WorldWideScience

Sample records for cerebral cortex cells

  1. Sleep-active cells in the cerebral cortex and their role in slow-wave activity

    OpenAIRE

    Gerashchenko, Dmitry; Wisor, Jonathan P.; Kilduff, Thomas S.

    2011-01-01

    We recently identified neurons in the cerebral cortex that become activated during sleep episodes with high slow-wave activity (SWA). The distinctive properties of these neurons are the ability to produce nitric oxide and their long-range projections within the cortex. In this review, we discuss how these characteristics of sleep-active cells could be relevant to SWA production in the cortex. We also discuss possible models of the role of nNOS cells in SWA production.

  2. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Mark R. Winter

    2015-10-01

    Full Text Available Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex.

  3. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells.

    Science.gov (United States)

    Winter, Mark R; Liu, Mo; Monteleone, David; Melunis, Justin; Hershberg, Uri; Goderie, Susan K; Temple, Sally; Cohen, Andrew R

    2015-10-13

    Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex. PMID:26344906

  4. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  5. Sleep-active neuronal nitric oxide synthase-positive cells of the cerebral cortex: a local regulator of sleep?

    OpenAIRE

    Wisor, Jonathan P.; Gerashchenko, Dmitry; Kilduff, Thomas S.

    2011-01-01

    Our recent report demonstrated that a small subset of GABAergic interneurons in the cerebral cortex of rodents expresses Fos protein, a marker for neuronal activity, during slow wave sleep (Gerashchenko et al., 2008). The population of sleep-active neurons consists of strongly immunohistochemically-stained cells for the enzyme neuronal nitric oxide synthase. By virtue of their widespread localization within the cerebral cortex and their widespread projections to other cortical cell types, cor...

  6. Does cell lineage in the developing cerebral cortex contribute to its columnar organization?

    Directory of Open Access Journals (Sweden)

    Marcos R Costa

    2010-06-01

    Full Text Available Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighbouring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell-cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits.

  7. Does Cell Lineage in the Developing Cerebral Cortex Contribute to its Columnar Organization?

    OpenAIRE

    Costa, Marcos R.; Cecilia Hedin-Pereira

    2010-01-01

    Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such ...

  8. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  9. The Age of Human Cerebral Cortex Neurons

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  10. Output of Neurogliaform Cells to Various Neuron Types in the Human and Rat Cerebral Cortex

    OpenAIRE

    Oláh, Szabolcs; Komlósi, Gergely; Szabadics, János; Varga, Csaba; Tóth, Éva; Barzó, Pál; Tamás, Gábor

    2007-01-01

    Neurogliaform cells in the rat elicit combined GABAA and GABAB receptor-mediated postsynaptic responses on cortical pyramidal cells and establish electrical synapses with various interneuron types. However, the involvement of GABAB receptors in postsynaptic effects of neurogliaform cells on other GABAergic interneurons is not clear. We measured the postsynaptic effects of neurogliaform cells in vitro applying simultaneous whole-cell recordings in human and rat cortex. Single action potentials...

  11. The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development

    Directory of Open Access Journals (Sweden)

    Mariella eErrede

    2014-10-01

    Full Text Available This study was conducted on human developing brain by laser confocal and transmission electron microscopy to make a detailed analysis of important features of blood-brain barrier microvessels and possible control mechanisms of vessel growth and differentiation during cerebral cortex vascularization. The blood-brain barrier status of cortex microvessels was examined at a defined stage of cortex development, at the end of neuroblast waves of migration and before cortex lamination, with blood-brain barrier-endothelial cell markers, namely tight junction proteins (occludin and claudin-5 and influx and efflux transporters (Glut-1 and P-glycoprotein, the latter supporting evidence for functional effectiveness of the fetal blood-brain barrier. According to the well-known roles of astroglia cells on microvessel growth and differentiation, the early composition of astroglia/endothelial cell relationships was analysed by detecting the appropriate astroglia, endothelial, and pericyte markers. GFAP, chemokine CXCL12, and connexin 43 (Cx43 were utilized as markers of radial glia cells, CD105 (endoglin as a marker of angiogenically activated endothelial cells, and proteoglycan NG2 as a marker of immature pericytes. Immunolabeling for CXCL12 showed the highest level of the ligand in radial glial fibres in contact with the growing cortex microvessels. These specialized contacts, recognizable on both perforating radial vessels and growing collaterals, appeared as CXCL12-reactive en passant, symmetrical and asymmetrical vessel-specific RG fibre swellings. At the highest confocal resolution, these RG varicosities showed a CXCL12-reactive dot-like content whose microvesicular nature was confirmed by ultrastructural observations. A further analysis of radial glial varicosities reveals colocalization of CXCL12 with connexin Cx43, which is possibly implicated in vessel-specific chemokine signalling.

  12. ADAM17 is critical for multipolar exit and radial migration of neuronal intermediate progenitor cells in mice cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Qingyu Li

    Full Text Available The radial migration of neuronal progenitor cells is critical for the development of cerebral cortex layers. They go through a critical step transforming from multipolar to bipolar before outward migration. A Disintegrin and Metalloprotease 17 (ADAM17 is a transmembrane protease which can process many substrates involved in cell-cell interaction, including Notch, ligands of EGFR, and some cell adhesion molecules. In this study, we used in utero electroporation to knock down or overexpress ADAM17 at embryonic day 14.5 (E14.5 in neuronal progenitor cells to examine the role of ADAM17 in cortical embryonic neurogenesis. Our results showed that the radial migration of ADAM17-knocked down cells were normal till E16.5 and reached the intermediate zone (IZ. Then most transfected cells stopped migration and stayed at the IZ to inner cortical plate (CP layer at E18.5, and there was higher percentage of multipolar cells at IZ layer in the ADAM17-knocked down group compared to the cells in control group. Marker staining revealed that those ADAM17-knocked down cells differentiated normally from neural stem cells (NSCs to neuronal intermediate progenitor cells (nIPCs but did not differentiate into mature neurons. The migration and multipolar exit defects caused by ADAM17 knockdown could be partially rescued by over-expressing an shRNA resistant ADAM17, while overexpressing ADAM17 alone did not affect the radial migration. Taken together, our results showed for the first time that, ADAM17 is critical in regulating the multipolar-stage exit and radial migration of the nIPCs during telencephalon cortex development in mice.

  13. ADAM17 is critical for multipolar exit and radial migration of neuronal intermediate progenitor cells in mice cerebral cortex.

    Science.gov (United States)

    Li, Qingyu; Zhang, Zhengyu; Li, Zengmin; Zhou, Mei; Liu, Bin; Pan, Le; Ma, Zhixing; Zheng, Yufang

    2013-01-01

    The radial migration of neuronal progenitor cells is critical for the development of cerebral cortex layers. They go through a critical step transforming from multipolar to bipolar before outward migration. A Disintegrin and Metalloprotease 17 (ADAM17) is a transmembrane protease which can process many substrates involved in cell-cell interaction, including Notch, ligands of EGFR, and some cell adhesion molecules. In this study, we used in utero electroporation to knock down or overexpress ADAM17 at embryonic day 14.5 (E14.5) in neuronal progenitor cells to examine the role of ADAM17 in cortical embryonic neurogenesis. Our results showed that the radial migration of ADAM17-knocked down cells were normal till E16.5 and reached the intermediate zone (IZ). Then most transfected cells stopped migration and stayed at the IZ to inner cortical plate (CP) layer at E18.5, and there was higher percentage of multipolar cells at IZ layer in the ADAM17-knocked down group compared to the cells in control group. Marker staining revealed that those ADAM17-knocked down cells differentiated normally from neural stem cells (NSCs) to neuronal intermediate progenitor cells (nIPCs) but did not differentiate into mature neurons. The migration and multipolar exit defects caused by ADAM17 knockdown could be partially rescued by over-expressing an shRNA resistant ADAM17, while overexpressing ADAM17 alone did not affect the radial migration. Taken together, our results showed for the first time that, ADAM17 is critical in regulating the multipolar-stage exit and radial migration of the nIPCs during telencephalon cortex development in mice. PMID:23755270

  14. Local production of astrocytes in the cerebral cortex.

    Science.gov (United States)

    Ge, W-P; Jia, J-M

    2016-05-26

    Astrocytes are the largest glial population in the mammalian brain. Astrocytes in the cerebral cortex are reportedly generated from four sources, namely radial glia, progenitors in the subventricular zone (SVZ progenitors), locally proliferating glia, and NG2 glia; it remains an open question, however, as to what extent these four cell types contribute to the substantial increase in astrocytes that occurs postnatally in the cerebral cortex. Here we summarize all possible sources of astrocytes and discuss their roles in this postnatal increase. In particular, we focus on astrocytes derived from local proliferation within the cortex. PMID:26343293

  15. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex.

    Science.gov (United States)

    Monier, Anne; Adle-Biassette, Homa; Delezoide, Anne-Lise; Evrard, Philippe; Gressens, Pierre; Verney, Catherine

    2007-05-01

    Microglial cells penetrate into and scatter throughout the human cortical grey and white matter according to a specific spatiotemporal pattern during the first 2 trimesters of gestation. Routes of entry were quantitatively and qualitatively different from those identified in the diencephalon. Starting at 4.5 gestational weeks, amoeboid microglial cells, characterized by different antibodies as Iba1, CD68, CD45, and MHC-II, entered the cerebral wall from the ventricular lumen and the leptomeninges. Migration was mainly radial and tangential toward the immature white matter, subplate layer, and cortical plate, whereas pial cells populated the prospective layer I. The intraparenchymal vascular route of entry was detectable only from 12 gestational weeks. Interestingly, microglial cells accumulated in restricted laminar bands particularly at 19 to 24 gestational weeks among the corona radiata fibers rostrally, extending caudally in the immature white matter to reach the visual radiations. This accumulation of proliferating MIB1-positive microglia (as shown by MIB1-Iba1 double immunolabeling) was located at the site of white matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes and in injury to the developing brain. PMID:17483694

  16. Patterning the cerebral cortex: traveling with morphogens.

    Science.gov (United States)

    Borello, Ugo; Pierani, Alessandra

    2010-08-01

    The neocortex represents the brain structure that has been subjected to a major expansion in its relative size during the course of mammalian evolution. An exquisite coordination of appropriate growth of competent territories along multiple axes and their spatial patterning is required for regionalization of the cortical primordium and the formation of functional areas. The achievement of such a highly complex architecture relies on a precise orchestration of the proliferation of progenitors, onset of neurogenesis, spatio-temporal generation of distinct cell types and control of their migration. We will review recent work on alternative molecular mechanisms that, via the migration of signaling cells/structures, participate in coordinating growth and spatial patterning in the developing cerebral cortex. By integrating temporal and spatial parameters as well as absolute levels of signaling this novel strategy might represent a general mechanism for long-range patterning in large structures, in addition to the passive diffusion of morphogens. PMID:20542680

  17. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans.

    Directory of Open Access Journals (Sweden)

    Eva María Medina-Rodríguez

    Full Text Available During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs, a cell type that is a significant proportion of the total cells (3-8% in the adult central nervous system (CNS of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.

  18. Application of alcian blue in the electron microscopic study of mouse and human cerebral cortex nerve cells.

    Science.gov (United States)

    Castejón, H V; Castejón, O J; Viloria, M E

    1976-01-01

    Alcian blue is a cationic dye which has been used in the histochemical field for the demonstration of polyanions especially carboxylated and sulphated. The results obtained in neurons when this dye was applied to human and mouse cerebral cortex and studied with the electron microscope are the object of the present report. The CNS of normal adult mice was fixed by vascular perfusion with 2% glutaraldehyde-0.1 M sodium cacodylate-0.1 M sucrose at pH = 6.8 followed by the same fixative with the addition of 0.5% alcian blue. After perfusion, brain cortex was taken out, sectioned into small blocks and immersed in a fresh similar mixture and subsequently in OSO4. Blocks were dehydrated and embedded in araldite. Ultrathin sections were doubly stained with uranyl and lead salts. Human brain cortex taken from patients with cerebral edema was fixed by immersion with 6.5% glutaraldehyde-0.1 M sodium phosphate, pH = 7.4 followed by embedding in warm agar and sectioning in slices of 30 mum thickness which were impregnated by immersion in a mixture of 1% alcian blue-acetate buffer-3% glutaraldehyde at pH = 3.5 for 9 to 15 h at 4 degrees C and subsequently immersed in 1% buffered OSO4-0.1 M sucrose, pH = 7.4 for 2 h at 4 degrees S. Sections were dehydrated and embedded in araldite. Ultrathin sections were doubly stained by uranyl and lead salts. We have denominated the complete procedure in both instances GABOUL technique. The submicroscopic study of both tissues, at nerve cells, revealed the presence of an electron dense homogeneous substance thoroughly dispersed at the hyaloplasmic matrix of perikarya, processes and even synaptic endings. This substance was more evident around free and attached ribosomes, GOLGI apparatus, complex vesicles, dense bodies, microtubules, subsurface cisternae and synaptic vesicles. Canaliculi of endoplasmic reticulum and even the perinuclear cistern also showed a moderate content. It is suggested that this electron dense substance, being

  19. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    Science.gov (United States)

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development. PMID:27034844

  20. Early GABAergic circuitry in the cerebral cortex.

    Science.gov (United States)

    Luhmann, Heiko J; Kirischuk, Sergei; Sinning, Anne; Kilb, Werner

    2014-06-01

    In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual developmental shift of GABA action from excitatory to inhibitory and the maturation of cortical synaptic connections, GABA becomes more important in synchronizing neuronal network activity. PMID:24434608

  1. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Jielu Tan; Xiangrong Zheng; Shanshan Zhang; Yujia Yang; Xia Wang; Xiaohe Yu; Le Zhong

    2014-01-01

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  2. Canonical computations of cerebral cortex.

    Science.gov (United States)

    Miller, Kenneth D

    2016-04-01

    The idea that there is a fundamental cortical circuit that performs canonical computations remains compelling though far from proven. Here we review evidence for two canonical operations within sensory cortical areas: a feedforward computation of selectivity; and a recurrent computation of gain in which, given sufficiently strong external input, perhaps from multiple sources, intracortical input largely, but not completely, cancels this external input. This operation leads to many characteristic cortical nonlinearities in integrating multiple stimuli. The cortical computation must combine such local processing with hierarchical processing across areas. We point to important changes in moving from sensory cortex to motor and frontal cortex and the possibility of substantial differences between cortex in rodents vs. species with columnar organization of selectivity. PMID:26868041

  3. Subplate cells: amplifiers of neuronal activity in the developing cerebral cortex

    Directory of Open Access Journals (Sweden)

    Heiko J Luhmann

    2009-10-01

    Full Text Available Due to their unique structural and functional properties, subplate cells are ideally suited to function as important amplifying units within the developing neocortical circuit. Subplate neurons have extensive dendritic and axonal ramifications and relatively mature functional properties, i.e. their action potential firing can exceed frequencies of 40 Hz. At earliest stages of corticogenesis subplate cells receive functional synaptic inputs from the thalamus and from other cortical and non-cortical sources. Glutamatergic and depolarizing GABAergic inputs arise from cortical neurons and neuromodulatory inputs arise from the basal forebrain and other sources. Activation of postsynaptic metabotropic receptors, i.e. muscarinic receptors, elicits in subplate neurons oscillatory burst discharges which are transmitted via electrical and chemical synapses to neighbouring subplate cells and to immature neurons in the cortical plate. The tonic nonsynaptic release of GABA from GABAergic subplate cells facilitates the generation of burst discharges. These cellular bursts are amplified by prominent gap junction coupling in the subplate and cortical plate, thereby eliciting 10 to 20 Hz oscillations in a local columnar network. Thus, we propose that neuronal networks are organized at earliest stages in a gap junction coupled columnar syncytium. We postulate that the subplate does not only serve as a transient relay station for afferent inputs, but rather as an active element amplifying the afferent and intracortical activity.

  4. Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex

    DEFF Research Database (Denmark)

    Walløe, Solveig; Pakkenberg, Bente; Fabricius, Katrine

    2014-01-01

    Our knowledge of the relationship between brain structure and cognitive function is still limited. Human brains and individual cortical areas vary considerably in size and shape. Studies of brain cell numbers have historically been based on biased methods, which did not always result in correct...

  5. Subplate Cells: Amplifiers of Neuronal Activity in the Developing Cerebral Cortex

    Science.gov (United States)

    Luhmann, Heiko J.; Kilb, Werner; Hanganu-Opatz, Ileana L.

    2009-01-01

    Due to their unique structural and functional properties, subplate cells are ideally suited to function as important amplifying units within the developing neocortical circuit. Subplate neurons have extensive dendritic and axonal ramifications and relatively mature functional properties, i.e. their action potential firing can exceed frequencies of 40 Hz. At earliest stages of corticogenesis subplate cells receive functional synaptic inputs from the thalamus and from other cortical and non-cortical sources. Glutamatergic and depolarizing GABAergic inputs arise from cortical neurons and neuromodulatory inputs arise from the basal forebrain and other sources. Activation of postsynaptic metabotropic receptors, i.e. muscarinic receptors, elicits in subplate neurons oscillatory burst discharges which are transmitted via electrical and chemical synapses to neighbouring subplate cells and to immature neurons in the cortical plate. The tonic non-synaptic release of GABA from GABAergic subplate cells facilitates the generation of burst discharges. These cellular bursts are amplified by prominent gap junction coupling in the subplate and cortical plate, thereby eliciting 10–20 Hz oscillations in a local columnar network. Thus, we propose that neuronal networks are organized at earliest stages in a gap junction coupled columnar syncytium. We postulate that the subplate does not only serve as a transient relay station for afferent inputs, but rather as an active element amplifying the afferent and intracortical activity. PMID:19862346

  6. Structural changes in pyramidal cell dendrites and synapses in the unaffected side of the sensorimotor cortex following transcranial magnetic stimulation and rehabilitation training in a rat model of focal cerebral infarct

    Institute of Scientific and Technical Information of China (English)

    Chuanyu Liu; Surong Zhou; Xuwen Sun; Zhuli Liu; Hongliang Wu; Yuanwu Mei

    2011-01-01

    Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of focal cerebral infarct. The present study was designed to explore the mechanisms underlying improved motor function via transcranial magnetic stimulation and rehabilitation training following cerebral infarction. Results showed that rehabilitation training or transcranial magnetic stimulation alone reduced neurological impairment in rats following cerebral infarction, as well as significantly increased synaptic curvatures and post-synaptic density in the non-injured cerebral hemisphere sensorimotor cortex and narrowed the synapse cleft width. In addition, the percentage of perforated synapses increased. The combination of transcranial magnetic stimulation and rehabilitation resulted in significantly increased total dendritic length, dendritic branching points, and dendritic density in layer V pyramidal cells of the non-injured cerebral hemisphere motor cortex.These results demonstrated that transcranial magnetic stimulation and rehabilitation training altered structural parameters of pyramidal cell dendrites and synapses in the non-injured cerebral hemisphere sensorimotor cortex, thereby improving the ability to compensate for neurological functions in rats following cerebral infarction.

