostructured tin oxide (SnO 2 ) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology. The chemiresistive properties of SnO 2 films are studied towards different oxidizing and reducing gases where these films have demonstrated considerable selectivity towards oxidizing nitrogen dioxide (NO 2 ) gas with a maximum response of 403% to 100ppm @200°C, and fast response and recovery times of 4s and 210s, respectively, than other test gases. In addition, SnO 2 films are enabling to detect as low as 1ppm NO 2 gas concentration @200°C with 23% response enhancement. Chemiresistive performances of SnO 2 films are carried out in the range of 1-100ppm and reported. Finally, plausible adsorption and desorption reaction mechanism of NO 2 gas molecules with SnO 2 film surface has been thoroughly discussed by means of an impedance spectroscopy analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Oxidation behaviour of Zr-Ce alloys. Kinetic and microstructure aspects

    International Nuclear Information System (INIS)

    Rouillon, Ludovic

    1996-01-01

    As Zircaloy alloys are used for fuel rods in pressurized water nuclear reactors, this research thesis aims at studying and improving corrosion resistance of zirconium alloys while maintaining their mechanical properties. It more precisely deals with the kinetic and microstructure aspects of the external corrosion of the cladding by the coolant. In the case of Zircaloys, this corrosion is characterized by a kinetic transition from an initially parabolic to a linear regime. This research aims at intervening on this transition by elaborating zirconium alloys containing an element which stabilizes zirconia, in this case cerium. After having reported a bibliographical study on sheath oxidation, on parameters which influence sheath oxidation kinetics, on zirconia stabilization by doping elements, on the interest of lanthanide oxides, the author reports a feasibility study on the use of cerium (choice and preparation, sintered ceramic characterization, annealing of stabilized zirconia), reports a metallurgical study of Zr-Ce alloys, reports the study of the oxidation behaviour of these alloys (in autoclave, in presence of oxygen, under oxygen and then water) and the characterization of the microstructures of the oxide layers. He finally discusses the relationship between microstructure and oxidation kinetics, the role of cerium in the oxidation process, and the role of water in the oxidation process [fr

  17. Inhibitory Effect Evaluation of Glycerol-Iron Oxide Thin Films on Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    C. L. Popa

    2015-01-01

    Full Text Available The main purpose of this study was to evaluate the inhibitory effect of glycerol- iron oxide thin films on Methicillin-Resistant Staphylococcus aureus (MRSA. Our results suggest that glycerol-iron oxide thin films could be used in the future for various biomedical and pharmaceutical applications. The glycerol-iron oxide thin films have been deposited by spin coating method on a silicon (111 substrate. The structural properties have been studied by X-ray diffraction (XRD and scanning electron spectroscopy (SEM. The XRD investigations of the prepared thin films demonstrate that the crystal structure of glycerol-iron oxide nanoparticles was not changed after spin coating deposition. On the other hand, the SEM micrographs suggest that the size of the glycerol-iron oxide microspheres increased with the increase of glycerol exhibiting narrow size distributions. The qualitative depth profile of glycerol-iron oxide thin films was identified by glow discharge optical emission spectroscopy (GDOES. The GDOES spectra revealed the presence of the main elements: Fe, O, C, H, and Si. The antimicrobial activity of glycerol-iron oxide thin films was evaluated by measuring the zone of inhibition. After 18 hours of incubation at 37°C, the diameters of the zones of complete inhibition have been measured obtaining values around 25 mm.

  18. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  19. Assembly of tantalum porous films with graded oxidation profile from size-selected nanoparticles

    Science.gov (United States)

    Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Cassidy, Cathal; Benelmekki, Maria; Bohra, Murtaza; Hawash, Zafer; Baughman, Kenneth W.; Sowwan, Mukhles

    2014-05-01

    Functionally graded materials offer a way to improve the physical and chemical properties of thin films and coatings for different applications in the nanotechnology and biomedical fields. In this work, design and assembly of nanoporous tantalum films with a graded oxidation profile perpendicular to the substrate surface are reported. These nanoporous films are composed of size-selected, amorphous tantalum nanoparticles, deposited using a gas-aggregated magnetron sputtering system, and oxidized after coalescence, as samples evolve from mono- to multi-layered structures. Molecular dynamics computer simulations shed light on atomistic mechanisms of nanoparticle coalescence, which govern the films porosity. Aberration-corrected (S) TEM, GIXRD, AFM, SEM, and XPS were employed to study the morphology, phase and oxidation profiles of the tantalum nanoparticles, and the resultant films.

  20. Ellipsometric investigations of pyrolytically deposited thin indium oxide films

    International Nuclear Information System (INIS)

    Winkler, U.

    1980-01-01

    Ellipsometric measurements have been carried out of thin indium oxide films deposited pyrolytically on glass substrates. It was found that the roughness of the films affected the measuring results. Therefore, only after applying a two-layer model a reasonable interpretation of the measuring results became possible