WorldWideScience

Sample records for cerebral white matter

  1. Cerebral white matter hypoplasia

    International Nuclear Information System (INIS)

    This paper demonstrates the MR imaging findings in children with cerebral white matter hypoplasia (CWMH). The MR studies of four children, aged 3-7 y (mean age, 2.3 y) with a diagnosis of CWMH were reviewed. In all cases multiplanar T1-weighted and T2-weighted spin-echo images were obtained. All children had similar histories of severe developmental delay and nonprogressive neurologic deficits despite normal gestational and birth histories. In two cases there was a history of maternal cocaine abuse. Autopsy correlation was available in one child. The MR images of all four children demonstrated diffuse lack of white matter and enlarged ventricles but normal-appearing gray matter. The corpus callosum, although completely formed, was severely thinned. There was no evidence of gliosis or porencephaly, and the distribution of myelin deposition was normal for age in all cases. Autopsy finding in one child correlated exactly with the MR finding

  2. Cerebral white matter deficiencies in pedophilic men.

    Science.gov (United States)

    Cantor, James M; Kabani, Noor; Christensen, Bruce K; Zipursky, Robert B; Barbaree, Howard E; Dickey, Robert; Klassen, Philip E; Mikulis, David J; Kuban, Michael E; Blak, Thomas; Richards, Blake A; Hanratty, M Katherine; Blanchard, Ray

    2008-02-01

    The present investigation sought to identify which brain regions distinguish pedophilic from nonpedophilic men, using unbiased, automated analyses of the whole brain. T1-weighted magnetic resonance images (MRIs) were acquired from men who demonstrated illegal or clinically significant sexual behaviors or interests (n = 65) and from men who had histories of nonsexual offenses but no sexual offenses (n = 62). Sexual interest in children was assessed by participants' admissions of pedophilic interest, histories of committing sexual offenses against children, and psychophysiological responses in the laboratory to erotic stimuli depicting children or adults. Automated parcellation of the MRIs revealed significant negative associations between pedophilia and white matter volumes of the temporal and parietal lobes bilaterally. Voxel-based morphometry corroborated the associations and indicated that the regions of lower white matter volumes followed, and were limited to, two major fiber bundles: the superior fronto-occipital fasciculus and the right arcuate fasciculus. No significant differences were found in grey matter or in cerebrospinal fluid (CSF). Because the superior fronto-occipital and arcuate fasciculi connect the cortical regions that respond to sexual cues, these results suggest (1) that those cortical regions operate as a network for recognizing sexually relevant stimuli and (2) that pedophilia results from a partial disconnection within that network. PMID:18039544

  3. Age-related cerebral white matter changes on computed tomography

    International Nuclear Information System (INIS)

    Changes of cerebral white matter on computed cranial tomography related to aging were studied in 70 subjects aged 30 to 94 years. The subjects had no histories of cerebrovascular accidents and no abnormalities in the central nervous system were shown by physical examinations and CT scans. We measured the average attenuation values (CT numbers) of each elliptical region (165 pixels, 0.39cm2) in the bilateral thalamus and twelve areas of deep white matter. Multiple regression analysis was used to assess the effects of age, cranial size and cranial bone CT numbers on the brain CT numbers. We also studied the association between brain CT numbers and brain atrophy, hypertension, diabetes mellitus. CT numbers of frontal white matter surrounding anterior horns decreased with aging in 70 subjects aged 30 to 94 years. No significant correlation between age and brain CT numbers was found in any other region by multivariate analysis, because of the prominent effect of cranial bone CT numbers on brain CT numbers. Although no age-related changes of white matter CT numbers was found in 41 subjects aged 30 to 65 years, there were significant negative correlations between age and white matter CT numbers at all regions in 29 subjects aged 66 to 94 years. Brain atrophy was associated with brain CT numbers. No association was found for hypertension or diabetes mellitus. Brain CT numbers decreased with aging even in neurologically healthy persons in older age. Brain CT numbers also decreased as cerebral atrophy advanced. (author)

  4. Age-related cerebral white matter changes on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hitoshi; Kobayashi, Shotai; Koide, Hiromi; Yamaguchi, Shuhei; Okada, Kazunori; Shimote, Kouichi; Tsunematsu, Tokugoro

    1989-01-01

    Changes of cerebral white matter on computed cranial tomography related to aging were studied in 70 subjects aged 30 to 94 years. The subjects had no histories of cerebrovascular accidents and no abnormalities in the central nervous system were shown by physical examinations and CT scans. We measured the average attenuation values (CT numbers) of each elliptical region (165 pixels, 0.39cm/sup 2/) in the bilateral thalamus and twelve areas of deep white matter. Multiple regression analysis was used to assess the effects of age, cranial size and cranial bone CT numbers on the brain CT numbers. We also studied the association between brain CT numbers and brain atrophy, hypertension, diabetes mellitus. CT numbers of frontal white matter surrounding anterior horns decreased with aging in 70 subjects aged 30 to 94 years. No significant correlation between age and brain CT numbers was found in any other region by multivariate analysis, because of the prominent effect of cranial bone CT numbers on brain CT numbers. Although no age-related changes of white matter CT numbers was found in 41 subjects aged 30 to 65 years, there were significant negative correlations between age and white matter CT numbers at all regions in 29 subjects aged 66 to 94 years. Brain atrophy was associated with brain CT numbers. No association was found for hypertension or diabetes mellitus. Brain CT numbers decreased with aging even in neurologically healthy persons in older age. Brain CT numbers also decreased as cerebral atrophy advanced. (author).

  5. CT hypodensity on cerebral white matter in Wilson's disease

    Directory of Open Access Journals (Sweden)

    Laura B. Jardim

    1991-06-01

    Full Text Available Wilson's disease in an autosomal recessive disorder of copper metabolism where systemic manifestations are secondary to thei accumulation of copper in hepatic, nervous and other tissues. In CNS, the structural lesions most commonly found by CT scan are ventricular dilatation, cortical atrophy, basal ganglia hyperdensities, and brainstem and cerebellar atrophy. Degenerative changes of cerebral white matter seen on early anatomo-pathologic studies, but were almost never found on CT scan from recently described patients. We report a case of Wilson's disease with an unusually rapid deterioration where asymmetric low-densities in the subcortical white matter were disclosed by CT scan.

  6. Alcohol Use and Cerebral White Matter Compromise in Adolescence

    OpenAIRE

    Elofson, Jonathan; Gongvatana, Win; Carey, Kate B.

    2013-01-01

    Alcohol use is typically initiated during adolescence, a period known to be critical in neurodevelopment. The adolescent brain may be particularly susceptible to the harmful effects of alcohol. While the cognitive deficits associated with alcohol use during adolescence have been well-documented, the neural substrates underlying these effects remain inadequately understood. Cerebral white matter has been suggested as a primary site of alcohol-related damage and diffusion tensor imaging (DTI) a...

  7. The Instrumented Fetal Sheep as a Model of Cerebral White Matter Injury in the Premature Infant

    OpenAIRE

    Back, Stephen A.; Riddle, Art; Dean, Justin; Hohimer, A. Roger

    2012-01-01

    Despite advances in neonatal intensive care, survivors of premature birth remain highly susceptible to unique patterns of developmental brain injury that manifest as cerebral palsy and cognitive-learning disabilities. The developing brain is particularly susceptible to cerebral white matter injury related to hypoxia-ischemia. Cerebral white matter development in fetal sheep shares many anatomical and physiological similarities with humans. Thus, the fetal sheep has provided unique experimenta...

  8. Small white matter lesion detection in cerebral small vessel disease

    Science.gov (United States)

    Ghafoorian, Mohsen; Karssemeijer, Nico; van Uden, Inge; de Leeuw, Frank E.; Heskes, Tom; Marchiori, Elena; Platel, Bram

    2015-03-01

    Cerebral small vessel disease (SVD) is a common finding on magnetic resonance images of elderly people. White matter lesions (WML) are important markers for not only the small vessel disease, but also neuro-degenerative diseases including multiple sclerosis, Alzheimer's disease and vascular dementia. Volumetric measurements such as the "total lesion load", have been studied and related to these diseases. With respect to SVD we conjecture that small lesions are important, as they have been observed to grow over time and they form the majority of lesions in number. To study these small lesions they need to be annotated, which is a complex and time-consuming task. Existing (semi) automatic methods have been aimed at volumetric measurements and large lesions, and are not suitable for the detection of small lesions. In this research we established a supervised voxel classification CAD system, optimized and trained to exclusively detect small WMLs. To achieve this, several preprocessing steps were taken, which included a robust standardization of subject intensities to reduce inter-subject intensity variability as much as possible. A number of features that were found to be well identifying small lesions were calculated including multimodal intensities, tissue probabilities, several features for accurate location description, a number of second order derivative features as well as multi-scale annular filter for blobness detection. Only small lesions were used to learn the target concept via Adaboost using random forests as its basic classifiers. Finally the results were evaluated using Free-response receiver operating characteristic.

  9. Cerebral white matter correlates of delay discounting in adolescents.

    Science.gov (United States)

    Ho, Beng-Choon; Koeppel, Julie A; Barry, Amy B

    2016-05-15

    The adolescent brain undergoes extensive structural white matter (WM) changes. Adolescence is also a critical time period during which cognitive, emotional and social maturation occurs in transition into adulthood. Compared to adults, adolescents are generally more impulsive with increased risk-taking behaviors. The goal of this study is to examine whether adolescent impulsivity may be related to cerebral WM maturation. In 89 healthy adolescents, we assessed impulsivity using the delay discounting task, and MRI WM volumes in brain regions previously implicated in delay discounting behaviors. We found that smaller delay discounting AUC (area under the curve) was associated with larger WM volumes in orbitofrontal, dorsolateral and medial prefrontal cortices (PFC) and motor cortex. There were no significant effects of AUC on WM volumes within somatosensory brain regions. In our sample, younger age was significantly associated with greater WM volumes in orbitofrontal and dorsolateral PFC subregions. Even after accounting for age-related effects, preference for immediate rewards (or greater impulsivity) still correlated with larger WM volumes in prefrontal regions known to mediate cognitive control. Our findings lend further support to the notion that reduced brain WM maturity may limit the ability in adolescents to forgo immediate rewards leading to greater impulsivity. PMID:26946275

  10. Cerebral white matter in early puberty is associated with luteinizing hormone concentrations.

    Science.gov (United States)

    Peper, Jiska S; Brouwer, Rachel M; Schnack, Hugo G; van Baal, G Caroline M; van Leeuwen, Marieke; van den Berg, Stéphanie M; Delemarre-Van de Waal, Henriëtte A; Janke, Andrew L; Collins, D Louis; Evans, Alan C; Boomsma, Dorret I; Kahn, René S; Hulshoff Pol, Hilleke E

    2008-08-01

    Puberty is a period in which cerebral white matter grows considerably, whereas gray matter decreases. The first endocrinological marker of puberty in both boys and girls is an increased secretion of luteinizing hormone (LH). Here we investigated the phenotypic association between LH, global and focal gray and white matter in 104 healthy nine-year-old monozygotic and dizygotic twins. Volumetric MRI and voxel-based morphometry were applied to measure global gray and white matter and to estimate relative concentrations of regional cerebral gray and white matter, respectively. A possible common genetic origin of this association (genetic correlation) was examined. Results showed that higher LH levels are associated with a larger global white matter proportion and with higher regional white matter density. Areas of increased white matter density included the cingulum, middle temporal gyrus and splenium of the corpus callosum. No association between LH and global gray matter proportion or regional gray matter density was found. Our data indicate that a common genetic factor underlies the association between LH level and regional white matter density. We suggest that the increase of white matter growth during puberty reported earlier might be directly or indirectly mediated by LH production. In addition, genes involved in LH production may be promising candidate genes in neuropsychiatric illnesses with an onset in early adolescence.

  11. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Garde, E; Rostrup, Egill;

    2002-01-01

    reported global reductions in cerebral blood flow (CBF) and cerebral vascular reactivity. In this study, we examined localized hemodynamic status to compare WMH to normal appearing white matter (NAWM). METHODS: A group of 21 normal 85-year-old subjects were studied using dynamic contrast-enhanced MRI...... together with administration of acetazolamide. From a combination of anatomic images with different signal weighting, regions of interest were generated corresponding to gray and white matter and WMH. Localized measurements of CBF and cerebral blood volume (CBV) and mean transit time were obtained directly...

  12. Quantitative analysis of the corpus callosum in children with cerebral palsy and developmental delay: correlation with cerebral white matter volume

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahy, Ashok [Childrens Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Barnes, Patrick D. [Stanford University Medical Center, Department of Radiology, Lucile Salter Packard Children' s Hospital, Palo Alto, CA (United States); Robertson, Robert L. [Children' s Hospital Boston, Department of Radiology, Boston, MA (United States); Sleeper, Lynn A. [New England Research Institute, Watertown, MA (United States); Sayre, James W. [UCLA Medical Center, Departments of Radiology and Biostatistics, Los Angeles, CA (United States)

    2005-12-01

    This study was conducted to quantitatively correlate the thickness of the corpus callosum with the volume of cerebral white matter in children with cerebral palsy and developmental delay. Material and methods: A clinical database of 70 children with cerebral palsy and developmental delay was established with children between the ages of 1 and 5 years. These children also demonstrated abnormal periventricular T2 hyperintensities associated with and without ventriculomegaly. Mid-sagittal T1-weighted images were used to measure the thickness (genu, mid-body, and splenium) and length of the corpus callosum. Volumes of interest were digitized based on gray-scale densities to define the hemispheric cerebral white matter on axial T2-weighted and FLAIR images. The thickness of the mid-body of the corpus callosum was correlated with cerebral white matter volume. Subgroup analysis was also performed to examine the relationship of this correlation with both gestational age and neuromotor outcome. Statistical analysis was performed using analysis of variance and Pearson correlation coefficients. There was a positive correlation between the thickness of the mid-body of the corpus callosum and the volume of cerebral white matter across all children studied (R=0.665, P=0.0001). This correlation was not dependent on gestational age. The thickness of the mid-body of the corpus callosum was decreased in the spastic diplegia group compared to the two other groups (hypotonia and developmental delay only; P<0.0001). Within each neuromotor subgroup, there was a positive correlation between thickness of the mid-body of the corpus callosum and volume of the cerebral white matter. (orig.)

  13. Quantitative analysis of the corpus callosum in children with cerebral palsy and developmental delay: correlation with cerebral white matter volume

    International Nuclear Information System (INIS)

    This study was conducted to quantitatively correlate the thickness of the corpus callosum with the volume of cerebral white matter in children with cerebral palsy and developmental delay. Material and methods: A clinical database of 70 children with cerebral palsy and developmental delay was established with children between the ages of 1 and 5 years. These children also demonstrated abnormal periventricular T2 hyperintensities associated with and without ventriculomegaly. Mid-sagittal T1-weighted images were used to measure the thickness (genu, mid-body, and splenium) and length of the corpus callosum. Volumes of interest were digitized based on gray-scale densities to define the hemispheric cerebral white matter on axial T2-weighted and FLAIR images. The thickness of the mid-body of the corpus callosum was correlated with cerebral white matter volume. Subgroup analysis was also performed to examine the relationship of this correlation with both gestational age and neuromotor outcome. Statistical analysis was performed using analysis of variance and Pearson correlation coefficients. There was a positive correlation between the thickness of the mid-body of the corpus callosum and the volume of cerebral white matter across all children studied (R=0.665, P=0.0001). This correlation was not dependent on gestational age. The thickness of the mid-body of the corpus callosum was decreased in the spastic diplegia group compared to the two other groups (hypotonia and developmental delay only; P<0.0001). Within each neuromotor subgroup, there was a positive correlation between thickness of the mid-body of the corpus callosum and volume of the cerebral white matter. (orig.)

  14. Comparison of the Relationship between Cerebral White Matter and Grey Matter in Normal Dogs and Dogs with Lateral Ventricular Enlargement.

    Directory of Open Access Journals (Sweden)

    Martin J Schmidt

    Full Text Available Large cerebral ventricles are a frequent finding in brains of dogs with brachycephalic skull conformation, in comparison with mesaticephalic dogs. It remains unclear whether oversized ventricles represent a normal variant or a pathological condition in brachycephalic dogs. There is a distinct relationship between white matter and grey matter in the cerebrum of all eutherian mammals. The aim of this study was to determine if this physiological proportion between white matter and grey matter of the forebrain still exists in brachycephalic dogs with oversized ventricles. The relative cerebral grey matter, white matter and cerebrospinal fluid volume in dogs were determined based on magnetic-resonance-imaging datasets using graphical software. In an analysis of covariance (ANCOVA using body mass as the covariate, the adjusted means of the brain tissue volumes of two groups of dogs were compared. Group 1 included 37 mesaticephalic dogs of different sizes with no apparent changes in brain morphology, and subjectively normal ventricle size. Group 2 included 35 brachycephalic dogs in which subjectively enlarged cerebral ventricles were noted as an incidental finding in their magnetic-resonance-imaging examination. Whereas no significant different adjusted means of the grey matter could be determined, the group of brachycephalic dogs had significantly larger adjusted means of lateral cerebral ventricles and significantly less adjusted means of relative white matter volume. This indicates that brachycephalic dogs with subjective ventriculomegaly have less white matter, as expected based on their body weight and cerebral volume. Our study suggests that ventriculomegaly in brachycephalic dogs is not a normal variant of ventricular volume. Based on the changes in the relative proportion of WM and CSF volume, and the unchanged GM proportions in dogs with ventriculomegaly, we rather suggest that distension of the lateral ventricles might be the underlying cause

  15. Diffuse Cerebral White Matter T2-Weighted Hyperintensity: A New Finding of General Paresis

    Energy Technology Data Exchange (ETDEWEB)

    Alam, F.; Yasutomi, H.; Fukuda, H.; Horiguchi, J.; Murakami, Y.; Ohshita, T.; Inoue, K.; Ito, K. [Graduate School of Biomedical Sciences, Hiroshima Univ. (Japan). Depts. of Radiology, and Clinical Neurosciences and Therapeutics

    2006-07-15

    General paresis (parenchymatous neurosyphilis) is a rare disease, and in recent years the number of papers published on the magnetic resonance imaging findings has been limited. The findings are as follows: cerebral atrophy; mesiotemporal T2 hyperintensity; ventriculomegaly; pathological T2 hypointensity of the globus pallidus, putamen, the head of the caudate nucleus and thalamus. We present a new finding, diffuse cerebral white matter T2 hyperintensity, observed in a patient with general paresis with a 5-year history of progressive dementia.

  16. Development of cerebral gray and white matter injury and cerebral inflammation over time after inflammatory perinatal asphyxia

    NARCIS (Netherlands)

    Bonestroo, Hilde J C; Heijnen, Cobi J.; Groenendaal, Floris; Van Bel, Frank; Nijboer, Cora H.

    2015-01-01

    Antenatal inflammation is associated with increased severity of hypoxic-ischemic (HI) encephalopathy and adverse outcome in human neonates and experimental rodents. We investigated the effect of lipopolysaccharide (LPS) on the timing of HI-induced cerebral tissue loss and gray matter injury, white m

  17. Cerebral white matter blood flow and energy metabolism in multiple sclerosis

    NARCIS (Netherlands)

    Steen, Christel; D'haeseleer, Miguel; Hoogduin, Johannes M.; Fierens, Yves; Cambron, Melissa; Mostert, Jop P.; Heersema, Dorothea J.; Koch, Marcus W.; De Keyser, Jacques

    2013-01-01

    Background: Cerebral blood flow (CBF) is reduced in normal-appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but the underlying mechanism is unknown. Objective: The objective of this article is to assess the relationship between reduced NAWM CBF and both axonal mitochondrial me

  18. Detection of white matter lesions in cerebral small vessel disease

    Science.gov (United States)

    Riad, Medhat M.; Platel, Bram; de Leeuw, Frank-Erik; Karssemeijer, Nico

    2013-02-01

    White matter lesions (WML) are diffuse white matter abnormalities commonly found in older subjects and are important indicators of stroke, multiple sclerosis, dementia and other disorders. We present an automated WML detection method and evaluate it on a dataset of small vessel disease (SVD) patients. In early SVD, small WMLs are expected to be of importance for the prediction of disease progression. Commonly used WML segmentation methods tend to ignore small WMLs and are mostly validated on the basis of total lesion load or a Dice coefficient for all detected WMLs. Therefore, in this paper, we present a method that is designed to detect individual lesions, large or small, and we validate the detection performance of our system with FROC (free-response ROC) analysis. For the automated detection, we use supervised classification making use of multimodal voxel based features from different magnetic resonance imaging (MRI) sequences, including intensities, tissue probabilities, voxel locations and distances, neighborhood textures and others. After preprocessing, including co-registration, brain extraction, bias correction, intensity normalization, and nonlinear registration, ventricle segmentation is performed and features are calculated for each brain voxel. A gentle-boost classifier is trained using these features from 50 manually annotated subjects to give each voxel a probability of being a lesion voxel. We perform ROC analysis to illustrate the benefits of using additional features to the commonly used voxel intensities; significantly increasing the area under the curve (Az) from 0.81 to 0.96 (p<0.05). We perform the FROC analysis by testing our classifier on 50 previously unseen subjects and compare the results with manual annotations performed by two experts. Using the first annotator results as our reference, the second annotator performs at a sensitivity of 0.90 with an average of 41 false positives per subject while our automated method reached the same

  19. Progression of Cerebral Atrophy and White Matter Hyperintensities in Patients With Type 2 Diabetes

    OpenAIRE

    de Bresser, Jeroen; Tiehuis, Audrey M.; van den Berg, Esther; Reijmer, Yael D.; Jongen, Cynthia; Kappelle, L Jaap; Mali, Willem P.; Viergever, Max A.; Biessels, Geert Jan; ,

    2010-01-01

    OBJECTIVE Type 2 diabetes is associated with a moderate degree of cerebral atrophy and a higher white matter hyperintensity (WMH) volume. How these brain-imaging abnormalities evolve over time is unknown. The present study aims to quantify cerebral atrophy and WMH progression over 4 years in type 2 diabetes. RESEARCH DESIGN AND METHODS A total of 55 patients with type 2 diabetes and 28 age-, sex-, and IQ-matched control participants had two 1.5T magnetic resonance imaging scans with a 4-year ...

  20. APOL1 renal-risk variants associate with reduced cerebral white matter lesion volume and increased gray matter volume.

    Science.gov (United States)

    Freedman, Barry I; Gadegbeku, Crystal A; Bryan, R Nick; Palmer, Nicholette D; Hicks, Pamela J; Ma, Lijun; Rocco, Michael V; Smith, S Carrie; Xu, Jianzhao; Whitlow, Christopher T; Wagner, Benjamin C; Langefeld, Carl D; Hawfield, Amret T; Bates, Jeffrey T; Lerner, Alan J; Raj, Dominic S; Sadaghiani, Mohammad S; Toto, Robert D; Wright, Jackson T; Bowden, Donald W; Williamson, Jeff D; Sink, Kaycee M; Maldjian, Joseph A; Pajewski, Nicholas M; Divers, Jasmin

    2016-08-01

    To assess apolipoprotein L1 gene (APOL1) renal-risk-variant effects on the brain, magnetic resonance imaging (MRI)-based cerebral volumes and cognitive function were assessed in 517 African American-Diabetes Heart Study (AA-DHS) Memory IN Diabetes (MIND) and 2568 hypertensive African American Systolic Blood Pressure Intervention Trial (SPRINT) participants without diabetes. Within these cohorts, 483 and 197 had cerebral MRI, respectively. AA-DHS participants were characterized as follows: 60.9% female, mean age of 58.6 years, diabetes duration 13.1 years, estimated glomerular filtration rate of 88.2 ml/min/1.73 m(2), and a median spot urine albumin to creatinine ratio of 10.0 mg/g. In additive genetic models adjusting for age, sex, ancestry, scanner, intracranial volume, body mass index, hemoglobin A1c, statins, nephropathy, smoking, hypertension, and cardiovascular disease, APOL1 renal-risk-variants were positively associated with gray matter volume (β = 3.4 × 10(-3)) and negatively associated with white matter lesion volume (β = -0.303) (an indicator of cerebral small vessel disease) and cerebrospinal fluid volume (β= -30707) (all significant), but not with white matter volume or cognitive function. Significant associations corresponding to adjusted effect sizes (β/SE) were observed with gray matter volume (0.16) and white matter lesion volume (-0.208), but not with cerebrospinal fluid volume (-0.251). Meta-analysis results with SPRINT Memory and Cognition in Decreased Hypertension (MIND) participants who had cerebral MRI were confirmatory. Thus, APOL1 renal-risk-variants are associated with larger gray matter volume and lower white matter lesion volume suggesting lower intracranial small vessel disease. PMID:27342958

  1. Voxel-based MRI intensitometry reveals extent of cerebral white matter pathology in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Viktor Hartung

    Full Text Available Amyotrophic lateral sclerosis (ALS is characterized by progressive loss of upper and lower motor neurons. Advanced MRI techniques such as diffusion tensor imaging have shown great potential in capturing a common white matter pathology. However the sensitivity is variable and diffusion tensor imaging is not yet applicable to the routine clinical environment. Voxel-based morphometry (VBM has revealed grey matter changes in ALS, but the bias-reducing algorithms inherent to traditional VBM are not optimized for the assessment of the white matter changes. We have developed a novel approach to white matter analysis, namely voxel-based intensitometry (VBI. High resolution T1-weighted MRI was acquired at 1.5 Tesla in 30 ALS patients and 37 age-matched healthy controls. VBI analysis at the group level revealed widespread white matter intensity increases in the corticospinal tracts, corpus callosum, sub-central, frontal and occipital white matter tracts and cerebellum. VBI results correlated with disease severity (ALSFRS-R and patterns of cerebral involvement differed between bulbar- and limb-onset. VBI would be easily translatable to the routine clinical environment, and once optimized for individual analysis offers significant biomarker potential in ALS.

  2. Effects of Surgery and Proton Therapy on Cerebral White Matter of Craniopharyngioma Patients

    Energy Technology Data Exchange (ETDEWEB)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Li, Yimei; Li, Xingyu [Department of Biostatistics, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Sabin, Noah D. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Indelicato, Daniel J. [Department of Radiation Oncology, University of Florida, Jacksonville, Florida (United States); Ogg, Robert J. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States); Boop, Frederick A. [Semmes-Murphey Neurologic and Spine Institute, Memphis, Tennessee (United States); Jane, John A. [Department of Neurosurgery, University of Virginia, Charlottesville, Virginia (United States); Hua, Chiaho [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2015-09-01

    Purpose: The purpose of this study was to determine radiation dose effect on the structural integrity of cerebral white matter in craniopharyngioma patients receiving surgery and proton therapy. Methods and Materials: Fifty-one patients (2.1-19.3 years of age) with craniopharyngioma underwent surgery and proton therapy in a prospective therapeutic trial. Anatomical magnetic resonance images acquired after surgery but before proton therapy were inspected to identify white matter structures intersected by surgical corridors and catheter tracks. Longitudinal diffusion tensor imaging (DTI) was performed to measure microstructural integrity changes in cerebral white matter. Fractional anisotropy (FA) derived from DTI was statistically analyzed for 51 atlas-based white matter structures of the brain to determine radiation dose effect. FA in surgery-affected regions in the corpus callosum was compared to that in its intact counterpart to determine whether surgical defects affect radiation dose effect. Results: Surgical defects were seen most frequently in the corpus callosum because of transcallosal resection of tumors and insertion of ventricular or cyst catheters. Longitudinal DTI data indicated reductions in FA 3 months after therapy, which was followed by a recovery in most white matter structures. A greater FA reduction was correlated with a higher radiation dose in 20 white matter structures, indicating a radiation dose effect. The average FA in the surgery-affected regions before proton therapy was smaller (P=.0001) than that in their non–surgery-affected counterparts with more intensified subsequent reduction of FA (P=.0083) after therapy, suggesting that surgery accentuated the radiation dose effect. Conclusions: DTI data suggest that mild radiation dose effects occur in patients with craniopharyngioma receiving surgery and proton therapy. Surgical defects present at the time of proton therapy appear to accentuate the radiation dose effect longitudinally

  3. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Garde, E; Rostrup, Egill;

    2002-01-01

    together with administration of acetazolamide. From a combination of anatomic images with different signal weighting, regions of interest were generated corresponding to gray and white matter and WMH. Localized measurements of CBF and cerebral blood volume (CBV) and mean transit time were obtained directly...... within WMH and NAWM. RESULTS: When comparing WMH to NAWM, measurements showed significantly lower CBF (P=0.004) and longer mean transit time (P

  4. Early treatment of minocycline alleviates white matter and cognitive impairments after chronic cerebral hypoperfusion.

    Science.gov (United States)

    Ma, Jing; Zhang, Jing; Hou, Wei Wei; Wu, Xiao Hua; Liao, Ru Jia; Chen, Ying; Wang, Zhe; Zhang, Xiang Nan; Zhang, Li San; Zhou, Yu Dong; Chen, Zhong; Hu, Wei Wei

    2015-01-01

    Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion develops with progressive white matter and cognitive impairments, yet no effective therapy is available. We investigated the temporal effects of minocycline on an experimental SIVD exerted by right unilateral common carotid arteries occlusion (rUCCAO). Minocycline treated at the early stage (day 0-3), but not the late stage after rUCCAO (day 4-32) alleviated the white matter and cognitive impairments, and promoted remyelination. The actions of minocycline may not involve the inhibition of microglia activation, based on the effects after the application of a microglial activation inhibitor, macrophage migration inhibitory factor, and co-treatment with lipopolysaccharides. Furthermore, minocycline treatment at the early stage promoted the proliferation of oligodendrocyte progenitor cells (OPCs) in subventricular zone, increased OPC number and alleviated apoptosis of mature oligodendrocytes in white matter. In vitro, minocycline promoted OPC proliferation and increased the percentage of OPCs in S and G2/M phases. We provided direct evidence that early treatment is critical for minocycline to alleviate white matter and cognitive impairments after chronic cerebral hypoperfusion, which may be due to its robust effects on OPC proliferation and mature oligodendrocyte loss. So, early therapeutic time window may be crucial for its application in SIVD.

  5. Cerebral white matter injury and damage to myelin sheath following whole-brain ischemia.

    Science.gov (United States)

    Chen, Yingzhu; Yi, Qiong; Liu, Gang; Shen, Xue; Xuan, Lihui; Tian, Ye

    2013-02-01

    Myelin sheath, either in white matter or in other regions of brain, is vulnerable to ischemia. The specific events involved in the progression of ischemia in white matter have not yet been elucidated. The aim of this study was to determine histopathological alterations in cerebral white matter and levels of myelin basic protein (MBP) in ischemia-injured brain tissue during the acute and subacute phases of central nervous injury following whole-brain ischemia. The whole cerebral ischemia model (four-vessel occlusion (4-VO)) was established in adult Sprague-Dawley rats and MBP gene expression and protein levels in the brain tissue were measured using reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) at 2 days, 4 days, 7 days, 14 days, and 28 days following ischemia. Demyelination was determined by Luxol fast blue myelin staining, routine histopathological staining, and electron microscopy in injured brain tissue. Results showed that edema, vascular dilation, focal necrosis, demyelination, adjacent reactive gliosis and inflammation occurred 7 days after ischemia in HE staining and recovered to control levels at 28 days. The absence of Luxol fast blue staining and vacuolation was clearly visible at 7 days, 14 days, and 28 days. Semiquantitative analysis showed that the transparency of myelin had decreased significantly by 7 days, 14 days, and 28 days. Demyelination and ultrastructual changes were detected 7 days after ischemia. The relative levels of MBP mRNA decreased 2 days after ischemia and this trend continued throughout the remaining four points in time. The MBP levels measured using ELISA also decreased significantly at 2 days and 4 days, but they recovered by 7 days and returned to control levels by 14 days. These results suggest that the impact of ischemia on cerebral white matter is time-sensitive and that different effects may follow different courses over time.

  6. Diazoxide and dimethyl sulphoxide alleviate experimental cerebral hypoperfusion-induced white matter injury in the rat brain

    NARCIS (Netherlands)

    Farkas, E; Annahazi, A; Institoris, A; Mihaly, A; Luiten, PGM; Bari, F

    2005-01-01

    Aging and dementia are accompanied by cerebral white matter (WM) injury. which is considered to be of ischemic origin. A causal link between cerebral ischemia and WM damage has been demonstrated in rats: however. few attempts appear to have, been made to test potential drugs for the alleviation of i

  7. Investigation of spatial correlation in MR images of human cerebral white matter using geostatistical methods

    International Nuclear Information System (INIS)

    Investigating the structure of human cerebral white matter is gaining interest in the neurological as well as in the neuroscientific community. It has been demonstrated in many studies that white matter is a very dynamic structure, rather than a static construct which does not change for a lifetime. That means, structural changes within white matter can be observed even on short timescales, e.g. in the course of normal ageing, neurodegenerative diseases or even during learning processes. To investigate these changes, one method of choice is the texture analysis of images obtained from white matter. In this regard, MRI plays a distinguished role as it provides a completely non-invasive way of acquiring in vivo images of human white matter. This thesis adapted a statistical texture analysis method, known as variography, to quantify the spatial correlation of human cerebral white matter based on MR images. This method, originally introduced in geoscience, relies on the idea of spatial correlation in geological phenomena: in naturally grown structures near things are correlated stronger to each other than distant things. This work reveals that the geological principle of spatial correlation can be applied to MR images of human cerebral white matter and proves that variography is an adequate method to quantify alterations therein. Since the process of MRI data acquisition is completely different to the measuring process used to quantify geological phenomena, the variographic analysis had to be adapted carefully to MR methods in order to provide a correctly working methodology. Therefore, theoretical considerations were evaluated with numerical samples in a first, and validated with real measurements in a second step. It was shown that MR variography facilitates to reduce the information stored in the texture of a white matter image to a few highly significant parameters, thereby quantifying heterogeneity and spatial correlation distance with an accuracy better than 5

  8. An allometric scaling law between gray matter and white matter of cerebral cortex

    International Nuclear Information System (INIS)

    An allometric scaling relationship between cortical white and gray volumes is derived from a general model that describes brain's remarkable efficiency and prodigious communications between brain areas. The model assumes that (1) a cell's metabolic rate depends upon cell's surface; (2) the overall basal metabolic rates of brain areas depend upon their fractal structures; (3) differential brain areas have same basal metabolic rate at slow wave sleep. The obtained allometric exponent scaling white matter to gray matter is 1.2, which is very much close to Zhang and Sejnowski's observation data

  9. Pharmacological Effects of Erythropoietin and its Derivative Carbamyl erythropoietin in Cerebral White Matter Injury

    Science.gov (United States)

    Liu, Wei

    Periventricular leukomalacia (PVL) is the predominant form of brain injury in the premature infant and the most common cause of cerebral palsy, yet no therapy currently exists for this serious human disorder. As PVL often occurs in preterm infants suffering from cerebral hypoxia/ischemia with or without prior exposure to maternal-fetal infection/inflammation, we used hypoxia/ischemia with or without lipopolysaccharide (LPS) injection, to produce clinically relevant PVL-like lesions in the white matter in postnatal day six (P6) mice. We studied the white matter pathology under different conditions, such as different durations of hypoxia and different doses of LPS, to evaluate the effects of those etiological factors on neonatal white matter injury. Distinct related pathological events were investigated at different time points during the progression of PVL. We used immunohistochemistry, histological analysis, and electron microscopy (EM) to study demylination that occurs in the white matter area, which is consistent with the pathology of human PVL. Previous studies have shown that erythropoietin (EPO) and its derivative carbamylated EPO (CEPO) are neuroprotective in various experimental models of brain injury. However, none of these studies investigated their efficacy against white matter injury using appropriate animal models of PVL. We produced unilateral or bilateral white matter injury in P6 mice using unilateral carotid ligation (UCL) followed by hypoxia (6% oxygen, 35 min) or by UCL/hypoxia plus LPS injection, respectively. We administered a single intraperitoneal (i.p.) dose of EPO or CEPO (5000 IU/kg) immediately after the insult, and found both drugs to provide significant protection against white matter injury in PVL mice compared to vehicle-treated groups. In addition, EPO and CEPO treatments attenuated neurobehavioral dysfunctions in an acute manner after PVL injury. EPO and CEPO have relatively few adverse effects, and thus may be a therapeutic agent

  10. Cerebral white matter damage in frontotemporal dementia assessed by diffusion tensor tractography

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Koushun; Mizuno, Toshiki; Kasai, Takashi; Kondo, Masaki; Nakagawa, Masanori [Kyoto Prefectural University of Medicine, Department of Neurology, Graduate School of Medical Science, Kyoto (Japan); Yamada, Kei; Akazawa, Kentaro; Nishimura, Tsunehiko [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto (Japan); Mori, Satoru [Matsushita Memorial Hospital, Department of Neurology, Osaka (Japan)

    2008-07-15

    We used diffusion tensor imaging (DTI) to study white matter integrity in patients with frontotemporal dementia (FTD). The subjects comprised 20 patients (9 men, 11 women) with FTD and 17 age-matched healthy controls (9 men, 8 women). Based on the data obtained from DTI, we performed tractography of the major cerebral pathways, including the pyramidal tracts, genu and splenium of the corpus callosum (CC), bilateral arcuate fasciculi (AF), inferior longitudinal fasciculi (ILF) and uncinate fasciculi (UF). We measured the values of fractional anisotropy (FA) in each fiber and statistically compared the findings in patients with those in controls. We found a significant decrease in FA values in the selected association fibers as well as anterior fibers of the CC in the patients with FTD. The greatest decrease in mean FA of the UF was seen in advanced FTD. On the other hand, there were no significant differences in FA in the bilateral pyramidal tracts. The features of FTD from the view point of cerebral white matter damage were revealed by tractography based on DTI. DTI is therefore considered to be a useful method, and may provide clues to elucidating the pathogenesis of FTD. (orig.)

  11. Alterations of the Cerebral White Matter in a Middle-Aged Patient with Turner Syndrome: An MRI Study

    OpenAIRE

    Tanji, Haruko; Nakajima, Katsuo; Wada, Manabu; Kato, Takeo

    2012-01-01

    A 52-year-old woman with intellectual disability was admitted to the hospital due to pneumonia. MRI of her brain showed diffuse hyperintensities on T2-weighted and fluid attenuated inversion recovery images in the bilateral cerebral white matter. Laboratory examination revealed sustained high levels of serum KL-6. Karyotyping revealed partial monosomy of the X chromosome. This is the first case showing diffuse white matter lesions in the brain, and sustained high levels of serum KL-6 in Turne...

  12. Atrophy of the corpus callosum correlates with white matter lesions in patients with cerebral ischaemia

    International Nuclear Information System (INIS)

    Many studies of white matter high signal (WMHS) on T2-weighted MRI have disclosed that it is related to cerebral ischaemia and to brain atrophy. Atrophy of the corpus callosum (CC) has also been studied in relation to ischaemia. Our objective was to test the hypothesis that CC atrophy could be due to ischaemia. We therefore assessed CC, WMHS and brain atrophy in patients with risk factors without strokes (the risk factor group) and in those with infarcts (the infarct group), to investigate the relationships between these factors. We studied 30 patients in the infarct group, 14 in the risk factor group, and 29 normal subjects. Using axial T1-weighted MRI, cortical atrophy and ventricular enlargement (brain atrophy) were visually rated. Using axial T2-weighted MRI, WMHS was assessed in three categories: periventricular symmetrical, periventricular asymmetrical and subcortical. Using the mid-sagittal T1-weighted image, the CC was measured in its anterior, posterior, midanterior and midposterior portions. In the normal group, no correlations were noted between parameters. In the infarct group, there were significant correlations between CC and brain atrophy, and between CC atrophy and WMHS. After removing the effects of age, gender and brain atrophy, significant correlations were noted between some CC measures and subcortical WMHS. In the risk factor group, there were significant correlations between CC and brain atrophy and between CC atrophy and WMHS. After allowance for age, gender and brain atrophy, significant correlations between some CC measures and periventricular WMHS remained. The hypothesis that CC atrophy could be due to cerebral ischaemia was supported by other analyses. Namely, for correlations between the extent of infarcts and partial CC atrophy in patients with anterior middle cerebral artery (MCA) and with posterior MCA infarcts, there were significant correlations between the extent of infarct and midanterior CC atrophy in the former, and posterior

  13. Atrophy of the corpus callosum correlates with white matter lesions in patients with cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Meguro, K.; Yamadori, A. [Section of Neuropsychology, Division of Disability Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, 980-8575 Sendai (Japan); Constans, J.M.; Courtheoux, P.; Theron, J. [MR Unit, University of Caen School of Medicine, Caen (France); Viader, F. [Department of Neuroradiology, University of Caen School of Medicine, Caen (France)

    2000-06-01

    Many studies of white matter high signal (WMHS) on T2-weighted MRI have disclosed that it is related to cerebral ischaemia and to brain atrophy. Atrophy of the corpus callosum (CC) has also been studied in relation to ischaemia. Our objective was to test the hypothesis that CC atrophy could be due to ischaemia. We therefore assessed CC, WMHS and brain atrophy in patients with risk factors without strokes (the risk factor group) and in those with infarcts (the infarct group), to investigate the relationships between these factors. We studied 30 patients in the infarct group, 14 in the risk factor group, and 29 normal subjects. Using axial T1-weighted MRI, cortical atrophy and ventricular enlargement (brain atrophy) were visually rated. Using axial T2-weighted MRI, WMHS was assessed in three categories: periventricular symmetrical, periventricular asymmetrical and subcortical. Using the mid-sagittal T1-weighted image, the CC was measured in its anterior, posterior, midanterior and midposterior portions. In the normal group, no correlations were noted between parameters. In the infarct group, there were significant correlations between CC and brain atrophy, and between CC atrophy and WMHS. After removing the effects of age, gender and brain atrophy, significant correlations were noted between some CC measures and subcortical WMHS. In the risk factor group, there were significant correlations between CC and brain atrophy and between CC atrophy and WMHS. After allowance for age, gender and brain atrophy, significant correlations between some CC measures and periventricular WMHS remained. The hypothesis that CC atrophy could be due to cerebral ischaemia was supported by other analyses. Namely, for correlations between the extent of infarcts and partial CC atrophy in patients with anterior middle cerebral artery (MCA) and with posterior MCA infarcts, there were significant correlations between the extent of infarct and midanterior CC atrophy in the former, and posterior

  14. Intranasal Insulin Prevents Cognitive Decline, Cerebral Atrophy and White Matter Changes in Murine Type I Diabetic Encephalopathy

    Science.gov (United States)

    Francis, George J.; Martinez, Jose A.; Liu, Wei Q.; Xu, Kevin; Ayer, Amit; Fine, Jared; Tuor, Ursula I.; Glazner, Gordon; Hanson, Leah R.; Frey, William H., II; Toth, Cory

    2008-01-01

    Insulin deficiency in type I diabetes may lead to cognitive impairment, cerebral atrophy and white matter abnormalities. We studied the impact of a novel delivery system using intranasal insulin (I-I) in a mouse model of type I diabetes (streptozotocin-induced) for direct targeting of pathological and cognitive deficits while avoiding potential…

  15. Cerebral White Matter Lesions and Affective Episodes Correlate in Male Individuals with Bipolar Disorder.

    Directory of Open Access Journals (Sweden)

    Armin Birner

    Full Text Available Cerebral white matter lesions (WML have been found in normal aging, vascular disease and several neuropsychiatric conditions. Correlations of WML with clinical parameters in BD have been described, but not with the number of affective episodes, illness duration, age of onset and Body Mass Index in a well characterized group of euthymic bipolar adults. Herein, we aimed to evaluate the associations between bipolar course of illness parameters and WML measured with volumetric analysis.In a cross-sectional study 100 euthymic individuals with BD as well as 54 healthy controls (HC were enrolled to undergo brain magnetic resonance imaging using 3T including a FLAIR sequence for volumetric assessment of WML-load using FSL-software. Additionally, clinical characteristics and psychometric measures including Structured Clinical Interview according to DSM-IV, Hamilton-Depression, Young Mania Rating Scale and Beck's Depression Inventory were evaluated.Individuals with BD had significantly more (F = 3.968, p < .05 WML (Mdn = 3710 mm3; IQR = 2961 mm3 than HC (Mdn = 2185 mm3; IQR = 1665 mm3. BD men (Mdn = 4095 mm3; IQR = 3295 mm3 and BD women (Mdn = 3032 mm3; IQR = 2816 mm3 did not significantly differ as to the WML-load or the number and type of risk factors for WML. However, in men only, the number of manic/hypomanic episodes (r = 0.72; p < .001 as well as depressive episodes (r = 0.51; p < .001 correlated positively with WML-load.WML-load strongly correlated with the number of manic episodes in male BD patients, suggesting that men might be more vulnerable to mania in the context of cerebral white matter changes.

  16. Cerebral White Matter and Retinal Arterial Health in Hypertension and Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    P. L. Yau

    2013-01-01

    Full Text Available We examined 33 hypertensive (22 with comorbid type 2 diabetes mellitus (T2DM and 29 normotensive (8 with T2DM middle-aged and elderly adults, comparable in age and education. Relative to normotensive participants, those with hypertension, in addition to a higher prevalence of periventricular white matter (WM lesions, had significantly lower WM microstructural integrity of major fiber tracts as seen with MRI-based diffusion tensor imaging. Among participants with hypertension, those with co-morbid T2DM (n=22 had more widespread WM pathology than those without T2DM (n=11. Furthermore and consistent with previous research, both hypertension and T2DM were related to decreased retinal arterial diameter. Further exploratory analysis demonstrated that the observed retinal arteriolar narrowing among individual with hypertension was associated with widespread subclinical losses in WM microstructural integrity and these associations were present predominantly in the frontal lobe. We found that T2DM adds to the damaging effects of hypertension on cerebral WM, and notably these effects were independent of age and body mass index. Given that the decrease in retinal arteriolar diameter may be a biomarker for parallel pathology in cerebral arterioles, our data suggest that the frontal lobe may be particularly vulnerable to microvascular damage in the presence of hypertension and T2DM.

  17. Children with cerebral palsy and periventricular white matter injury: does gestational age affect functional outcome?

    Science.gov (United States)

    Harvey, Adrienne R; Randall, Melinda; Reid, Susan M; Lee, Katherine J; Imms, Christine; Rodda, Jillian; Eldridge, Beverley; Orsini, Francesca; Reddihough, Dinah

    2013-09-01

    This study aimed to determine differences in functional profiles and movement disorder patterns in children aged 4-12 years with cerebral palsy (CP) and periventricular white matter injury (PWMI) born >34 weeks gestation compared with those born earlier. Eligible children born between 1999 and 2006 were recruited through the Victorian CP register. Functional profiles were determined using the Gross Motor Function Classification System (GMFCS), Manual Abilities Classification System (MACS), Communication Function Classification System (CFCS), Functional Mobility Scale (FMS) and Bimanual Fine Motor Function (BFMF). Movement disorder and topography were classified using the Surveillance of Cerebral Palsy in Europe (SCPE) classification. 49 children born >34 weeks (65% males, mean age 8 y 9 mo [standard deviation (SD) 2 y 2 mo]) and 60 children born ≤ 34 weeks (62% males, mean age 8 y 2 mo [SD 2 y 2 mo]) were recruited. There was evidence of differences between the groups for the GMFCS (p=0.003), FMS 5, 50 and 500 (p=0.003, 0.002 and 0.012), MACS (p=0.04) and CFCS (p=0.035), with a greater number of children born ≤ 34 weeks more severely impaired compared with children born later. Children with CP and PWMI born >34 weeks gestation had milder limitations in gross motor function, mobility, manual ability and communication compared with those born earlier.

  18. Alterations of the Cerebral White Matter in a Middle-Aged Patient with Turner Syndrome: An MRI Study

    Directory of Open Access Journals (Sweden)

    Haruko Tanji

    2012-09-01

    Full Text Available A 52-year-old woman with intellectual disability was admitted to the hospital due to pneumonia. MRI of her brain showed diffuse hyperintensities on T2-weighted and fluid attenuated inversion recovery images in the bilateral cerebral white matter. Laboratory examination revealed sustained high levels of serum KL-6. Karyotyping revealed partial monosomy of the X chromosome. This is the first case showing diffuse white matter lesions in the brain, and sustained high levels of serum KL-6 in Turner syndrome.

  19. Cardiac diastolic dysfunction is associated with cerebral white matter lesions in elderly patients with risk factors for atherosclerosis

    International Nuclear Information System (INIS)

    Cerebral white matter lesions on magnetic resonance imaging (MRI) are considered to be the result of brain ischemic injury and a risk factor for clinical stroke. The purpose of this study was to elucidate the relationship between the cardiac diastolic function and cerebral white matter lesions in elderly patients with risk factors for atherosclerosis. The study subjects were 55 patients (75±7 years) with risk factors for atherosclerosis including hypertension, diabetes mellitus, and dyslipidemia. Patients with symptomatic cerebrovascular events were excluded from the study. Cerebral white matter lesions, which were defined as exhibiting high intensity regions on brain MRI, were evaluated with the degrees of periventricular hyperintensity (PVH) according to the Japanese Brain Dock Guidelines of 2003. Peak early diastolic mitral annular velocity (E' velocity) was measured by tissue Doppler echocardiography, and was used as a parameter of cardiac diastolic function. The mean value of E' velocity was decreased due to the cardiac diastolic dysfunction (5.2±1.4 cm/s). In addition, the E' velocity was inversely correlated with the degree of PVH (ρ=-0.701, p<0.001). Stepwise regression analysis showed that the decrease in the E' velocity (β coefficient=-0.42, p<0.001) and the presence of hypertension (β coefficient=0.31, p=0.001) were independent determinants of the degree of PVH. Thus, cardiac diastolic dysfunction is correlated to the severity of cerebral white matter lesions, suggesting the cardio-cerebral connection in elderly patients with risk factors for atherosclerosis. (author)

  20. Diffusion Imaging of Cerebral White Matter in Persons Who Stutter: Evidence for Network-Level Anomalies

    Directory of Open Access Journals (Sweden)

    Shanqing eCai

    2014-02-01

    Full Text Available Deficits in brain white matter have been a main focus of recent neuroimaging studies on stuttering. However, no prior study has examined brain connectivity on the global level of the cerebral cortex in persons who stutter (PWS. In the current study, we analyzed the results from probabilistic tractography between regions comprising the cortical speech network. An anatomical parcellation scheme was used to define 28 speech production-related ROIs in each hemisphere. We used network-based statistic (NBS and graph theory to analyze the connectivity patterns obtained from tractography. At the network level, the probabilistic corticocortical connectivity from the PWS group were significantly weaker that from persons with fluent speech (PFS. NBS analysis revealed significant components in the bilateral speech networks with negative correlations with stuttering severity. To facilitate comparison with previous studies, we also performed tract-based spatial statistics (TBSS and regional fractional anisotropy (FA averaging. Results from tractography, TBSS and regional FA averaging jointly highlight the importance of several regions in the left peri-Rolandic sensorimotor and premotor areas, most notably the left ventral premotor cortex and middle primary motor cortex, in the neuroanatomical basis of stuttering.

  1. Cerebral blood flow and oxygen metabolism in senile dementia of Alzheimer's type and vascular dementia with deep white matter changes

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen (rCMRO2), oxygen extraction fraction (rOEF), and cerebral blood volume (rCBV) were investigated using positron emission tomography (PET) in 16 patients with senile dementia of Alzheimer's type (SDAT), and compared with those of 6 nondemented and 3 demented patients with deep white matter high signal (DWMH) on T2-weighted MRI and 6 controls. rCBF, rCMRO2 and rCBV were determined using C15O2, 15O2 and C15O, respectively. rCBF and CMRO2 were significantly decreased in the frontal, parietal and temporal cortex (P 2 was significantly reduced in only the frontal and temporal cortex of demented patients (P < 0.05). rOEF was significantly increased in the parietal cortex of patients with SDAT and in the white matter of patients with SDAT or DWMH (P < 0.05), and the increase in the frontal white matter significantly paralleled the progression of dementia in patients with SDAT (P < 0.05). rCBV was significantly decreased in the parietal and temporal cortex of patients with SDAT (P < 0.05), but not in any areas of those with DWMH. (orig.)

  2. Depressive symptoms predict cognitive decline and dementia in older people independently of cerebral white matter changes

    DEFF Research Database (Denmark)

    Verdelho, Ana; Madureira, Sofia; Moleiro, Carla;

    2013-01-01

    Depressive symptoms (DS) have been associated with increased risk of cognitive decline. Our aim was to evaluate the longitudinal influence of DS on cognition in independent older people, accounting for the severity of white matter changes (WMC).......Depressive symptoms (DS) have been associated with increased risk of cognitive decline. Our aim was to evaluate the longitudinal influence of DS on cognition in independent older people, accounting for the severity of white matter changes (WMC)....

  3. Vestibular loss and balance training cause similar changes in human cerebral white matter fractional anisotropy.

    Directory of Open Access Journals (Sweden)

    Nadine Hummel

    Full Text Available Patients with bilateral vestibular loss suffer from severe balance deficits during normal everyday movements. Ballet dancers, figure skaters, or slackliners, in contrast, are extraordinarily well trained in maintaining balance for the extreme balance situations that they are exposed to. Both training and disease can lead to changes in the diffusion properties of white matter that are related to skill level or disease progression respectively. In this study, we used diffusion tensor imaging (DTI to compare white matter diffusivity between these two study groups and their age- and sex-matched controls. We found that vestibular patients and balance-trained subjects show a reduction of fractional anisotropy in similar white matter tracts, due to a relative increase in radial diffusivity (perpendicular to the main diffusion direction. Reduced fractional anisotropy was not only found in sensory and motor areas, but in a widespread network including long-range connections, limbic and association pathways. The reduced fractional anisotropy did not correlate with any cognitive, disease-related or skill-related factors. The similarity in FA between the two study groups, together with the absence of a relationship between skill or disease factors and white matter changes, suggests a common mechanism for these white matter differences. We propose that both study groups must exert increased effort to meet their respective usual balance requirements. Since balance training has been shown to effectively reduce the symptoms of vestibular failure, the changes in white matter shown here may represent a neuronal mechanism for rehabilitation.

  4. Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion.

    Science.gov (United States)

    Edrissi, Hamidreza; Schock, Sarah C; Cadonic, Robert; Hakim, Antoine M; Thompson, Charlie S

    2016-09-01

    Cerebral small vessel disease (CSVD) is a pathological process leading to lacunar infarcts, leukoaraiosis and cerebral microbleeds. Dysfunction of the blood brain barrier (BBB) has been proposed as a mechanism in the progression cerebral small vessel disease. A rodent model commonly used to study some aspects of CSVD is bilateral common carotid artery occlusion (BCCAO) in the rat. In the present study it was determined that gait impairment, as determined by a tapered beam test, and BBB permeability increased following BCCAO. Cilostazol, a type III phosphodiesterase inhibitor, has been shown to have anti-apoptotic effects and prevent white matter vacuolation and rarefaction induced by BCCAO in rats. In this study the protective effect of cilostazol administration on the increase BBB permeability following BCCAO was determined as well as the effect on plasma levels of circulating microparticles (MPs), cerebral white matter rarefaction, glial activation and gait disturbance. The effect of cilostazol on in vitro endothelial barriers was also evaluated. Cilostazol treatment improved BBB permeability and reduced gait disturbance, visual impairment and microglial activation in optic tract following BCCAO in vivo. It also reduced the degree of cell death and the reduction in trans-endothelial electrical resistance (TEER) in artificial endothelial barriers in vitro induced by MP treatment of in vitro barriers. PMID:27350079

  5. Preclinical cerebral network connectivity evidence of deficits in mild white matter lesions

    Directory of Open Access Journals (Sweden)

    Ying eLiang

    2016-02-01

    Full Text Available White matter lesions (WMLs are notable for their high prevalence and have been demonstrated to be a potential neuroimaging biomarker of early diagnosis of Alzheimer’s disease. This study aimed to identify the brain functional and structural mechanisms underlying cognitive decline observed in mild WMLs. Multi-domain cognitive tests, as well as resting-state, diffusion tensor and structural images were obtained on 42 mild WMLs and 42 age/sex-matched healthy controls. For each participant, we examined the functional connectivity of three resting-state networks related to the changed cognitive domains: the default mode network (DMN and the bilateral fronto-parietal network (FPN. We also performed voxel-based morphometry analysis to compare whole-brain gray matter volume, atlas-based quantification of the white matter tracts interconnecting the RSNs, and the relationship between functional connectivity and structural connectivity. We observed functional connectivity alterations in the DMN and the right FPN combined with related white matter integrity disruption in mild WMLs. However, no significant gray matter atrophy difference was found. Furthermore, the right precuneus functional connectivity in the DMN exhibited a significantly negative correlation with the memory test scores. Our study suggests that in mild WMLs, dysfunction of RSNs might be a consequence of decreased white matter structural connectivity, which further affects cognitive performance.

  6. A case of pathology-proven neuromyelitis optica spectrum disorder with Sjögren syndrome manifesting aphasia and apraxia due to a localized cerebral white matter lesion.

    Science.gov (United States)

    Sawada, Jun; Orimoto, Ryosuke; Misu, Tatsuro; Katayama, Takayuki; Aizawa, Hitoshi; Asanome, Asuka; Takahashi, Kae; Saito, Tsukasa; Anei, Ryogo; Kamada, Kyousuke; Miyokawa, Naoyuki; Takahashi, Toshiyuki; Fujihara, Kazuo; Hasebe, Naoyuki

    2014-09-01

    A woman with Sjögren syndrome manifesting as aphasia with a left deep cerebral white matter lesion tested positive for anti-aquaporin 4 (AQP4) antibody. Open biopsy of the lesion revealed active demyelination with edematous changes and the preservation of most axons, indicating a non-necrotic demyelinating lesion. Immunostaining for AQP4 was diffusely lost, whereas the loss of glial fibrillary acidic protein immunostaining was limited but with highly degenerated astrocytic foot processes in perivascular areas. These results suggested neuromyelitis optica spectrum disorder (NMOSD) pathology rather than Sjögren-related vasculitis. Only cerebral cortical symptoms with a cerebral white matter lesion could be observed in NMOSDs.

  7. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease

    DEFF Research Database (Denmark)

    Fennema-Notestine, C; Archibald, S.L.; Jacobsen, M.W.;

    2004-01-01

    OBJECTIVE: To investigate the regional pattern of white matter and cerebellar changes, as well as subcortical and cortical changes, in Huntington disease (HD) using morphometric analyses of structural MRI. METHODS: Fifteen individuals with HD and 22 controls were studied; groups were similar in a...

  8. Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images

    NARCIS (Netherlands)

    Lopes Simoes, A.R.; Monninghoff, C.; Dlugaj, M.; Weimar, C.; Wanke, I.; Cappellen van Walsum, A.; Slump, C.H.

    2013-01-01

    Magnetic Resonance (MR) white matter hyperintensities have been shown to predict an increased risk of developing cognitive decline. However, their actual role in the conversion to dementia is still not fully understood. Automatic segmentation methods can help in the screening and monitoring of Mild

  9. Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images.

    NARCIS (Netherlands)

    Simoes, R.; Monninghoff, C.; Dlugaj, M.; Weimar, C.; Wanke, I.; Cappellen van Walsum, A.M. van; Slump, C.

    2013-01-01

    Magnetic Resonance (MR) white matter hyperintensities have been shown to predict an increased risk of developing cognitive decline. However, their actual role in the conversion to dementia is still not fully understood. Automatic segmentation methods can help in the screening and monitoring of Mild

  10. Cerebral H-1 MR spectroscopy revealing white matter NAA decreases in glutaric aciduria type I

    NARCIS (Netherlands)

    Sijens, P. E.; Smit, G. P. A.; Meiners, L. C.; Oudkerk, M.; van Spronsen, F. J.

    2006-01-01

    MR spectroscopy in two patients with glutaric aciduria type I revealed reductions in the white matter N-acetylaspartate signal, in the more severe case accompanied by a loss of glutamate and the appearance of lactate signals. (c) 2006 Elsevier Inc. All rights reserved.

  11. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease

    DEFF Research Database (Denmark)

    Fennema-Notestine, C; Archibald, S.L.; Jacobsen, M.W.;

    2004-01-01

    OBJECTIVE: To investigate the regional pattern of white matter and cerebellar changes, as well as subcortical and cortical changes, in Huntington disease (HD) using morphometric analyses of structural MRI. METHODS: Fifteen individuals with HD and 22 controls were studied; groups were similar in age...

  12. Serum carotenoids and cerebral white matter lesions : The Rotterdam Scan Study

    NARCIS (Netherlands)

    den Heijer, T; Launer, LJ; de Groot, JG; de Leeuw, FE; Oudkerk, M; van Gijn, J; Hofman, A; Breteler, MMB

    2001-01-01

    OBJECTIVES: To study the relation between serum levels of carotenoids and white matter lesions (WMLs) on magnetic resonance imaging (MRI). DESIGN: Evaluation of cross-sectional data from a cohort study. SETTING: The Rotterdam Scan Study. PARTICIPANTS: Two hundred and three nondemented older persons,

  13. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingxing; Cai, Ruowei [Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian (China); Lv, Guorong, E-mail: lxingwan502@gmail.com [Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian (China); Huang, Ziyang; Wang, Zhenhua [Department of Cardiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian (China)

    2010-05-28

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternal hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.

  14. MR spectroscopy of cerebral white matter in type 2 diabetes; no association with clinical variables and cognitive performance

    Energy Technology Data Exchange (ETDEWEB)

    Tiehuis, Audrey; Meer, Femke van der; Mali, Willem; Luijten, Peter [University Medical Center Utrecht, Department of Radiology (Hp E01.332), PO Box 85500, GA, Utrecht (Netherlands); Pleizier, Marc; Biessels, Geert Jan; Kappelle, Jaap [University Medical Center Utrecht, Department of Neurology, Rudolf Magnus Institute of Neuroscience, Utrecht (Netherlands)

    2010-02-15

    Type 2 diabetes (DM2) is associated with cognitive decline, but the pathogenesis of this important complication remains unclear. We investigated whether abnormalities in neuronal metabolism or membrane integrity in normal appearing cerebral white matter are associated with cognitive impairment in patients with DM2. Single voxel proton magnetic resonance spectroscopy (1.5 T), aimed at N-acetyl-aspartate (NAA), total choline (Cho), and total creatine (Cr), was performed in the cerebral white matter (centrum semiovale) of 72 patients with DM2 and 40 control subjects. All participants underwent extensive neuropsychological evaluation. Patients with DM2 performed worse with respect to global neuropsychological functioning than controls (p < 0.05), in particular on memory and information processing speed. We observed no differences in NAA/Cr, Cho/Cr, or NAA/Cho ratio's between patients with DM2 and controls. Cognitive performance in patients with DM2 was not correlated with any of these brain metabolites, neither were the clinical variables. We conclude that disturbances in neuronal viability and cellular membrane status assessed by NAA/Cr, Cho/Cr, NAA/Cho ratios cannot explain cognitive decline in patients with DM2. (orig.)

  15. MR spectroscopy of cerebral white matter in type 2 diabetes; no association with clinical variables and cognitive performance

    International Nuclear Information System (INIS)

    Type 2 diabetes (DM2) is associated with cognitive decline, but the pathogenesis of this important complication remains unclear. We investigated whether abnormalities in neuronal metabolism or membrane integrity in normal appearing cerebral white matter are associated with cognitive impairment in patients with DM2. Single voxel proton magnetic resonance spectroscopy (1.5 T), aimed at N-acetyl-aspartate (NAA), total choline (Cho), and total creatine (Cr), was performed in the cerebral white matter (centrum semiovale) of 72 patients with DM2 and 40 control subjects. All participants underwent extensive neuropsychological evaluation. Patients with DM2 performed worse with respect to global neuropsychological functioning than controls (p < 0.05), in particular on memory and information processing speed. We observed no differences in NAA/Cr, Cho/Cr, or NAA/Cho ratio's between patients with DM2 and controls. Cognitive performance in patients with DM2 was not correlated with any of these brain metabolites, neither were the clinical variables. We conclude that disturbances in neuronal viability and cellular membrane status assessed by NAA/Cr, Cho/Cr, NAA/Cho ratios cannot explain cognitive decline in patients with DM2. (orig.)