  7. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring.

    Directory of Open Access Journals (Sweden)

    Sérgio Gomes da Silva

    Full Text Available Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task. Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation and associative (spatial learning mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning and increases BDNF levels and cell numbers in the hippocampal formation of offspring.

  8. Retinoic acid influences neuronal migration from the ganglionic eminence to the cerebral cortex

    OpenAIRE

    Crandall, James E.; Goodman, Timothy; McCarthy, Deirdre M.; Duester, Gregg; Bhide, Pradeep G.; Dräger, Ursula C.; McCaffery, Peter

    2011-01-01

    The ganglionic eminence contributes cells to several forebrain structures including the cerebral cortex, for which it provides GABAergic interneurons. Migration of neuronal precursors from the retinoic-acid rich embryonic ganglionic eminence to the cerebral cortex is known to be regulated by several factors, but retinoic acid has not been previously implicated. We found retinoic acid to potently inhibit cell migration in slice preparations of embryonic mouse forebrains, which was reversed by ...

  9. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure.

    Science.gov (United States)

    Ujčíková, H; Brejchová, J; Vošahlíková, M; Kagan, D; Dlouhá, K; Sýkora, J; Merta, L; Drastichová, Z; Novotný, J; Ostašov, P; Roubalová, L; Parenti, M; Hof, M; Svoboda, P

    2014-01-01

    Large number of extracellular signals is received by plasma membrane receptors which, upon activation, transduce information into the target cell interior via trimeric G-proteins (GPCRs) and induce activation or inhibition of adenylyl cyclase enzyme activity (AC). Receptors for opioid drugs such as morphine (micro-OR, delta-OR and kappa-OR) belong to rhodopsin family of GPCRs. Our recent results indicated a specific up-regulation of AC I (8-fold) and AC II (2.5-fold) in plasma membranes (PM) isolated from rat brain cortex exposed to increasing doses of morphine (10-50 mg/kg) for 10 days. Increase of ACI and ACII represented the specific effect as the amount of ACIII-ACIX, prototypical PM marker Na, K-ATPase and trimeric G-protein alpha and beta subunits was unchanged. The up-regulation of ACI and ACII faded away after 20 days since the last dose of morphine. Proteomic analysis of these PM indicated that the brain cortex of morphine-treated animals cannot be regarded as being adapted to this drug because significant up-regulation of proteins functionally related to oxidative stress and alteration of brain energy metabolism occurred. The number of delta-OR was increased 2-fold and their sensitivity to monovalent cations was altered. Characterization of delta-OR-G-protein coupling in model HEK293 cell line indicated high ability of lithium to support affinity of delta-OR response to agonist stimulation. Our studies of PM structure and function in context with desensitization of GPCRs action were extended by data indicating participation of cholesterol-enriched membrane domains in agonist-specific internalization of delta-OR. In HEK293 cells stably expressing delta-OR-G(i)1alpha fusion protein, depletion of PM cholesterol was associated with the decrease in affinity of G-protein response to agonist stimulation, whereas maximum response was unchanged. Hydrophobic interior of isolated PM became more "fluid", chaotically organized and accessible to water molecules

  10. Morphological and functional correlates of VIP neurons in cerebral cortex

    International Nuclear Information System (INIS)

    Vasoactive Intestinal Polypeptide (VIP) promotes the hydrolysis of 3H-glycogen newly synthesized from 3H-glucose by mouse cortical slices. This effect occurs rapidly, approximately 50% of the maximal effect being reached within one minute. The maximal effect is achieved after 5 minutes and maintained for at least 25 minutes. Furthermore the glycogenolytic effect of VIP is reversible, and pharmacologically specific. Thus several neuropeptides present in cerebral cortex such as cholecystokinin-8, somatostatin-28, somatostatin-14, met-enkephalin, leu-enkephalin, do not affect 3H-glycogen levels. VIP fragments 6-28, 16-28 and 21-28 are similarly inactive. Furthermore, among the peptides which share structural homologies with VIP, such as glucagon, secretin, PHI-27 and Gastric Inhibitory Peptide, only secretin and PHI-27 promote 3H-glycogen hydrolysis, with EC50 of 500 and 300 nM respectively, compared to an EC50 of 25 nM for VIP. Immunohistochemical observations indicate that each VIP-containing bipolar cell is identified with a unique radical cortical volume, which is generally between 15-60 micrograms in diameter and overlaps with the contiguous domains of neighbouring VIP-containing bipolar cells. Thus this set of biochemical and morphological observations support the notion that VIP neurons have the capacity to regulate the availability of energy substrates in cerebral cortex locally, within circumscribed, contiguous, radial domains

  11. Chandelier neurons within the rabbits' cerebral cortex. A Golgi study.

    Science.gov (United States)

    Müller-Paschinger, I B; Tömböl, T; Petsche, H

    1983-01-01

    This study has been carried out by light microscopy on 3 Golgi-Kopsch impregnated brains of young adult rabbits. It is shown that chandelier cells exist within the rabbits' cerebral cortex. In the rabbit, the chandelier cell is a medium ranged bipolar interneuron in layer II/III with a characteristic axon which forms a plexus with a diameter of about 350-500 micrometers in the horizontal and 200-350 micrometers in the vertical direction; the end of each ramulus forms the typical "candlestick", a little vertical string of 1-6 boutons on an axon fibre. These boutons form contacts with all parts of pyramidal cells in layer II and the upper part of layer III. Similarities and differences with respect to previous descriptions of these cells in other species are discussed. PMID:6837931

  12. Cerebral cortex: a target and source of insulin?

    Science.gov (United States)

    Csajbók, Éva A; Tamás, Gábor

    2016-08-01

    Recent results suggest that insulin is synthesised by a subpopulation of neurons in the cerebral cortex and neural progenitor cells of the hippocampus. Supplementing the slow supply of insulin to the brain by pancreatic beta cells, the insulin locally released by neurons provides a rapid means of regulating local microcircuits, effectively modulating synaptic transmission and on-demand energy homeostasis of neural networks. Modulation of insulin production by brain neurons via glucagon-like peptide 1 (GLP-1) agonists might be useful in counteracting diabetes, obesity and neurodegenerative diseases. Replacement of lost pancreatic beta cells by autologous transplantation of insulin-producing neural progenitor cells could be a viable therapy for diabetes. PMID:27207082

  13. The Role of Neonatal Carnitine Palmitoyl Transferase Deficiency Type II on Proliferation of Neuronal Progenitor Cells and Layering of the Cerebral Cortex in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Heepeel Chang

    2007-06-01

    Full Text Available Neonatal Carnitine Palmitoyl Transferase Deficiency Type II, characterized by the absence of CPT II enzyme, is one of the lethal disorders of mitochondrial fatty acid oxidation. CPT II regulates the conversion of long chain fatty acids, so that its product, acyl-CoA esters, can enter the Krebs cycle and generate energy. Neonatal mutations of CPT II lead to severe disruption of the metabolism of long-chain fatty acids and result in dysmorphic features, cystic renal dysplasia, and neuronal migration defects. Examination of the brain from an approximately 15-week gestation human fetus with CPT II deficiency revealed premature formation of cerebral cortical gyri and sulci and significantly lower levels of neuronal cell proliferation in the ventricular and subventricular zones as compared to the reference cases. We used immunohistochemical markers to further characterize the effect of CPT II deficiency on progenitor cell proliferation and layering of neurons. These studies demonstrated a premature generation of layer 5 cortical neurons. In addition, both the total number and percentage of progenitor cells proliferating in the ventricular zone were markedly reduced in the CPT II case in comparison to a reference case. Our results indicate that CPT II deficiency alters the normal program of cellular proliferation and differentiation in the cortex, with early differentiation of progenitor cells associated with premature cortical maturation.

  14. BrdU-labelled neurons regeneration after cerebral cortex injury in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yue-lin; QIU Shu-dong; ZHANG Peng-bo; SHI Wei

    2006-01-01

    @@ Mechanical injuries to the external regions of the brain including the cerebral cortex and other parts of the telencephalon are common yet relatively untreatable.1 The predicament in recovery from brain injury is that the adult central nervous system is generally thought to be incapable of replacing dead neurons. As the subventricular zone (SVZ) is now known to be neurogenic and is in close proximity to the cerebral cortex and other functionally important forebrain areas, the neurogeny of SVZ brings hope to the repair of brain injury.2,3 Because of the high frequency of injuries to the cerebral cortex and its functional importance in humans, many laboratories have studied the results of unilateral aspiration or percussion injury of the cerebral cortex.4-6 However,little is known about the response of endogenous neural stem/progenitor cells following loss of the cerebral cortex that commonly occurred in the neurosurgery. We have characterized the time course of the proliferation of neural stem/progenitor cells in the SVZ in brain to loss of cortical cells.

  15. Adenomatous polyposis coli is required for early events in the normal growth and differentiation of the developing cerebral cortex

    OpenAIRE

    Price David J; Mason John O; Chen Yijing; Ivaniutsin Uladzislau; Pratt Thomas

    2009-01-01

    Abstract Background Adenomatous polyposis coli (Apc) is a large multifunctional protein known to be important for Wnt/β-catenin signalling, cytoskeletal dynamics, and cell polarity. In the developing cerebral cortex, Apc is expressed in proliferating cells and its expression increases as cells migrate to the cortical plate. We examined the consequences of loss of Apc function for the early development of the cerebral cortex. Results We used Emx1Cre to inactivate Apc specifically in proliferat...

  16. Adenomatous polyposis coli is required for early events in the normal growth and differentiation of the developing cerebral cortex

    OpenAIRE

    Ivaniutsin, Uladzislau; CHEN, Yijing; John O. MASON; Price, David; Pratt, Thomas

    2009-01-01

    Background: Adenomatous polyposis coli (Apc) is a large multifunctional protein known to be important for Wnt/beta-catenin signalling, cytoskeletal dynamics, and cell polarity. In the developing cerebral cortex, Apc is expressed in proliferating cells and its expression increases as cells migrate to the cortical plate. We examined the consequences of loss of Apc function for the early development of the cerebral cortex.Results: We used Emx1(Cre) to inactivate Apc specifically in proliferating...

  17. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies

    Directory of Open Access Journals (Sweden)

    Roberta eAzzarelli

    2015-01-01

    Full Text Available The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations.

  18. Mapping the structural core of human cerebral cortex.

    OpenAIRE

    Hagmann, Patric; Cammoun, Leila; Gigandet, Xavier; Meuli, Reto; Honey, Christopher J.; Sporns, Olaf; Wedeen, Van Jay

    2008-01-01

    Author Summary In the human brain, neural activation patterns are shaped by the underlying structural connections that form a dense network of fiber pathways linking all regions of the cerebral cortex. Using diffusion imaging techniques, which allow the noninvasive mapping of fiber pathways, we constructed connection maps covering the entire cortical surface. Computational analyses of the resulting complex brain network reveal regions of cortex that are highly connected and highly central, fo...

  19. The determination of projection neuron identity in the developing cerebral cortex

    OpenAIRE

    Leone, Dino P.; Srinivasan, Karpagam; Chen, Bin; Alcamo, Elizabeth; McConnell, Susan K.

    2008-01-01

    Here we review the mechanisms that determine projection neuron identity during cortical development. Pyramidal neurons in the mammalian cerebral cortex can be classified into two major classes: corticocortical projection neurons, which are concentrated in the upper layers of the cortex, and subcortical projection neurons, which are found in the deep layers. Early progenitor cells in the ventricular zone produce deep layer neurons that express transcription factors including Sox5, Fezf2, and C...

  20. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure

    Czech Academy of Sciences Publication Activity Database

    Ujčíková, Hana; Brejchová, Jana; Vošahlíková, Miroslava; Kagan, Dmytro; Dlouhá, Kateřina; Sýkora, Jan; Merta, Ladislav; Drastichová, Z.; Novotný, J.; Ostašov, Pavel; Roubalová, Lenka; Parenti, M.; Hof, Martin; Svoboda, Petr

    2014-01-01

    Roč. 63, Suppl.1 (2014), S165-S176. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : GPCR * morphine * mu-OR, delta-OR and kappa-OR * rat brain cortex * adenylyl cyclase I and II * proteomic analysis Subject RIV: CE - Biochemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.293, year: 2014

  1. High membrane protein oxidation in the human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Matthias Granold

    2015-04-01

    Full Text Available Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old animals, and adult rat hippocampus and cortex subjected or not subjected to cerebral ischemia. Most tissues showed relatively similar levels of protein oxidation. However, human cortex was affected by severe membrane protein oxidation, while exhibiting lower than average cytoplasmic protein oxidation. In contrast, ex vivo autooxidation of murine cortical tissue primarily induced aqueous protein oxidation, while in vivo biological aging or cerebral ischemia had no major effect on brain protein oxidation. The unusually high levels of membrane protein oxidation in the human cortex were also not predicted by lipid peroxidation, as the levels of isoprostane immunoreactivity in human samples were considerably lower than in rodent tissues. Our results indicate that the aged human cortex is under steady pressure from specific and potentially detrimental membrane protein oxidation. The pronounced difference between humans, mice and rats regarding the primary site of cortical oxidation might have contributed to the unresolved difficulties in translating into therapies the wealth of data describing successful antioxidant neuroprotection in rodents.

  2. Adenomatous polyposis coli is required for early events in the normal growth and differentiation of the developing cerebral cortex

    Directory of Open Access Journals (Sweden)

    Price David J

    2009-01-01

    Full Text Available Abstract Background Adenomatous polyposis coli (Apc is a large multifunctional protein known to be important for Wnt/β-catenin signalling, cytoskeletal dynamics, and cell polarity. In the developing cerebral cortex, Apc is expressed in proliferating cells and its expression increases as cells migrate to the cortical plate. We examined the consequences of loss of Apc function for the early development of the cerebral cortex. Results We used Emx1Cre to inactivate Apc specifically in proliferating cerebral cortical cells and their descendents starting from embryonic day 9.5. We observed reduction in the size of the mutant cerebral cortex, disruption to its organisation, and changes in the molecular identity of its cells. Loss of Apc leads to a decrease in the size of the proliferative pool, disrupted interkinetic nuclear migration, and increased apoptosis. β-Catenin, pericentrin, and N-cadherin proteins no longer adopt their normal high concentration at the apical surface of the cerebral cortical ventricular zone, indicating that cell polarity is disrupted. Consistent with enhanced Wnt/β-catenin signalling resulting from loss of Apc we found increased levels of TCF/LEF-dependent transcription and expression of endogenous Wnt/β-catenin target genes (Axin2 (conductin, Lef1, and c-myc in the mutant cerebral cortex. In the Apc mutant cerebral cortex the expression of transcription factors Foxg1, Pax6, Tbr1, and Tbr2 is drastically reduced compared to normal and many cells ectopically express Pax3, Wnt1, and Wt1 (but not Wnt2b, Wnt8b, Ptc, Gli1, Mash1, Olig2, or Islet1. This indicates that loss of Apc function causes cerebral cortical cells to lose their normal identity and redirect to fates normally found in more posterior-dorsal regions of the central nervous system. Conclusion Apc is required for multiple aspects of early cerebral cortical development, including the regulation of cell number, interkinetic nuclear migration, cell polarity, and

  3. Changes in Cerebral Cortex of Children Treated for Medulloblastoma

    International Nuclear Information System (INIS)

    Purpose: Children with medulloblastoma undergo surgery, radiotherapy, and chemotherapy. After treatment, these children have numerous structural abnormalities. Using high-resolution magnetic resonance imaging, we measured the thickness of the cerebral cortex in a group of medulloblastoma patients and a group of normally developing children. Methods and Materials: We obtained magnetic resonance imaging scans and measured the cortical thickness in 9 children after treatment of medulloblastoma. The measurements from these children were compared with the measurements from age- and gender-matched normally developing children previously scanned. For additional comparison, the pattern of thickness change was compared with the cortical thickness maps from a larger group of 65 normally developing children. Results: In the left hemisphere, relatively thinner cortex was found in the perirolandic region and the parieto-occipital lobe. In the right hemisphere, relatively thinner cortex was found in the parietal lobe, posterior superior temporal gyrus, and lateral temporal lobe. These regions of cortical thinning overlapped with the regions of cortex that undergo normal age-related thinning. Conclusion: The spatial distribution of cortical thinning suggested that the areas of cortex that are undergoing development are more sensitive to the effects of treatment of medulloblastoma. Such quantitative methods may improve our understanding of the biologic effects that treatment has on the cerebral development and their neuropsychological implications

  4. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.

    Science.gov (United States)

    Herbst, Eric A F; Holloway, Graham P

    2016-07-01

    The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate. As such, our results suggest that glutamate oxidation is enhanced with acute exercise through activation of the malate-aspartate shuttle. PMID:27184881

  5. Emergence of Complex Wave Patterns in Primate Cerebral Cortex

    OpenAIRE

    Townsend, Rory G.; Solomon, Selina S.; Chen, Spencer C.; Pietersen, Alexander N.J.; Martin, Paul R.; Solomon, Samuel G.; Gong, Pulin

    2015-01-01

    Slow brain rhythms are attributed to near-simultaneous (synchronous) changes in activity in neuron populations in the brain. Because they are slow and widespread, synchronous rhythms have not been considered crucial for information processing in the waking state. Here we adapted methods from turbulence physics to analyze δ-band (1–4 Hz) rhythms in local field potential (LFP) activity, in multielectrode recordings from cerebral cortex in anesthetized marmoset monkeys. We found that synchrony c...

  6. Effect of propofol pretreatment on apoptosis in rat brain cortex after focal cerebral ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    Haiyan Xu; Chengwei Zhang; Chunxiao Zhang

    2011-01-01

    The present study aimed to observe cortical expression of Bcl-2 and Bax, cysteine-dependent aspartate directed proteases-3 activity and apoptotic cell death in a rat model of middle cerebral artery occlusion pretreated with propofol. Results showed that, propofol pretreatment significantly reduced oxidative stress levels and attenuated neuronal apoptosis in the cortex of rats. Propofol pretreatment upregulated Bcl-2 expression, and downregulated Bax expression and cysteine-dependent aspartate directed proteases-3 activity. These findings indicate that propofol pretreatment inhibits cell apoptosis during focal cerebral ischemia/reperfusion injury. This neuroprotective effect is most likely achieved through the Bcl-2/Bax/cysteine-dependent aspartate directed proteases-3 pathway.

  7. Serine racemase expression in mouse cerebral cortex after permanent focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Li-zhen WANG; Xing-zu ZHU

    2004-01-01

    AIM: To study the alterations of the expressions of serine racemase in C57BL/6 mouse brain after permanent focal cerebral ischemia. METHODS: The mRNA level and the protein level of serine racemase were assayed by semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. The amount of D-serine and L-serine were measured by HPLC. RESULTS: High levels of serine racemase were constitutively expressed in the normal cortex of mouse. At early stage after middle cerebral artery occlusion (MCAO), no significant change in expression of serine racemase was observed in temporoparietal cortex in ipsilateral hemisphere. However,delayed transient decreases of serine racemase in both mRNA and protein levels were detected from d 6 to d 10 after ischemia. Correspondingly, D-serine concentration also declined in the ipsilateral cortex during this period when compared with the D-serine level in the contralateral cortex. CONCLUSION:Delayed decreases in serine racemase expression and D-serine level occurred in the temporoparietal cortex at the late stage after focal cerebral ischemia.

  8. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex.

    Science.gov (United States)

    Crandall, James E; McCarthy, Deirdre M; Araki, Kiyomi Y; Sims, John R; Ren, Jia-Qian; Bhide, Pradeep G

    2007-04-01

    GABA neurons of the cerebral cortex and other telencephalic structures are produced in the basal forebrain and migrate to their final destinations during the embryonic period. The embryonic basal forebrain is enriched in dopamine and its receptors, creating a favorable environment for dopamine to influence GABA neuron migration. However, whether dopamine receptor activation can influence GABA neuron migration is not known. We show that dopamine D1 receptor activation promotes and D2 receptor activation decreases GABA neuron migration from the medial and caudal ganglionic eminences to the cerebral cortex in slice preparations of embryonic mouse forebrain. Slice preparations from D1 or D2 receptor knock-out mouse embryos confirm the findings. In addition, D1 receptor electroporation into cells of the basal forebrain and pharmacological activation of the receptor promote migration of the electroporated cells to the cerebral cortex. Analysis of GABA neuron numbers in the cerebral wall of the dopamine receptor knock-out mouse embryos further confirmed the effects of dopamine receptor activation on GABA neuron migration. Finally, dopamine receptor activation mobilizes striatal neuronal cytoskeleton in a manner consistent with the effects on neuronal migration. These data show that impairing the physiological balance between D1 and D2 receptors can alter GABA neuron migration from the basal forebrain to the cerebral cortex. The intimate relationship between dopamine and GABA neuron development revealed here may offer novel insights into developmental disorders such as schizophrenia, attention deficit or autism, and fetal cocaine exposure, all of which are associated with dopamine and GABA imbalance. PMID:17409246

  9. Effect of Electroacupuncture on Expression of p53 Protein in Cerebral Cortex of Rats with Global Cerebral Ischemia/Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    卜渊; 耿德勤; 葛巍; 徐兴顺; 曾因明

    2004-01-01

    Objective: To observe the effect of electroacupuncture (EA) on expression of p53 protein in cerebral cortex of senile rats with global cerebral ischemia/reperfusion (IR) injury and to explore its mechanism. Methods: The cerebral IR injury rat model was established referring to Pulsinelli 4-vessel occlusion method. Thirty-six SD rats were randomly and evenly divided into the control group, the IR group and the IR plus EA (IR-EA) group. The animals in the control group were subjected to electrocauterization of vertebral arteries in bilateral flank orifice alone with the general carotid arteries unoccluded.To rats in the IR-EA group, immediately and 24h, 48h, 72h after cerebral IR, EA treatment on bilateral acupoint "Zusanli"(ST36) was applied once a day, lasting for 60 minutes. After the final treatment, all the rats were sacrificed and their brains were taken to examine p53 protein expression by the immunohistochemical method. Results: Cells with positive p53 immunoreactivity in the cerebral cortex of rats in the IR group was significantly higher than that in the control group ( P<0.05), while that in the IR-EA group was significantly lower than that in the IR group (P<0.05). Conclusion: EA could remarkably reduce expression of p53 protein in the cerebral cortex of senile rats with global cerebral IR injury, which might be one of the means for EA to inhibit neuronal apoptosis after cerebral IR injury.

  10. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Rashedinia, Marzieh; Lari, Parisa [Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Abnous, Khalil, E-mail: Abnouskh@mums.ac.r [Pharmaceutical Research Center, Department of Medicinal Chemistry, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Hosseinzadeh, Hossein, E-mail: Hosseinzadehh@mums.ac.ir [Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2013-10-01

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased.

  11. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    International Nuclear Information System (INIS)

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased

  12. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls

    OpenAIRE

    Naveau, Elise; Pinson, Anneline; GERARD, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, Robert Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell...

  13. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.

    Science.gov (United States)

    Dono, R; Texido, G; Dussel, R; Ehmke, H; Zeller, R

    1998-08-01

    Fibroblast growth factor-2 (FGF-2) has been implicated in various signaling processes which control embryonic growth and differentiation, adult physiology and pathology. To analyze the in vivo functions of this signaling molecule, the FGF-2 gene was inactivated by homologous recombination in mouse embryonic stem cells. FGF-2-deficient mice are viable, but display cerebral cortex defects at birth. Bromodeoxyuridine pulse labeling of embryos showed that proliferation of neuronal progenitors is normal, whereas a fraction of them fail to colonize their target layers in the cerebral cortex. A corresponding reduction in parvalbumin-positive neurons is observed in adult cortical layers. Neuronal defects are not limited to the cerebral cortex, as ectopic parvalbumin-positive neurons are present in the hippocampal commissure and neuronal deficiencies are observed in the cervical spinal cord. Physiological studies showed that FGF-2-deficient adult mice are hypotensive. They respond normally to angiotensin II-induced hypertension, whereas neural regulation of blood pressure by the baroreceptor reflex is impaired. The present genetic study establishes that FGF-2 participates in controlling fates, migration and differentiation of neuronal cells, whereas it is not essential for their proliferation. The observed autonomic dysfunction in FGF-2-deficient adult mice uncovers more general roles in neural development and function. PMID:9687490

  14. A multi-modal parcellation of human cerebral cortex.

    Science.gov (United States)

    Glasser, Matthew F; Coalson, Timothy S; Robinson, Emma C; Hacker, Carl D; Harwell, John; Yacoub, Essa; Ugurbil, Kamil; Andersson, Jesper; Beckmann, Christian F; Jenkinson, Mark; Smith, Stephen M; Van Essen, David C

    2016-08-11

    Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease. PMID:27437579

  15. Immunohistochemical investigation of neuronal injury in cerebral cortex of cobra-envenomed rats

    Directory of Open Access Journals (Sweden)

    T.R. Rahmy

    2004-01-01

    Full Text Available The immunohistochemical expression of neuron-specific enolase, NSE (a cytoplasmic glycolytic enzyme of the neurons, synaptophysin, SYN (a major membrane glycoprotein of synaptic vesicles, and Bcl-2 (anti-apoptotic protein were determined in cerebral cortex of rats envenomed with neurotoxic venom from Egyptian cobra. Male rats were intramuscularly (IM injected with a single injection of either physiological saline solution or ½ LD50 or LD50 of cobra venom and sacrificed 24, 48, or 72 hr after envenoming. Formalin-fixed paraffin sections were immunohistochemically studied by avidin-biotin-peroxidase complex method. Neuron histological structure and isolation of genomic DNA were also detected. The results showed a dose and time-dependent increase in NSE and SYN immunoreactivity in cerebral cortex of envenomed rats except in 72 hr high dose envenoming, where decreased SYN was observed. On the other hand, low dose venom induced high Bcl-2 expression 24 hr after envenoming, while the high dose decreased Bcl-2 protein expression. Temporal and spatial Bcl-2 expression was accompanied by DNA fragmentation in cerebral cortex of all envenomed rats, although no serious histological alterations were noticed. These results suggest that cobra venom may lead to neuronal injury and impairment of axonal transport as ascertained by alterations in NSE and SYN immunoreactivity. It could also indicate that venom alters the molecular machinery of apoptosis by inhibiting Bcl-2 expression; however, some vulnerable cells have the ability to overcome this by increasing Bcl-2 protein. These immunohistochemical investigations can be used as tools for detecting neuronal abnormalities even before the occurrence of any histological alterations in case of cerebral cortex neurotoxicity.

  16. Expression of bone morphogenetic protein 7 in the cerebral cortex of rats after ischemic-hypoxic injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Some researches demonstrate that exogenous bone morphogenetic protein 7 (BMP-7) can protect ischemic cerebral nerve tissue and promote recovery of motor energy function; however, there is lack of direct evidences of endogenous BMP-7 effect.OBJECTIVE: To observe the expression of endogenous BMP-7 in nerve tissue with ischemic-hypoxic injury and investigate the possible effects on damaged nerve tissue.DESIGN: Observational contrast animal study.SETTING: Department of Anatomy and Histoembryology, Peking University Health Science Center.MATERIALS: The experiment was carried out in the Nerve Researching Laboratory of Anatomy Department, Peking University Health Science Center from October 2006 to March 2007. A total of 25 adult male SD rats weighing 250 - 300 g and several newborn SD rats were selected from Experimental Animal Center, Peking University Health Science Center. Rabbit-anti-BMP-7 polyclonal antibody was provided by Wuhan Boster Company.METHODS: ① Adult rats were randomly divided into ischemia group (n =10), sham operation group (n =10) and normal group (n =5). Right external-internal carotid artery occlusion was used to infarct middle cerebral artery of adult rats in the ischemia group so as to copy focal cerebral infarction models. Line cork was inserted in crotch of internal and external carotid artery of adult rats in the sham operation group, while adult rats in the normal group were not given any treatments. ② Cerebral cortex of newborn rats was separated to obtain cell suspension. Cells which were cultured for 10 days were divided into control group and hypoxia/reoxygenation group. And then, cells in the hypoxia/reoxygenation group were cultured in hypoxic incubator for 4 hours and given reoxygenation for 24 hours.MAIN OUTCOME MEASURES: Immunohistochemical method was used to measure expression of BMP-7 in cerebral cortex at 24 hours after ischemia/reperfusion culture and in primary hypoxic culture.RESULTS: ① At 24 hours after

  17. Immuno-localisation of anti-thyroid antibodies in adult human cerebral cortex.

    Science.gov (United States)

    Moodley, Kogie; Botha, Julia; Raidoo, Deshandra Munsamy; Naidoo, Strinivasen

    2011-03-15

    Expression of thyroid-stimulating hormone receptor (TSH-R) has been demonstrated in adipocytes, lymphocytes, bone, kidney, heart, intestine and rat brain. Immuno-reactive TSH-R has been localised in rat brain and human embryonic cerebral cortex but not in adult human brain. We designed a pilot study to determine whether anti-thyroid auto-antibodies immuno-localise in normal adult human cerebral cortex. Forensic samples from the frontal, motor, sensory, occipital, cingulate and parieto-occipito-temporal association cortices were obtained from five individuals who had died of trauma. Although there were no head injuries, the prior psychiatric history of patients was unknown. The tissues were probed with commercial antibodies against both human TSH-R and human thyroglobulin (TG). Anti-TSH-R IgG immuno-localised to cell bodies and axons of large neurones in all 6 regions of all 5 brains. The intensity and percentage of neurones labelled were similar in all tissue sections. TSH-R immuno-label was also observed in vascular endothelial cells in the cingulate gyrus. Although also found in all 5 brains and all six cortical regions, TG localised exclusively in vascular smooth muscle cells and not on neurones. Although limited by the small sample size and number of brain areas examined, this is the first study describing the presence of antigenic targets for anti-TSH-R IgG on human cortical neurons, and anti-TG IgG in cerebral vasculature. PMID:21196016

  18. Small scale module of the rat granular retrosplenial cortex: an example of minicolumn-like structure of the cerebral cortex

    Directory of Open Access Journals (Sweden)

    Noritaka eIchinohe

    2012-01-01

    Full Text Available Structures associated with the small scale module called minicolumn can be observed frequently in the cerebral cortex. However, the description of functional characteristics remains obscure. A significant confounding factor is the marked variability both in the definition of a minicolumn and in the diagnostic markers for identifying a minicolumn (see for review, Jones, 2000, DeFelipe et al., 2003; Rockland and Ichinohe, 2004. Within a minicolumn, cell columns are easily visualized by conventional Nissl staining. Dendritic bundles were first discovered with Golgi methods, but are more easily seen with MAP2-immunohistochemisty. Myelinated axon bundles can be seen by Tau-immunohistochemistry or myelin staining. Axon bundles of double bouquet cell can be seen by calbindin-immunohistochemistry. The spatial interrelationship among these morphological elements is more complex than expected and is neither clear nor unanimously agreed upon. In this review, I would like to focus first on the minicolumnar structure found in layers 1 and 2 of the rat granular retrosplenial cortex (GRS. This modular structure was first discovered as a combination of prominent apical dendritic bundles from layer 2 pyramidal neurons and spatially-matched thalamocortical patchy inputs (Wyss et al., 2000. Further examination showed more intricate components of this modular structure, which will be reviewed in this paper. Second, the postnatal development of this structure and potential molecular players for its formation will be reviewed. Thirdly, I will discuss how this modular organization is transformed in mutant rodents with a disorganized layer structure in the cerebral cortex (i.e., reeler mouse and Shaking Rat Kawasaki. Lastly, the potential significance of this type of module will be discussed.

  19. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission.

    Science.gov (United States)

    Ovsepian, Saak V; O'Leary, Valerie B; Zaborszky, Laszlo

    2016-06-01

    Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease. PMID:26002948

  20. Alpha-actinin expression at different differentiating time points from temporal lobe cerebral cortex neural stem cells to neuron-like cells using energy dispersive X-ray analysis

    Institute of Scientific and Technical Information of China (English)

    Bo YU; Hua Li; Zhe Du; Yang Hong; Meng Sang; Yuxiu Shi

    2009-01-01

    BACKGROUND: Alpha-actinin (a-actinin) plays a key role in neuronal growth cone migration during directional differentiation from neural stem cells (NSCs) to neurons.OBJECTIVE: To detect in situ microdistribution and quantitative expression of a-actinin during directional differentiation of NSCs to neurons in the temporal lobe cerebral cortex of neonatal rats.DESIGN, TIME AND SETTING: Between January 2006 and December 2008, culture and directional differentiation of NSCs were performed at Department of Histology and Embryology, Preclinical Medical College, China Medical University. Immune electron microscopy was performed at Department of Histology and Embryology and Department of Electron Micrology, Preclinical Medical College, China Medical University. Spectrum analysis was performed at Laboratory of Electron Microscopy, Mental Research Institute, Chinese Academy of Sciences.MATERIALS: Basic fibroblast growth factor, epidermal growth factor, brain-derived nerve growth factor, type-1 insulin like growth factor, and a-actinin antibody were provided by Gibco BRL, USA; rabbit-anti-rat nestin monoclonal antibody, rabbit-anti-rat neuron specific enolase polyclonal antibody, and EDAX-9100 energy dispersive X-ray analysis were provided by PHILIPS Company, Netherlands.METHODS: NSCs, following primary and passage culture, were differentiated with serum culture medium (DMEM/F12+10% fetal bovine serum+2 ng/mL brain-derived nerve growth factor+2 ng/mL type-1 insulin like growth factor).MAIN OUTCOME MEASURES: Expression of a-actinin in neuron-like cells was quantitatively and qualitatively detected with immunocytochemistry using energy dispersive X-ray analysis. RESULTS: Immunocytochemistry, combined with electron microscopy, indicated that positive a-actinin expression was like a spheroid particle with high electron density. In addition, the expression was gradually concentrated from the nuclear edge to the cytoplasm and expanded into developing neurites, during

  1. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Zongjun Guo; Lumin Wang

    2012-01-01

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  2. Promotion of proliferation in the developing cerebral cortex by EphA4 forward signaling

    Science.gov (United States)

    North, Hilary A.; Zhao, Xiumei; Kolk, Sharon M.; Clifford, Meredith A.; Ziskind, Daniela M.; Donoghue, Maria J.

    2009-01-01

    Summary Eph receptors are widely expressed during cerebral cortical development, yet a role for Eph signaling in the generation of cells during corticogenesis has not been shown. Cortical progenitor cells selectively express one receptor, EphA4, and reducing EphA4 signaling in cultured progenitors suppressed proliferation, decreasing cell number. In vivo, EphA4-/- cortex had a reduced area, fewer cells and less cell division compared with control cortex. To understand the effects of EphA4 signaling in corticogenesis, EphA4-mediated signaling was selectively depressed or elevated in cortical progenitors in vivo. Compared with control cells, cells with reduced EphA4 signaling were rare and mitotically inactive. Conversely, overexpression of EphA4 maintained cells in their progenitor states at the expense of subsequent maturation, enlarging the progenitor pool. These results support a role for EphA4 in the autonomous promotion of cell proliferation during corticogenesis. Although most ephrins were undetectable in cortical progenitors, ephrin B1 was highly expressed. Our analyses demonstrate that EphA4 and ephrin B1 bind to each other, thereby initiating signaling. Furthermore, overexpression of ephrin B1 stimulated cell division of neighboring cells, supporting the hypothesis that ephrin B1-initiated forward signaling of EphA4 promotes cortical cell division. PMID:19542359

  3. The Distribution of MAP-2 Phosphorylation in Cerebral Cortex of Long-Tailed Monkey Fetuses (Macaca fascicularis in the Last Trimester of Gestation

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Pangestiningsih

    2015-11-01

    Full Text Available Memories are storage in cholinoceptive cells, the cells which are enriched with microtubule-associated protein 2 (MAP-2 that localized in the neuronal dendrite and the cell bodies. Phosphorylation of MAP-2 may increase memory with reduce stability of dendrite by altered dendrite length and lead new side-branches of neuronal as a neuronal plasticity processes in cerebral cortex. The aim of this research is to study the distribution of MAP-2 phosphorylation neurons in cerebral cortex of long-tailed macaques in the third semester of gestationalimmunohistochemically using avidin biotin conjugated complex method. Neurons MAP-2 phosphorylation immunoreactive were located in dendrites and cell bodies, mostly in pyramidal neurons of cerebral cortex. Intensity of MAP-2 phosphorylation immunoreactivity in layer V were stronger than another layer and the neurons that very intensely stained were the pyramidal cells in frontal and parietal lobes, that was suggested that neurons in this areas more responsive to neuroplasticity. From the results we concluded that MAP-2 phosphorylation already distributed in the cerebral cortex of long-tailed macaque fetuses at the last trimester of gestation, mostly in the pyramidal cells of layer V that is suggested plays a role for preparation of memoryformation.Keywords: fetus, long-tailed monkey, cerebral cortex, memory, MAP-2 phosphorylation

  4. Microtubules in the Cerebral Cortex: Role in Memory and Consciousness

    Science.gov (United States)

    Woolf, Nancy J.