  16. The correlation between cognitive function and cerebral white matter lesions/insulin resistance in patients with lacunar infarction:a clinical study of 184 cases

    Institute of Scientific and Technical Information of China (English)

    张琼予

    2013-01-01

    Objective To investigate the correlation between cognitive function and cerebral white matter lesions(WML)/insulin resistance(IR) in patients with stroke.Methods Between May 2011 and October 2011,the clin-ical data of 184 in-patients with lacunar infarction were

  17. SU-E-J-143: Short- and Near-Term Effects of Proton Therapy On Cerebral White Matter

    Energy Technology Data Exchange (ETDEWEB)

    Uh, J; Merchant, T; Ogg, R; Sabin, N; Hua, C [St. Jude Children' s Research Hospital, Memphis, TN (United States); Indelicato, D [University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2014-06-01

    Purpose: To assess early effects of proton therapy on the structural integrity of cerebral white matter in relation to the subsequent near-term development of such effects. Methods: Sixteen children (aged 2–19 years) with craniopharyngioma underwent proton therapy of 54 Cobalt Gray Equivalent (CGE) in a prospective therapeutic trial. Diffusion tensor imaging (DTI) was performed at baseline before proton therapy and every 3 months thereafter. Tract-based spatial statics analysis of DTI data was performed to derive the fractional anisotropy (FA) and radial diffusivity (RD) in 26 volumes of interest (VOIs). The dose distributions were spatially normalized to identify VOIs prone to high doses. The longitudinal percentage changes of the FA and RD in these VOIs at 3 and 12 months from the baseline were calculated, and their relationships were evaluated. Results: The average dose was highest to the cerebral peduncle (CP), corticospinal tract (CST) in the pons, pontine crossing tract (PCT), anterior/posterior limbs of the internal capsule (ALIC/PLIC), and genu of the corpus callosum (GCC). It ranged from 33.3 GCE (GCC) to 49.7 GCE (CP). A mild but statistically significant (P<0.05) decline of FA was observed 3 months after proton therapy in all VOIs except the PLIC and ranged from −1.7% (ALIC) to −2.8% (PCT). A significant increase of RD was found in the CP (3.5%) and ALIC (2.1%). The average longitudinal change from the baseline was reduced at 12 months for most VOIs. However, the standard deviation increased, indicating that the temporal pattern varied individually. The follow-up measurements at 3 and 12 months correlated for the CP, CST, PCT, and GCC (P < 0.04). Conclusion: DTI data suggest early (3 months) effects of proton therapy on microstructures in the white matter. The subsequent follow-up indicated individual variation of the changes, which was partly implied by the early effects.

  18. Analyses of Disruption of Cerebral White Matter Integrity in Schizophrenia with MR Diffusion Tensor Fiber Tracking Method

    Science.gov (United States)

    Yamamoto, Utako; Kobayashi, Tetsuo; Kito, Shinsuke; Koga, Yoshihiko

    We have analyzed cerebral white matter using magnetic resonance diffusion tensor imaging (MR-DTI) to measure the diffusion anisotropy of water molecules. The goal of this study is the quantitative evaluation of schizophrenia. Diffusion tensor images are acquired for patients with schizophrenia and healthy comparison subjects, group-matched for age, sex, and handedness. Fiber tracking is performed on the superior longitudinal fasciculus for the comparison between the patient and comparison groups. We have analysed and compared the cross-sectional area on the starting coronal plane and the mean and standard deviation of the fractional anisotropy and the apparent diffusion coefficient along fibers in the right and left hemispheres. In the right hemisphere, the cross-sectional areas in patient group are significantly smaller than those in the comparison group. Furthermore, in the comparison group, the cross-sectional areas in the right hemisphere are significantly larger than those in the left hemisphere, whereas there is no significant difference in the patient group. These results suggest that we may evaluate the disruption in white matter integrity in schizophrenic patients quantitatively by comparing the cross-sectional area of the superior longitudinal fasciculus in the right and left hemispheres.

  19. Effects of statins on the progression of cerebral white matter lesion: Post hoc analysis of the ROCAS (Regression of Cerebral Artery Stenosis) study.

    Science.gov (United States)

    Mok, Vincent C T; Lam, Wynnie W M; Fan, Yu Hua; Wong, Adrian; Ng, Ping Wing; Tsoi, Tak Hon; Yeung, Vincent; Wong, Ka Sing

    2009-05-01

    Arteriosclerotic related cerebral white matter lesion (WML) is associated with increased risk of death, stroke, dementia, depression, gait disturbance, and urinary incontinence. We investigated the effects of statins on WML progression by performing a post hoc analysis on the ROCAS (Regression of Cerebral Artery Stenosis) study, which is a randomized, double-blind, placebo-controlled study evaluating the effects of statins upon asymptomatic middle cerebral artery stenosis progression among stroke-free individuals. Two hundreds and eight randomized subjects were assigned to either placebo (n = 102) or simvastatin 20 mg daily (n = 106) for 2 years. Baseline severity of WML was graded visually into none, mild, and severe. Volume (cm3) of WML was determined quantitatively at baseline and at end of study using a semi-automated method based on MRI. Primary outcome was the change in WML volume over 2 years. After 2 years of follow-up, there was no significant change in WML volume between the active and the placebo group as a whole. However, stratified analysis showed that for those with severe WML at baseline, the median volume increase in the active group (1.9 cm3) was less compared with that in the placebo group (3.0 cm3; P = 0.047). Linear multivariate regression analysis identified that baseline WML volume (beta = 0.63, P < 0.001) and simvastatin treatment (beta = -0.214, P = 0.043) independently predicted change in WML volume. Our findings suggest that statins may delay the progression of cerebral WML only among those who already have severe WML at baseline. PMID:19252811

  20. White matters - The influence of cerebral small-vessel disease on depression, cognition and functioning

    NARCIS (Netherlands)

    Grool, A.M.

    2012-01-01

    Depression and cognitive impairment are highly prevalent in later life, and frequently co-occur. One of the possible mechanisms that may underlie both conditions is the presence of cerebral small-vessel disease. The presence of cerebral small-vessel disease is strongly associated with common vascula

  1. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the grey matter, three in the white matter, and explains local variations in cortical folding

    Directory of Open Access Journals (Sweden)

    Pedro F. M. Ribeiro

    2013-09-01

    Full Text Available The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital that differ in how neurons distributed across their grey matter volume and in three zones (prefrontal, occipital, and non-occipital that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non

  2. Asymmetry of cerebral grey and white matter and structural volumes in relation to sex hormones and chromosomes

    Directory of Open Access Journals (Sweden)

    Ivanka eSavic

    2014-11-01

    Full Text Available Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY Methods: Regional asymmetry in grey and white matter volumes (GMV and WMV was calculated using voxel based moprhometry (SPM5, by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis.Results: All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected.Conclusion: The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner.

  3. Altered white matter integrity and functional connectivity of hyperacute-stage cerebral ischemia in a rat model.

    Science.gov (United States)

    Cha, Jihoon; Kim, Sung Tae; Jung, Won Beom; Han, Yong Hee; Im, Geun Ho; Lee, Jung Hee

    2016-10-01

    Ischemic stroke is accompanied by structural deformation and functional deficits in the affected hemisphere. Within a couple of hours after symptom onset, the accurate identification of brain characteristics is critical to design the therapeutic strategies and it can potentially improve overall brain tissue viability by minimizing irreversible brain damage. In this study, white matter integrity and functional connectivity within 2-4h after right middle cerebral artery occlusion in rats were investigated using multimodal magnetic resonance imaging. During this stage, diffusion tensor image (DTI) revealed that fractional anisotropy along the ipsilesional external capsule was slightly increased as compared with preoperative baseline. Resting state functional MRI (rs-fMRI) showed that the inter-hemispheric functional connectivities from primary motor (M1), primary somatosensory of forelimb (S1FL), and barrel field (S1BF) seeds were considerably reduced at the hyperacute stage. Fractional amplitudes of low frequency fluctuations (fALFF) from rs-fMRI were significantly enhanced at the hyperacute stage in the frequency spectrum between 0.01 and 0.08Hz. In addition, the changes in fALFF were negatively correlated with the number of functionally connected voxels in M1, S1FL and S1BF. Our results suggest that these techniques are useful tools to evaluate remarkable brain changes in the hyperacute stage of ischemic stroke. PMID:27108358

  4. High b-value diffusion tensor imaging of unilateral middle cerebral artery occlusive disease: evaluation of white matter injury

    International Nuclear Information System (INIS)

    posterior limb of the internal capsule, FA were 0.622 ±0.026 and 0.694 ±0.034, λ1 were (5.064 ± 0.448) × 10-3 and (4.924 ± 0.365) × 10-3 mm2/s, respectively. Mean FA was significantly decreased (t=7.823, 8.013, all P<0.01) and mean λ1 was significantly increased (t=7.811, 8.800, all P<0.01) at the ipsilateral anterior and posterior limbs of the internal capsule. There was no significant difference in ADC, λ2 and λ3 value between the ipsilateral and contralateral sides. And all the DTI parameters,including mean ADC, FA, λ1, λ2 and λ3 values, showed no statistical difference between both sides of cerebral peduncle and pons. Conclusion: DTI at high b value can provide useful information for visualizing ischemic white matter injury in patients without obvious infarct lesions on conventional MR imaging. (authors)

  5. HEART FAILURE WITH LOW CARDIAC OUTPUT AND RISK OF DEVELOPMENT OF LESIONS IN THE CEREBRAL WHITE MATTER

    OpenAIRE

    2005-01-01

    Aim: Diminished cardiac output can lead to the development of white matter lesions. White matter lesions are related to cognitive impairment, stroke risk and vascular death, yet the precise aetiology is uncertain. Methods: In this study we recruited 130 patients attending our medicine and neurology outpatient department, and divided them into those with a history of heart failure (n:24), atrial fibrillation (n:26), and those with atherosclerotic risk factors (n:80). The patients without low o...

  6. Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain

    Directory of Open Access Journals (Sweden)

    Shoichi Takikita

    2015-09-01

    Full Text Available Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type ATPase gene (ATP7A. In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or O4 (marker of immature oligodendrocytes. This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism.

  7. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions.

    Science.gov (United States)

    Scheck, Simon M; Pannek, Kerstin; Raffelt, David A; Fiori, Simona; Boyd, Roslyn N; Rose, Stephen E

    2015-01-01

    In this work we investigate the structural connectivity of the anterior cingulate cortex (ACC) and its link with impaired executive function in children with unilateral cerebral palsy (UCP) due to periventricular white matter lesions. Fifty two children with UCP and 17 children with typical development participated in the study, and underwent diffusion and structural MRI. Five brain regions were identified for their high connectivity with the ACC using diffusion MRI fibre tractography: the superior frontal gyrus, medial orbitofrontal cortex, rostral middle frontal gyrus, precuneus and isthmus cingulate. Structural connectivity was assessed in pathways connecting these regions to the ACC using three diffusion MRI derived measures: fractional anisotropy (FA), mean diffusivity (MD) and apparent fibre density (AFD), and compared between participant groups. Furthermore we investigated correlations of these measures with executive function as assessed by the Flanker task. The ACC-precuneus tract had significantly different MD (p < 0.0001) and AFD (p = 0.0072) between groups, with post-hoc analysis showing significantly increased MD in the right hemisphere of children with left hemiparesis compared with controls. The ACC-superior frontal gyrus tract had significantly different FA (p = 0.0049) and MD (p = 0.0031) between groups. AFD in this tract (contralateral to side of hemiparesis; right hemisphere in controls) showed a significant relationship with Flanker task performance (p = 0.0045, β = -0.5856), suggesting that reduced connectivity correlates with executive dysfunction. Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function. PMID:26640762

  8. Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study

    DEFF Research Database (Denmark)

    Garde, E; Mortensen, E L; Krabbe, K;

    2000-01-01

    , but no participant scored more than 75% of maximum for deep white-matter hyperintensities. Neither type was related to the WAIS IQs of the 80-year assessment, but both were significantly associated with decline in performance IQ from age 50 to age 80 years (bivariate correlation coefficients 0.32, p=0.0087, and 0...

  9. Cerebral White Matter Integrity and Resting-State Functional Connectivity in Middle-aged Patients With Type 2 Diabetes

    OpenAIRE

    Hoogenboom, Wouter S.; Marder, Thomas J.; Flores, Veronica L.; Huisman, Susanne; Eaton, Hana P.; Schneiderman, Jason S.; Bolo, Nicolas R.; Simonson, Donald C.; Jacobson, Alan M.; Kubicki, Marek; Martha E. Shenton; Musen, Gail

    2014-01-01

    Early detection of brain abnormalities at the preclinical stage can be useful for developing preventive interventions to abate cognitive decline. We examined whether middle-aged type 2 diabetic patients show reduced white matter integrity in fiber tracts important for cognition and whether this abnormality is related to preestablished altered resting-state functional connectivity in the default mode network (DMN). Diabetic and nondiabetic participants underwent diffusion tensor imaging, funct...

  10. Adenosine A2A receptor deficiency up-regulates cystatin F expression in white matter lesions induced by chronic cerebral hypoperfusion.

    Science.gov (United States)

    Duan, Wei; Ran, Hong; Zhou, Zhujuan; He, Qifen; Zheng, Jian

    2012-01-01

    In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs) by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.

  11. Adenosine A2A receptor deficiency up-regulates cystatin F expression in white matter lesions induced by chronic cerebral hypoperfusion.

    Directory of Open Access Journals (Sweden)

    Wei Duan

    Full Text Available In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.

  12. Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study

    DEFF Research Database (Denmark)

    Garde, E; Mortensen, Erik Lykke; Krabbe, K;

    2000-01-01

    study of age-related decline in intellectual function and MRI at age 80 years. METHODS: From a cohort of 698 people born in 1914 and living in seven municipalities in Denmark, 68 healthy non-demented individuals had been tested with the Wechsler adult intelligence scale (WAIS) at ages 50, 60, and 70...... are related to decline in intelligence but, in healthy octogenarians, the cumulative effect of these features alone explains only a small part of the large differences among individuals in age-related decline in intelligence. Interpretation of the presence and severity of white-matter hyperintensities...

  13. Accelerated cerebral white matter development in preterm infants: a voxel-based morphometry study with diffusion tensor MR imaging

    DEFF Research Database (Denmark)

    Giménez, Mónica; Born, A Peter; Nagy, Zoltan;

    2008-01-01

    stratum. While some earlier findings in preterm infants have suggested developmental delays, the results of this study are more consistent with accelerated white matter development, possibly as a result of increased sensorimotor stimulation in the extrauterine environment. These results are the first......Twenty-seven preterm infants were compared to 10 full-term infants at term equivalent age using a voxel-based analysis of diffusion tensor imaging of the brain. Preterm infants exhibited higher fractional anisotropy values, which may suggest accelerated maturation, in the location of the sagittal...

  14. White matter lesion progression

    DEFF Research Database (Denmark)

    Hofer, Edith; Cavalieri, Margherita; Bis, Joshua C;

    2016-01-01

    BACKGROUND AND PURPOSE: White matter lesion (WML) progression on magnetic resonance imaging is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants asso...

  15. White matter of the brain

    Science.gov (United States)

    White matter is found in the deeper tissues of the brain (subcortical). It contains nerve fibers (axons), which are ... or covering called myelin. Myelin gives the white matter its color. It also protects the nerve fibers ...

  16. Assessment of damage to cerebral white matter fiber in the subacute phase after carbon monoxide poisoning using fractional anisotropy in diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beppu, Takaaki [Iwate Medical University, Departments of Neurosurgery, Morioka (Japan); Iwate Medical University, Department of Hyperbaric Medicine, Morioka (Japan); Nishimoto, Hideaki; Ishigaki, Daiya [Iwate Medical University, Departments of Neurosurgery, Morioka (Japan); Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Fujiwara, Shunrou; Sasaki, Makoto [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Yoshida, Tomoyuki [Iwate Medical University, Department of Psychiatry, Morioka (Japan); Oikawa, Hirotaka [Iwate Prefectural Advanced Critical Care and Emergency, Morioka (Japan); Kamada, Katsura [Iwate Medical University, Department of Hyperbaric Medicine, Morioka (Japan); Ogasawara, Kuniaki [Iwate Medical University, Departments of Neurosurgery, Morioka (Japan)

    2010-08-15

    Chronic neuropsychiatric symptoms after carbon monoxide (CO) poisoning are caused by demyelination of cerebral white matter fibers. We examined whether diffusion tensor imaging can sensitively represent damage to fibers of the centrum semiovale in the subacute phase after CO intoxication. Subjects comprised 13 adult patients with CO poisoning, classified into three groups according to clinical behaviors: group A, patients with transit acute symptoms only; group P, patients with persistent neurological symptoms; and group D, patients with ''delayed neuropsychiatric sequelae'' occurring after a lucid interval. Median fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the centrum semiovale bilaterally at 2 weeks were compared between these groups and a control group of ten healthy volunteers. Myelin basic protein (MBP) concentration in cerebrospinal fluid was examined at 2 weeks to evaluate the degree of demyelination in patients. MBP concentration was abnormal or detectable for all group P and group D patients but was undetectable for all patients assigned to group A. Low FA values in groups P and D displaying chronic neurological symptoms clearly differed from those in controls and group A without chronic neurological symptoms, but ADC showed no significant differences between patient groups. MBP concentration at 2 weeks after CO inhalation confirmed a certain extent of demyelination in the central nervous system of patients who would develop chronic neurological symptoms. In these patients, FA sensitively represented damage to white matter fibers in the centrum semiovale in the subacute phase after CO intoxication. (orig.)

  17. Changes in cerebral white matter in pediatric acute lymphoblastic leukemia: a low incidence with a new therapeutic protocol; Alteracion de la sustancia blanca cerebral en la leucemialinfoblastica aguda pediatrica: baja incidencia con un nuevo protocolo terapeutico

    Energy Technology Data Exchange (ETDEWEB)

    Menor, F.; Marti-Bonmati, L.; Fortuno, J. R.; Verdeguer, A.; Castell, V.; Esteban, M. J. [Hospital Infantil La Fe. Valencia (Spain)

    2000-07-01

    The magnetic resonance (MR) assessment of changes in cerebral white matter in children with acute lymphoblastic leukemia (ALL) after the application of a new treatment. A prospective study was carried out in 50 consecutive children with ALL who had undergone MR imaging during the first 6 months after diagnosis. ALL was classified as standard risk (SR), high risk (HR) or very high risk (VHR) on the basis of conventional criteria. The major difference in the new protocol consisted in a phase of intensification in which different drugs are combined with dexamethasone in cases of HR ALL, together with the exclusion of cranial irradiation in a subgroup of HR patients. ALL the HR and VHR children with changes in white matter, as well as some of those in the SR group, underwent follow-up MR imaging. Thirty-two patients were classified as SR, 15 as HR and 3 as VHR. Changes were observed in 8% of cases (3 patients in the SR group and 1 in the HR group); all were neurologically asymptomatic. The lesions were hyperintense in protein density (PD) and T2-weighted images, with a frontal and occipital periventricular distribution in two cases and occipital in the other two. Serial follow-up images showed a reduction in the lesion in two cases and its persistence in one. The fourth patients died before follow-up images were achieved. There were no new changes in any of the patients. None of the children undergoing cranial irradiation (4 in the HR group and 2 in the VHR group) presented changes in white matter. The incidence of asymptomatic changes in white matter following central nervous system prophylaxis in children with ALL is lower than expected. The different chemoprophylactic protocol during the intensification phase probably protects against the development of these changes. Chemotherapy plays a predominant role in this type of iatrogenesis. (Author) 15 refs.

  18. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease

    OpenAIRE

    Joutel, A.; Monet-Lepretre, M.; Gosele, C.; Baron-Menguy, C.; Hammes, A.; Schmidt, S.; Lemaire-Carrette, B.; Domenga, V.; Schedl, A; Lacombe, P.; Huebner, N.

    2010-01-01

    Cerebral ischemic small vessel disease (SVD) is the leading cause of vascular dementia and a major contributor to stroke in humans. Dominant mutations in NOTCH3 cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic archetype of cerebral ischemic SVD. Progress toward understanding the pathogenesis of this disease and developing effective therapies has been hampered by the lack of a good animal model. Here, we report the developmen...

  19. Automated, quantitative measures of grey and white matter lesion burden correlates with motor and cognitive function in children with unilateral cerebral palsy

    Directory of Open Access Journals (Sweden)

    Alex M. Pagnozzi

    2016-01-01

    Full Text Available White and grey matter lesions are the most prevalent type of injury observable in the Magnetic Resonance Images (MRIs of children with cerebral palsy (CP. Previous studies investigating the impact of lesions in children with CP have been qualitative, limited by the lack of automated segmentation approaches in this setting. As a result, the quantitative relationship between lesion burden has yet to be established. In this study, we perform automatic lesion segmentation on a large cohort of data (107 children with unilateral CP and 18 healthy children with a new, validated method for segmenting both white matter (WM and grey matter (GM lesions. The method has better accuracy (94% than the best current methods (73%, and only requires standard structural MRI sequences. Anatomical lesion burdens most predictive of clinical scores of motor, cognitive, visual and communicative function were identified using the Least Absolute Shrinkage and Selection operator (LASSO. The improved segmentations enabled identification of significant correlations between regional lesion burden and clinical performance, which conform to known structure-function relationships. Model performance was validated in an independent test set, with significant correlations observed for both WM and GM regional lesion burden with motor function (p < 0.008, and between WM and GM lesions alone with cognitive and visual function respectively (p < 0.008. The significant correlation of GM lesions with functional outcome highlights the serious implications GM lesions, in addition to WM lesions, have for prognosis, and the utility of structural MRI alone for quantifying lesion burden and planning therapy interventions.

  20. Automated, quantitative measures of grey and white matter lesion burden correlates with motor and cognitive function in children with unilateral cerebral palsy.

    Science.gov (United States)

    Pagnozzi, Alex M; Dowson, Nicholas; Doecke, James; Fiori, Simona; Bradley, Andrew P; Boyd, Roslyn N; Rose, Stephen

    2016-01-01

    White and grey matter lesions are the most prevalent type of injury observable in the Magnetic Resonance Images (MRIs) of children with cerebral palsy (CP). Previous studies investigating the impact of lesions in children with CP have been qualitative, limited by the lack of automated segmentation approaches in this setting. As a result, the quantitative relationship between lesion burden has yet to be established. In this study, we perform automatic lesion segmentation on a large cohort of data (107 children with unilateral CP and 18 healthy children) with a new, validated method for segmenting both white matter (WM) and grey matter (GM) lesions. The method has better accuracy (94%) than the best current methods (73%), and only requires standard structural MRI sequences. Anatomical lesion burdens most predictive of clinical scores of motor, cognitive, visual and communicative function were identified using the Least Absolute Shrinkage and Selection operator (LASSO). The improved segmentations enabled identification of significant correlations between regional lesion burden and clinical performance, which conform to known structure-function relationships. Model performance was validated in an independent test set, with significant correlations observed for both WM and GM regional lesion burden with motor function (p < 0.008), and between WM and GM lesions alone with cognitive and visual function respectively (p < 0.008). The significant correlation of GM lesions with functional outcome highlights the serious implications GM lesions, in addition to WM lesions, have for prognosis, and the utility of structural MRI alone for quantifying lesion burden and planning therapy interventions. PMID:27330975

  1. Differential aging of cerebral white matter in middle-aged and older adults: A seven-year follow-up.

    Science.gov (United States)

    Bender, Andrew R; Völkle, Manuel C; Raz, Naftali

    2016-01-15

    The few extant reports of longitudinal white matter (WM) changes in healthy aging, using diffusion tensor imaging (DTI), reveal substantial differences in change across brain regions and DTI indices. According to the "last-in-first-out" hypothesis of brain aging late-developing WM tracts may be particularly vulnerable to advanced age. To test this hypothesis we compared age-related changes in association, commissural and projection WM fiber regions using a skeletonized, region of interest DTI approach. Using linear mixed effect models, we evaluated the influences of age and vascular risk at baseline on seven-year changes in three indices of WM integrity and organization (axial diffusivity, AD, radial diffusivity, RD, and fractional anisotropy, FA) in healthy middle-aged and older adults (mean age=65.4, SD=9.0years). Association fibers showed the most pronounced declines over time. Advanced age was associated with greater longitudinal changes in RD and FA, independent of fiber type. Furthermore, older age was associated with longitudinal RD increases in late-developing, but not early-developing projection fibers. These findings demonstrate the increased vulnerability of later developing WM regions and support the "last-in-first-out" hypothesis of brain aging.

  2. Metabolic changes of prefrontal cerebral lobe ,white matter and cerebellum in patients with post-stroke depression A proton magnetic resonance spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Qinggang Xu; Hong Cao; Qingwei Song; Jianlin Wu

    2008-01-01

    BACKGROUND:Proton magnetic resonance spectroscopy(1H-MRS)non-invasively detects changes in chemical substances in the brain,which reflects the pathological metabolism.OBJECTIVE:To investigate changes in N-acetyl-aspartate(NAA),choline(Cho),creatine(Cr),and myoinositol(MI)in the gray and white matter of cerebral prefrontal lobe and cerebellum of patients with differential degrees of post-stroke depression(PSD)using 1H-MRS.DESIGN:A case control study.SETTING:The First Affiliated Hospital of the Dalian Medical University.PARTICIPANTS:A total of 38 patients with stroke(28 male and 10 female patients,aged 40 to 79 years)were selected from the Department of Neurology,1st Atfiliated Hospital,Dalian Medical University,from February to October in 2004.All subjects met the DSM-IV criteria for cerebrovascular disease and depression.The degree of depression was defined according to Hamilton criteria.38 patients with PSD were divided into two groups according to the time after ischemia,20 patients in the acute group with less than 10 days after ischemic attack(mild:16 patients,moderate/severe:4 patients)and 18 patients in the chronic group with more than 11 days after ischemic attack(mild:15 patients,moderate/severe:3 patients).Seventeen healthy volunteers with matching age from 41 to 80 years were examined as a control group.The study was approved by the Medical Ethics Committee of the University Medical Center Utrecht,and each participant signed an informed consent form.METHODS:Spectra were acquired by multi-voxel point-resolved spectroscopy(PRESS)sequence with GE signal.ST MP-di,localized in prefrontal cerebral lobe and cerebellum.Values of NAA,Cho,MI,and Cr ere compared between different graded PSD patients and control subjects with one-way analysis of variance in software SPSS11.5.MAIN OUTCOME MEASURES:Metabolite concentration in different brain regions of interest.Difference in metabolites between distinctly graded PSD patients and control subjects.Exclusion of age

  3. Study of West syndrome manifesting periventricular leukomalacia by MRI. Correlation between West syndrome and cerebral white matter lesions

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, Shinichiro; Nara, Takahiro; Shimizu, Masaki; Arita, Jiro; Sakamoto, Masafumi; Eda, Naruyuki; Ogawara, Yoshikazu [Saitama Children`s Medical Center, Iwatsuki (Japan); Maekawa, Kihei

    1995-09-01

    Clinical features of West syndrome manifesting periventricular leukomalacia (PVL) were studied by MRI. The subjects were 10 patients with West syndrome associated with PVL. Occipital spike on electroencephalograms was considered an important characteristic finding of West syndrome. Patients with West syndrome associated with PVL had a lower cerebral blood flow volume at the early phase than those with cryptogenic West syndrome, suggesting a difference of pathophysiology between West syndrome with PVL and cryptogenic West syndrome. Abnormal findings on electroencephalograms and MRI, which are considered to affect the disease course, suggest the presence of cerebral cortical abnormalities, therefore, it is proved to be difficult to study the pathophysiology of West syndrome solely focusing on the findings of the cerebral cortical basal ganglia and the related parts. (Y.S.).

  4. Tracking White Matter Fiber in Human Brain

    Institute of Scientific and Technical Information of China (English)

    KANGNing; ZHANGJun; EricSCarlson

    2004-01-01

    A new approach for noninvasively tracing brain white matter fiber tracts is presented using diffusion tensor magnetic resonance imaging (DT-MRI) data. This technique is based on successive anisotropic diffusion simulations over the human brain, which are utilized to construct three dimensional diffusion fronts. The fiber pathways are determined by evaluating the distance and orientation from fronts to their corresponding diffusion seeds. Real DT-MRI data are used to demonstrate the tracking scheme. It is shown that several major white matter fiber pathways can be reproduced noninvasively, with the tract branching being allowed. Since the diffusion simulation,which is a truly physical phenomenon reflecting the underlying architecture of cerebral tissues, makes full use of the entire diffusion tensor data, the proposed approach is expected to enhance robustness and reliability of the DT-MRI based fiber tracking techniques in white matter fiber reconstruction.

  5. The Association between Cerebral White Matter Lesions and Plasma Omega-3 to Omega-6 Polyunsaturated Fatty Acids Ratio to Cognitive Impairment Development

    Directory of Open Access Journals (Sweden)

    Michihiro Suwa

    2015-01-01

    Full Text Available Objective. Cerebral white matter hyperintensity (WMH with magnetic resonance imaging (MRI has a potential for predicting cognitive impairment. Serum polyunsaturated fatty acid (PUFA levels are important for evaluating the extent of atherosclerosis. We investigated whether abnormal PUFA levels affected WMH grading and cognitive function in patients without significant cognitive impairment. Methods. Atherosclerotic risk factors, the internal carotid artery (ICA plaque, and serum ratios of eicosapentaenoic to arachidonic acids (EPA/AA and docosahexaenoic to arachidonic acids (DHA/AA were assessed in 286 patients. The relationship among these risk factors, WMH, and cognitive function was evaluated using WMH grading and the Mini-Mental State Examination (MMSE. Results. The development of WMH was associated with aging, hypertension, ICA plaques, and a low serum EPA/AA ratio (<0.38, obtained as the median value but was not related to dyslipidemia, diabetes, smoking, and a low serum DHA/AA ratio (<0.84, obtained as the median value. In addition, the MMSE score deteriorated slightly with the progression of WMH (29.7 ± 1.0 compared to 28.4 ± 2.1, P<0.0001. Conclusions. The progression of WMH was associated with a low serum EPA/AA ratio and accompanied minimal deterioration in cognitive function. Sufficient omega-3 PUFA intake may be effective in preventing the development of cognitive impairment.

  6. A Patient with Fragile X-Associated Tremor/Ataxia Syndrome Presenting with Executive Cognitive Deficits and Cerebral White Matter Lesions

    Directory of Open Access Journals (Sweden)

    Kensaku Kasuga

    2011-05-01

    Full Text Available Fragile X-associated tremor/ataxia syndrome (FXTAS is a late-onset neurodegenerative disorder that primarily affects males who are carriers of a premutation of a CGG expansion in the FMR1 gene. In Asian populations, FXTAS has rarely been reported. Here, we report the case of a Japanese FXTAS patient who showed predominant executive cognitive deficits as the main feature of his disease. In contrast, the patient exhibited only very mild symptoms of intention tremor and ataxia, which did not interfere with daily activities. A gene analysis revealed that the patient carried a premutation of a CGG expansion (111 CGG repeats in the FMR1 gene. The mRNA expression level of FMR1 in the patient was 1.5-fold higher than in controls. On brain MRI scans, fluid-attenuated inversion recovery images showed high-intensity lesions in the middle cerebellar peduncles and the cerebral white matter, with a frontal predominance. The present case extends previous notions regarding the cognitive impairment in FXTAS patients. Recognizing FXTAS patients with predominant cognitive impairment from various ethnic backgrounds would contribute to our understanding of the phenotypic variation of this disease.

  7. Cerebral Microbleeds and White Matter Hyperintensities in Cognitively Healthy Elderly: A Cross-Sectional Cohort Study Evaluating the Effect of Arterial Stiffness

    Directory of Open Access Journals (Sweden)

    Anna-Märta Gustavsson

    2015-05-01

    Full Text Available Background: Arterial stiffness reflects the ageing processes in the vascular system, and studies have shown an association between reduced cognitive function and cerebral small vessel disease. Small vessel disease can be visualized as white matter hyperintensities (WMH and lacunar infarcts but also as cerebral microbleeds on brain magnetic resonance imaging (MRI. We aimed to investigate if arterial stiffness influences the presence of microbleeds, WMH and cognitive function in a population of cognitively healthy elderly. Methods: The study population is part of the Swedish BioFinder study and consisted of 208 individuals without any symptoms of cognitive impairment, who scored >27 points on the Mini-Mental State Examination. The participants (mean age, 72 years; 59% women underwent MRI of the brain with visual rating of microbleeds and WMH. Arterial stiffness was measured with carotid-femoral pulse wave velocity (cfPWV. Eight cognitive tests covering different cognitive domains were performed. Results: Microbleeds were detected in 12% and WMH in 31% of the participants. Mean (±standard deviation, SD cfPWV was 10.0 (±2.0 m/s. There was no association between the presence of microbleeds and arterial stiffness. There was a positive association between arterial stiffness and WMH independent of age or sex (odds ratio, 1.58; 95% confidence interval, 1.04-2.40, p 0.05. Cognitive performance was not associated with microbleeds, but individuals with WMH performed slightly worse than those without WMH on the Symbol Digit Modalities Test (mean ± SD, 35 ± 7.8 vs. 39 ± 8.1, p Conclusions: Arterial stiffness was not associated with the presence of cerebral microbleeds or cognitive function in cognitively healthy elderly. However, arterial stiffness was related to the presence of WMH, but the association was attenuated when multiple adjustments were made. There was a weak negative association between WMH and performance in one specific test of attention

  8. Biofidelic white matter heterogeneity decreases computational model predictions of white matter strains during rapid head rotations.

    Science.gov (United States)

    Maltese, Matthew R; Margulies, Susan S

    2016-11-01

    The finite element (FE) brain model is used increasingly as a design tool for developing technology to mitigate traumatic brain injury. We developed an ultra high-definition FE brain model (>4 million elements) from CT and MRI scans of a 2-month-old pre-adolescent piglet brain, and simulated rapid head rotations. Strain distributions in the thalamus, coronal radiata, corpus callosum, cerebral cortex gray matter, brainstem and cerebellum were evaluated to determine the influence of employing homogeneous brain moduli, or distinct experimentally derived gray and white matter property representations, where some white matter regions are stiffer and others less stiff than gray matter. We find that constitutive heterogeneity significantly lowers white matter deformations in all regions compared with homogeneous properties, and should be incorporated in FE model injury prediction. PMID:27123826

  9. Disruption of the Cerebral White Matter Network Is Related to Slowing of Information Processing Speed in Patients With Type 2 Diabetes

    OpenAIRE

    Reijmer, Yael D.; Leemans, Alexander; Brundel, Manon; Kappelle, L Jaap; Biessels, Geert Jan; ,

    2013-01-01

    Patients with type 2 diabetes often show slowing of information processing. Disruptions in the brain white matter network, possibly secondary to vascular damage, may underlie these cognitive disturbances. The current study reconstructed the white matter network of 55 nondemented individuals with type 2 diabetes (mean age, 71 ± 4 years) and 50 age-, sex-, and education-matched controls using diffusion magnetic resonance imaging–based fiber tractography. Graph theoretical analysis was then appl...

  10. THE STRUCTURE AND FINE STRUCTURE OF TELENCEPHALIC WHITE MATTER IN GALLUS DOMESTICUS SPECIES

    OpenAIRE

    LAURA DANIELA URDEŞ; N. CORNILĂ; PAULA POŞAN; DANIELA IANIŢCHI

    2013-01-01

    In Gallus domesticus species, the cerebral emispheres are constituted by the grey and white matter. The white matter is located into emispheres’ center, integrating in its mass a number of nervous nuclei, while the grey matter, placed to the periphery and into the center of telencephalon, composes the cerebral cortex and telencephalic nervous nuclei. Histologically, the white matter is constituted by nervous mielinic prolongations (projection, association and commisural fibres), glial cells a...

  11. Size matters: Cerebral volume influences sex differences in neuroanatomy

    OpenAIRE

    Leonard, CM; Towler, S; Welcome, S; Halderman, LK; Otto, R.; Eckert, MA; Chiarello, C

    2008-01-01

    Biological and behavioral differences between the sexes range from obvious to subtle or nonexistent. Neuroanatomical differences are particularly controversial, perhaps due to the implication that they might account for behavioral differences. In this sample of 200 men and women, large effect sizes (Cohen's d > 0.8) were found for sex differences in total cerebral gray and white matter, cerebellum, and gray matter proportion (women had a higher proportion of gray matter). The only one of thes...

  12. Expression of SOX10 in cerebral white matter in immature rats with postnatal infections%未成熟大鼠出生后感染对脑白质中SOX10蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    孙婷婷; 徐艳; 王军; 王瑞妍; 于桥; 冯晶晶; 李慧慧

    2015-01-01

    Objective To explore the effect of postnatal infection on SOX10 expression in cerebral white matter in immature rats. Methods A total of 96 newborn SD rats were randomly divided into hypoxia group, lipopolysaccharide (LPS) group, and control group. At day 3 and 6 after birth, the rats in LPS group and hypoxia group were intraperitoneally injected with 0.25 mg/kg of LPS while the rats in control group were injected with normal saline. Meanwhile the rats in hypoxia group were maintained in a hypoxic tank under atmospheric pressure and thermostatic water bath at 37℃for 2 hours of ventilation with mixed gas con-taining 8%O2 and 92%N2 at a rate of 2 L/min starting 3 days after birth. At day 7, 10, 14, 21 after birth, eight rats in each groups were sacriifced and the cerebral white matter was extracted. HE staining was performed to observe the pathological changes of cerebral white matter by light microscopy. The expression of SOX10 in cerebral white matter was determined by immunohisto-chemical and Western blotting analysis. The expression of TLR-4 was determined by Western blotting. Results In LPS group and hypoxia group, the SOX10 positive cells and expressions of SOX 10 and TLR-4 were increased at day 7, reached the peak at day 10, and then gradually declined. There were signiifcant differences between any two time points (P0.05). At each time point, the difference in the SOX10 positive cells and the expressions of SOX 10 and TLR-4 were statistically signiifcant among three groups (PLPS group>control group and there were signiifcantly differences between each groups (P0.05)。在不同时间点,脂多糖组、缺氧组和对照组三组之间SOX10阳性细胞数、SOX10和TLR-4蛋白表达的差异均有统计学意义(P均=0.000);均为缺氧组最高,其次为脂多糖组;各时间点两两比较,差异均有统计学意义(P<0.05)。结论未成熟大鼠出生后感染可引起脑损伤,缺氧与感染双重因素同时存在可加重脑

  13. Role of Cognitive Enhancer Therapy in Alzheimer’s Disease with Concomitant Cerebral White Matter Disease: Findings from a Long-Term Naturalistic Study

    OpenAIRE

    Ng, Kok Pin; Ng, Aloysius; Assam, Pryseley; Heng, Esther; Kandiah, Nagaendran

    2014-01-01

    Background Evidence is lacking for cognitive enhancer therapy in patients with Alzheimer’s disease (AD) and concomitant cerebrovascular disease (mixed AD) as such patients would have been excluded from clinical trials. Earlier studies of mixed AD have focused on large vessel cerebrovascular disease. The influence of small vessel cerebrovascular disease (svCVD) in the form of white matter hyperintensity (WMH) on treatment outcomes in mixed AD has not been addressed. Objective In this long-term...

  14. Excitotoxic damage to white matter

    Science.gov (United States)

    Matute, Carlos; Alberdi, Elena; Domercq, María; Sánchez-Gómez, María-Victoria; Pérez-Samartín, Alberto; Rodríguez-Antigüedad, Alfredo; Pérez-Cerdá, Fernando

    2007-01-01

    Glutamate kills neurons by excitotoxicity, which is caused by sustained activation of glutamate receptors. In recent years, it has been shown that glutamate can also be toxic to white matter oligodendrocytes and to myelin by this mechanism. In particular, glutamate receptor-mediated injury to these cells can be triggered by activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, kainate and N-methyl-d-aspartate glutamate receptor types. Thus, these receptor classes, and the intermediaries of the signal cascades they activate, are potential targets for drug development to treat white matter damage in acute and chronic diseases. In addition, alterations of glutamate homeostasis in white matter can determine glutamate injury to oligodendrocytes and myelin. Astrocytes are responsible for most glutamate uptake in synaptic and non-synaptic areas and consequently are the major regulators of glutamate homeostasis. Activated microglia in turn may secrete cytokines and generate radical oxygen species, which impair glutamate uptake and reduce the expression of glutamate transporters. Finally, oligodendrocytes also contribute to glutamate homeostasis. This review aims at summarizing the current knowledge about the mechanisms leading to oligodendrocyte cell death and demyelination as a consequence of alterations in glutamate signalling, and their clinical relevance to disease. In addition, we show evidence that oligodendrocytes can also be killed by ATP acting at P2X receptors. A thorough understanding of how oligodendrocytes and myelin are damaged by excitotoxicity will generate knowledge that can lead to improved therapeutic strategies to protect white matter. PMID:17504270

  15. Magnetic resonance imaging of white matter diseases of prematurity

    International Nuclear Information System (INIS)

    Periventricular leucomalacia (PVL) and parenchymal venous infarction complicating germinal matrix/intraventricular haemorrhage have long been recognised as the two significant white matter diseases responsible for the majority of cases of cerebral palsy in survivors of preterm birth. However, more recent studies using magnetic resonance imaging to assess the preterm brain have documented two new appearances, adding to the spectrum of white matter disease of prematurity: punctate white matter lesions, and diffuse excessive high signal intensity (DEHSI). These appear to be more common than PVL but less significant in terms of their impact on individual neurodevelopment. They may, however, be associated with later cognitive and behavioural disorders known to be common following preterm birth. It remains unclear whether PVL, punctate lesions, and DEHSI represent a continuum of disorders occurring as a result of a similar injurious process to the developing white matter. This review discusses the role of MR imaging in investigating these three disorders in terms of aetiology, pathology, and outcome. (orig.)

  16. Magnetic resonance imaging of white matter diseases of prematurity

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary A.; Supramaniam, Veena; Ederies, Ashraf; Chew, Andrew; Anjari, Mustafa; Counsell, Serena [Imperial College, Hammersmith Hospital, Robert Steiner MR Unit, MRC Clinical Sciences Centre, London (United Kingdom); Bassi, Laura; Groppo, Michela; Ramenghi, Luca A. [University of Milan, NICU, Institute of Pediatrics and Neonatology, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan (Italy)

    2010-06-15

    Periventricular leucomalacia (PVL) and parenchymal venous infarction complicating germinal matrix/intraventricular haemorrhage have long been recognised as the two significant white matter diseases responsible for the majority of cases of cerebral palsy in survivors of preterm birth. However, more recent studies using magnetic resonance imaging to assess the preterm brain have documented two new appearances, adding to the spectrum of white matter disease of prematurity: punctate white matter lesions, and diffuse excessive high signal intensity (DEHSI). These appear to be more common than PVL but less significant in terms of their impact on individual neurodevelopment. They may, however, be associated with later cognitive and behavioural disorders known to be common following preterm birth. It remains unclear whether PVL, punctate lesions, and DEHSI represent a continuum of disorders occurring as a result of a similar injurious process to the developing white matter. This review discusses the role of MR imaging in investigating these three disorders in terms of aetiology, pathology, and outcome. (orig.)

  17. Abnormal white matter properties in adolescent girls with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Katherine E. Travis

    2015-01-01

    Full Text Available Anorexia nervosa (AN is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1, an index of myelin content. Fifteen adolescent girls with AN (mean age = 16.6 years ± 1.4 were compared to fifteen age-matched girls with normal weight and eating behaviors (mean age = 17.1 years ± 1.3. We identified and segmented 9 bilateral cerebral tracts (18 and 8 callosal fiber tracts in each participant's brain (26 total. Tract profiles were generated by computing measures for fractional anisotropy (FA and R1 along the trajectory of each tract. Compared to controls, FA in the AN group was significantly decreased in 4 of 26 white matter tracts and significantly increased in 2 of 26 white matter tracts. R1 was significantly decreased in the AN group compared to controls in 11 of 26 white matter tracts. Reduced FA in combination with reduced R1 suggests that the observed white matter differences in AN are likely due to reductions in myelin content. For the majority of tracts, group differences in FA and R1 did not occur within the same tract. The present findings have important implications for understanding the neurobiological factors underlying white matter changes associated with AN and invite further investigations examining associations between white matter properties and specific physiological, cognitive, social, or emotional functions affected in AN.

  18. MRI of white matter changes in the Sjoegren-Larsson syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.Z. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan); Oba, H. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan); Ohtomo, K. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan); Aihara, M. [Dept. of Paediatrics, Yamanashi Medical Coll., Tamahocho, Yamanashi (Japan); Hayashibe, H. [Dept. of Paediatrics, Yamanashi Medical Coll., Tamahocho, Yamanashi (Japan); Nakazawa, S. [Dept. of Paediatrics, Yamanashi Medical Coll., Tamahocho, Yamanashi (Japan); Uchiyama, G. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan)

    1995-10-01

    We report a case of Sjoegren-Larsson syndrome with spastic diplegia and conduction aphasia. MRI demonstrated the white matter changes deep in the cerebral hemispheres. We analyse the MRI findings and compare the results with neuropsychological signs. (orig.)

  19. Review on Cerebral White Matter Microstructure Detection Based on Diffusion Magnetic Resonance Imaging%基于扩散磁共振成像的大脑白质微结构检测研究进展

    Institute of Scientific and Technical Information of China (English)

    张力新; 王伟伟; 赵欣; 陈元园; 沙淼; 万柏坤; 明东

    2015-01-01

    大脑白质由连接大脑灰质区域的神经纤维聚集而成,含白质纤维、神经轴突等多种细胞成分。白质纤维是大脑信息传递和编码的重要媒介,白质微结构检测对脑神经科学研究和中枢神经疾病诊断与治疗具有十分重要的意义。利用组织中水分子扩散特性成像的扩散磁共振成像( diffusion magnetic resonance imaging, dMRI)技术为组织微结构的无创在体检测提供了可能。本文首先介绍了组织中水分子的扩散特性和基于dMRI的水分子扩散参数检测原理;然后重点综述近年来基于dMRI技术在白质完整性、神经突密度和直径、白质纤维几何特征及走行等白质微结构检测方面的研究进展;最后简要讨论dMRI技术所存在的问题并展望其未来发展,以期促进dMRI技术在白质微结构信息检测中的研究与应用。%Cerebral white matter is a cluster of nerve fibers connecting gray matter regions of the brain ( which contains a variety of cell component, such as white matter fibers and axons) , and is an important medium of information transferring and encoding. White matter microstructure has important implications for the detection of brain science research, and diagnosis and treatment of central nervous system disor-ders. The diffusion magnetic resonance imaging ( dMRI) , based on the diffusion properties of tissue wa-ter molecules, makes it possible for the non-invasive detection of tissue microstructure in vivo. This paper first described the diffusion properties of water molecules in tissue and dMRI-based detection principle of water molecule diffusion parameters;then reviewed the research progress of dMRI-based white matter mi-crostructure detection in terms of white matter integrity, neurite density and diameter, geometry features and course of white matter fibers, etc;and briefly discussed the problems in dMRI technology and the fu-ture development to promote dMRI technical research and

  20. Aerobic Fitness is Associated with Gray Matter Volume and White Matter Integrity in Multiple Sclerosis

    Science.gov (United States)

    Prakash, Ruchika Shaurya; Snook, Erin M.; Motl, Robert W.; Kramer, Arthur F.

    2009-01-01

    Alterations in gray and white matter have been well documented in individuals with multiple sclerosis. Severity and extent of such brain tissue damage have been associated with cognitive impairment, disease duration and neurological disability, making quantitative indices of tissue damage important markers of disease progression. In this study, we investigated the association between cardiorespiratory fitness and measures of gray matter atrophy and white matter integrity. Employing a voxel-based approach to analyses of gray matter and white matter, we specifically examined whether higher levels of fitness in multiple sclerosis participants were associated with preserved gray matter volume and integrity of white matter. We found a positive association between cardiorespiratory fitness and regional gray matter volumes and higher focal fractional anisotropy values. Statistical mapping revealed that higher levels of fitness were associated with greater gray matter volume in the midline cortical structures including the medial frontal gyrus, anterior cingulate cortex and the precuneus. Further, we also found increasing levels of fitness were associated with higher fractional anisotropy in the left thalamic radiation and right anterior corona radiata. Both preserved gray matter volume and white-matter tract integrity were associated with better performance on measures of processing speed. Taken together, these results suggest that fitness exerts a prophylactic influence on the cerebral atrophy observed early on preserving neuronal integrity in multiple sclerosis, thereby reducing long-term disability. PMID:19560443

  1. White Matter Hyperintensities Improve Ischemic Stroke Recurrence Prediction

    DEFF Research Database (Denmark)

    Andersen, Søren Due; Larsen, Torben Bjerregaard; Gorst-Rasmussen, Anders;

    2017-01-01

    -based, observational cohort study, we included 832 patients (mean age 59.6 (SD 13.9); 42.0% females) with incident ischemic stroke and no AF. We assessed the severity of white matter hyperintensities using MRI. Hazard ratios stratified by the white matter hyperintensities score and adjusted for the components......BACKGROUND: Nearly one in 5 patients with ischemic stroke will invariably experience a second stroke within 5 years. Stroke risk stratification schemes based solely on clinical variables perform only modestly in non-atrial fibrillation (AF) patients and improvement of these schemes will enhance...... their clinical utility. Cerebral white matter hyperintensities are associated with an increased risk of incident ischemic stroke in the general population, whereas their association with the risk of ischemic stroke recurrence is more ambiguous. In a non-AF stroke cohort, we investigated the association between...

  2. Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children.

    Directory of Open Access Journals (Sweden)

    Lianne J Woodward

    Full Text Available BACKGROUND: Cerebral white matter abnormalities on term MRI are a strong predictor of motor disability in children born very preterm. However, their contribution to cognitive impairment is less certain. OBJECTIVE: Examine relationships between the presence and severity of cerebral white matter abnormalities on neonatal MRI and a range of neurocognitive outcomes assessed at ages 4 and 6 years. DESIGN/METHODS: The study sample consisted of a regionally representative cohort of 104 very preterm (≤32 weeks gestation infants born from 1998-2000 and a comparison group of 107 full-term infants. At term equivalent, all preterm infants underwent a structural MRI scan that was analyzed qualitatively for the presence and severity of cerebral white matter abnormalities, including cysts, signal abnormalities, loss of white matter volume, ventriculomegaly, and corpus callosal thinning/myelination. At corrected ages 4 and 6 years, all children underwent a comprehensive neurodevelopmental assessment that included measures of general intellectual ability, language development, and executive functioning. RESULTS: At 4 and 6 years, very preterm children without cerebral white matter abnormalities showed no apparent neurocognitive impairments relative to their full-term peers on any of the domain specific measures of intelligence, language, and executive functioning. In contrast, children born very preterm with mild and moderate-to-severe white matter abnormalities were characterized by performance impairments across all measures and time points, with more severe cerebral abnormalities being associated with increased risks of cognitive impairment. These associations persisted after adjustment for gender, neonatal medical risk factors, and family social risk. CONCLUSIONS: Findings highlight the importance of cerebral white matter connectivity for later intact cognitive functioning amongst children born very preterm. Preterm born children without cerebral white

  3. White matter of the cerebellum demonstrated by computed tomography: normal anatomy and physical principles.

    Science.gov (United States)

    Maravilla, K R; Pastel, M S; Kirkpatrick, J B

    1978-04-01

    Although computed tomography (CT) delineation of normal white matter of the cerebral hemispheres has been well documented, there has been no description of white matter within the cerebellum. Through the use of phantom studies, CT number correlations between cerebellum and cerebral hemispheres, and anatomic correlation with in vitro specimens, the ability to visualize cerebellar white matter is demonstrated. Thin sections decrease volume averaging and enable consistent imaging of these structures. Size and shape of the corpus medullaris on CT scan may vary with the scan angle and level of section. Representative examples of various normal appearances are illustrated.

  4. The White Matter Query Language: A Novel Approach for Describing Human White Matter Anatomy

    OpenAIRE

    Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik

    2015-01-01

    International audience We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI vol¬umes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroa...

  5. TM4SF20 ancestral deletion and susceptibility to a pediatric disorder of early language delay and cerebral white matter hyperintensities.

    Science.gov (United States)

    Wiszniewski, Wojciech; Hunter, Jill V; Hanchard, Neil A; Willer, Jason R; Shaw, Chad; Tian, Qi; Illner, Anna; Wang, Xueqing; Cheung, Sau W; Patel, Ankita; Campbell, Ian M; Gelowani, Violet; Hixson, Patricia; Ester, Audrey R; Azamian, Mahshid S; Potocki, Lorraine; Zapata, Gladys; Hernandez, Patricia P; Ramocki, Melissa B; Santos-Cortez, Regie L P; Wang, Gao; York, Michele K; Justice, Monica J; Chu, Zili D; Bader, Patricia I; Omo-Griffith, Lisa; Madduri, Nirupama S; Scharer, Gunter; Crawford, Heather P; Yanatatsaneejit, Pattamawadee; Eifert, Anna; Kerr, Jeffery; Bacino, Carlos A; Franklin, Adiaha I A; Goin-Kochel, Robin P; Simpson, Gayle; Immken, Ladonna; Haque, Muhammad E; Stosic, Marija; Williams, Misti D; Morgan, Thomas M; Pruthi, Sumit; Omary, Reed; Boyadjiev, Simeon A; Win, Kay K; Thida, Aye; Hurles, Matthew; Hibberd, Martin Lloyd; Khor, Chiea Chuen; Van Vinh Chau, Nguyen; Gallagher, Thomas E; Mutirangura, Apiwat; Stankiewicz, Pawel; Beaudet, Arthur L; Maletic-Savatic, Mirjana; Rosenfeld, Jill A; Shaffer, Lisa G; Davis, Erica E; Belmont, John W; Dunstan, Sarah; Simmons, Cameron P; Bonnen, Penelope E; Leal, Suzanne M; Katsanis, Nicholas; Lupski, James R; Lalani, Seema R

    2013-08-01

    White matter hyperintensities (WMHs) of the brain are important markers of aging and small-vessel disease. WMHs are rare in healthy children and, when observed, often occur with comorbid neuroinflammatory or vasculitic processes. Here, we describe a complex 4 kb deletion in 2q36.3 that segregates with early childhood communication disorders and WMH in 15 unrelated families predominantly from Southeast Asia. The premature brain aging phenotype with punctate and multifocal WMHs was observed in ~70% of young carrier parents who underwent brain MRI. The complex deletion removes the penultimate exon 3 of TM4SF20, a gene encoding a transmembrane protein of unknown function. Minigene analysis showed that the resultant net loss of an exon introduces a premature stop codon, which, in turn, leads to the generation of a stable protein that fails to target to the plasma membrane and accumulates in the cytoplasm. Finally, we report this deletion to be enriched in individuals of Vietnamese Kinh descent, with an allele frequency of about 1%, embedded in an ancestral haplotype. Our data point to a constellation of early language delay and WMH phenotypes, driven by a likely toxic mechanism of TM4SF20 truncation, and highlight the importance of understanding and managing population-specific low-frequency pathogenic alleles.

  6. White Matter Diseases with Radiologic-Pathologic Correlation.

    Science.gov (United States)

    Sarbu, Nicolae; Shih, Robert Y; Jones, Robert V; Horkayne-Szakaly, Iren; Oleaga, Laura; Smirniotopoulos, James G

    2016-01-01

    White matter diseases include a wide spectrum of disorders that have in common impairment of normal myelination, either by secondary destruction of previously myelinated structures (demyelinating processes) or by primary abnormalities of myelin formation (dysmyelinating processes). The pathogenesis of many white matter diseases remains poorly understood. Demyelinating disorders are the object of this review and will be further divided into autoimmune, infectious, vascular, and toxic-metabolic processes. Autoimmune processes include multiple sclerosis and related diseases: tumefactive demyelinating lesions, Balo concentric sclerosis, Marburg and Schilder variants, neuromyelitis optica (Devic disease), acute disseminated encephalomyelitis, and acute hemorrhagic leukoencephalopathy (Hurst disease). Infectious processes include Lyme disease (neuroborreliosis), progressive multifocal leukoencephalopathy, and human immunodeficiency virus (HIV) encephalopathy. Vascular processes include different types of small-vessel disease: arteriolosclerosis, cerebral amyloid angiopathy, cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), primary angiitis of the central nervous system, Susac syndrome, and neurolupus. Toxic-metabolic processes include osmotic myelinolysis, methotrexate leukoencephalopathy, and posterior reversible encephalopathy syndrome. The imaging spectrum can vary widely from small multifocal white matter lesions to confluent or extensive white matter involvement. Understanding the pathologic substrate is fundamental for understanding the radiologic manifestations, and a systematic approach to the radiologic findings, in correlation with clinical and laboratory data, is crucial for narrowing the differential diagnosis. (©)RSNA, 2016. PMID:27618323

  7. [What matters more in the white matter: thinking inside of the brain].

    Science.gov (United States)

    Uchihara, Toshiki; Shishido-Hara, Yukiko

    2015-04-01

    The proportion of white matter in the brain has increased during evolution, and white matter comprises approximately half of the human brain. Its macroscopic as well as microscopic structures change during development, aging, and disease progression as well as following physical or mental training. Knowledge about the structural plasticity of the white matter may alter our cortex-oriented view of brain functions and expand our strategies for diagnosis and treatment, including rehabilitation, since the gray and white matter are complementary. Although the presence of white matter lesions is easy to detect with magnetic resonance imaging of the brain, their qualitative differentiation requires vast knowledge about the underlying processes. Examples from multiple ischemic lesions caused by different disease processes affecting the cerebral arteries are presented for comparison. It is worth considering "what matters more in the white matter" by taking into account the basic structures of the brain as well as their plasticity. Such "thinking inside of the brain" may further expand our understanding of the brain to improve our clinical interpretations and treatments. PMID:25846587

  8. Astrocytes and Developmental White Matter Disorders

    Science.gov (United States)

    Sen, Ellora; Levison, Steven W.

    2006-01-01

    There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

  9. White matter microstructure alterations in bipolar disorder

    Science.gov (United States)

    Bellani, Marcella; Perlini, Cinzia; Ferro, Adele; Cerruti, Stefania; Rambaldelli, Gianluca; Isola, Miriam; Cerini, Roberto; Dusi, Nicola; Andreone, Nicola; Balestrieri, Matteo; Mucelli, Roberto Pozzi; Tansella, Michele; Brambilla, Paolo

    2012-01-01

    Summary Genetic, neuropathological and magnetic resonance imaging findings support the presence of diffuse white matter cytoarchitectural disruption in bipolar disorder. In this study, diffusion-weighted imaging (DWI) was applied to study cortical white matter microstructure organisation in 24 patients with DSM-IV bipolar disorder and 35 matched normal controls. DWI images were obtained using a 1.5 Tesla scanner and apparent diffusion coefficient (ADC) values were determined over regions of interest placed, bilaterally, in the frontal, temporal, parietal, and occipital white matter. Significantly increased ADC values were found in bipolar patients with respect to normal controls in the right temporal lobe, left parietal lobe and bilateral occipital lobes. ADC values did not associate significantly with age or with clinical variables (p>0.05). Diffuse cortical white matter alterations on DWI in bipolar disorder denote widespread disruption of white matter integrity and may be due to altered myelination and/or axonal integrity. PMID:22687164

  10. Peso de nascimento como preditor para a gravidade da lesão da substância branca cerebral neonatal Birth weight as predictor for the severity of neonatal brain white matter lesion

    Directory of Open Access Journals (Sweden)

    Nayara Argollo

    2006-06-01

    Full Text Available Para analisar a associação entre fatores natais com a gravidade da lesão da substância branca (LSB cerebral neonatal, controlando o peso de nascimento, identificaram os neonatos pela ultra-sonografia craniana, que foram divididos em: aqueles com evolução da LSC para resolução da imagem ao ultra-som (menor gravidade e, aqueles que evoluiram com formação de cistos e/ou ventriculomegalia e/ou hemorragia (maior gravidade. Doze variáveis (hiponatremia, anemia, infecção, retinopatia, displasia broncopulmonar, hipoalbuminemia, persistência do canal arterial, audiometria alterada, desconforto respiratório precoce, peso de nascimento To analyze the association of natal factors with the severity of neonatal brain white matter lesion (WML by controlling the birth weight, we identified newborns with WML who were divided into: those with WML evolution towards resolution of the ultrasound image (less severe, and those who evolved with cist formation and/or ventriculomegalia and/or hemorrhage (greater severity. There were differences among the twelve variables (hyponatremia, anemia, infection, retinopathy, broncopulmonary dysplasia, hypoalbuminemia, persistence of the arterial canal, altered audiometry, early respiratory distress, birth weigh below 2,500 g, weight per category, and prematurity between the two groups (p<0.05, being that nine variables (hyponatremia, infection, retinopathy, hypoalbuminemia, persistence of the arterial canal, early respiratory distress, low weight, prematurity, and weight per category remained statistically different (p<0.01 after the logistic regression analysis. When the variables were analyzed by birth weight category none of them presented statistical significance. This study suggests that birth weight is the major factor - likely the only one - associated to the severity of neonatal brain white matter lesion.

  11. Relationship between Cerebral Microbleeds and White Matter Lesions and Lacunar ;Infarcts%脑微出血与脑白质病变及腔隙性梗死关系研究

    Institute of Scientific and Technical Information of China (English)

    高中宝; 赵杏丽; 王振福; 杨扬; 管锦群; 王婷; 吴卫平

    2015-01-01

    目的探讨脑微出血(cerebral microbleeds,CMBs)与脑白质病变(white matter lesions,WML)及腔隙性梗死(lacunar infarcts,LI)的关系。  方法连续纳入2010年2月至2012年2月解放军总医院南楼神经内科病房根据病史及头颅影像学检查确诊患有脑血管病或具有高血压、糖尿病、高脂血症等脑血管病危险因素者217例。采用G E公司1.5T磁共振成像行头颅常规序列及T2*血管加权成像(T2 star weighted angiography,SWAN)序列扫描。记录深部及皮层部位CMBs病灶数,按照Fazekas评分和Scheltens改良量表将脑室旁白质高信号(peri-ventricular hyperintensities,PVH)和深部白质高信号(deep white matter hyperintensities,DWMH)分别评分,根据病灶数量评估LI的严重程度分析CMBs与PVH、DWMH及LI的关系。  结果随着PVH和DWMH评分的升高,CMBs的检出率分别由41.8%(PVH=1)及40.8%(DWMH=1)升高至68.8%(PVH=3)及76.9%(DWMH=3);随着LI数量的增加,CMBs的检出率由46.3%升高至75%。深部CMBs与PVH及DWMH的严重程度有较强相关性(rs=0.345,P<0.001;rs=0.346,P<0.001),与LI亦显著相关(rs=0.281,P<0.001);而皮层CMBs与PVH及DWMH严重程度仅呈弱相关(rs=0.219,P=0.001;rs=0.189,P=0.005),与LI无显著相关性。  结论深部CMBs与脑室旁及深部脑白质病变、LI相关。%Objective To investigate the relationship between cerebral microbleeds(CMBs) and white matter lesions(WML) and lacunar infarcts(LI). Methods The identiifed population inculded 217 patients with cerebral vascular disease or related risk factors admitted to the Department of Geriatric Neurology of the PLA General Hospital between February, 2010 and February, 2012. Routine sequence and T2 star weighted angiography sequence of magnetic resonance imaging were performed with 1.5 Tesla machine maded by General Electric company. The number of CMBs in deep and

  12. Cerebral Perfusion and Aortic Stiffness Are Independent Predictors of White Matter Brain Atrophy in Type 1 Diabetic Patients Assessed With Magnetic Resonance Imaging

    OpenAIRE

    van Elderen, Saskia G. C.; Brandts, Anne; van der Grond, Jeroen; Westenberg, Jos J. M.; Kroft, Lucia J.M.; van Buchem, Mark A.; Smit, Johannes W.A.; de Roos, Albert

    2011-01-01

    OBJECTIVE To identify vascular mechanisms of brain atrophy in type 1 diabetes mellitus (DM) patients by investigating the relationship between brain volumes and cerebral perfusion and aortic stiffness using magnetic resonance imaging (MRI). RESEARCH DESIGN AND METHODS Approval from the local institutional review board was obtained, and patients gave informed consent. Fifty-one type 1 DM patients (30 men; mean age 44 ± 11 years; mean DM duration 23 ± 12 years) and 34 age- and sex-matched healt...