    This chapter raises the question whether synaptic connections in the cerebral cortex are adequate in accounting for higher cognition, especially cognition involving multimodal processing. A recent and novel approach to brain mechanics is outlined, one that involves microtubules and microtubule-associated protein-2 (MAP2). In addition to effects on the neuronal membrane, neurotransmitters exert actions on microtubules. These neurotransmitter effects alter the MAP2 phosphorylation state and rates of microtubule polymerization and transport. It is argued that these processes are important to the physical basis of memory and consciousness. In support of this argument, MAP2 is degraded with learning in discrete cortical modules. How this relates to synaptic change related to learning is unknown. The specific proposal is advanced that learning alters microtubules in the subsynaptic zone lying beneath the synapse, and that this forms the physical basis of long-term memory storage because microtubule networks determine the synapse strength by directing contacts with actin filaments and transport of synaptic proteins. It is argued that this is more probable than memory-related physical storage in the synapse itself. Comparisons to consciousness are made and it is concluded that there is a link between microtubules, memory and consciousness.

  5. Surface Reconstruction and Optimization of Cerebral Cortex for Application Use.

    Science.gov (United States)

    Shin, Dong Sun; Park, Sang Kyu

    2016-03-01

    For the purposes of virtual surgery, medical education, medical communication, and realistic surface models of anatomic structures are required. In the most involved method, surface models can be made using segmentation and three-dimensional reconstruction procedures. Such models, however, are computationally expensive, and can be difficult to use. Therefore, optimization is often performed manually, but this is a time-consuming job that requires considerable artistic talent. In this article, the authors describe a method that uses Maya and ZBrush to construct optimized surface models of anatomic structures. The authors take 235 anatomic images generated from a cadaver, and perform segmentation and surface reconstruction using Photoshop and Mimics. Reconstructed surface models of the cerebral cortex are then optimized and divided by a morphing technique in Maya and ZBrush for use in medical applications. The optimized surface models do not require significant storage space, and are easily manufactured and modified. The resulting surface models can be displayed off-line and on-line in real time, as well as on smart phones. Using commercial software with the specialized functions described in this study, it is expected that the efficiencies produced by the proposed method will enable researchers to conveniently create surface models from serially sectioned images such as computed tomographs and magnetic resonance images. The surface models created in this research will also have widespread applications in both medical education and communication. PMID:26854785

  6. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    Science.gov (United States)

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  7. Htr2a gene and 5-HT2A receptor expression in the cerebral cortex studied using genetically modified mice

    Directory of Open Access Journals (Sweden)

    Rodrigo Andrade

    2010-08-01

    Full Text Available Serotonin receptors of the 5-HT2A subtype are robustly expressed in the cerebral cortex where they have been implicated in the pathophysiology and therapeutics of mental disorders and the actions of hallucinogens. Much less is known, however, about the specific cell types expressing 5-HT2A receptors in cortex. In the current study we use immunohistochemical and electrophysiological approaches in genetically modified mice to address the expression of the Htr2a gene and 5-HT2A receptors in cortex. We first use an EGFP expressing BAC transgenic mice and identify three main Htr2A gene expressing neuronal populations in cortex. The largest of these cell populations corresponds to layer V pyramidal cells of the anterior cortex, followed by GABAergic interneurons of the middle layers, and nonpyramidal cells of the subplate/Layer VIb. We then use 5-HT2A receptor knockout mice to identify an antibody capable of localizing 5-HT2A receptors in brain and use it to map these receptors. We find strong laminar expression of 5-HT2A receptors in cortex, especially along a diffuse band overlaying layer Va. This band exhibits a strong anteroposterior gradient that closely matches the localization of Htr2A expressing pyramidal cells of layer V. Finally we use electrophysiological and immunohistochemical approaches to show that most, but not all, GABAergic interneurons of the middle layers are parvalbumin expressing Fast-spiking interneurons and that these cells are depolarized and excited by serotonin, most likely through the activation of 5-HT2A receptors. These results clarify and extend our understanding of the cellular distribution of 5-HT2A receptors in the cerebral cortex.

  8. Directing astroglia from the cerebral cortex into subtype specific functional neurons.

    Directory of Open Access Journals (Sweden)

    Christophe Heinrich

    2010-05-01

    Full Text Available Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be directed towards distinct neuronal subtype identities by selective expression of distinct neurogenic fate determinants. Here we show that strong and persistent expression of neurogenic fate determinants driven by silencing-resistant retroviral vectors instructs astroglia from the postnatal cortex in vitro to mature into fully functional, synapse-forming neurons. Importantly, the neurotransmitter fate choice of astroglia-derived neurons can be controlled by selective expression of distinct neurogenic transcription factors: forced expression of the dorsal telencephalic fate determinant neurogenin-2 (Neurog2 directs cortical astroglia to generate synapse-forming glutamatergic neurons; in contrast, the ventral telencephalic fate determinant Dlx2 induces a GABAergic identity, although the overall efficiency of Dlx2-mediated neuronal reprogramming is much lower compared to Neurog2, suggesting that cortical astroglia possess a higher competence to respond to the dorsal telencephalic fate determinant. Interestingly, however, reprogramming of astroglia towards the generation of GABAergic neurons was greatly facilitated when the astroglial cells were first expanded as neurosphere cells prior to transduction with Dlx2. Importantly, this approach of expansion under neurosphere conditions and subsequent reprogramming with distinct neurogenic transcription factors can also be extended to reactive astroglia isolated from the adult injured cerebral cortex, allowing for the

  9. Effect of a low-dose x-ray irradiation on the development and differentiation of the cerebral cortex, (15)

    International Nuclear Information System (INIS)

    Mice of 17 day's gestation received x-rays of 10 R, 25 R, or 100 R, and those of 13 or 15 day's gestation received 10 R in a single exposure. These irradiated fetuses were examined for the weight of the brain, thickness of the cerebral cortex, density of the cortical cells and branching of the pyramidal cells in the fifth layer of the cortex 12 weeks after birth. Decrease in the thickness of the cortex was observed in the mice which received 100 R at 17 day's gestation. A decrease in the branching index of the pyramidal cells was found in the mice which received 100 R. Although a decreasing tendency of the branching index was also recognized in those which received 10 R at 13 days of gestation, showing no statistically significant difference. (Ueda, J.)

  10. The lizard cerebral cortex as a model to study neuronal regeneration

    Directory of Open Access Journals (Sweden)

    CARLOS LOPEZ-GARCIA

    2002-03-01

    Full Text Available The medial cerebral cortex of lizards, an area homologous to the hippocampal fascia dentata, shows delayed postnatal neurogenesis, i.e., cells in the medial cortex ependyma proliferate and give rise to immature neurons, which migrate to the cell layer. There, recruited neurons differentiate and give rise to zinc containing axons directed to the rest of cortical areas, thus resulting in a continuous growth of the medial cortex and its zinc-enriched axonal projection. This happens along the lizard life span, even in adult lizards, thus allowing one of their most important characteristics: neuronal regeneration. Experiments in our laboratory have shown that chemical lesion of the medial cortex (affecting up to 95% of its neurons results in a cascade of events: first, massive neuronal death and axonal-dendritic retraction and, secondly, triggered ependymal-neuroblast proliferation and subsequent neo-histogenesis and regeneration of an almost new medial cortex, indistinguishable from a normal undamaged one. This is the only case to our knowledge of the regeneration of an amniote central nervous centre by new neuron production and neo-histogenesis. Thus the lizard cerebral cortex is a good model to study neuronal regeneration and the complex factors that regulate its neurogenetic, migratory and neo-synaptogenetic events.O córtex cerebral de lagartos, uma área homóloga à fascia dentata hipocampal, exibe neurogênese pós-natal prolongada, isto é, o epêndima do córtex medial prolifera e dá origem a neurônios imaturos, que migram para a camada celular. Nesta camada, neurônios recrutados se diferenciam e dão origem a axônios, ricos em zinco, que se projetam para as demais áreas corticais, do que resulta um crescimento contínuo do córtex medial e sua projeção axonal. Isto acontece por toda a vida do lagarto, mesmo em animais adultos, o que permite uma de suas características mais importantes: a regeneração neuronal. Experimentos em

  11. RTTN Mutations Link Primary Cilia Function to Organization of the Human Cerebral Cortex

    Science.gov (United States)

    Kheradmand Kia, Sima; Verbeek, Elly; Engelen, Erik; Schot, Rachel; Poot, Raymond A.; de Coo, Irenaeus F.M.; Lequin, Maarten H.; Poulton, Cathryn J.; Pourfarzad, Farzin; Grosveld, Frank G.; Brehm, António; de Wit, Marie Claire Y.; Oegema, Renske; Dobyns, William B.; Verheijen, Frans W.; Mancini, Grazia M.S.

    2012-01-01

    Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein. The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance of sensory neurons. We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected individuals have structural abnormalities of the cilia and exhibit downregulation of BMP4, WNT5A, and WNT2B, which are key regulators of cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Interestingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown experiments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTN mutations therefore link aberrant ciliary function to abnormal development and organization of the cortex in human individuals. PMID:22939636

  12. Effects of sericin on heme oxygenase-1 expression in the hippocampus and cerebral cortex of type 2 diabetes mellitus rats

    Institute of Scientific and Technical Information of China (English)

    Zhihona Chen; Yaqiang He; Wenliang Fu; Jingfeng Xue

    2011-01-01

    Previous studies have demonstrated that sericin effectively reduces blood glucose, and protects islet cells, as well as the gonads and kidneys. However, whether sericin improves diabetes mellitus-induced structural and functional problems in the central nervous system remains poorly understood. Rat models of type 2 diabetes mellitus were established by intraperitoneal injection of streptozotocin. The present study observed histological changes in the hippocampus and cerebral cortex, as well as heme oxygenase-1 expression, and explored sericin effects on the central nervous system in diabetic rats. Pathological damage to neural cells in the rat hippocampus and cerebral cortex was relieved following intragastric administration of sericin at a dose of 2.4 g/kg for 35 consecutive days. Heme oxygenase-1 protein and mRNA expressions were decreased in the hippocampus and cerebral cortex of diabetes mellitus rats after sericin treatment. The results suggest that sericin plays a protective effect on the nervous system by decreasing the high expression of heme oxygenase-1 following diabetes mellitus.

  13. Activin A maintains cerebral cortex neuronal survival and increases voltage-gated Na+ neuronal current

    Institute of Scientific and Technical Information of China (English)

    Jingyan Ge; Yinan Wang; Haiyan Liu; Fangfang Chen; Xueling Cui; Zhonghui Liu

    2010-01-01

    Activin A,which was first described in 1986,has been shown to maintain hippocampal neuronal survival.Activin A increases intracellular free Ca2+via L-type Ca2+channels.Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion.The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a tong period,and that activin A was shown to increase voltage-gated Na+current(INa)in Neure-2a cells,which was recorded by patch clamp technique.The present study revealed a novel mechanism for activin A,as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.

  14. Effect of orphanin FQ and morphine on sodium channel current in somatosensory area of rat cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Lei Yang; Yurong Li; Shuwei Jia; Yunhong Zhang; Lanwei Cui; Lihui Qu

    2007-01-01

    BACKGROUND: Some experiments have demonstrated that injecting orphanin FQ (OFQ) into lateral ventricle, which can obviously decrease the pain threshold. It is indicated that OFQ is an anti-opiate substance. However, whether OFQ has effects on sensory neuron ion channel in cerebral cortex needs to be further studied.OBJECTIVE: To investigate the effects of OFQ, morphine or their combination on sodium channel current of somatosensory neurons in rat cerebral cortex.DESIGN: Repeated measurement trial.SETTING: Department of Physiology, Harbin Medical University.MATERIALS: Fifty healthy Wistar rats, aged 12-16 days, of either gender, were provided by the Experimental Animal Center, Second Hospital Affiliated to Harbin Medical University. OFQ was purchased from Sigma-Aldrich Company, and morphine was provided by the Shenyang First Pharmaceutical Factory.PC2C patch clamp amplifier and LabmasterTLlwere purchased from Yibo Life Science Instrument Co.,Ltd.of Huazhong University of Science and Techgnology.METHODS: This experiment was carried out in the Department of Physiology (provincial laboratory),Harbin Medical University between January 2005 and May 2006. Cortical neurons were acutely isolated from rats, and prepared into cell suspension following culture. ①Sodium channel current of somatosensory neurons in rat cerebral cortex was recorded before and after administration by whole-cell Patch clamptechnique after 50 nmol/L OFQ being added to extracellular fluid.②The amplitude of sodium channel current of somatosensory neurons in rat cerebral cortex was recorded before and after administration by the same method after 20 I mol/L morphine being added to extracellular fluid, and then the change of sodium channel current was recorded after 50 nmol/L OFQ being added.MAIN OUTCOME MEASURES: The amplitude of sodium channel current of somatosensory neurons in rat cerebral cortex following the administration of OFQ, morphine separately or their combination

  15. Sox2-Mediated Conversion of NG2 Glia into Induced Neurons in the Injured Adult Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Christophe Heinrich

    2014-12-01

    Full Text Available The adult cerebral cortex lacks the capacity to replace degenerated neurons following traumatic injury. Conversion of nonneuronal cells into induced neurons has been proposed as an innovative strategy toward brain repair. Here, we show that retrovirus-mediated expression of the transcription factors Sox2 and Ascl1, but strikingly also Sox2 alone, can induce the conversion of genetically fate-mapped NG2 glia into induced doublecortin (DCX+ neurons in the adult mouse cerebral cortex following stab wound injury in vivo. In contrast, lentiviral expression of Sox2 in the unlesioned cortex failed to convert oligodendroglial and astroglial cells into DCX+ cells. Neurons induced following injury mature morphologically and some acquire NeuN while losing DCX. Patch-clamp recording of slices containing Sox2- and/or Ascl1-transduced cells revealed that a substantial fraction of these cells receive synaptic inputs from neurons neighboring the injury site. Thus, NG2 glia represent a potential target for reprogramming strategies toward cortical repair.

  16. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex

    OpenAIRE

    Richard D. Hoge; Atkinson, Jeff; Gill, Brad; Crelier, Gérard R.; Marrett, Sean; Pike, G Bruce

    1999-01-01

    The aim of this study was to test the hypothesis that, within a specific cortical unit, fractional changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) are coupled through an invariant relationship during physiological stimulation. This aim was achieved by simultaneously measuring relative changes in these quantities in human primary visual cortex (V1) during graded stimulation with patterns designed to selectively activate different populations of V1...

  17. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex.

    Science.gov (United States)

    Coffman, Keith A; Dum, Richard P; Strick, Peter L

    2011-09-20

    The cerebellum has a medial, cortico-nuclear zone consisting of the cerebellar vermis and the fastigial nucleus. Functionally, this zone is concerned with whole-body posture and locomotion. The vermis classically is thought to be included within the "spinocerebellum" and to receive somatic sensory input from ascending spinal pathways. In contrast, the lateral zone of the cerebellum is included in the "cerebro-cerebellum" because it is densely interconnected with the cerebral cortex. Here we report the surprising result that a portion of the vermis receives dense input from the cerebral cortex. We injected rabies virus into lobules VB-VIIIB of the vermis and used retrograde transneuronal transport of the virus to define disynaptic inputs to it. We found that large numbers of neurons in the primary motor cortex and in several motor areas on the medial wall of the hemisphere project to the vermis. Thus, our results challenge the classical view of the vermis and indicate that it no longer should be considered as entirely isolated from the cerebral cortex. Instead, lobules VB-VIIIB represent a site where the cortical motor areas can influence descending control systems involved in the regulation of whole-body posture and locomotion. We argue that the projection from the cerebral cortex to the vermis is part of the neural substrate for anticipatory postural adjustments and speculate that dysfunction of this system may underlie some forms of dystonia. PMID:21911381

  18. Local Circuit Inhibition in the Cerebral Cortex as the source of Gain Control and Untuned Suppression

    OpenAIRE

    Shapley, Robert M.; Xing, Dajun

    2012-01-01

    Theoretical considerations have led to the concept that the cerebral cortex is operating in a balanced state in which synaptic excitation is approximately balanced by synaptic inhibition from the local cortical circuit. This paper is about the functional consequences of the balanced state in sensory cortex. One consequence is gain control: there is experimental evidence and theoretical support for the idea that local circuit inhibition acts as a local automatic gain control throughout the cor...

  19. Human Development XI: The Structure of the Cerebral Cortex. Are There Really Modules in the Brain?

    OpenAIRE

    Tyge Dahl Hermansen; Søren Ventegodt; Isack Kandel

    2007-01-01

    The structure of human consciousness is thought to be closely connected to the structure of cerebral cortex. One of the most appreciated concepts in this regard is the Szanthagothei model of a modular building of neo-cortex. The modules are believed to organize brain activity pretty much like a computer. We looked at examples in the literature and argue that there is no significant evidence that supports Szanthagothei's model. We discuss the use of the limited genetic information, the cortico...

  20. Handedness Is Associated with Asymmetries in Gyrification of the Cerebral Cortex of Chimpanzees

    OpenAIRE

    Hopkins, William D.; Cantalupo, Claudio; Taglialatela, Jared

    2006-01-01

    Gyrification of the cerebral cortex reflects complexity in cortical folding during development of the brain. In this paper, we evaluated whether chimpanzees show asymmetries in gyrification and if variation in gyrification asymmetries were associated with handedness. Magnetic resonance images were obtained in a sample of 76 chimpanzees, and gyrification measures were obtained from 10 equally spaced slices of the cortex. Asymmetry quotients (AQs) in gyrification were compared for 4 measures of...

  1. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices

    Directory of Open Access Journals (Sweden)

    Torres I.L.S.

    2001-01-01

    Full Text Available It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  2. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  3. High membrane protein oxidation in the human cerebral cortex

    OpenAIRE

    Matthias Granold; Bernd Moosmann; Irina Staib-Lasarzik; Thomas Arendt; Adriana del Rey; Kristin Engelhard; Christian Behl; Parvana Hajieva

    2014-01-01

    Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old anim...

  4. In Vitro Neurotoxicity of PBDE-99: Immediate and Concentration-Dependent Effects on Protein Expression in Cerebral Cortex Cells

    DEFF Research Database (Denmark)

    Alm, Henrik; Scholz, Birger; Kultima, Kim;

    2010-01-01

    -dependent differences in protein expression in cultured cortical cells isolated from rat fetuses (GD 21) after 24 h exposure to PBDE-99 (3, 10, or 30 muM). Changes on a post-translational level were studied using a 1 h exposure to 30 muM PBDE-99. The effects of 24 h exposure to 3 and 30 muM PBDE-99 on mRNA levels were...... aspects of cytoskeletal functions may be affected. Interestingly, 0.3 and 3 muM, but not 10 or 30 muM increased the expression of phosphorylated (active) Gap43, perhaps reflecting effects on neurite extension processes....