  13. Brain white matter lesions correlated to newborns death and lethality Fatores correlacionados ao óbito e à letalidade hospitalar em neonatos com lesão da substância branca cerebral

    Directory of Open Access Journals (Sweden)

    Nayara Argollo

    2006-06-01

    Full Text Available OBJECTIVES: to describe hospital lethality rates and factors correlated to death in neonates with brain white matter lesions. METHODS: a retrospective study was performed from January 1994 to December 2001. Neonates with white brain matter lesions were divided into survival and death groups and their medical files reviewed through the single blind method to determine evolution. Death certificates provided the cause of death. The groups were compared through correlation coefficients. Hospital lethality rate was calculated. RESULTS: ninety three cases of white brain matter lesions and seven deaths were determined. Hospital lethality rate was of 8.2.% (95%CI: 2.4-14.0 independently from lesion occurrence time, and of 10.3% (95%CI: 3.3-17.3 for deaths occurred during prenatal and perinatal periods. Death was correlated to: Apgar score, non-cephalic presentation, gestational age, hyperglicemia, hypercalcemia, convulsion, respiratory insufficiency and atelectasy. CONCLUSIONS: hospital lethality was of 10.3% generating the following hypothesis: perinatal asphyxia must be the principal direct and indirect etiologic factor (aggravating the expression of prematurity and infection diseases, of prenatal and perinatal mortality among newborns with white brain matter lesions; and OBJETIVOS: descrever a taxa de letalidade hospitalar e fatores correlacionados com o óbito em crianças com lesão da substância branca cerebral (LSB. MÉTODOS: estudo retrospectivo realizado de janeiro de 1994 a dezembro de 2001. Os neonatos com LSB foram divididos em sobreviventes ou óbito, e seus prontuários revisados de forma cega para a evolução. Dos atestados de óbito, a causa de morte. Os grupos foram comparados por coeficientes de correlação. Calculada a taxa de letalidade hospitalar. RESULTADOS: foram encontrados 93 casos de LSB e sete óbitos. A taxa de letalidade hospitalar foi de 8,2%, (IC95%: 2,4-14,0, independentemente da época de instalação da lesão, e de

  14. White matter disintegration in cluster headache

    OpenAIRE

    Szabó, Nikoletta; Kincses, Zsigmond Tamás; Párdutz, Árpád; Tóth, Eszter; Szok, Délia; Csete, Gergő; Vécsei, László

    2013-01-01

    Background Previous studies in primary headache disorders showed microstructural alterations in the white matter as measured by diffusion imaging. However these investigations are not in full agreement and some of those, especially in cluster headache, restricted the analysis to only a limited number of diffusion parameters. Therefore, in the current study we examined white matter microstructure in cluster headache patients. Methods Diffusion weighted MRI images with 60 directions were acquir...

  15. White matter structure and clinical characteristics of stroke patients: A diffusion tensor MRI study.

    Science.gov (United States)

    Ueda, Ryo; Yamada, Naoki; Kakuda, Wataru; Abo, Masahiro; Senoo, Atsushi

    2016-03-15

    Fractional anisotropy has been used in many studies that examined post-stroke changes in white matter. This study was performed to clarify cerebral white matter changes after stroke using generalized fractional anisotropy (GFA). White matter structure was visualized using diffusion tensor imaging in 72 patients with post-stroke arm paralysis. Exercise-related brain regions were examined in cerebral white matter using GFA. The relationship between GFA and clinical characteristics was examined. Overall, the mean GFA of the lesioned hemisphere was significantly lower than that of the non-lesioned hemisphere (Pparalysis of the dominant hand were significantly different from those of patients with paralysis of the nondominant hand in Brodmann areas 4 and 6 of the non-lesioned hemisphere and Brodmann area 4 of the lesioned hemisphere (Pbrain region, age at onset of paralysis, and paralysis of the dominant or non-dominant hand. PMID:26783693

  16. Aging White Matter and Cognition: Differential Effects of Regional Variations in Diffusion Properties on Memory, Executive Functions, and Speed

    Science.gov (United States)

    Kennedy, Kristen M.; Raz, Naftali

    2009-01-01

    Disruption of cerebral white matter has been proposed as an explanation for age-related cognitive declines. However, the role of specific regions in specific cognitive declines remains unclear. We used diffusion tensor imaging to examine the associations between regional microstructural integrity of the white matter and performance on…

  17. Medidas do índice de resistência ao Doppler craniano em recém-nascidos pré-termo com lesão da substância branca cerebral Cranial Doppler resistance index measurement in preterm newborns with cerebral white matter lesion

    Directory of Open Access Journals (Sweden)

    Nayara Argollo

    2006-06-01

    Full Text Available OBJETIVO: Investigar se o índice de resistência (IR, nas primeiras 72 horas de vida de neonatos com lesão da substância branca (LSB cerebral, correlaciona-se com evolução desfavorável da LSB. MÉTODOS: Estudo retrospectivo. Identificaram-se os neonatos com LSB pelo laudo da ultra-sonografia craniana e foram selecionados aqueles com estudo do Doppler e medida do IR. Os neonatos foram divididos em três grupos: aqueles com IR baixo ( 0,85. A amostra foi analisada como um todo, e, posteriormente, estratificada por peso de nascimento. RESULTADOS: O fluxo sangüíneo cerebral medido pelo IR foi anormal em 46 (68,7%, sendo que em 42 (62,7% estava baixo, e em quatro (6%, alto. Dentre aqueles com baixo IR, 15 (35,7% tiveram evolução desfavorável, com sinais ultra-sonográficos de atrofia cerebral em 10 (23,8% e hemorragia intraventricular em cinco (11,9%. Os quatro neonatos com alto IR tiveram evolução desfavorável, sendo um (25% com sinais de atrofia cerebral e três (75% com hemorragia intraventricular. Não houve diferenças estatisticamente significantes entre os grupos de IR em relação à evolução para o óbito. CONCLUSÃO: O estudo demonstrou que, entre neonatos com LSB cerebral, o IR alterado nas primeiras 72 horas esteve associado com complicações na evolução dessa lesão. A alteração do IR não se associou à evolução para o óbito. Portanto, a medida do IR é importante parâmetro a ser avaliado em neonatos.OBJECTIVE: To investigate whether the resistance index (RI within the first 72 hours of life of newborn infants with cerebral white matter lesion (WML is correlated with the adverse outcome of WML. METHODS: Retrospective study. Newborn infants with WML were identified based on cranial ultrasound results, and those with Doppler imaging and RI measurement were selected. The newborn infants were placed in three groups: low ( 0.85 RI. The sample was analyzed as a whole at first and then stratified according to birth

  18. White matter changes in stroke patients. Relationship with stroke subtype and outcome

    DEFF Research Database (Denmark)

    Leys, D; Englund, E; Del Ser, T;

    1999-01-01

    or white matter lesions or leukoencephalopathy or leukoaraiosis' and 'stroke or cerebral infarct or cerebral hemorrhage or cerebrovascular disease or transient ischemic attack (TIA)'. WMC, as defined radiologically, are present in up to 44% of patients with stroke or TIA and in 50% of patients...... with vascular dementia. WMC are more frequent in patients with lacunar infarcts, deep intracerebral hemorrhages, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and cerebral amyloid angiopathy. After an acute ischemic stroke, WMC are associated with a higher risk...

  19. The relation between white matter lesions of different parts of brain after acute cerebral infarction and depressive disorder%急性脑梗死后不同部位脑白质病变与抑郁的关系

    Institute of Scientific and Technical Information of China (English)

    姜丽杰; 于敏; 周莹; 侯宇; 娄伟

    2015-01-01

    目的 探讨急性脑梗死后不同部位的脑白质病变(WML)对抑郁发生的影响.方法 纳入大连市第三人民医院神经内科2012年3月至2013年4月住院的急性脑梗死患者97例,根据有无脑白质病变分为2组,比较2组间汉密尔顿焦虑量表(HAMA)评分及汉密尔顿抑郁量表(HAMD)评分有无差异.对有WML组行改良Scheltens评分,并将改良Scheltens评分与HAMD评分进行直线相关分析,了解额叶、颞叶、顶叶、枕叶、基底节、侧脑室旁及小脑、脑干等不同部位的白质损害程度与抑郁严重程度的相关性.结果 有WML组HAMD评分(10±6)分,HAMA评分(11±4)分,无WML组HAMD评分(6±4)分,HAMA评分(9±3)分,2组之间HAMD及HAMA评分比较差异均有统计学意义(均P<0.05);有WML组59例患者HAMD评分(10±6)分与改良Scheltens评分总分(4.39±0.49)分及额叶(2.76±0.43)分、枕叶白质(1.61±0.49)分、额部脑室旁白质(2.85±0.36)分,病变呈明显正相关(r=0.395,P=0.002;r=0.438,P =0.001;r =0.247,P=0.005;r =0.385,P=0.003).结论 急性脑梗死后不同部位的WML与抑郁障碍相关,主要以额部白质病变为主,额部白质病变越严重,抑郁程度越重.%Objective To evaluate the relationship between white matter lesions(WML) of different parts of brain after acute cerebral infarction and depressive disorder.Methods The clinical data of 97 patients with acute cerebral infarction were analyzed.All patients were divided into 2 groups according to with or without WML.The differences of Hamilton Anxiety Scale (HAMA) and Hamilton Depression Scale (HAMD) between 2 groups were analyzed.The WML group was scored using the semiquatitative rating scale of Scheltens Rating Scale(Scheltens).The correlation between the scheltens of lateral ventricle,frontal lobe,parietal lobe,temporal lobe,occipital lobe,basal ganglia,cerebella,brainstem and HAMD were observed.Results In WML group,the scale of HAMD was 10 ±6 and HAMA was 11 ±4.In without WML group

  20. On describing human white matter anatomy: the white matter query language.

    Science.gov (United States)

    Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik

    2013-01-01

    The main contribution of this work is the careful syntactical definition of major white matter tracts in the human brain based on a neuroanatomist's expert knowledge. We present a technique to formally describe white matter tracts and to automatically extract them from diffusion MRI data. The framework is based on a novel query language with a near-to-English textual syntax. This query language allows us to construct a dictionary of anatomical definitions describing white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This enables automated coherent labeling of white matter anatomy across subjects. We use our method to encode anatomical knowledge in human white matter describing 10 association and 8 projection tracts per hemisphere and 7 commissural tracts. The technique is shown to be comparable in accuracy to manual labeling. We present results applying this framework to create a white matter atlas from 77 healthy subjects, and we use this atlas in a proof-of-concept study to detect tract changes specific to schizophrenia. PMID:24505722

  1. White matter astrocytes in health and disease

    OpenAIRE

    Lundgaard, Iben; Osório, Maria Joana; Kress, Benjamin; Sanggaard, Simon; NEDERGAARD, Maiken

    2013-01-01

    Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and oligodendrocyte. Astrocytes also have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and grey matter astrocytes, how astrocytes support myelination, how their dysfunc...

  2. Organising white matter in a brain without corpus callosum fibres.

    Science.gov (United States)

    Bénézit, Audrey; Hertz-Pannier, Lucie; Dehaene-Lambertz, Ghislaine; Monzalvo, Karla; Germanaud, David; Duclap, Delphine; Guevara, Pamela; Mangin, Jean-François; Poupon, Cyril; Moutard, Marie-Laure; Dubois, Jessica

    2015-02-01

    Isolated corpus callosum dysgenesis (CCD) is a congenital malformation which occurs during early development of the brain. In this study, we aimed to identify and describe its consequences beyond the lack of callosal fibres, on the morphology, microstructure and asymmetries of the main white matter bundles with diffusion imaging and fibre tractography. Seven children aged between 9 and 13 years old and seven age- and gender-matched control children were studied. First, we focused on bundles within the mesial region of the cerebral hemispheres: the corpus callosum, Probst bundles and cingulum which were selected using a conventional region-based approach. We demonstrated that the Probst bundles have a wider connectivity than the previously described rostrocaudal direction, and a microstructure rather distinct from the cingulum but relatively close to callosal remnant fibres. A sigmoid bundle was found in two partial ageneses. Second, the corticospinal tract, thalamic radiations and association bundles were extracted automatically via an atlas of adult white matter bundles to overcome bias resulting from a priori knowledge of the bundles' anatomical morphology and trajectory. Despite the lack of callosal fibres and the colpocephaly observed in CCD, all major white matter bundles were identified with a relatively normal morphology, and preserved microstructure (i.e. fractional anisotropy, mean diffusivity) and asymmetries. Consequently the bundles' organisation seems well conserved in brains with CCD. These results await further investigations with functional imaging before apprehending the cognition variability in children with isolated dysgenesis.

  3. 创伤性脑损伤后脑白质损伤与认知功能障碍的相关性研究%Correlation study of cerebral white matter lesion with cognitive dysfunction after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    朱永山; 张玉龙; 程海云; 李晓光; 熊坤林

    2016-01-01

    Objective To analyze the correlation between white matter injury and cognitive dysfunction using diffusion tensor imaging (DTI).Methods Seventeen subjects with TBI hospitalized from October 2012 to September 2013 had Glasgow coma scale (GCS) score of ≥ 13 (mild injury group, 10 cases) and ≤ 12 (moderate-severe injury group, 7 cases).Another 17 healthy subjects were used as controls.All were submitted to DTI examination.Fractional anisotropy (FA) and apparent diffusion coefficient(ADC) values in genu corpus callosum, splenium corpus callosum, posterior internal capsule, anterior internal capsule, and cerebral peduncle were calculated using the Neuro 3D software.Correlations between FA and ADC with the mini-mental state examination (MMSE) score were evaluated.Results Moderate-severe injury group demonstrated significantly reduced FA values in genu corpus callosum and splenium corpus callosum, and significantly increased ADC values of genu corpus callosum, splenium corpus callosum, posterior internal capsule and cerebral peduncle when compared to control group (P <0.05 or 0.01).FA and ADC values in the regions of interest did not differ significantly between mild injury group and control group (P > 0.05).In the genu corpus callosum and splenium corpus callosum, FA values were positively correlated with MMSE score (r =0.636, 0.601), while ADC values were negatively correlated with MMSE score (r =0.552, 0.660).Conclusions DTI reveals the cerebral white matter lesion that is undetectable using CT and conventional MRI.DTI is a helpful tool to evaluate the degree of cognitive function in patients with TBI, which provides the basic reference for the clinical treatment and prognosis.%目的 利用磁共振张量成像(DTI)分析创伤性颅脑损伤(TBI)后脑白质各个参数值的变化与认知功能障碍有无相关性. 方法 选取2012年10月-2013年9月收治的TBI患者17例,按照格拉斯哥昏迷评分(GCS)分为≥13分组(轻度组,10例)和≤12

  4. White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia

    NARCIS (Netherlands)

    F. da Silva Alves; N. Schmitz; O. Bloemen; J. van der Meer; J. Meijer; E. Boot; A. Nederveen; L. de Haan; D. Linszen; T. van Amelsvoort

    2011-01-01

    Dysfunction of cerebral white matter (WM) is a potential factor underlying the neurobiology of schizophrenia. People with 22q11 deletion syndrome have altered brain morphology and increased risk for schizophrenia, therefore decreased WM integrity may be related to schizophrenia in 22q11DS. We measur

  5. A case of Salla disease with involvement of the cerebellar white matter

    Energy Technology Data Exchange (ETDEWEB)

    Linnankivi, T.; Loennqvist, T. [Department of Paediatric Neurology, Hospital for Children and Adolescents, University of Helsinki (Finland); Autti, T. [Department of Radiology, Helsinki University Central Hospital, University of Helsinki, P.O. Box 340, FIN-00029 HUCH (Finland)

    2003-02-01

    Salla disease (SD) is a lysosomal disorder manifesting in infancy with hypotonia, nystagmus, ataxia and retarded motor development. MRI typically shows hypomyelination confined to the cerebral white matter. We describe a patient with two MRI studies in addition to repeated urine examinations. This case was problematic because the first urine examination did not show the elevation of free sialic acid typical of SD and MRI was also atypical, with abnormal signal intensity in cerebellar white matter. We recommend repeated urinary examinations and a search for SLC17A5 mutations in patients with cerebral signal intensity abnormalities typical of SD and emphasise that cerebellar white-matter involvement on MRI does not exclude the diagnosis. (orig.)

  6. White Matter Abnormalities and Animal Models Examining a Putative Role of Altered White Matter in Schizophrenia

    OpenAIRE

    Haiyun Xu; Xin-Min Li

    2011-01-01

    Schizophrenia is a severe mental disorder affecting about 1% of the population worldwide. Although the dopamine (DA) hypothesis is still keeping a dominant position in schizophrenia research, new advances have been emerging in recent years, which suggest the implication of white matter abnormalities in schizophrenia. In this paper, we will briefly review some of recent human studies showing white matter abnormalities in schizophrenic brains and altered oligodendrocyte-(OL-) and myelin-relate...

  7. The hidden-Markov brain: comparison and inference of white matter hyperintensities on magnetic resonance imaging (MRI)

    Science.gov (United States)

    Pham, Tuan D.; Salvetti, Federica; Wang, Bing; Diani, Marco; Heindel, Walter; Knecht, Stefan; Wersching, Heike; Baune, Bernhard T.; Berger, Klaus

    2011-02-01

    Rating and quantification of cerebral white matter hyperintensities on magnetic resonance imaging (MRI) are important tasks in various clinical and scientific settings. As manual evaluation is time consuming and imprecise, much effort has been made to automate the quantification of white matter hyperintensities. There is rarely any report that attempts to study the similarity/dissimilarity of white matter hyperintensity patterns that have different sizes, shapes and spatial localizations on the MRI. This paper proposes an original computational neuroscience framework for such a conceptual study with a standpoint that the prior knowledge about white matter hyperintensities can be accumulated and utilized to enable a reliable inference of the rating of a new white matter hyperintensity observation. This computational approach for rating inference of white matter hyperintensities, which appears to be the first study, can be utilized as a computerized rating-assisting tool and can be very economical for diagnostic evaluation of brain tissue lesions.

  8. White matter alterations in neurodegenerative and vascular dementia

    International Nuclear Information System (INIS)

    Due to a significant overlap of the two syndromes, differentiation of degenerative dementia of the Alzheimer-type from vascular dementia may be difficult even when imaging studies are available. White matter changes occur in many patients suffering from Alzheimer's disease. Little is known about the impact of white matter changes on the course and clinical presentation of Alzheimer's disease. High sensitivity of MRI in the detection of white matter alterations may account for over-diagnosing vascular dementia. The clinical significance of white matter alterations in dementia is still a matter of debate. The article reviews current concepts about the role of white matter alterations in dementia. (orig.)

  9. Brain MRI in children with delayed development: emphasis on white matter maturation

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Mi Sook; Kim, Ok Hwa; Moon, Jung Lim; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic University Medical College, Seoul (Korea, Republic of)

    1992-05-15

    To analyze the progression of white matter maturation and white matter pathology, MR imaging of the brain was obtained in 38 children with delayed development. Children with developmental delay showed a high incidence of MR abnormalities (34/38, 89.5%). Delayed pattern of myelination and gray-white matter differentiation was seen in 13 patients. Twenty-two patients had white matter pathology, including 14 with white matter hypoplasia, seven with focal small infarction, five with periventricular leukomalacia, and three with high-signal intensities on T2 weighted image. Associated structural abnormalities were also evaluated. The most common lesions in decreasing frequently were cerebral atrophy and dysgenesis of the corpus callosum, pachygyria and/or polymicrogyria, porencephalic cyst and Leigh's disease. Twenty-three of 34 children had multiple abnormalities on MRI. The MRI was useful in depicting the progression of myelination and other white matter lesions, and serial follow-up MR is recommended for patients with delayed or lack of myelination and gray-white matter differentiation.

  10. Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bo Liu; Yan Shen; Jennifer M.Plane; Wenbin Deng

    2013-01-01

    Premature birth is a significant economic and public health burden,and its incidence is rising.Periventricular leukomalacia (PVL) is the predominant form of brain injury in premature infants and the leading cause of cerebral palsy.PVL is characterized by selective white-matter damage with prominent oligodendroglial injury.The maturation-dependent vulnerability of developing and premyelinating oligodendrocytes to excitotoxic,oxidative,and inflammatory forms of injury is a major factor in the pathogenesis of PVL.Recent studies using mouse models of PVL reveal that synapses between axons and developing oligodendrocytes are quickly and profoundly damaged in immature white matter.Axon-glia synapses are highly vulnerable to white-matter injury in the developing brain,and the loss of synapses between axons and premyelinating oligodendrocytes occurs before any cellular loss in the immature white matter.Microglial activation and astrogliosis play important roles in triggering white-matter injury.Impairment of white-matter development and function in the neonatal period contributes critically to functional and behavioral deficits.Preservation of the integrity of the white matter is likely key in the treatment of PVL and subsequent neurological consequences and disabilities.

  11. Brain MRI in children with delayed development: emphasis on white matter maturation

    International Nuclear Information System (INIS)

    To analyze the progression of white matter maturation and white matter pathology, MR imaging of the brain was obtained in 38 children with delayed development. Children with developmental delay showed a high incidence of MR abnormalities (34/38, 89.5%). Delayed pattern of myelination and gray-white matter differentiation was seen in 13 patients. Twenty-two patients had white matter pathology, including 14 with white matter hypoplasia, seven with focal small infarction, five with periventricular leukomalacia, and three with high-signal intensities on T2 weighted image. Associated structural abnormalities were also evaluated. The most common lesions in decreasing frequently were cerebral atrophy and dysgenesis of the corpus callosum, pachygyria and/or polymicrogyria, porencephalic cyst and Leigh's disease. Twenty-three of 34 children had multiple abnormalities on MRI. The MRI was useful in depicting the progression of myelination and other white matter lesions, and serial follow-up MR is recommended for patients with delayed or lack of myelination and gray-white matter differentiation

  12. Neonatal deep white matter venous infarction and liquefaction: a pseudo-abscess lesion

    Energy Technology Data Exchange (ETDEWEB)

    Ruess, Lynne; Rusin, Jerome A. [Nationwide Children' s Hospital, Department of Radiology, Columbus, OH (United States); The Ohio State University College of Medicine and Public Health, Columbus, OH (United States); Dent, Carly M.; Tiarks, Hailey J.; Yoshida, Michelle A. [Nationwide Children' s Hospital, Department of Radiology, Columbus, OH (United States)

    2014-11-15

    Deep white matter hemorrhagic venous infarction with subsequent cavitation due to necrosis and liquefaction has been described in neonates and may be associated with infection and meningitis. In our experience, the MRI pattern of these lesions is confused with the pattern seen with cerebral abscesses. The purpose of our study was to characterize the MRI findings of post infarction necrosis and liquefaction after hemorrhagic deep white matter venous infarction in infants and to distinguish these lesions from cerebral abscesses. An institutional review board approved a retrospective review of imaging records to identify all patients with cerebral venous infarction at a children's hospital during a 10-year period. Nine infants had deep white matter hemorrhagic venous infarction with white matter fluid signal cavitary lesions. A diagnosis of cerebral abscess was considered in all. The imaging and laboratory findings in these patients are reviewed and compared to descriptions of abscesses found in the literature. There were six female and three male infants. The mean age at presentation was 20 days (range: 0-90 days), while the corrected age at presentation was less than 30 days for all patients. Seven patients presented with seizures and signs of infection; one infant presented with lethargy and later proved to have protein C deficiency. MRI was performed 0-12 days from presentation in these eight patients. Another patient with known protein C deficiency underwent MRI at 30 days for follow-up of screening US abnormalities. There were a total of 38 deep cerebral white matter fluid signal cavitary lesions: 25 frontal, 9 parietal, 2 temporal, 2 occipital. Larger lesions had dependent debris. All lesions had associated hemorrhage and many lesions had evidence of adjacent small vessel venous thrombosis. Lesions imaged after gadolinium showed peripheral enhancement. Three lesions increased in size on follow-up imaging. Three patients, two with meningitis confirmed via

  13. Does functional MRI detect activation in white matter?A review of emerging evidence, issues, and future directions

    Directory of Open Access Journals (Sweden)

    Jodie Reanna Gawryluk

    2014-08-01

    Full Text Available Functional magnetic resonance imaging (fMRI is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: 1 the blood oxygen level dependent (BOLD fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and 2 fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter as opposed to action potentials (the primary type of neural activity in white matter. Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI.

  14. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    Science.gov (United States)

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia. PMID:22771710

  15. Gray matter and white matter abnormalities in online game addiction

    International Nuclear Information System (INIS)

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA

  16. Gray matter and white matter abnormalities in online game addiction

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Chuan-Bo, E-mail: send007@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); School of Neurosurgery, Anhui Medical University, 81 Meishang Road, Hefei, Anhui Province 230032 (China); Qian, Ruo-Bing, E-mail: rehomail@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Fu, Xian-Ming, E-mail: 506537677@qq.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Lin, Bin, E-mail: 274722758@qq.com [School of Neurosurgery, Anhui Medical University, 81 Meishang Road, Hefei, Anhui Province 230032 (China); Han, Xiao-Peng, E-mail: hanxiaopeng@163.com [Department of Psychology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Niu, Chao-Shi, E-mail: niuchaoshi@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Wang, Ye-Han, E-mail: wangyehan@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China)

    2013-08-15

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA.

  17. White matter magnetic resonance hyperintensities in dementia of the Alzheimer type

    DEFF Research Database (Denmark)

    Waldemar, G; Christiansen, P; Larsson, H B;

    1994-01-01

    In a prospective MRI study the presence, appearance, volume, and regional cerebral blood flow (rCBF) correlates of periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs) were examined in 18 patients with probable Alzheimer's disease and in 10 age matched healthy...... in the Alzheimer's disease group (p ... patients had extensive DWMH lesions in the central white matter. In the group of patients with Alzheimer's disease as a whole, the volume of DWMHs correlated well with rCBF in the hippocampal region ( r = -0.72; p

  18. High Connectivity Between Reduced Cortical Thickness and Disrupted White Matter Tracts in Long-Standing Type 1 Diabetes

    OpenAIRE

    Franc, Daniel T.; Kodl, Christopher T.; Mueller, Bryon A.; Muetzel, Ryan L.; Lim, Kelvin O.; Seaquist, Elizabeth R.

    2010-01-01

    OBJECTIVE Previous studies have observed disruptions in brain white and gray matter structure in individuals with type 1 diabetes, and these structural differences have been associated with neurocognitive testing deficiencies. This study investigated the relationship between cerebral cortical thickness reductions and white matter microstructural integrity loss in a group of patients with type 1 diabetes and in healthy control subjects using diffusion tensor imaging (DTI). RESEARCH DESIGN AND ...

  19. IMAGING WHITE MATTER IN HUMAN BRAINSTEM

    Directory of Open Access Journals (Sweden)

    Anastasia A Ford

    2013-07-01

    Full Text Available The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted MRI may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging (HARDI of an intact excised human brainstem performed at 11.1T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST, superior (SCP and middle cerebellar peduncle (MCP, and medial lemniscus (ML pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.

  20. White matter connectivity and Internet gaming disorder.

    Science.gov (United States)

    Jeong, Bum Seok; Han, Doug Hyun; Kim, Sun Mi; Lee, Sang Won; Renshaw, Perry F

    2016-05-01

    Internet use and on-line game play stimulate corticostriatal-limbic circuitry in both healthy subjects and subjects with Internet gaming disorder (IGD). We hypothesized that increased fractional anisotropy (FA) with decreased radial diffusivity (RD) would be observed in IGD subjects, compared with healthy control subjects, and that these white matter indices would be associated with clinical variables including duration of illness and executive function. We screened 181 male patients in order to recruit a large number (n = 58) of IGD subjects without psychiatric co-morbidity as well as 26 male healthy comparison subjects. Multiple diffusion-weighted images were acquired using a 3.0 Tesla magnetic resonance imaging scanner. Tract-based spatial statistics was applied to compare group differences in diffusion tensor imaging (DTI) metrics between IGD and healthy comparison subjects. IGD subjects had increased FA values within forceps minor, right anterior thalamic radiation, right corticospinal tract, right inferior longitudinal fasciculus, right cingulum to hippocampus and right inferior fronto-occipital fasciculus (IFOF) as well as parallel decreases in RD value within forceps minor, right anterior thalamic radiation and IFOF relative to healthy control subjects. In addition, the duration of illness in IGD subjects was positively correlated with the FA values (integrity of white matter fibers) and negatively correlated with RD scores (diffusivity of axonal density) of whole brain white matter. In IGD subjects without psychiatric co-morbidity, our DTI results suggest that increased myelination (increased FA and decreased RD values) in right-sided frontal fiber tracts may be the result of extended game play. PMID:25899390

  1. Age-Related White Matter Changes

    Directory of Open Access Journals (Sweden)

    Yun Yun Xiong

    2011-01-01

    Full Text Available Age-related white matter changes (WMC are considered manifestation of arteriolosclerotic small vessel disease and are related to age and vascular risk factors. Most recent studies have shown that WMC are associated with a host of poor outcomes, including cognitive impairment, dementia, urinary incontinence, gait disturbances, depression, and increased risk of stroke and death. Although the clinical relevance of WMC has been extensively studied, to date, only very few clinical trials have evaluated potential symptomatic or preventive treatments for WMC. In this paper, we reviewed the current understanding in the pathophysiology, epidemiology, clinical importance, chemical biomarkers, and treatments of age-related WMC.

  2. Effects of white matter injury on resting state fMRI measures in prematurely born infants.

    Directory of Open Access Journals (Sweden)

    Christopher D Smyser

    Full Text Available The cerebral white matter is vulnerable to injury in very preterm infants (born prior to 30 weeks gestation, resulting in a spectrum of lesions. These range from severe forms, including cystic periventricular leukomalacia and periventricular hemorrhagic infarction, to minor focal punctate lesions. Moderate to severe white matter injury in preterm infants has been shown to predict later neurodevelopmental disability, although outcomes can vary widely in infants with qualitatively comparable lesions. Resting state functional connectivity magnetic resonance imaging has been increasingly utilized in neurodevelopmental investigations and may provide complementary information regarding the impact of white matter injury on the developing brain. We performed resting state functional connectivity magnetic resonance imaging at term equivalent postmenstrual age in fourteen preterm infants with moderate to severe white matter injury secondary to periventricular hemorrhagic infarction. In these subjects, resting state networks were identifiable throughout the brain. Patterns of aberrant functional connectivity were observed and depended upon injury severity. Comparisons were performed against data obtained from prematurely-born infants with mild white matter injury and healthy, term-born infants and demonstrated group differences. These results reveal structural-functional correlates of preterm white matter injury and carry implications for future investigations of neurodevelopmental disability.

  3. Effect of INHP on brain white matter lesion and cognitive impairment due to chronic cerebral hypoperfusion in rats%间断性常压低氧后适应对慢性脑血流低灌注大鼠脑白质损伤和认知功能障碍的影响

    Institute of Scientific and Technical Information of China (English)

    李国青; 孟然; 任长虹; 冯兴中; 曹金强; 李宁; 马林; 吉训明

    2013-01-01

    Objective To study the effect of intermittent normobaric hypoxia postconditioning (INHP) on brain white matter lesion and cognitive impairment due to chronic cerebral hypoperfu -sion in rats .Methods Thirty-two SD rats were divided into sham group ,model group,INHP1 group and INHP2 group (8 in each group) .Cognitive function of rats was assessed by Morris water maze test and severity of brain white matter lesion was assessed with Klüver-Barrera staining . Astroglia and microglia in brain white matter were marked with GFAP and Iba-1 antibodies .Results The cognitive impairment ,axonal loss and vacuolization in brain white matter with activated astrocytes and microglias occurred earlier in model group than in sham group .The reference anamness was poorer ,the brain white matter lesion was severer ,and the number of GFAP-posi-tive astrocytes and Iba-1-positive microglias was greater in INHP1 group than in model group , whereas the reference anamness was better ,the brain white matter lesion was milder ,and the number of GFAP-positive astrocytes and Iba-1-positive microglias was smaller in INHP2 group than in model group (P<0 .05) .Conclusion Delayed INHP but not early INHP can improve cognitive impairment and brain white matter lesion due to chronic cerebral hypoperfusion .%目的 探讨间断性常压低氧后适应(intermittent normobaric hypoxia postconditionning,INHP)对慢性脑血流低灌注大鼠脑白质损伤和认知功能障碍的影响.方法 选择健康成年雄性SD大鼠32只,随机分为假手术组、模型组、INHP1组和INHP2组,每组8只.Morris水迷宫用于评价大鼠的认知功能,Klüver-Barrera 染色用于评价脑白质损伤的严重程度,胶质纤维酸性蛋白(GFAP)抗体、Iba-1抗体分别用于免疫标记脑白质中星形胶质细胞和小胶质细胞.结果 与假手术组比较,模型组大鼠出现认知功能障碍、脑白质中髓鞘脱失、空泡形成,并有星形胶质细胞、小胶质细

  4. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia.

    Science.gov (United States)

    Chen, Aiqing; Akinyemi, Rufus O; Hase, Yoshiki; Firbank, Michael J; Ndung'u, Michael N; Foster, Vincent; Craggs, Lucy J L; Washida, Kazuo; Okamoto, Yoko; Thomas, Alan J; Polvikoski, Tuomo M; Allan, Louise M; Oakley, Arthur E; O'Brien, John T; Horsburgh, Karen; Ihara, Masafumi; Kalaria, Raj N

    2016-01-01

    White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with disrupted end-feet juxtaposed to microvessels. To explore whether this was associated with the disrupted gliovascular interactions or blood-brain barrier damage, we assessed the co-localization of GFAP and AQP4 immunoreactivities in post

  5. White matter tract injury and cognitive impairment in human immunodeficiency virus-infected individuals.

    Science.gov (United States)

    Gongvatana, Assawin; Schweinsburg, Brian C; Taylor, Michael J; Theilmann, Rebecca J; Letendre, Scott L; Alhassoon, Omar M; Jacobus, Joanna; Woods, Steven P; Jernigan, Terry L; Ellis, Ronald J; Frank, Lawrence R; Grant, Igor

    2009-04-01

    Approximately half of those infected with the human immunodeficiency virus (HIV) exhibit cognitive impairment, which has been related to cerebral white matter damage. Despite the effectiveness of antiretroviral treatment, cognitive impairment remains common even in individuals with undetectable viral loads. One explanation for this may be subtherapeutic concentrations of some antiretrovirals in the central nervous system (CNS). We utilized diffusion tensor imaging and a comprehensive neuropsychological evaluation to investigate the relationship of white matter integrity to cognitive impairment and antiretroviral treatment variables. Participants included 39 HIV-infected individuals (49% with acquired immunodeficiency syndrome [AIDS]; mean CD4 = 529) and 25 seronegative subjects. Diffusion tensor imaging indices were mapped onto a common whole-brain white matter tract skeleton, allowing between-subject voxelwise comparisons. The total HIV-infected group exhibited abnormal white matter in the internal capsule, inferior longitudinal fasciculus, and optic radiation; whereas those with AIDS exhibited more widespread damage, including in the internal capsule and the corpus callosum. Cognitive impairment in the HIV-infected group was related to white matter injury in the internal capsule, corpus callosum, and superior longitudinal fasciculus. White matter injury was not found to be associated with HIV viral load or estimated CNS penetration of antiretrovirals. Diffusion tensor imaging was useful in identifying changes in white matter tracts associated with more advanced HIV infection. Relationships between diffusion alterations in specific white matter tracts and cognitive impairment support the potential utility of diffusion tensor imaging in examining the anatomical underpinnings of HIV-related cognitive impairment. The study also confirms that CNS injury is evident in persons infected with HIV despite effective antiretroviral treatment.

  6. Alterations in white matter volume and integrity in obesity and type 2 diabetes.

    Science.gov (United States)

    van Bloemendaal, Liselotte; Ijzerman, Richard G; Ten Kulve, Jennifer S; Barkhof, Frederik; Diamant, Michaela; Veltman, Dick J; van Duinkerken, Eelco

    2016-06-01

    Type 2 diabetes mellitus (T2DM) is characterized by obesity, hyperglycemia and insulin resistance. Both T2DM and obesity are associated with cerebral complications, including an increased risk of cognitive impairment and dementia, however the underlying mechanisms are largely unknown. In the current study, we aimed to determine the relative contributions of obesity and the presence of T2DM to altered white matter structure. We used diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) to measure white matter integrity and volume in obese T2DM patients without micro- or macrovascular complications, age- gender- and BMI-matched normoglycemic obese subjects and age- and gender-matched normoglycemic lean subjects. We found that obese T2DM patients compared with lean subjects had lower axial diffusivity (in the right corticospinal tract, right inferior fronto-occipital tract, right superior longitudinal fasciculus and right forceps major) and reduced white matter volume (in the right inferior parietal lobe and the left external capsule region). In normoglycemic obese compared with lean subjects axial diffusivity as well as white matter volume tended to be reduced, whereas there were no significant differences between normoglycemic obese subjects and T2DM patients. Decreased white matter integrity and volume were univariately related to higher age, being male, higher BMI, HbA1C and fasting glucose and insulin levels. However, multivariate analyses demonstrated that only BMI was independently related to white matter integrity, and age, gender and BMI to white matter volume loss. Our data indicate that obese T2DM patients have reduced white matter integrity and volume, but that this is largely explained by BMI, rather than T2DM per se. PMID:26815786

  7. Abnormal white matter properties in adolescent girls with anorexia nervosa

    OpenAIRE

    Travis, Katherine E.; Neville H. Golden; FELDMAN, HEIDI M.; Murray Solomon; Jenny Nguyen; Aviv Mezer; Yeatman, Jason D.; Dougherty, Robert F.

    2015-01-01

    Anorexia nervosa (AN) is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1), an index of myelin content. Fifteen ...

  8. White Matter Integrity, Substance Use, and Risk Taking in Adolescence

    OpenAIRE

    Jacobus, Joanna; Thayer, Rachel E.; Trim, Ryan S.; Bava, Sunita; Frank, Lawrence R.; TAPERT, SUSAN F.

    2012-01-01

    White matter development is important for efficient communication between brain regions, higher order cognitive functioning, and complex behaviors. Adolescents have a higher propensity for engaging in risky behaviors, yet few studies have explored associations between white matter integrity and risk taking directly. Altered white matter integrity in mid-adolescence was hypothesized to predict subsequent risk taking behaviors 1.5 years later. Adolescent substance users (predominantly alcohol a...

  9. White Matter Microstructural Integrity in Youth With Type 1 Diabetes

    OpenAIRE

    Antenor-Dorsey, Jo Ann V.; Meyer, Erin; Rutlin, Jerrel; Perantie, Dana C.; White, Neil H.; Arbelaez, Ana Maria; Shimony, Joshua S.; Hershey, Tamara

    2013-01-01

    Decreased white and gray matter volumes have been reported in youth with type 1 diabetes mellitus (T1DM), but the effects of hyperglycemia on white matter integrity have not been quantitatively assessed during brain development. We performed diffusion tensor imaging, using two complimentary approaches—region-of-interest and voxelwise tract-based spatial statistics—to quantify white matter integrity in a large retrospective study of T1DM youth and control participants. Exposure to chronic hype...

  10. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang (Dept. of Bioengineering, Beijing Univ. of Aeronautics and Astronautics, Beijing (China))

    2008-02-15

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD

  11. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang [Dept. of Bioengineering, Beijing Univ. of Aeronautics and Astronautics, Beijing (China)

    2008-02-15

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD.

  12. L-carnitine enhances axonal plasticity and improves white-matter lesions after chronic hypoperfusion in rat brain

    OpenAIRE

    Ueno, Yuji; Koike, Masato; Shimada, Yoshiaki; Shimura, Hideki; Hira, Kenichiro; Tanaka, Ryota; Uchiyama, Yasuo; Hattori, Nobutaka; Urabe, Takao

    2014-01-01

    Chronic cerebral hypoperfusion causes white-matter lesions (WMLs) with oxidative stress and cognitive impairment. However, the biologic mechanisms that regulate axonal plasticity under chronic cerebral hypoperfusion have not been fully investigated. Here, we investigated whether L-carnitine, an antioxidant agent, enhances axonal plasticity and oligodendrocyte expression, and explored the signaling pathways that mediate axonal plasticity in a rat chronic hypoperfusion model. Adult male Wistar ...

  13. Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants.

    Science.gov (United States)

    Verney, Catherine; Monier, Anne; Fallet-Bianco, Catherine; Gressens, Pierre

    2010-10-01

    Amoeboid microglial subpopulations visualized by antibodies against ionized calcium-binding adapter molecule 1, CD68, and CD45 enter the forebrain starting at 4.5 postovulatory or gestational weeks (gw). They penetrate the telencephalon and diencephalon via the meninges, choroid plexus, and ventricular zone. Early colonization by amoeboid microglia-macrophages is first restricted to the white matter, where these cells migrate and accumulate in patches at the junctions of white-matter pathways, such as the three junctions that the internal capsule makes with the thalamocortical projection, external capsule and cerebral peduncle, respectively. In the cerebral cortex anlage, migration is mainly radial and tangential towards the immature white matter, subplate layer, and cortical plate, whereas pial cells populate the prospective layer I. A second wave of microglial cells penetrates the brain via the vascular route at about 12-13 gw and remains confined to the white matter. Two main findings deserve emphasis. First, microglia accumulate at 10-12 gw at the cortical plate-subplate junction, where the first synapses are detected. Second, microglia accumulate in restricted laminar bands, most notably around 19-30 gw, at the axonal crossroads in the white matter (semiovale centre) rostrally, extending caudally in the immature white matter to the visual radiations. This accumulation of proliferating microglia is located at the site of white-matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes such as axonal guidance, synaptogenesis, and neurodevelopmental apoptosis as well as in injuries to the developing brain, in particular in the periventricular white-matter injury of preterm infants. PMID:20557401

  14. Inflammation in White Matter: Clinical and Pathophysiological Aspects

    Science.gov (United States)

    Pleasure, David; Soulika, Athena; Singh, Sunit K.; Gallo, Vittorio; Bannerman, Peter

    2006-01-01

    While the central nervous system (CNS) is generally thought of as an immunopriviledged site, immune-mediated CNS white matter damage can occur in both the perinatal period and in adults, and can result in severe and persistent neurological deficits. Periventricular leukomalacia (PVL) is an inflammatory white matter disease of premature infants…

  15. Extensive White Matter Alterations and Its Correlations with Ataxia Severity in SCA 2 Patients.

    Directory of Open Access Journals (Sweden)

    Carlos R Hernandez-Castillo

    Full Text Available Previous studies of SCA2 have revealed significant degeneration of white matter tracts in cerebellar and cerebral regions. The motor deficit in these patients may be attributable to the degradation of projection fibers associated with the underlying neurodegenerative process. However, this relationship remains unclear. Statistical analysis of diffusion tensor imaging enables an unbiased whole-brain quantitative comparison of the diffusion proprieties of white matter tracts in vivo.Fourteen genetically confirmed SCA2 patients and aged-matched healthy controls participated in the study. Tract-based spatial statistics were performed to analyze structural white matter damage using two different measurements: fractional anisotropy (FA and mean diffusivity (MD. Significant diffusion differences were correlated with the patient's ataxia impairment.Our analysis revealed decreased FA mainly in the inferior/middle/superior cerebellar peduncles, the bilateral posterior limb of the internal capsule and the bilateral superior corona radiata. Increases in MD were found mainly in cerebellar white matter, medial lemniscus, and middle cerebellar peduncle, among other regions. Clinical impairment measured with the SARA score correlated with FA in superior parietal white matter and bilateral anterior corona radiata. Correlations with MD were found in cerebellar white matter and the middle cerebellar peduncle.Our findings show significant correlations between diffusion measurements in key areas affected in SCA2 and measures of motor impairment, suggesting a disruption of information flow between motor and sensory-integration areas. These findings result in a more comprehensive view of the clinical impact of the white matter degeneration in SCA2.

  16. 弥散张量成像对2型糖尿病患者脑白质微结构改变的早期诊断%Diffusion Tensor Imaging in Patients With Type 2 Diabetes in the Early Diagnosis of Cerebral White Matter Microstructure Change

    Institute of Scientific and Technical Information of China (English)

    田志岩; 张惠红; 周玉颖

    2015-01-01

    目的:探讨2型糖尿病患者的脑白质微结构异常改变与认知功能障碍的关系。方法选取35例非痴呆的老年2型糖尿病患者,平均年龄为(71±5)岁;年龄,性别,文化程度匹配的35例作为对照组,对两组进行磁共振弥散加权成像检查并对其做认知评估。比较两组的弥散各向异性分数(FA)值和平均弥散率(MD)差异。结果平均弥散率(MD),病例组高于对照组(P<0.05),提示病例组存在脑白质微结构异常改变。MD增加与信息处理速度减慢和记忆减退相关(P<0.05)。结论2型糖尿病患者脑白质存在不同程度的异常与认知功能障碍相关。%ObjectiveTo investigate whether type 2 diabetes is associated with microstructural abnormalities in specific cerebral white matter tracts and to relate these microstructural abnormalities to cognitive functioning.MethodsThirty-five non demented older individuals with type 2 diabetes, mean age (71±5) years, and 35 age-, sex-, and education-matched control subjects underwent a tesla diffusion-weighted MRI scan and a detailed cognitive assessment. Tractography was performed to reconstruct several white matter tracts. Diffusion tensor imaging measures, including fractional anisotropy (FA) and mean diffusivity (MD), were compared between groups and related to cognitive performance.Results MD was significantly increased in all tracts in both hemispheres in patients compared with control subjects (P<0.05), reflecting microstructural white matter abnormalities in the diabetes group. Increased MD was associated with slowing of information-processing speed and worse memory performance in the diabetes (P<0.05). Conclusion Individuals with type 2 diabetes showed microstructural abnormalities in various white matter pathways. These abnormalities were related to worse cognitive functioning.

  17. Striatal and white matter predictors of estimated diagnosis for Huntington disease.

    Science.gov (United States)

    Paulsen, Jane S; Nopoulos, Peggy C; Aylward, Elizabeth; Ross, Christopher A; Johnson, Hans; Magnotta, Vincent A; Juhl, Andrew; Pierson, Ronald K; Mills, James; Langbehn, Douglas; Nance, Martha

    2010-05-31

    Previous MRI studies with participants prior to manifest Huntington disease have been conducted in small single-site samples. The current study reports data from a systematic multi-national study during the prodromal period of Huntington disease and examines whether various brain structures make unique predictions about the proximity to manifest disease. MRI scans were acquired from 657 participants enrolled at 1 of 32 PREDICT-HD research sites. Only prodromal Huntington disease participants (those not meeting motor criteria for diagnosis) were included and subgrouped by estimated diagnosis proximity (Near, Mid, and Far) based upon a formula incorporating age and CAG-repeat length. Results show volumes of all three subgroups differed significantly from Controls for total brain tissue, cerebral spinal fluid, white matter, cortical gray matter, thalamus, caudate, and putamen. Total striatal volume demonstrated the largest differences between Controls and all three prodromal subgroups. Cerebral white matter offered additional independent power in the prediction of estimated proximity to diagnosis. In conclusion, this large cross-sectional study shows that changes in brain volume are detectable years to decades prior to estimated motor diagnosis of Huntington disease. This suggests that a clinical trial of a putative neuroprotective agent could begin as much as 15 years prior to estimated motor diagnosis in a cohort of persons at risk for but not meeting clinical motor diagnostic criteria for Huntington disease, and that neuroimaging (striatal and white matter volumes) may be among the best predictors of diagnosis proximity.

  18. Deep white matter in Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Owen Phillips

    Full Text Available White matter (WM abnormalities have already been shown in presymptomatic (Pre-HD and symptomatic HD subjects using Magnetic Resonance Imaging (MRI. In the present study, we examined the microstructure of the long-range large deep WM tracts by applying two different MRI approaches: Diffusion Tensor Imaging (DTI -based tractography, and T2*weighted (iron sensitive imaging. We collected Pre-HD subjects (n = 25, HD patients (n = 25 and healthy control subjects (n = 50. Results revealed increased axial (AD and radial diffusivity (RD and iron levels in Pre-HD subjects compared to controls. Fractional anisotropy decreased between the Pre-HD and HD phase and AD/RD increased and although impairment was pervasive in HD, degeneration occurred in a pattern in Pre-HD. Furthermore, iron levels dropped for HD patients. As increased iron levels are associated with remyelination, the data suggests that Pre-HD subjects attempt to repair damaged deep WM years before symptoms occur but this process fails with disease progression.

  19. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia.

    Science.gov (United States)

    Saggu, Raman; Schumacher, Toni; Gerich, Florian; Rakers, Cordula; Tai, Khalid; Delekate, Andrea; Petzold, Gabor C

    2016-08-04

    Vascular cognitive impairment is the second most common form of dementia. The pathogenic pathways leading to vascular cognitive impairment remain unclear but clinical and experimental data have shown that chronic reactive astrogliosis occurs within white matter lesions, indicating that a sustained pro-inflammatory environment affecting the white matter may contribute towards disease progression. To model vascular cognitive impairment, we induced prolonged mild cerebral hypoperfusion in mice by bilateral common carotid artery stenosis. This chronic hypoperfusion resulted in reactive gliosis of astrocytes and microglia within white matter tracts, demyelination and axonal degeneration, consecutive spatial memory deficits, and loss of white matter integrity, as measured by ultra high-field magnetic resonance diffusion tensor imaging. White matter astrogliosis was accompanied by activation of the pro-inflammatory transcription factor nuclear factor (NF)-kB in reactive astrocytes. Using mice expressing a dominant negative inhibitor of NF-kB under the control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter (GFAP-IkBα-dn), we found that transgenic inhibition of astroglial NF-kB signaling ameliorated gliosis and axonal loss, maintained white matter structural integrity, and preserved memory function. Collectively, our results imply that pro-inflammatory changes in white matter astrocytes may represent an important detrimental component in the pathogenesis of vascular cognitive impairment, and that targeting these pathways may lead to novel therapeutic strategies.

  20. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia.

    Science.gov (United States)

    Saggu, Raman; Schumacher, Toni; Gerich, Florian; Rakers, Cordula; Tai, Khalid; Delekate, Andrea; Petzold, Gabor C

    2016-01-01

    Vascular cognitive impairment is the second most common form of dementia. The pathogenic pathways leading to vascular cognitive impairment remain unclear but clinical and experimental data have shown that chronic reactive astrogliosis occurs within white matter lesions, indicating that a sustained pro-inflammatory environment affecting the white matter may contribute towards disease progression. To model vascular cognitive impairment, we induced prolonged mild cerebral hypoperfusion in mice by bilateral common carotid artery stenosis. This chronic hypoperfusion resulted in reactive gliosis of astrocytes and microglia within white matter tracts, demyelination and axonal degeneration, consecutive spatial memory deficits, and loss of white matter integrity, as measured by ultra high-field magnetic resonance diffusion tensor imaging. White matter astrogliosis was accompanied by activation of the pro-inflammatory transcription factor nuclear factor (NF)-kB in reactive astrocytes. Using mice expressing a dominant negative inhibitor of NF-kB under the control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter (GFAP-IkBα-dn), we found that transgenic inhibition of astroglial NF-kB signaling ameliorated gliosis and axonal loss, maintained white matter structural integrity, and preserved memory function. Collectively, our results imply that pro-inflammatory changes in white matter astrocytes may represent an important detrimental component in the pathogenesis of vascular cognitive impairment, and that targeting these pathways may lead to novel therapeutic strategies. PMID:27487766

  1. Medial frontal white and gray matter contributions to general intelligence.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Ohtani

    Full Text Available The medial orbitofrontal cortex (mOFC and rostral anterior cingulate cortex (rACC are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA, which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%-34% of the variance in IQ, in comparison to 11%-16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence.

  2. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia

    Science.gov (United States)

    Chen, Aiqing; Akinyemi, Rufus O.; Hase, Yoshiki; Firbank, Michael J.; Ndung’u, Michael N.; Foster, Vincent; Craggs, Lucy J. L.; Washida, Kazuo; Okamoto, Yoko; Thomas, Alan J.; Polvikoski, Tuomo M.; Allan, Louise M.; Oakley, Arthur E.; O’Brien, John T.; Horsburgh, Karen; Ihara, Masafumi

    2016-01-01

    White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P < 0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with

  3. Major Superficial White Matter Abnormalities in Huntington's Disease

    Science.gov (United States)

    Phillips, Owen R.; Joshi, Shantanu H.; Squitieri, Ferdinando; Sanchez-Castaneda, Cristina; Narr, Katherine; Shattuck, David W.; Caltagirone, Carlo; Sabatini, Umberto; Di Paola, Margherita

    2016-01-01

    Background: The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. Methods: Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. Results: There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). Conclusions: This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease. PMID:27242403

  4. Major Superficial White Matter Abnormalities in Huntington disease

    Directory of Open Access Journals (Sweden)

    Owen Robert Phillips

    2016-05-01

    Full Text Available BackgroundThe late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington’s disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington’s disease processes. MethodsStructural MRI data from 25 Pre-symptomatic subjects, 24 Huntington’s disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject’s Diffusion Tensor Imaging (DTI data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. ResultsThere was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001 in Pre-symptomatic subjects compared to controls. In Huntington’s disease patients increased diffusivity covered essentially the whole brain (p < 0.001. Changes are correlated with genotype (CAG repeat number and disease burden (p < 0.001.ConclusionsThis study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington’s disease. Since the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease.

  5. Magnetic resonance spectroscopy features of normal-appearing white matter in patients with acute brucellosis

    Energy Technology Data Exchange (ETDEWEB)

    Kayabas, Uner [Department of Infectious Disease and Clinical Microbiology, Inonu University, Medical Faculty, TR-44280 Malatya (Turkey)], E-mail: ukayabas@inonu.edu.tr; Alkan, Alpay; Firat, Ahmet Kemal; Karakas, Hakki Muammer [Department of Radiology, Inonu University, Medical Faculty, TR-44280 Malatya (Turkey); Bayindir, Yasar; Yetkin, Funda [Department of Infectious Disease and Clinical Microbiology, Inonu University, Medical Faculty, TR-44280 Malatya (Turkey)

    2008-03-15

    We aimed to evaluate whether the subtle metabolic cerebral changes are present in normal-appearing white matter on conventional MRI, in patients with acute brucellosis, by using MR spectroscopy (MRS). Sixteen patients with acute brucellosis and 13 healthy control subjects were investigated with conventional MRI and single-voxel MRS. Voxels were placed in normal-appearing parietal white matter (NAPWM). N-Acetyl aspartate (NAA)/creatine (Cr) and choline (Cho)/Cr ratios were calculated. There was no significant difference between the study subjects and the control group in NAA/Cr ratios obtained from NAPWM. However, the Cho/Cr ratios were significantly higher in patients with acute brucellosis compared to controls (p = 0.01). MRS revealed metabolic changes in normal-appearing white matter of patients with brucellosis. Brucellosis may cause subtle cerebral alterations, which may only be discernible with MRS. Increased Cho/Cr ratio possibly represents an initial phase of inflammation and/or demyelination process of brucellosis.

  6. Lessons from a Mouse Model Characterizing Features of Vascular Cognitive Impairment with White Matter Changes

    Directory of Open Access Journals (Sweden)

    Masafumi Ihara

    2011-01-01

    Full Text Available With the demographic shift in age in advanced countries inexorably set to progress in the 21st century, dementia will become one of the most important health problems worldwide. Vascular cognitive impairment is the second most common type of dementia after Alzheimer's disease and is frequently responsible for the cognitive decline of the elderly. It is characterized by cerebrovascular white matter changes; thus, in order to investigate the underlying mechanisms involved in white matter changes, a mouse model of chronic cerebral hypoperfusion has been developed, which involves the narrowing of the bilateral common carotid arteries with newly designed microcoils. The purpose of this paper is to provide a comprehensive summary of the achievements made with the model that shows good reproducibility of the white matter changes characterized by blood-brain barrier disruption, glial activation, oxidative stress, and oligodendrocyte loss following chronic cerebral hypoperfusion. Detailed characterization of this model may help to decipher the substrates associated with impaired memory and move toward a more integrated therapy of vascular cognitive impairment.

  7. Unusual progression of herpes simplex encephalitis with basal ganglia and extensive white matter involvement

    Directory of Open Access Journals (Sweden)

    Yasuhiro Manabe

    2009-08-01

    Full Text Available We report a 51-year old male with herpes simplex encephalitis (HSE showing unusual progression and magnetic resonance (MR findings. The initial neurological manifestation of intractable focal seizure with low-grade fever persisted for three days, and rapidly coma, myoclonic status, and respiratory failure with high-grade fever emerged thereafter. The polymerase chain reaction (PCR result of cerebrospinal fluid (CSF was positive for HSV-1 DNA. In the early stage, MR images (MRI were normal. On subsequent MR diffusion-weighted (DW and fluid-attenuated inversion recovery (FLAIR images, high-intensity areas first appeared in the left frontal cortex, which was purely extra-temporal involvement, and extended into the basal ganglia, then the white matter, which are relatively spared in HSE. Antiviral therapy and immunosuppressive therapy did not suppress the progression of HSE, and finally severe cerebral edema developed into cerebral herniation, which required emergency decompressive craniectomy. Histological examination of a biopsy specimen of the white matter detected perivascular infiltration and destruction of basic structure, which confirmed non specific inflammatory change without obvious edema or demyelination. The present case shows both MR and pathological findings in the white matter in the acute stage of HSE.

  8. MR imaging of white matter lesions in AIDS

    International Nuclear Information System (INIS)

    Autopsy reports have shown white-matter abnormalities from infection of the brain by the human immunodeficiency virus (HIV), the agent that causes acquired immunodeficiency syndrome (AIDS). The authors observed abnormal signal on T2-weighted images in the white matter of approximately one third of all AIDS patients. Of 50 patients with white-matter lesions, approximately two thirds had no clinical or biopsy evidence of cytomegalovirus, toxoplasmosis, PML, or lymphoma. Several patients were shown at autopsy to have isolated evidence of HIV encephalitis. The authors conclude that white-matter lesions are common in AIDS and are frequently caused by infection with HIV. Some MR findings may be helpful in characterizing these lesions, but the various etiologies are often indistinguishable

  9. White matter tract signatures of impaired social cognition in frontotemporal lobar degeneration

    Directory of Open Access Journals (Sweden)

    Laura E. Downey

    2015-01-01

    Full Text Available Impairments of social cognition are often leading features in frontotemporal lobar degeneration (FTLD and likely to reflect large-scale brain network disintegration. However, the neuroanatomical basis of impaired social cognition in FTLD and the role of white matter connections have not been defined. Here we assessed social cognition in a cohort of patients representing two core syndromes of FTLD, behavioural variant frontotemporal dementia (bvFTD; n = 29 and semantic variant primary progressive aphasia (svPPA; n = 15, relative to healthy older individuals (n = 37 using two components of the Awareness of Social Inference Test, canonical emotion identification and sarcasm identification. Diffusion tensor imaging (DTI was used to derive white matter tract correlates of social cognition performance and compared with the distribution of grey matter atrophy on voxel-based morphometry. The bvFTD and svPPA groups showed comparably severe deficits for identification of canonical emotions and sarcasm, and these deficits were correlated with distributed and overlapping white matter tract alterations particularly affecting frontotemporal connections in the right cerebral hemisphere. The most robust DTI associations were identified in white matter tracts linking cognitive and evaluative processing with emotional responses: anterior thalamic radiation, fornix (emotion identification and uncinate fasciculus (sarcasm identification. DTI associations of impaired social cognition were more consistent than corresponding grey matter associations. These findings delineate a brain network substrate for the social impairment that characterises FTLD syndromes. The findings further suggest that DTI can generate sensitive and functionally relevant indexes of white matter damage in FTLD, with potential to transcend conventional syndrome boundaries.

  10. White matter tract signatures of impaired social cognition in frontotemporal lobar degeneration.

    Science.gov (United States)

    Downey, Laura E; Mahoney, Colin J; Buckley, Aisling H; Golden, Hannah L; Henley, Susie M; Schmitz, Nicole; Schott, Jonathan M; Simpson, Ivor J; Ourselin, Sebastien; Fox, Nick C; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    Impairments of social cognition are often leading features in frontotemporal lobar degeneration (FTLD) and likely to reflect large-scale brain network disintegration. However, the neuroanatomical basis of impaired social cognition in FTLD and the role of white matter connections have not been defined. Here we assessed social cognition in a cohort of patients representing two core syndromes of FTLD, behavioural variant frontotemporal dementia (bvFTD; n = 29) and semantic variant primary progressive aphasia (svPPA; n = 15), relative to healthy older individuals (n = 37) using two components of the Awareness of Social Inference Test, canonical emotion identification and sarcasm identification. Diffusion tensor imaging (DTI) was used to derive white matter tract correlates of social cognition performance and compared with the distribution of grey matter atrophy on voxel-based morphometry. The bvFTD and svPPA groups showed comparably severe deficits for identification of canonical emotions and sarcasm, and these deficits were correlated with distributed and overlapping white matter tract alterations particularly affecting frontotemporal connections in the right cerebral hemisphere. The most robust DTI associations were identified in white matter tracts linking cognitive and evaluative processing with emotional responses: anterior thalamic radiation, fornix (emotion identification) and uncinate fasciculus (sarcasm identification). DTI associations of impaired social cognition were more consistent than corresponding grey matter associations. These findings delineate a brain network substrate for the social impairment that characterises FTLD syndromes. The findings further suggest that DTI can generate sensitive and functionally relevant indexes of white matter damage in FTLD, with potential to transcend conventional syndrome boundaries.

  11. Coexistência das síndromes de Capgras e Frégoli associadas à redução de volume frontotemporal e hiperintensidades em substância branca cerebral Coexistence of Capgras and Frégoli syndromes associated to frontotemporal volume reduction and cerebral white matter hyperintensities

    Directory of Open Access Journals (Sweden)

    Gizela Turkiewicz

    2009-01-01

    psychiatric disorders such as schizophrenia and mood disorders, and with neurological diseases such as Alzheimer, Parkinson and brain injury (trauma, vascular. OBJECTIVES: To describe and discuss a case of coexistent between Capgras and Frégoli syndromes in a female patient with paranoid schizophrenia and brain MRI findings. METHODS: Psychiatric interview and brain MRI scanning. RESULTS: The patient presented structural magnetic resonance imaging periventricular and subcortical white matter hyperintensities on flair images mainly concentrated in the right frontotemporal region and bilateral frontotemporal volume loss. DISCUSSION: The described neuroimaging findings may represent an organic substrate to the delusional misidentification syndromes of the present case. The delusional symptoms in Capgras and Frégoli syndromes could be the result of a right temporolimbic-frontal disconnection which results in impossibility to associate previous memories to new information and consequently misidentifying symptoms. Moreover a volume loss of such cerebral regions, as observed in the present case, may also play a significant role in the development of delusional misidentification syndromes.

  12. The effects of puberty on white matter development in boys

    OpenAIRE

    Lara Menzies; Anne-Lise Goddings; Whitaker, Kirstie J.; Sarah-Jayne Blakemore; Viner, Russell M

    2015-01-01

    Neuroimaging studies demonstrate considerable changes in white matter volume and microstructure during adolescence. Most studies have focused on age-related effects, whilst puberty-related changes are not well understood. Using diffusion tensor imaging and tract-based spatial statistics, we investigated the effects of pubertal status on white matter mean diffusivity (MD) and fractional anisotropy (FA) in 61 males aged 12.7–16.0 years. Participants were grouped into early-mid puberty (≤Tanner ...

  13. Mechanisms of white matter change induced by meditation training

    OpenAIRE

    Posner, Michael I.; Tang, Yi-Yuan; Lynch, Gary

    2014-01-01

    Training can induce changes in specific brain networks and changes in brain state. In both cases it has been found that the efficiency of white matter as measured by diffusion tensor imaging is increased, often after only a few hours of training. In this paper we consider a plausible molecular mechanism for how state change produced by meditation might lead to white matter change. According to this hypothesis frontal theta induced by meditation produces a molecular cascade that increases myel...

  14. Diminished white matter integrity in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Tobias Schmidt-Wilcke

    2014-01-01

    Conclusions: Our data suggest that changes in regional white matter integrity, in terms of a decrease in FA, are present not only in NPSLE patients, but also in non-NPSLE patients, though to a lesser degree. We also demonstrate that the way statistical maps are corrected for multiple comparisons has a profound influence on whether alterations in white matter integrity in non-NPSLE patients are deemed significant.