  5. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    Science.gov (United States)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  6. Cellular and synaptic localization of EAAT2a in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Marcello eMelone

    2011-01-01

    Full Text Available We used light and electron microscopic immunocytochemical techniques to analyze the distribution, cellular and synaptic localization of EAAT2, the main glutamate transporter, in normal human neocortex. EAAT2a immunoreactivity was in all layers and consisted of small neuropilar puncta and rare cells. In white matter EAAT2a+ cells were numerous. Electron microscopic studies showed that in gray matter ∼77% of immunoreactive elements were astrocytic processes, ∼14% axon terminals, ∼2.8% dendrites, whereas ∼5% were unidentifiable. In white matter, ∼81% were astrocytic processes, ∼17% were myelinated axons and ∼2.0% were unidentified. EAAT2a immunoreactivity was never in microglial cells and oligodendrocytes. Pre-embedding electron microscopy showed that ∼67% of EAAT2a expressed at (or in the vicinity of asymmetric synapses was in astrocytes, ∼17% in axon terminals, while ∼13% was both in astrocytes and in axons. Post-embeddeding electron microscopy studies showed that in astrocytic processes contacting asymmetric synapses and in axon terminals, gold particle density was ∼25.1 and ∼2.8 particles/µm2, respectively, and was concentrated in a membrane region extending for ∼300 nm from the active zone edge. Besides representing the first detailed description of EAAT2a in human cerebral cortex, these findings may contribute to understanding its role in the pathophysiology of neuropsychiatric diseases.

  7. Cerebellar networks with the cerebral cortex and basal ganglia.

    Science.gov (United States)

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2013-05-01

    The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent findings from neuroanatomical, behavioral, and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that cerebellar output reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, which suggests that the two subcortical structures are part of a densely interconnected network. Taken together, these findings elucidate the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia. PMID:23579055

  8. Chronic Unpredictable Stress Promotes Neuronal Apoptosis in the Cerebral Cortex

    OpenAIRE

    Bachis, Alessia; Cruz, Maria Idalia; Nosheny, Rachael L.; Mocchetti, Italo

    2008-01-01

    Stress-mediated loss of synaptogenesis in the hippocampus appears to play a role in depressive and mood disorders. However, little is known about the effect of stress/depression on the plasticity and survival of cortical neurons. In this report, we have examined whether chronic stress increases the vulnerability of neurons in the rat cortex. We have used a chronic unpredictable mild stress (CMS) as a rat model of depression. CMS (5 weeks treatment) produced anedonia and increased corticostero...

  9. Reduced Numbers of Somatostatin Receptors in the Cerebral Cortex in Alzheimer's Disease

    Science.gov (United States)

    Flint Beal, M.; Mazurek, Michael F.; Tran, Vinh T.; Chattha, Geetinder; Bird, Edward D.; Martin, Joseph B.

    1985-07-01

    Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatinlike immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.

  10. RP58 Regulates the Multipolar-Bipolar Transition of Newborn Neurons in the Developing Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Chiaki Ohtaka-Maruyama

    2013-02-01

    Full Text Available Accumulating evidence suggests that many brain diseases are associated with defects in neuronal migration, suggesting that this step of neurogenesis is critical for brain organization. However, the molecular mechanisms underlying neuronal migration remain largely unknown. Here, we identified the zinc-finger transcriptional repressor RP58 as a key regulator of neuronal migration via multipolar-to-bipolar transition. RP58−/− neurons exhibited severe defects in the formation of leading processes and never shifted to the locomotion mode. Cre-mediated deletion of RP58 using in utero electroporation in RP58flox/flox mice revealed that RP58 functions in cell-autonomous multipolar-to-bipolar transition, independent of cell-cycle exit. Finally, we found that RP58 represses Ngn2 transcription to regulate the Ngn2-Rnd2 pathway; Ngn2 knockdown rescued migration defects of the RP58−/− neurons. Our findings highlight the critical role of RP58 in multipolar-to-bipolar transition via suppression of the Ngn2-Rnd2 pathway in the developing cerebral cortex.

  11. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex.

    Science.gov (United States)

    El-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel M; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2015-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2(+) oligodendrocyte progenitor cells and CA II(+) mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR-knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin. PMID:25092805

  12. Human Cerebral Cortex Cajal-Retzius Neuron: Development, Structure and Function. A Golgi Study

    Directory of Open Access Journals (Sweden)

    Miguel Marín-Padilla

    2015-02-01

    Full Text Available The development, morphology and possible functional activity of the Cajal-Retzius cell of the developing human cerebral cortex have been explored herein. The C-RC, of extracortical origin, is the essential neuron of the neocortex first lamina. It receives inputs from subcortical afferent fibers that reach the first lamina early in development. Although the origin and function of these original afferent fibers remain unknown, they target the first lamina sole neuron: the C-RC. The neuron’ orchestrates the arrival, size and stratification of all pyramidal neurons (from ependymal origin of the neocortex gray matter. Its axonic terminals spread radially and horizontally throughout the entire first lamina establishing contacts with the dendritic terminals of all gray matter pyramidal cells regardless of size, location and/or eventual functional roles. While the neuron axonic terminals spread radially and horizontally throughout the first lamina, the neuron’ bodies undergoes progressive developmental dilution and locating any of them in the adult brain become quite difficult. The neuron bodies are probably retained in the older regions of the developing neocortex while their axonic collaterals will spread throughout its more recent ones that, eventually, will represent the great majority of the brain surface. This will explain their bodies progressive dilution in the developing neocortex and, later, in the adult brain. Although quite difficult to locate the body of any of them, they have been described in the adult brain.

  13. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    OpenAIRE

    Mei-Hong Qiu; Chen, Michael C.; Zhi-Li Huang

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave EEG but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG...

  14. Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex

    DEFF Research Database (Denmark)

    Skytt, Dorte Marie; Madsen, Karsten Kirkegaard; Pajecka, Kamilla;

    2010-01-01

    Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary...... of the astrocyte marker proteins. The metabolic pattern of the cultures from 7-day-old animals of the labeled substrates was comparable to that seen previously in astrocyte cultures prepared from new-born mouse brain showing pronounced glycolytic and oxidative metabolism of glucose. Glutamate was...... prepared from cerebral cortex of 7-day-old mice have metabolic and functional properties indistinguishable from those of classical astrocyte cultures prepared from neocortex of new-born animals. This provides flexibility with regard to preparation and use of these cultures for a variety of purposes....

  15. Different effects of transcutaneous electric nerve stimulation and electroacupuncture at ST36–ST37 on the cerebral cortex

    OpenAIRE

    Kang, Yu-Tien; Liao, Yi-Sheng; Hsieh, Ching-Liang

    2014-01-01

    Background The effects of transcutaneous electric nerve stimulation (TENS) and electroacupuncture (EA) on the cerebral cortex are largely unclear. The purpose of the present study was to investigate the effect of TENS and EA on the cerebral cortex by examining their effect on the median nerve-somatosensory evoked potentials (MN-SEPs). Methods Twenty volunteers were studied. The cortical and cervical spinal potentials were recorded by median nerve stimulation at the left wrist. Sham TENS, 2 Hz...

  16. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex

    OpenAIRE

    Tzu-Yu Lin; Yu-Wan Lin; Cheng-Wei Lu; Shu-Kuei Huang; Su-Jane Wang

    2013-01-01

    Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K(+) channel blocker 4-aminopyr...

  17. The effects of p-chloromercuribenzoate on muscarinic receptors in the cerebral cortex.

    OpenAIRE

    Birdsall, N. J.; Burgen, A S; Hulme, E. C.; Wong, E. H.

    1983-01-01

    The action of p-chloromercuribenzoate (PCMB) on the ligand binding properties of the muscarinic receptors in the rat cerebral cortex has been examined. At low concentrations, PCMB produces a selective change in the binding of agonists without any effect on the binding of antagonists. At higher concentrations, the structure-binding profile for binding antagonists is changed. The affinity of agonists is greatly reduced and the heterogeneity of binding eliminated. The effects of both high and lo...

  18. Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons

    OpenAIRE

    Christophe Heinrich; Robert Blum; Sergio Gascón; Giacomo Masserdotti; Pratibha Tripathi; Rodrigo Sánchez; Steffen Tiedt; Timm Schroeder; Magdalena Götz; Benedikt Berninger

    2010-01-01

    Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be d...

  19. RTTN Mutations Link Primary Cilia Function to Organization of the Human Cerebral Cortex

    OpenAIRE

    Kheradmand Kia, Sima; Verbeek, Elly; Engelen, Erik; Schot, Rachel; Poot, Raymond A.; de Coo, Irenaeus F.M.; Lequin, Maarten H.; Poulton, Cathryn J.; Pourfarzad, Farzin; Grosveld, Frank G.; Brehm, António; de Wit, Marie Claire Y.; Oegema, Renske; Dobyns, William B.; Verheijen, Frans W.

    2012-01-01

    Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified ...

  20. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava; Ješina, Pavel; Drahota, Zdeněk; Lisý, Václav; Haugvicová, Renata; Vojtíšková, Alena; Houštěk, Josef

    2007-01-01

    Roč. 204, č. 2 (2007), s. 597-609. ISSN 0014-4886 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR(CZ) GA303/06/1261; GA MŠk 1M0520 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : cerebral cortex * homocysteic acid * free radical scavenger Subject RIV: ED - Physiology Impact factor: 3.982, year: 2007

  1. Dynamic Gene Expression in the Human Cerebral Cortex Distinguishes Children from Adults

    OpenAIRE

    Sterner, Kirstin N.; Weckle, Amy; Chugani, Harry T.; Tarca, Adi L.; Sherwood, Chet C.; Hof, Patrick R; Kuzawa, Christopher W.; Boddy, Amy M.; Abbas, Asad; Raaum, Ryan L.; Grégoire, Lucie; Lipovich, Leonard; Grossman, Lawrence I; Uddin, Monica; Goodman, Morris

    2012-01-01

    In comparison with other primate species, humans have an extended juvenile period during which the brain is more plastic. In the current study we sought to examine gene expression in the cerebral cortex during development in the context of this adaptive plasticity. We introduce an approach designed to discriminate genes with variable as opposed to uniform patterns of gene expression and found that greater inter-individual variance is observed among children than among adults. For the 337 tran...

  2. Immunohistochemical investigation of neuronal injury in cerebral cortex of cobra-envenomed rats

    OpenAIRE

    T. R. RAHMY; I.A. Hassona

    2004-01-01

    The immunohistochemical expression of neuron-specific enolase, NSE (a cytoplasmic glycolytic enzyme of the neurons), synaptophysin, SYN (a major membrane glycoprotein of synaptic vesicles), and Bcl-2 (anti-apoptotic protein) were determined in cerebral cortex of rats envenomed with neurotoxic venom from Egyptian cobra. Male rats were intramuscularly (IM) injected with a single injection of either physiological saline solution or ½ LD50 or LD50 of cobra venom and sacrificed 24, 48, or 72 hr af...

  3. Somatostatin content and receptors in the cerebral cortex of depressed and control subjects.

    OpenAIRE

    Charlton, B G; Leake, A; Wright, C.; Fairbairn, A F; McKeith, I G; Candy, J M; Ferrier, I. N.

    1988-01-01

    Somatostatin-like immunoreactivity is reduced in the cerebrospinal fluid in depression and this is presumed to reflect alterations in cerebral somatostatinergic systems. We have examined this hypothesis by measuring this immunoreactivity and somatostatin receptors in post-mortem cortical tissue from depressed patients and control subjects. There was no significant difference in the temporal and occipital cortex in somatostatin-like immunoreactivity or in somatostatin receptor affinity and bin...

  4. Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris.

    Science.gov (United States)

    Reep, R L; Johnson, J I; Switzer, R C; Welker, W I

    1989-01-01

    Members of the order Sirenia are unique among mammals in being the only totally aquatic herbivores. They display correspondingly specialized physiological, behavioral and anatomical features. There have been few reports concerning sirenian neuroanatomy, and most of these have consisted of gross anatomical observations. Our interest in Sirenia stems from the desire to understand neuroanatomical specializations in the context of behavior and the effort to elucidate trends in mammalian brain evolution. The architecture of frontal regions of cerebral cortex was investigated in several brains of the Florida manatee, Trichechus manatus latirostris. Through observation of sections stained for Nissl substance or myelinated fibers, several distinct cortical areas were identified on the basis of laminar organization. These range from areas with poorly defined laminae to those having 6 well-defined layers, some of which exhibit sublayers. Two cortical areas exhibit pronounced cell clusters in layer VI, and these stain positively for acetylcholinesterase and cytochrome oxidase. We hypothesize that these clusters may be involved in perioral tactile bristle function. Certain of our findings are consistent with previous observations in the literature on the brains of dugongs. On the basis of their lamination patterns, these frontal cortical areas appear to be organized into concentric zones of allocortex, mesocortex and isocortex. PMID:2611642

  5. Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model

    Science.gov (United States)

    Wang, Shaojun; Zhou, Jun; Kang, Weijie; Dong, Zhaoni; Wang, Hezuo

    2016-01-01

    Cerebral infarction is a severe hypoxic ischemic necrosis with accelerated neuronal cell apoptosis in the brain. As a monoclonal antibody against interleukin 6, tocilizumab (TCZ) is widely used in immune diseases, whose function in cerebral infarction has not been studied. This study aims to reveal the role of TCZ in regulating neuronal cell apoptosis in cerebral infarction. The cerebral infarction rat model was constructed by middle cerebral artery occlusion and treated with TCZ. Cell apoptosis in hippocampus and cortex of the brain was examined with TUNEL method. Rat neuronal cells cultured in oxygen-glucose deprivation (OGD) conditions and treated with TCZ were used to compare cell viability and apoptosis. Apoptosis-related factors including B-cell lymphoma extra large (Bcl-xL) and Caspase 3, as well as the phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in brain cortex were analyzed from the protein level. Results indicated that TCZ treatment could significantly prevent the promoted cell apoptosis caused by cerebral infarction or OGD (P < 0.05 or P < 0.01). In brain cortex of the rat model, TCZ up-regulated Bcl-xL and down-regulated Caspase 3, consistent with the inhibited cell apoptosis. It also promoted tyrosine 705 phosphorylation of STAT3, which might be the potential regulatory mechanism of TCZ in neuronal cells. This study provided evidence for the protective role of TCZ against neuronal cell apoptosis in cerebral infarction. Based on these fundamental data, TCZ is a promising option for treating cerebral infarction, but further investigations on related mechanisms are still necessary. PMID:26773188

  6. Toxic effect of aflatoxin B1 and the role of recovery on the rat cerebral cortex and hippocampus.

    Science.gov (United States)

    Bahey, Noha Gamal; Abd Elaziz, Hekmat Osman; Gadalla, Kamal Kamal El Sayed

    2015-12-01

    Aflatoxin B1 (AFB1) is the most toxic and well-known mycotoxin that exists in many food stuff. Exposure to AFB1 has been reported to produce serious biochemical and structural alterations in human and animal organs, however, its effect on the brain is not well studied. Therefore, this study was aimed to investigate the possible histopathological effect of AFB1 and its withdrawal on the cerebral cortex and hippocampus. Fifteen adult female Wistar rats were divided into 3 equal groups: control, AFB1 (15.75 μg/kg/orally, once weekly, for 8 weeks) and recovery groups. Brain sections were processed for hematoxylin and eosin staining as well as for NeuN and GFAP immunostaining. AFB1 administration resulted in several histopathological alterations including; cellular degeneration, dilatation of the blood vessels and significant decrease in the thickness of the frontal cortex and the hippocampal CA1 pyramidal cell layer. In the frontal cortex, there was a significant reduction in the percentage of astrocyte distribution without changes in neuronal numbers. On the other hand, in the hippocampal CA1 region, there was a significant reduction of neuronal number and a significant increase in the percentage of astrocyte distribution. Importantly, AFB1-induced structural alterations were rescued following AFB1 withdrawal. In conclusion, AFB1 induce histological alterations in the rat brain which are potentially reversible upon withdrawal. PMID:26380901

  7. Determining physical properties of the cell cortex

    CERN Document Server

    Saha, A; Behrndt, M; Heisenberg, C -P; Jülicher, F; Grill, S W

    2015-01-01

    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example,the characteristic time of stress relaxation (the Maxwell time)in the actomyosin sets the time scale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer (in vivo). For this we investigate the relaxation dynamics of the cortex in response to laser ablation in the one-cell-stage {\\it C. elegans} embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using ...

  8. MRI of sickle cell cerebral infarction

    International Nuclear Information System (INIS)

    Eleven patients with sickle cell disease and neurological symptoms underwent MRI examination. Cerebral infarcts of two types were found, those in the vascular distribution of the middle cerebral artery and those in the deep white matter. In the patient whose hydration and whose oxygenation of erythrocytes has been treated, MRI offers diagnostic advantages over arteriography and CT. (orig.)

  9. THE EFFECT OF LIGUSTRAZINE ON NEUROGENESIS IN CORTEX AFTER FOCAL CEREBRAL ISCHEMIA IN RATS

    Institute of Scientific and Technical Information of China (English)

    邱芬; 刘勇; 张蓬勃; 康前雁; 田英芳; 陈新林; 赵建军; 祁存芳

    2006-01-01

    It has been demonstrated that there are neuralstemcells that can self-renewand differentiate intomultiple cell types[1-3]in central nervous system ofadult mammals.After cerebral ischemia,these cellscan proliferate,migrate,differentiate and partici-pate in the repair of ischemic cerebral injuries[4-6].Neural stemcells play a very i mportant role in alle-viating ischemic cerebral injuries and promotingfunctional recovery.Ligustrazine,an active ingre-dient of Ligustici,can help dilate blood vessels,i m-prove m...