  15. Transient asymptomatic white matter lesions following Epstein-Barr virus encephalitis

    Directory of Open Access Journals (Sweden)

    Yoo Young Jang

    2011-09-01

    Full Text Available We present the case of a patient with Epstein-Barr virus (EBV encephalitis who developed abnormal white matter lesions during the chronic phases of the infection. A 2-year-old-boy was admitted for a 2 day history of decreased activity with ataxic gait. The results of the physical examination were unremarkable except for generalized lethargy and enlarged tonsils with exudates. Brain magnetic resonance imaging (MRI at admission showed multiple high signal intensities in both basal ganglia and thalami. The result of EBV polymerase chain reaction (PCR of the cerebral spinal fluid was positive, and a serological test showed acute EBV infection. The patient was diagnosed with EBV encephalitis and recovered fully without any residual neurologic complications. Subsequently, follow-up MRI at 5 weeks revealed extensive periventricular white matter lesions. Since the patient remained clinically stable and asymptomatic during the follow-up period, no additional studies were performed and no additional treatments were provided. At the 1-year follow-up, cranial MRI showed complete disappearance of the abnormal high signal intensities previously seen in the white matter. The patient continued to remain healthy with no focal neurologic deficits on examination. This is the first case of asymptomatic self-limited white matter lesions seen in serial MRI studies in a Korean boy with EBV encephalitis.

  16. Assessing white matter ischemic damage in dementia patients by measurement of myelin proteins.

    Science.gov (United States)

    Barker, Rachel; Wellington, Dannielle; Esiri, Margaret M; Love, Seth

    2013-07-01

    White matter ischemia is difficult to quantify histologically. Myelin-associated glycoprotein (MAG) is highly susceptible to ischemia, being expressed only adaxonally, far from the oligodendrocyte cell body. Myelin-basic protein (MBP) and proteolipid protein (PLP) are expressed throughout the myelin sheath. We compared MAG, MBP, and PLP levels in parietal white matter homogenates from 17 vascular dementia (VaD), 49 Alzheimer's disease (AD), and 33 control brains, after assessing the post-mortem stability of these proteins. Small vessel disease (SVD) and cerebral amyloid angiopathy (CAA) severity had been assessed in paraffin sections. The concentration of MAG remained stable post-mortem, declined with increasing SVD, and was significantly lower in VaD than controls. The concentration of MBP fell progressively post-mortem, limiting its diagnostic utility in this context. Proteolipid protein was stable post-mortem and increased significantly with SVD severity. The MAG/PLP ratio declined significantly with SVD and CAA severity. The MAG and PLP levels and MAG/PLP did not differ significantly between AD and control brains. We validated the utility of MAG and MAG/PLP measurements on analysis of 74 frontal white matter samples from an Oxford cohort in which SVD had previously been scored. MAG concentration and the MAG/PLP ratio are useful post-mortem measures of ante-mortem white matter ischemia.

  17. Unraveling pathology in juvenile Alexander disease: serial quantitative MR imaging and spectroscopy of white matter

    Energy Technology Data Exchange (ETDEWEB)

    Voorn, J.P. van der [VU University Medical Center, Department of Child Neurology, Amsterdam (Netherlands); VU University Medical Center, Department of Pathology, Amsterdam (Netherlands); Pouwels, Petra J.W. [VU University Medical Center, Department of Physics and Medical Technology, Amsterdam (Netherlands); Salomons, Gajja S. [VU University Medical Center, Department of Clinical Chemistry (Metabolic Unit), Amsterdam (Netherlands); Barkhof, Frederik [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Knaap, Marjo S. van der [VU University Medical Center, Department of Child Neurology, Amsterdam (Netherlands)

    2009-10-15

    Alexander disease is a rare disorder of the central nervous system with characteristic symmetric white matter abnormalities with frontal predominance on magnetic resonance (MR) images. Histopathology shows a lack of myelin in the affected white matter, variably interpreted as hypomyelination or demyelination. To increase our insight into the nature of the pathology leading to the MR imaging findings in Alexander disease, we applied serial MR imaging, spectroscopy, magnetization transfer (MT) imaging (MTI), and diffusion tensor imaging (DTI) in six patients with juvenile Alexander disease. The MR imaging protocol comprised T1- and T2-weighted spin echo images and fluid-attenuated inversion recovery images. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), and MT ratio (MTR) maps were generated, and MR spectroscopy concentrations were quantified for several metabolites. MR imaging showed similar cerebral white matter abnormalities in all patients, with only minor increase on prolonged follow-up, despite sometimes serious clinical progression. MR spectroscopy showed highly elevated levels of myo-inositol, lactate, and choline-containing compounds and decreased total N-acetyl-aspartate and N-acetyl-aspartyl-glutamate levels in the abnormal white matter. High values of ADC were observed, and both FA and MTR were attenuated. The sequential MR imaging findings in Alexander disease provide strong evidence against active demyelination as sole explanation for the underlying pathology. An alternative explanation for our spectroscopic, DTI, and MTI findings - which would suggest demyelination - could be hyperplasia and hypertrophy of astrocytes, as seen in low grade gliomas. (orig.)

  18. Cardiorespiratory fitness and white matter integrity in Alzheimer's disease.

    Science.gov (United States)

    Perea, R D; Vidoni, E D; Morris, J K; Graves, R S; Burns, J M; Honea, R A

    2016-09-01

    The objective of this study was to investigate the relationship between cardiorespiratory (CR) fitness and the brain's white matter tract integrity using diffusion tensor imaging (DTI) in the Alzheimer's disease (AD) population. We recruited older adults in the early stages of AD (n = 37; CDR = 0.5 and 1) and collected cross-sectional fitness and diffusion imaging data. We examined the association between CR fitness (peak oxygen consumption [VO2peak]) and fractional anisotropy (FA) in AD-related white matter tracts using two processing methodologies: a tract-of-interest approach and tract-based spatial statistic (TBSS). Subsequent diffusivity metrics (radial diffusivity [RD], mean diffusivity [MD], and axial diffusivity [A × D]) were also correlated with VO2peak. The tract-of-interest approach showed that higher VO2peak was associated with preserved white matter integrity as measured by increased FA in the right inferior fronto-occipital fasciculus (p = 0.035, r = 0.36). We did not find a significant correlation using TBSS, though there was a trend for a positive association between white matter integrity and higher VO2peak measures (p fitness levels in early AD participants may be related to preserved white matter integrity. However to draw stronger conclusions, further study on the relationship between fitness and white matter deterioration in AD is necessary. PMID:26239997

  19. Blood-Brain Barrier Permeability of Normal Appearing White Matter in Relapsing-Remitting Multiple Sclerosis

    DEFF Research Database (Denmark)

    Lund, Henrik; Krakauer, Martin; Skimminge, Arnold;

    2013-01-01

    Background: Multiple sclerosis (MS) affects the integrity of the blood-brain barrier (BBB). Contrast-enhanced T1 weighted magnetic resonance imaging (MRI) is widely used to characterize location and extent of BBB disruptions in focal MS lesions. We employed quantitative T1 measurements before...... and after the intravenous injection of a paramagnetic contrast agent to assess BBB permeability in the normal appearing white matter (NAWM) in patients with relapsing-remitting MS (RR-MS). Methodology/Principal Findings: Fifty-nine patients (38 females) with RR-MS undergoing immunomodulatory treatment...... and nine healthy controls (4 females) underwent quantitative T1 measurements at 3 tesla before and after injection of a paramagnetic contrast agent (0.2 mmol/kg Gd-DTPA). Mean T1 values were calculated for NAWM in patients and total cerebral white matter in healthy subjects for the T1 measurements before...

  20. White matter changes and word finding failures with increasing age.

    Directory of Open Access Journals (Sweden)

    Emmanuel A Stamatakis

    Full Text Available BACKGROUND: Increasing life expectancy necessitates the better understanding of the neurophysiological underpinnings of age-related cognitive changes. The majority of research examining structural-cognitive relationships in aging focuses on the role of age-related changes to grey matter integrity. In the current study, we examined the relationship between age-related changes in white matter and language production. More specifically, we concentrated on word-finding failures, which increase with age. METHODOLOGY/PRINCIPAL FINDINGS: We used Diffusion tensor MRI (a technique used to image, in vivo, the diffusion of water molecules in brain tissue to relate white matter integrity to measures of successful and unsuccessful picture naming. Diffusion tensor images were used to calculate Fractional Anisotropy (FA images. FA is considered to be a measure of white matter organization/integrity. FA images were related to measures of successful picture naming and to word finding failures using voxel-based linear regression analyses. Successful naming rates correlated positively with white matter integrity across a broad range of regions implicated in language production. However, word finding failure rates correlated negatively with a more restricted region in the posterior aspect of superior longitudinal fasciculus. CONCLUSIONS/SIGNIFICANCE: The use of DTI-MRI provides evidence for the relationship between age-related white matter changes in specific language regions and word finding failures in old age.

  1. Impaired empathic abilities and reduced white matter integrity in schizophrenia.

    Science.gov (United States)

    Fujino, Junya; Takahashi, Hidehiko; Miyata, Jun; Sugihara, Genichi; Kubota, Manabu; Sasamoto, Akihiko; Fujiwara, Hironobu; Aso, Toshihiko; Fukuyama, Hidenao; Murai, Toshiya

    2014-01-01

    Empathic abilities are impaired in schizophrenia. Although the pathology of schizophrenia is thought to involve disrupted white matter integrity, the relationship between empathic disabilities and altered white matter in the disorder remains unclear. The present study tested associations between empathic disabilities and white matter integrity in order to investigate the neural basis of impaired empathy in schizophrenia. Sixty-nine patients with schizophrenia and 69 age-, gender-, handedness-, education- and IQ level-matched healthy controls underwent diffusion-weighted imaging. Empathic abilities were assessed using the Interpersonal Reactivity Index (IRI). Using tract-based spatial statistics (TBSS), the associations between empathic abilities and white matter fractional anisotropy (FA), a measure of white matter integrity, were examined in the patient group within brain areas that showed a significant FA reduction compared with the controls. The patients with schizophrenia reported lower perspective taking and higher personal distress according to the IRI. The patients showed a significant FA reduction in bilateral deep white matter in the frontal, temporal, parietal and occipital lobes, a large portion of the corpus callosum, and the corona radiata. In schizophrenia patients, fantasy subscales positively correlated with FA in the left inferior fronto-occipital fasciculi and anterior thalamic radiation, and personal distress subscales negatively correlated with FA in the splenium of the corpus callosum. These results suggest that disrupted white matter integrity in these regions constitutes a pathology underpinning specific components of empathic disabilities in schizophrenia, highlighting that different aspects of empathic impairments in the disorder would have, at least partially, distinct neuropathological bases.

  2. Aerobic Fitness is Associated with Gray Matter Volume and White Matter Integrity in Multiple Sclerosis

    OpenAIRE

    Prakash, Ruchika Shaurya; Snook, Erin M.; Motl, Robert W.; Arthur F Kramer

    2009-01-01

    Alterations in gray and white matter have been well documented in individuals with multiple sclerosis. Severity and extent of such brain tissue damage have been associated with cognitive impairment, disease duration and neurological disability, making quantitative indices of tissue damage important markers of disease progression. In this study, we investigated the association between cardiorespiratory fitness and measures of gray matter atrophy and white matter integrity. Employing a voxel-ba...

  3. Association between baseline peri-infarct magnetic resonance spectroscopy and regional white matter atrophy after stroke

    Energy Technology Data Exchange (ETDEWEB)

    Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew [Melbourne Brain Centre rate at The Royal Melbourne Hospital, Departments of Medicine and Neurology, Parkville, Victoria (Australia); Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M. [The University of Melbourne, Department of Radiology, The Royal Melbourne Hospital, Parkville (Australia); Churilov, Leonid; Donnan, Geoffrey A. [The University of Melbourne, Florey Institute of Neuroscience and Mental Health, Parkville (Australia); Parsons, Mark W. [University of Newcastle and Hunter Medical Research Institute, Priority Research Centre for Translational Neuroscience and Mental Health, Newcastle (Australia)

    2016-01-15

    Cerebral atrophy after stroke is associated with poor functional outcome. The prediction and prevention of post-stroke brain atrophy could therefore represent a target for neurorestorative therapies. We investigated the associations between peri-infarct metabolite concentrations measured by quantitative MRS and brain volume change in the infarct hemisphere after stroke. Twenty patients with ischemic stroke were enrolled. Patients underwent 3T-MRI within 1 week of onset, and at 1 and 3 months. At the baseline scan, an MRS voxel was placed manually in the peri-infarct area and another in the corresponding contralateral region. Volumetric analysis of T1 images was performed using two automated processing packages. Changes in gray and white matter volume were assessed as percentage change between 1 and 3 months. Mean concentrations (institutional units) of N-acetylaspartic acid (NAA) (6.1 vs 7.0, p = 0.039), total creatine (Cr+PCr) (5.4 vs 5.8, p = 0.043), and inositol (4.5 vs 5.0, p = 0.014), were significantly lower in the peri-infarct region compared with the contralateral hemisphere. There was a significant correlation between baseline peri-infarct NAA and white matter volume change in the infarct hemisphere between 1 and 3 months, with lower NAA being associated with subsequent white matter atrophy (Spearman's rho = 0.66, p = 0.010). The baseline concentration of Cr+PCr was also significantly correlated with white matter atrophy in the infarct hemisphere (Spearman's rho = 0.59, p = 0.027). Both of these associations were significant after adjustment for the false discovery rate and were validated using the secondary volumetric method. MRS may be useful in the prediction of white matter atrophy post-stroke and in the testing of novel neurorestorative therapies. (orig.)

  4. Astrocytes in oligodendrocyte lineage development and white matter pathology

    Directory of Open Access Journals (Sweden)

    Jiasi eLi

    2016-05-01

    Full Text Available White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in grey matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica. In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  5. White matters : When, where, and how?

    NARCIS (Netherlands)

    McClure, Stephanie M.

    2007-01-01

    The author reflects on the qualitative research process as both a first-time researcher and as a white woman doing research on African American men. This includes reflections on the assumption that the primary motivation for the researcher is romantically motivated, a discussion of racist sexism, an

  6. Relationship between baseline white-matter changes and development of late-life depressive symptoms: 3-year results from the LADIS study

    DEFF Research Database (Denmark)

    Teodorczuk, A; Firbank, M J; Pantoni, L;

    2010-01-01

    BACKGROUND: Growing evidence suggests that cerebral white-matter changes and depressive symptoms are linked directly along the causal pathway. We investigated whether baseline severity of cerebral white-matter changes predict longer-term future depressive outcomes in a community sample of non......-disabled older adults. METHOD: In the Leukoaraiosis and Disability in the Elderly (LADIS) study, a longitudinal multi-centre pan-European study, 639 older subjects underwent baseline structural magnetic resonance imaging (MRI) and clinical assessments. Baseline severity of white-matter changes was quantified...... volumetrically. Depressive outcomes were assessed in terms of depressive episodes and depressive symptoms, as measured by the Geriatric Depression Scale (GDS). Subjects were clinically reassessed annually for up to 3 years. Regression models were constructed to determine whether baseline severity of white...

  7. White matter morphometric changes uniquely predict children's reading acquisition.

    Science.gov (United States)

    Myers, Chelsea A; Vandermosten, Maaike; Farris, Emily A; Hancock, Roeland; Gimenez, Paul; Black, Jessica M; Casto, Brandi; Drahos, Miroslav; Tumber, Mandeep; Hendren, Robert L; Hulme, Charles; Hoeft, Fumiko

    2014-10-01

    This study examined whether variations in brain development between kindergarten and Grade 3 predicted individual differences in reading ability at Grade 3. Structural MRI measurements indicated that increases in the volume of two left temporo-parietal white matter clusters are unique predictors of reading outcomes above and beyond family history, socioeconomic status, and cognitive and preliteracy measures at baseline. Using diffusion MRI, we identified the left arcuate fasciculus and superior corona radiata as key fibers within the two clusters. Bias-free regression analyses using regions of interest from prior literature revealed that volume changes in temporo-parietal white matter, together with preliteracy measures, predicted 56% of the variance in reading outcomes. Our findings demonstrate the important contribution of developmental differences in areas of left dorsal white matter, often implicated in phonological processing, as a sensitive early biomarker for later reading abilities, and by extension, reading difficulties. PMID:25212581

  8. Automated measurement of local white matter lesion volume

    DEFF Research Database (Denmark)

    van der Lijn, F.; Verhaaren, B.F.J.; Ikram, M.A.;

    2012-01-01

    It has been hypothesized that white matter lesions at different locations may have different etiology and clinical consequences. Several approaches for the quantification of local white matter lesion load have been proposed in the literature, most of which rely on a distinction between lesions in a...... orientation and distance to the ventricles, which allows a more spatially detailed study of lesion load. The potential of the method was demonstrated by analyzing the effect of blood pressure on the regional white matter lesion volume in 490 elderly subjects taken from a longitudinal population study. The...... regions. It explains the associations found for both the periventricular and subcortical load computed for the same data, and that were reported in the literature. But the proposed method can localize the region of association with greater precision than techniques that distinguish between periventricular...

  9. Regional white matter volumes correlate with delay discounting.

    Directory of Open Access Journals (Sweden)

    Rongjun Yu

    Full Text Available A preference for immediate gratification is a central feature in addictive processes. However, the neural structures underlying reward delay tolerance are still unclear. Healthy participants (n = 121 completed a delay discounting questionnaire assessing the extent to which they prefer smaller immediate rewards to larger delayed reward after undergoing magnetic resonance imaging (MRI scanning. Whole brain voxel-based morphometric analysis shows that delay discounting severity was negatively correlated with right prefrontal subgyral white matter volume and positively correlated with white matter volume in parahippocampus/hippocampus, after whole brain correction. This study might better our understanding of the neural basis of impulsivity and addiction.

  10. Emotional and Neutral Declarative Memory Impairments and Associated White Matter Microstructural Abnormalities in Adults with Type 2 Diabetes

    OpenAIRE

    Yau, Po Lai; Javier, David; Tsui, Wai; Sweat, Victoria; Bruehl, Hannah; Borod, Joan C.; Convit, Antonio

    2009-01-01

    Declarative memory impairment is frequently reported among adults with type 2 diabetes mellitus (T2DM), who also demonstrate hippocampal volume reduction. Our goals were to ascertain whether emotional memory, which is mediated by neural circuits overlapping those of declarative memory, is also affected. In addition we wanted to characterize cerebral white matter (WM) involvement in T2DM. We studied 24 middle-aged and elderly patients with T2DM who were free of obvious vascular pathology or a ...

  11. Magnetic resonance signal intensity ratio of gray/white matter in children

    International Nuclear Information System (INIS)

    Magnetic resonance imaging (MRI) findings in 87 children with various clinical entities were used to determine the signal intensity ratio of gray/white matter in T1-weighted and T2-weighted images using a 1.5 T MR scanner. Signal intensity ratio changes in both T1- and T2-weighted images correlated well with advancing age (y=0.9349-0.001575, r=0.584, P1-weighted images; y=0.9798+0.002854, r=0.723, P2-weighted images), but the correlation was more linear when we included only normally developed (34) children (y=0.9689-0.001967, r=-0.654, P1-weighted images; y=0.9882+0.002965, r=0.747, P2-weighted images). Abnormal ratios were observed in patients with congenital hydrocephalus, inherited metabolic diseases and cerebral palsy. Although the gray/white matter differentiation would not delineate the myelination itself, measurement of the signal intensity ratio of gray/white matters is a practical way to evaluate delayed myelination in a busy MR center. (author)

  12. Proton magnetic resonance spectroscopy of periventricular white matter and hippocampus in obstructive sleep apnea patients

    International Nuclear Information System (INIS)

    The purpose of this study was to diagnose the hypoxic impairment by Magnetic resonance spectroscopy (MRS), an advanced MR imaging technique, which could not be visualised by routine imaging methods in patients with obstructive sleep apnea (OSA). 20 OSA patients and 5 controls were included in this prospective research. MRS was performed on these 25 subjects to examine cerebral hypoxemia in specific regions (periventricular white matter and both hippocampi). Polysomnography was assumed as the gold standard. Statistical analysis was assessed by Mann-Whitney U test and Receiver operating characteristics (ROC) curve for NAA/Cho, NAA/Cr and Cho/Cr ratios. In the periventricular white matter, NAA/Cho ratio in OSA patients was significantly lower than in the control group (p<0.05). There were no statistical differences between the OSA and the control group for NAA/Cho, NAA/Cr and Cho/Cr ratios for both hippocampal regions. Additionally, Cho/Cr ratio in the periventricular white matter region of OSA group was higher than in the control group (p<0.05). Hypoxic impairment induced by repeated episodes of apnea leads to significant neuronal damage in OSA patients. MRS provides valuable information in the assessment of hypoxic ischemic impairment by revealing important metabolite ratios for the specific areas of the brain

  13. Sphingosine kinase inhibition ameliorates chronic hypoperfusion-induced white matter lesions.

    Science.gov (United States)

    Yang, Ying; Torta, Federico; Arai, Ken; Wenk, Markus R; Herr, Deron R; Wong, Peter T-H; Lai, Mitchell K P

    2016-03-01

    White matter lesions (WML) are thought to contribute to vascular cognitive impairment in elderly patients. Growing evidence show that failure of myelin formation arising from the disruption of oligodendrocyte progenitor cell (OPC) differentiation is a cause of chronic vascular white matter damage. The sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) signaling pathway regulates oligodendroglia differentiation and function, and is known to be altered in hypoxia. In this study, we measured SphK, S1P as well as markers of WML, hypoxia and OPC (NG2) in a mouse bilateral carotid artery stenosis (BCAS) model of chronic cerebral hypoperfusion. Our results indicated that BCAS induced hypoxia inducible factor (HIF)-1α, Sphk2, S1P, and NG2 up-regulation together with accumulation of WML. In contrast, BCAS mice treated with the SphK inhibitor, SKI-II, showed partial reversal of SphK2, S1P and NG2 elevation and amelioration of WML. In an in vitro model of hypoxia, SKI-II reversed the suppression of OPC differentiation. Our study suggests a mechanism for hypoperfusion-associated WML involving HIF-1α-SphK2-S1P-mediated disruption of OPC differentiation, and proposes the SphK signaling pathway as a potential therapeutic target for white matter disease. PMID:26921668

  14. Linking white matter and deep gray matter alterations in premanifest Huntington disease

    Directory of Open Access Journals (Sweden)

    Andreia V. Faria

    2016-01-01

    Full Text Available Huntington disease (HD is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i regions of interest surrounding these structures, using (ii tractography-based analysis, and using (iii whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores, and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be

  15. Linking white matter and deep gray matter alterations in premanifest Huntington disease.

    Science.gov (United States)

    Faria, Andreia V; Ratnanather, J Tilak; Tward, Daniel J; Lee, David Soobin; van den Noort, Frieda; Wu, Dan; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Younes, Laurent; Miller, Michael I

    2016-01-01

    Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay

  16. High Presence of Extracellular Hemoglobin in the Periventricular White Matter Following Preterm Intraventricular Hemorrhage.

    Science.gov (United States)

    Ley, David; Romantsik, Olga; Vallius, Suvi; Sveinsdóttir, Kristbjörg; Sveinsdóttir, Snjolaug; Agyemang, Alex A; Baumgarten, Maria; Mörgelin, Matthias; Lutay, Nataliya; Bruschettini, Matteo; Holmqvist, Bo; Gram, Magnus

    2016-01-01

    Severe cerebral intraventricular hemorrhage (IVH) in preterm infants continues to be a major clinical problem, occurring in about 15-20% of very preterm infants. In contrast to other brain lesions the incidence of IVH has not been reduced over the last decade, but actually slightly increased. Currently over 50% of surviving infants develop post-hemorrhagic ventricular dilatation and about 35% develop severe neurological impairment, mainly cerebral palsy and intellectual disability. To date there is no therapy available to prevent infants from developing either hydrocephalus or serious neurological disability. It is known that blood rapidly accumulates within the ventricles following IVH and this leads to disruption of normal anatomy and increased local pressure. However, the molecular mechanisms causing brain injury following IVH are incompletely understood. We propose that extracellular hemoglobin is central in the pathophysiology of periventricular white matter damage following IVH. Using a preterm rabbit pup model of IVH the distribution of extracellular hemoglobin was characterized at 72 h following hemorrhage. Evaluation of histology, histochemistry, hemoglobin immunolabeling and scanning electron microscopy revealed presence of extensive amounts of extracellular hemoglobin, i.e., not retained within erythrocytes, in the periventricular white matter, widely distributed throughout the brain. Furthermore, double immunolabeling together with the migration and differentiation markers polysialic acid neural cell adhesion molecule (PSA-NCAM) demonstrates that a significant proportion of the extracellular hemoglobin is distributed in areas of the periventricular white matter with high extracellular plasticity. In conclusion, these findings support that extracellular hemoglobin may contribute to the pathophysiological processes that cause irreversible damage to the immature brain following IVH. PMID:27536248

  17. White matter microstructure correlates of mathematical giftedness and intelligence quotient.

    Science.gov (United States)

    Navas-Sánchez, Francisco J; Alemán-Gómez, Yasser; Sánchez-Gonzalez, Javier; Guzmán-De-Villoria, Juan A; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2014-06-01

    Recent functional neuroimaging studies have shown differences in brain activation between mathematically gifted adolescents and controls. The aim of this study was to investigate the relationship between mathematical giftedness, intelligent quotient (IQ), and the microstructure of white matter tracts in a sample composed of math-gifted adolescents and aged-matched controls. Math-gifted subjects were selected through a national program based on detecting enhanced visuospatial abilities and creative thinking. We used diffusion tensor imaging to assess white matter microstructure in neuroanatomical connectivity. The processing included voxel-wise and region of interest-based analyses of the fractional anisotropy (FA), a parameter which is purportedly related to white matter microstructure. In a whole-sample analysis, IQ showed a significant positive correlation with FA, mainly in the corpus callosum, supporting the idea that efficient information transfer between hemispheres is crucial for higher intellectual capabilities. In addition, math-gifted adolescents showed increased FA (adjusted for IQ) in white matter tracts connecting frontal lobes with basal ganglia and parietal regions. The enhanced anatomical connectivity observed in the forceps minor and splenium may underlie the greater fluid reasoning, visuospatial working memory, and creative capabilities of these children.

  18. Tract-specific white matter microstructure and gait in humans.

    Science.gov (United States)

    Verlinden, Vincentius J A; de Groot, Marius; Cremers, Lotte G M; van der Geest, Jos N; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Vernooij, Meike W; Ikram, M Arfan

    2016-07-01

    Gait is a complex sequence of movements, requiring cooperation of many brain areas, such as the motor cortex, somatosensory cortex, and cerebellum. However, it is unclear which connecting white matter tracts are essential for communication across brain areas to facilitate proper gait. Using diffusion tensor imaging, we investigated associations of microstructural organization in 14 brain white matter tracts with gait, among 2330 dementia- and stroke-free community-dwelling individuals. Gait was assessed by electronic walkway and summarized into Global Gait, and 7 gait domains. Higher white matter microstructure associated with higher Global Gait, Phases, Variability, Pace, and Turning. Microstructure in thalamic radiations, followed by association tracts and the forceps major, associated most strongly with gait. Hence, in community-dwelling individuals, higher white matter microstructure associated with better gait, including larger strides, more single support, less stride-to-stride variability, and less turning steps. Our findings suggest that intact thalamocortical communication, cortex-to-cortex communication, and interhemispheric visuospatial integration are most essential in human gait. PMID:27255826

  19. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  20. Anomalous White Matter Morphology in Adults Who Stutter

    Science.gov (United States)

    Cieslak, Matthew; Ingham, Rojer J.; Ingham, Janis C.; Grafton, Scott T.

    2015-01-01

    Aims: Developmental stuttering is now generally considered to arise from genetic determinants interacting with neurologic function. Changes within speech-motor white matter (WM) connections may also be implicated. These connections can now be studied in great detail by high-angular-resolution diffusion magnetic resonance imaging. Therefore,…

  1. Recombinant human erythropoietin for repair of white matter damage

    Institute of Scientific and Technical Information of China (English)

    Wei Zhou; Xiao Rong; Li Tao; Weineng Lu

    2011-01-01

    Erythropoietin has been shown to exhibit neuroprotective effects in animal models. A neonatal rat model of hypoxic-ischemic white matter damage was established via bilateral carotid artery ligation in 4-day-old Sprague-Dawley rats. The rats were subsequently treated with recombinant human erythropoietin to observe pathological changes in the brain and long-term neurobehavioral functions before and after intervention. Results showed that the number of myelin basic protein-positive cells, which reflected myelin/oligodendrocyte damage, significantly increased, although the number of amyloid precursor protein-positive cells, which reflected axonal injury, significantly decreased in periventricular white matter at 72 hours and 7 days following erythropoietin intervention. The number of glial fibrillary acidic protein-positive cells, indicating astrocytic damage, significantly decreased in periventricular white matter of erythropoietin-treated rats at 48 hours, 72 hours, 7 days, and 26 days. Following erythropoietin intervention in the 30-day-old rats, head-turning time in the slope test was shortened and open-field test scores increased. These results suggested that erythropoietin promoted repair of white matter damage, as well as improved neurobehavioral functions in a rat model of hypoxic-ischemic injury.

  2. Shared genetic variance between obesity and white matter integrity in Mexican Americans

    Science.gov (United States)

    Spieker, Elena A.; Kochunov, Peter; Rowland, Laura M.; Sprooten, Emma; Winkler, Anderson M.; Olvera, Rene L.; Almasy, Laura; Duggirala, Ravi; Fox, Peter T.; Blangero, John; Glahn, David C.; Curran, Joanne E.

    2015-01-01

    Obesity is a chronic metabolic disorder that may also lead to reduced white matter integrity, potentially due to shared genetic risk factors. Genetic correlation analyses were conducted in a large cohort of Mexican American families in San Antonio (N = 761, 58% females, ages 18–81 years; 41.3 ± 14.5) from the Genetics of Brain Structure and Function Study. Shared genetic variance was calculated between measures of adiposity [(body mass index (BMI; kg/m2) and waist circumference (WC; in)] and whole-brain and regional measurements of cerebral white matter integrity (fractional anisotropy). Whole-brain average and regional fractional anisotropy values for 10 major white matter tracts were calculated from high angular resolution diffusion tensor imaging data (DTI; 1.7 × 1.7 × 3 mm; 55 directions). Additive genetic factors explained intersubject variance in BMI (heritability, h2 = 0.58), WC (h2 = 0.57), and FA (h2 = 0.49). FA shared significant portions of genetic variance with BMI in the genu (ρG = −0.25), body (ρG = −0.30), and splenium (ρG = −0.26) of the corpus callosum, internal capsule (ρG = −0.29), and thalamic radiation (ρG = −0.31) (all p's = 0.043). The strongest evidence of shared variance was between BMI/WC and FA in the superior fronto-occipital fasciculus (ρG = −0.39, p = 0.020; ρG = −0.39, p = 0.030), which highlights region-specific variation in neural correlates of obesity. This may suggest that increase in obesity and reduced white matter integrity share common genetic risk factors. PMID:25763009

  3. Location of lacunar infarcts correlates with cognition in a sample of non-disabled subjects with age-related white-matter changes: the LADIS study

    DEFF Research Database (Denmark)

    Benisty, S; Gouw, A A; Porcher, R;

    2009-01-01

    OBJECTIVES: In cerebral small vessel disease, white-matter hyperintensities (WMH) and lacunes are both related to cognition. Still, their respective contribution in older people remains unclear. The purpose of this study is to assess the topographic distribution of lacunes and determine whether i...

  4. Reduced parietooccipital white matter glutamine measured by proton magnetic resonance spectroscopy in treated graves' disease patients

    DEFF Research Database (Denmark)

    Danielsen, Else Rubæk; Elberling, T.V.; Rasmussen, Åse Krogh;

    2008-01-01

    .01). Acute phase parieto-occipital white matter total choline correlated significantly (r = -0.57; P gray matter glutamine (r = -0.52; P gray matter total choline (r = -0.53; P ....01) and parietooccipital white matter glutamate (r = -0.54; P gray matter...

  5. White matter structure changes as adults learn a second language.

    Science.gov (United States)

    Schlegel, Alexander A; Rudelson, Justin J; Tse, Peter U

    2012-08-01

    Traditional models hold that the plastic reorganization of brain structures occurs mainly during childhood and adolescence, leaving adults with limited means to learn new knowledge and skills. Research within the last decade has begun to overturn this belief, documenting changes in the brain's gray and white matter as healthy adults learn simple motor and cognitive skills [Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C., et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48, 3878-3883, 2010; Taubert, M., Draganski, B., Anwander, A., Müller, K., Horstmann, A., Villringer, A., et al. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. The Journal of Neuroscience, 30, 11670-11677, 2010; Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. Training induces changes in white-matter architecture. Nature Neuroscience, 12, 1370-1371, 2009; Draganski, B., Gaser, C., Busch, V., Schuirer, G., Bogdahn, U., & May, A. Changes in grey matter induced by training. Nature, 427, 311-312, 2004]. Although the significance of these changes is not fully understood, they reveal a brain that remains plastic well beyond early developmental periods. Here we investigate the role of adult structural plasticity in the complex, long-term learning process of foreign language acquisition. We collected monthly diffusion tensor imaging scans of 11 English speakers who took a 9-month intensive course in written and spoken Modern Standard Chinese as well as from 16 control participants who did not study a language. We show that white matter reorganizes progressively across multiple sites as adults study a new language. Language learners exhibited progressive changes in white matter tracts associated with traditional left hemisphere language areas and their right hemisphere analogs. Surprisingly, the most significant changes

  6. White matter structure changes as adults learn a second language.

    Science.gov (United States)

    Schlegel, Alexander A; Rudelson, Justin J; Tse, Peter U

    2012-08-01

    Traditional models hold that the plastic reorganization of brain structures occurs mainly during childhood and adolescence, leaving adults with limited means to learn new knowledge and skills. Research within the last decade has begun to overturn this belief, documenting changes in the brain's gray and white matter as healthy adults learn simple motor and cognitive skills [Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C., et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48, 3878-3883, 2010; Taubert, M., Draganski, B., Anwander, A., Müller, K., Horstmann, A., Villringer, A., et al. Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. The Journal of Neuroscience, 30, 11670-11677, 2010; Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. Training induces changes in white-matter architecture. Nature Neuroscience, 12, 1370-1371, 2009; Draganski, B., Gaser, C., Busch, V., Schuirer, G., Bogdahn, U., & May, A. Changes in grey matter induced by training. Nature, 427, 311-312, 2004]. Although the significance of these changes is not fully understood, they reveal a brain that remains plastic well beyond early developmental periods. Here we investigate the role of adult structural plasticity in the complex, long-term learning process of foreign language acquisition. We collected monthly diffusion tensor imaging scans of 11 English speakers who took a 9-month intensive course in written and spoken Modern Standard Chinese as well as from 16 control participants who did not study a language. We show that white matter reorganizes progressively across multiple sites as adults study a new language. Language learners exhibited progressive changes in white matter tracts associated with traditional left hemisphere language areas and their right hemisphere analogs. Surprisingly, the most significant changes

  7. Diffusion-Weighted MR Imaging of Unusual White Matter Lesion in a Patient with Menkes Disease

    OpenAIRE

    Lee, Eun Shin; Ryoo, Jae Wook; Choi, Dae Seob; Cho, Jae Min; Kwon, Soo Hyun; Shin, Hee Suk

    2007-01-01

    We report here on the diffusion-weighted imaging of unusual white matter lesions in a case of Menkes disease. On the initial MR imaging, the white matter lesions were localized in the deep periventricular white matter in the absence of diffuse cortical atrophy. The lesion showed diffuse high signal on the diffusion-weighted images and diffuse progression and persistent hyperintensity on the follow up imaging. Our case suggests that the white matter lesion may precede diffuse cortical atrophy ...

  8. Microstructural white matter changes mediate age-related cognitive decline on the Montreal Cognitive Assessment (MoCA).

    Science.gov (United States)

    Jolly, Todd A D; Cooper, Patrick S; Badwi, Syarifah Azizah Wan Ahmadul; Phillips, Natalie A; Rennie, Jaime L; Levi, Christopher R; Drysdale, Karen A; Parsons, Mark W; Michie, Patricia T; Karayanidis, Frini

    2016-02-01

    Although the relationship between aging and cognitive decline is well established, there is substantial individual variability in the degree of cognitive decline in older adults. The present study investigates whether variability in cognitive performance in community-dwelling older adults is related to the presence of whole brain or tract-specific changes in white matter microstructure. Specifically, we examine whether age-related decline in performance on the Montreal Cognitive Assessment (MoCA), a cognitive screening tool, is mediated by the white matter microstructural decline. We also examine if this relationship is driven by the presence of cardiovascular risk factors or variability in cerebral arterial pulsatility, an index of cardiovascular risk. Sixty-nine participants (aged 43-87) completed behavioral and MRI testing including T1 structural, T2-weighted FLAIR, and diffusion-weighted imaging (DWI) sequences. Measures of white matter microstructure were calculated using diffusion tensor imaging analyses on the DWI sequence. Multiple linear regression revealed that MoCA scores were predicted by radial diffusivity (RaD) of white matter beyond age or other cerebral measures. While increasing age and arterial pulsatility were associated with increasing RaD, these factors did not mediate the relationship between total white matter RaD and MoCA. Further, the relationship between MoCA and RaD was specific to participants who reported at least one cardiovascular risk factor. These findings highlight the importance of cardiovascular risk factors in the presentation of cognitive decline in old age. Further work is needed to establish whether medical or lifestyle management of these risk factors can prevent or reverse cognitive decline in old age. PMID:26511789

  9. White matter development in early puberty: a longitudinal volumetric and diffusion tensor imaging twin study.

    Science.gov (United States)

    Brouwer, Rachel M; Mandl, René C W; Schnack, Hugo G; van Soelen, Inge L C; van Baal, G Caroline; Peper, Jiska S; Kahn, René S; Boomsma, Dorret I; Hulshoff Pol, H E

    2012-01-01

    White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals) and again at age 12 (126 individuals). Over the three-year interval, white matter volume (+6.0%) and surface area (+1.7%) increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium), and fractional anisotropy increased (+3.0%). Genes influenced white matter volume (heritability ~85%), surface area (~85%), and fractional anisotropy (locally 7% to 50%) at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = -0.62) and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization.

  10. White matter development in early puberty: a longitudinal volumetric and diffusion tensor imaging twin study.

    Directory of Open Access Journals (Sweden)

    Rachel M Brouwer

    Full Text Available White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals and again at age 12 (126 individuals. Over the three-year interval, white matter volume (+6.0% and surface area (+1.7% increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium, and fractional anisotropy increased (+3.0%. Genes influenced white matter volume (heritability ~85%, surface area (~85%, and fractional anisotropy (locally 7% to 50% at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = -0.62 and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization.

  11. Lower Orbital Frontal White Matter Integrity in Adolescents with Bipolar I Disorder

    Science.gov (United States)

    Kafantaris, Vivian; Kingsley, Peter; Ardekani, Babak; Saito, Ema; Lencz, Todd; Lim, Kelvin; Szeszko, Philip

    2009-01-01

    Patients with bipolar I disorder demonstrated white matter abnormalities in white matter regions as seen through the use of diffusion tensor imaging. The findings suggest that white matter abnormalities in pediatric bipolar disorder may be useful in constructing neurobiological models of the disorder.

  12. File list: ALL.Neu.10.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.White_Matter hg19 All antigens Neural White Matter SRX998282,SRX10...96828,SRX998280,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.White_Matter.bed ...

  13. File list: ALL.Neu.20.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.White_Matter hg19 All antigens Neural White Matter SRX998282,SRX10...96828,SRX998280,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.White_Matter.bed ...

  14. File list: His.Neu.50.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.White_Matter hg19 Histone Neural White Matter SRX998282,SRX1096828...,SRX998280,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.White_Matter.bed ...

  15. File list: ALL.Neu.05.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.White_Matter hg19 All antigens Neural White Matter SRX998282,SRX99...8280,SRX1096828,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.White_Matter.bed ...

  16. File list: His.Neu.05.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.White_Matter hg19 Histone Neural White Matter SRX998282,SRX998280,...SRX1096828,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.White_Matter.bed ...

  17. File list: His.Neu.20.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.White_Matter hg19 Histone Neural White Matter SRX998282,SRX1096828...,SRX998280,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.White_Matter.bed ...

  18. File list: ALL.Neu.50.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.White_Matter hg19 All antigens Neural White Matter SRX998282,SRX10...96828,SRX998280,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.White_Matter.bed ...

  19. File list: His.Neu.10.AllAg.White_Matter [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.White_Matter hg19 Histone Neural White Matter SRX998282,SRX1096828...,SRX998280,SRX1096827 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.White_Matter.bed ...

  20. Automatic segmentation of white matter hyperintensities robust to multicentre acquisition and pathological variability

    Science.gov (United States)

    Samaille, T.; Colliot, O.; Cuingnet, R.; Jouvent, E.; Chabriat, H.; Dormont, D.; Chupin, M.

    2012-02-01

    White matter hyperintensities (WMH), commonly seen on FLAIR images in elderly people, are a risk factor for dementia onset and have been associated with motor and cognitive deficits. We present here a method to fully automatically segment WMH from T1 and FLAIR images. Iterative steps of non linear diffusion followed by watershed segmentation were applied on FLAIR images until convergence. Diffusivity function and associated contrast parameter were carefully designed to adapt to WMH segmentation. It resulted in piecewise constant images with enhanced contrast between lesions and surrounding tissues. Selection of WMH areas was based on two characteristics: 1) a threshold automatically computed for intensity selection, 2) main location of areas in white matter. False positive areas were finally removed based on their proximity with cerebrospinal fluid/grey matter interface. Evaluation was performed on 67 patients: 24 with amnestic mild cognitive impairment (MCI), from five different centres, and 43 with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoaraiosis (CADASIL) acquired in a single centre. Results showed excellent volume agreement with manual delineation (Pearson coefficient: r=0.97, p<0.001) and substantial spatial correspondence (Similarity Index: 72%+/-16%). Our method appeared robust to acquisition differences across the centres as well as to pathological variability.

  1. White matter changes in Wilson's disease: A radiological enigma

    Directory of Open Access Journals (Sweden)

    Soumava Mukherjee

    2016-01-01

    Full Text Available Wilson's disease is a metabolic disorder which presents with hepatitis or hepatic decompensation commonly. Neurologic manifestations are late and include movement disorders, personality changes, and seizures. Magnetic resonance imaging (MRI brain shows high signal changes in putamen, lentiform nucleus, thalamus, and brainstem. White matter lesions are rare. We report a child of Wilson's disease who presented to us with dystonia, rigidity, myoclonus and had symmetrical white matter changes in the fronto-parietooccipital region. Diffusion restriction in bilateral frontoparietal areas was also seen which is rare in chronic cases like ours. Atypical MRI characteristics should be considered in patients with clinical signs of neurological involvement in Wilson's disease as it is a devastating but treatable disease.

  2. White matter changes in Wilson's disease: A radiological enigma.

    Science.gov (United States)

    Mukherjee, Soumava; Solanki, Bhavesh; Guha, Goutam; Saha, Shankar Prasad

    2016-01-01

    Wilson's disease is a metabolic disorder which presents with hepatitis or hepatic decompensation commonly. Neurologic manifestations are late and include movement disorders, personality changes, and seizures. Magnetic resonance imaging (MRI) brain shows high signal changes in putamen, lentiform nucleus, thalamus, and brainstem. White matter lesions are rare. We report a child of Wilson's disease who presented to us with dystonia, rigidity, myoclonus and had symmetrical white matter changes in the fronto-parietooccipital region. Diffusion restriction in bilateral frontoparietal areas was also seen which is rare in chronic cases like ours. Atypical MRI characteristics should be considered in patients with clinical signs of neurological involvement in Wilson's disease as it is a devastating but treatable disease.

  3. White matter correlates of sensory processing in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Jennifer R. Pryweller

    2014-01-01

    Full Text Available Autism spectrum disorder (ASD has been characterized by atypical socio-communicative behavior, sensorimotor impairment and abnormal neurodevelopmental trajectories. DTI has been used to determine the presence and nature of abnormality in white matter integrity that may contribute to the behavioral phenomena that characterize ASD. Although atypical patterns of sensory responding in ASD are well documented in the behavioral literature, much less is known about the neural networks associated with aberrant sensory processing. To address the roles of basic sensory, sensory association and early attentional processes in sensory responsiveness in ASD, our investigation focused on five white matter fiber tracts known to be involved in these various stages of sensory processing: superior corona radiata, centrum semiovale, inferior longitudinal fasciculus, posterior limb of the internal capsule, and splenium. We acquired high angular resolution diffusion images from 32 children with ASD and 26 typically developing children between the ages of 5 and 8. We also administered sensory assessments to examine brain-behavior relationships between white matter integrity and sensory variables. Our findings suggest a modulatory role of the inferior longitudinal fasciculus and splenium in atypical sensorimotor and early attention processes in ASD. Increased tactile defensiveness was found to be related to reduced fractional anisotropy in the inferior longitudinal fasciculus, which may reflect an aberrant connection between limbic structures in the temporal lobe and the inferior parietal cortex. Our findings also corroborate the modulatory role of the splenium in attentional orienting, but suggest the possibility of a more diffuse or separable network for social orienting in ASD. Future investigation should consider the use of whole brain analyses for a more robust assessment of white matter microstructure.

  4. White matter integrity, substance use, and risk taking in adolescence

    OpenAIRE

    Jacobus, Joanna

    2011-01-01

    White matter (WM) development is important for efficient communication between brain regions and higher order neurocognitive functioning. Adolescents have a higher propensity for engaging in risky behaviors such as substance misuse and delinquent acts, yet few studies have explored associations between WM integrity, neurocognitive functioning, and risk taking during adolescent development. This study evaluated baseline indices from diffusion tensor imaging (DTI) to examine the influence of WM...

  5. White Matter Integrity and Behavioral Activation in Healthy Subjects

    OpenAIRE

    Xu, Jiansong; Kober, Hedy; Carroll, Kathleen M.; Rounsaville, Bruce J.; Pearlson, Godfrey D.; POTENZA, MARC N.

    2011-01-01

    Individual differences in behavioral inhibition and behavioral activation may place certain people at greater risk for neuropsychiatric disorders and engagement in risky behaviors. Therefore, studying the neural correlates of behavioral inhibition and activation may help us understand neural mechanisms underlying risk behaviors in both clinical and non-clinical populations. To investigate, we assessed the relationships between white matter integrity and measures of behavioral inhibition and b...

  6. White matter and cognition in adults who were born preterm.

    Directory of Open Access Journals (Sweden)

    Matthew P G Allin

    Full Text Available BACKGROUND AND PURPOSE: Individuals born very preterm (before 33 weeks of gestation, VPT are at risk of damage to developing white matter, which may affect later cognition and behaviour. METHODS: We used diffusion tensor MRI (DT-MRI to assess white matter microstructure (fractional anisotropy; FA in 80 VPT and 41 term-born individuals (mean age 19.1 years, range 17-22, and 18.5 years, range 17-22 years, respectively. VPT individuals were part of a 1982-1984 birth cohort which had been followed up since birth; term individuals were recruited by local press advertisement. General intellectual function, executive function and memory were assessed. RESULTS: The VPT group had reduced FA in four clusters, and increased FA in four clusters relative to the Term group, involving several association tracts of both hemispheres. Clusters of increased FA were associated with more severe neonatal brain injury in the VPT group. Clusters of reduced FA were associated with lower birth weight and perinatal hypoxia, and with reduced adult cognitive performance in the VPT group only. CONCLUSIONS: Alterations of white matter microstructure persist into adulthood in VPT individuals and are associated with cognitive function.

  7. EEG functional connectivity, axon delays and white matter disease

    Science.gov (United States)

    Nunez, Paul L.; Srinivasan, Ramesh; Fields, R. Douglas

    2016-01-01

    Objective Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Methods Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Results Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Results Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Conclusions Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. Significance White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. PMID:24815984

  8. White matter microstructural organization and gait stability in older adults

    Directory of Open Access Journals (Sweden)

    Sjoerd M. Bruijn

    2014-06-01

    Full Text Available Understanding age-related decline in gait stability and the role of alterations in brain structure is crucial. Here, we studied the relationship between white matter microstructural organization using Diffusion Tensor Imaging (DTI and advanced gait stability measures in 15 healthy young adults (range 18-30 years and 25 healthy older adults (range 62-82 years.Among the different gait stability measures, only stride time and the maximum Lyapunov exponent (which quantifies how well participants are able to attenuate small perturbations were found to decline with age. White matter microstructural organization (FA was lower throughout the brain in older adults. We found a strong correlation between FA in the left anterior thalamic radiation and left corticospinal tract on the one hand, and step width and safety margin (indicative of how close participants are to falling over on the other. These findings suggest that white matter FA in tracts connecting subcortical and prefrontal areas is associated with the implementation of an effective stabilization strategy during gait.

  9. The effects of puberty on white matter development in boys.

    Science.gov (United States)

    Menzies, Lara; Goddings, Anne-Lise; Whitaker, Kirstie J; Blakemore, Sarah-Jayne; Viner, Russell M

    2015-02-01

    Neuroimaging studies demonstrate considerable changes in white matter volume and microstructure during adolescence. Most studies have focused on age-related effects, whilst puberty-related changes are not well understood. Using diffusion tensor imaging and tract-based spatial statistics, we investigated the effects of pubertal status on white matter mean diffusivity (MD) and fractional anisotropy (FA) in 61 males aged 12.7-16.0 years. Participants were grouped into early-mid puberty (≤Tanner Stage 3 in pubic hair and gonadal development; n=22) and late-post puberty (≥Tanner Stage 4 in pubic hair or gonadal development; n=39). Salivary levels of pubertal hormones (testosterone, DHEA and oestradiol) were also measured. Pubertal stage was significantly related to MD in diverse white matter regions. No relationship was observed between pubertal status and FA. Regression modelling of MD in the significant regions demonstrated that an interaction model incorporating puberty, age and puberty×age best explained our findings. In addition, testosterone was correlated with MD in these pubertally significant regions. No relationship was observed between oestradiol or DHEA and MD. In conclusion, pubertal status was significantly related to MD, but not FA, and this relationship cannot be explained by changes in chronological age alone. PMID:25454416

  10. The effects of puberty on white matter development in boys

    Directory of Open Access Journals (Sweden)

    Lara Menzies

    2015-02-01

    Full Text Available Neuroimaging studies demonstrate considerable changes in white matter volume and microstructure during adolescence. Most studies have focused on age-related effects, whilst puberty-related changes are not well understood. Using diffusion tensor imaging and tract-based spatial statistics, we investigated the effects of pubertal status on white matter mean diffusivity (MD and fractional anisotropy (FA in 61 males aged 12.7–16.0 years. Participants were grouped into early-mid puberty (≤Tanner Stage 3 in pubic hair and gonadal development; n = 22 and late-post puberty (≥Tanner Stage 4 in pubic hair or gonadal development; n = 39. Salivary levels of pubertal hormones (testosterone, DHEA and oestradiol were also measured. Pubertal stage was significantly related to MD in diverse white matter regions. No relationship was observed between pubertal status and FA. Regression modelling of MD in the significant regions demonstrated that an interaction model incorporating puberty, age and puberty × age best explained our findings. In addition, testosterone was correlated with MD in these pubertally significant regions. No relationship was observed between oestradiol or DHEA and MD. In conclusion, pubertal status was significantly related to MD, but not FA, and this relationship cannot be explained by changes in chronological age alone.

  11. Longitudinal changes in white matter microstructure after heavy cannabis use.

    Science.gov (United States)

    Becker, Mary P; Collins, Paul F; Lim, Kelvin O; Muetzel, R L; Luciana, M

    2015-12-01

    Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment.

  12. White matter microstructure is associated with auditory and tactile processing in children with and without sensory processing disorder

    Directory of Open Access Journals (Sweden)

    Yi Shin Chang

    2016-01-01

    Full Text Available Sensory processing disorders (SPD affect up to 16% of school-aged children, and contribute to cognitive and behavioral deficits impacting affected individuals and their families. While sensory processing differences are now widely recognized in children with autism, children with sensory-based dysfunction who do not meet autism criteria based on social communication deficits remain virtually unstudied. In a previous pilot diffusion tensor imaging (DTI study, we demonstrated that boys with SPD have altered white matter microstructure primarily affecting the posterior cerebral tracts, which subserve sensory processing and integration. This disrupted microstructural integrity, measured as reduced white matter fractional anisotropy (FA, correlated with parent report measures of atypical sensory behavior. In this present study, we investigate white matter microstructure as it relates to tactile and auditory function in depth with a larger, mixed-gender cohort of children 8 to 12 years of age. We continue to find robust alterations of posterior white matter microstructure in children with SPD relative to typically developing children, along with more spatially distributed alterations. We find strong correlations of FA with both parent report and direct measures of tactile and auditory processing across children, with the direct assessment measures of tactile and auditory processing showing a stronger and more continuous mapping to the underlying white matter integrity than the corresponding parent report measures. Based on these findings of microstructure as a neural correlate of sensory processing ability, diffusion MRI merits further investigation as a tool to find biomarkers for diagnosis, prognosis and treatment response in children with SPD. To our knowledge, this work is the first to demonstrate associations of directly measured tactile and non-linguistic auditory function with white matter microstructural integrity -- not just in children with

  13. Association of Ultrasonographic Parameters with Subclinical White-Matter Hyperintensities in Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Ioannis Heliopoulos

    2012-01-01

    Full Text Available Background and Purpose. Cerebral white matter hyperintensities (WMHs are regarded as typical MRI expressions of small-vessel disease (SVD and are common in hypertensive patients. Hypertension induces pathologic changes in macrocirculation and in microcirculation. Changes in microcirculation may lead to SVD of brain and consequently to hypertensive end-organ damage. This damage is regarded the result of interactions between the macrovascular and microvascular levels. We sought to investigate the association of cerebral WMHs with ultrasonographic parameters of cerebral macrocirculation evaluated by carotid duplex ultrasound (CDU and transcranial doppler (TCD. Subjects and Methods. The study was prospective, cross-sectional and consecutive and included hypertensive patients with brain MRI with WMHs. Patients underwent CDU and TCD. The clinical variables recorded were demographic characteristics (age, gender, race and vascular risk factors (hypertension, diabetic mellitus, hypercholesterolemia, current smoking, and body mass index. Excluded from the study were patients with history of clinical stroke (including lacunar stroke and hemorrhagic or transient ischemic attack (either hemispheric or ocular, hemodynamically significant (>50% extra- or intracranial stenosis, potential sources of cardioembolism, and absent transtemporal windows. WMHs were quantified with the use of a semiquantitative visual rating method. Ultrasound parameters investigated were (1 common carotid artery (CCA diameter and intima-media thickness, (2 blood flow velocity in the CCA and internal carotid artery (ICA, and (3 blood flow velocity and pulsatility index of middle cerebral artery (MCA. Results. A total of 52 patients fulfilled the study inclusion criteria (mean age years, 54% men, median WMH-score: 20. The only two ultrasound parameters that were independently associated with WMH score in multivariate linear regression models adjusting for demographic characteristics and

  14. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence

    OpenAIRE

    Wang, YongMing; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d’Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional ...

  15. Effect of Early Intervention and Rehabilitation on Myelin-associated Glycoprotein Expression of White Matter in Neonatal Ratswith Cerebral Injury after Intrauterine Infection%早期干预及康复训练对宫内感染脑损伤仔鼠脑白质髓鞘相关糖蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    张明达; 李晓捷

    2012-01-01

    目的 探讨早期干预及康复训练对宫内感染致脑损伤仔鼠脑白质髓鞘相关糖蛋白(MAG)表达的影响.方法 30 只孕17d、18d 的Wistar 大鼠腹腔注射脂多糖,抽取所生仔鼠100 只随机分干预组和非干预组各50 只.另10 只孕鼠注射生理盐水,取50 只所生仔鼠为对照组.干预组进行早期干预和康复训练,3 组分别于14d、21d、28d 行改良BBB和悬吊实验评分,各组分别在1d、7d、14d、21d、28d 随机抽取6 只取脑组织行免疫组化染色,观察脑白质MAG的表达情况.结果 在悬吊试验和改良BBB测试中,对照组得分均明显高于脂多糖组(P<0.01),干预组得分均明显高于非干预组(P<0.01);脂多糖组脑白质中MAG 表达量明显高于对照组(P<0.01),非干预组表达量明显高于干预组(P<0.01).结论 早期干预及康复训练可改善脑损伤鼠的运动功能并能降低MAG的表达.%Objective To explore the effect of early intervention on myelin-associated glycoprotein (MAG) expression of white matter in neonatal rats with cerebral brain injury caused by intrauterine infection. Methods 17 days or 18 days pregnant Wistar rats were consecutively injected with lipopolysaccharide (LPS) intraperitoneally. 100 neonatal rats born from LPS group were randomly divided into intervention group and non-intervention group with 50 in each group. Another 10 pregnant rats were injected with normal saline, 50 neonatal ratsborn from the the normal saline group were taken as control group. The intervention group received early intervention and rehabilitation training. All the groups underwent hanging test and modified BBB test on the j 4th, 21st arid 28th day. 6 rats in each group were tested by im-munohistochemical staining to observe the MAG expression in white matter on the 1st, 7th, 14th, 21st, 28th day. Results The scores of hanging test and modified BBB test were significantly higher in the control group than in the LPS group (P<0.01). And higher in the

  16. 阻塞性睡眠呼吸暂停低通气综合征患者海马及脑白质病变与认知功能的相关性%Correlation between cognitive function and hippocampal atrophy and cerebral white matter lesions in patients with obstructive sleep apnea hypopnea syndrome

    Institute of Scientific and Technical Information of China (English)

    彭万达; 陈锐; 蒋震; 徐孝秋; 王婧; 李洁; 刘春风

    2014-01-01

    Objective To explore the relationship between cognitive impairment and the changes of hippocampal structure and cerebral white matter on brain magnetic resonance imaging (MRI) in subjects with obstructive sleep apnea hypopnea (OSAHS).Methods A total of 81 snoring patients were monitored by overnight polysomnography (PSG) at Sleep Center,Second Affiliated Hospital,Soochow University from March 2012 to August 2013.Based on the results of apnea-hypopnea index (AHI),they were divided into mild (n =23),moderate (n =18),severe OSAHS (n =23) and primary snoring (n =17) groups.Periventricular hyperintensity (PVH) related to the severity of cerebral white matter lesions and hippocampal atrophy on brain MRI were evaluated according to the Fukudas method and Scheltens standard.The sequences of regular and perpendicular to bilateral hippocampal fluid attenuated inversion recovery (FIAIR) were used.Montreal cognitive assessment (MoCA) and mini-mental state examination (MMSE) were performed to evaluate the changes of cognitive function in all subjects.Results The cognitive function scores,especially MoCA,progressively decreased and the scores of hippocampal atrophy and PVH increased as the severity of OSAHS aggravated among these groups.Compared to primary snoring group,MoCA and MMSE scores decreased (24.5 ± 2.7 vs 28.0 ± 1.9,P =0.000 ; 27.5 ± 1.4 vs 28.7 ± 1.3,P =0.013) and hippocampal atrophy and PVH scores increased (2.4 ± 1.2 vs 1.5 ± 1.2,P =0.007 ; 3.6 ± 1.0 vs 1.6 ± 1.5,P =0.000) in the severe OSAHS group.The evaluations of MoCA subdomains further revealed selective reduction in visual space,execution function and delayed memory.PVH scores and hippocampal atrophy scores were negatively correlated with MoCA scores (r =-0.30,P =0.010 ; r =-0.30,P =0.006).Multiple linear regression analysis indicated that the degrees of AHI and hippocampal atrophy were the major risk factors for MoCA scores (standardized regression coefficient:-0.386,-0.247; P =0.000,0.020).The scores

  17. White matter integrity and cerebral network topology in focal epilepsy

    NARCIS (Netherlands)

    Otte, W.M.

    2012-01-01

    Worldwide more than fifty million people suffer from recurrent spontaneous seizures. Seizures are considered to be harmful to the brain and may have adverse long-term behavioral and cognitive consequences in particular in people with focal epilepsies that do not respond to pharmacotherapy. Character

  18. White matter integrity and cerebral network topology in focal epilepsy

    OpenAIRE

    Otte, W.M.

    2012-01-01

    Worldwide more than fifty million people suffer from recurrent spontaneous seizures. Seizures are considered to be harmful to the brain and may have adverse long-term behavioral and cognitive consequences in particular in people with focal epilepsies that do not respond to pharmacotherapy. Characterization of seizure related brain damage may provide knowledge to better comprehend the mechanisms underlying the poorly understood comorbidities often encountered in patients with focal epilepsy. I...

  19. White-matter microstructure and gray-matter volumes in adolescents with subthreshold bipolar symptoms

    DEFF Research Database (Denmark)

    Paillère Martinot, M-L; Lemaitre, Henri Charles Francois; Artiges, E;

    2014-01-01

    Abnormalities in white-matter (WM) microstructure, as lower fractional anisotropy (FA), have been reported in adolescent-onset bipolar disorder and in youth at familial risk for bipolarity. We sought to determine whether healthy adolescents with subthreshold bipolar symptoms (SBP) would have earl...

  20. White Matter Loss in a Mouse Model of Periventricular Leukomalacia Is Rescued by Trophic Factors

    Directory of Open Access Journals (Sweden)

    Pierre Gressens

    2013-11-01

    Full Text Available Periventricular leukomalacia (PVL is the most frequent cause of cerebral palsy and other intellectual disabilities, and currently there is no treatment. In PVL, glutamate excitotoxicity (GME leads to abnormal oligodendrocytes (OLs, myelin deficiency, and ventriculomegaly. We have previously identified that the combination of transferrin and insulin growth factors (TSC1 promotes endogenous OL regeneration and remyelination in the postnatal and adult rodent brain. Here, we produced a periventricular white matter lesion with a single intracerebral injection of N-methyl-d-aspartate (NMDA. Comparing lesions produced by NMDA alone and those produced by NMDA + TSC1 we found that: NMDA affected survival and reduced migration of OL progenitors (OLPs. In contrast, mice injected with NMDA + TSC1 proliferated twice as much indicating that TSC1 supported regeneration of the OLP population after the insult. Olig2-mRNA expression showed 52% OLP survival in mice receiving a NMDA injection and increased to 78% when TSC1 + NMDA were injected simultaneously and ventricular size was reduced by TSC1. Furthermore, in striatal slices TSC1 reduced the inward currents induced by NMDA in medium-sized spiny neurons, demonstrating neuroprotection. Thus, white matter loss after excitotoxicity can be partially rescued as TSC1 conferred neuroprotection to preexisting OLP and regeneration via OLP proliferation. Furthermore, we showed that early TSC1 administration maximizes neuroprotection.

  1. Altered topological organization of white matter structural networks in patients with neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Yaou Liu

    Full Text Available OBJECTIVE: To investigate the topological alterations of the whole-brain white-matter (WM structural networks in patients with neuromyelitis optica (NMO. METHODS: The present study involved 26 NMO patients and 26 age- and sex-matched healthy controls. WM structural connectivity in each participant was imaged with diffusion-weighted MRI and represented in terms of a connectivity matrix using deterministic tractography method. Graph theory-based analyses were then performed for the characterization of brain network properties. A multiple linear regression analysis was performed on each network metric between the NMO and control groups. RESULTS: The NMO patients exhibited abnormal small-world network properties, as indicated by increased normalized characteristic path length, increased normalized clustering and increased small-worldness. Furthermore, largely similar hub distributions of the WM structural networks were observed between NMO patients and healthy controls. However, regional efficiency in several brain areas of NMO patients was significantly reduced, which were mainly distributed in the default-mode, sensorimotor and visual systems. Furthermore, we have observed increased regional efficiency in a few brain regions such as the orbital parts of the superior and middle frontal and fusiform gyri. CONCLUSION: Although the NMO patients in this study had no discernible white matter T2 lesions in the brain, we hypothesize that the disrupted topological organization of WM networks provides additional evidence for subtle, widespread cerebral WM pathology in NMO.

  2. Automated Detection of Lupus White Matter Lesions in MRI.

    Science.gov (United States)

    Roura, Eloy; Sarbu, Nicolae; Oliver, Arnau; Valverde, Sergi; González-Villà, Sandra; Cervera, Ricard; Bargalló, Núria; Lladó, Xavier

    2016-01-01

    Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting qualitative, and quantitative results in terms of precision and sensitivity of lesion detection [True Positive Rate (62%) and Positive Prediction Value (80%), respectively] as well as segmentation accuracy [Dice Similarity Coefficient (72%)]. Obtained results illustrate the validity of the approach to automatically detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a simple parameter configuration. PMID:27570507

  3. Automated Detection of Lupus White Matter Lesions in MRI

    Science.gov (United States)

    Roura, Eloy; Sarbu, Nicolae; Oliver, Arnau; Valverde, Sergi; González-Villà, Sandra; Cervera, Ricard; Bargalló, Núria; Lladó, Xavier

    2016-01-01

    Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting qualitative, and quantitative results in terms of precision and sensitivity of lesion detection [True Positive Rate (62%) and Positive Prediction Value (80%), respectively] as well as segmentation accuracy [Dice Similarity Coefficient (72%)]. Obtained results illustrate the validity of the approach to automatically detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a simple parameter configuration.

  4. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL): Assessment of the involved white matter tracts by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Hassan [Department of Radiology, Benha University (Egypt); Wafaie, Ahmed, E-mail: a_wafaie@yahoo.com [Department of Radiology, Cairo University (Egypt); Abdelfattah, Sherif [Department of Radiology, Cairo University (Egypt); Farid, Tarek [Pediatric Department, Egyptian National Research Center (Egypt)

    2014-01-15

    Background and purpose: Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a recently identified autosomal recessive disorder with early onset of symptoms and slowly progressive pyramidal, cerebellar and dorsal column dysfunction. LBSL is characterized by distinct white matter abnormalities and selective involvement of brainstem and spinal cord tracts. The purpose of this study is to assess the imaging features of the involved white matter tracts in cases of LBSL by MRI. Patients and methods: We retrospectively reviewed the imaging features of the selectively involved white matter tracts in sixteen genetically proven cases of leukoencephalopathy with brainstem and spinal cord involvement and elevated brain lactate (LBSL). All patients presented with slowly progressive cerebellar sensory ataxia with spasticity and dorsal column dysfunction. MRI of the brain and spine using 1.5 T machine and proton magnetic resonance spectroscopy ({sup 1}H MRS) on the abnormal white matter were done to all patients. The MRI and MRS data sets were analyzed according to lesion location, extent, distribution and signal pattern as well as metabolite values and ratios in MRS. Laboratory examinations ruled out classic leukodystrophies. Results: In all cases, MRI showed high signal intensity in T2-weighted and FLAIR images within the cerebral subcortical, periventricular and deep white matter, posterior limbs of internal capsules, centrum semiovale, medulla oblongata, intraparenchymal trajectory of trigeminal nerves and deep cerebellar white matter. In the spine, the signal intensity of the dorsal column and lateral cortico-spinal tracts were altered in all patients. The subcortical U fibers, globi pallidi, thalami, midbrain and transverse pontine fibers were spared in all cases. In 11 cases (68.8%), the signal changes were inhomogeneous and confluent whereas in 5 patients (31.2%), the signal abnormalities were spotty. MRI also showed variable

  5. Frontoparietal white matter integrity predicts haptic performance in chronic stroke

    Directory of Open Access Journals (Sweden)

    Alexandra L. Borstad

    2016-01-01

    Full Text Available Frontoparietal white matter supports information transfer between brain areas involved in complex haptic tasks such as somatosensory discrimination. The purpose of this study was to gain an understanding of the relationship between microstructural integrity of frontoparietal network white matter and haptic performance in persons with chronic stroke and to compare frontoparietal network integrity in participants with stroke and age matched control participants. Nineteen individuals with stroke and 16 controls participated. Haptic performance was quantified using the Hand Active Sensation Test (HASTe, an 18-item match-to-sample test of weight and texture discrimination. Three tesla MRI was used to obtain diffusion-weighted and high-resolution anatomical images of the whole brain. Probabilistic tractography was used to define 10 frontoparietal tracts total; Four intrahemispheric tracts measured bilaterally 1 thalamus to primary somatosensory cortex (T–S1, 2 thalamus to primary motor cortex (T–M1, 3 primary to secondary somatosensory cortex (S1 to SII and 4 primary somatosensory cortex to middle frontal gyrus (S1 to MFG and, 2 interhemispheric tracts; S1–S1 and precuneus interhemispheric. A control tract outside the network, the cuneus interhemispheric tract, was also examined. The diffusion metrics fractional anisotropy (FA, mean diffusivity (MD, axial (AD and radial diffusivity (RD were quantified for each tract. Diminished FA and elevated MD values are associated with poorer white matter integrity in chronic stroke. Nine of 10 tracts quantified in the frontoparietal network had diminished structural integrity poststroke compared to the controls. The precuneus interhemispheric tract was not significantly different between groups. Principle component analysis across all frontoparietal white matter tract MD values indicated a single factor explained 47% and 57% of the variance in tract mean diffusivity in stroke and control groups respectively

  6. Enhanced white matter tracts integrity in children with abacus training.

    Science.gov (United States)

    Hu, Yuzheng; Geng, Fengji; Tao, Lixia; Hu, Nantu; Du, Fenglei; Fu, Kuang; Chen, Feiyan

    2011-01-01

    Experts of abacus, who have the skills of abacus-based mental calculation (AMC), are able to manipulate numbers via an imagined abacus in mind and demonstrate extraordinary ability in mental calculation. Behavioral studies indicated that abacus experts utilize visual strategy in solving numerical problems, and fMRI studies confirmed the enhanced involvement of visuospatial-related neural resources in AMC. This study aims to explore the possible changes in brain white matter induced by long-term training of AMC. Two matched groups participated: the abacus group consisting of 25 children with over 3-year training in abacus calculation and AMC, the controls including 25 children without any abacus experience. We found that the abacus group showed higher average fractional anisotropy (FA) in whole-brain fiber tracts, and the regions with increased FA were found in corpus callosum, left occipitotemporal junction and right premotor projection. No regions, however, showed decreased FA in the abacus group. Further analysis revealed that the differences in FA values were mainly driven by the alternation of radial rather than axial diffusivities. Furthermore, in forward digit and letter memory span tests, AMC group showed larger digit/letter memory spans. Interestingly, individual differences in white matter tracts were found positively correlated with the memory spans, indicating that the widespread increase of FA in the abacus group result possibly from the AMC training. In conclusion, our findings suggested that long-term AMC training from an early age may improve the memory capacity and enhance the integrity in white matter tracts related to motor and visuospatial processes.

  7. Enhanced white matter tracts integrity in children with abacus training.

    Science.gov (United States)

    Hu, Yuzheng; Geng, Fengji; Tao, Lixia; Hu, Nantu; Du, Fenglei; Fu, Kuang; Chen, Feiyan

    2011-01-01

    Experts of abacus, who have the skills of abacus-based mental calculation (AMC), are able to manipulate numbers via an imagined abacus in mind and demonstrate extraordinary ability in mental calculation. Behavioral studies indicated that abacus experts utilize visual strategy in solving numerical problems, and fMRI studies confirmed the enhanced involvement of visuospatial-related neural resources in AMC. This study aims to explore the possible changes in brain white matter induced by long-term training of AMC. Two matched groups participated: the abacus group consisting of 25 children with over 3-year training in abacus calculation and AMC, the controls including 25 children without any abacus experience. We found that the abacus group showed higher average fractional anisotropy (FA) in whole-brain fiber tracts, and the regions with increased FA were found in corpus callosum, left occipitotemporal junction and right premotor projection. No regions, however, showed decreased FA in the abacus group. Further analysis revealed that the differences in FA values were mainly driven by the alternation of radial rather than axial diffusivities. Furthermore, in forward digit and letter memory span tests, AMC group showed larger digit/letter memory spans. Interestingly, individual differences in white matter tracts were found positively correlated with the memory spans, indicating that the widespread increase of FA in the abacus group result possibly from the AMC training. In conclusion, our findings suggested that long-term AMC training from an early age may improve the memory capacity and enhance the integrity in white matter tracts related to motor and visuospatial processes. PMID:20235096

  8. White matter hyperintensities and imaging patterns of brain ageing in the general population.

    Science.gov (United States)

    Habes, Mohamad; Erus, Guray; Toledo, Jon B; Zhang, Tianhao; Bryan, Nick; Launer, Lenore J; Rosseel, Yves; Janowitz, Deborah; Doshi, Jimit; Van der Auwera, Sandra; von Sarnowski, Bettina; Hegenscheid, Katrin; Hosten, Norbert; Homuth, Georg; Völzke, Henry; Schminke, Ulf; Hoffmann, Wolfgang; Grabe, Hans J; Davatzikos, Christos

    2016-04-01

    White matter hyperintensities are associated with increased risk of dementia and cognitive decline. The current study investigates the relationship between white matter hyperintensities burden and patterns of brain atrophy associated with brain ageing and Alzheimer's disease in a large populatison-based sample (n = 2367) encompassing a wide age range (20-90 years), from the Study of Health in Pomerania. We quantified white matter hyperintensities using automated segmentation and summarized atrophy patterns using machine learning methods resulting in two indices: the SPARE-BA index (capturing age-related brain atrophy), and the SPARE-AD index (previously developed to capture patterns of atrophy found in patients with Alzheimer's disease). A characteristic pattern of age-related accumulation of white matter hyperintensities in both periventricular and deep white matter areas was found. Individuals with high white matter hyperintensities burden showed significantly (P brain regions typically affected by ageing and Alzheimer's disease dementia. To investigate a possibly causal role of white matter hyperintensities, structural equation modelling was used to quantify the effect of Framingham cardiovascular disease risk score and white matter hyperintensities burden on SPARE-BA, revealing a statistically significant (P brain atrophy found in beyond-normal brain ageing in the general population. White matter hyperintensities also contribute to brain atrophy patterns in regions related to Alzheimer's disease dementia, in agreement with their known additive role to the likelihood of dementia. Preventive strategies reducing the odds to develop cardiovascular disease and white matter hyperintensities could decrease the incidence or delay the onset of dementia.

  9. Protective effect of gypenoside on oxidative damage of the white matter in rats after chronic cerebral hypoperfusion%绞股蓝总皂甙对慢性脑缺血性白质氧化性损伤的保护作用

    Institute of Scientific and Technical Information of China (English)

    张广林; 王本瀚; 熊家锐; 郭效东; 张长远; 高国栋

    2012-01-01

    目的 探讨绞股蓝总皂甙对慢性脑缺血大鼠脑白质氧化性损伤的保护作用以及对脑缺血大鼠认知功能的影响.方法 将57只成年雄性SD大鼠按随机数字表法分成假手术组(n=12)、模型组(n=15)、绞股蓝总皂甙200 mg组(n=15)、绞股蓝总皂甙400 mg组(n=15),后3组采用双侧颈总动脉结扎法制备慢性脑缺血模型,且在造模后3h分别将等量生理盐水,200 mg/kg、400mg/kg绞股蓝总皂甙溶液灌胃,1次/d,持续33 d.应用Morris水迷宫实验测试各组大鼠空间学习与记忆能力的改变,酶联免疫吸附法(ELISA)测定大鼠胼胝体、视束内超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量,免疫组化染色用8-羟基脱氧鸟苷(8-OHdG)抗体测定中枢神经细胞的氧化损伤水平.结果 与模型组相比,绞股蓝总皂甙400 mg组大鼠的逃避潜伏期明显缩短及在原平台象限的游泳时间明显延长,差异有统计学意义(P<0.05).与假手术组比较,模型组大鼠胼胝体及视束内MDA含量明显增加,SOD活性明显降低,差异有统计学意义(P<0.05).与模型组相比,绞股蓝总皂甙400 mg组MDA含量明显降低,SOD活性明显升高,8-OHdG阳性细胞数明显减少,差异有统计学意义(P<0.05).与模型组相比,绞股蓝总皂甙200 mg组SOD活性、MDA含量及8-OHdG阳性细胞数差异无统计学意义(P>0.05).结论 绞股蓝总皂甙能有效改善慢性脑缺血大鼠脑白质氧化性损伤,提示其可能是一种有效的抗痴呆药物,但其作用的确切机制还有待进一步研究.%Objective To investigate the protective effect of gypenoside (GP) on oxidative damage of the white matter in rats after chronic cerebral hypoperfusion and on its alterations of cognitive function.Methods A total of 57 male SD rats were randomly assigned to 4 groups:sham-operated group (n=12),vehicle group (n=15),200 mg/kg GP treatment group (n=15) and 400 mg/kg GP treatment group (n=15); chronic cerebral hypo

  10. A semi-automated method for measuring thickness and white matter integrity of the corpus callosum

    Directory of Open Access Journals (Sweden)

    S Andronikou

    2012-12-01

    Full Text Available Aim. Diseases affecting cerebral white matter may lead to left-right asymmetries and atrophy of interhemispheric connections, i.e. the corpus callosum (CC. Our aim was to describe and test a semi-automated system that divides the midline CC into a number of segments and determines thickness at each, then performs fibre tracking from these segments. Methods. Six normal female volunteers (average age 25.8 ±6.7 years and a female patient with diagnosed multiple sclerosis (age 26 years were scanned on a 3T MRI. We performed diffusion-weighted imaging in 12 directions, and calculated diffusion tensors and fractional anisotropy (FA maps from this pre-processed data. Fibre tracking from a region-of-interest encompassing the entire CC was done. This fibre data, together with FA maps and the unweighted diffusion tensor imaging (DTI image (b = 0 s/mm2, were imported into a custom tool written in MATLAB. The midline sagittal position was carefully defined by selecting multiple midline points in coronal and axial views and rotating the image volume and fibre co-ordinates accordingly. Using the customised tool, dorsal and ventral CC contours were manually drawn on the mid-sagittal FA image, initiating automated calculation of a contour midway between these manually drawn lines. The programme was designed to then divide the midline contour into a pre-selected number of segments; from each segment border, perpendicular spokes were projected until they intersected with the dorsal and ventral contours. This technique divided the CC into a pre-set amount of segments, the number of which was limited by the spatial resolution. It was decided to set the number at 40 to ensure that each segment depicted a contiguous strip of voxels across the CC from the dorsal to the ventral contour. The system allows these segments to then be used as seeds for separate fibre tracking in each cerebral hemisphere, and various parameters are automatically plotted as a function of

  11. Combination BMSC and Niaspan Treatment of Stroke Enhances White Matter Remodeling and Synaptic Protein Expression in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Cynthia Roberts

    2013-11-01

    Full Text Available Objective: White matter remodeling plays an important role in neurological recovery after stroke. Bone marrow stromal cells (BMSCs and Niaspan, an agent which increases high density lipoprotein (HDL, each induces neurorestorative effects and promotes white matter remodeling after stroke in non-diabetic rats. In this study, we test whether combination of BMSCs with Niaspan induces an enhanced white matter remodeling in the ischemic brain of diabetic rats. Research design and methods: Type-1 diabetes (T1DM rats were subjected to transient middle cerebral artery occlusion (MCAo and treated with or without BMSCs; Niaspan; and the combination of BMSCs + Niaspan daily for 14 days after MCAo. Immunostaining for white matter remodeling and synaptic protein expression including NG2; CNPase; BS (Bielschowsky silver; LFB (luxol fast blue; Synaptophysin and SMI-31 immunostaining were performed. Results: BMSC monotherapy did not regulate NG2 and CNPase expression compared to T1DM control rats. Both, combination of BMSCs + Niaspan treatment, and Niaspan monotherapy significantly increase NG2 and CNPase expression compared to T1DM control. While combination BMSC+Niaspan, BMSC monotherapy and Niaspan monotherapy groups all increase BS, LFB, synaptophysin, and SMI-31 expression in the ischemic brain compared to T1DM-MCAo control. In addition, the combination treatment significantly enhances LFB, SMI-31, and Synaptophysin expression compared to BMSC monotherapy. Conclusions: Combination treatment of stroke with BMSCs and Niaspan in T1DM rats increases white matter remodeling and additively increases BMSC monotherapy induced myelination and synaptic plasticity after stroke in T1DM rats.

  12. Vanishing White Matter Disease in a Spanish Population

    Science.gov (United States)

    Turón-Viñas, Eulàlia; Pineda, Mercè; Cusí, Victòria; López-Laso, Eduardo; del Pozo, Rebeca Losada; Gutiérrez-Solana, Luis González; Moreno, David Conejo; Sierra-Córcoles, Concha; Olabarrieta-Hoyos, Naiara; Madruga-Garrido, Marcos; Aguirre-Rodríguez, Javier; González-Álvarez, Verónica; O’Callaghan, Mar; Muchart, Jordi; Armstrong-Moron, Judith

    2014-01-01

    Vanishing white matter (VWM) leukoencephalopathy is one of the most prevalent hereditary white matter diseases. It has been associated with mutations in genes encoding eukaryotic translation initiation factor (eIF2B). We have compiled a list of all the patients diagnosed with VWM in Spain; we found 21 children. The first clinical manifestation in all of them was spasticity, with severe ataxia in six patients, hemiparesis in one child, and dystonic movements in another. They suffered from progressive cognitive deterioration and nine of them had epilepsy too. In four children, we observed optic atrophy and three also had progressive macrocephaly, which is not common in VWM disease. The first two cases were diagnosed before the 1980s. Therefore, they were diagnosed by necropsy studies. The last 16 patients were diagnosed according to genetics: we found mutations in the genes eIF2B5 (13 cases), eIF2B3 (2 cases), and eIF2B4 (1 case). In our report, the second mutation in frequency was c.318A>T; patients with this mutation all followed a slow chronic course, both in homozygous and heterozygous states. Previously, there were no other reports to confirm this fact. We also found some mutations not described in previous reports: c.1090C>T in eIF2B4, c.314A>G in eIF2B5, and c.877C>T in eIF2B5. PMID:25089094

  13. Social network diversity and white matter microstructural integrity in humans.

    Science.gov (United States)

    Molesworth, Tara; Sheu, Lei K; Cohen, Sheldon; Gianaros, Peter J; Verstynen, Timothy D

    2015-09-01

    Diverse aspects of physical, affective and cognitive health relate to social integration, reflecting engagement in social activities and identification with diverse roles within a social network. However, the mechanisms by which social integration interacts with the brain are unclear. In healthy adults (N = 155), we tested the links between social integration and measures of white matter microstructure using diffusion tensor imaging. Across the brain, there was a predominantly positive association between a measure of white matter integrity, fractional anisotropy (FA), and social network diversity. This association was particularly strong in a region near the anterior corpus callosum and driven by a negative association with the radial component of the diffusion signal. This callosal region contained projections between bilateral prefrontal cortices, as well as cingulum and corticostriatal pathways. FA within this region was weakly associated with circulating levels of the inflammatory cytokine interleukin-6 (IL-6), but IL-6 did not mediate the social network and FA relationship. Finally, variation in FA indirectly mediated the relationship between social network diversity and intrinsic functional connectivity of medial corticostriatal pathways. These findings suggest that social integration relates to myelin integrity in humans, which may help explain the diverse aspects of health affected by social networks.

  14. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhiqun [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Guo Xiaojuan [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Qi Zhigang [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Yao Li [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Li Kuncheng, E-mail: likuncheng@xwh.ccmu.edu.c [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China)

    2010-08-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  15. White dwarfs, red dwarfs and halo dark matter

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa-Berro, E; Torres, S; Camacho, J [Departament de Fisica Aplicada, Escola Politecnica Superior de Castelldefels, Universitat Politecnica de Catalunya, Av. del Canal Olimpic, s/n, 08860 Castelldefels (Spain); Isern, J, E-mail: garcia@fa.upc.ed [Institut de Ciencies de l' Espai, CSIC, Campus UAB, Facultat de Ciencies, Torre C-5, 08193 Bellaterra (Spain)

    2009-06-01

    The nature of the microlensing events observed by the MACHO team towards the LMC still remains controversial. Low-mass substellar objects and stars with masses larger than approx 1M{sub o-dot} have been ruled out, while stars of approx 0.5 M{sub o-dot} are the most probable candidates. This means that the microlenses should be either red or white dwarfs. Consequently, we assess jointly the relative contributions of both types of stars to the mass budget of the Galactic halo. We use a Monte Carlo code that incorporates up-to-date evolutionary sequences of both red dwarfs and white dwarfs as well as detailed descriptions of both our Galaxy and the LMC and we compare the synthetic populations obtained with our simulator with the results obtained by the MACHO and EROS experiments. We find that the contribution of the red dwarf population is not enough to explain the number of events measured by the MACHO team. Even though, the optical depth obtained in our simulations almost doubles that obtained when taking into account the white dwarf population alone. Finally, we also find that the contribution to the halo dark matter of the entire population under study is smaller than 10%, at the 95% confidence level.

  16. Initial study of magnetic resonance diffusion tensor imaging in brain white matter of early AIDS patients

    Institute of Scientific and Technical Information of China (English)

    XUAN Ang; WANG Guang-bin; SHI Da-peng; XU Jun-ling; LI Yong-li

    2013-01-01

    Background HIV is a neurotropic virus which can cause brain white matter demyelination,gliosis,and other pathological changes that appear as H IV encephalitis or AIDS dementia.The purpose of this study was to investigate the change of the diffused condition of water molecules in brain white matter in early acquired immune deficiency syndrome (AIDS) patients using MR diffusion tensor imaging (DTI).Methods DTI examinations were performed on a Siemens 3.0T MR scanner in 23 AIDS patients with normal brain appearance by conventional MRI and 20 healthy volunteers as the control group.Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were measured in nine regions; corpus callosum (CC) knee,CC body,CC splenium,periventricular white matter,frontal lobe white matter,parietal lobe white matter,occipital lobe white matter,and the anterior and posterior limbs of the internal capsule.The mean FA and ADC values from each region were compared in three groups:the symptomatic,asymptomatic and the control.Results The mean FA values were significantly lower and the mean ADC values were significantly higher in all nine regions in patients in the symptomatic group than in the asymptomatic and control group patients.In the asymptomatic group,the mean FA values were significantly lower and the mean ADC values were significantly higher at the CC knee,CC body,CC splenium,periventricular white matter,frontal lobe white matter and parietal lobe white matter,than in the control group.There were no significant differences at other regions between the two groups.Conclusions The diffused changes of water molecules in brain white matter in AIDS patients are related to brain white matter regions.DTI examination can detect the brain white matter lesions early in AIDS patients.

  17. Competing physiological pathways link individual differences in weight and abdominal adiposity to white matter microstructure

    OpenAIRE

    Verstynen, Timothy D.; Weinstein, Andrea; Erickson, Kirk I.; Lei K Sheu; Marsland, Anna L.; Gianaros, Peter J.

    2013-01-01

    Being overweight or obese is associated with reduced white matter integrity throughout the brain. It is not yet clear which physiological systems mediate the association between inter-individual variation in adiposity and white matter. We tested whether composite indicators of cardiovascular, lipid, glucose, and inflammatory factors would mediate the adiposity-related variation in white matter microstructure, measured with diffusion tensor imaging on a group of neurologically healthy adults (...

  18. A Voxel-Based Diffusion Tensor Imaging Study of White Matter in Bipolar Disorder

    OpenAIRE

    Mahon, Katie; Wu, Jinghui; Malhotra, Anil K.; Burdick, Katherine E.; DeRosse, Pamela; Ardekani, Babak A.; Szeszko, Philip R.

    2009-01-01

    There is evidence from post-mortem and magnetic resonance imaging studies that hyperintensities, oligodendrioglial abnormalities and gross white matter volumetric alterations play a role in the pathophysiology of bipolar disorder. There is also functional imaging evidence for a defect in frontal cortico-subcortical pathways in bipolar disorder, but the white matter comprising these pathways has not been well-investigated. Few studies have investigated white matter integrity in patients with b...

  19. Fractional anisotropy in white matter tracts of very-low-birth-weight infants

    OpenAIRE

    Dudink, Jeroen; Lequin, Maarten; Pul, van, W.A.J.; Buijs, Jan; Conneman, Nikk; van Goudoever, Johannes; Govaert, Paul

    2007-01-01

    Background Advances in neonatal intensive care have not yet reduced the high incidence of neurodevelopmental disability among very-low-birth-weight (VLBW) infants. As neurological deficits are related to white-matter injury, early detection is important. Diffusion tensor imaging (DTI) could be an excellent tool for assessment of white-matter injury. Objective To provide DTI fractional anisotropy (FA) reference values for white-matter tracts of VLBW infants for clinical use. Materials and meth...

  20. Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning

    OpenAIRE

    Jolles, Dietsje; Wassermann, Demian; Chokhani, Ritika; Richardson, Jennifer; Tenison, Caitlin; Bammer, Roland; Fuchs, Lynn; Supekar, Kaustubh; Menon, Vinod

    2015-01-01

    Plasticity of white matter tracts is thought to be essential for cognitive development and academic skill acquisition in children. However, a dearth of high-quality diffusion tensor imaging (DTI) data measuring longitudinal changes with learning, as well as methodological difficulties in multi-time point tract identification have limited our ability to investigate plasticity of specific white matter tracts. Here, we examine learning-related changes of white matter tracts innervating inferior ...

  1. Ionotropic glutamate receptor expression in human white matter.

    Science.gov (United States)

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-01

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. PMID:27443784

  2. Development of the Cell Population in the Brain White Matter of Young Children

    DEFF Research Database (Denmark)

    Sigaard, Rasmus Krarup; Kjær, Majken; Pakkenberg, Bente

    2014-01-01

    While brain gray matter is primarily associated with sensorimotor processing and cognition, white matter modulates the distribution of action potentials, coordinates communication between different brain regions, and acts as a relay for input/output signals. Previous studies have described...

  3. 存在血管危险因素的老年人脑白质损害与认知功能障碍的关系%Relationship between cerebral white matter lesions and cognitive function disorder in old people with vascular risk factors

    Institute of Scientific and Technical Information of China (English)

    沈树红; 王少石; 张会军; 宋彦彦

    2011-01-01

    Objective To examine the relationship between cerebral white matter lesions(WML)of different severity and the cognitive impairment in old people with vascular risk factors. Methods According to WML score,195 participants with WML were divided into mild WML group,medium WML group and severe WML group. The control group (n = 70) consisted of healthy old people without WML. All participants underwent neuropsychological tests including Mini Mental State Examination, Montreal Cognitive Assessment, Auditory Verbal Learning Test, Logical Memory Test, Rey-Osterrieth Complex Figure Test, Stroop Colour-Word Test, Trail Making Test,Similarity Test,Animals Category Fluency Test,Digital Span Test,Belling Test and Clock Drawing Test. Results The vascular risk factors increased as WML extent aggravated (P < 0. 05). Mild WML group had apparent decline in the memory score,attention score and part of the performance function score compared with the control group,the difference was statistically significant (P <0. 05,F<0. 01). The severe WML group had dramatic decline in all cognitive function scores compared with other groups, the differences were statistically significant. All of the cognitive function scores were inversely correlated with severity of WML (P < 0. 01). Conclusion Vascular risk factors could aggravate WML. Mild WML could impair cognitive function, while severe WML showed extensive cognitive impairment. Degree of cognitive impairment was positively correlated to severity of WML in old people with vascular risk factors.%目的 探讨存在血管危险因素老年人不同程度脑白质损害(WML)与认知障碍的关系.方法 选择WML患者195例,根据WML程度分为轻度组(54例),中度组(63例),重度组(78例),另选健康体检者70例作为对照组.所有受试者行神经心理学测试,包括简易智能状态检查量表、蒙特利尔认知评估量表、听觉词语记忆、逻辑记忆、复杂图形记忆、Stroop色词测验、连线测验B、相

  4. Multi-scale characterization of white matter tract geometry.

    Science.gov (United States)

    Savadjiev, Peter; Rathi, Yogesh; Bouix, Sylvain; Verma, Ragini; Westin, Carl-Fredrik

    2012-01-01

    The geometry of white matter tracts is of increased interest for a variety of neuroscientific investigations, as it is a feature reflective of normal neurodevelopment and disease factors that may affect it. In this paper, we introduce a novel method for computing multi-scale fibre tract shape and geometry based on the differential geometry of curve sets. By measuring the variation of a curve's tangent vector at a given point in all directions orthogonal to the curve, we obtain a 2D "dispersion distribution function" at that point. That is, we compute a function on the unit circle which describes fibre dispersion, or fanning, along each direction on the circle. Our formulation is then easily incorporated into a continuous scale-space framework. We illustrate our method on different fibre tracts and apply it to a population study on hemispheric lateralization in healthy controls. We conclude with directions for future work.

  5. Considerations for the optimization of induced white matter injury preclinical models

    Directory of Open Access Journals (Sweden)

    Abdullah Shafique Ahmad

    2015-08-01

    Full Text Available The white matter injury in relation to acute neurologic conditions, especially stroke, has remained obscure until recently. Current advances in the imaging technologies in the field of stroke have confirmed that white matter injury plays an important role in the prognosis of stroke and suggest that white matter protection is essential for functional recovery and post-stroke rehabilitation. However, due to the lack of a reproducible animal model of white matter injury, the pathophysiology and mechanisms of this injury are not well studied. Moreover, producing selective white matter injury in animals, especially in rodents, has proven to be challenging. Problems associated with inducing selective white matter ischemic injury in the rodent derive from differences in the architecture of the brain, most particularly the ratio of white matter to gray matter in rodents compared to humans, the agents used to induce the injury, and the location of the injury. Aging, gender differences, and comorbidities further add to this complexity. This review provides a brief account of the techniques commonly used to induce general white matter injury in animal models (stroke and non-stroke related and highlights relevance, optimization issues, and translational potentials associated with this particular form of injury.

  6. White matter hyperintensities and imaging patterns of brain ageing in the general population.

    Science.gov (United States)

    Habes, Mohamad; Erus, Guray; Toledo, Jon B; Zhang, Tianhao; Bryan, Nick; Launer, Lenore J; Rosseel, Yves; Janowitz, Deborah; Doshi, Jimit; Van der Auwera, Sandra; von Sarnowski, Bettina; Hegenscheid, Katrin; Hosten, Norbert; Homuth, Georg; Völzke, Henry; Schminke, Ulf; Hoffmann, Wolfgang; Grabe, Hans J; Davatzikos, Christos

    2016-04-01

    White matter hyperintensities are associated with increased risk of dementia and cognitive decline. The current study investigates the relationship between white matter hyperintensities burden and patterns of brain atrophy associated with brain ageing and Alzheimer's disease in a large populatison-based sample (n = 2367) encompassing a wide age range (20-90 years), from the Study of Health in Pomerania. We quantified white matter hyperintensities using automated segmentation and summarized atrophy patterns using machine learning methods resulting in two indices: the SPARE-BA index (capturing age-related brain atrophy), and the SPARE-AD index (previously developed to capture patterns of atrophy found in patients with Alzheimer's disease). A characteristic pattern of age-related accumulation of white matter hyperintensities in both periventricular and deep white matter areas was found. Individuals with high white matter hyperintensities burden showed significantly (P brain regions typically affected by ageing and Alzheimer's disease dementia. To investigate a possibly causal role of white matter hyperintensities, structural equation modelling was used to quantify the effect of Framingham cardiovascular disease risk score and white matter hyperintensities burden on SPARE-BA, revealing a statistically significant (P learning memory test. No significant association was present with the APOE genotype. These results support the hypothesis that white matter hyperintensities contribute to patterns of brain atrophy found in beyond-normal brain ageing in the general population. White matter hyperintensities also contribute to brain atrophy patterns in regions related to Alzheimer's disease dementia, in agreement with their known additive role to the likelihood of dementia. Preventive strategies reducing the odds to develop cardiovascular disease and white matter hyperintensities could decrease the incidence or delay the onset of dementia. PMID:26912649

  7. Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging

    Directory of Open Access Journals (Sweden)

    Samuel Neal Lockhart

    2012-03-01

    Full Text Available Previous neuroimaging research indicates that white matter injury and integrity, measured respectively by white matter hyperintensities (WMH and fractional anisotropy (FA obtained from diffusion tensor imaging, differ with aging and cerebrovascular disease and are associated with episodic memory deficits in cognitively normal older adults. However, knowledge about tract-specific relationships between WMH, FA, and episodic memory in aging remains limited. We hypothesized that white matter connections between frontal cortex and subcortical structures as well as connections between frontal and temporo-parietal cortex would be most affected. In the current study, we examined relationships between WMH, FA and episodic memory in 15 young adults, 13 elders with minimal WMH and 15 elders with extensive WMH, using an episodic recognition memory test for object-color associations. Voxel-based statistics were used to identify voxel clusters where white matter measures were specifically associated with variations in episodic memory performance, and white matter tracts intersecting these clusters were analyzed to examine white matter-memory relationships. White matter injury and integrity measures were significantly associated with episodic memory in extensive regions of white matter, located predominantly in frontal, parietal, and subcortical regions. Template based tractography indicated that white matter injury, as measured by WMH, in the uncinate and inferior longitudinal fasciculi were significantly negatively associated with episodic memory performance. Other tracts such as thalamo-frontal projections, superior longitudinal fasciculus, and dorsal cingulum bundle demonstrated strong negative associations as well. The results suggest that white matter injury to multiple pathways, including connections of frontal and temporal cortex and frontal-subcortical white matter tracts, plays a critical role in memory differences seen in older individuals.

  8. No evidence for increased brain iron deposition in patients with ischemic white matter disease.

    Science.gov (United States)

    Gattringer, Thomas; Khalil, Michael; Langkammer, Christian; Jehna, Margit; Pichler, Alexander; Pinter, Daniela; Kneihsl, Markus; Petrovic, Katja; Ropele, Stefan; Fazekas, Franz; Enzinger, Christian

    2016-09-01

    Besides specific iron accumulation in some neurodegenerative disorders, increased iron deposition in cerebral deep gray matter (DGM) is found in multiple sclerosis. As this is considered largely a white matter (WM) disease, we speculated that patients with more severe ischemic WM hyperintensities (WMH) might also have an increased iron concentration in DGM structures and tested this assumption by using magnetic resonance imaging-based quantitative R2* relaxometry. WMH severity was measured in 61 patients with acute transient neurological symptoms (mean age: 71.5 ± 8.3 years) undergoing 3-Tesla magnetic resonance imaging. Despite a 6-year higher age of patients with more severe (i.e., early confluent or confluent) WMH, their DGM R2* rates did not differ from patients with punctate or no WMH. In the globus pallidum, R2* rates were even lower in patients with severe WMH. WMH volume was not correlated with R2* levels in any of the analyzed DGM structures. These findings argue against WM damage per se causing increased DGM iron deposition in multiple sclerosis and suggest no role of iron accumulation in ischemic small vessel disease. PMID:27459926

  9. White matter correlates of neuropsychological dysfunction in systemic lupus erythematosus.

    Directory of Open Access Journals (Sweden)

    Rex E Jung

    Full Text Available Patients diagnosed with Systemic Lupus Erythematosus have similar levels of neuropsychological dysfunction (i.e., 20-50% as those with Neuropsychiatric Systemic Lupus Erythematosus (NPSLE. We hypothesized a gradient between cognition and white matter integrity, such that strongest brain-behavior relationships would emerge in NPSLE, intermediate in non-NPSLE, and minimal in controls. We studied thirty-one patients (16 non-NPSLE; 15 NPSLE, ranging in age from 18 to 59 years old (100% female, and eighteen age and gender matched healthy controls. DTI examinations were performed on a 1.5T scanner. A broad neuropsychological battery was administered, tapping attention, memory, processing speed, and executive functioning. The Total z-score consisted of the combined sum of all neuropsychological measures. In control subjects, we found no significant FA-Total z-score correlations. NPSLE, non-NPSLE, and control subjects differed significantly in terms of Total z-score (NPSLE = -2.25+/-1.77, non-NPSLE = -1.22+/-1.03, Controls = -0.10+/-.57; F = 13.2, p<.001. In non-NPSLE subjects, FA within the right external capsule was significantly correlated with Total z-score. In NPSLE subjects, the largest FA-Total z-score clusters were observed within the left anterior thalamic radiation and right superior longitudinal fasciculus. In subsequent analyses the largest number of significant voxels linked FA with the Processing Speed z-score in NPSLE. The current results reflect objective white matter correlates of neuropsychological dysfunction in both NPSLE and (to a lesser degree in non-NPSLE. non-NPSLE and NPSLE subjects did not differ significantly in terms of depression, as measured by the GDI; thus, previous hypotheses suggesting moderating effects of depression upon neuropsychological performance do not impact the current FA results.

  10. Magnetic resonance signal intensity ratio of gray/white matter in children; Quantitative assessment in developing brain

    Energy Technology Data Exchange (ETDEWEB)

    Maezawa, Mariko (Tokyo Saiseikai Central Hospital (Japan)); Seki, Tohru; Imura, Soichi; Akiyama, Kazunori; Takikawa, Itsuro; Yuasa, Yuji

    Magnetic resonance imaging (MRI) findings in 87 children with various clinical entities were used to determine the signal intensity ratio of gray/white matter in T[sub 1]-weighted and T[sub 2]-weighted images using a 1.5 T MR scanner. Signal intensity ratio changes in both T[sub 1]- and T[sub 2]-weighted images correlated well with advancing age (y=0.9349-0.001575, r=0.584, P<0.0001 in T[sub 1]-weighted images; y=0.9798+0.002854, r=0.723, P<0.0001 in T[sub 2]-weighted images), but the correlation was more linear when we included only normally developed (34) children (y=0.9689-0.001967, r=-0.654, P<0.0001 in T[sub 1]-weighted images; y=0.9882+0.002965, r=0.747, P<0.0001 in T[sub 2]-weighted images). Abnormal ratios were observed in patients with congenital hydrocephalus, inherited metabolic diseases and cerebral palsy. Although the gray/white matter differentiation would not delineate the myelination itself, measurement of the signal intensity ratio of gray/white matters is a practical way to evaluate delayed myelination in a busy MR center. (author).

  11. Gray- and white-matter anatomy of absolute pitch possessors.

    Science.gov (United States)

    Dohn, Anders; Garza-Villarreal, Eduardo A; Chakravarty, M Mallar; Hansen, Mads; Lerch, Jason P; Vuust, Peter

    2015-05-01

    Absolute pitch (AP), the ability to identify a musical pitch without a reference, has been examined behaviorally in numerous studies for more than a century, yet only a few studies have examined the neuroanatomical correlates of AP. Here, we used MRI and diffusion tensor imaging to investigate structural differences in brains of musicians with and without AP, by means of whole-brain vertex-wise cortical thickness (CT) analysis and tract-based spatial statistics (TBSS) analysis. APs displayed increased CT in a number of areas including the bilateral superior temporal gyrus (STG), the left inferior frontal gyrus, and the right supramarginal gyrus. Furthermore, we found higher fractional anisotropy in APs within the path of the inferior fronto-occipital fasciculus, the uncinate fasciculus, and the inferior longitudinal fasciculus. The findings in gray matter support previous studies indicating an increased left lateralized posterior STG in APs, yet they differ from previous findings of thinner cortex for a number of areas in APs. Finally, we found a relation between the white-matter results and the CT in the right parahippocampal gyrus. In this study, we present novel findings in AP research that may have implications for the understanding of the neuroanatomical underpinnings of AP ability.

  12. Gray- and white-matter anatomy of absolute pitch possessors.

    Science.gov (United States)

    Dohn, Anders; Garza-Villarreal, Eduardo A; Chakravarty, M Mallar; Hansen, Mads; Lerch, Jason P; Vuust, Peter

    2015-05-01

    Absolute pitch (AP), the ability to identify a musical pitch without a reference, has been examined behaviorally in numerous studies for more than a century, yet only a few studies have examined the neuroanatomical correlates of AP. Here, we used MRI and diffusion tensor imaging to investigate structural differences in brains of musicians with and without AP, by means of whole-brain vertex-wise cortical thickness (CT) analysis and tract-based spatial statistics (TBSS) analysis. APs displayed increased CT in a number of areas including the bilateral superior temporal gyrus (STG), the left inferior frontal gyrus, and the right supramarginal gyrus. Furthermore, we found higher fractional anisotropy in APs within the path of the inferior fronto-occipital fasciculus, the uncinate fasciculus, and the inferior longitudinal fasciculus. The findings in gray matter support previous studies indicating an increased left lateralized posterior STG in APs, yet they differ from previous findings of thinner cortex for a number of areas in APs. Finally, we found a relation between the white-matter results and the CT in the right parahippocampal gyrus. In this study, we present novel findings in AP research that may have implications for the understanding of the neuroanatomical underpinnings of AP ability. PMID:24304583

  13. Growth of White Matter in the Adolescent Brain: Myelin or Axon?

    Science.gov (United States)

    Paus, Tomas

    2010-01-01

    White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

  14. Altered White Matter Microstructure in Children with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Nagel, Bonnie J.; Bathula, Deepti; Herting, Megan; Schmitt, Colleen; Kroenke, Christopher D.; Fair, Damien; Nigg, Joel T.

    2011-01-01

    Objective: Identification of biomarkers is a priority for attention-deficit/hyperactivity disorder (ADHD). Studies have documented macrostructural brain alterations in ADHD, but few have examined white matter microstructure, particularly in preadolescent children. Given dramatic white matter maturation across childhood, microstructural differences…

  15. White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study

    DEFF Research Database (Denmark)

    Verdelho, A; Madureira, S; Moleiro, C;

    2010-01-01

    We aimed to study if age-related white matter changes (WMC) and vascular risk factors were predictors of cognitive decline in elderly subjects with WMC living independently.......We aimed to study if age-related white matter changes (WMC) and vascular risk factors were predictors of cognitive decline in elderly subjects with WMC living independently....

  16. White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism

    Science.gov (United States)

    Sahyoun, Cherif P.; Belliveau, John W.; Mody, Maria

    2010-01-01

    The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups' response…

  17. White Matter Maturation Supports the Development of Reasoning Ability through Its Influence on Processing Speed

    Science.gov (United States)

    Ferrer, Emilio; Whitaker, Kirstie J.; Steele, Joel S.; Green, Chloe T.; Wendelken, Carter; Bunge, Silvia A.

    2013-01-01

    The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes…

  18. White matter abnormalities in major depression: a tract-based spatial statistics and rumination study.

    Directory of Open Access Journals (Sweden)

    Nianming Zuo

    Full Text Available Increasing evidence indicates that major depressive disorder (MDD is usually accompanied by altered white matter in the prefrontal cortex, the parietal lobe and the limbic system. As a behavioral abnormity of MDD, rumination has been believed to be a substantial indicator of the mental state of the depressive state. So far, however, no report that we are aware of has evaluated the relationship between white matter alterations and the ruminative state. In this study, we first explored the altered white matter using a tract-based spatial statistics (TBSS method based on diffusion tensor imaging of 19 healthy and 16 depressive subjects. We then investigated correlations between the altered white matter microstructure in the identified altered regions and the severity of ruminations measured by the ruminative response scale. Our results demonstrated altered white matter microstructure in circuits connecting the prefrontal lobe, the parietal lobe and the limbic system (p<0.005, uncorrected, findings which support previous research. More importantly, the result also indicated that a greater alteration in the white matter is associated with a more ruminative state (p<0.05, Bonferroni corrected. The detected abnormalities in the white matter should be interpreted cautiously because of the small sample size in this study. This finding supports the psychometric significance of white matter deficits in MDD.

  19. Decoupling of structural and functional brain connectivity in older adults with white matter hyperintensities

    NARCIS (Netherlands)

    Reijmer, Y. D.; Schultz, A. P.; Leemans, A.; O'Sullivan, M. J.; Gurol, M. E.; Sperling, R.; Greenberg, S. M.; Viswanathan, A.; Hedden, T.

    2015-01-01

    Age-related impairments in the default network (DN) have been related to disruptions in connecting white matter tracts. We hypothesized that the local correlation between DN structural and functional connectivity is negatively affected in the presence of global white matter injury. In 125 clinically

  20. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults.

    Science.gov (United States)

    Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I

    2016-05-01

    White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-correctedgender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood. PMID:26439513

  1. White matter atrophy and cognitive dysfunctions in neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Frederic Blanc

    Full Text Available Neuromyelitis optica (NMO is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain and VBM for focal brain volume (GM and WM, NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54% had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in

  2. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Aihong [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China); Li Kuncheng [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China)], E-mail: Likuncheng@vip.sina.com; Li Lin; Shan Baoci [Institute of High Energy Physics, Chinese Academy of Sciences (China); Wang Yuping; Xue Sufang [Department of Neurology, Xuanwu Hospital, Capital University of Medical Sciences (China)

    2008-01-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE.

  3. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE

  4. 高扩散梯度因子值扩散张量成像在评价单侧大脑中动脉闭塞供血区及远隔部位脑白质中的应用价值%High b-value diffusion tensor imaging of unilateral middle cerebral artery occlusive disease: evaluation of white matter injury

    Institute of Scientific and Technical Information of China (English)

    孟祥水; 宋法亮; 侯金文; 王青; 张晓明; 王茜; 于蓉; 马祥兴

    2012-01-01

    ,FA were 0.622 ±0.026 and 0.694 ±0.034,λ1 were(5.064 ± 0.448) × 10 -3 and(4.924 ± 0.365) × 10 -3 mm2/s,respectively.Mean FA was significantly decreased (t =7.823,8.013,all P < 0.01) and mean λ1 was significantly increased (t =7.811,8.800,all P <0.01) at the ipsilateral anterior and posterior limbs of the internal capsule.There was no significant difference in ADC,λ2 and λ3 value between the ipsilateral and contralateral sides.And all the DTI parameters,including mean ADC,FA,λ1,λ2 and λ3 values,showed no statistical difference between both sides of cerebral peduncle and pons.Conclusion DTI at high b valuc can provide useful information for visualizing ischemic white matter injury in patients without obvious infarct lesions on conventional MR imaging.%目的 采用高b值DTI研究常规MRI上无异常的单侧大脑中动脉闭塞供血区及远隔部位脑白质的影像特征.方法 选取34例常规MRI无异常信号的单侧大脑中动脉闭塞患者,行高b值(2200 s/mm2) DTI成像.所得图像进行后处理,镜像对称法选取双侧放射冠区侧脑室体部层面、内囊前肢、内囊后肢、大脑脚、脑桥中部层面为R0I,测量患者以上部位患、健侧的各向异性分数(FA)值、ADC值及本征值(λ1、λ2、λ3),采用配对t检验比较患者患侧与健侧各测量值.结果 34例患者中,大脑中动脉M1段闭塞左侧16例、右18例.放射冠区健侧FA值、ADC值及λ1、λ2、λ3值分别为0.443±0.033,(5.804±0.282)×10-3、( 5.651±0.350)×10-3、(6.099±0.353)×10-3、(6.372±0.355)×10-3 m2/s,患侧各值分别为0.419±0.032,(5.975±0.272)×10-3、(5.704±0.365)× 10-3、(6.412±0.368)× 10-3、(6.605±0.343)×10-3 mm2/s,患侧FA值较健侧减小(t=11.614,P<0.01),ADC、λ1、λ2及λ3值较健侧增大(t值分别12.421、7.447、10.244、9.890,P值均<0.01).患侧内囊前肢及后肢FA值分别为0.609 ±0.026、0.674±0.033,λ1值分别为(5.330±0.462) ×101、(5.171±0.456)×10-3 mm2/s,健侧对应

  5. Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Maria eJalbrzikowski

    2014-11-01

    Full Text Available 22q11.2 Microdeletion Syndrome (22q11DS is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: 1 differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI measures within white matter tracts; 2 whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and 3 relationships between DTI measures, social cognition task performance and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls. We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA, axial (AD and radial diffusivity (RD, using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the inferior fronto-occipital fasciculus in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to

  6. Photoperiodic Regulation of Cerebral Blood Flow in White-Footed Mice (Peromyscus leucopus).

    Science.gov (United States)

    Borniger, Jeremy C; Teplitsky, Seth; Gnyawali, Surya; Nelson, Randy J; Rink, Cameron

    2016-01-01

    Individuals living outside the tropics need to adjust their behavioral and physiological repertoires throughout the year to adapt to the changing seasons. White-footed mice (Peromyscus leucopus) reduce hippocampal volumes, hippocampal-dependent memory function, long-term potentiation, and alter neurogenesis in response to short (winter-like) day lengths (photoperiods). During winter, these mice putatively shunt energy away from the brain to maximize peripheral thermogenesis, immune function, and survival. We hypothesized that these changes in brain function are accompanied by alterations in brain vasculature. We maintained white-footed mice in short (8 h light/16 h dark) or long (16 h light/8 h dark) photoperiods for 8-9 weeks. Mice were then perfused with fluorescein isothiocyanate (FITC)-conjugated tomato (Lycopersicon esculentum) lectin to visualize the perfused cerebrovasculature. Short-day mice reduced hippocampal and cortical capillary density (FITC(+) area); vessels isolated from short day-exposed mice expressed higher mRNA levels of the gelatinase matrix metalloproteinase 2 (MMP2). Additionally, short-day mice reduced cerebral blood flow ∼15% compared with their long-day counterparts, as assessed by laser speckle flowmetry. Immunohistochemistry revealed higher levels of MMP2 in the hippocampus of mice maintained in short days compared with long days, potentially contributing to the observed vascular remodeling. These data demonstrate that a discrete environmental signal (i.e., day length) can substantially alter cerebral blood flow in adult mammals. PMID:27570829

  7. Quantification of white matter and gray matter volumes from T1 parametric images using fuzzy classifiers.

    Science.gov (United States)

    Herndon, R C; Lancaster, J L; Toga, A W; Fox, P T

    1996-01-01

    White matter (WM) and gray matter (GM) were accurately measured using a technique based on a single standardized fuzzy classifier (FC) for each tissue. Fuzzy classifier development was based on experts' visual assessments of WM and GM boundaries from a set of T1 parametric MR images. The fuzzy classifier method's accuracy was validated and optimized by a set of T1 phantom images that were based on hand-detailed human brain cryosection images. Nine sets of axial T1 images of varying thickness equally distributed throughout the brain were simulated. All T1 data sets were mapped to the standardized FCs and rapidly segmented into WM and GM voxel fraction images. Resulting volumes revealed that, in most cases, the difference between measured and actual volumes was less than 5%. This was consistent throughout most of the brain, and as expected, the accuracy improved to generally less than 2% for the 1-mm simulated brain slices. PMID:8724407

  8. Neurocircuitry of emotion and cognition in alcoholism: contributions from white matter fiber tractography

    OpenAIRE

    Schulte, Tilman; Müller-Oehring, Eva M.; Pfefferbaum, Adolf; Sullivan, Edith V.

    2010-01-01

    Chronic alcoholism is characterized by impaired control over emotionally motivated actions towards alcohol use. Neuropathologically, it is associated with widespread brain structural compromise marked by gray matter shrinkage, ventricular enlargement, and white matter degradation. The extent to which cortical damage itself or cortical disconnection by white matter fiber pathway disruption contribute to deficits in emotion, cognition, and behavior can be investigated with in vivo structural ne...

  9. Mutation in the AP4M1 Gene Provides a Model for Neuroaxonal Injury in Cerebral Palsy

    OpenAIRE

    Verkerk, Annemieke J. M. H.; Schot, Rachel; Dumee, Belinda; Schellekens, Karlijn; Swagemakers, Sigrid; Bertoli-Avella, Aida M; Lequin, Maarten H.; Dudink, Jeroen; Govaert, Paul; van Zwol, A.L.; Hirst, Jennifer; Wessels, Marja W.; Catsman-Berrevoets, Coriene; Verheijen, Frans W.; de Graaff, Esther

    2009-01-01

    Cerebral palsy due to perinatal injury to cerebral white matter is usually not caused by genetic mutations, but by ischemia and/or inflammation. Here, we describe an autosomal-recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship. The phenotype was recorded and evolution followed for over 20 years. Brain lesions were studied by diffusion tensor MR tractography.

  10. Assessment of Normal-Appearing White Matter Damage in Multiple Sclerosis Using Diffusion Tensor Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Joo [The Catholic University of Korea, Seoul (Korea, Republic of)

    2010-08-15

    To determine any evidence of damage in normal-appearing white matter (NAWM) tracts in multiple sclerosis (MS) cases using diffusion tensor imaging (DTI). We retrospectively analyzed anisotropy maps derived from DTI studies performed in 16 MS patients and 14 normal controls. Fractional anisotropy (FA) was measured in NAWM tracts: in the genu and splenium of the corpus callosum and at three points along the corticospinal tracts (internal capsule, cerebral peduncle, and pons). In addition, we performed lesion loads using the manual tracing method in the anterior, posterior, corona radiata, and supratentorial of each side. A FA in NAWM tracts was compared between patients and normal controls using the Student t-test. The FA values and lesion load were compared by performing a Spearman rank correlation. The mean FA values were lower in patients than the controls for the combined genu and splenium (p<0.0001), internal capsule (p=0.03), and cerebral peduncle (p=0.02). Moderate inverse correlations were found between the corpus callosum and the connecting lesion loads (r = -0.40, p = 0.02 for the genu and r= -0.63, p = 0.01 for the splenium). No correlation was found between the FA of the corticospinal tracts and any of the lesion load measurements. We found a statistically significant reduction in the FA values when comparing NAWM tracts from patients with MS those in the normal control group. However, only those in the corpus callosum corresponded with plaque burden. NAWM tract deterioration in the corpus callosum and the corticospinal tracts are likely attributed to several concerted pathologic mechanisms as well as Wallerian degeneration.

  11. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults.

    Science.gov (United States)

    Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I

    2016-05-01

    White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-correctedmicrostructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood.

  12. Anatomical Variations of Cerebral MR Venography: Is Gender Matter?

    Science.gov (United States)

    Singh, Rambir; Bansal, Nikhil; Paliwal, Vimal Kumar

    2016-01-01

    Purpose Knowledge of variations in the cerebral dural venous sinus anatomy seen on magnetic resonance (MR) venography is essential to avoid over-diagnosis of cerebral venous sinus thrombosis (CVST). Very limited data is available on gender difference of the cerebral dural venous sinus anatomy variations. Materials and Methods A retrospective study was conducted to study the normal anatomy of the intracranial venous system and its normal variation, as depicted by 3D MR venography, in normal adults and any gender-related differences. Results A total of 1654 patients (582 men, 1072 women, age range 19 to 86 years, mean age: 37.98±13.83 years) were included in the study. Most common indication for MR venography was headache (75.4%). Hypoplastic left transverse sinus was the most common anatomical variation in 352 (21.3%) patients. Left transverse sinus was hypoplastic in more commonly in male in comparison to female (24.9% versus 19.3%, p = 0.009). Most common variation of superior sagittal sinus (SSS) was atresia of anterior one third SSS (15, 0.9%). Except hypoplastic left transverse sinus, rest of anatomical variations of the transverse and other sinuses were not significantly differ among both genders. Conclusion Hypoplastic left transverse sinus is the most common anatomical variation and more common in male compared to female in the present study. Other anatomical variations of dural venous sinuses are not significantly differ among both genders. PMID:27621945

  13. Cognitive Intraindividual Variability and White Matter Integrity in Aging

    Directory of Open Access Journals (Sweden)

    Nathalie Mella

    2013-01-01

    Full Text Available The intraindividual variability (IIV of cognitive performance has been shown to increase with aging. While brain research has generally focused on mean performance, little is known about neural correlates of cognitive IIV. Nevertheless, some studies suggest that IIV relates more strongly than mean level of performance to the quality of white matter (WM. Our study aims to explore the relation between WM integrity and cognitive IIV by combining functional (fMRI and structural (diffusion tensor imaging, DTI imaging. Twelve young adults (aged 18–30 years and thirteen older adults (61–82 years underwent a battery of neuropsychological tasks, along with fMRI and DTI imaging. Their behavioral data were analyzed and correlated with the imaging data at WM regions of interest defined on the basis of (1 the fMRI-activated areas and (2 the Johns Hopkins University (JHU WM tractography atlas. For both methods, fractional anisotropy, along with the mean, radial, and axial diffusivity parameters, was computed. In accord with previous studies, our results showed that the DTI parameters were more related to IIV than to mean performance. Results also indicated that age differences in the DTI parameters were more pronounced in the regions activated primarily by young adults during a choice reaction-time task than in those also activated in older adults.

  14. Preserved white matter in unmedicated pediatric bipolar disorder.

    Science.gov (United States)

    Teixeira, Ana Maria A; Kleinman, Ana; Zanetti, Marcus; Jackowski, Marcel; Duran, Fábio; Pereira, Fabrício; Lafer, Beny; Busatto, Geraldo F; Caetano, Sheila C

    2014-09-01

    White matter (WM) abnormalities have been reported in bipolar disorder (BD) patients, as well as in their non-BD relatives, both children and adults. Although it is considered an emerging vulnerability marker for BD, there are no studies investigating WM alterations in pediatric unmedicated patients and young healthy offspring. In this study, we evaluated the presence of WM alterations in 18 pediatric, non medicated BD patients, as well as in 18 healthy offspring of BD type I parents and 20 healthy controls. 3T DT-MRI data were acquired and scans were processed with tract-based spatial statistics to provide measures of fractional anisotropy and diffusivity. We found no significant differences in WM microstructure between BD patients, healthy offspring and healthy controls. Previous studies that reported WM alterations investigated older subjects, either on medication (BD patients) or with psychiatric diagnoses other than BD (unaffected offspring). Our findings highlight the importance of the understanding of disease ontogeny and brain development dynamics in the search for early vulnerability markers for psychiatric disorders.

  15. White matter structures associated with loneliness in young adults.

    Science.gov (United States)

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-11-20

    Lonely individuals may exhibit dysfunction, particularly with respect to social empathy and self-efficacy. White matter (WM) structures related to loneliness have not yet been identified. We investigated the association between regional WM density (rWMD) using the UCLA Loneliness Scale in 776 healthy young students aged 18-27 years old. Loneliness scores were negatively correlated with rWMD in eight clusters: the bilateral inferior parietal lobule (IPL), right anterior insula (AI), posterior temporoparietal junction (pTPJ), left posterior superior temporal sulcus (pSTS), dorsomedial prefrontal cortex (dmPFC), and rostrolateral prefrontal cortex (RLPFC). The bilateral IPL, right AI, left pSTS, pTPJ, and RLPFC were strongly associated with Empathy Quotient (EQ), whereas the bilateral IPL, right AI, left pTPJ, and dmPFC were associated with General Self-Efficacy Scale (GSES) score. The neural correlates of loneliness comprise widespread reduction in WMD in areas related to self- and social cognition as well as areas associated with empathy and self-efficacy.

  16. Profiles of aberrant white matter microstructure in fragile X syndrome.

    Science.gov (United States)

    Hall, Scott S; Dougherty, Robert F; Reiss, Allan L

    2016-01-01

    Previous studies attempting to quantify white matter (WM) microstructure in individuals with fragile X syndrome (FXS) have produced inconsistent findings, most likely due to the various control groups employed, differing analysis methods, and failure to examine for potential motion artifact. In addition, analyses have heretofore lacked sufficient specificity to provide regional information. In this study, we used Automated Fiber-tract Quantification (AFQ) to identify specific regions of aberrant WM microstructure along WM tracts in patients with FXS that differed from controls who were matched on age, IQ and degree of autistic symptoms. Participants were 20 patients with FXS, aged 10 to 23 years, and 20 matched controls. Using Automated Fiber-tract Quantification (AFQ), we created Tract Profiles of fractional anisotropy and mean diffusivity along 18 major WM fascicles. We found that fractional anisotropy was significantly increased in the left and right inferior longitudinal fasciculus (ILF), right uncinate fasciculus, and left cingulum hippocampus in individuals with FXS compared to controls. Conversely, mean diffusivity was significantly decreased in the right ILF in patients with FXS compared to controls. Age was significantly negatively associated with MD values across both groups in 11 tracts. Taken together, these findings indicate that FXS results in abnormal WM microstructure in specific regions of the ILF and uncinate fasciculus, most likely caused by inefficient synaptic pruning as a result of decreased or absent Fragile X Mental Retardation Protein (FMRP). Longitudinal studies are needed to confirm these findings.

  17. Automated localization of periventricular and subcortical white matter lesions

    Science.gov (United States)

    van der Lijn, Fedde; Vernooij, Meike W.; Ikram, M. Arfan; Vrooman, Henri A.; Rueckert, Daniel; Hammers, Alexander; Breteler, Monique M. B.; Niessen, Wiro J.

    2007-03-01

    It is still unclear whether periventricular and subcortical white matter lesions (WMLs) differ in etiology or clinical consequences. Studies addressing this issue would benefit from automated segmentation and localization of WMLs. Several papers have been published on WML segmentation in MR images. Automated localization however, has not been investigated as much. This work presents and evaluates a novel method to label segmented WMLs as periventricular and subcortical. The proposed technique combines tissue classification and registration-based segmentation to outline the ventricles in MRI brain data. The segmented lesions can then be labeled into periventricular WMLs and subcortical WMLs by applying region growing and morphological operations. The technique was tested on scans of 20 elderly subjects in which neuro-anatomy experts manually segmented WMLs. Localization accuracy was evaluated by comparing the results of the automated method with a manual localization. Similarity indices and volumetric intraclass correlations between the automated and the manual localization were 0.89 and 0.95 for periventricular WMLs and 0.64 and 0.89 for subcortical WMLs, respectively. We conclude that this automated method for WML localization performs well to excellent in comparison to the gold standard.

  18. Modeling blast induced neurotrauma in isolated spinal cord white matter.

    Science.gov (United States)

    Connell, Sean; Ouyang, Hui; Shi, Riyi

    2011-10-01

    Blast-induced neurotrauma (BINT) is a common injury associated with the present military conflicts. Exposure to the shock-wave produced from exploding ordnances leads to significant neurological deficits throughout the brain and spinal cord. Prevention and treatment of this injury requires an appropriate understanding of the mechanisms governing the neurological response. Here, we present a novel ex-vivo BINT model where an isolated section of guinea pig spinal cord white matter is exposed to the shock-wave produced from a small scale explosive event. Additionally, we define the relationship between shock-wave impact, tissue deformation and resulting anatomical and functional deficits associated with BINT. Our findings suggest an inverse relationship between the magnitude of the shock-wave overpressure and the degree of functional deficits using a double sucrose gap recording chamber. Similar correlations are drawn between overpressure and degree of anatomical damage of neuronal processes using a dye-exclusion assay. The following approach is expected to significantly contribute to the detection, mitigation and eventual treatment of BINT. PMID:20703730

  19. White matter degeneration in schizophrenia: a comparative diffusion tensor analysis

    Science.gov (United States)

    Ingalhalikar, Madhura A.; Andreasen, Nancy C.; Kim, Jinsuh; Alexander, Andrew L.; Magnotta, Vincent A.

    2010-03-01

    Schizophrenia is a serious and disabling mental disorder. Diffusion tensor imaging (DTI) studies performed on schizophrenia have demonstrated white matter degeneration either due to loss of myelination or deterioration of fiber tracts although the areas where the changes occur are variable across studies. Most of the population based studies analyze the changes in schizophrenia using scalar indices computed from the diffusion tensor such as fractional anisotropy (FA) and relative anisotropy (RA). The scalar measures may not capture the complete information from the diffusion tensor. In this paper we have applied the RADTI method on a group of 9 controls and 9 patients with schizophrenia. The RADTI method converts the tensors to log-Euclidean space where a linear regression model is applied and hypothesis testing is performed between the control and patient groups. Results show that there is a significant difference in the anisotropy between patients and controls especially in the parts of forceps minor, superior corona radiata, anterior limb of internal capsule and genu of corpus callosum. To check if the tensor analysis gives a better idea of the changes in anisotropy, we compared the results with voxelwise FA analysis as well as voxelwise geodesic anisotropy (GA) analysis.

  20. Brain asymmetry in the white matter making and globularity

    Directory of Open Access Journals (Sweden)

    Constantina eTheofanopoulou

    2015-09-01

    Full Text Available Recent studies from the field of language genetics and evolutionary anthropology have put forward the hypothesis that the emergence of our species-specific brain is to be understood not in terms of size, but in light of developmental changes that gave rise to a more globular braincase configuration after the split from Neanderthals-Denisovans. On the grounds that (i white matter myelination is delayed relative to other brain structures and in humans is protracted compared with other primates and (ii neural connectivity is linked genetically to our brain/skull morphology and language-ready brain, I take it that one significant evolutionary change in Homo sapiens’ lineage is the interhemispheric connectivity mediated by the Corpus Callosum. The size, myelination and fiber caliber of the Corpus Callosum presents an anterior-to-posterior increase, in a way that inter-hemispheric connectivity is more prominent in the sensory motor areas, whereas high- order areas are more intra-hemispherically connected. Building on evidence from language-processing studies that account for this asymmetry (‘lateralization’ in terms of brain rhythms, I present an evo-devo hypothesis according to which the myelination of the Corpus Callosum, Brain Asymmetry and Globularity are conjectured to make up the angles of a co-evolutionary triangle that gave rise to our language-ready brain.