  10. Diffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: An experimental model in the ferret

    Directory of Open Access Journals (Sweden)

    Andrew S Bock

    2010-10-01

    Full Text Available Diffusion tensor imaging (DTI is a technique that non-invasively provides quantitative measures of water translational diffusion, including fractional anisotropy (FA, that are sensitive to the shape and orientation of cellular elements, such as axons, dendrites and cell somas. For several neurodevelopmental disorders, histopathological investigations have identified abnormalities in the architecture of pyramidal neurons at early stages of cerebral cortex development. To assess the potential capability of DTI to detect neuromorphological abnormalities within the developing cerebral cortex, we compare changes in cortical FA with changes in neuronal architecture and connectivity induced by bilateral enucleation at postnatal day 7 (BEP7 in ferrets. We show here that the visual callosal pattern in BEP7 ferrets is more irregular and occupies a significantly greater cortical area compared to controls at adulthood. To determine whether development of the cerebral cortex is altered in BEP7 ferrets in a manner detectable by DTI, cortical FA was compared in control and BEP7 animals on postnatal day 31. Visual cortex, but not rostrally-adjacent non-visual cortex, exhibits higher FA than control animals, consistent with BEP7 animals possessing axonal and dendritic arbors of reduced complexity than age-matched controls. Subsequent to DTI, Golgi staining and analysis methods were used to identify regions, restricted to visual areas, in which the orientation distribution of neuronal processes is significantly more concentrated than in control ferrets. Together, these findings suggest that DTI can be of utility for detecting abnormalities associated with neurodevelopmental disorders at early stages of cerebral cortical development, and that the neonatally-enucleated ferret is a useful animal model system for systematically assessing the potential of this new diagnostic strategy.

  11. APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons

    Directory of Open Access Journals (Sweden)

    Steven Moore

    2015-05-01

    Full Text Available Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer’s disease (AD. To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons.

  12. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.

    Science.gov (United States)

    Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai

    2016-03-01

    It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. PMID:26333187

  13. Inorganic Arsenic Induces NRF2-Regulated Antioxidant Defenses in Both Cerebral Cortex and Hippocampus in Vivo.

    Science.gov (United States)

    Zhang, Yang; Duan, Xiaoxu; Li, Jinlong; Zhao, Shuo; Li, Wei; Zhao, Lu; Li, Wei; Nie, Huifang; Sun, Guifang; Li, Bing

    2016-08-01

    Inorganic arsenic is reported to induce the reactive oxygen species-mediated oxidative stress, which is supposed to be one of the main mechanisms of arsenic-related neurological diseases. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of antioxidant defense systems, up-regulates the expression of target genes to fight against oxidative damages caused by harmful substances, including metals. In the present study, mice were used as a model to investigate the oxidative stress levels and the expressions of NRF2-regulated antioxidant substances in both cerebral cortex and hippocampus with 5, 10 and 20 mg/kg NaAsO2 exposure intra-gastrically. Our results showed that acute NaAsO2 treatment resulted in decreased total anti-oxidative capacity (T-AOC) and increased maleic dialdehyde production in the nervous system. We also detected rapidly elevation of NRF2 protein levels by enhancement of Nrf2 transcription, especially at 20 mg/kg NaAsO2 exposure group. In the meantime, mRNA and protein levels of Nrf2 encoding antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) were consistently elevated time- and dose-dependently both in the cerebral cortex and hippocampus. Taken together, the presence study demonstrated the activation of NRF2 pathway, an early antioxidant defensive response, in both cerebral cortex and hippocampus upon inorganic arsenic (iAs) exposure in vivo. A better knowledge on the roles of NRF2 pathway in maintaining cellular redox homeostasis would be helpful for the strategies on improvement of neurotoxicity related to this metalloid. PMID:27165637

  14. Atorvastatin withdrawal elicits oxidative/nitrosative damage in the rat cerebral cortex.

    Science.gov (United States)

    de Oliveira, Clarissa Vasconcelos; Funck, Vinícius Rafael; Pereira, Letícia Meier; Grigoletto, Jéssica; Rambo, Leonardo Magno; Ribeiro, Leandro Rodrigo; Royes, Luiz Fernando Freire; Furian, Ana Flávia; Oliveira, Mauro Schneider

    2013-05-01

    Statins are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting step in cholesterol biosynthesis. Statins effectively prevent and reduce the risk of coronary artery disease through lowering serum cholesterol, and also exert anti-thrombotic, anti-inflammatory and antioxidant effects independently of changes in cholesterol levels. On the other hand, clinical and experimental evidence suggests that abrupt cessation of statin treatment (i.e. statin withdrawal) is associated with a deleterious rebound phenomenon. In fact, statin withdrawal increases the risk of thrombotic vascular events, causes impairment of endothelium-dependent relaxation and facilitates experimental seizures. However, evidence for statin withdrawal-induced detrimental effects to the brain parenchyma is still lacking. In the present study adult male Wistar rats were treated with atorvastatin for seven days (10mg/kg/day) and neurochemical assays were performed in the cerebral cortex 30 min (atorvastatin treatment) or 24h (atorvastatin withdrawal) after the last atorvastatin administration. We found that atorvastatin withdrawal decreased levels of nitric oxide and mitochondrial superoxide dismutase activity, whereas increased NADPH oxidase activity and immunoreactivity for the protein nitration marker 3-nitrotyrosine in the cerebral cortex. Catalase, glutathione-S-transferase and xanthine oxidase activities were not altered by atorvastatin treatment or withdrawal, as well as protein carbonyl and 4-hydroxy-2-nonenal immunoreactivity. Immunoprecipitation of mitochondrial SOD followed by analysis of 3-nitrotyrosine revealed increased levels of nitrated mitochondrial SOD, suggesting the mechanism underlying the atorvastatin withdrawal-induced decrease in enzyme activity. Altogether, our results indicate the atorvastatin withdrawal elicits oxidative/nitrosative damage in the rat cerebral cortex, and that changes in NADPH oxidase activity and mitochondrial superoxide

  15. Effect of β-endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    International Nuclear Information System (INIS)

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus

  16. Effect of camphor essential oil on rat cerebral cortex activity as manifested by fractal dimension changes

    Directory of Open Access Journals (Sweden)

    Grbić G.

    2008-01-01

    Full Text Available The aim of our study was to investigate the effect of camphor essential oil on rat cerebral cortex activity by fractal analysis. Fractal dimension (FD values of the parietal electrocortical activity were calculated before and after intra-peritoneal administration of camphor essential oil (450-675 μl/kg in anesthetized rats. Camphor oil induced seizure-like activity with single and multiple spiking of high amplitudes in the parietal electrocorticogram and occasional clonic limb convulsions. The FD values of cortical activity after camphor oil administration increased on the average. Only FD values of cortical ECoG sequences were lower than those before camphor oil administration.

  17. Kinetic evidence suggesting two mechanisms for iodothyronine 5'-deiodination in rat cerebral cortex.

    OpenAIRE

    Visser, T J; Leonard, J L; Kaplan, M. M.; Larsen, P R

    1982-01-01

    Enzymatic 5'-deiodination of 3,3',5'-triiodothyronine (rT3) and 3,3',5,5'-tetraiodothyronine (thyroxine, T4) was studied in microsomal preparations of rat cerebral cortex. Evidence was obtained for the existence of two thiol-dependent 5'-deiodinase entities. One of these predominates in tissue from euthyroid and long-term hypothyroid rats, is specific for rT3, follows "ping-pong" kinetics with dithiothreitol as the cosubstrate, and is inhibited by propylthiouracil (PrSUra) and iodoacetate. In...

  18. Effect of. beta. -endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-10-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus.

  19. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    OpenAIRE

    Qiu, Mei-Hong; Chen, Michael C.; Huang, Zhi-Li; Lu, Jun

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression i...

  20. Hypoosmotic swelling modifies glutamate-glutamine cycle in the cerebral cortex and in astrocyte cultures

    OpenAIRE

    Hyzinski-García, María C.; Vincent, Melanie Y.; Haskew-Layton, Renée E.; Dohare, Preeti; Keller, Richard W.; Mongin, Alexander A.

    2011-01-01

    In our previous work, we found that perfusion of the rat cerebral cortex with hypoosmotic medium triggers massive release of the excitatory amino acid L-glutamate but decreases extracellular levels of L-glutamine (R.E. Haskew-Layton et al., PLoS ONE, 3: e3543). The release of glutamate was linked to activation of volume-regulated anion channels (VRAC), while mechanism(s) responsible for alterations in extracellular glutamine remained unclear. When mannitol was added to the hypoosmotic medium ...

  1. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2009-11-11

    Classically, the spinothalamic (ST) system has been viewed as the major pathway for transmitting nociceptive and thermoceptive information to the cerebral cortex. There is a long-standing controversy about the cortical targets of this system. We used anterograde transneuronal transport of the H129 strain of herpes simplex virus type 1 in the Cebus monkey to label the cortical areas that receive ST input. We found that the ST system reaches multiple cortical areas located in the contralateral hemisphere. The major targets are granular insular cortex, secondary somatosensory cortex and several cortical areas in the cingulate sulcus. It is noteworthy that comparable cortical regions in humans consistently display activation when subjects are acutely exposed to painful stimuli. We next combined anterograde transneuronal transport of virus with injections of a conventional tracer into the ventral premotor area (PMv). We used the PMv injection to identify the cingulate motor areas on the medial wall of the hemisphere. This combined approach demonstrated that each of the cingulate motor areas receives ST input. Our meta-analysis of imaging studies indicates that the human equivalents of the three cingulate motor areas also correspond to sites of pain-related activation. The cingulate motor areas in the monkey project directly to the primary motor cortex and to the spinal cord. Thus, the substrate exists for the ST system to have an important influence on the cortical control of movement. PMID:19906970

  2. Structure and plasticity potential of neural networks in the cerebral cortex

    Science.gov (United States)

    Fares, Tarec Edmond

    In this thesis, we first described a theoretical framework for the analysis of spine remodeling plasticity. We provided a quantitative description of two models of spine remodeling in which the presence of a bouton is either required or not for the formation of a new synapse. We derived expressions for the density of potential synapses in the neuropil, the connectivity fraction, which is the ratio of actual to potential synapses, and the number of structurally different circuits attainable with spine remodeling. We calculated these parameters in mouse occipital cortex, rat CA1, monkey V1, and human temporal cortex. We found that on average a dendritic spine can choose among 4-7 potential targets in rodents and 10-20 potential targets in primates. The neuropil's potential for structural circuit remodeling is highest in rat CA1 (7.1-8.6 bits/mum3) and lowest in monkey V1 (1.3-1.5 bits/mum 3 We next studied the role neuron morphology plays in defining synaptic connectivity. As previously stated it is clear that only pairs of neurons with closely positioned axonal and dendritic branches can be synaptically coupled. For excitatory neurons in the cerebral cortex, ). We also evaluated the lower bound of neuron selectivity in the choice of synaptic partners. Post-synaptic excitatory neurons in rodents make synaptic contacts with more than 21-30% of pre-synaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with more than 7-15% of encountered axons. We next studied the role neuron morphology plays in defining synaptic connectivity. As previously stated it is clear that only pairs of neurons with closely positioned axonal and dendritic branches can be synaptically coupled. For excitatory neurons in the cerebral cortex, such axo-dendritic oppositions, or potential synapses, must be bridged by dendritic spines to form synaptic connections. To explore the rules by which synaptic connections are formed within

  3. Expression of c-Fos protein and nitricoxide synthase in neurons of cerebral cortex from fetal rats in hypoxia and protective role of Angelica sinensis

    Institute of Scientific and Technical Information of China (English)

    Hong Yu; Hongxian Zhao; Yuling Wu

    2006-01-01

    neurons of cerebral cortex from embryos of rats. OLYMPUS Bx-50 microscope was used to observe sections and DP12 digit camera was also used under 400 times to detect types of cells. Under microscope, the number of c-Fos, NOS, c-Fos/NOS positive neurons in cerebral cortex from embryos of rats were counted in 2 fields with magnification of 400 in one section per animal. ③ The data in experiments were analyzed by one-way analysis of variance (ANOVA) followed by q test.MAIN OUTCOME MEASURES:① Results of immunohistochemical double-label staining of c-Fos/NOS from cerebral cortex; ② Comparison of amount immunohistochemical double-label staining of c-Fos/NOS positive cells from cerebral cortex.RESULTS:① The positive NOS cells and c-Fos/NOS cells in the three groups were mainly distributed in cerebral cortex, but positive c-Fos neurons were not observed. ② Positive NOS cells and c-Fos/NOS cells in hypoxia group were more than those in control group (76.55±12.02, 50.45±10.39; 33.35±7.42, 26.35±6.67, P < 0.05), but those in Angelica group were less than those in hypoxia group (51.70±9.82, 35.65±8.37, P < 0.05).CONCLUSION:Hypoxia can stimulate the increase of expression of c-Fos protein and NOS in neurons of cerebral cortex. However, Angelica sinensis can decrease this expression so as to play a protective role in cerebral neurons of hypoxic fetal rats.

  4. Effects of Chloroquine on GFAP, PCNA and Cyclin D1 in Hippocampus and Cerebral Cortex of Rats with Seizures Induced by Pentylenetetrazole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuhua; ZHU Changgeng; LIU Qingying; WANG Wei

    2005-01-01

    The effects of chloroquine on glial fibrillary acidic protein (GFAP), proliferation cell nuclear antigen (PCNA) and Cyclin D1 in hippocampus and cerebral cortex of rats with seizures induced by pentylenetetrazole (PTZ) were observed in the present study. Forty-eight male adult Sprague-Dawley (SD) rats were randomly divided into control group, chloroquine intervening group, and PTZ group. The behavior and electroencephalogram (EEG) were observed and recor ded. GFAP and PCNA were examined with immunohistochemistry. The content of Cyclin D1 in hippocampus and cerebral cortex was inspected with Western blot. The results showed no seizure activity in the control group, severe seizure activity in the PTZ group (Ⅳ-Ⅴ degree), and slight seizure activity ( Ⅰ - Ⅲ degree) in the chloroquine intervening group (P<0. 05). EEG recordings showed no epileptic spikes in the control group, high amplitude with fast frequency in the PTZ group, low-amplitude and slow frequency in the chloroquine intervening group. The expression of GFAP and the positive index of PCNA in the PTZ group were higher than those of control group (P <0.05 and P<0.01, respectively). No differences in GFAP expression and PCNA index were observed between chloroquine intervening and control groups (P>0.05). The content of Cyclin D1 in hippocampus and cerebral cortex was significantly higher in the PTZ group than in control and chloroquine intervening groups (P< 0.05). Therefore, it is considered that chloroquine, by inhibiting the functions and proliferation of glial cells in the hippocampus and cerebral cortex, can alleviate the seizure activities. These results suggest that chloroquine may be an ideal anticonvulsant in preventing and treating epilepsy.

  5. Melatonin reduces traumatic brain injur y-induced oxidative stress in the cerebral cortex and blood of rats

    Institute of Scientific and Technical Information of China (English)

    Nilgnenol; Mustafa Nazrolu

    2014-01-01

    Free radicals induced by traumatic brain injury have deleterious effects on the function and antioxidant vitamin levels of several organ systems including the brain. Melatonin possesses antioxidant effect on the brain by maintaining antioxidant enzyme and vitamin levels. We in-vestigated the effects of melatonin on antioxidant ability in the cerebral cortex and blood of traumatic brain injury rats. Results showed that the cerebral cortex β-carotene, vitamin C, vita-min E, reduced glutathione, and erythrocyte reduced glutathione levels, and plasma vitamin C level were decreased by traumatic brain injury whereas they were increased following melatonin treatment. In conclusion, melatonin seems to have protective effects on traumatic brain inju-ry-induced cerebral cortex and blood toxicity by inhibiting free radical formation and supporting antioxidant vitamin redox system.

  6. Cerebral Ischemic Events with Sickle Cell Anemia

    OpenAIRE

    J Gordon Millichap

    2013-01-01

    Researchers at Cincinnati Children's Hospital and several additional centers in the US and UK studied the incidence of acute silent cerebral ischemic events (ASCIEs) in MRIs of children with asymptomatic sickle cell anemia (SCA).

  7. A role for PDGF-C/PDGFRα signaling in the formation of the meningeal basement membranes surrounding the cerebral cortex.

    Science.gov (United States)

    Andrae, Johanna; Gouveia, Leonor; Gallini, Radiosa; He, Liqun; Fredriksson, Linda; Nilsson, Ingrid; Johansson, Bengt R; Eriksson, Ulf; Betsholtz, Christer

    2016-01-01

    Platelet-derived growth factor-C (PDGF-C) is one of three known ligands for the tyrosine kinase receptor PDGFRα. Analysis ofPdgfcnull mice has demonstrated roles for PDGF-C in palate closure and the formation of cerebral ventricles, but redundancy with other PDGFRα ligands might obscure additional functions. In search of further developmental roles for PDGF-C, we generated mice that were double mutants forPdgfc(-/-)andPdgfra(GFP/+) These mice display a range of severe phenotypes including spina bifida, lung emphysema, abnormal meninges and neuronal over-migration in the cerebral cortex. We focused our analysis on the central nervous system (CNS), where PDGF-C was identified as a critical factor for the formation of meninges and assembly of the glia limitans basement membrane. We also present expression data onPdgfa,PdgfcandPdgfrain the cerebral cortex and microarray data on cerebral meninges. PMID:26988758

  8. Propofol Compared to Isoflurane Inhibits Mitochondrial Metabolism in Immature Swine Cerebral Cortex

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Atkinson, D. B.; Ledee, Dolena R.; Kayser, Ernst-Bernhard; Morgan, Phil G.; Sedensky, Margaret M.; Isern, Nancy G.; Des Rosiers, Christine; Portman, Michael A.

    2014-01-08

    Anesthetics used in infants and children are implicated in development of neurocognitive disorders. Although propofol induces neuroapoptosis in developing brain, the underlying mechanisms require elucidation and may have an energetic basis. We studied substrate utilization in an immature swine model anesthetized with either propofol or isoflurane for 4 hours. Piglets were infused with 13-Carbon labeled glucose and leucine in the common carotid artery in order to assess citric acid cycle (CAC) metabolism in the parietal cortex. The anesthetics produced similar systemic hemodynamics and cerebral oxygen saturation by near-infrared-spectroscopy. Compared to isoflurane, propofol depleted ATP and glycogen stores. Propofol also decreased pools of the CAC intermediates, citrate and α-ketoglutarate, while markedly increasing succinate along with decreasing mitochondrial complex II activity. Propofol also inhibited acetyl-CoA entry into the CAC through pyruvate dehydrogenase, while promoting glycolytic flux with marked accumulation of lactate. Although oxygen supply appeared similar between the anesthetic groups, propofol yielded a metabolic phenotype which resembled a hypoxic state. Propofol impairs substrate flux through the CAC in the immature cerebral cortex. These impairments occurred without systemic metabolic perturbations which typically accompany propofol infusion syndrome. These metabolic abnormalities may play a role in neurotoxity observed with propofol in the vulnerable immature brain.

  9. Manatee cerebral cortex: cytoarchitecture of the caudal region in Trichechus manatus latirostris.

    Science.gov (United States)

    Marshall, C D; Reep, R L

    1995-01-01

    In several brains of the Florida manatee, Trichechus manatus latirostris, the architecture of caudal regions of cerebral cortex was examined in order to complete a map of cortical areas in the brain of this unique herbivore. Through observation of sections stained for Nissl substance, myelinated axons, acetylcholinesterase and cytochrome oxidase, we have identified 11 new cortical areas based on qualitative cytoarchitectural appearance and measurements of laminar thicknesses, for a total of 24 such cortical areas in manatee cerebral cortex. Some areas exhibit poorly differentiated laminae while in others there are 6 clearly demarcated layers, often with sublaminar organization. Some previously identified areas were found to extend into the region caudal to the vertically oriented lateral fissure. As in other mammalian brains, cortical areas in manatees are organized in concentric rings of allocortex, mesocortex, and isocortex. Putative functional roles have been assigned to most of the identified areas based on location, architecture, behavioral and anatomical considerations, and extrapolation from other taxa in which functional mapping has been done. PMID:7866767

  10. Dynamic gene expression in the human cerebral cortex distinguishes children from adults.

    Science.gov (United States)

    Sterner, Kirstin N; Weckle, Amy; Chugani, Harry T; Tarca, Adi L; Sherwood, Chet C; Hof, Patrick R; Kuzawa, Christopher W; Boddy, Amy M; Abbas, Asad; Raaum, Ryan L; Grégoire, Lucie; Lipovich, Leonard; Grossman, Lawrence I; Uddin, Monica; Goodman, Morris; Wildman, Derek E

    2012-01-01

    In comparison with other primate species, humans have an extended juvenile period during which the brain is more plastic. In the current study we sought to examine gene expression in the cerebral cortex during development in the context of this adaptive plasticity. We introduce an approach designed to discriminate genes with variable as opposed to uniform patterns of gene expression and found that greater inter-individual variance is observed among children than among adults. For the 337 transcripts that show this pattern, we found a significant overrepresentation of genes annotated to the immune system process (pFDR ~/= 0). Moreover, genes known to be important in neuronal function, such as brain-derived neurotrophic factor (BDNF), are included among the genes more variably expressed in childhood. We propose that the developmental period of heightened childhood neuronal plasticity is characterized by more dynamic patterns of gene expression in the cerebral cortex compared to adulthood when the brain is less plastic. That an overabundance of these genes are annotated to the immune system suggests that the functions of these genes can be thought of not only in the context of antigen processing and presentation, but also in the context of nervous system development. PMID:22666384

  11. Branching patterns for arterioles and venules of the human cerebral cortex.

    Science.gov (United States)

    Cassot, Francis; Lauwers, Frederic; Lorthois, Sylvie; Puwanarajah, Prasanna; Cances-Lauwers, Valérie; Duvernoy, Henri

    2010-02-01

    Branching patterns of microvascular networks influence vascular resistance and allow control of peripheral flow distribution. The aim of this paper was to analyze these branching patterns in human cerebral cortex. Digital three-dimensional images of the microvascular network were obtained from thick sections of India ink-injected human brain by confocal laser microscopy covering a large zone of secondary cortex. A novel segmentation method was used to extract the skeletons of 228 vascular trees (152 arterioles and 76 venules) and measure the diameter at every vertex. The branching patterns (area ratios and angles of bifurcations) of nearly 10,000 bifurcations of cortical vascular trees were analyzed, establishing their statistical properties and structural variations as a function of the vessel nature (arterioles versus venules), the parent vessel topological order or the bifurcation type. We also describe their connectivity and discuss the relevance of the assumed optimal design of vascular branching to account for the complex nature of microvascular architecture. The functional implications of some of these structural variations are considered. The branching patterns established from a large database of a human organ contributes to a better understanding of the bifurcation design and provides an essential reference both for diagnosis and for a future large reconstruction of cerebral microvascular network. PMID:20005216

  12. Effect of prenatal exposure to ethanol on the development of cerebral cortex: I. Neuronal generation

    International Nuclear Information System (INIS)

    Prenatal exposure to ethanol causes profound disruptions in the development of the cerebral cortex. Therefore, the effect of in utero ethanol exposure on the generation of neurons was determined. Pregnant rats were fed a liquid diet in which ethanol constituted 37.5% of the total caloric content (Et) or pair-fed an isocaloric control diet (Ct) from gestational day (GD) 6 to the day of birth. The time of origin of cortical neurons was determined in the mature pups of females injected with [3H]thymidine on one day during the period from GD 10 to the day of birth. The brains were processed by standard autoradiographic techniques. Ethanol exposure produced multiple defects in neuronal ontogeny. The period of generation was 1-2 days later for Et-treated rats than for rats exposed prenatally to either control diet. Moreover, the generation period was 1-2 days longer in Et-treated rats. The numbers of neurons generated on a specific day was altered; from GD 12-19 significantly fewer neurons were generated in Et-treated rats than in Ct-treated rats, whereas after GD 19 more neurons were born. The distribution of neurons generated on a specific day was disrupted; most notable was the distribution of late-generated neurons in deep cortex of Et-treated rats rather than in superficial cortex as they are in controls. Cortical neurons in Et-treated rats tended to be smaller than in Ct-treated rats, particularly early generated neurons in deep cortex. The late-generated neurons in Et-treated rats were of similar size to those in Ct-treated rats despite their abnormal position in deep cortex. Neurons in Ct-treated rats tended to be rounder than those in Et-treated rats which were more polarized in the radial orientation

  13. Quinolinic acid effects on amino acid release from the rat cerebral cortex in vitro and in vivo.

    OpenAIRE

    Connick, J. H.; Stone, T. W.

    1988-01-01

    1. The effect of quinolinic acid, N-methyl-D,L-aspartate (NMDLA) and kainate on the release of endogenous and exogenous amino acids from the rat cerebral cortex in vitro and in vivo was studied. 2. Neither quinolinic acid nor NMDLA had any effect on the basal or potassium-evoked release of [3H]-D-aspartate from slices of rat cerebral cortex either in the presence or absence of magnesium. Kainic acid failed to modify the basal efflux of [3H]-D-aspartate but significantly inhibited (by 34.4% +/...

  14. Effects of insulin-induced hypoglycemia on somatostatin level and binding in rat cerebral cortex and hippocampus

    OpenAIRE

    Rodríguez Sánchez, María Nelly; Colás Escudero, Begoña; Prieto Villapún, Juan Carlos; Arilla Ferreiro, Eduardo

    1989-01-01

    The effects of severe insulin-induced hypoglycemia on somatostatin level and specific binding in the cerebral cortex and hippocampus were examined using 125I-Tyr11-somatostatin as a ligand. Severe insulin-induced hypoglycemia did not affect the level of somatostatin-like immunoreactivity in the brain areas studied. However, the number (but not the affinity) of specific somatostatin receptors was significantly decreased in membrane preparation from the hippocampus but not in the cerebral corte...

  15. Both Myosin-10 isoforms are required for radial neuronal migration in the developing cerebral cortex.

    Science.gov (United States)

    Ju, Xing-Da; Guo, Ye; Wang, Nan-Nan; Huang, Ying; Lai, Ming-Ming; Zhai, Yan-Hua; Guo, Yu-Guang; Zhang, Jian-Hua; Cao, Rang-Juan; Yu, Hua-Li; Cui, Lei; Li, Yu-Ting; Wang, Xing-Zhi; Ding, Yu-Qiang; Zhu, Xiao-Juan

    2014-05-01

    During embryonic development of the mammalian cerebral cortex, postmitotic cortical neurons migrate radially from the ventricular zone to the cortical plate. Proper migration involves the correct orientation of migrating neurons and the transition from a multipolar to a mature bipolar morphology. Herein, we report that the 2 isoforms of Myosin-10 (Myo10) play distinct roles in the regulation of radial migration in the mouse cortex. We show that the full-length Myo10 (fMyo10) isoform is located in deeper layers of the cortex and is involved in establishing proper migration orientation. We also demonstrate that fMyo10-dependent orientation of radial migration is mediated at least in part by the netrin-1 receptor deleted in colorectal cancer. Moreover, we show that the headless Myo10 (hMyo10) isoform is required for the transition from multipolar to bipolar morphologies in the intermediate zone. Our study reveals divergent functions for the 2 Myo10 isoforms in controlling both the direction of migration and neuronal morphogenesis during radial cortical neuronal migration. PMID:23300110

  16. Effects of melatonin on learning abilities, cholinergic fibers and nitric oxide synthase expression in rat cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Bin Xu; Junpao Chen; Hailing Zhao

    2006-01-01

    were picked up randomly in the same part of each rat,together six tissue slices for nNOS expression and four near view (× 400) were selected in the parts of right neocortex, medial septal nucleus-diagonal band nucleus (SM-DB), corpus striatus and hippocampus to count nNOS-positive cells.MAIN OUTCOME MEASURES: Learning ability; distribution and quantitative analysis of AchE fibers; expression of nNOS in various cerebral areas.before operation in the experimental group [(14.67±4.97) times] were consistent with those in the control group[(14.33±4.32) times, P > 0.05], the learning abilities in the experimental group at 40 days after pinealectomy[(28.67±2.42) times] were obviously more than those before pinealectomy and those in the control group after The AChE-positive fibers densities in motor and somatosensory cortex, CA1, CA2 and CA3 areas of hippocampus and in lamina multiforms of dentate gyrus in the experimental group were obviously lower than those in the control group [experimental group: (15 244±1 339), (14 764±1 391), (12 991±970), (15 077±1 020),(19 546±1 489), (19 337±1 378) μm2; control group: (21 001±1 021), (17 930±2 225), (17 260±1 342),areas: nNOS-positive cells in cerebral cortex of rats of the experimental group were more, furthermore the ones in somatosensory cortex were slightly more in motor cortex and the number (5.90±0.68) was more than that in the control group (3.68±0.39,P < 0.05). The nNOS-positive cells in SM-DB (16.21 ±2.03) were markedly more than those in the control group (9.32±1.05,P< 0.01). The nNOS-positive cells in hippocampus (4.27±0.75) and in corpus striatus (9.35±2.58) were not different with those in the control group (3.94±0.53, 8.96±2.31, P> 0.05).CONCLUSION: Decrease of melatonin due to pinealectomy of rats can result in learning disorder, which may be related to trauma of cholinergic neuron in cerebral cortex which were caused by nitric oxide neurotoxicity arose from the overexpression of nNOS in

  17. Cytoplasmic and nuclear estradiol receptors in the hypothalamus and cerebral cortex of female rats during the neonatal period

    International Nuclear Information System (INIS)

    The content of estradifol receptors (E2) in the cytoplasmic and nuclear fractions of the hypothalamus and cerebral cortex of female rats was investigated in the course of neonatal development. In the cytosol of the hypothalamus and cortex, the E2-binding proteins, which possess high capacity, include both the true estradiol receptors and proteins identical with α-fetoprotein. True receptors E2 were detected in the nuclear fraction; in the hypothalamus their concentration was virtually unchanged, while in the cortex it decreased from the first to fifth days of postnatal development

  18. Alterations of the cerebral cortex in sporadic small vessel disease: A systematic review of in vivo MRI data.

    Science.gov (United States)

    Peres, Roxane; De Guio, François; Chabriat, Hugues; Jouvent, Eric

    2016-04-01

    Cerebral small vessel diseases of the brain are a major determinant of cognitive impairment in the elderly. In small vessel diseases, the most easily identifiable lesions, both at post-mortem evaluation and magnetic resonance imaging, lie in subcortical areas. However, recent results obtained post-mortem, particularly in severe cases, have highlighted the burden of cortex lesions such as microinfarcts and diffuse neuronal loss. The recent development of image post-processing methods allows now assessing in vivo multiple aspects of the cerebral cortex. This systematic review aimed to analyze in vivo magnetic resonance imaging studies evaluating cortex alterations at different stages of small vessel diseases. Studies assessing the relationships between small vessel disease magnetic resonance imaging markers obtained at the subcortical level and cortex estimates were reviewed both in community-dwelling elderly and in patients with symptomatic small vessel diseases. Thereafter, studies analyzing cortex estimates in small vessel disease patients compared with healthy subjects were evaluated. The results support that important cortex alterations develop along the course of small vessel diseases independently of concomitant neurodegenerative processes. Easy detection and quantification of cortex changes in small vessel diseases as well as understanding their underlying mechanisms are challenging tasks for better understanding cognitive decline in small vessel diseases. PMID:26787108

  19. Low level prenatal exposure to methylmercury disrupts neuronal migration in the developing rat cerebral cortex

    International Nuclear Information System (INIS)

    Highlights: ► Low level MeHg exposure causes migratory defect of rat cerebrocortical neurons. ► The migration defect is due to the impact of MeHg on the neuronal migration itself. ► Rho GTPases seem to be involved in MeHg-induced disruption of neuronal migration. -- Abstract: We determined the effects of low-level prenatal MeHg exposure on neuronal migration in the developing rat cerebral cortex using in utero electroporation. We used offspring rats born to dams that had been exposed to saline or various doses of MeHg (0.01 mg/kg/day, 0.1 mg/kg/day, and 1 mg/kg/day) from gestational day (GD) 11–21. Immunohistochemical examination of the brains of the offspring was conducted on postnatal day (PND) 0, PND3, and PND7. Our results showed that prenatal exposure to low levels of MeHg (0.1 mg/kg/day or 1 mg/kg/day) during the critical stage in neuronal migration resulted in migration defects of the cerebrocortical neurons in offspring rats. Importantly, our data revealed that the abnormal neuronal distribution induced by MeHg was not caused by altered proliferation of neural progenitor cells (NPCs), induction of apoptosis of NPCs and/or newborn neurons, abnormal differentiation of NPCs, and the morphological changes of radial glial scaffold, indicating that the defective neuronal positioning triggered by exposure to low-dose of MeHg is due to the impacts of MeHg on the process of neuronal migration itself. Moreover, we demonstrated that in utero exposure to low-level MeHg suppresses the expression of Rac1, Cdc42, and RhoA, which play key roles in the migration of cerebrocortical neurons during the early stage of brain development, suggesting that the MeHg-induced migratory disturbance of cerebrocortical neurons is likely associated with the Rho GTPases signal pathway. In conclusion, our results provide a novel perspective on clarifying the mechanisms underlying the impairment of neuronal migration induced by MeHg

  20. Effect of electric acupuncture on the expression of NgR in the cerebral cortex,the medulla oblongata,and the spinal cord of hypertensive rats after cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    谭峰

    2014-01-01

    Objective To observe the effect of electric acupuncture(EA)on the Nogo receptors(NgR)protein expression in the cerebral cortex,the medulla oblongata,and the spinal cord of cerebral ischemia-reperfusion(I/R)stroke-prone renovascular hypertensive rats(RHRSP)with middle cerebral artery occlusion(MCAO)at different time points,and to investigate its possible mecha-

  1. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A

    Directory of Open Access Journals (Sweden)

    Mathew Jobin

    2012-02-01

    Full Text Available Abstact Background Gamma amino butyric acid (GABA, the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. Methods In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Results Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P Aά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P Aά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Conclusions Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.

  2. Effects of lindane on the glucose metabolism in rat brain cortex cells

    International Nuclear Information System (INIS)

    The influence of 0.5 mM γ-hexachlorocyclohexane (γ-HCH, lindane) on glucose transport has been investigated using the analog 3-O-methyl-D(U-14C) glucose. The glucose uptake was lineal for at least 10 sec. Preincubation of dissociated brain cortex cells with lindane decreased the transport of glucose with respect to the controls. The treatment of brain cortex cells with other organochlorine compounds indicated that the α-, δ-HCH isomers and dieldrin reproduced the same inhibitory pattern, while β-HCH and endrin were inactive. The total radioactivity incorporated into CO2 from (U-14C) glucose in the cerebral cortex is also inhibited by lindane in a time dependent manner

  3. Effects of lindane on the glucose metabolism in rat brain cortex cells

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, J.A.; del Hoyo, N.; Perez-Albarsanz, M.A. (Univ. of Alcala, Madrid (Spain))

    1990-01-01

    The influence of 0.5 mM {gamma}-hexachlorocyclohexane ({gamma}-HCH, lindane) on glucose transport has been investigated using the analog 3-O-methyl-D(U-{sup 14}C) glucose. The glucose uptake was lineal for at least 10 sec. Preincubation of dissociated brain cortex cells with lindane decreased the transport of glucose with respect to the controls. The treatment of brain cortex cells with other organochlorine compounds indicated that the {alpha}-, {delta}-HCH isomers and dieldrin reproduced the same inhibitory pattern, while {beta}-HCH and endrin were inactive. The total radioactivity incorporated into CO{sub 2} from (U-{sup 14}C) glucose in the cerebral cortex is also inhibited by lindane in a time dependent manner.

  4. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    International Nuclear Information System (INIS)

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-[3H]adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system

  5. Magnetic stimulation at Neiguan (PC6) acupoint increases connections between cerebral cortex regions

    Institute of Scientific and Technical Information of China (English)

    Hong-li Yu; Gui-zhi Xu; Lei Guo; Ling-di Fu; Shuo Yang; Shuo Shi; Hua Lv

    2016-01-01

    Stimulation at speciifc acupoints can activate cortical regions in human subjects. Previous studies have mainly focused on a single brain region. However, the brain is a network and many brain regions participate in the same task. The study of a single brain region alone cannot clearly explain any brain-related issues. Therefore, for the present study, magnetic stimulation was used to stimulate the Neiguan (PC6) acu-point, and 32-channel electroencephalography data were recorded before and after stimulation. Brain functional networks were constructed based on electroencephalography data to determine the relationship between magnetic stimulation at the PC6 acupoint and cortical excitabil-ity. Results indicated that magnetic stimulation at the PC6 acupoint increased connections between cerebral cortex regions.

  6. MRI in chronic toluene abuse: low signal in the cerebral cortex on T2-weighted images

    International Nuclear Information System (INIS)

    MRI may be helpful in showing brain toxicity associated with chronic toluene inhalation. We report clinical and MRI findings over 3 years in a man with gradual neurologic decline secondary to toluene abuse. Cerebral atrophy most prominently involved the corpus callosum and cerebellar vermis. On T2-weighted images, loss of gray-white matter contrast, diffuse supratentorial white matter high-signal lesions, and low signal in the basal ganglia and midbrain were seen. In addition, MRI showed abnormal labor cortical low signal on T2-weighted images, most prominent in the primary motor and visual cortex. This cortical T2 shortening, not previously described in this condition, may reflect iron deposition. (orig.)

  7. Action of aspartate on the /sup 32/Pi incorporation into phospholipids of cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    de Scarnati, O.C.; Sato, M.; De Robertis, E.