  1. Probing dark matter crests with white dwarfs and IMBHs

    CERN Document Server

    Amaro-Seoane, Pau; Schödel, Rainer; Davidson, Emily; Cuadra, Jorge

    2015-01-01

    White dwarfs (WDs) are the most promising captors of dark matter (DM) particles in the crests that are expected to build up in the cores of dense stellar clusters. The DM particles could reach sufficient densities in WD cores to liberate energy through self-annihilation. The extinction associated with our Galactic Centre, the most promising region where to look for such effects, makes it impossible to detect the potential associated luminosity of the DM-burning WDs. However, in smaller stellar systems which are close enough to us and not heavily extincted, such as $\\omega-$Cen, we may be able to detect DM-burning WDs. We investigate the prospects of detection of DM-burning WDs in a stellar cluster harbouring an IMBH, which leads to higher densities of DM at the centre as compared with clusters without one. We calculate the capture rate of WIMPs by a WD around an IMBH and estimate the luminosity that a WD would emit depending on its distance to the center of the cluster. Direct-summation $N-$body simulations o...

  2. White matter abnormalities in schizophrenia and schizotypal personality disorder.

    Science.gov (United States)

    Lener, Marc S; Wong, Edmund; Tang, Cheuk Y; Byne, William; Goldstein, Kim E; Blair, Nicholas J; Haznedar, M Mehmet; New, Antonia S; Chemerinski, Eran; Chu, King-Wai; Rimsky, Liza S; Siever, Larry J; Koenigsberg, Harold W; Hazlett, Erin A

    2015-01-01

    Prior diffusion tensor imaging (DTI) studies examining schizotypal personality disorder (SPD) and schizophrenia, separately have shown that compared with healthy controls (HCs), patients show frontotemporal white matter (WM) abnormalities. This is the first DTI study to directly compare WM tract coherence with tractography and fractional anisotropy (FA) across the schizophrenia spectrum in a large sample of demographically matched HCs (n = 55), medication-naive SPD patients (n = 49), and unmedicated/never-medicated schizophrenia patients (n = 22) to determine whether (a) frontal-striatal-temporal WM tract abnormalities in schizophrenia are similar to, or distinct from those observed in SPD; and (b) WM tract abnormalities are associated with clinical symptom severity indicating a common underlying pathology across the spectrum. Compared with both the HC and SPD groups, schizophrenia patients showed WM abnormalities, as indexed by lower FA in the temporal lobe (inferior longitudinal fasciculus) and cingulum regions. SPD patients showed lower FA in the corpus callosum genu compared with the HC group, but this regional abnormality was more widespread in schizophrenia patients. Across the schizophrenia spectrum, greater WM disruptions were associated with greater symptom severity. Overall, frontal-striatal-temporal WM dysconnectivity is attenuated in SPD compared with schizophrenia patients and may mitigate the emergence of psychosis.

  3. Financial literacy is associated with white matter integrity in old age.

    Science.gov (United States)

    Han, S Duke; Boyle, Patricia A; Arfanakis, Konstantinos; Fleischman, Debra; Yu, Lei; James, Bryan D; Bennett, David A

    2016-04-15

    Financial literacy, the ability to understand, access, and utilize information in ways that contribute to optimal financial outcomes, is important for independence and wellbeing in old age. We previously reported that financial literacy is associated with greater functional connectivity between brain regions in old age. Here, we tested the hypothesis that higher financial literacy would be associated with greater white matter integrity in old age. Participants included 346 persons without dementia (mean age=81.36, mean education=15.39, male/female=79/267, mean MMSE=28.52) from the Rush Memory and Aging Project. Financial literacy was assessed using a series of questions imbedded as part of an ongoing decision making study. White matter integrity was assessed with diffusion anisotropy measured with diffusion tensor magnetic resonance imaging (DTI). We tested the hypothesis that higher financial literacy is associated with higher diffusion anisotropy in white matter, adjusting for the effects of age, education, sex, and white matter hyperintense lesions. We then repeated the analysis also adjusting for cognitive function. Analyses revealed regions with significant positive associations between financial literacy and diffusion anisotropy, and many remained significant after accounting for cognitive function. White matter tracts connecting right hemisphere temporal-parietal brain regions were particularly implicated. Greater financial literacy is associated with higher diffusion anisotropy in white matter of nondemented older adults after adjusting for important covariates. These results suggest that financial literacy is positively associated with white matter integrity in old age. PMID:26899784

  4. Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.

    Science.gov (United States)

    Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L

    2016-06-01

    White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.

  5. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: A TBSS study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou, E-mail: asiaeurope80@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Duan, Yunyun, E-mail: xiaoyun81.love@163.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); He, Yong, E-mail: yong.h.he@gmail.com [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China); Yu, Chunshui, E-mail: csyuster@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Wang, Jun, E-mail: jun_wang@bnu.edu.cn [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China); Huang, Jing, E-mail: sainthj@126.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Ye, Jing, E-mail: jingye.2007@yahoo.com.cn [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Parizel, Paul M., E-mail: paul.parizel@ua.ac.be [Department of Radiology, Antwerp University Hospital and University of Antwerp, Wilrijkstraat 10, 2650 Edegem, 8 Belgium (Belgium); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shu, Ni, E-mail: nshu55@gmail.com [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China)

    2012-10-15

    Objective: To investigate whole brain white matter changes in multiple sclerosis (MS) by multiple diffusion indices, we examined patients with diffusion tensor imaging and utilized tract-based spatial statistics (TBSS) method to analyze the data. Methods: Forty-one relapsing-remitting multiple sclerosis (RRMS) patients and 41 age- and gender-matched normal controls were included in this study. Diffusion weighted images were acquired by employing a single-shot echo planar imaging sequence on a 1.5 T MR scanner. Voxel-wise analyses of multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were performed with TBSS. Results: The MS patients had significantly decreased FA (9.11%), increased MD (8.26%), AD (3.48%) and RD (13.17%) in their white matter skeletons compared with the controls. Through TBSS analyses, we found abnormal diffusion changes in widespread white matter regions in MS patients. Specifically, decreased FA, increased MD and increased RD were involved in whole-brain white matter, while several regions exhibited increased AD. Furthermore, white matter regions with significant correlations between the diffusion metrics and the clinical variables (the EDSS scores, disease durations and white matter lesion loads) in MS patients were identified. Conclusion: Widespread white matter abnormalities were observed in MS patients revealed by multiple diffusion metrics. The diffusion changes and correlations with clinical variables were mainly attributed to increased RD, implying the predominant role of RD in reflecting the subtle pathological changes in MS.

  6. Frontal white matter volume is associated with brain enlargement and higher structural connectivity in anthropoid primates.

    Directory of Open Access Journals (Sweden)

    Jeroen Bert Smaers

    Full Text Available Previous research has indicated the importance of the frontal lobe and its 'executive' connections to other brain structures as crucial in explaining primate neocortical adaptations. However, a representative sample of volumetric measurements of frontal connective tissue (white matter has not been available. In this study, we present new volumetric measurements of white and grey matter in the frontal and non-frontal neocortical lobes from 18 anthropoid species. We analyze this data in the context of existing theories of neocortex, frontal lobe and white versus grey matter hyperscaling. Results indicate that the 'universal scaling law' of neocortical white to grey matter applies separately for frontal and non-frontal lobes; that hyperscaling of both neocortex and frontal lobe to rest of brain is mainly due to frontal white matter; and that changes in frontal (but not non-frontal white matter volume are associated with changes in rest of brain and basal ganglia, a group of subcortical nuclei functionally linked to 'executive control'. Results suggest a central role for frontal white matter in explaining neocortex and frontal lobe hyperscaling, brain size variation and higher neural structural connectivity in anthropoids.

  7. Financial literacy is associated with white matter integrity in old age.

    Science.gov (United States)

    Han, S Duke; Boyle, Patricia A; Arfanakis, Konstantinos; Fleischman, Debra; Yu, Lei; James, Bryan D; Bennett, David A

    2016-04-15

    Financial literacy, the ability to understand, access, and utilize information in ways that contribute to optimal financial outcomes, is important for independence and wellbeing in old age. We previously reported that financial literacy is associated with greater functional connectivity between brain regions in old age. Here, we tested the hypothesis that higher financial literacy would be associated with greater white matter integrity in old age. Participants included 346 persons without dementia (mean age=81.36, mean education=15.39, male/female=79/267, mean MMSE=28.52) from the Rush Memory and Aging Project. Financial literacy was assessed using a series of questions imbedded as part of an ongoing decision making study. White matter integrity was assessed with diffusion anisotropy measured with diffusion tensor magnetic resonance imaging (DTI). We tested the hypothesis that higher financial literacy is associated with higher diffusion anisotropy in white matter, adjusting for the effects of age, education, sex, and white matter hyperintense lesions. We then repeated the analysis also adjusting for cognitive function. Analyses revealed regions with significant positive associations between financial literacy and diffusion anisotropy, and many remained significant after accounting for cognitive function. White matter tracts connecting right hemisphere temporal-parietal brain regions were particularly implicated. Greater financial literacy is associated with higher diffusion anisotropy in white matter of nondemented older adults after adjusting for important covariates. These results suggest that financial literacy is positively associated with white matter integrity in old age.

  8. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: A TBSS study

    International Nuclear Information System (INIS)

    Objective: To investigate whole brain white matter changes in multiple sclerosis (MS) by multiple diffusion indices, we examined patients with diffusion tensor imaging and utilized tract-based spatial statistics (TBSS) method to analyze the data. Methods: Forty-one relapsing-remitting multiple sclerosis (RRMS) patients and 41 age- and gender-matched normal controls were included in this study. Diffusion weighted images were acquired by employing a single-shot echo planar imaging sequence on a 1.5 T MR scanner. Voxel-wise analyses of multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were performed with TBSS. Results: The MS patients had significantly decreased FA (9.11%), increased MD (8.26%), AD (3.48%) and RD (13.17%) in their white matter skeletons compared with the controls. Through TBSS analyses, we found abnormal diffusion changes in widespread white matter regions in MS patients. Specifically, decreased FA, increased MD and increased RD were involved in whole-brain white matter, while several regions exhibited increased AD. Furthermore, white matter regions with significant correlations between the diffusion metrics and the clinical variables (the EDSS scores, disease durations and white matter lesion loads) in MS patients were identified. Conclusion: Widespread white matter abnormalities were observed in MS patients revealed by multiple diffusion metrics. The diffusion changes and correlations with clinical variables were mainly attributed to increased RD, implying the predominant role of RD in reflecting the subtle pathological changes in MS

  9. White matter microstructure asymmetry: effects of volume asymmetry on fractional anisotropy asymmetry.

    Science.gov (United States)

    Takao, H; Hayashi, N; Ohtomo, K

    2013-02-12

    Diffusion tensor imaging (DTI) provides information regarding white matter microstructure; however, macroscopic fiber architectures can affect DTI measures. A larger brain (fiber tract) has a 'relatively' smaller voxel size, and the voxels are less likely to contain more than one fiber orientation and more likely to have higher fractional anisotropy (FA). Previous DTI studies report left-to-right differences in the white matter; however, these may reflect true microscopic differences or be caused purely by volume differences. Using tract-based spatial statistics, we investigated left-to-right differences in white matter microstructure across the whole brain. Voxel-wise analysis revealed a large number of white matter volume asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. In many white matter regions, FA asymmetry was positively correlated with volume asymmetry. Voxel-wise analysis with adjustment for volume asymmetry revealed many white matter FA asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. The voxel-wise analysis showed a reduced number of regions with significant FA asymmetry compared with analysis performed without adjustment for volume asymmetry; however, the overall trend of the results was unchanged. The results of the present study suggest that these FA asymmetries are not caused by volume differences and reflect microscopic differences in the white matter.

  10. Subcortical white matter pathology as a mediating factor for age-related decreased performance in dichotic listening

    NARCIS (Netherlands)

    Gootjes, Liselotte; Scheltens, Philip; Van Strien, Jan W.; Bouma, Anke

    2007-01-01

    Cortical 'disconnection', involving disruption of white matter tracts in the brain, has been hypothesized as a mechanism of age-related cognitive decline. Diffuse hyperintensities in the white matter (so called white matter hyperintensities, WMH) on T2-weighted MRI scans are regarded to represent is

  11. White matter microstructure alterations: a study of alcoholics with and without post-traumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Caitlin A Durkee

    Full Text Available Many brain imaging studies have demonstrated reductions in gray and white matter volumes in alcoholism, with fewer investigators using diffusion tensor imaging (DTI to examine the integrity of white matter pathways. Among various medical conditions, alcoholism and post-traumatic stress disorder (PTSD are two comorbid diseases that have similar degenerative effects on the white matter integrity. Therefore, understanding and differentiating these effects would be very important in characterizing alcoholism and PTSD. Alcoholics are known to have neurocognitive deficits in decision-making, particularly in decisions related to emotionally-motivated behavior, while individuals with PTSD have deficits in emotional regulation and enhanced fear response. It is widely believed that these types of abnormalities in both alcoholism and PTSD are related to fronto-limbic dysfunction. In addition, previous studies have shown cortico-limbic fiber degradation through fiber tracking in alcoholism. DTI was used to measure white matter fractional anisotropy (FA, which provides information about tissue microstructure, possibly indicating white matter integrity. We quantitatively investigated the microstructure of white matter through whole brain DTI analysis in healthy volunteers (HV and alcohol dependent subjects without PTSD (ALC and with PTSD (ALC+PTSD. These data show significant differences in FA between alcoholics and non-alcoholic HVs, with no significant differences in FA between ALC and ALC+PTSD in any white matter structure. We performed a post-hoc region of interest analysis that allowed us to incorporate multiple covariates into the analysis and found similar results. HV had higher FA in several areas implicated in the reward circuit, emotion, and executive functioning, suggesting that there may be microstructural abnormalities in white matter pathways that contribute to neurocognitive and executive functioning deficits observed in alcoholics. Furthermore

  12. White matter alterations in narcolepsy patients with cataplexy: tract-based spatial statistics.

    Science.gov (United States)

    Park, Yun K; Kwon, Oh-Hun; Joo, Eun Yeon; Kim, Jae-Hun; Lee, Jong M; Kim, Sung T; Hong, Seung B

    2016-04-01

    Functional imaging studies and voxel-based morphometry analysis of brain magnetic resonance imaging showed abnormalities in the hypothalamus-thalamus-orbitofrontal pathway, demonstrating altered hypocretin pathway in narcolepsy. Those distinct morphometric changes account for problems in wake-sleep control, attention and memory. It also raised the necessity to evaluate white matter changes. To investigate brain white matter alterations in drug-naïve narcolepsy patients with cataplexy and to explore relationships between white matter changes and patient clinical characteristics, drug-naïve narcolepsy patients with cataplexy (n = 22) and healthy age- and gender-matched controls (n = 26) were studied. Fractional anisotropy and mean diffusivity images were obtained from whole-brain diffusion tensor imaging, and tract-based spatial statistics were used to localize white matter abnormalities. Compared with controls, patients showed significant decreases in fractional anisotropy of white matter of the bilateral anterior cingulate, fronto-orbital area, frontal lobe, anterior limb of the internal capsule and corpus callosum, as well as the left anterior and medial thalamus. Patients and controls showed no differences in mean diffusivity. Among patients, mean diffusivity values of white matter in the bilateral superior frontal gyri, bilateral fronto-orbital gyri and right superior parietal gyrus were positively correlated with depressive mood. This tract-based spatial statistics study demonstrated that drug-naïve patients with narcolepsy had reduced fractional anisotropy of white matter in multiple brain areas and significant relationship between increased mean diffusivity of white matter in frontal/cingulate and depression. It suggests the widespread disruption of white matter integrity and prevalent brain degeneration of frontal lobes according to a depressive symptom in narcolepsy. PMID:26610427

  13. A single-layer network unsupervised feature learning method for white matter hyperintensity segmentation

    Science.gov (United States)

    Vijverberg, Koen; Ghafoorian, Mohsen; van Uden, Inge W. M.; de Leeuw, Frank-Erik; Platel, Bram; Heskes, Tom

    2016-03-01

    Cerebral small vessel disease (SVD) is a disorder frequently found among the old people and is associated with deterioration in cognitive performance, parkinsonism, motor and mood impairments. White matter hyperintensities (WMH) as well as lacunes, microbleeds and subcortical brain atrophy are part of the spectrum of image findings, related to SVD. Accurate segmentation of WMHs is important for prognosis and diagnosis of multiple neurological disorders such as MS and SVD. Almost all of the published (semi-)automated WMH detection models employ multiple complex hand-crafted features, which require in-depth domain knowledge. In this paper we propose to apply a single-layer network unsupervised feature learning (USFL) method to avoid hand-crafted features, but rather to automatically learn a more efficient set of features. Experimental results show that a computer aided detection system with a USFL system outperforms a hand-crafted approach. Moreover, since the two feature sets have complementary properties, a hybrid system that makes use of both hand-crafted and unsupervised learned features, shows a significant performance boost compared to each system separately, getting close to the performance of an independent human expert.

  14. White matter alterations associated with suicide in patients with schizophrenia or schizophreniform disorder.

    Science.gov (United States)

    Lee, Sung-Jae; Kim, Borah; Oh, Daeyoung; Kim, Min-Kyoung; Kim, Keun-Hyang; Bang, Seong Yun; Choi, Tai Kiu; Lee, Sang-Hyuk

    2016-02-28

    The risk of suicide is disproportionately high among people diagnosed with schizophrenia or schizophreniform disorder. Brain imaging studies have shown a few relationships between neuroanatomy and suicide. This study examines the relationship between alterations in brain white matter (WM) and suicidal behavior in people with schizophrenia or schizophreniform disorder. The study participants were 56 patients with schizophrenia or schizophreniform disorder, with (n=15) and without (n=41) a history of suicide attempts. Fractional anisotropy (FA) values were compared between suicide attempters and non-attempters using Tract-Based Spatial Statistics (TBSS). Attempters showed significantly higher FA values than non-attempters in the left corona radiata, the superior longitudinal fasciculus, the posterior limb and retrolenticular part of the internal capsule, the external capsule, the insula, the posterior thalamic radiation, the cerebral peduncle, the sagittal stratum, and temporal lobe WM. Scores of the picture arrangement test showed a significant positive correlation with FA values of the right corona radiata, the right superior longitudinal fasciculus, the body of the corpus callosum, and the left corona radiata in attempters but not in non-attempters. These findings suggest that fronto-temporo-limbic circuits can be associated mainly with suicidal behavior in people with schizophrenia or schizophreniform disorder.

  15. White matter changes in patients with Friedreich ataxia after treatment with erythropoietin

    Science.gov (United States)

    Egger, Karl; Clemm von Hohenberg, Christian; Schocke, Michael F; Guttmann, Charles RG; Wassermann, Demian; Wigand, Marlene C; Nachbauer, Wolfgang; Kremser, Christian; Sturm, Brigitte; Scheiber-Mojdehkar, Barbara; Kubicki, Marek; Shenton, Martha E; Boesch, Sylvia

    2013-01-01

    Background and Purpose Erythropoietin (EPO) has received growing attention because of its neuro-regenerative properties. Preclinical and clinical evidence supports its therapeutic potential in brain conditions like stroke, multiple sclerosis and schizophrenia. Also in Friedreich ataxia, clinical improvement after EPO therapy was shown. The aim of the present study was to assess possible therapy-associated brain white-matter changes in these patients. Methods Nine patients with Friedreich ataxia underwent Diffusion Tensor Imaging (DTI) before and after EPO treatment. Tract-based spatial statistics (TBSS) was used for longitudinal comparison. Results We detected widespread longitudinal increase in fractional anisotropy (FA) and axial diffusivity (D||) in cerebral hemispheres bilaterally (p<0.05, corrected), while no changes were observed within the cerebellum, medulla oblongata and pons. Conclusions To the best of our knowledge, this is the first DTI study to investigate the effects of erythropoietin in a neurodegenerative disease. Anatomically, the diffusivity changes appear disease-unspecific, and their biological underpinnings deserve further study. PMID:24015771

  16. Hypoxia-induced neuroinflammatory white-matter injury reduced by minocycline in SHR/SP

    Science.gov (United States)

    Jalal, Fakhreya Y; Yang, Yi; Thompson, Jeffrey F; Roitbak, Tamara; Rosenberg, Gary A

    2015-01-01

    Hypertensive small vessel disease is a major cause of vascular cognitive impairment (VCI). Spontaneously hypertensive/stroke prone rats (SHR/SP) with unilateral carotid artery occlusion (UCAO) and a Japanese permissive diet (JPD) have white-matter (WM) damage similar to that seen in VCI. We hypothesized that WM injury was due to hypoxia-mediated, blood–brain barrier (BBB) disruption. Twelve-week-old SHR/SP had UCAO/JPD and were studied with immunohistochemistry, biochemistry, multimodal magnetic resonance imaging (MRI), and Morris water maze (MWM) testing. One week after UCAO/JPD, WM showed a significant increase in hypoxia inducible factor-1α (HIF-1α), which increased further by 3 weeks. Prolyl hydroxylase-2 (PHD2) expression decreased at 1 and 3 weeks. Infiltrating T cells and neutrophils appeared around endothelial cells from 1 to 3 weeks after UCAO/JPD, and matrix metalloproteinase-9 (MMP-9) colocalized with inflammatory cells. At 3 weeks, WM immunostained for IgG, indicating BBB leakage. Minocycline (50 mg/kg intraperitoeally) was given every other day from weeks 12 to 20. Multimodal MRI showed that treatment with minocycline significantly reduced lesion size and improved cerebral blood flow. Minocycline improved performance in the MWM and prolonged survival. We propose that BBB disruption occurred secondary to hypoxia, which induced an MMP-9-mediated infiltration of leukocytes. Minocycline significantly reduced WM damage, improved behavior, and prolonged life. PMID:25712499

  17. Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: evidence from diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Takashi; Morimoto, Masafumi; Hasegawa, Tatsuji; Morioka, Shigemi; Kidowaki, Satoshi; Moroto, Masaharu; Yamashita, Satoshi; Maeda, Hiroshi; Chiyonobu, Tomohiro; Tokuda, Sachiko; Hosoi, Hajime [Kyoto Prefectural University of Medicine, Department of Pediatrics, Graduate School of Medical Science, Kyoto (Japan); Yamada, Kei [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto (Japan)

    2015-05-01

    Recent diffusion tensor imaging (DTI) studies have demonstrated that leakage of hemosiderin into cerebrospinal fluid (CSF), which is caused by high-grade intraventricular hemorrhage (IVH), can affect cerebellar development in preterm born infants. However, a direct effect of low-grade IVH on cerebellar development is unknown. Thus, we evaluated the cerebellar and cerebral white matter (WM) of preterm infants with low-grade IVH. Using DTI tractography performed at term-equivalent age, we analyzed 42 infants who were born less than 30 weeks gestational age (GA) at birth (22 with low-grade IVH, 20 without). These infants were divided into two birth groups depending on GA, and we then compared the presence and absence of IVH which was diagnosed by cerebral ultrasound (CUS) within 10 days after birth or conventional magnetic resonance imaging (MRI) at term-equivalent age in each group. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) at the superior cerebellar peduncle (SCP), middle cerebellar peduncle (MCP), motor tract, and sensory tract were measured. In the SCP, preterm born infants with IVH had lower FA values compared with infants without IVH. In particular, younger preterm birth with IVH had lower FA values in the SCP and motor tract and higher ADC values in the MCP. Low-grade IVH impaired cerebellar and cerebral WM, especially in the SCP. Moreover, younger preterm infants exhibited greater disruptions to cerebellar WM and the motor tract than infants of older preterm birth. (orig.)

  18. Altered gray matter volume and white matter integrity in college students with mobile phone dependence

    Directory of Open Access Journals (Sweden)

    Yongming eWang

    2016-05-01

    Full Text Available Mobile phone dependence (MPD is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI. Gray matter volume (GMV and white matter (WM integrity (four indexes: fractional anisotropy, FA; mean diffusivity, MD; axial diffusivity, AD; and radial diffusivity, RD were calculated via voxel-based morphometry (VBM and tract-based spatial statistics (TBSS analysis, respectively. Sixty-eight college students (42 female were enrolled and separated into two groups (MPD group, N=34; control group, N=34 based on Mobile Phone Addiction Index (MPAI scale score. Trait impulsivity was also measured using the Barrett Impulsivity Scale (BIS-11. In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG, right inferior frontal gyrus (iFG, and bilateral thalamus (Thal. In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of white matter integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH. Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with phone-overuse, and may help to better understand the neural mechanisms of MPD in relation with other behavioral and substance addiction disorders.

  19. Progressive white-matter disease with primary cerebellar involvement: a separate entity?

    Energy Technology Data Exchange (ETDEWEB)

    Yalcinkaya, C. [Division of Child Neurology, Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Arslanoglu, I. [Division of Endocrinology, Department of Paediatrics, Goeztepe Hospital, Istanbul (Turkey); Islak, C. [Division of Neuroradiology, Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Aydin, A. [Division of Metabolic Disease, Department of Paediatrics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul (Turkey); Boltshauser, E. [Division of Paediatric Neurology, University Children' s Hospital, Steinwiesstrasse 75, 8032 Zuerich (Switzerland)

    2002-09-01

    Although its metabolic basis has not yet been clarified, we report a progressive white-matter disease in a Turkish girl, starting in the cerebellum and spreading to supratentorial white matter. The onset was at the age of 2.5 years with diabetes insipidus, followed by ataxia and pyramidal signs resulting in loss of walking. Aqueduct stenosis was first recognised at the age of 8 years. To our knowledge, this MRI and clinical pattern does not correspond to a recognised, well-defined white-matter disease and may indicate a separate entity. (orig.)

  20. [Ischemic white matter lesions may be caused by the baroreceptor reflex are dysfunction].

    Science.gov (United States)

    Obi, T

    1995-08-01

    Muscle sympathetic nerve activity (MSNA, bursts/min) was recorded microneurographically from the tibial nerve in the control group (8 males and 8 females) and the cerebral infarction group (12 males and 12 females) with ischemic white matter lesions (WMLs) diagnosed on T2-weighted MR imaging. Subjects in the latter group were more hypertensive. A significant positive correlation between age and the MSNA at rest was detected in the control group, but not in the cerebral infarction group. The MSNA at rest was significantly low exclusively in infarcted females. Although the blood pressure did not decrease in either group during a 30 degrees head-up tilt, the MSNA was enhanced in the control group alone. On the cold pressor test, the control group demonstrated a significant pressor response, but not an increase in MSNA. In contrast, the cerebral infarction group showed a significant increase in MSNA, and, within the group, only infarcted females lacked a clear pressor response. These results indicated the existence of an insensitivity in the baroreceptor reflex arc on the part of infarcted males, as already indicated in hypertensive patients. On the other hand, on infarcted females, there were both a hypofunction of the baroreceptor reflex arc and a decline of the vascular reactivity, possibly due to an inadequate development of the sympathetic nervous system and a low level of estrogen. Interestingly mean WMLs%, which was calculated as total WMLs areas x 100/total subdural areas on four horizontal T2-weighted MR images, 10, 20, 30, 40 mm above the bicommisural plane, was significantly larger in infarcted females (8.7 +/- 0.7%, mean +/- S.E.) than males (5.1 +/- 0.7%). This discrepancy may be caused by the above-mentioned difference on the results between them. WMLs are mostly distributed in the watershed zone supplied by the long penetrating arteries. Therefore, the lesions may be produced by wide fluctuations in blood pressure as the result of a dysfunction of the

  1. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Christina; Arsic, Milan; Boucard, Christine C.; Biberacher, Viola; Nunnemann, Sabine; Muehlau, Mark [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center, Klinikum rechts der Isar, Munich (Germany); Schmidt, Paul [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Ludwig-Maximilians-University Muenchen, Department of Statistics, Munich (Germany); Roettinger, Michael [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Muenchner Institut fuer Neuroradiologie, Munich (Germany); Etgen, Thorleif [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Klinikum Traunstein, Department of Neurology, Traunstein (Germany); Koutsouleris, Nikolaos; Meisenzahl, Eva M. [Ludwig-Maximilians-Universitaet Muenchen, Department of Psychiatry and Psychotherapy, Munich (Germany); Reiser, Maximilian [Ludwig-Maximilians-Universitaet, Department of Radiology, Munich (Germany)

    2013-08-15

    Measurement of the upper cervical cord area (UCCA) from brain MRI may be an effective way to quantify spinal cord involvement in neurological disorders such as multiple sclerosis. However, knowledge on the determinants of UCCA in healthy controls (HCs) is limited. In two cohorts of 133 and 285 HCs, we studied the influence of different demographic, body-related, and brain-related parameters on UCCA by simple and partial correlation analyses as well as by voxel-based morphometry (VBM) across both cerebral gray matter (GM) and white matter (WM). First, we confirmed the known but moderate effect of age on UCCA in the older cohort. Second, we studied the correlation of UCCA with sex, body height, and total intracranial volume (TIV). TIV was the only variable that correlated significantly with UCCA after correction for the other variables. Third, we studied the correlation of UCCA with brain-related parameters. Brain volume correlated stronger with UCCA than TIV. Both volumes of the brain tissue compartments GM and WM correlated with UCCA significantly. WM volume explained variance of UCCA after correction for GM volume, whilst the opposite was not observed. Correspondingly, VBM did not yield any brain region, whose GM content correlated significantly with UCCA, whilst cerebral WM content of cerebrospinal tracts strongly correlated with UCCA. This latter effect increased along a craniocaudal gradient. UCCA is mainly determined by brain volume as well as by WM content of cerebrospinal tracts. (orig.)

  2. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI

    International Nuclear Information System (INIS)

    Measurement of the upper cervical cord area (UCCA) from brain MRI may be an effective way to quantify spinal cord involvement in neurological disorders such as multiple sclerosis. However, knowledge on the determinants of UCCA in healthy controls (HCs) is limited. In two cohorts of 133 and 285 HCs, we studied the influence of different demographic, body-related, and brain-related parameters on UCCA by simple and partial correlation analyses as well as by voxel-based morphometry (VBM) across both cerebral gray matter (GM) and white matter (WM). First, we confirmed the known but moderate effect of age on UCCA in the older cohort. Second, we studied the correlation of UCCA with sex, body height, and total intracranial volume (TIV). TIV was the only variable that correlated significantly with UCCA after correction for the other variables. Third, we studied the correlation of UCCA with brain-related parameters. Brain volume correlated stronger with UCCA than TIV. Both volumes of the brain tissue compartments GM and WM correlated with UCCA significantly. WM volume explained variance of UCCA after correction for GM volume, whilst the opposite was not observed. Correspondingly, VBM did not yield any brain region, whose GM content correlated significantly with UCCA, whilst cerebral WM content of cerebrospinal tracts strongly correlated with UCCA. This latter effect increased along a craniocaudal gradient. UCCA is mainly determined by brain volume as well as by WM content of cerebrospinal tracts. (orig.)

  3. Association of white-matter lesions with brain atrophy markers: the three-city Dijon MRI study

    International Nuclear Information System (INIS)

    Background: Brain atrophy and white-matter lesions (WML) are common features at cerebral MRI of both normal and demented elderly people. In a population-based study of 1, 792 elderly subjects aged 65-80 years, free of dementia, who had a cerebral MRI at entry, we investigated the relationship between WML volume and brain atrophy markers estimated by hippocampal, gray matter (GM) and cerebrospinal fluid (CSF) volumes. Methods: An automated algorithm of detection and quantification of WML was developed, and voxel-based morphometry methods were used to estimate GM, CSF and hippocampal volumes. To evaluate the relation between those volumes and WML load, we used analysis of covariance and multiple linear regression models adjusting for potential confounders and total intracranial volumes. Results: Age was highly correlated with WML load and all brain atrophy markers. Total WML volume was negatively associated with both GM (β = -0.03, p ≤ 0.0001) and hippocampal volumes (β = -0.75, p = 0.0009) and positively with CSF volumes (beta 0.008, p = 0.02) after controlling for sex, age, education level, hypertension and apolipoprotein E genotype. Evidence for a relationship between brain atrophy markers and WML was stronger for periventricular WML. We found that the relationship between WML and hippocampal volumes was independent of other brain tissue volumes. Conclusion: These results suggest that, in the brain of non demented elderly subjects, degenerative processes and vascular changes co-occur and are related independently of vascular risk factors. (authors)

  4. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    Science.gov (United States)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to

  5. Prefrontal cortex white matter tracts in prodromal Huntington disease

    Science.gov (United States)

    Matsui, Joy T.; Vaidya, Jatin G.; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A.; Johnson, Hans J.; Paulsen, Jane S.

    2015-01-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e. prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATR), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. PMID:26179962

  6. Probing dark matter crests with white dwarfs and IMBHs

    Science.gov (United States)

    Amaro-Seoane, P.; Casanellas, J.; Schödel, R.; Davidson, E.; Cuadra, J.

    2016-06-01

    White dwarfs (WDs) are the most promising captors of dark matter (DM) particles in the crests that are expected to build up in the cores of dense stellar clusters. The DM particles could reach sufficient densities in WD cores to liberate energy through self-annihilation. The extinction associated with our Galactic Centre makes it impossible to detect the potential-associated luminosities, contrary to smaller stellar systems which are close enough to us and not heavily extincted, such as -Cen. We investigate the prospects of detection of DM-burning WDs in a stellar cluster harbouring an intermediate-mass black hole (IMBH), which leads to higher densities of DM at the centre. We calculate the capture rate and estimate the luminosity that a WD would emit depending on its distance to the centre of the cluster. Direct-summation N-body simulations of -Cen yield a non-negligible number of WDs in the range of radii of interest. We apply our assumption to published Hubble Space Telescope/Advanced Camera for Surveys observations of stars in the centre of -Cen and, although we are not able to identify any evident candidate, we proof that their bunching up at high luminosities would be unique. We predict that DM burning will lead to a truncation of the cooling sequence at the faint end. The detection of DM burning in future observations of dense stellar clusters could allow us to probe different models of DM distributions and characteristics. On the other hand, if DM-burning WDs really exist, their number and properties could give hints to the existence of IMBHs.

  7. Prefrontal cortex white matter tracts in prodromal Huntington disease.

    Science.gov (United States)

    Matsui, Joy T; Vaidya, Jatin G; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A; Johnson, Hans J; Paulsen, Jane S

    2015-10-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc.

  8. Discrimination between different types of white matter edema with diffusion-weighted MR imaging.

    Science.gov (United States)

    Ebisu, T; Naruse, S; Horikawa, Y; Ueda, S; Tanaka, C; Uto, M; Umeda, M; Higuchi, T

    1993-01-01

    Brain edema can be classified into three categories: vasogenic, cytotoxic, and interstitial. The mechanism of edema is thought to be different in each type. The authors studied the movement of water molecules in each type of white matter edema in a rat model by using diffusion-weighted magnetic resonance imaging. Conventional T2-weighted imaging did not allow distinction between the three types of white matter edema; the three types of edema were, however, distinguished by using diffusion-weighted imaging. The apparent diffusion coefficient (ADC) of water was different in each type of edema. Water molecules in cytotoxic edema induced by triethyl-tin intoxication showed a smaller and less anisotropic ADC than in normal white matter. In contrast, water in vasogenic edema induced by cold injury had a larger and more anisotropic ADC than in normal white matter. Water in interstitial edema due to kaolin-induced hydrocephalus had an anisotropic and very large ADC. PMID:8280975

  9. Mapping white matter diffusion and cerebrovascular reactivity in carotid occlusive disease

    NARCIS (Netherlands)

    Conklin, J.; Fierstra, J.; Crawley, A. P.; Han, J. S.; Poublanc, J.; Silver, F. L.; Tymianski, M.; Fisher, J. A.; Mandell, D. M.; Mikulis, D. J.

    2011-01-01

    Objective: To characterize the relationship between cerebrovascular reactivity (CVR) and white matter (WM) diffusion in patients with internal carotid artery (ICA) occlusive disease. Methods: In this exploratory observational study, 41 patients with severe stenosis or occlusion of the extracranial I

  10. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity

    OpenAIRE

    Mackey, Allyson P.; Whitaker, Kirstie J.; Bunge, Silvia A.

    2012-01-01

    Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n = 23) who were enrolled in a course to prepare for the Law School...

  11. Experience-dependent plasticity in white matter microstructure: Reasoning training alters structural connectivity

    OpenAIRE

    Mackey, Allyson P.; Whitaker, Kirstie J.; Bunge, Silvia A.

    2012-01-01

    Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n=23) who were enrolled in a course to prepare for the Law School A...

  12. Early-Stage Psychotherapy Produces Elevated Frontal White Matter Integrity in Adult Major Depressive Disorder

    OpenAIRE

    Tao Wang; Xiaolan Huang; Peiyu Huang; Dan Li; Fajin Lv; Yong Zhang; Linke Zhou; Deyu Yang; Peng Xie

    2013-01-01

    BACKGROUND: Psychotherapy has demonstrated comparable efficacy to antidepressant medication in the treatment of major depressive disorder. Metabolic alterations in the MDD state and in response to treatment have been detected by functional imaging methods, but the underlying white matter microstructural changes remain unknown. The goal of this study is to apply diffusion tensor imaging techniques to investigate psychotherapy-specific responses in the white matter. METHODS: Twenty-one of forty...

  13. White matter microstructure pathology in classic galactosemia revealed by neurite orientation dispersion and density imaging

    OpenAIRE

    Timmers, I.; Zhang, H.; De Bastiani, M.; Jansma, BM; Roebroeck, A.; Rubio-Gozalbo, ME

    2014-01-01

    White matter abnormalities have been observed in patients with classic galactosemia, an inborn error of galactose metabolism. However, magnetic resonance imaging (MRI) data collected in the past were generally qualitative in nature. Our objective was to investigate white matter microstructure pathology and examine correlations with outcome and behaviour in this disease, by using multi-shell diffusion weighted imaging. In addition to standard diffusion tensor imaging (DTI), neurite orientation...

  14. Brain white matter lesions detected by magnetic resosnance imaging are associated with balance and gait speed

    OpenAIRE

    John M Starr; Leaper, S A; Murray, A D; Lemmon, H A; Staff, R T; Deary, Ian J.; Whalley, Lawrence J.

    2003-01-01

    Objective: To investigate the relations between premorbid and current mental ability, mood, and white matter signal abnormalities detected by T2 weighted brain magnetic resonance imaging (MRI) and impairment of balance and mobility in older adults. Methods: 97 subjects from the Aberdeen 1921 birth cohort underwent brain MRI, evaluation of balance, and measurement of gait speed. White matter hyperintensities detected on T2 weighted MRI scans were rated by three independent raters on three ...

  15. Abnormal white matter integrity in rapists as indicated by diffusion tensor imaging

    OpenAIRE

    Chen, Chiao-Yun; Raine, Adrian; Chou, Kun-Hsien; Chen, I-Yun; Hung, Daisy; Lin, Ching-Po

    2016-01-01

    Background Recent research has documented structural brain abnormalities in various criminal offenders. However, there have been few brain imaging studies of sex offenders, and none on white matter integrity. The current study tested the hypothesis that rapists, when compared to matched controls, would show abnormal cortical and subcortical white matter integrity. Results Rapists showed significantly increased fractional anisotropy in the internal capsul e in the thalamus, caudate, and globus...

  16. Brain White Matter Abnormality in a Newborn Infant with Congenital Adrenal Hyperplasia

    OpenAIRE

    Kaga, Akimune; Saito-hakoda, Akiko; Uematsu, Mitsugu; Kamimura, Miki; Kanno, Junko; Kure, Shigeo; Fujiwara, Ikuma

    2013-01-01

    Several studies have described brain white matter abnormalities on magnetic resonance imaging (MRI) in children and adults with congenital adrenal hyperplasia (CAH), while the brain MRI findings of newborn infants with CAH have not been clarified. We report a newborn boy with CAH who presented brain white matter abnormality on MRI. He was diagnosed as having salt-wasting CAH with a high 17-OHP level at neonatal screening and was initially treated with hydrocortisone at 8 days of age. On day 1...

  17. Unraveling pathology in juvenile Alexander disease: serial quantitative MR imaging and spectroscopy of white matter

    OpenAIRE

    Voorn, van, G.A.K.; Pouwels, P. J. W.; Salomons, G.S.; Barkhof, F.; Knaap, van der, W.

    2009-01-01

    Introduction Alexander disease is a rare disorder of the central nervous system with characteristic symmetric white matter abnormalities with frontal predominance on magnetic resonance (MR) images. Histopathology shows a lack of myelin in the affected white matter, variably interpreted as hypomyelination or demyelination. To increase our insight into the nature of the pathology leading to the MR imaging findings in Alexander disease, we applied serial MR imaging, spectroscopy, magnetization t...

  18. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity.

    Science.gov (United States)

    Mackey, Allyson P; Whitaker, Kirstie J; Bunge, Silvia A

    2012-01-01

    Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n = 23) who were enrolled in a course to prepare for the Law School Admission Test (LSAT), a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n = 22). DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD) in white matter connecting frontal cortices, and in mean diffusivity (MD) within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination. PMID:22936899

  19. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    Energy Technology Data Exchange (ETDEWEB)

    Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Ceschin, Rafael C. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, PA (United States); Choi, So Young [University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Schmithorst, Vincent J. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Painter, Michael J. [University of Pittsburgh, Department of Pediatrics, Division of Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Nelson, Marvin D. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Blueml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States)

    2015-05-01

    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  20. Magnified effects of the COMT gene on white-matter microstructure in very old age.

    Science.gov (United States)

    Papenberg, Goran; Lövdén, Martin; Laukka, Erika J; Kalpouzos, Grégoria; Keller, Lina; Graff, Caroline; Köhncke, Ylva; Li, Tie-Qiang; Fratiglioni, Laura; Bäckman, Lars

    2015-09-01

    Genetic factors may partly account for between-person differences in brain integrity in old age. Evidence from human and animal studies suggests that the dopaminergic system is implicated in the modulation of white-matter integrity. We investigated whether a genetic variation in the Catechol-O-Methyltransferase (COMT) Val158Met polymorphism, which influences dopamine availability in prefrontal cortex, contributes to interindividual differences in white-matter microstructure, as measured with diffusion-tensor imaging. In a sample of older adults from a population-based study (60-87 years; n = 238), we found that the COMT polymorphism affects white-matter microstructure, indexed by fractional anisotropy and mean diffusivity, of several white-matter tracts in the oldest age group (81-87 years), although there were no reliable associations between COMT and white-matter microstructure in the two younger age groups (60-66 and 72-78 years). These findings extend previous observations of magnified genetic effects on cognition in old age to white-matter integrity.

  1. Effect of antenatal growth and prematurity on brain white matter: diffusion tensor study

    Energy Technology Data Exchange (ETDEWEB)

    Lepomaeki, V. [Turku University Central Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Turku University Central Hospital, Turku PET-Centre, PO Box 52, Turku (Finland); Paavilainen, T.; Komu, M. [Turku University Central Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Matomaeki, J.; Lapinleimu, H.; Liisa Lehtonen, L. [Turku University Central Hospital and University of Turku, Department of Pediatrics, Turku (Finland); Hurme, S. [University of Turku, Department of Biostatistics, Turku (Finland); Haataja, L. [Turku University Central Hospital and University of Turku, Department of Pediatric Neurology, Turku (Finland); Parkkola, R. [Turku University Central Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Turku University Central Hospital, Turku PET-Centre, PO Box 52, Turku (Finland); University of Turku, Department of Diagnostic Radiology, Turku (Finland)

    2012-06-15

    White matter maturation is characterised by increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD). Contradictory results have been published on the effect of premature birth on white matter maturation at term-equivalent age. To assess the association of gestational age and low birth-weight-for-gestational-age (z-score) with white matter maturation. Infants (n = 76, 53 males) born at different gestational ages were imaged at term-equivalent age. Gestational age and birth weight z-score were used as continuous variables and the effect on diffusion parameters was assessed. Brain maturation was studied using regions-of-interest analysis in several white matter areas. Gestational age showed no significant effect on white matter maturation at term-equivalent age. Children with low birth weight z-score had lower FA in the genu and splenium of the corpus callosum (regression, P = 0.012 and P = 0.032; correlation, P = 0.009 and P = 0.006, respectively), and higher MD in the splenium of the corpus callosum (regression, P = 0.002; correlation, P = 0.0004) compared to children whose birth weight was appropriate for gestational age. Children with low birth weight relative to gestational age show delay and/or anomaly in white matter maturation at term-equivalent age. (orig.)

  2. Fractional anisotropy for assessment of white matter tracts injury in methylmalonic acidemia

    Institute of Scientific and Technical Information of China (English)

    GAO Yu; GUAN Wen-ye; WANG Jiang; ZHANG Yu-zhen; LI Yu-hua; HAN Lian-shu

    2009-01-01

    Background Methylmalonic acidemia (MMA) is a multifactorial autosomal recessive inborn error of organic acid metabolism, often presenting with neurological symptoms. As neurological disorders are often related to white matter injury, diffusion tensor imaging (DTI) is an excellent tool for assessment of white matter injury and possibly for diagnosing this disorder.Methods We retrospectively analyzed DTI images of 12 patients with MMA (7 males, 5 females, age range: 7-12 months, mean age: 9.25±1.70 months) with negative MRI findings. And another 12 age-matched and gender-matched infants were enrolled as control subjects. Fractional anisotropy (FA) of different white matter tracts of the brain was measured in both groups.Results For patients with negative MRI findings, compared with healthy infants, a statistically significant reduction in DTI FA value of the frontal white matter, temporal white matter, and occipital white matter was observed (P<0.01).Conclusions In addition to conventional T1W and T2W MR Image, Brain DTI presents a useful, sensitive and complementary tool for the assessment of brain damage in patients with MMA.

  3. White matter deficits in psychopathic offenders and correlation with factor structure.

    Directory of Open Access Journals (Sweden)

    Sylco S Hoppenbrouwers

    Full Text Available Psychopathic offenders show a persistent pattern of emotional unresponsivity to the often horrendous crimes they perpetrate. Recent studies have related psychopathy to alterations in white matter. Therefore, diffusion tensor imaging followed by tract-based spatial statistics (TBSS analysis in 11 psychopathic offenders matched to 11 healthy controls was completed. Fractional anisotropy was calculated within each voxel and comparisons were made between groups using a permutation test. Any clusters of white matter voxels different between groups were submitted to probabilistic tractography. Significant differences in fractional anisotropy were found between psychopathic offenders and healthy controls in three main white matter clusters. These three clusters represented two major networks: an amygdalo-prefrontal network, and a striato-thalamo-frontal network. The interpersonal/affective component of the PCL-R correlated with white matter deficits in the orbitofrontal cortex and frontal pole whereas the antisocial component correlated with deficits in the striato-thalamo-frontal network. In addition to replicating earlier work concerning disruption of an amygdala-prefrontal network, we show for the first time that white matter integrity in a striato-thalamo-frontal network is disrupted in psychopathic offenders. The novelty of our findings lies in the two dissociable white matter networks that map directly onto the two major factors of psychopathy.

  4. Brain-peripheral cell crosstalk in white matter damage and repair.

    Science.gov (United States)

    Hayakawa, Kazuhide; Lo, Eng H

    2016-05-01

    White matter damage is an important part of cerebrovascular disease and may be a significant contributing factor in vascular mechanisms of cognitive dysfunction and dementia. It is well accepted that white matter homeostasis involves multifactorial interactions between all cells in the axon-glia-vascular unit. But more recently, it has been proposed that beyond cell-cell signaling within the brain per se, dynamic crosstalk between brain and systemic responses such as circulating immune cells and stem/progenitor cells may also be important. In this review, we explore the hypothesis that peripheral cells contribute to damage and repair after white matter damage. Depending on timing, phenotype and context, monocyte/macrophage can possess both detrimental and beneficial effects on oligodendrogenesis and white matter remodeling. Endothelial progenitor cells (EPCs) can be activated after CNS injury and the response may also influence white matter repair process. These emerging findings support the hypothesis that peripheral-derived cells can be both detrimental or beneficial in white matter pathology in cerebrovascular disease. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26277436

  5. Experience-dependent plasticity in white matter microstructure: Reasoning training alters structural connectivity

    Directory of Open Access Journals (Sweden)

    Allyson P Mackey

    2012-08-01

    Full Text Available Diffusion tensor imaging (DTI techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA, have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n=23 who were enrolled in a course to prepare for the Law School Admission Test (LSAT, a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n=22. DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD in white matter connecting frontal cortices, and in mean diffusivity (MD within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination.

  6. Cerebral palsy with heterotopic gray matter as demonstrated by MRI

    International Nuclear Information System (INIS)

    Heterotopic gray matter was found by magnetic resonance imaging on a 3-year-old girl with left hemiparesis and atonic seizures. In the inversion recovery sequence, a large area of decreased signal intensity was noted in the right centrum semiovale and the differentiation of right basal ganglia was not clear. We speculated that the brain malformation of our patient occured at ten weeks of conceptional age. (author)

  7. Early postnatal myelin content estimate of white matter via T1w/T2w ratio

    Science.gov (United States)

    Lee, Kevin; Cherel, Marie; Budin, Francois; Gilmore, John; Zaldarriaga Consing, Kirsten; Rasmussen, Jerod; Wadhwa, Pathik D.; Entringer, Sonja; Glasser, Matthew F.; Van Essen, David C.; Buss, Claudia; Styner, Martin

    2015-03-01

    To develop and evaluate a novel processing framework for the relative quantification of myelin content in cerebral white matter (WM) regions from brain MRI data via a computed ratio of T1 to T2 weighted intensity values. We employed high resolution (1mm3 isotropic) T1 and T2 weighted MRI from 46 (28 male, 18 female) neonate subjects (typically developing controls) scanned on a Siemens Tim Trio 3T at UC Irvine. We developed a novel, yet relatively straightforward image processing framework for WM myelin content estimation based on earlier work by Glasser, et al. We first co-register the structural MRI data to correct for motion. Then, background areas are masked out via a joint T1w and T2 foreground mask computed. Raw T1w/T2w-ratios images are computed next. For purpose of calibration across subjects, we first coarsely segment the fat-rich facial regions via an atlas co-registration. Linear intensity rescaling based on median T1w/T2w-ratio values in those facial regions yields calibrated T1w/T2wratio images. Mean values in lobar regions are evaluated using standard statistical analysis to investigate their interaction with age at scan. Several lobes have strongly positive significant interactions of age at scan with the computed T1w/T2w-ratio. Most regions do not show sex effects. A few regions show no measurable effects of change in myelin content change within the first few weeks of postnatal development, such as cingulate and CC areas, which we attribute to sample size and measurement variability. We developed and evaluated a novel way to estimate white matter myelin content for use in studies of brain white matter development.

  8. Increased frequency of white matter lesions in patients with osteonecrosis (WMLeOn) of the femoral head

    International Nuclear Information System (INIS)

    White matter lesions (WML) are commonly seen in cerebral MR imaging in normal and demented elderly people or young people suffering from migraine. We present data showing that WML are detected in an unexpectedly high frequency (56.9%) in patients with non-traumatic osteonecrosis of the femoral head compared to age and sex-matched controls. We designated the coexistence of WML and osteonecrosis as white matter lesions in osteonecrosis (WMLeON). We examined the possible association of WMLeON with hyperlipidaemia and other risk factors for WML or osteonecrosis of the femoral head. The frequency of history of corticosteroid treatment was statistically lower in patients with WMLeON (58.6%) compared to those without it (90.1%) (P=0.03). We found no association of WMLeON with diabetes, stroke, hyperlipidaemia, migraine, smoking, alcohol consumption, hypertension, atrial fibrillation, or systemic lupus erythematosus. Although, the clinical significance of WMLeON is still unknown, this finding supports, at least, the hypothesis that non-traumatic osteonecrosis is indeed a multisystem disorder rather than a disease of human skeleton

  9. Diffusion Tensor Imaging of Normal-Appearing White Matter as Biomarker for Radiation-Induced Late Delayed Cognitive Decline

    International Nuclear Information System (INIS)

    Purpose: To determine whether early assessment of cerebral white matter degradation can predict late delayed cognitive decline after radiotherapy (RT). Methods and Materials: Ten patients undergoing conformal fractionated brain RT participated in a prospective diffusion tensor magnetic resonance imaging study. Magnetic resonance imaging studies were acquired before RT, at 3 and 6 weeks during RT, and 10, 30, and 78 weeks after starting RT. The diffusivity variables in the parahippocampal cingulum bundle and temporal lobe white matter were computed. A quality-of-life survey and neurocognitive function tests were administered before and after RT at the magnetic resonance imaging follow-up visits. Results: In both structures, longitudinal diffusivity (λ‖) decreased and perpendicular diffusivity (λ⊥) increased after RT, with early changes correlating to later changes (p ⊥ at 3 weeks, and patients with >50% of cingula volume receiving >12 Gy had a greater increase in λ⊥ at 3 and 6 weeks (p ‖ (30 weeks, p ‖ changes predicted for post-RT changes in verbal recall scores (3 and 6 weeks, p < .05). The neurocognitive test scores correlated significantly with the quality-of-life survey results. Conclusions: The correlation between early diffusivity changes in the parahippocampal cingulum and the late decline in verbal recall suggests that diffusion tensor imaging might be useful as a biomarker for predicting late delayed cognitive decline.

  10. Increased frequency of white matter lesions in patients with osteonecrosis (WMLeOn) of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Hadjigeorgiou, Georgios M. E-mail: gmhadji@med.uth.gr; Karantanas, Apostolos H.; Zibis, Aristidis; Dardiotis, Efthimios; Aggelakis, Konstantinos; Papadimitriou, Alexandros; Malizos, Konstantinos

    2004-06-01

    White matter lesions (WML) are commonly seen in cerebral MR imaging in normal and demented elderly people or young people suffering from migraine. We present data showing that WML are detected in an unexpectedly high frequency (56.9%) in patients with non-traumatic osteonecrosis of the femoral head compared to age and sex-matched controls. We designated the coexistence of WML and osteonecrosis as white matter lesions in osteonecrosis (WMLeON). We examined the possible association of WMLeON with hyperlipidaemia and other risk factors for WML or osteonecrosis of the femoral head. The frequency of history of corticosteroid treatment was statistically lower in patients with WMLeON (58.6%) compared to those without it (90.1%) (P=0.03). We found no association of WMLeON with diabetes, stroke, hyperlipidaemia, migraine, smoking, alcohol consumption, hypertension, atrial fibrillation, or systemic lupus erythematosus. Although, the clinical significance of WMLeON is still unknown, this finding supports, at least, the hypothesis that non-traumatic osteonecrosis is indeed a multisystem disorder rather than a disease of human skeleton.

  11. Association of frontal gray matter volume and cerebral perfusion in heroin addiction: A multimodal neuroimaging study

    OpenAIRE

    StefanBorgwardt; Ernst-WilhelmRadue

    2013-01-01

    Structure and function are closely related in the healthy human brain. In patients with chronic heroin exposure, brain imaging studies have identified long-lasting changes in gray matter (GM) volume. More recently, we showed that acute application of heroin in dependent patients results in hypoperfusion of fronto-temporal areas compared with the placebo condition. However, the relationship between structural and cerebral blood flow (CBF) changes in heroin addiction has not yet been investigat...

  12. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort

    DEFF Research Database (Denmark)

    Inzitari, Domenico; Pracucci, Giovanni; Poggesi, Anna;

    2009-01-01

    -disabling complaints. SETTING: 11 European centres. PARTICIPANTS: 639 non-disabled older patients (mean age 74.1 (SD 5.0), 45.1% men) in whom brain magnetic resonance imaging showed mild, moderate, or severe age related changes in white matter (Fazekas scale). Magnetic resonance imaging assessment also included......OBJECTIVE: To assess the impairment in daily living activities in older people with age related changes in white matter according to the severity of these changes. DESIGN: Observational data collection and follow-up of a cohort of older people undergoing brain magnetic resonance imaging after non...... cerebral infarcts and atrophy. MAIN OUTCOME MEASURE: Transition from no disability (defined as a score of 0 or 1 on the instrumental activities of daily living scale) to disability (score >/=2) or death over three year follow-up. Secondary outcomes were incident dementia and stroke. RESULTS: Over a mean...

  13. White Matter Changes Associated with Resting Sympathetic Tone in Frontotemporal Dementia vs. Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Mario F Mendez

    Full Text Available Resting sympathetic tone, a measure of physiological arousal, is decreased in patients with apathy and inertia, such as those with behavioral variant frontotemporal dementia (bvFTD and other frontally-predominant disorders.To identify the neuroanatomical correlates of skin conductance levels (SCLs, an index of resting sympathetic tone and apathy, among patients with bvFTD, where SCLs is decreased, compared to those with Alzheimer's disease (AD, where it is not.This study analyzed bvFTD (n = 14 patients and a comparison group with early-onset AD (n = 19. We compared their resting SCLs with gray matter and white matter regions of interest and white matter measures of fiber integrity on magnetic resonance imaging and diffusion tensor imaging.As expected, bvFTD patients, compared to AD patients, had lower SCLs, which correlated with an apathy measure, and more gray matter loss and abnormalities of fiber integrity (fractional anisotropy and mean diffusivity in frontal-anterior temporal regions. After controlling for group membership, the SCLs were significantly correlated with white matter volumes in the cingulum and inferior parietal region in the right hemisphere.Among dementia patients, SCLs, and resting sympathetic tone, may correlate with quantity of white matter, rather than with gray matter or with white matter fiber integrity. Loss of white matter volumes, especially involving a right frontoparietal network, may reflect chronic loss of cortical axons that mediate frontal control of resting sympathetic tone, changes that could contribute to the apathy and inertia of bvFTD and related disorders.

  14. Information processing speed mediates the relationship between white matter and general intelligence in schizophrenia.

    Science.gov (United States)

    Alloza, Clara; Cox, Simon R; Duff, Barbara; Semple, Scott I; Bastin, Mark E; Whalley, Heather C; Lawrie, Stephen M

    2016-08-30

    Several authors have proposed that schizophrenia is the result of impaired connectivity between specific brain regions rather than differences in local brain activity. White matter abnormalities have been suggested as the anatomical substrate for this dysconnectivity hypothesis. Information processing speed may act as a key cognitive resource facilitating higher order cognition by allowing multiple cognitive processes to be simultaneously available. However, there is a lack of established associations between these variables in schizophrenia. We hypothesised that the relationship between white matter and general intelligence would be mediated by processing speed. White matter water diffusion parameters were studied using Tract-based Spatial Statistics and computed within 46 regions-of-interest (ROI). Principal component analysis was conducted on these white matter ROI for fractional anisotropy (FA) and mean diffusivity, and on neurocognitive subtests to extract general factors of white mater structure (gFA, gMD), general intelligence (g) and processing speed (gspeed). There was a positive correlation between g and gFA (r= 0.67, p =0.001) that was partially and significantly mediated by gspeed (56.22% CI: 0.10-0.62). These findings suggest a plausible model of structure-function relations in schizophrenia, whereby white matter structure may provide a neuroanatomical substrate for general intelligence, which is partly supported by speed of information processing.

  15. White matter alterations in neurodegenerative and vascular dementia; Marklagerveraenderungen bei neurodegenerativen und vaskulaeren Demenzerkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Supprian, T. [Arbeitsgruppe Gerontopsychiatrie, Universitaets-Nervenklinik Homburg (Germany); Arbeitsgruppe Gerontopsychiatrie, Universitaets-Nervenklinik, Psychiatrie und Psychotherapie, 66421, Homburg (Germany); Kessler, H.; Falkai, P. [Arbeitsgruppe Gerontopsychiatrie, Universitaets-Nervenklinik Homburg (Germany); Retz, W.; Roesler, M. [Arbeitsgruppe Gerontopsychiatrie, Universitaets-Nervenklinik Homburg (Germany); Institut fuer gerichtliche Psychologie und Psychiatrie, Universitaet des Saarlandes, Homburg (Germany); Grunwald, I.; Reith, W. [Abteilung fuer Neuroradiologie, Universitaetskliniken des Saarlandes, Homburg (Germany)

    2003-07-01

    Due to a significant overlap of the two syndromes, differentiation of degenerative dementia of the Alzheimer-type from vascular dementia may be difficult even when imaging studies are available. White matter changes occur in many patients suffering from Alzheimer's disease. Little is known about the impact of white matter changes on the course and clinical presentation of Alzheimer's disease. High sensitivity of MRI in the detection of white matter alterations may account for over-diagnosing vascular dementia. The clinical significance of white matter alterations in dementia is still a matter of debate. The article reviews current concepts about the role of white matter alterations in dementia. (orig.) [German] Die Zuordnung einer Demenzerkrankung zu einem neurodegenerativen Pathomechanismus, wie der Demenz vom Alzheimer-Typ (DAT) oder einem vaskulaeren Pathomechanismus, kann trotz der Verfuegbarkeit bildgebender Verfahren Probleme bereiten. Ueberlappungen neurodegenerativer und vaskulaerer Mechanismen sind haeufig. Mikroangiopathische Veraenderungen des Marklagers finden sich bei einem hohen Anteil von Patienten mit der klinischen Verlaufsform einer Demenz vom Alzheimer-Typ. Es ist unklar, ob es sich um eine Koinzidenz zweier Pathomechanismen handelt oder ob eine wechselseitige Beeinflussung stattfindet. Die hohe Sensitivitaet der Magnetresonanztomographie bei der Erfassung mikroangiopathischer Veraenderungen des Marklagers koennte dazu fuehren, dass zu vaskulaere Demenzerkrankungen haeufig diagnostiziert werden. Der Einfluss mikroangiopathischer Veraenderungen des Marklagers auf den Demenzverlauf wird kontrovers diskutiert. Die vorgelegte Arbeit gibt eine Uebersicht ueber die aktuellen Konzepte zum Stellenwert von Marklagerveraenderungen bei Demenzerkrankungen. (orig.)

  16. Effects of the BDNF Val66Met polymorphism on white matter microstructure in healthy adults.

    Science.gov (United States)

    Tost, Heike; Alam, Tajvar; Geramita, Matthew; Rebsch, Christine; Kolachana, Bhaskar; Dickinson, Dwight; Verchinski, Beth A; Lemaitre, Herve; Barnett, Alan S; Trampush, Joey W; Weinberger, Daniel R; Marenco, Stefano

    2013-02-01

    The BDNF Val(66)Met polymorphism, a possible risk variant for mental disorders, is a potent modulator of neural plasticity in humans and has been linked to deficits in gray matter structure, function, and cognition. The impact of the variant on brain white matter structure, however, is controversial and remains poorly understood. Here, we used diffusion tensor imaging to examine the effects of BDNF Val(66)Met genotype on white matter microstructure in a sample of 85 healthy Caucasian adults. We demonstrate decreases of fractional anisotropy and widespread increases in radial diffusivity in Val/Val homozygotes compared with Met-allele carriers, particularly in prefrontal and occipital pathways. These data provide an independent confirmation of prior imaging genetics work, are consistent with complex effects of the BDNF Val(66)Met polymorphism on human brain structure, and may serve to generate hypotheses about variation in white matter microstructure in mental disorders associated with this variant. PMID:23132269

  17. Effects of vascular risk factors and APOE ε4 on white matter integrity and cognitive decline

    Science.gov (United States)

    Fratiglioni, Laura; Laukka, Erika J.; Lövdén, Martin; Kalpouzos, Grégoria; Keller, Lina; Graff, Caroline; Salami, Alireza; Bäckman, Lars

    2015-01-01

    Objective: To investigate the effects of vascular risk factors and APOE status on white matter microstructure, and subsequent cognitive decline among older people. Methods: This study included 241 participants (age 60 years and older) from the population-based Swedish National Study on Aging and Care in Kungsholmen in central Stockholm, Sweden, who were free of dementia and stroke at baseline (2001–2004). We collected data through interviews, clinical examinations, and laboratory tests. We measured fractional anisotropy (FA) and mean diffusivity (MD) on diffusion tensor imaging, and estimated volume of white matter hyperintensities using automatic segmentation. We assessed global cognitive function with the Mini-Mental State Examination at baseline and at 3- and/or 6-year follow-up. We analyzed the data using multivariate linear regression and linear mixed models. Results: Heavy alcohol consumption, hypertension, and diabetes were significantly associated with lower FA or higher MD (p < 0.05). When aggregating heavy alcohol consumption, hypertension, and diabetes together with current smoking, having an increasing number of these 4 factors concurrently was associated with decreasing FA and increasing MD (ptrend < 0.01), independent of white matter hyperintensities. Vascular risk factors and APOE ε4 allele interacted to negatively affect white matter microstructure; having multiple (≥2) vascular factors was particularly detrimental to white matter integrity among APOE ε4 carriers. Lower tertile of FA and upper tertile of MD were significantly associated with faster Mini-Mental State Examination decline. Conclusions: Vascular risk factors are associated with reduced white matter integrity among older adults, which subsequently predicted faster cognitive decline. The detrimental effects of vascular risk factors on white matter microstructure were exacerbated among APOE ε4 carriers. PMID:25672924

  18. 感染与早产儿脑白质损伤%Effects of infection on the cerebral white damage of the preterm infant

    Institute of Scientific and Technical Information of China (English)

    毛健

    2004-01-01

    早产儿脑损伤基本上可分为:①生发基质.脑室内出血,脑室周围出血及梗死;②脑白质损伤(cerebral white matter damage,CWMD),其中的深部白质损伤,若表现为凝固性坏死、软化,即为通常所说的脑室周围白质软化(periventricular leukomalacia,PVL);③其他部位的出血和损伤,如蛛网膜下腔、小脑的出血、基底核及桥脑的变性或坏死等。临床上以前两种损伤最为常见。

  19. Microstructural white matter changes, not hippocampal atrophy, detect early amnestic mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Lin Zhuang

    Full Text Available BACKGROUND: Alzheimer's disease (AD is generally considered to be characterized by pathology in gray matter of the brain, but convergent evidence suggests that white matter degradation also plays a vital role in its pathogenesis. The evolution of white matter deterioration and its relationship with gray matter atrophy remains elusive in amnestic mild cognitive impairment (aMCI, a prodromal stage of AD. METHODS: We studied 155 cognitively normal (CN and 27 'late' aMCI individuals with stable diagnosis over 2 years, and 39 'early' aMCI individuals who had converted from CN to aMCI at 2-year follow up. Diffusion tensor imaging (DTI tractography was used to reconstruct six white matter tracts three limbic tracts critical for episodic memory function - the fornix, the parahippocampal cingulum, and the uncinate fasciculus; two cortico-cortical association fiber tracts - superior longitudinal fasciculus and inferior longitudinal fasciculus; and one projection fiber tract - corticospinal tract. Microstructural integrity as measured by fractional anisotropy (FA, mean diffusivity (MD, radial diffusivity (RD and axial diffusivity (AxD was assessed for these tracts. RESULTS: Compared with CN, late aMCI had lower white matter integrity in the fornix, the parahippocampal cingulum, and the uncinate fasciculus, while early aMCI showed white matter damage in the fornix. In addition, fornical measures were correlated with hippocampal atrophy in late aMCI, whereas abnormality of the fornix in early aMCI occurred in the absence of hippocampal atrophy and did not correlate with hippocampal volumes. CONCLUSIONS: Limbic white matter tracts are preferentially affected in the early stages of cognitive dysfunction. Microstructural degradation of the fornix preceding hippocampal atrophy may serve as a novel imaging marker for aMCI at an early stage.

  20. Early-stage white matter lesions detected by multispectral MRI segmentation predict progressive cognitive decline

    Directory of Open Access Journals (Sweden)

    Hanna eJokinen

    2015-12-01

    Full Text Available White matter lesions (WML are the main brain imaging surrogate of cerebral small-vessel disease. A new MRI tissue segmentation method, based on a discriminative clustering approach without explicit model-based added prior, detects partial WML volumes, likely representing very early-stage changes in normal-appearing brain tissue. This study investigated how the different stages of WML, from a pre-visible stage to fully developed lesions, predict future cognitive decline. MRI scans of 78 subjects, aged 65-84 years, from the Leukoaraiosis and Disability (LADIS study were analyzed using a self-supervised multispectral segmentation algorithm to identify tissue types and partial WML volumes. Each lesion voxel was classified as having a small (33%, intermediate (66%, or high (100% proportion of lesion tissue. The subjects were evaluated with detailed clinical and neuropsychological assessments at baseline and at three annual follow-up visits. We found that voxels with small partial WML predicted lower executive function compound scores at baseline, and steeper decline of executive scores in follow-up, independently of the demographics and the conventionally estimated hyperintensity volume on fluid-attenuated inversion recovery images. The intermediate and fully developed lesions were related to impairments in multiple cognitive domains including executive functions, processing speed, memory and global cognitive function. In conclusion, early-stage partial WML, still too faint to be clearly detectable on conventional MRI, already predict executive dysfunction and progressive cognitive decline regardless of the conventionally evaluated WML load. These findings advance early recognition of small vessel disease and incipient vascular cognitive impairment.

  1. Preoperative White Matter Lesions Are Independent Predictors of Long-Term Survival after Internal Carotid Endarterectomy

    Directory of Open Access Journals (Sweden)

    Niku Oksala

    2014-06-01

    Full Text Available Background: Cerebral white matter lesions (WMLs predict long-term survival of conservatively treated acute stroke patients with etiology other than carotid stenosis. In carotid endarterectomy patients, WMLs are associated with severe carotid stenosis and unstable plaques, with the risk of perioperative complications and with increased 30-day perioperative risk of death. However, no data exist on their effect on postoperative long-term survival, a factor important when considering the net benefit from carotid endarterectomy. Whether this effect is independent of classical risk factors and indications for surgery is not known either. We hypothesized that WMLs could be evaluated from preoperative routine computed tomography (CT scans and are predictors of postoperative survival, independent of classical cardiovascular risk factors, indication category and degree of carotid stenosis. Methods: A total of 353 of 481 (73.4% consecutive patients subjected to carotid endarterectomy due to different indications, i.e. asymptomatic stenosis (n = 28, 7.9%, amaurosis fugax (n = 52, 14.7%, transient ischemic attack (n = 135, 38.2% or ischemic stroke (n = 138, 39.1%, from prospective vascular registries during the years 2001-2010 with digital preoperative CT scans, were included in the study. WMLs were rated by a radiologist (Wahlund criteria in a blinded fashion. Internal carotid artery (ICA stenoses were angiographically graded (Results: WML severity could be assessed with a substantial intraobserver agreement (Spearman's rho 0.843, p Conclusions: WMLs in a preoperative CT scan provide a substantially reliable estimate of postoperative long-term survival of carotid endarterectomy patients independent of currently used criteria, i.e. cardiovascular risk factors, indication category and degree of ipsilateral ICA stenosis.

  2. White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia.

    Science.gov (United States)

    da Silva Alves, Fabiana; Schmitz, Nicole; Bloemen, Oswald; van der Meer, Johan; Meijer, Julia; Boot, Erik; Nederveen, Aart; de Haan, Lieuwe; Linszen, Don; van Amelsvoort, Therese

    2011-10-01

    Dysfunction of cerebral white matter (WM) is a potential factor underlying the neurobiology of schizophrenia. People with 22q11 deletion syndrome have altered brain morphology and increased risk for schizophrenia, therefore decreased WM integrity may be related to schizophrenia in 22q11DS. We measured fractional anisotropy (FA) and WM volume in 27 adults with 22q11DS with schizophrenia (n=12, 22q11DS SCZ+) and without schizophrenia (n=15, 22q11DS SCZ-), 12 individuals with idiopathic schizophrenia and 31 age-matched healthy controls. We found widespread decreased WM volume in posterior and temporal brain areas and decreased FA in areas of the frontal cortex in the whole 22q11DS group compared to healthy controls. In 22q11DS SCZ+ compromised WM integrity included inferior frontal areas of parietal and occipital lobe. Idiopathic schizophrenia patients showed decreased FA in inferior frontal and insular regions compared to healthy controls. We found no WM alterations in 22q11DS SCZ+ vs. 22q11DS SCZ-. However, there was a negative correlation between FA and PANSS scores (Positive and Negative Symptom Scale) in the whole 22q11DS group in the inferior frontal, cingulate, insular and temporal areas. This is the first study to investigate WM integrity in adults with 22q11DS. Our results suggest that pervasive WM dysfunction is intrinsic to 22q11DS and that psychotic development in adults with 22q11DS involves similar brain areas as seen in schizophrenia in the general population.

  3. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence

    Science.gov (United States)

    Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d’Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders. PMID:27199831

  4. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence.

    Science.gov (United States)

    Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d'Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders.

  5. MRI markers for mild cognitive impairment: comparisons between white matter integrity and gray matter volume measurements.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available The aim of the study was to evaluate the value of assessing white matter integrity using diffusion tensor imaging (DTI for classification of mild cognitive impairment (MCI and prediction of cognitive impairments in comparison to brain atrophy measurements using structural MRI. Fifty-one patients with MCI and 66 cognitive normal controls (CN underwent DTI and T1-weighted structural MRI. DTI measures included fractional anisotropy (FA and radial diffusivity (DR from 20 predetermined regions-of-interest (ROIs in the commissural, limbic and association tracts, which are thought to be involved in Alzheimer's disease; measures of regional gray matter (GM volume included 21 ROIs in medial temporal lobe, parietal cortex, and subcortical regions. Significant group differences between MCI and CN were detected by each MRI modality: In particular, reduced FA was found in splenium, left isthmus cingulum and fornix; increased DR was found in splenium, left isthmus cingulum and bilateral uncinate fasciculi; reduced GM volume was found in bilateral hippocampi, left entorhinal cortex, right amygdala and bilateral thalamus; and thinner cortex was found in the left entorhinal cortex. Group classifications based on FA or DR was significant and better than classifications based on GM volume. Using either DR or FA together with GM volume improved classification accuracy. Furthermore, all three measures, FA, DR and GM volume were similarly accurate in predicting cognitive performance in MCI patients. Taken together, the results imply that DTI measures are as accurate as measures of GM volume in detecting brain alterations that are associated with cognitive impairment. Furthermore, a combination of DTI and structural MRI measurements improves classification accuracy.

  6. L-carnitine enhances axonal plasticity and improves white-matter lesions after chronic hypoperfusion in rat brain.

    Science.gov (United States)

    Ueno, Yuji; Koike, Masato; Shimada, Yoshiaki; Shimura, Hideki; Hira, Kenichiro; Tanaka, Ryota; Uchiyama, Yasuo; Hattori, Nobutaka; Urabe, Takao

    2015-03-01

    Chronic cerebral hypoperfusion causes white-matter lesions (WMLs) with oxidative stress and cognitive impairment. However, the biologic mechanisms that regulate axonal plasticity under chronic cerebral hypoperfusion have not been fully investigated. Here, we investigated whether L-carnitine, an antioxidant agent, enhances axonal plasticity and oligodendrocyte expression, and explored the signaling pathways that mediate axonal plasticity in a rat chronic hypoperfusion model. Adult male Wistar rats subjected to ligation of the bilateral common carotid arteries (LBCCA) were treated with or without L-carnitine. L-carnitine-treated rats exhibited significantly reduced escape latency in the Morris water maze task at 28 days after chronic hypoperfusion. Western blot analysis indicated that L-carnitine increased levels of phosphorylated high-molecular weight neurofilament (pNFH), concurrent with a reduction in phosphorylated phosphatase tensin homolog deleted on chromosome 10 (PTEN), and increased phosphorylated Akt and mammalian target of rapamycin (mTOR) at 28 days after chronic hypoperfusion. L-carnitine reduced lipid peroxidation and oxidative DNA damage, and enhanced oligodendrocyte marker expression and myelin sheath thickness after chronic hypoperfusion. L-carnitine regulates the PTEN/Akt/mTOR signaling pathway, and enhances axonal plasticity while concurrently ameliorating oxidative stress and increasing oligodendrocyte myelination of axons, thereby improving WMLs and cognitive impairment in a rat chronic hypoperfusion model. PMID:25465043

  7. The Plasticity of Brain Gray Matter and White Matter following Lower Limb Amputation

    Science.gov (United States)

    Jiang, Guangyao; Yin, Xuntao; Li, Chuanming; Li, Lei; Zhao, Lu; Evans, Alan C.; Jiang, Tianzi; Wu, Jixiang; Wang, Jian

    2015-01-01

    Accumulating evidence has indicated that amputation induces functional reorganization in the sensory and motor cortices. However, the extent of structural changes after lower limb amputation in patients without phantom pain remains uncertain. We studied 17 adult patients with right lower limb amputation and 18 healthy control subjects using T1-weighted magnetic resonance imaging and diffusion tensor imaging. Cortical thickness and fractional anisotropy (FA) of white matter (WM) were investigated. In amputees, a thinning trend was seen in the left premotor cortex (PMC). Smaller clusters were also noted in the visual-to-motor regions. In addition, the amputees also exhibited a decreased FA in the right superior corona radiata and WM regions underlying the right temporal lobe and left PMC. Fiber tractography from these WM regions showed microstructural changes in the commissural fibers connecting the bilateral premotor cortices, compatible with the hypothesis that amputation can lead to a change in interhemispheric interactions. Finally, the lower limb amputees also displayed significant FA reduction in the right inferior frontooccipital fasciculus, which is negatively correlated with the time since amputation. In conclusion, our findings indicate that the amputation of lower limb could induce changes in the cortical representation of the missing limb and the underlying WM connections. PMID:26587289

  8. The Plasticity of Brain Gray Matter and White Matter following Lower Limb Amputation

    Directory of Open Access Journals (Sweden)

    Guangyao Jiang

    2015-01-01

    Full Text Available Accumulating evidence has indicated that amputation induces functional reorganization in the sensory and motor cortices. However, the extent of structural changes after lower limb amputation in patients without phantom pain remains uncertain. We studied 17 adult patients with right lower limb amputation and 18 healthy control subjects using T1-weighted magnetic resonance imaging and diffusion tensor imaging. Cortical thickness and fractional anisotropy (FA of white matter (WM were investigated. In amputees, a thinning trend was seen in the left premotor cortex (PMC. Smaller clusters were also noted in the visual-to-motor regions. In addition, the amputees also exhibited a decreased FA in the right superior corona radiata and WM regions underlying the right temporal lobe and left PMC. Fiber tractography from these WM regions showed microstructural changes in the commissural fibers connecting the bilateral premotor cortices, compatible with the hypothesis that amputation can lead to a change in interhemispheric interactions. Finally, the lower limb amputees also displayed significant FA reduction in the right inferior frontooccipital fasciculus, which is negatively correlated with the time since amputation. In conclusion, our findings indicate that the amputation of lower limb could induce changes in the cortical representation of the missing limb and the underlying WM connections.

  9. Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Menke, Ricarda A L; Körner, Sonja; Filippini, Nicola; Douaud, Gwenaëlle; Knight, Steven; Talbot, Kevin; Turner, Martin R

    2014-09-01

    Diagnosis, stratification and monitoring of disease progression in amyotrophic lateral sclerosis currently rely on clinical history and examination. The phenotypic heterogeneity of amyotrophic lateral sclerosis, including extramotor cognitive impairments is now well recognized. Candidate biomarkers have shown variable sensitivity and specificity, and studies have been mainly undertaken only cross-sectionally. Sixty patients with sporadic amyotrophic lateral sclerosis (without a family history of amyotrophic lateral sclerosis or dementia) underwent baseline multimodal magnetic resonance imaging at 3 T. Grey matter pathology was identified through analysis of T1-weighted images using voxel-based morphometry. White matter pathology was assessed using tract-based spatial statistics analysis of indices derived from diffusion tensor imaging. Cross-sectional analyses included group comparison with a group of healthy controls (n = 36) and correlations with clinical features, including regional disability, clinical upper motor neuron signs and cognitive impairment. Patients were offered 6-monthly follow-up MRI, and the last available scan was used for a separate longitudinal analysis (n = 27). In cross-sectional study, the core signature of white matter pathology was confirmed within the corticospinal tract and callosal body, and linked strongly to clinical upper motor neuron burden, but also to limb disability subscore and progression rate. Localized grey matter abnormalities were detected in a topographically appropriate region of the left motor cortex in relation to bulbar disability, and in Broca's area and its homologue in relation to verbal fluency. Longitudinal analysis revealed progressive and widespread changes in the grey matter, notably including the basal ganglia. In contrast there was limited white matter pathology progression, in keeping with a previously unrecognized limited change in individual clinical upper motor neuron scores, despite advancing disability

  10. Schizophrenia Patients Demonstrate Both Inter-Voxel Level and Intra-Voxel Level White Matter Alterations.

    Science.gov (United States)

    Zhuo, Chuanjun; Ma, Xiaolei; Qu, Hongru; Wang, Lina; Jia, Feng; Wang, Chunli

    2016-01-01

    Fractional anisotropy (FA) and mean diffusivity (MD) are the most frequently used metrics to investigate white matter impairments in mental disorders. However, these two metrics are derived from intra-voxel analyses and only reflect the diffusion properties solely within the voxel unit. Local diffusion homogeneity (LDH) is a newly developed inter-voxel metric which quantifies the local coherence of water molecule diffusion in a model-free manner. In this study, 94 schizophrenia patients and 91 sex- and age-matched healthy controls underwent diffusion tensor imaging (DTI) examinations. White matter integrity was assessed by FA, MD and LDH. Group differences in these metrics were compared using tract-based spatial statistics (TBSS). Compared with healthy controls, schizophrenia patients exhibited reduced FA and increased MD in the corpus callosum, cingulum, internal capsule, fornix and widespread superficial white matter in the frontal, parietal, occipital and temporal lobes. We also found decreased LDH in the corpus callosum, cingulum, internal capsule and fornix in schizophrenia. Our findings suggest that both intra-voxel and inter-voxel diffusion metrics are able to detect impairments in the anisotropic white matter regions, and intra-voxel diffusion metrics could detect additional impairments in the widespread isotropic white matter regions in schizophrenia. PMID:27618693

  11. Diffusion-Weighted MR Imaging of Unusual White Matter Lesion in a Patient with Menkes Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Shin; Ryoo, Jae Wook; Choi, Dae Seob; Cho, Jae Min; Kwon, Soo Hyun; Shin, Hee Suk [Gyeongsang National University College of Medicine, Jinju (Korea, Republic of)

    2007-02-15

    We report here on the diffusion-weighted imaging of unusual white matter lesions in a case of Menkes disease. On the initial MR imaging, the white matter lesions were localized in the deep periventricular white matter in the absence of diffuse cortical atrophy. The lesion showed diffuse high signal on the diffusion weighted images and diffuse progression and persistent hyperintensity on the follow up imaging. Our case suggests that the white matter lesion may precede diffuse cortical atrophy in a patient with Menkes disease. Menkes disease is an X-linked disorder that's caused by impaired intracellular transport of copper. We describe here the DWI findings of unusual and progressive white matter lesions in a case of Menkes disease. Menkes disease is an X-linked recessive disorder, and it is due to an inborn error of copper metabolism. The cause of Menkes disease has been isolated to a genetic defect in copper-transporting adenosine triphosphatase, and this results in low levels of intracellular copper. It is characterized clinically by failure to thrive, retarded mental and motor development, clonic seizure and peculiarly coarse, sparse and colorless scalp hair. These clinical findings can be explained by a dysfunction of the copper-dependent enzymes.

  12. Dopamine transporter availability in clinically normal aging is associated with individual differences in white matter integrity

    Science.gov (United States)

    Rieckmann, Anna; Hedden, Trey; Younger, Alayna P.; Sperling, Reisa A.; Johnson, Keith A.; Buckner, Randy L.

    2016-01-01

    Aging-related differences in white matter integrity, the presence of amyloid plaques, and density of biomarkers indicative of dopamine functions can be detected and quantified with in vivo human imaging. The primary aim of the present study was to investigate whether these imaging-based measures constitute independent imaging biomarkers in older adults, which would speak to the hypothesis that the aging brain is characterized by multiple independent neurobiological cascades. We assessed MRI-based markers of white matter integrity and PET-based marker of dopamine transporter density and amyloid deposition in the same set of 53 clinically normal individuals (age 65–87). A multiple regression analysis demonstrated that dopamine transporter availability is predicted by white matter integrity, which was detectable even after controlling for chronological age. Further post-hoc exploration revealed that dopamine transporter availability was further associated with systolic blood pressure, mirroring the established association between cardiovascular health and white matter integrity. Dopamine transporter availability was not associated with the presence of amyloid burden. Neurobiological correlates of dopamine transporter measures in aging are therefore likely unrelated to Alzheimer’s disease but are aligned with white matter integrity and cardiovascular risk. More generally, these results suggest that two common imaging markers of the aging brain that are typically investigated separately do not reflect independent neurobiological processes. PMID:26542307

  13. White matter microstructure pathology in classic galactosemia revealed by neurite orientation dispersion and density imaging.

    Science.gov (United States)

    Timmers, Inge; Zhang, Hui; Bastiani, Matteo; Jansma, Bernadette M; Roebroeck, Alard; Rubio-Gozalbo, M Estela

    2015-03-01

    White matter abnormalities have been observed in patients with classic galactosemia, an inborn error of galactose metabolism. However, magnetic resonance imaging (MRI) data collected in the past were generally qualitative in nature. Our objective was to investigate white matter microstructure pathology and examine correlations with outcome and behaviour in this disease, by using multi-shell diffusion weighted imaging. In addition to standard diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI) was used to estimate density and orientation dispersion of neurites in a group of eight patients (aged 16-21 years) and eight healthy controls (aged 15-20 years). Extensive white matter abnormalities were found: neurite density index (NDI) was lower in the patient group in bilateral anterior areas, and orientation dispersion index (ODI) was increased mainly in the left hemisphere. These specific regional profiles are in agreement with the cognitive profile observed in galactosemia, showing higher order cognitive impairments, and language and motor impairments, respectively. Less favourable white matter properties correlated positively with age and age at onset of diet, and negatively with behavioural outcome (e.g. visual working memory). To conclude, this study provides evidence of white matter pathology regarding density and dispersion of neurites in these patients. The results are discussed in light of suggested pathophysiological mechanisms. PMID:25344151

  14. Characterization of neurons in the cortical white matter in human temporal lobe epilepsy.

    Science.gov (United States)

    Richter, Zsófia; Janszky, József; Sétáló, György; Horváth, Réka; Horváth, Zsolt; Dóczi, Tamás; Seress, László; Ábrahám, Hajnalka

    2016-10-01

    The aim of the present work was to characterize neurons in the archi- and neocortical white matter, and to investigate their distribution in mesial temporal sclerosis. Immunohistochemistry and quantification of neurons were performed on surgically resected tissue sections of patients with therapy-resistant temporal lobe epilepsy. Temporal lobe tissues of patients with tumor but without epilepsy and that from autopsy were used as controls. Neurons were identified with immunohistochemistry using antibodies against NeuN, calcium-binding proteins, transcription factor Tbr1 and neurofilaments. We found significantly higher density of neurons in the archi- and neocortical white matter of patients with temporal lobe epilepsy than in that of controls. Based on their morphology and neurochemical content, both excitatory and inhibitory cells were present among these neurons. A subset of neurons in the white matter was Tbr-1-immunoreactive and these neurons coexpressed NeuN and neurofilament marker SMI311R. No colocalization of Tbr1 was observed with the inhibitory neuronal markers, calcium-binding proteins. We suggest that a large population of white matter neurons comprises remnants of the subplate. Furthermore, we propose that a subset of white matter neurons was arrested during migration, highlighting the role of cortical maldevelopment in epilepsy associated with mesial temporal sclerosis. PMID:27423628

  15. Susceptibility-weighted imaging provides insight into white matter damage in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Tino Prell

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal, progressive neurodegenerative disorder, characterised by widespread white matter damage. There is growing evidence that disturbances in iron metabolism contribute to white matter alterations.We analysed the data of susceptibility-weighted imaging (SWI of white matter in a cohort of 27 patients with ALS and 30 healthy age-matched controls.Signal alterations were found on SWI in the corpus callosum; along the corticospinal tract (subcortical motor cortex, posterior limb of the internal capsule and brainstem levels and in the subgyral regions of frontal, parietal, temporal, occipital and limbic lobes. Alterations of white matter in the corpus callosum correlated with disease severity as assessed by the revised ALS functional rating scale.SWI is capable of indicating iron and myelin disturbances in white matter of ALS patients. The SWI patterns observed in this study suggest that widespread alterations due to iron disturbances occur in patients with ALS and correlate with disease severity.

  16. Altered White Matter Microstructure in Adolescents and Adults with Bulimia Nervosa.

    Science.gov (United States)

    He, Xiaofu; Stefan, Mihaela; Terranova, Kate; Steinglass, Joanna; Marsh, Rachel

    2016-06-01

    Previous data suggest structural and functional deficits in frontal control circuits in adolescents and adults with bulimia nervosa (BN), but less is known about the microstructure of white matter in these circuits early in the course of the disorder. Diffusion tensor imaging (DTI) data were acquired from 28 female adolescents and adults with BN and 28 age- and BMI-matched healthy female participants. Tract-based spatial statistics (TBSS) was used to detect group differences in white matter microstructure and explore the differential effects of age on white matter microstructure across groups. Significant reductions in fractional anisotropy (FA) were detected in the BN compared with healthy control group in multiple tracts including forceps minor and major, superior longitudinal, inferior fronto-occipital, and uncinate fasciculi, anterior thalamic radiation, cingulum, and corticospinal tract. FA reductions in forceps and frontotemporal tracts correlated inversely with symptom severity and Stroop interference in the BN group. These findings suggest that white matter microstructure is abnormal in BN in tracts extending through frontal and temporoparietal cortices, especially in those with the most severe symptoms. Age-related differences in both FA and RD in these tracts in BN compared with healthy individuals may represent an abnormal trajectory of white matter development that contributes to the persistence of functional impairments in self-regulation in BN.

  17. Schizophrenia Patients Demonstrate Both Inter-Voxel Level and Intra-Voxel Level White Matter Alterations.

    Science.gov (United States)

    Zhuo, Chuanjun; Ma, Xiaolei; Qu, Hongru; Wang, Lina; Jia, Feng; Wang, Chunli

    2016-01-01

    Fractional anisotropy (FA) and mean diffusivity (MD) are the most frequently used metrics to investigate white matter impairments in mental disorders. However, these two metrics are derived from intra-voxel analyses and only reflect the diffusion properties solely within the voxel unit. Local diffusion homogeneity (LDH) is a newly developed inter-voxel metric which quantifies the local coherence of water molecule diffusion in a model-free manner. In this study, 94 schizophrenia patients and 91 sex- and age-matched healthy controls underwent diffusion tensor imaging (DTI) examinations. White matter integrity was assessed by FA, MD and LDH. Group differences in these metrics were compared using tract-based spatial statistics (TBSS). Compared with healthy controls, schizophrenia patients exhibited reduced FA and increased MD in the corpus callosum, cingulum, internal capsule, fornix and widespread superficial white matter in the frontal, parietal, occipital and temporal lobes. We also found decreased LDH in the corpus callosum, cingulum, internal capsule and fornix in schizophrenia. Our findings suggest that both intra-voxel and inter-voxel diffusion metrics are able to detect impairments in the anisotropic white matter regions, and intra-voxel diffusion metrics could detect additional impairments in the widespread isotropic white matter regions in schizophrenia.

  18. Cognitive processing speed in older adults: relationship with white matter integrity.

    Directory of Open Access Journals (Sweden)

    Geoffrey A Kerchner

    Full Text Available Cognitive processing slows with age. We sought to determine the importance of white matter integrity, assessed by diffusion tensor imaging (DTI, at influencing cognitive processing speed among normal older adults, assessed using a novel battery of computerized, non-verbal, choice reaction time tasks. We studied 131 cognitively normal adults aged 55-87 using a cross-sectional design. Each participant underwent our test battery, as well as MRI with DTI. We carried out cross-subject comparisons using tract-based spatial statistics. As expected, reaction time slowed significantly with age. In diffuse areas of frontal and parietal white matter, especially the anterior corpus callosum, fractional anisotropy values correlated negatively with reaction time. The genu and body of the corpus callosum, superior longitudinal fasciculus, and inferior fronto-occipital fasciculus were among the areas most involved. This relationship was not explained by gray or white matter atrophy or by white matter lesion volume. In a statistical mediation analysis, loss of white matter integrity mediated the relationship between age and cognitive processing speed.

  19. Reciprocal white matter alterations due to 16p11.2 chromosomal deletions versus duplications.

    Science.gov (United States)

    Chang, Yi Shin; Owen, Julia P; Pojman, Nicholas J; Thieu, Tony; Bukshpun, Polina; Wakahiro, Mari L J; Marco, Elysa J; Berman, Jeffrey I; Spiro, John E; Chung, Wendy K; Buckner, Randy L; Roberts, Timothy P L; Nagarajan, Srikantan S; Sherr, Elliott H; Mukherjee, Pratik

    2016-08-01

    Copy number variants at the 16p11.2 chromosomal locus are associated with several neuropsychiatric disorders, including autism, schizophrenia, bipolar disorder, attention-deficit hyperactivity disorder, and speech and language disorders. A gene dosage dependence has been suggested, with 16p11.2 deletion carriers demonstrating higher body mass index and head circumference, and 16p11.2 duplication carriers demonstrating lower body mass index and head circumference. Here, we use diffusion tensor imaging to elucidate this reciprocal relationship in white matter organization, showing widespread increases of fractional anisotropy throughout the supratentorial white matter in pediatric deletion carriers and, in contrast, extensive decreases of white matter fractional anisotropy in pediatric and adult duplication carriers. We find associations of these white matter alterations with cognitive and behavioral impairments. We further demonstrate the value of imaging metrics for characterizing the copy number variant phenotype by employing linear discriminant analysis to predict the gene dosage status of the study subjects. These results show an effect of 16p11.2 gene dosage on white matter microstructure, and further suggest that opposite changes in diffusion tensor imaging metrics can lead to similar cognitive and behavioral deficits. Given the large effect sizes found in this study, our results support the view that specific genetic variations are more strongly associated with specific brain alterations than are shared neuropsychiatric diagnoses. Hum Brain Mapp 37:2833-2848, 2016. © 2016 Wiley Periodicals, Inc. PMID:27219475

  20. Abnormal Behaviors and Microstructural Changes in White Matter of Juvenile Mice Repeatedly Exposed to Amphetamine

    Directory of Open Access Journals (Sweden)

    Hong-Ju Yang

    2011-01-01

    Full Text Available Amphetamine (AMP is an addictive CNS stimulant and has been commonly abused by adolescents and young adults, during which period brain white matter is still developing. This study was to examine the effect of a nonneurotoxic AMP on the white matter of juvenile mice. d-AMP (1.0 mg/kg was given to young male C57BL/6 mice once a day for 21 days. The spatial working memory and locomotion of mice were measured at the end. Then, mice were sacrificed and their brains were processed for morphological analyses to examine the white matter structure and for Western blot analysis to measure three main proteins expressed in mature oligodendrocytes. AMP-treated mice displayed higher locomotion and spatial working memory impairment and showed lower levels of Nogo-A and GST-pi proteins in frontal cortex and lower MBP protein in the frontal cortex and hippocampus. They also had fewer mature oligodendrocytes and weak MBP immunofluorescent staining in the same two brain regions. But the striatum was spared. These results suggest that the late-developing white matter is vulnerable to AMP treatment which is able to increase striatal and cortical dopamine. Both the compromised white matter and increased dopamine may contribute to the observed behavioral changes in AMP-treated mice.

  1. Neuroblast Distribution After Cortical Impact is Influenced by White Matter Injury in the Immature Gyrencephalic Brain.

    Directory of Open Access Journals (Sweden)

    Sabrina Taylor

    2016-08-01

    Full Text Available Cortical contusions are a common type of traumatic brain injury (TBI in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND 7, BrdU 2 days prior to (PND 5 and 6 or after injury (PND 7 and 8, and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU+ neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of

  2. Cerebral palsy

    International Nuclear Information System (INIS)

    This paper reviews cranial MR findings in patients with cerebral palsy (CP) to clarify and categorize this disorder. The MR images of 40 patients with clinical CP were retrospectively reviewed. All patients suffered either varying spastic plegias, hypotonicity, or choreoathetosis. Concomitantly, the patients suffered from static encephalopathy, developmental delay, and/or microcephaly. Twenty-four patients were born at or near term, 10 were premature, and incomplete birth histories were available in six. The MR images revealed mild to severe degrees of white matter damage in 24 patients (12 term, nine premature, three unknown)

  3. A study of brain white matter plasticity in early blinds using tract-based spatial statistics and tract statistical analysis.

    Science.gov (United States)

    Lao, Yi; Kang, Yue; Collignon, Olivier; Brun, Caroline; Kheibai, Shadi B; Alary, Flamine; Gee, James; Nelson, Marvin D; Lepore, Franco; Lepore, Natasha

    2015-12-16

    Early blind individuals are known to exhibit structural brain reorganization. Particularly, early-onset blindness may trigger profound brain alterations that affect not only the visual system but also the remaining sensory systems. Diffusion tensor imaging (DTI) allows in-vivo visualization of brain white matter connectivity, and has been extensively used to study brain white matter structure. Among statistical approaches based on DTI, tract-based spatial statistics (TBSS) is widely used because of its ability to automatically perform whole brain white matter studies. Tract specific analysis (TSA) is a more recent method that localizes changes in specific white matter bundles. In the present study, we compare TBSS and TSA results of DTI scans from 12 early blind individuals and 13 age-matched sighted controls, with two aims: (a) to investigate white matter alterations associated with early visual deprivation; (b) to examine the relative sensitivity of TSA when compared with TBSS, for both deficit and hypertrophy of white matter microstructures. Both methods give consistent results for broad white matter regions of deficits. However, TBSS does not detect hypertrophy of white matter, whereas TSA shows a higher sensitivity in detecting subtle differences in white matter colocalized to the posterior parietal lobe. PMID:26559727

  4. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jasmeet P. Hayes

    2015-01-01

    Full Text Available Blast-related traumatic brain injury (TBI has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI. The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC group, and blast-related mTBI with LOC (mTBI + LOC group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1 a region-specific analysis and 2 a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of

  5. White Matter Changes in Bipolar Disorder, Alzheimer Disease, and Mild Cognitive Impairment: New Insights from DTI

    Directory of Open Access Journals (Sweden)

    Aikaterini Xekardaki

    2011-01-01

    Full Text Available Neuropathological and neuroimaging studies have reported significant changes in white matter in psychiatric and neurodegenerative diseases. Diffusion tensor imaging (DTI, a recently developed technique, enables the detection of microstructural changes in white matter. It is a noninvasive in vivo technique that assesses water molecules' diffusion in brain tissues. The most commonly used parameters are axial and radial diffusivity reflecting diffusion along and perpendicular to the axons, as well as mean diffusivity and fractional anisotropy representing global diffusion. Although the combination of these parameters provides valuable information about the integrity of brain circuits, their physiological meaning still remains controversial. After reviewing the basic principles of DTI, we report on recent contributions that used this technique to explore subtle structural changes in white matter occurring in elderly patients with bipolar disorder and Alzheimer disease.

  6. Analysis of the brain-stem white-matter tracts with diffusion tensor imaging

    International Nuclear Information System (INIS)

    The authors have reviewed the diffusion tensor imaging (DTI) of the brain stem in 19 subjects, consisting of 15 normal volunteers and four multi-system atrophy patients. The study was performed with 1.5 T MRI scanners. DTI was correlated with an automated program allowing superposition of the structural anatomy. Axial, sagittal, and coronal images demonstrated major white-matter fibers within the brain stem, including cortico-spinal tracts, transverse pontine fibers, and medial lemniscus. Smaller fibers, such as medial longitudinal fascicles and central tegmental tracts are difficult to visualize. To identify the anatomical orientation of the brain stem, white-matter fibers will help us understand the different functional disease processes, and DTI will play an important role for the evaluation of the different white matter fibers in the brain stem. (orig.)

  7. Short-term meditation induces white matter changes in the anterior cingulate.

    Science.gov (United States)

    Tang, Yi-Yuan; Lu, Qilin; Geng, Xiujuan; Stein, Elliot A; Yang, Yihong; Posner, Michael I

    2010-08-31

    The anterior cingulate cortex (ACC) is part of a network implicated in the development of self-regulation and whose connectivity changes dramatically in development. In previous studies we showed that 3 h of mental training, based on traditional Chinese medicine (integrative body-mind training, IBMT), increases ACC activity and improves self-regulation. However, it is not known whether changes in white matter connectivity can result from small amounts of mental training. We here report that 11 h of IBMT increases fractional anisotropy (FA), an index indicating the integrity and efficiency of white matter in the corona radiata, an important white-matter tract connecting the ACC to other structures. Thus IBMT could provide a means for improving self-regulation and perhaps reducing or preventing various mental disorders.

  8. Right fronto-insular white matter tracts link cognitive reserve and pain in migraine patients

    OpenAIRE

    Gomez-Beldarrain, Marian; Oroz, Isabel; Zapirain, Begoña Garcia; Ruanova, Begoña Fernandez; Fernandez, Yolanda Garcia; Cabrera, Alberto; Anton-Ladislao, Ane; Aguirre-Larracoechea, Urko; Garcıa-Monco, Juan Carlos

    2016-01-01

    Background Structural white matter abnormalities in pain-modulating, regions are present in migraine. Whether they are associated with pain chronification and with cognitive reserve is unclear. Methods Prospective, cohort, six-month study of adult patients with episodic or chronic migraine, and controls. Cognitive reserve, quality of life, impact of pain on daily living, depression and anxiety were assessed. Participants underwent a diffusion-tensor MRI to establish the integrity of white mat...

  9. Migraine with aura and risk of silent brain infarcts and white matter hyperintensities: an MRI study.

    Science.gov (United States)

    Gaist, David; Garde, Ellen; Blaabjerg, Morten; Nielsen, Helle H; Krøigård, Thomas; Østergaard, Kamilla; Møller, Harald S; Hjelmborg, Jacob; Madsen, Camilla G; Iversen, Pernille; Kyvik, Kirsten O; Siebner, Hartwig R; Ashina, Messoud

    2016-07-01

    A small number of population-based studies reported an association between migraine with aura and risk of silent brain infarcts and white matter hyperintensities in females. We investigated these relations in a population-based sample of female twins. We contacted female twins ages 30-60 years identified through the population-based Danish Twin Registry. Based on questionnaire responses, twins were invited to participate in a telephone-based interview conducted by physicians. Headache diagnoses were established according to the International Headache Society criteria. Cases with migraine with aura, their co-twins, and unrelated migraine-free twins (controls) were invited to a brain magnetic resonance imaging scan performed at a single centre. Brain scans were assessed for the presence of infarcts, and white matter hyperintensities (visual rating scales and volumetric analyses) blinded to headache diagnoses. Comparisons were based on 172 cases, 34 co-twins, and 139 control subjects. Compared with control subjects, cases did not differ with regard to frequency of silent brain infarcts (four cases versus one control), periventricular white matter hyperintensity scores [adjusted mean difference (95% confidence interval): -0.1 (-0.5 to 0.2)] or deep white matter hyperintensity scores [adjusted mean difference (95% confidence interval): 0.1 (-0.8 to 1.1)] assessed by Scheltens' scale. Cases had a slightly higher total white matter hyperintensity volume compared with controls [adjusted mean difference (95% confidence interval): 0.17 (-0.08 to 0.41) cm(3)] and a similar difference was present in analyses restricted to twin pairs discordant for migraine with aura [adjusted mean difference 0.21 (-0.20 to 0.63)], but these differences did not reach statistical significance. We found no evidence of an association between silent brain infarcts, white matter hyperintensities, and migraine with aura. PMID:27190013

  10. Serum S100B protein is specifically related to white matter changes in schizophrenia

    Directory of Open Access Journals (Sweden)

    Berko eMilleit

    2016-03-01

    Full Text Available Background: Schizophrenia can be conceptualized as a form of dysconnectivity between brain regions. To investigate the neurobiological foundation of dysconnectivity, one approach is to analyze white matter structures, such as the pathology of fiber tracks. S100B is considered a marker protein for glial cells, in particular oligodendrocytes and astroglia, that passes the blood brain barrier and is detectable in peripheral blood. Earlier Studies have consistently reported increased S100B levels in schizophrenia. In this study, we aim to investigate associations between S100B and structural white matter abnormalities.Methods: We analyzed data of 17 unmedicated schizophrenic patients (first and recurrent episode and 22 controls. We used voxel based morphometry (VBM to detect group differences of white matter structures as obtained from T1-weighted MR-images and considered S100B serum levels as a regressor in an age-corrected interaction analysis. Results: S100B was increased in both patient subgroups. Using VBM, we found clusters indicating significant differences of the association between S100B concentration and white matter. Involved anatomical structures are the posterior cingulate bundle and temporal white matter structures assigned to the superior longitudinal fasciculus. Conclusions: S100B-associated alterations of white matter are shown to be existent already at time of first manifestation of psychosis and are distinct from findings in recurrent episode patients. This suggests involvement of S100B in an ongoing and dynamic process associated with structural brain changes in schizophrenia. However, it remains elusive whether increased S100B serum concentrations in psychotic patients represent a protective response to a continuous pathogenic process or if elevated S100B levels are actively involved in promoting structural brain damage.

  11. Genetic Schizophrenia Risk Variants Jointly Modulate Total Brain and White Matter Volume

    DEFF Research Database (Denmark)

    Terwisscha van Scheltinga, Afke F; Bakker, Steven C; van Haren, Neeltje E M;

    2013-01-01

    to calculate individual polygenic schizophrenia (risk) scores in an independent sample of 152 schizophrenia patients and 142 healthy control subjects with available structural magnetic resonance imaging scans. RESULTS: In the entire group, the polygenic schizophrenia score was significantly associated...... with total brain volume (R(2)=.048, p=1.6×10(-4)) and white matter volume (R(2)=.051, p=8.6×10(-5)) equally in patients and control subjects. The number of (independent) SNPs that substantially influenced both disease risk and white matter (n=2020) was much smaller than the entire set of SNPs that modulated...

  12. Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes

    International Nuclear Information System (INIS)

    To assess the association between aortic pulse wave velocity (PWV) as a marker of arterial stiffness and diffusion tensor imaging of brain white matter integrity in patients with type 1 diabetes using advanced magnetic resonance imaging (MRI) technology. Forty-one patients with type 1 diabetes (23 men, mean age 44 ± 12 years, mean diabetes duration 24 ± 13 years) were included. Aortic PWV was assessed using through-plane velocity-encoded MRI. Brain diffusion tensor imaging (DTI) measurements were performed on 3-T MRI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated for white and grey matter integrity. Pearson correlation and multivariable linear regression analyses including cardiovascular risk factors as covariates were assessed. Multivariable linear regression analyses revealed that aortic PWV is independently associated with white matter integrity FA (β = -0.777, p = 0.008) in patients with type 1 diabetes. This effect was independent of age, gender, mean arterial pressure, body mass index, smoking, duration of diabetes and glycated haemoglobin levels. Aortic PWV was not significantly related to grey matter integrity. Our data suggest that aortic stiffness is independently associated with reduced white matter integrity in patients with type 1 diabetes. (orig.)

  13. Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Tjeerdema, Nathanja; Schinkel, Linda D. van [Leiden University Medical Center, Department of Endocrinology and General Internal Medicine (C7-Q), Albinusdreef 2, PO Box 9600, Leiden (Netherlands); Westenberg, Jos J.; Elderen, Saskia G. van; Buchem, Mark A. van; Grond, Jeroen van der; Roos, Albert de [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Smit, Johannes W. [Leiden University Medical Center, Department of Endocrinology and General Internal Medicine (C7-Q), Albinusdreef 2, PO Box 9600, Leiden (Netherlands); University Medical Center Nijmegen, Department of General Internal Medicine, Nijmegen (Netherlands)

    2014-09-15

    To assess the association between aortic pulse wave velocity (PWV) as a marker of arterial stiffness and diffusion tensor imaging of brain white matter integrity in patients with type 1 diabetes using advanced magnetic resonance imaging (MRI) technology. Forty-one patients with type 1 diabetes (23 men, mean age 44 ± 12 years, mean diabetes duration 24 ± 13 years) were included. Aortic PWV was assessed using through-plane velocity-encoded MRI. Brain diffusion tensor imaging (DTI) measurements were performed on 3-T MRI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated for white and grey matter integrity. Pearson correlation and multivariable linear regression analyses including cardiovascular risk factors as covariates were assessed. Multivariable linear regression analyses revealed that aortic PWV is independently associated with white matter integrity FA (β = -0.777, p = 0.008) in patients with type 1 diabetes. This effect was independent of age, gender, mean arterial pressure, body mass index, smoking, duration of diabetes and glycated haemoglobin levels. Aortic PWV was not significantly related to grey matter integrity. Our data suggest that aortic stiffness is independently associated with reduced white matter integrity in patients with type 1 diabetes. (orig.)

  14. Quantitative MRI assessments of white matter in children treated for acute lymphoblastic leukemia

    Science.gov (United States)

    Reddick, Wilburn E.; Glass, John O.; Helton, Kathleen J.; Li, Chin-Shang; Pui, Ching-Hon

    2005-04-01

    The purpose of this study was to use objective quantitative MR imaging methods to prospectively assess changes in the physiological structure of white matter during the temporal evolution of leukoencephalopathy (LE) in children treated for acute lymphoblastic leukemia. The longitudinal incidence, extent (proportion of white matter affect), and intensity (elevation of T1 and T2 relaxation rates) of LE was evaluated for 44 children. A combined imaging set consisting of T1, T2, PD, and FLAIR MR images and white matter, gray matter and CSF a priori maps from a spatially normalized atlas were analyzed with a neural network segmentation based on a Kohonen Self-Organizing Map (SOM). Quantitative T1 and T2 relaxation maps were generated using a nonlinear parametric optimization procedure to fit the corresponding multi-exponential models. A Cox proportional regression was performed to estimate the effect of intravenous methotrexate (IV-MTX) exposure on the development of LE followed by a generalized linear model to predict the probability of LE in new patients. Additional T-tests of independent samples were performed to assess differences in quantitative measures of extent and intensity at four different points in therapy. Higher doses and more courses of IV-MTX placed patients at a higher risk of developing LE and were associated with more intense changes affecting more of the white matter volume; many of the changes resolved after completion of therapy. The impact of these changes on neurocognitive functioning and quality of life in survivors remains to be determined.

  15. Neuroprotective effects of activated protein C on intrauterine inflammation-induced neonatal white matter injury are associated with the downregulation of fibrinogen-like protein 2/fibroleukin prothrombinase and the inhibition of pro-inflammatory cytokine expression

    OpenAIRE

    JIN, SHENG-JUAN; Yan LIU; DENG, SHI-HUA; LIAO, LI-HONG; LIN, TU-LIAN; Ning, Qin; LUO, XIAO-PING

    2015-01-01

    Maternal intrauterine inflammation or infection is an important risk factor for neonatal cerebral white matter injury (WMI) and future neurological deficits. Activated protein C (APC), a natural anticoagulant, has been shown to exhibit anti-inflammatory, anti-apoptotic, profibrinolytic and cytoprotective activities. Recent studies have demonstrated that the novel prothrombinase, fibrinogen-like protein 2 (fgl2), contributes to the pathogenesis of a number of inflammatory diseases through the ...

  16. Periventricular white matter abnormalities and restricted repetitive behavior in autism spectrum disorder

    OpenAIRE

    Karen Blackmon; Emma Ben-Avi; Xiuyuan Wang; Pardoe, Heath R.; Adriana Di Martino; Eric Halgren; Orrin Devinsky; Thomas Thesen; Ruben Kuzniecky

    2016-01-01

    Malformations of cortical development are found at higher rates in autism spectrum disorder (ASD) than in healthy controls on postmortem neuropathological evaluation but are more variably observed on visual review of in-vivo MRI brain scans. This may be due to the visually elusive nature of many malformations on MRI. Here, we utilize a quantitative approach to determine whether a volumetric measure of heterotopic gray matter in the white matter is elevated in people with ASD, relative to typi...

  17. The Black-White achievement gap: Do state policies matter?

    Directory of Open Access Journals (Sweden)

    Henry I. Braun

    2006-03-01

    Full Text Available A longstanding issue in American education is the gap in academic achievement between majority and minority students. The goal of this study is to accumulate and evaluate evidence on the relationship between state education policies and changes in the Black-White achievement gap, while addressing some of the methodological issues that have led to differences in interpretations of earlier findings. To that end, we consider the experiences of ten states that together enroll more than forty percent of the nation's Black students. We estimate the trajectories of Black student and White student achievement on the NAEP 8th grade mathematics assessment over the period 1992 to 2000, and examine the achievement gap at three levels of aggregation: the state as a whole, groups of schools (strata within a state defined by the SES level of the student population, and within schools within a stratum within a state. From 1992 to 2000, at every level of aggregation, mean achievement rose for both Black students and White students. However, for most states the achievement gaps were large and changed very little at every level of aggregation. The gaps are pervasive, profound and persistent. There is substantial heterogeneity among states in the types of policies they pursued, as well as the coherence and consistency of those policies during the period 1988-1998. We find that states' overall policy rankings (based on our review of the data correlate moderately with their record in improving Black student achievement but are somewhat less useful in predicting their record with respect to reducing the achievement gaps. States' rankings on commitment to teacher quality correlate almost as well as did the overall policy ranking. Thus, state reform efforts are a blunt tool, but a tool nonetheless. Our findings are consistent with the following recommendations: states' reform efforts should be built on broad-based support and buffered as much as possible from changes in

  18. Combining fiber dissection, plastination, and tractography for neuroanatomical education: Revealing the cerebellar nuclei and their white matter connections.

    NARCIS (Netherlands)

    Arnts, H.; Kleinnijenhuis, M.; Kooloos, J.G.M.; Schepens-Franke, A.N.; Cappellen van Walsum, A.M. van

    2014-01-01

    In recent years, there has been a growing interest in white matter anatomy of the human brain. With advances in brain imaging techniques, the significance of white matter integrity for brain function has been demonstrated in various neurological and psychiatric disorders. As the demand for interpret

  19. Combining Fiber Dissection, Plastination, and Tractography for Neuroanatomical Education: Revealing the Cerebellar Nuclei and Their White Matter Connections

    Science.gov (United States)

    Arnts, Hisse; Kleinnijenhuis, Michiel; Kooloos, Jan G. M.; Schepens-Franke, Annelieke N.; van Cappellen van Walsum, Anne-Marie

    2014-01-01

    In recent years, there has been a growing interest in white matter anatomy of the human brain. With advances in brain imaging techniques, the significance of white matter integrity for brain function has been demonstrated in various neurological and psychiatric disorders. As the demand for interpretation of clinical and imaging data on white…

  20. Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging.

    Directory of Open Access Journals (Sweden)

    Sheng Xie

    Full Text Available Subcortical white matter builds neural connections between cortical and subcortical regions and constitutes the basis of neural networks. It plays a very important role in normal brain function. Various studies have shown that white matter deteriorates with aging. However, due to the limited spatial resolution provided by traditional diffusion imaging techniques, microstructural information from subcortical white matter with normal aging has not been comprehensively assessed. This study aims to investigate the deterioration effect with aging in the subcortical white matter and provide a baseline standard for pathological disorder diagnosis. We apply our newly developed multi-shot high resolution diffusion tensor imaging, using self-feeding multiplexed sensitivity-encoding, to measure subcortical white matter changes in regions of interest of healthy persons with a wide age range. Results show significant fractional anisotropy decline and radial diffusivity increasing with age, especially in the anterior part of the brain. We also find that subcortical white matter has more prominent changes than white matter close to the central brain. The observed changes in the subcortical white matter may be indicative of a mild demyelination and a loss of myelinated axons, which may contribute to normal age-related functional decline.

  1. Diffusion tensor MR imaging of white matter integrity in HIV-positive patients with planning deficit

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo Goulart; Doring, Thomas M.; Wilner, Nina Ventura; Cabral, Rafael Ferracini; Gasparetto, Emerson Leandro [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro, RJ (Brazil); Zimmermann, Nicolle; Fonseca, Rochele Paz [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Pontifical Catholic University of Rio Grande do Sul, Department of Psychology, Rio Grande do Sul (Brazil); Leite, Sarah C.B.; Bahia, Paulo R.V. [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil)

    2015-05-01

    The aim of this study was to evaluate whether normal controls and human immunodeficiency virus (HIV) patients with and without planning deficits differ on white matter integrity. A total of 34 HIV-positive patients with planning deficits were compared with 13 HIV-positive patients without planning deficits and 19 gender-, age-, and education-matched control subjects. Diffusion tensor imaging (DTI) was performed along 30 noncolinear directions in a 1.5-T scanner. For tract-based spatial statistics analysis, a white matter skeleton was created, and a permutation-based inference with 5000 permutations with a threshold of p < 0.05 was used to identify abnormalities in fractional anisotropy (FA). The median, radial, and axial diffusivities were also projected onto the mean FA skeleton. Compared with controls, HIV-positive patients with planning deficits had decreased FA in bilateral anterior thalamic radiations, bilateral inferior fronto-occiptal fasciculi, genu and splenium of the corpus callosum, bilateral superior longitudinal fascicule, and bilateral uncinate fasciculi. Compared to HIV-positive patients without planning deficits, patients with planning deficits had decreased FA in bilateral anterior thalamic radiations, bilateral inferior fronto-occiptal fasciculi, genu of the corpus callosum, bilateral superior longitudinal fascicule, and right uncinate fascicule. DTI can detect extensive white matter abnormalities in the normal-appearing white matter of HIV-positive patients with planning deficits compared with controls and HIV-positive patients without planning deficits. (orig.)

  2. Brainstem White Matter Predicts Individual Differences in Manual Motor Difficulties and Symptom Severity in Autism

    Science.gov (United States)

    Travers, Brittany G.; Bigler, Erin D.; Tromp, Do P. M.; Adluru, Nagesh; Destiche, Dan; Samsin, Danica; Froehlich, Alyson; Prigge, Molly D. B.; Duffield, Tyler C.; Lange, Nicholas; Alexander, Andrew L.; Lainhart, Janet E.

    2015-01-01

    Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5-33 years old) completed a…

  3. Alterations of white matter integrity related to the season of birth in schizophrenia: a DTI study.

    Directory of Open Access Journals (Sweden)

    Stéphanie Giezendanner

    Full Text Available In schizophrenia there is a consistent epidemiological finding of a birth excess in winter and spring. Season of birth is thought to act as a proxy indicator for harmful environmental factors during foetal maturation. There is evidence that prenatal exposure to harmful environmental factors may trigger pathologic processes in the neurodevelopment, which subsequently increase the risk of schizophrenia. Since brain white matter alterations have repeatedly been found in schizophrenia, the objective of this study was to investigate whether white matter integrity was related to the season of birth in patients with schizophrenia. Thirty-four patients with schizophrenia and 33 healthy controls underwent diffusion tensor imaging. Differences in the fractional anisotropy maps of schizophrenia patients and healthy controls born in different seasons were analysed with tract-based spatial statistics. A significant main effect of season of birth and an interaction of group and season of birth showed that patients born in summer had significantly lower fractional anisotropy in widespread white matter regions than those born in the remainder of the year. Additionally, later age of schizophrenia onset was found in patients born in winter months. The current findings indicate a relationship of season of birth and white matter alterations in schizophrenia and consequently support the neurodevelopmental hypothesis of early pathological mechanisms in schizophrenia.

  4. Global white matter abnormalities in schizophrenia: A multisite diffusion tensor imaging study

    NARCIS (Netherlands)

    T.J.H. White (Tonya)

    2011-01-01

    textabstractBackground: Emerging evidence implicates white matter (WM) abnormalities in the pathophysiology of schizophrenia. However, there is considerable heterogeneity in the presentation of WM abnormalities in the existing studies. The object of this study was to evaluate WM integrity in a large

  5. Schizophrenia risk variants modulate white matter volume across the psychosis spectrum: Evidence from two independent cohorts

    Directory of Open Access Journals (Sweden)

    Viola Oertel-Knöchel

    2015-01-01

    These results provide evidence for associations between cumulative genetic risk for schizophrenia and intermediate neuroimaging phenotypes in models of psychosis. Our work contributes to a growing body of literature suggesting that polygenic risk may help to explain white matter alterations associated with familial risk for psychosis.

  6. Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression

    DEFF Research Database (Denmark)

    Gouw, A A; van der Flier, W M; van Straaten, E C W;

    2008-01-01

    BACKGROUND: Investigating associations between the change of white matter hyperintensities (WMH) and clinical symptoms over time is crucial for establishing a causal relationship. However, the most suitable method for measuring WMH progression has not been established yet. We compared the reliabi...

  7. PGJ(2 provides prolonged CNS stroke protection by reducing white matter edema.

    Directory of Open Access Journals (Sweden)

    James D Nicholson

    Full Text Available Few clinically effective approaches reduce CNS-white matter injury. After early in-vivo white matter infarct, NFκB-driven pro-inflammatory signals can amplify a relatively small amount of vascular damage, resulting in progressive endothelial dysfunction to create a severe ischemic lesion. This process can be minimized by 15-deoxy-Δ(12,14-prostaglandin J2 (PGJ(2, an analog of the metabolically active PGD(2 metabolite. We evaluated PGJ(2's effects and mechanisms using rodent anterior ischemic optic neuropathy (rAION; an in vivo white matter ischemia model. PGJ(2 administration systemically administered either acutely or 5 hours post-insult results in significant neuroprotection, with stereologic evaluation showing improved neuronal survival 30 days post-infarct. Quantitative capillary vascular analysis reveals that PGJ(2 improves perfusion at 1 day post-infarct by reducing tissue edema. Our results suggest that PGJ(2 acts by reducing NFκB signaling through preventing p65 nuclear localization and inhibiting inflammatory gene expression. Importantly, PGJ(2 showed no in vivo toxicity structurally as measured by optic nerve (ON myelin thickness, functionally by ON-compound action potentials, on a cellular basis by oligodendrocyte precursor survival or changes in ON-myelin gene expression. PGJ(2 may be a clinically useful neuroprotective agent for ON and other CNS infarcts involving white matter, with mechanisms of action enabling effective treatment beyond the currently considered maximal time for intervention.

  8. White matter hyperintensities and prepulse inhibition in a mixed elderly population

    DEFF Research Database (Denmark)

    Salem, Lise C; Hejl, Anne-Mette; Garde, Ellen;

    2011-01-01

    Prepulse inhibition (PPI) of the startle response, a measure for sensorimotor gating, exhibits a relatively high inter-individual variability in elderly subjects. The aim of this study was to investigate whether white matter hyperintensities (WMH), frequently identified on cranial magnetic resona...

  9. Widespread reductions of white matter integrity in patients with long-term remission of Cushing's disease

    Directory of Open Access Journals (Sweden)

    Steven J.A. van der Werff

    2014-01-01

    Conclusion: Patients with a history of endogenous hypercortisolism in present remission show widespread changes of white matter integrity in the brain, with abnormalities in the integrity of the uncinate fasciculus being related to the severity of depressive symptoms, suggesting persistent structural effects of hypercortisolism.

  10. White matter development in adolescence: the influence of puberty and implications for affective disorders.

    Science.gov (United States)

    Ladouceur, Cecile D; Peper, Jiska S; Crone, Eveline A; Dahl, Ronald E

    2012-01-01

    There have been rapid advances in understanding a broad range of changes in brain structure and function during adolescence, and a growing interest in identifying which of these neurodevelopmental changes are directly linked with pubertal maturation—at least in part because of their potential to provide insights into the numerous emotional and behavioral health problems that emerge during this developmental period. This review focuses on what is known about the influence of puberty on white matter development in adolescence.We focus on white matter because of its role in providing the structural architectural organization of the brain and as a structural correlate of communication within complex neural systems. We begin with a review of studies that report sex differences or sex by age interactions in white matter development as these findings can provide, although indirectly,information relevant to puberty-related changes. Studies are also critically reviewed based on methodological procedures used to assess pubertal maturation and relations with white matter changes. Findings are discussed in light of their implications for the development of neural systems underlying the regulation of emotion and behavior and how alterations in the development of these systems may mediate risk for affective disorders in vulnerable adolescents.

  11. Brain gray and white matter differences in healthy normal weight and obese children

    Science.gov (United States)

    To compare brain gray and white matter development in healthy normal weight and obese children. Twenty-four healthy 8- to 10-year-old children whose body mass index was either 95th percentile (obese) completed an MRI examination which included T1-weighted three-d...

  12. Occult White Matter Damage Contributes to Intellectual Disability in Tuberous Sclerosis Complex

    Science.gov (United States)

    Yu, Chunshui; Lin, Fuchun; Zhao, Li; Ye, Jing; Qin, Wen

    2009-01-01

    Whether patients with tuberous sclerosis complex (TSC) have brain normal-appearing white matter (NAWM) damage and whether such damage contributes to their intellectual disability were examined in 15 TSC patients and 15 gender- and age-matched healthy controls using diffusion tensor imaging (DTI). Histogram and region of interest (ROI) analyses of…

  13. Neuroanatomy of intergroup bias: A white matter microstructure study of individual differences.

    Science.gov (United States)

    Baumgartner, Thomas; Nash, Kyle; Hill, Christopher; Knoch, Daria

    2015-11-15

    Intergroup bias-the tendency to behave more positively toward an ingroup member than an outgroup member-is a powerful social force, for good and ill. Although it is widely demonstrated, intergroup bias is not universal, as it is characterized by significant individual differences. Recently, attention has begun to turn to whether neuroanatomy might explain these individual differences in intergroup bias. However, no research to date has examined whether white matter microstructure could help determine differences in behavior toward ingroup and outgroup members. In the current research, we examine intergroup bias with the third-party punishment paradigm and white matter integrity and connectivity strength as determined by diffusion tensor imaging (DTI). We found that both increased white matter integrity at the right temporal-parietal junction (TPJ) and connectivity strength between the right TPJ and the dorsomedial prefrontal cortex (DMPFC) were associated with increased impartiality in the third-party punishment paradigm, i.e., reduced intergroup bias. Further, consistent with the role that these brain regions play in the mentalizing network, we found that these effects were mediated by mentalizing processes. Participants with greater white matter integrity at the right TPJ and connectivity strength between the right TPJ and the DMPFC employed mentalizing processes more equally for ingroup and outgroup members, and this non-biased use of mentalizing was associated with increased impartiality. The current results help shed light on the mechanisms of bias and, potentially, on interventions that promote impartiality over intergroup bias. PMID:26275384

  14. Correlation between Gray/White Matter Volume and Cognition in Healthy Elderly People

    Science.gov (United States)

    Taki, Yasuyuki; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Wu, Kai; Kawashima, Ryuta; Fukuda, Hiroshi

    2011-01-01

    This study applied volumetric analysis and voxel-based morphometry (VBM) of brain magnetic resonance (MR) images to assess whether correlations exist between global and regional gray/white matter volume and the cognitive functions of semantic memory and short-term memory, which are relatively well preserved with aging, using MR image data from 109…

  15. Segmentation of age-related white matter changes in a clinical multi-center study

    DEFF Research Database (Denmark)

    Dyrby, Tim B.; Rostrup, E.; Baare, W.F.C.;

    2008-01-01

    Age-related white matter changes (WMC) are thought to be a marker of vascular pathology, and have been associated with motor and cognitive deficits. In the present study, an optimized artificial neural network was used as an automatic segmentation method to produce probabilistic maps of WMC...

  16. Peptidylarginine deiminase activity in postmortem white matter of patients with multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Schaaf, M; Teelken, A

    1999-01-01

    The myelin sheath in multiple sclerosis (MS) appears to contain a higher proportion of the citrullinated isoform of myelin basic protein MBP-C8. In vitro, MBP-associated arginine is deiminated to citrulline by the enzyme peptidylarginine deiminase (PAD). We investigated PAD activity in white matter

  17. Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean

    DEFF Research Database (Denmark)

    Pavlov, Alexey K.; Stedmon, Colin A.; Semushin, Andrey V.;

    2016-01-01

    The White Sea is a semi-enclosed Arctic marginal sea receiving a significant loading of freshwater (225-231 km3 yr-1 equaling an annual runoff yield of 2.5 m) and dissolved organic matter (DOM) from river run-off. We report discharge weighed values of stable oxygen isotope ratios (δ18O) of -14.0‰...

  18. Early White-Matter Abnormalities of the Ventral Frontostriatal Pathway in Fragile X Syndrome

    Science.gov (United States)

    Haas, Brian W.; Barnea-Goraly, Naama; Lightbody, Amy A.; Patnaik, Swetapadma S.; Hoeft, Fumiko; Hazlett, Heather; Piven, Joseph; Reiss, Allan L.

    2009-01-01

    Aim: Fragile X syndrome is associated with cognitive deficits in inhibitory control and with abnormal neuronal morphology and development. Method: In this study, we used a diffusion tensor imaging (DTI) tractography approach to reconstruct white-matter fibers in the ventral frontostriatal pathway in young males with fragile X syndrome (n = 17;…

  19. Disrupted White Matter Network and Cognitive Decline in Type 2 Diabetes Patients.

    Science.gov (United States)

    Zhang, Junying; Liu, Zhen; Li, Zixiao; Wang, Yunxia; Chen, Yaojing; Li, Xin; Chen, Kewei; Shu, Ni; Zhang, Zhanjun

    2016-05-01

    Type 2 diabetes mellitus is accompanied by cognitive impairment and is associated with an increased risk of dementia. Damage to brain structures such as white matter network disruption may underlie this cognitive disturbance. In the present study, 886 non-diabetic and 163 type 2 diabetic participants completed a battery of neuropsychological tests. Among them, 38 diabetic patients and 34 non-diabetic participants that matched the patients for age/sex/education received a magnetic resonance imaging-based diffusion tensor imaging. Then we calculated the topological properties of the white matter network using a graph theoretical method to investigate network efficiency differences between groups. We found that type 2 diabetic patients had inferior performances compared to the non-diabetic controls, in several cognitive domains involving executive function, spatial processing, memory, and attention. We also found that diabetic patients exhibited a disrupted topological organization of the white matter network (including the global network properties, i.e., network strength, global efficiency, local efficiency and shortest path length, and the nodal efficiency of the right rolandic operculum) in the brain. Moreover, those global network properties and the nodal efficiency of the right rolandic operculum both had positive correlations with executive function in the patient group. The results suggest that type 2 diabetes mellitus leads to an alteration in the topological organization of the cortical white matter network and this alteration may account for the observed cognitive decline. PMID:27163818

  20. White Matter Microstructure in Superior Longitudinal Fasciculus Associated with Spatial Working Memory Performance in Children

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Madsen, Kathrine Skak; Baaré, William F C;

    2011-01-01

    During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working...

  1. White Matter Hyperintensities and Their Associations with Suicidality in Psychiatrically Hospitalized Children and Adolescents.

    Science.gov (United States)

    Ehrlich, Stefan; Noam, Gil G.; Lyoo, In Kyoon; Kwon, Bae J.; Clark, Megan A.; Renshaw, Perry F.

    2004-01-01

    Objective: Increasingly, researchers and clinicians are recognizing that there may be biological markers associated with increased risk of suicide. The objective of this study was to compare white matter hyperintensities in psychiatrically hospitalized children and youth with and without a history of suicide attempt while controlling for other…

  2. Distortions in rest-activity rhythm in aging relate to white matter hyperintensities

    NARCIS (Netherlands)

    van Harten, B.; Vogels, R.; Gouw, A.; Weinstein, H.; Scheltens, P.; Scherder, E.; Oosterman, J

    2008-01-01

    Distortions in the rest-activity rhythm in aging are commonly observed. Neurodegenerative changes of the suprachiasmatic nucleus have been proposed to underlie this disrupted rhythm. However, based on previous studies, it can be proposed that white matter hyperimensities (WMH) may also play a role i

  3. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Lauren P. Klosinski

    2015-12-01

    Full Text Available White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  4. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease.

    Science.gov (United States)

    Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-12-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical. PMID:26844268

  5. Visualizing White Matter Structure of the Brain using Dijkstra’s Algorithm

    NARCIS (Netherlands)

    Everts, Maarten H.; Bekker, Hendrik; Roerdink, Jos B.T.M.

    2009-01-01

    An undirected weighted graph may be constructed from diffusion weighted magnetic resonance imaging data. Every node represents a voxel and the edge weights between nodes represent the white matter connectivity between neighboring voxels. In this paper we propose and test a new method for calculating

  6. Disrupted White Matter Network and Cognitive Decline in Type 2 Diabetes Patients.

    Science.gov (United States)

    Zhang, Junying; Liu, Zhen; Li, Zixiao; Wang, Yunxia; Chen, Yaojing; Li, Xin; Chen, Kewei; Shu, Ni; Zhang, Zhanjun

    2016-05-01

    Type 2 diabetes mellitus is accompanied by cognitive impairment and is associated with an increased risk of dementia. Damage to brain structures such as white matter network disruption may underlie this cognitive disturbance. In the present study, 886 non-diabetic and 163 type 2 diabetic participants completed a battery of neuropsychological tests. Among them, 38 diabetic patients and 34 non-diabetic participants that matched the patients for age/sex/education received a magnetic resonance imaging-based diffusion tensor imaging. Then we calculated the topological properties of the white matter network using a graph theoretical method to investigate network efficiency differences between groups. We found that type 2 diabetic patients had inferior performances compared to the non-diabetic controls, in several cognitive domains involving executive function, spatial processing, memory, and attention. We also found that diabetic patients exhibited a disrupted topological organization of the white matter network (including the global network properties, i.e., network strength, global efficiency, local efficiency and shortest path length, and the nodal efficiency of the right rolandic operculum) in the brain. Moreover, those global network properties and the nodal efficiency of the right rolandic operculum both had positive correlations with executive function in the patient group. The results suggest that type 2 diabetes mellitus leads to an alteration in the topological organization of the cortical white matter network and this alteration may account for the observed cognitive decline.

  7. The Structural Plasticity of White Matter Networks Following Anterior Temporal Lobe Resection

    Science.gov (United States)

    Yogarajah, Mahinda; Focke, Niels K.; Bonelli, Silvia B.; Thompson, Pamela; Vollmar, Christian; McEvoy, Andrew W.; Alexander, Daniel C.; Symms, Mark R.; Koepp, Matthias J.; Duncan, John S.

    2010-01-01

    Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy…

  8. White matter correlates of cognitive domains in normal aging with diffusion tensor imaging

    Directory of Open Access Journals (Sweden)

    Efrat eSasson

    2013-03-01

    Full Text Available The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25-82 years, we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory with white matter integrity, as measured by diffusion tensor imaging (DTI fiber tracking in the temporal lobe projections (uncinate fasciculus (UF, fornix, cingulum, inferior longitudinal fasciculus (ILF, and superior longitudinal fasciculus (SLF. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity.

  9. White Matter Deficits in Psychopathic Offenders and Correlation with Factor Structure

    NARCIS (Netherlands)

    Hoppenbrouwers, S.S.; Nazeri, A.; Jesus, D.R. de; Stirpe, T.; Felsky, D.; Schutter, D.J.L.G.; Daskalakis, Z.J.; Voineskos, A.N.

    2013-01-01

    Psychopathic offenders show a persistent pattern of emotional unresponsivity to the often horrendous crimes they perpetrate. Recent studies have related psychopathy to alterations in white matter. Therefore, diffusion tensor imaging followed by tract-based spatial statistics (TBSS) analysis in 11 ps

  10. White matter fiber degradation attenuates hemispheric asymmetry when integrating visuomotor information.

    Science.gov (United States)

    Schulte, Tilman; Müller-Oehring, Eva M; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2010-09-01

    Degradation of white matter fibers can affect the transmission of signals in brain circuits that normally enable integration of highly lateralized visual and motor processes. Here, we used diffusion tensor imaging tractography in combination with functional magnetic resonance imaging to examine the specific contributions of interhemispheric and intrahemispheric white matter fibers to functional measures of hemispheric transfer and parallel information processing using bilateral and unilateral left and right visual field stimulation in normal and compromised systems. In healthy adults, a greater degree of bilateral processing advantage with the left (nondominant) hand correlated with higher integrity of callosal fibers connecting occipital cortices, whereas less unilateral processing advantage with the right hand correlated with higher integrity of left-hemispheric posterior cingulate fibers. In contrast, alcoholics who have compromised callosal integrity showed less bilateral processing advantage than controls when responding with the left hand and greater unilateral processing advantage when responding with the right hand. We also found degraded left posterior cingulate and posterior callosal fibers in chronic alcoholics, which is consistent with functional imaging results of less left posterior cingulate and extrastriate cortex activation in alcoholics than controls when processing bilateral compared with unilateral visual field stimulation. Together, our results demonstrated that interhemispheric and intrahemispheric white matter fiber pathways mediate visuomotor integration asymmetrically and that subtle white matter fiber degradation in alcoholism attenuated the normal pattern of hemispheric asymmetry, which may have ramifications for the efficiency of visual information processing and fast response execution.

  11. Cerebritis due to Listeria monocytogeneses: CT and MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Aladro, Y. [Dept. of Neurology, Hospital Nuestra Senora del Pino, Las Palmas de Gran Canaria (Spain); Ponce, P. [Dept. of Diagnostic Radiology, Hospital Nuestra Senora del Pino, Las Palmas de Gran Canaria (Spain); Santullano, V. [Dept. of Diagnostic Radiology, Hospital Nuestra Senora del Pino, Las Palmas de Gran Canaria (Spain); Angel-Moreno, A. [Dept. of Internal Medicine, Hospital Insular, Univ. of Las Palmas de Gran Canaria (Spain); Angel Santana, M. [Dept. of Diagnostic Radiology, Hospital Nuestra Senora del Pino, Las Palmas de Gran Canaria (Spain)

    1996-04-01

    Infections by Listeria monocytogenes are uncommon, with cerebritis being even rarer. We present three cases of cerebritis which occurred during an outbreak of listeriosis. The CT and MR findings at diagnosis and during follow-up are described. Predominant deep white matter lesions with nodular and ring enhancement were seen. The MR yielded a higher resolution of the lesions than CT. (orig.)

  12. Cerebritis due to Listeria monocytogeneses: CT and MR findings

    International Nuclear Information System (INIS)

    Infections by Listeria monocytogenes are uncommon, with cerebritis being even rarer. We present three cases of cerebritis which occurred during an outbreak of listeriosis. The CT and MR findings at diagnosis and during follow-up are described. Predominant deep white matter lesions with nodular and ring enhancement were seen. The MR yielded a higher resolution of the lesions than CT. (orig.)

  13. 年龄相关性脑白质改变:影像学、危险因素和临床意义%Age-related white matter changes: Imaging, risk factors and clinical significance

    Institute of Scientific and Technical Information of China (English)

    赵焕; 操礼琼; 傅佳

    2013-01-01

    年龄相关性脑白质改变(age-related white matter changes,ARWMC)被认为是小动脉硬化性小血管病的表现,与高龄和血管危险因素有关.脑白质改变(white matter changes,WMC)已被公认为脑小血管病的表现之一,是老年人认知损害和功能丧失的病理学基础.研究表明,但WMC发展到一定程度时,会出现许多临床症状,包括认知损害、痴呆、抑郁、步态障碍、尿失禁,并与卒中和死亡风险增高相关.%Age-related white matter changes are considered as a manifestation of arteriolosclerotic small vessel disease and are associated with advanced age and vascular risk factors.White matter changes have been recognized as one of the manifestations of cerebral small vessel disease.They are the pathological basis of cognitive impairment and functional loss in the elderly.Studies have shown that when white matter changes develop to a certain extent,there will be many clinical symptoms,including cognitive impairment,dementia,depression,gait disturbances,and urinary incontinence,and they are associated with the increased risks of stroke and death.

  14. Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li [Fudan University, Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Shanghai (China); Shandong University, Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-cerebral Vascular Diseases, Jinan, Shandong (China); Wang, Shanshan; Yao, Bin; Li, Lili; Guo, Lingfei; Zhang, Xinjuan; Wang, Guangbin [Shandong University, Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-cerebral Vascular Diseases, Jinan, Shandong (China); Xu, Xiaofei [Erasmus University Rotterdam, Laboratory of Experimental Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Zhao, Lianxin [Shandong University, Department of Radiology, Qilu Hospital, Jinan, Shandong (China); Chen, Weibo; Chan, Queenie [Philips Healthcare, Shanghai (China)

    2015-04-01

    The purpose of this study was to address the feasibility of characterizing the contrast both between and within grey matter and white matter using the phase difference enhanced (PADRE) technique. PADRE imaging was performed in 33 healthy volunteers. Vessel enhancement (VE), tissue enhancement (TE), and PADRE images were reconstructed from source images and were evaluated with regard to differentiation of grey-to-white matter interface, the stria of Gennari, and the two layers, internal sagittal stratum (ISS) and external sagittal stratum (ESS), of optic radiation. White matter regions showed decreased signal intensity compared to grey matter regions. Discrimination was sharper between white matter and cortical grey matter in TE images than in PADRE images, but was poorly displayed in VE images. The stria of Gennari was observed on all three image sets. Low-signal-intensity bands displayed in VE images representing the optic radiation were delineated as two layers of different signal intensities in TE and PADRE images. Statistically significant differences in phase shifts were found between frontal grey and white matter, as well as between ISS and ESS (p < 0.01). The PADRE technique is capable of identifying grey-to-white matter interface, the stria of Gennari, and ISS and ESS, with improved contrast in PADRE and TE images compared to VE images. (orig.)

  15. BOLD fMRI in the white matter as a marker of aging and small vessel disease.

    Directory of Open Access Journals (Sweden)

    Ilia Makedonov

    Full Text Available PURPOSE: Determine whether white matter signal fluctuation on T2* weighted BOLD contrast images are associated with aging and cerebral small vessel disease (SVD. METHODOLOGY: Resting state BOLD data were collected with a 250 ms repetition time (TR to achieve unaliased, ungated cardiac sampled BOLD (cs-BOLD images on 11 young adult controls, 10 healthy older adult controls and 7 adults with extensive white matter hyperintensities (WMH from SVD. Tissue classes (WM and GM were segmented on T1 images. WMH were identified on FLAIR images in the SVD group. Raw physiological noise (σphysio and cardiac pulsatility (i.e. fluctuations at the cardiac frequency were calculated voxel wise and group differences were tested by ANOVA. It was also possible to calculate σphysio in 2s TR cardiac aliased whole-brain BOLD (wb-BOLD data (N = 84 obtained from the International Consortium for Brain Mapping. RESULTS: CS-BOLD metrics showed an aging and SVD effects (p<0.0005. Covariates such as thermal noise, WM volume and partial volume did not influence the significant aging effect seen on the cardiac pulsatility metric (p<0.017 but did influence the σphysio (p = 0.184. As a verification of the cs-BOLD findings, the wb-BOLD also showed a linear aging effect of σphysio in WM. In the SVD adults, cardiac pulsatility and σphysio were lower in WMH regions compared to normal appearing white matter (NAWM regions (p<0.0013 and p<0.002, respectively. Cardiac pulsatility was better able to distinguish WMH regions from NAWM than σphysio as measured by effect size (Cohen's d 2.2 and 0.88, respectively. CONCLUSION: NAWM was found to have graded increases in cardiac pulsations due to age and SVD, independently. Within SVD participants, WMH lesions had reduced physiological noise compared to NAWM. Cardiac pulsatility in resting BOLD data may provide a complementary dynamic measure of WM integrity to add to static FLAIR anatomical images.

  16. Associations between brain white matter integrity and disease severity in obstructive sleep apnea.

    Science.gov (United States)

    Tummala, Sudhakar; Roy, Bhaswati; Park, Bumhee; Kang, Daniel W; Woo, Mary A; Harper, Ronald M; Kumar, Rajesh

    2016-10-01

    Obstructive sleep apnea (OSA) is characterized by recurrent upper airway blockage, with continued diaphragmatic efforts to breathe during sleep. Brain structural changes in OSA appear in various regions, including white matter sites that mediate autonomic, mood, cognitive, and respiratory control. However, the relationships between brain white matter changes and disease severity in OSA are unclear. This study examines associations between an index of tissue integrity, magnetization transfer (MT) ratio values (which show MT between free and proton pools associated with tissue membranes and macromolecules), and disease severity (apnea-hypopnea index [AHI]) in OSA subjects. We collected whole-brain MT imaging data from 19 newly diagnosed, treatment-naïve OSA subjects (50.4 ± 8.6 years of age, 13 males, AHI 39.7 ± 24.3 events/hr], using a 3.0-Tesla MRI scanner. With these data, whole-brain MT ratio maps were calculated, normalized to common space, smoothed, and correlated with AHI scores by using partial correlation analyses (covariates, age and gender; P brain sites in OSA subjects, including superior and inferior frontal regions, ventral medial prefrontal cortex and nearby white matter, midfrontal white matter, insula, cingulate and cingulum bundle, internal and external capsules, caudate nuclei and putamen, basal forebrain, hypothalamus, corpus callosum, and temporal regions, showed principally lateralized negative correlations (P < 0.005). These regions showed significant correlations even with correction for multiple comparisons (cluster-level, family-wise error, P < 0.05), except for a few superior frontal areas. Predominantly negative correlations emerged between local MT values and OSA disease severity, indicating potential usefulness of MT imaging for examining the OSA condition. These findings indicate that OSA severity plays a significant role in white matter injury. © 2016 Wiley Periodicals, Inc. PMID:27315771

  17. Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma.

    Science.gov (United States)

    Moxon-Emre, Iska; Bouffet, Eric; Taylor, Michael D; Laperriere, Normand; Sharpe, Michael B; Laughlin, Suzanne; Bartels, Ute; Scantlebury, Nadia; Law, Nicole; Malkin, David; Skocic, Jovanka; Richard, Logan; Mabbott, Donald J

    2016-07-01

    OBJECTIVE Craniospinal irradiation damages the white matter in children treated for medulloblastoma, but the treatment-intensity effects are unclear. In a cross-sectional retrospective study, the effects of treatment with the least intensive radiation protocol versus protocols that delivered more radiation to the brain, in addition to the effects of continuous radiation dose, on white matter architecture were evaluated. METHODS Diffusion tensor imaging was used to assess fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity. First, regional white matter analyses and tract-based spatial statistics were conducted in 34 medulloblastoma patients and 38 healthy controls. Patients were stratified according to those treated with 1) the least intensive radiation protocol, specifically reduced-dose craniospinal irradiation plus a boost to the tumor bed only (n = 17), or 2) any other dose and boost combination that delivered more radiation to the brain, which was also termed the "all-other-treatments" group (n = 17), and comprised patients treated with standard-dose craniospinal irradiation plus a posterior fossa boost, standard-dose craniospinal irradiation plus a tumor bed boost, or reduced-dose craniospinal irradiation plus a posterior fossa boost. Second, voxel-wise dose-distribution analyses were conducted on a separate cohort of medulloblastoma patients (n = 15). RESULTS The all-other-treatments group, but not the reduced-dose craniospinal irradiation plus tumor bed group, had lower fractional anisotropy and higher radial diffusivity than controls in all brain regions (all p 0.05). CONCLUSIONS Together, the results show that white matter damage has a clear association with increasing radiation dose, and that treatment with reduced-dose craniospinal irradiation plus tumor bed boost appears to preserve white matter in some brain regions. PMID:27015518

  18. White Matter Integrity Pre- and Post Marijuana and Alcohol Initiation in Adolescence

    Directory of Open Access Journals (Sweden)

    Lindsay M. Squeglia

    2013-03-01

    Full Text Available Characterizing the effects of alcohol and marijuana use on adolescent brain development is important for understanding potential alterations in neurodevelopment. Several cross sectional studies have identified group differences in white matter integrity after initiation of heavy alcohol and marijuana use, however none have explored white matter trajectories in adolescents pre- and post initiation of use, particularly for marijuana users. This study followed 16 adolescents with minimal alcohol and marijuana use at ages 16–18 over three years. At follow-up, teens were 19–22 years old; half of the participants initiated heavy alcohol use and half initiated heavy alcohol and marijuana use. Repeated-measures ANOVA revealed 20 clusters in association and projection fibers tracts (p < 0.01 in which a group by time interaction was found. Most consistently, white matter integrity (i.e., fractional anisotropy decreased for those who initiated both heavy alcohol and marijuana use over the follow-up interval. No effect of time or change in white matter integrity was seen for those who initiated alcohol use only in the majority of clusters. In most regions, at the baseline time point, teens who would later initiate both alcohol and marijuana use demonstrated white matter integrity greater than or equal to teens that initiated alcohol use only. Findings suggest poorer tissue integrity associated with combined initiation of heavy alcohol and marijuana use in late adolescence. While pre-existing differences may also be related to likelihood of substance use, the present data suggest an effect on tissue integrity for these teens transitioning to combined alcohol and marijuana use in later adolescence.

  19. Aerobic fitness is associated with greater white matter integrity in children

    Directory of Open Access Journals (Sweden)

    Laura eChaddock-Heyman

    2014-08-01

    Full Text Available Aerobic fitness has been found to play a positive role in brain and cognitive health of children. Yet, many of the neural biomarkers related to aerobic fitness remain unknown. Here, using diffusion tensor imaging (DTI, we demonstrated that higher aerobic fitness was related to greater estimates of white matter microstructure in children. Higher fit 9- and 10-year-old children showed greater fractional anisotropy (FA in sections of the corpus callosum, corona radiata, and superior longitudinal fasciculus, compared to lower fit children. The FA effects were primarily characterized by aerobic fitness differences in radial diffusivity (RD, thereby raising the possibility that estimates of myelination may vary as a function of individual differences in fitness during childhood. White matter structure may be another potential neural mechanism of aerobic fitness that assists in efficient communication between gray matter regions as well as the integration of regions into networks.

  20. MR findings of cerebral palsy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Hum; Chang, Seung Kuk; Cho, Mee Young; Park, Dong Woo; Kim, Jong Deok; Eun, Choong Ki [Pusan Paik Hospital, Pusan (Korea, Republic of)

    1994-11-15

    To evaluate the MR findings of brain damage in cerebral palised patients and to correlate it with gestational age and the time of damage. A retrospective analysis was performed in 40 patients who underwent MR scanning for evaluation of brain lesion in clinically diagnosed cerebral palsy. Authors classified the patients into two groups as premature and full-term and compared MR findings of the two groups. Abnormal MR findings were noted in 28 cases (70%). Five out of 6 patients who had been born prematurely showed isolate periventricular white matter lesions. Twenty-three out of 34 patients who had been born at full-term showed abnormal MR findings. Of these 23 patients, migration anomalies in 7 patients, isolate periventricular white matter lesions in 3 patients, and other combined periventricular subcortical white matter and deep gray matter lesions in 14 patients were seen. At least, 10 patients(43%) of full term group showed abnormal MRI findings reflecting intrauterine brain damage and all 5 patients of premature group showed isolate periventricular white matter lesions suggesting immaturity of brain. MRI is thought to be very useful in the assessment of brain damage for the patients with cerebral palsy by recognizing the location of the lesion and estimating the time of damage.

  1. MR findings of cerebral palsy

    International Nuclear Information System (INIS)

    To evaluate the MR findings of brain damage in cerebral palised patients and to correlate it with gestational age and the time of damage. A retrospective analysis was performed in 40 patients who underwent MR scanning for evaluation of brain lesion in clinically diagnosed cerebral palsy. Authors classified the patients into two groups as premature and full-term and compared MR findings of the two groups. Abnormal MR findings were noted in 28 cases (70%). Five out of 6 patients who had been born prematurely showed isolate periventricular white matter lesions. Twenty-three out of 34 patients who had been born at full-term showed abnormal MR findings. Of these 23 patients, migration anomalies in 7 patients, isolate periventricular white matter lesions in 3 patients, and other combined periventricular subcortical white matter and deep gray matter lesions in 14 patients were seen. At least, 10 patients(43%) of full term group showed abnormal MRI findings reflecting intrauterine brain damage and all 5 patients of premature group showed isolate periventricular white matter lesions suggesting immaturity of brain. MRI is thought to be very useful in the assessment of brain damage for the patients with cerebral palsy by recognizing the location of the lesion and estimating the time of damage

  2. Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Lars Frings

    Full Text Available Behavioural variant frontotemporal dementia (bvFTD and Alzheimer's disease (AD dementia are characterised by progressive brain atrophy. Longitudinal MRI volumetry may help to characterise ongoing structural degeneration and support the differential diagnosis of dementia subtypes. Automated, observer-independent atlas-based MRI volumetry was applied to analyse 102 MRI data sets from 15 bvFTD, 14 AD, and 10 healthy elderly control participants with consecutive scans over at least 12 months. Anatomically defined targets were chosen a priori as brain structures of interest. Groups were compared regarding volumes at clinic presentation and annual change rates. Baseline volumes, especially of grey matter compartments, were significantly reduced in bvFTD and AD patients. Grey matter volumes of the caudate and the gyrus rectus were significantly smaller in bvFTD than AD. The bvFTD group could be separated from AD on the basis of caudate volume with high accuracy (79% cases correct. Annual volume decline was markedly larger in bvFTD and AD than controls, predominantly in white matter of temporal structures. Decline in grey matter volume of the lateral orbitofrontal gyrus separated bvFTD from AD and controls. Automated longitudinal MRI volumetry discriminates bvFTD from AD. In particular, greater reduction of orbitofrontal grey matter and temporal white matter structures after 12 months is indicative of bvFTD.

  3. Developmental patterns of doublecortin expression and white matter neuron density in the postnatal primate prefrontal cortex and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Samantha J Fung

    Full Text Available Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC. Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX, a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque and density of white matter neurons (humans during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37 and matched controls (n = 37 and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in

  4. An Optimized Clustering Approach for Automated Detection of White Matter Lesions in MRI Brain Images

    Directory of Open Access Journals (Sweden)

    M. Anitha

    2012-04-01

    Full Text Available Settings White Matter lesions (WMLs are small areas of dead cells found in parts of the brain. In general, it is difficult for medical experts to accurately quantify the WMLs due to decreased contrast between White Matter (WM and Grey Matter (GM. The aim of this paper is to
    automatically detect the White Matter Lesions which is present in the brains of elderly people. WML detection process includes the following stages: 1. Image preprocessing, 2. Clustering (Fuzzy c-means clustering, Geostatistical Possibilistic clustering and Geostatistical Fuzzy clustering and 3.Optimization using Particle Swarm Optimization (PSO. The proposed system is tested on a database of 208 MRI images. GFCM yields high sensitivity of 89%, specificity of 94% and overall accuracy of 93% over FCM and GPC. The clustered brain images are then subjected to Particle Swarm Optimization (PSO. The optimized result obtained from GFCM-PSO provides sensitivity of 90%, specificity of 94% and accuracy of 95%. The detection results reveals that GFCM and GFCMPSO better localizes the large regions of lesions and gives less false positive rate when compared to GPC and GPC-PSO which captures the largest loads of WMLs only in the upper ventral horns of the brain.

  5. Trait conscientiousness and the personality meta-trait stability are associated with regional white matter microstructure.

    Science.gov (United States)

    Lewis, Gary J; Cox, Simon R; Booth, Tom; Muñoz Maniega, Susana; Royle, Natalie A; Valdés Hernández, Maria; Wardlaw, Joanna M; Bastin, Mark E; Deary, Ian J

    2016-08-01

    Establishing the neural bases of individual differences in personality has been an enduring topic of interest. However, while a growing literature has sought to characterize grey matter correlates of personality traits, little attention to date has been focused on regional white matter correlates of personality, especially for the personality traits agreeableness, conscientiousness and openness. To rectify this gap in knowledge we used a large sample (n > 550) of older adults who provided data on both personality (International Personality Item Pool) and white matter tract-specific fractional anisotropy (FA) from diffusion tensor MRI. Results indicated that conscientiousness was associated with greater FA in the left uncinate fasciculus (β = 0.17, P agreeableness, conscientiousness, and neuroticism/emotional stability. We observed an association between left uncinate fasciculus FA and stability (β = 0.27, P < 0.001), which fully accounted for the link between left uncinate fasciculus FA and conscientiousness. In sum, these results provide novel evidence for links between regional white matter microstructure and key traits of human personality, specifically conscientiousness and the meta-trait, stability. Future research is recommended to replicate and address the causal directions of these associations. PMID:27013101

  6. Gray and White Matter Contributions to Cognitive Frontostriatal Deficits in Non-Demented Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Catherine C Price

    Full Text Available This prospective investigation examined: 1 processing speed and working memory relative to other cognitive domains in non-demented medically managed idiopathic Parkinson's disease, and 2 the predictive role of cortical/subcortical gray thickness/volume and white matter fractional anisotropy on processing speed and working memory.Participants completed a neuropsychological protocol, Unified Parkinson's Disease Rating Scale, brain MRI, and fasting blood draw to rule out vascular contributors. Within group a priori anatomical contributors included bilateral frontal thickness, caudate nuclei volume, and prefrontal white matter fractional anisotropy.Idiopathic Parkinson's disease (n = 40; Hoehn & Yahr stages 1-3 and non-Parkinson's disease 'control' peers (n = 40 matched on demographics, general cognition, comorbidity, and imaging/blood vascular metrics. Cognitively, individuals with Parkinson's disease were significantly more impaired than controls on tests of processing speed, secondary deficits on working memory, with subtle impairments in memory, abstract reasoning, and visuoperceptual/spatial abilities. Anatomically, Parkinson's disease individuals were not statistically different in cortical gray thickness or subcortical gray volumes with the exception of the putamen. Tract Based Spatial Statistics showed reduced prefrontal fractional anisotropy for Parkinson's disease relative to controls. Within Parkinson's disease, prefrontal fractional anisotropy and caudate nucleus volume partially explained processing speed. For controls, only prefrontal white matter was a significant contributor to processing speed. There were no significant anatomical predictors of working memory for either group.Caudate nuclei volume and prefrontal fractional anisotropy, not frontal gray matter thickness, showed unique and combined significance for processing speed in Parkinson's disease. Findings underscore the relevance for examining gray-white matter interactions

  7. White matter changes in 80 mild cognitive impairment patients using magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Hyun Cho; Jee-Hyun Kwon; Sun-Young Kim

    2009-01-01

    BACKGROUND: Many studies have suggested that one possible etiology of mild cognitive impairment is small vessel cerebrovascular disease, which is associated with small subcortical infarcts and white matter abnormalities. These white matter changes have been detected as white matter hyperintensity (WMH) using magnetic resonance imaging. WMH may be associated with frontal lobe dysfunction. OBJECTIVE: To examine white matter changes in mild cognitive impairment patients of different subtypes, and to evaluate the correlation between white matter changes and neuropsychological characteristics, demographic information, vascular risk factors, and mild cognitive impairment subtypes. DESIGN, TIME AND SETTING: The neurophysiological, comparison study was performed at the Department of Neurology Memory Clinic, Ulsan University Hospital, South Korea, between March 2007 and March 2008.PARTICIPANTS: Out of a total of 83 subjects with clinically diagnosed mild cognitive impairment at the out-patient clinic, 3 subjects with severe WMH were excluded. A total of 80 subjects were included in this study. No patients suffered from cognitive impairment induced by neurological diseases, mental disorders, or somatic diseases. In accordance with magnetic resonance imaging results, the patients were assigned to two subtypes: 56 subjects without WMH and 24 subjects with WMH. METHODS: All patients were subjected to a standard neuropsychological battery using the Korean version of the Mini-Mental State Examination, Clinical Dementia Rating, and comprehensive Seoul Neuropsychological Screening Battery. The Clinical Dementia Rating reflected general cognitive function of patients. Results from the Seoul Neuropsychological Screening Battery reflected attention, language function, visuospatial function, verbal memory, nonverbal memory, long-term memory, and frontal/executive function. Magnetic resonance imaging was used to map changes in the brain. MAIN OUTCOME MEASURES: The association between

  8. Changes in perceptual speed and white matter microstructure in the corticospinal tract are associated in very old age.

    Science.gov (United States)

    Lövdén, Martin; Köhncke, Ylva; Laukka, Erika J; Kalpouzos, Grégoria; Salami, Alireza; Li, Tie-Qiang; Fratiglioni, Laura; Bäckman, Lars

    2014-11-15

    The integrity of the brain's white matter is important for neural processing and displays age-related differences, but the contribution of changes in white matter to cognitive aging is unclear. We used latent change modeling to investigate this issue in a sample of very old adults (aged 81-103 years) assessed twice with a retest interval of 2.3 years. Using diffusion-tensor imaging, we probed white matter microstructure by quantifying mean fractional anisotropy and mean diffusivity of six major white matter tracts. Measures of perceptual speed, episodic memory, letter fluency, category fluency, and semantic memory were collected. Across time, alterations of white matter microstructure in the corticospinal tract were associated with decreases of perceptual speed. This association remained significant after statistically controlling for changes in white matter microstructure in the entire brain, in the other demarcated tracts, and in the other cognitive abilities. Changes in brain volume also did not account for the association. We conclude that white matter microstructure is a potent correlate of changes in sensorimotor aspects of behavior in very old age, but that it is unclear whether its impact extends to higher-order cognition.

  9. White matter cysts in patients with tuberous sclerosis; Quistes de sustancia blanca en pacientes con esclerosis tuberosa

    Energy Technology Data Exchange (ETDEWEB)

    Marti-Bonmati, L.; Dosda, R. [Hospital Universitario Dr. Peset. Servicio de Resonancia Magnetica ATQ-Quiron. Valencia (Spain); Menor, F. [Hospital Infantil La Fe. Valencia (Spain); Arana, E. [Hospital Casa de La Salud. Valencia (Spain); Poyatos, C. [Hospital Universitario Dr. Peset. Valencia (Spain)

    1999-07-01

    The presence of cysts in the white matter of the central nervous system of patients with tuberous sclerosis (TS) is an uncommon finding that has been reported only recently in neuroimaging studies. This article assesses the prevalence of these lesions in a large series of patients studied by magnetic resonance imaging (MRI) and their relationship to other epidemiological and imaging findings. MRI studies were performed in 46 patients (23 males and 23 females) with a mean age of 12.7 years, and the results were examined retrospectively in the search for cortical tubers, subependymal nodules and white matter nodules, lines and cysts. Nine patients (19.6%) presented cysts in white matter. Seven had only one cyst and the remaining two patients each had two. Multiple regression analysis relating the presence of the cysts with other neuroimaging findings in these patients revealed a statistically significant relationship only with white matter nodules (odds ratio: 7.5; p=0.006). White matter cysts are small, supratentorial lesions of deep location. There is a statistically relationship between the presence of these cysts and that of nodular lesions in the white matter. This finding supports the theory that the cyst originate from white matter nodules. (Author) 17 refs.

  10. Lhermitte-Duclos disease with neurofibrillary tangles in heterotopic cerebral grey matter.

    Science.gov (United States)

    Rusiecki, D; Lach, B

    2016-01-01

    Lhermitte-Duclos disease (LDD), a disorder first described by French physicians Lhermitte and Duclos in 1920 [25], is a benign, slow growing dysplastic gangliocytoma of the cerebellum, characterized by replacement of the granule cell layer by abnormal granule and Purkinje like cells. The most frequent presenting signs and symptoms are megalocephaly, increased intracranial pressure, nausea, hydrocephalus, ataxia, gait abnormalities, and intermittent headaches, all of which are attributed to the mass effect [6,11,25]. Many cases are associated with a mutation in the phosphatase and tensin homolog or PTEN gene which is also involved in numerous otherwise unrelated central nervous system abnormalities, namely Cowden syndrome [1,6,11], autism spectrum disorder [18], cerebral cortical dysplasia [11,30] and Bannayan-Riley-Ruvalcaba syndrome [30]. The presence of cortical heterotopia has been reported in a small number of LDD cases [3,5,17,32]. We describe a unique case of LDD with cerebral cortical heterotopic grey matter containing neurofibrillary tangles. PMID:27543776

  11. Clinical application of cerebral grey matter imaging at 3.0T MR for gray matter heterotopia%3.0T MR脑灰质成像在脑灰质异位中的应用

    Institute of Scientific and Technical Information of China (English)

    袁飞; 刘银社; 赵军; 袁滨; 张忠强; 艾克文

    2011-01-01

    目的 探讨3.0T MR脑灰质成像在脑灰质异位症中的诊断价值.方法 回顾性分析25例经临床及MRI检查确诊的脑灰质异位症病人的MRI资料,全部病人均行头颅MRI常规T1WI、T2WI序列,FLAIR序列和脑灰质成像检查.结果 25例中,病变为双侧14例,单侧11例,多病灶17例.室管膜下型13例,皮层下局灶型10例,其中2例病人室管膜下及皮层下局灶并存,皮层下弥漫型2例.1例病人并发多微小脑回畸形,1例病人同时伴有透明隔缺如.在病变显示方面,灰质成像明显优于T1WI、T2WI及FLAIR(χ2=21.16,P <0.05).结论 3.0T MR脑灰质成像对显示灰质异位病变的部位和范围具有重要价值.%Objective To study the clinical value of MR grey matter imaging in diagnosing cerebral gray matter heterotopia. Methods 25 cases of gray matter heterotopia confirmed by clinic were retrospectively analyzed. All cases underwent MR examination with routine T1 WI,T2 WI,FLAIR sequences and grey matter imaging. Results The lesions were bilateral in 14 cases and unilateral in 11 cases and multi-heterotopia of gray matter in the periventricular and subcortical white matter in 17 cases. 13 cases were subependymal type,l0 cases were subcortical type (locally) including 2 cases with both subependymal and subcortical type,2 were diffusion subcortical type. The lesions associated with polymicrogyri and absence of septum pellucidum in one case, respectively. cerebral grey matter imaging was obviously superior to T1 WI, T2 WI and FLAIR ( X2 = 21. 16 , P<O. 05 ) in displaying the morphology and extent of the lesions. Conclusion 3. OT MR grey matter imaging is of significant value in showing the location and extent of gray matter heterotopia.

  12. The cerebro-morphological fingerprint of a progeroid syndrome: white matter changes correlate with neurological symptoms in xeroderma pigmentosum.

    Directory of Open Access Journals (Sweden)

    Jan Kassubek

    Full Text Available BACKGROUND: Xeroderma pigmentosum (XP is a rare autosomal recessive progeroid syndrome. It has recently been shown that the underlying DNA repair defect plays a central role in the aging process. In addition to skin symptoms, various premature neurological abnormalities have been reported. METHODOLOGY/PRINCIPAL FINDINGS: We present the clinical neurological phenotype in 14 XP patients (seven subtypes, in seven of these patients together with conventional and multiparametric advanced MRI data to assess the macrostructural and microstructural cerebral morphology in comparison to controls, including volumetric measurements, MR spectroscopy ((1H MRS, and diffusion tensor imaging (DTI. Clinical hallmarks were spinocerebellar ataxia, pyramidal tract signs, and mild cognitive deficits. DTI demonstrated significantly reduced WM directionality in all regions investigated, i.e. the thalamus, the corticospinal tracts and the dorsal corpus callosum. Single patients showed a marked relative hippocampal volume reduction, but the patients were not different from controls in the volumetric measurements of hippocampal and whole brain volumes at group level. However, (1H MRS demonstrated that the hippocampal formation was metabolically altered. CONCLUSIONS: The most prominent feature was the white matter affectation, as assessed by DTI, with volume and directionality reductions of the fiber projections involving both the craniocaudal fibers and the interhemispheric connections. These findings, although heterogeneous among the study sample, could be correlated with the clinico-neurological symptoms. The imaging findings support the position that myelin structures degrade prematurely in the brain of XP patients.

  13. Differential short-term regional effects of early high dose erythropoietin on white matter in preterm lambs after mechanical ventilation.

    Science.gov (United States)

    Barton, Samantha K; McDougall, Annie R A; Melville, Jacqueline M; Moss, Timothy J M; Zahra, Valerie A; Lim, Tammy; Crossley, Kelly J; Polglase, Graeme R; Tolcos, Mary

    2016-03-01

    Inadvertently injurious ventilation of preterm neonates in the delivery room can cause cerebral white matter (WM) inflammation and injury. We investigated the impact of an early high dose of recombinant human erythropoietin (EPO) on ventilation-induced WM changes in preterm lambs. Injurious ventilation, targeting a V(T) of 15 ml kg(-1) with no positive end-expiratory pressure, was initiated for 15 min in preterm lambs (0.85 gestation). Conventional ventilation was continued for a further 105 min. Lambs received either 5000 IU kg(-1) of EPO (EPREX®; Vent+EPO; n = 6) or vehicle (Vent; n = 8) via an umbilical vein at 4 ± 2 min. Markers of WM injury and inflammation were assessed using quantitative real-time PCR (qPCR) and immunohistochemistry and compared to a group of unventilated controls (UVC; n = 4). In Vent+EPO lambs compared to Vent lambs: (i) interleukin (IL)-1β and IL-6 mRNA levels in the periventricular WM and IL-8 mRNA levels in the subcortical WM were higher (P Recombinant human EPO had variable regional effects within the WM when administered during injurious ventilation. The adverse short-term outcomes discourage the use of early high dose EPO administration in preterm ventilated babies. PMID:26332509

  14. Segregation of the brain into gray and white matter: a design minimizing conduction delays.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available A ubiquitous feature of the vertebrate anatomy is the segregation of the brain into white and gray matter. Assuming that evolution maximized brain functionality, what is the reason for such segregation? To answer this question, we posit that brain functionality requires high interconnectivity and short conduction delays. Based on this assumption we searched for the optimal brain architecture by comparing different candidate designs. We found that the optimal design depends on the number of neurons, interneuronal connectivity, and axon diameter. In particular, the requirement to connect neurons with many fast axons drives the segregation of the brain into white and gray matter. These results provide a possible explanation for the structure of various regions of the vertebrate brain, such as the mammalian neocortex and neostriatum, the avian telencephalon, and the spinal cord.

  15. Isolated acute non-cystic white matter injury in term infants presenting with neonatal encephalopathy.

    LENUS (Irish Health Repository)

    Barrett, Michael Joseph

    2013-03-01

    We discuss possible aetiological factors, MRI evolution of injury and neuro-developmental outcomes of neonatal encephalopathy (NE). Thirty-six consecutive infants diagnosed with NE were included. In this cohort, four infants (11%) were identified with injury predominantly in the deep white matter on MRI who were significantly of younger gestation, lower birthweight with higher Apgars at one and five minutes compared to controls. Placental high grade villitis of unknown aetiology (VUA) was identified in all four of these infants. Our hypothesis states VUA may induce white matter injury by causing a local inflammatory response and\\/or oxidative stress during the perinatal period. We underline the importance of continued close and systematic evaluation of all cases of NE, including examination of the placenta, in order to come to a better understanding of the clinical presentation, the patterns of brain injury and the underlying pathophysiological processes.

  16. Clinical significance of white matter hyperintensities in MRI in senile dementia of the Alzheimer type

    Energy Technology Data Exchange (ETDEWEB)

    Takita, Masashi [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1996-08-01

    To elucidate clinical significance of white matter hyperintensities (WMH) in MRI, fifty patients with senile dementia of the Alzheimer type (SDAT) and twenty normal controls were studied. Twenty nine patients with SDAT (58.0%) had periventricular hyperintensities (PVH) and twenty three patients with SDAT (46.0%) had deep white matter hyperintensities (DWMH). Eight controls (40.0%) had PVH and ten controls (50.0%) had DWMH. There were no significant differences in frequency of WMH between patients with SDAT and normal controls. Past history of hypertension was more frequent in patients with PVH or DWMH than in patients without them. Serum cholesterol level was higher in patients with DWMH than in patients without them. However there were no significant differences in the other clinical features between patients with WMH and patients without them. The results of present study suggest that DWMH in patients with SDAT is associated with cerebrovascular risk factors such as hypertension and hyperlipidemia. (author)

  17. Anatomy of brain-stem white-matter tracts shown by diffusion-weighted imaging

    International Nuclear Information System (INIS)

    We acquired high-resolution MRI and anisotropically diffusion-weighted images (DWI) with direction-selective gradients of the brain stem in 20 healthy volunteers, to identify brain-stem structures such as white-matter tracts and nuclei which show diffusion anisotropy. After averaging and superposition of individual cuts, the images were projected onto appropriate plates of the Schaltenbrand and Wahren anatomical atlas. We identified 20 structures - white-matter tracts and some nuclei - with high contrast. The direction of fibres could be determined as areas of increased (parallel to) or decreased diffusion (perpendicular to the gradient). This study may contribute to understanding of the functional anatomy of the brain stem. (orig.)

  18. Recurrent cerebral thrombosis

    International Nuclear Information System (INIS)

    Neuroradiological techniques were used to elucidate pathophysiology of recurrent cerebral thrombosis. Twenty-two patients with cerebral thrombosis who suffered a second attack under stable conditions more than 22 days after the initial stroke were studied. Hypertension, diabetes mellitus, and hypercholesterolemia were also seen in 20, 8, and 12 patients, respectively. The patients were divided into three groups according to their symptoms: (I) symptoms differed between the first and second strokes (n=12); (II) initial symptoms were suddenly deteriorated (n=6); and (III) symptoms occurring in groups I and II were seen (n=4). In group I, contralateral hemiparesis or suprabulbar palsy was often associated with the initial hemiparesis. The time of recurrent stroke varied from 4 months to 9 years. CT and MRI showed not only lacunae in both hemispheres, but also deep white-matter ischemia of the centrum semi-ovale. In group II, hemiparesis or visual field defect was deteriorated early after the initial stroke. In addition, neuroimaging revealed that infarction in the posterior cerebral artery was progressed on the contralateral side, or that white matter lesion in the middle artery was enlarged in spite of small lesion in the left cerebral hemisphere. All patients in group III had deterioration of right hemiparesis associated with aphasia. CT, MRI, SPECT, and angiography indicated deep white-matter ischemia caused by main trunk lesions in the left hemisphere. Group III seemed to be equivalent to group II, except for laterality of the lesion. Neuroradiological assessment of the initial stroke may help to predict the mode of recurrence, although pathophysiology of cerebral thrombosis is complicated and varies from patient to patient. (N.K.)

  19. Cognitive Processing Speed in Older Adults: Relationship with White Matter Integrity

    OpenAIRE

    Kerchner, Geoffrey A.; Racine, Caroline A.; Hale, Sandra; Wilheim, Reva; Laluz, Victor; Miller, Bruce L.; Joel H Kramer

    2012-01-01

    Cognitive processing slows with age. We sought to determine the importance of white matter integrity, assessed by diffusion tensor imaging (DTI), at influencing cognitive processing speed among normal older adults, assessed using a novel battery of computerized, non-verbal, choice reaction time tasks. We studied 131 cognitively normal adults aged 55–87 using a cross-sectional design. Each participant underwent our test battery, as well as MRI with DTI. We carried out cross-subject comparisons...

  20. Subjective cognitive failures and hippocampal volume in elderly with white matter lesions.

    OpenAIRE

    Norden, AG van; Fick, W.F.; Laat, KF de; Uden, IW van; Oudheusden, LJ van; Tendolkar, I.; Zwiers, M.P.; Leeuw, FE de

    2008-01-01

    BACKGROUND: Subjective cognitive failures (SCF) and subjective memory failures (SMF) have been reported to be an early predictor of Alzheimer disease (AD) and have been attributed to white matter lesions (WML). Since AD is characterized by hippocampal degeneration, it is surprising that its relation with hippocampal atrophy has been investigated only sparsely. Previous studies on this are rare, limited in sample size, and did not adjust for WML. OBJECTIVE: To determine the relation between SC...

  1. Genetic contributions to white matter architecture revealed by diffusion tensor imaging in Williams syndrome

    OpenAIRE

    Marenco, Stefano; Michael A Siuta; Kippenhan, J. Shane; Grodofsky, Samuel; Chang, Wei-li; Kohn, Philip; Mervis, Carolyn B.; Morris, Colleen A.; Weinberger, Daniel R.; Meyer-Lindenberg, Andreas; Pierpaoli, Carlo; Berman, Karen Faith

    2007-01-01

    Little is known about genetic regulation of the development of white matter. This knowledge is critical in understanding the pathophysiology of neurodevelopmental syndromes associated with altered cognition as well as in elucidating the genetics of normal human cognition. The hemideletion of ≈25 genes on chromosome 7q11.23 that causes Williams syndrome (WS) includes genes that regulate cytoskeletal dynamics in neurons, especially LIMK1 and CYLN2, and therefore offers the opportunity to invest...

  2. Diffusion Tensor Imaging Study of White Matter Damage in Chronic Meningitis

    OpenAIRE

    Lin, Wei-Che; Chen, Pei-Chin; Wang, Hung-Chen; Tsai, Nai-Wen; Chou, Kun-Hsien; Chen, Hsiu-Ling; Su, Yu-Jih; Lin, Ching-Po; Li, Shau-Hsuan; Chang, Wen-Neng; Lu, Cheng-Hsien

    2014-01-01

    Tuberculous meningitis (TBM) and cryptococcal meningitis (CM) are two of the most common types of chronic meningitis. This study aimed to assess whether chronic neuro-psychological sequelae are associated with micro-structure white matter (WM) damage in HIV-negative chronic meningitis. Nineteen HIV-negative TBM patients, 13 HIV-negative CM patients, and 32 sex- and age-matched healthy volunteers were evaluated and compared. The clinical relevance of WM integrity was studied using voxel-based ...

  3. Could Sex Differences in White Matter be Explained by g ratio?

    OpenAIRE

    Tomas Paus; Roberto Toro

    2009-01-01

    Recent studies with magnetic resonance imaging suggest that age-related changes in white matter during male adolescence may indicate an increase in g ratio wherein the radial growth of an axon outpaces a corresponding increase in myelin thickness. We review the original Rushton (1951) model where a g ratio of ~0.6 represents an optimal relationship between the axon and fibre diameters vis-à-vis conduction velocity, and point out evidence indicating slightly higher g ratio in large-diam...

  4. Functional MRI activation in white matter during the Symbol Digit Modalities Test

    OpenAIRE

    Jodie Reanna Gawryluk; Erin Lindsay Mazerolle; Steven eBeyea; Ryan eD'Arcy

    2014-01-01

    Background: Recent evidence shows that functional magnetic resonance imaging (fMRI) can detect activation in white matter (WM). Such advances have important implications for understanding WM dysfunction. A key step in linking neuroimaging advances to the evaluation of clinical disorders is to examine whether WM activation can be detected at the individual level during clinical tests associated with WM function. We used an adapted Symbol Digit Modalities Test (SDMT) in a 4T fMRI study of healt...

  5. The Chimpanzee Brain Shows Human-Like Perisylvian Asymmetries in White Matter

    OpenAIRE

    Cantalupo, Claudio; Oliver, JoAnne; Smith, Jarrod; Nir, Talia; Taglialatela, Jared P.; Hopkins, William D.

    2009-01-01

    Modern neuroimaging technologies allow scientists to uncover inter-species differences and similarities in hemispheric asymmetries that may shed light onto the origin of brain asymmetry and its functional correlates. We analyzed asymmetries in white to grey matter ratios of the lateral aspect of the lobes of the brains of chimpanzees. We found marked leftward asymmetries for all lobar regions. This asymmetry was particularly pronounced in the frontal region and was found to be related to hand...

  6. mGluR5 protect astrocytes from ischemic damage in postnatal CNS white matter

    OpenAIRE

    Vanzulli, Ilaria; Butt, Arthur M

    2015-01-01

    Astrocytes perform essential neuron-supporting functions in the central nervous system (CNS) and their disruption has devastating effects on neuronal integrity in multiple neuropathologies. Although astrocytes are considered resistant to most pathological insults, ischemia can result in astrocyte injury and astrocytes in postnatal white matter are particularly vulnerable. Metabotropic glutamate receptors (mGluR) are neuroprotective in ischemia and are widely expressed by astrocytes throughout...

  7. White Matter Brain Lesions in Midlife Familial Hypercholesterolemic Patients at 3-Tesla Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Background: Patients with hypercholesterolemia of 60 years and older have an increased risk for white matter brain lesions and dementia. Purpose: To investigate whether patients with familial hypercholesterolemia (FH) develop white matter lesions at 3-Tesla (T) MRI as early as in midlife. Material and Methods: Non-diabetic, non-smoking, and non-hypertensive heterozygous FH patients on treatment with maximally tolerated dose of a statin for more than 5 years (n = 14) and matched controls (n = 22) aged 25 to 60 years of age were studied. Imaging was performed at 3T with a fluid-attenuated T2-weighted MR pulse sequence and a T1-weighted spin-echo pulse sequence following 10 ml of i.v. gadopentetate dimeglumine. Images were evaluated by two independent readers. Fasting blood samples were taken. Student's t test was employed at P<0.05. Results: Three volunteers and one FH patient had white matter lesions (P<0.53). No other evidence of past ischemic stroke was observed. Mean total serum cholesterol and low-density lipoprotein (LDL) cholesterol were significantly higher in the FH group (6.0±1.1 vs. 5.1±0.9 mmol/l, P<0.02 and 4.1±0.9 vs. 3.1±0.8 mmol/l, P<0.004, respectively). Conclusion: Heterozygous FH patients on statin treatment in the age range of 25 to 60 years are not at increased risk of white matter lesions at 3T MRI

  8. A Geometry-Based Particle Filtering Approach to White Matter Tractography

    OpenAIRE

    Savadjiev, Peter; Rathi, Yogesh; Malcolm, James G.; Martha E. Shenton; Westin, Carl-Fredrik

    2010-01-01

    We introduce a fibre tractography framework based on a particle filter which estimates a local geometrical model of the underlying white matter tract, formulated as a `streamline flow' using generalized helicoids. The method is not dependent on the diffusion model, and is applicable to diffusion tensor (DT) data as well as to high angular resolution reconstructions. The geometrical model allows for a robust inference of local tract geometry, which, in the context of the causal filter estimati...

  9. Spiking and non-spiking classes of oligodendrocyte precursor glia in CNS white matter

    OpenAIRE

    Káradóttir, Ragnhildur; Hamilton, Nicola B.; Bakiri, Yamina; Attwell, David

    2008-01-01

    A defining feature of glial cells has been their inability to generate action potentials. We now show that there are two distinct types of morphologically identical oligodendrocyte precursor glial cell (OPC) in situ in rat CNS white matter. One type expresses voltage-gated sodium and potassium channels, generates action potentials when depolarized, and senses its environment by receiving excitatory and inhibitory synaptic input from axons. The other type lacks action potentials and synaptic i...

  10. Brain white matter integrity and cortisol in older men:the Lothian Birth Cohort 1936

    OpenAIRE

    Cox, Simon R.; Bastin, Mark E; Ferguson, Karen J.; Munoz-Maniega, Susana; MacPherson, Sarah E.; Deary, Ian J; Wardlaw, Joanna M.; MacLullich, Alasdair M. J.

    2015-01-01

    Elevated glucocorticoid (GC) levels are hypothesized to be deleterious to some brain regions, including white matter (WM). Older age is accompanied by increased between-participant variation in GC levels, yet relationships between WM integrity and cortisol levels in older humans are underexplored. Moreover, it is unclear whether GC-WM associations might be general or pathway specific. We analyzed relationships between salivary cortisol (diurnal and reactive) and general measures of brain WM h...

  11. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    OpenAIRE

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal T...

  12. White Matter Changes of Neurite Density and Fiber Orientation Dispersion during Human Brain Maturation.

    Directory of Open Access Journals (Sweden)

    Yi Shin Chang

    Full Text Available Diffusion tensor imaging (DTI studies of human brain development have consistently shown widespread, but nonlinear increases in white matter anisotropy through childhood, adolescence, and into adulthood. However, despite its sensitivity to changes in tissue microstructure, DTI lacks the specificity to disentangle distinct microstructural features of white and gray matter. Neurite orientation dispersion and density imaging (NODDI is a recently proposed multi-compartment biophysical model of brain microstructure that can estimate non-collinear properties of white matter, such as neurite orientation dispersion index (ODI and neurite density index (NDI. In this study, we apply NODDI to 66 healthy controls aged 7-63 years to investigate changes of ODI and NDI with brain maturation, with comparison to standard DTI metrics. Using both region-of-interest and voxel-wise analyses, we find that NDI exhibits striking increases over the studied age range following a logarithmic growth pattern, while ODI rises following an exponential growth pattern. This novel finding is consistent with well-established age-related changes of FA over the lifespan that show growth during childhood and adolescence, plateau during early adulthood, and accelerating decay after the fourth decade of life. Our results suggest that the rise of FA during the first two decades of life is dominated by increasing NDI, while the fall in FA after the fourth decade is driven by the exponential rise of ODI that overcomes the slower increases of NDI. Using partial least squares regression, we further demonstrate that NODDI better predicts chronological age than DTI. Finally, we show excellent test-retest reliability of NODDI metrics, with coefficients of variation below 5% in all measured regions of interest. Our results support the conclusion that NODDI reveals biologically specific characteristics of brain development that are more closely linked to the microstructural features of white

  13. Extensive white-matter changes in case of adult polyglucosan body disease

    Energy Technology Data Exchange (ETDEWEB)

    Berkhoff, M.; Sturzenegger, M. [Dept. of Neurology, Inselspital, Berne (Switzerland); Weis, J. [Dept. of Neuropathology, Univ. of Berne (Switzerland); Schroth, G. [Dept. of Neuroradiology, Univ. of Berne (Switzerland)

    2001-03-01

    Extensive white matter signal changes were observed on T2-weighted images of a 49-year-old man. He presented with a slowly progressive gait disorder, and finally developed severe dementia. Extensive metabolic and infectious investigations failed to disclose the underlying cause during life. Autopsy revealed adult polyglucosan body disease. We discuss MRI findings likely to permit this diagnosis if combined with clinical findings and nerve or skin biopsy. (orig.)

  14. Clinical Significance of Cerebrovascular Biomarkers and White Matter Tract Integrity in Alzheimer Disease

    OpenAIRE

    Wu, Ming-Kung; Lu, Yan-Ting; Huang, Chi-Wei; Lin, Pin-Hsuan; Chen, Nai-Ching; Lui, Chun-Chung; Chang, Wen-Neng; Lee, Chen-Chang; Chang, Ya-Ting; Chen, Sz-Fan; Chang, Chiung-Chih

    2015-01-01

    Abstract Cerebrovascular risk factors and white matter (WM) damage lead to worse cognitive performance in Alzheimer dementia (AD). This study investigated WM microstructure using diffusion tensor imaging in patients with mild to moderate AD and investigated specific fiber tract involvement with respect to predefined cerebrovascular risk factors and neurobehavioral data prediction cross-sectionally and after 18 months. To identify the primary pathoanatomic relationships of risk biomarkers to f...

  15. MANIFOLD-CONSTRAINED EMBEDDINGS FOR THE DETECTION OF WHITE MATTER LESIONS IN BRAIN MRI

    OpenAIRE

    Kadoury, Samuel; Erus, Guray; Zacharaki, Evangelia; Paragios, Nikos; Davatzikos, Christos

    2012-01-01

    Brain abnormalities such as white matter lesions (WMLs) are not only linked to cerebrovascular disease, but also with normal aging, diabetes and other conditions increasing the risk for cerebrovascular pathologies. Obtaining quantitative measures which assesses the degree or probability of WML in patients is important for evaluating disease burden, and for evaluating its progression and response to interventions. In this paper, we introduce a novel approach for detecting the presence of WMLs ...

  16. Frontally mediated inhibitory processing and white matter microstructure: age and alcoholism effects

    OpenAIRE

    Colrain, Ian M.; Sullivan, Edith V.; Judith M Ford; Mathalon, Daniel H.; McPherson, Selwyn-Lloyd; Roach, Brian J.; Crowley, Kate E.; Pfefferbaum, Adolf

    2010-01-01

    Rationale The NOGO P3 event-related potential is a sensitive marker of alcoholism, relates to EEG oscillation in the δ and θ frequency ranges, and reflects activation of an inhibitory processing network. Degradation of white matter tracts related to age or alcoholism should negatively affect the oscillatory activity within the network. Objective This study aims to evaluate the effect of alcoholism and age on δ and θ oscillations and the relationship between these oscillations and measures of ...

  17. White Matter Fiber Tracking Computation Based on Diffusion Tensor Imaging for Clinical Applications

    OpenAIRE

    Dellani, Paulo R.; Glaser, Martin; Wille, Paulo R.; Vucurevic, Goran; Stadie, Axel; Bauermann, Thomas; Tropine, Andrei; Perneczky, Axel; von Wangenheim, Aldo; Stoeter, Peter

    2006-01-01

    Fiber tracking allows the in vivo reconstruction of human brain white matter fiber trajectories based on magnetic resonance diffusion tensor imaging (MR-DTI), but its application in the clinical routine is still in its infancy. In this study, we present a new software for fiber tracking, developed on top of a general-purpose DICOM (digital imaging and communications in medicine) framework, which can be easily integrated into existing picture archiving and communication system (PACS) of radiol...

  18. Socioeconomic status is positively correlated with frontal white matter integrity in aging

    OpenAIRE

    Johnson, Nathan F.; Kim, Chobok; Gold, Brian T.

    2012-01-01

    Socioeconomic status (SES) is an important reserve variable which has been shown to benefit the aging brain’s macrostructure. However, it remains unknown whether SES affects age-related changes in the brain’s white matter (WM) microstructure. Here, we used diffusion tensor imaging to explore the relationship between SES and three components of the diffusion tensor [fractional anisotropy (FA), axial diffusivity, and radial diffusivity (DR)]. Participants were 40 (16 male) cognitively normal yo...

  19. Effects of Long-Term Mindfulness Meditation on Brain's White Matter Microstructure and its Aging

    OpenAIRE

    Davide eLaneri; Verena eSchuster; Bruno eDietsche; Andreas eJansen; Ulrich eOtt; Jens eSommer

    2016-01-01

    Although research on the effects of mindfulness meditation (MM) is increasing, still very little has been done to address its influence on the white matter (WM) of the brain. We hypothesized that the practice of MM might affect the WM microstructure adjacent to five brain regions of interest associated with mindfulness. Diffusion tensor imaging was employed on samples of meditators and non-meditators (n=64) in order to investigate the effects of MM on group difference and aging. Tract-Based S...

  20. White Matter Brain Lesions in Midlife Familial Hypercholesterolemic Patients at 3-Tesla Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, S.A.; O' Regan, D.P.; Fitzpatrick, J.; Neuwirth, C.; Potter, E.; Tosi, I.; Hajnal, J.V.; Naoumova, R.P. (Imaging Sciences Dept. and Clinical Research Facility, MRC Clinical Sciences Centre, London (GB))

    2008-03-15

    Background: Patients with hypercholesterolemia of 60 years and older have an increased risk for white matter brain lesions and dementia. Purpose: To investigate whether patients with familial hypercholesterolemia (FH) develop white matter lesions at 3-Tesla (T) MRI as early as in midlife. Material and Methods: Non-diabetic, non-smoking, and non-hypertensive heterozygous FH patients on treatment with maximally tolerated dose of a statin for more than 5 years (n = 14) and matched controls (n = 22) aged 25 to 60 years of age were studied. Imaging was performed at 3T with a fluid-attenuated T2-weighted MR pulse sequence and a T1-weighted spin-echo pulse sequence following 10 ml of i.v. gadopentetate dimeglumine. Images were evaluated by two independent readers. Fasting blood samples were taken. Student's t test was employed at P<0.05. Results: Three volunteers and one FH patient had white matter lesions (P<0.53). No other evidence of past ischemic stroke was observed. Mean total serum cholesterol and low-density lipoprotein (LDL) cholesterol were significantly higher in the FH group (6.0+-1.1 vs. 5.1+-0.9 mmol/l, P<0.02 and 4.1+-0.9 vs. 3.1+-0.8 mmol/l, P<0.004, respectively). Conclusion: Heterozygous FH patients on statin treatment in the age range of 25 to 60 years are not at increased risk of white matter lesions at 3T MRI

  1. HYPERTENSION-RELATED ALTERATIONS IN WHITE MATTER MICROSTRUCTURE DETECTABLE IN MIDDLE AGE

    Science.gov (United States)

    McEvoy, Linda K.; Fennema-Notestine, Christine; Eyler, Lisa T.; Franz, Carol; Hagler, Donald J.; Lyons, Michael J.; Panizzon, Matthew S.; Rinker, Daniel A; Dale, Anders M.; Kremen, William S.

    2015-01-01

    Most studies examining associations between hypertension and brain white matter microstructure have focused on older adults or on cohorts with a large age range. Since hypertension effects on the brain may vary with age it is important to focus on middle age, when hypertension becomes more prevalent. We used linear mixed effect models to examine differences in white matter diffusion metrics as a function of hypertension in a well-characterized cohort of middle-aged men (N=316, mean 61.8 years; range 56.7–65.6). Diffusion metrics were examined in nine tracts reported to be sensitive to hypertension in older adults. Relative to normotensive individuals, individuals with longstanding hypertension (> 5.6 years) showed reduced fractional anisotropy or increased diffusivity in most tracts. Effects were stronger among carriers than non-carriers of the apolipoprotein E ε4 allele for two tracts connecting frontal regions with other brain areas. Significant differences were observed even after adjustment for potentially-related lifestyle and cardiovascular risk factors. Shorter duration of hypertension or better blood pressure control among hypertensive individuals did not lessen the adverse effects. These findings suggest that microstructural white matter alterations appear early in the course of hypertension and may persist despite adequate treatment. Although longitudinal studies are needed to confirm these findings, the results suggest that prevention—rather than management—of hypertension may be vital to preserving brain health in aging. PMID:26056337

  2. White matter disease correlates with lexical retrieval deficits in primary progressive aphasia