    1982-02-01

    The effect of L-aspartate on the /sup 32/Pi incorporation of phospholipids, was studied on slices of rat cerebral cortex. This amino acid produced an inhibitory effect in concentrations 0.01-10 mM, which was more evident at 120 min. This effect was not stereospecific and did not imply a change in Pi uptake and in nucleotides approximating P precursors. The inhibition was present in PS, PC, PE and to a lesser extent in Pi. On liver slices 1 mM L-aspartate had the opposite effect, stimulating the incorporation of /sup 32/Pi into total phospholipids. Our results suggest that the effect of L-aspartate is by a non-specific mechanism, probably not mediated by a receptor.

  8. Action of aspartate on the 32Pi incorporation into phospholipids of cerebral cortex

    International Nuclear Information System (INIS)

    The effect of L-aspartate on the 32Pi incorporation of phospholipids, was studied on slices of rat cerebral cortex. This amino acid produced an inhibitory effect in concentrations 0.01-10 mM, which was more evident at 120 min. This effect was not stereospecific and did not imply a change in Pi uptake and in nucleotides approximating P precursors. The inhibition was present in PS, PC, PE and to a lesser extent in Pi. On liver slices 1 mM L-aspartate had the opposite effect, stimulating the incorporation of 32Pi into total phospholipids. Our results suggest that the effect of L-aspartate is by a non-specific mechanism, probably not mediated by a receptor

  9. Network and external perturbation induce burst synchronisation in cat cerebral cortex

    Science.gov (United States)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.

    2016-05-01

    The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.

  10. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  11. Consciousness without a cerebral cortex: a challenge for neuroscience and medicine.

    Science.gov (United States)

    Merker, Bjorn

    2007-02-01

    A broad range of evidence regarding the functional organization of the vertebrate brain - spanning from comparative neurology to experimental psychology and neurophysiology to clinical data - is reviewed for its bearing on conceptions of the neural organization of consciousness. A novel principle relating target selection, action selection, and motivation to one another, as a means to optimize integration for action in real time, is introduced. With its help, the principal macrosystems of the vertebrate brain can be seen to form a centralized functional design in which an upper brain stem system organized for conscious function performs a penultimate step in action control. This upper brain stem system retained a key role throughout the evolutionary process by which an expanding forebrain - culminating in the cerebral cortex of mammals - came to serve as a medium for the elaboration of conscious contents. This highly conserved upper brainstem system, which extends from the roof of the midbrain to the basal diencephalon, integrates the massively parallel and distributed information capacity of the cerebral hemispheres into the limited-capacity, sequential mode of operation required for coherent behavior. It maintains special connective relations with cortical territories implicated in attentional and conscious functions, but is not rendered nonfunctional in the absence of cortical input. This helps explain the purposive, goal-directed behavior exhibited by mammals after experimental decortication, as well as the evidence that children born without a cortex are conscious. Taken together these circumstances suggest that brainstem mechanisms are integral to the constitution of the conscious state, and that an adequate account of neural mechanisms of conscious function cannot be confined to the thalamocortical complex alone. PMID:17475053

  12. Mesenchymal stem cells transplantation suppresses inflammatory responses in global cerebral ischemia:contribution of TNF-α-induced protein 6

    Institute of Scientific and Technical Information of China (English)

    Qing-ming LIN; Shen ZHAO; Li-li ZHOU; Xiang-shao FANG; Yue FU; Zi-tong HUANG

    2013-01-01

    Aim:To investigate the effects of mesenchymal stem cells (MSCs) transplantation on rat global cerebral ischemia and the underlying mechanisms.Methods:Adult male SD rats underwent asphxial cardiac arrest to induce global cerebral ischemia,then received intravenous injection of 5x106 cultured MSCs of SD rats at 2 h after resuscitation.In another group of cardiac arrest rats,tumor necrosis factor-α-induced protein 6 (TSG-6,6 μg) was injected into the right lateral ventricle.Functional outcome was assessed at 1,3,and 7 d after resuscitation.Donor MSCs in the brains were detected at 3 d after resuscitation.The level of serum S-1OOB and proinflammatory cytokines in cerebral cortex were assayed using ELISA.The expression of TSG-6 and proinflammatory cytokines in cerebral cortex was assayed using RT-PCR.Western blot was performed to determine the levels of TSG-6 and neutrophil elastase in cerebral cortex.Results:MSCs transplantation significantly reduced serum S-1OOB level,and improved neurological function after global cerebral ischemia compared to the PBS-treated group.The MSCs injected migrated into the ischemic brains,and were observed mainly in the cerebral cortex.Furthermore,MSCs transplantation significantly increased the expression of TSG-6,and reduced the expression of neutrophil elastase and proinflammatory cytokines in the cerebral cortex.Intracerebroventricular injection of TSG-6 reproduced the beneficial effects of MSCs transplantation in rats with global cerebral ischemia.Conclusion:MSCs transplantation improves functional recovery and reduces inflammatory responses in rats with global cerebral ischemia,maybe via upregulation of TSG-6 expression.

  13. Oxidative metabolic activity of cerebral cortex after fluid-percussion head injury in the cat.

    Science.gov (United States)

    Duckrow, R B; LaManna, J C; Rosenthal, M; Levasseur, J E; Patterson, J L

    1981-05-01

    To assess the metabolic and vascular effects of head trauma, fluid-percussion pressure waves were transmitted to the brains of anesthetized, paralyzed, and artificially ventilated cats. Changes in the redox state of cytochrome a,a3, and relative local blood volume were measured in situ by dual-wavelength reflection spectrophotometry of the cortical surface viewed through an acrylic cranial window implanted within the closed skull. Initial fluid-percussion impacts of 0.5 to 2.8 atm peak pressure produced consistent transient oxidation of cytochrome a,a3 and increases of cortical blood volume. These changes occurred despite the presence of transient posttraumatic hypotension i some cases. Also, impact-induced alterations of vascular tone occurred, independent of the presence or absence of transient hypertension in the posttraumatic period. These data demonstrate that hypoxia does not play a role in the immediate posttraumatic period in cerebral cortex, and are consistent with the idea that after injury there is increased cortical energy conservation. These data also support the concept that head trauma alters the relationship of metabolism and cerebral circulation in the period immediately after injury. PMID:7229699

  14. Low intensity areas observed T2-weighted magnetic resonance imaging of the cerebral cortex in various neurological diseases

    International Nuclear Information System (INIS)

    We retrospectively studied magnetic resonance images of the brain in 158 patients (8 cases of amyotrophic lateral sclerosis, 16 cases of Alzheimer's disease, 8 cases of Parkinson's disease, 53 cases of multiple cerebral infarct, 20 cases of other central nervous system (CNS) diseases, and 53 cases without any CNS disease) to examine the appearance of T2-weighted low signal intensity areas (LIA) in the cerebral cortex. The age of subjects ranged from 36 to 85 years with the mean 65.0 and SD 9.9 years. LIA in the motor and sensory cortices, and brain atrophy were evaluated visually on axial images of the spin-echo sequence obtained with a 1.5 tesla system. The incidence of LIA in the motor cortex was significantly higher in all CNS diseases than in cases without any CNS disease, but not significantly different among CNS diseases. LIA in the motor cortex showed a correlation with age, temporal and parietal atrophy. The appearance of LIA in the sensory cortex correlated with that of LIA in the motor cortex, and parietal atrophy. These results suggest that LIA may appear according to age and be associated with the accumulation of nonheme iron in the cortex, especially in patients with CNS diseases. (author)

  15. Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism

    Directory of Open Access Journals (Sweden)

    Turner Katherine C

    2006-10-01

    Full Text Available Abstract Background Autism is a neurodevelopmental disorder affecting sociocommunicative behavior, but also sensorimotor skill learning, oculomotor control, and executive functioning. Some of these impairments may be related to abnormalities of the caudate nuclei, which have been reported for autism. Methods Our sample was comprised of 8 high-functioning males with autism and 8 handedness, sex, and age-matched controls. Subjects underwent functional MRI scanning during performance on simple visuomotor coordination tasks. Functional connectivity MRI (fcMRI effects were identified as interregional blood oxygenation level dependent (BOLD signal cross-correlation, using the caudate nuclei as seed volumes. Results In the control group, fcMRI effects were found in circuits with known participation of the caudate nuclei (associative, orbitofrontal, oculomotor, motor circuits. Although in the autism group fcMRI effects within these circuits were less pronounced or absent, autistic subjects showed diffusely increased connectivity mostly in pericentral regions, but also in brain areas outside expected anatomical circuits (such as visual cortex. Conclusion These atypical connectivity patterns may be linked to developmental brain growth disturbances recently reported in autism and suggest inefficiently organized functional connectivity between caudate nuclei and cerebral cortex, potentially accounting for stereotypic behaviors and executive impairments.

  16. Numeric and symbolic knowledge representation of cerebral cortex anatomy: methods and preliminary results.

    Science.gov (United States)

    Dameron, O; Gibaud, B; Morandi, X

    2004-06-01

    The human cerebral cortex anatomy describes the brain organization at the scale of gyri and sulci. It is used as landmarks for neurosurgery as well as localization support for functional data analysis or inter-subject data comparison. Existing models of the cortex anatomy either rely on image labeling but fail to represent variability and structural properties or rely on a conceptual model but miss the inner 3D nature and relations of anatomical structures. This study was therefore conducted to propose a model of sulco-gyral anatomy for the healthy human brain. We hypothesized that both numeric knowledge (i.e., image-based) and symbolic knowledge (i.e., concept-based) have to be represented and coordinated. In addition, the representation of this knowledge should be application-independent in order to be usable in various contexts. Therefore, we devised a symbolic model describing specialization, composition and spatial organization of cortical anatomical structures. We also collected numeric knowledge such as 3D models of shape and shape variation about cortical anatomical structures. For each numeric piece of knowledge, a companion file describes the concept it refers to and the nature of the relationship. Demonstration software performs a mapping between the numeric and the symbolic aspects for browsing the knowledge base. PMID:15118839

  17. Influence of the language dominant hemisphere on the activation region of the cerebral cortex during mastication

    International Nuclear Information System (INIS)

    We used functional magnetic resonance imaging (fMRI) to examine the relationship of the activation region of the cerebral cortex during mastication with the language dominant hemisphere. Twelve healthy subjects were asked to chew a special gum 50 times on each side of the mouth, the gum changed color, becoming a deeper red, as it was chewed. The depth of red of the chewed gum was used to ascertain the habitual masticatory side. Measurements were also performed on a conventional whole body 1.5 T clinical scanner using a single shot, multislice echo-planar imaging sequence. The subjects were asked to masticate first on the right side, and then on the left side. As well, they were instructed to do a shiritori test, which is a word game. Computer analysis of the fMRI was done using statistical parametric mapping (SPM) 99 software (p<0.001, paired t-test). We found that the sensorimotor cortex activated by masticatory movements always contains language dominant hemisphere. (author)

  18. Riluzole-Triggered GSH Synthesis via Activation of Glutamate Transporters to Antagonize Methylmercury-Induced Oxidative Stress in Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Yu Deng

    2012-01-01

    Full Text Available Objective. This study was to evaluate the effect of riluzole on methylmercury- (MeHg- induced oxidative stress, through promotion of glutathione (GSH synthesis by activating of glutamate transporters (GluTs in rat cerebral cortex. Methods. Eighty rats were randomly assigned to four groups, control group, riluzole alone group, MeHg alone group, and riluzole + MeHg group. The neurotoxicity of MeHg was observed by measuring mercury (Hg absorption, pathological changes, and cell apoptosis of cortex. Oxidative stress was evaluated via determining reactive oxygen species (ROS, 8-hydroxy-2-deoxyguanosine (8-OHdG, malondialdehyde (MDAs, carbonyl, sulfydryl, and GSH in cortex. Glutamate (Glu transport was studied by measuring Glu, glutamine (Gln, mRNA, and protein of glutamate/aspartate transporter (GLAST and glutamate transporter-1 (GLT-1. Result. (1 MeHg induced Hg accumulation, pathological injury, and apoptosis of cortex; (2 MeHg increased ROS, 8-OHdG, MDA, and carbonyl, and inhibited sulfydryl and GSH; (3 MeHg elevated Glu, decreased Gln, and downregulated GLAST and GLT-1 mRNA expression and protein levels; (4 riluzole antagonized MeHg-induced downregulation of GLAST and GLT-1 function and expression, GSH depletion, oxidative stress, pathological injury, and apoptosis obviously. Conclusion. Data indicate that MeHg administration induced oxidative stress in cortex and that riluzole could antagonize this situation through elevation of GSH synthesis by activating of GluTs.

  19. Functional MR imaging of cerebral auditory cortex with linguistic and non-linguistic stimulation: preliminary study

    International Nuclear Information System (INIS)

    To obtain preliminary data for understanding the central auditory neural pathway by means of functional MR imaging (fMRI) of the cerebral auditory cortex during linguistic and non-linguistic auditory stimulation. In three right-handed volunteers we conducted fMRI of auditory cortex stimulation at 1.5 T using a conventional gradient-echo technique (TR/TE/flip angle: 80/60/40 deg). Using a pulsed tone of 1000 Hz and speech as non-linguistic and linguistic auditory stimuli, respectively, images-including those of the superior temporal gyrus of both hemispheres-were obtained in sagittal plases. Both stimuli were separately delivered binaurally or monoaurally through a plastic earphone. Images were activated by processing with homemade software. In order to analyze patterns of auditory cortex activation according to type of stimulus and which side of the ear was stimulated, the number and extent of activated pixels were compared between both temporal lobes. Biaural stimulation led to bilateral activation of the superior temporal gyrus, while monoaural stimulation led to more activation in the contralateral temporal lobe than in the ipsilateral. A trend toward slight activation of the left (dominant) temporal lobe in ipsilateral stimulation, particularly with a linguistic stimulus, was observed. During both biaural and monoaural stimulation, a linguistic stimulus produced more widespread activation than did a non-linguistic one. The superior temporal gyri of both temporal lobes are associated with acoustic-phonetic analysis, and the left (dominant) superior temporal gyrus is likely to play a dominant role in this processing. For better understanding of physiological and pathological central auditory pathways, further investigation is needed

  20. Neuronal activity (c-Fos delineating interactions of the cerebral cortex and basal ganglia

    Directory of Open Access Journals (Sweden)

    Mei-Hong Qiu

    2014-03-01

    Full Text Available The cerebral cortex and basal ganglia (BG form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave EEG but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine (NMDA receptor antagonist and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist. Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN input to internal globus pallidus (GPi and substantia nigra pars reticulata (SNr, while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe, and STN but increased activity of the GPi, SNr and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders.

  1. Determining Physical Properties of the Cell Cortex.

    Science.gov (United States)

    Saha, Arnab; Nishikawa, Masatoshi; Behrndt, Martin; Heisenberg, Carl-Philipp; Jülicher, Frank; Grill, Stephan W

    2016-03-29

    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell- and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example, the characteristic time of stress relaxation (the Maxwell time τM) in the actomyosin sets the timescale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length λ) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer in vivo directly from laser ablation experiments. For this we investigate the cortical response to laser ablation in the one-cell-stage Caenorhabditis elegans embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse-grained physical description of the cortex in terms of a two-dimensional thin film of an active viscoelastic gel. To determine the Maxwell time τM, the hydrodynamic length λ, the ratio of active stress ζΔμ, and per-area friction γ, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best-fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. Our method provides an accurate and robust means for measuring physical parameters of the actomyosin cortical layer. It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights into the active mechanics processes that govern tissue-scale morphogenesis. PMID

  2. Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex

    Science.gov (United States)

    Ulloa, Antonio; Horwitz, Barry

    2016-01-01

    A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were “non-task-specific” (NS) neurons that served as noise generators to “task-specific” neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional

  3. Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex.

    Science.gov (United States)

    Ulloa, Antonio; Horwitz, Barry

    2016-01-01

    A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were "non-task-specific" (NS) neurons that served as noise generators to "task-specific" neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional

  4. The changes of regional cerebral blood flow: successful pain relief of intractable CRPS type II patients by motor cortex stimulation

    International Nuclear Information System (INIS)

    Authors report the effectiveness of MCS in extraordinarily extended pain due to intractable CRPS type II and rCBF study result for mechanism of pain control by MCS. A 43-year-old male presented severe spontaneous burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. Authors planned MCS as a neuromodulation therapy for this intractable peripheral neuropathic pain patient because further neurodestructive procedure did not work anymore and have a potential risk of further aggrevation of neuopathic pain. We performed baseline and stimulation brain perfusion SPECT using 20 mCi of Tc-99m ECD. The baseline CBD studies were done with stimulator 'off' state and stimulation studies were done after stimulator 'on' with satisfactory pain relief. For the stimulation study, the radioisotope was injected immediately after pain-relief and the images were taken about 50 minutes after injection of radioisotope. In resting rCBF in the patient was compared with normal control datas, we found significant increase in rCBF in the bilateral prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, left temporooccipital area. When rCBF datas obtained after alleviation of pain with stimulator 'on' . there were significant increase in rCBF in bilateral prefrontal cortex and left temporoocipital area. After subtraction of ECD SPECT, we found significant increase in rCBF in the right premotor and supplementary motor cortex left sensorimotor cortex, right cingulated cortex, right posterior insular cortex, right anterior limb of internal capsule. left orbitofrontal cortex and right pyramidal tract in cerebral peduncle. Authors report exellent pain control by MCS in a case of severe CRPS type II with hemibody involvement and regional cerebral blood flow changes according to successful pain control

  5. [The modulation of cerebral cortex and subcortical nuclei on NRM and their role in acupuncture analgesia].

    Science.gov (United States)

    Liu, X

    1996-01-01

    The vast research have demonstrated that the acupuncture analgesia is effected through a physiological mechanism brought about by the nervous system, particularly the central nervous system. We combined the acupuncture effects and theory of channels and collaterals with the new advance of pain neurophysiology, and centred attention on nucleus raphe magnus (NRM), that is one of the origins of the important descending inhibitory pathways of the intrinsic analgesic systems in brain. The unit discharges of NRM neurons and their nociceptors/ph responses were recorded extracellularly with glass microelectrode at 1495 neurons on 634 wastar rats. The modulation of cerebral cortex, the head of N. caudatum (NCa), N. Accumbens (N. Ac), N lateral habenular (NHa) and Periaquaeductal gray matter (PAG) on NRM and their role in acupuncture analgesia were studied by central locational stimulation, lesion and microinjection. The result were as follows: 1. The most NRM neurons could respond to noxious stimulation of tail tip with increasing or decreasing firing rate. Electroacupuncture (EA) at "Zusanli" could activate the NRM neuron, increasing discharges, and inhibit their nociceptive responses, producing analgesia. 2. The activity of NRM neuron was modulated by PAG, NAc, and NCa. Stimulation at one of them can activate neuron of NRM, increasing firing rate, and induce analgesia. When the lesion or microinjection naloxone were made in PAG, NAc or NCa, EA analgesia could be weakened or lost, even the nociceptive responses might be increased. It is suggest that the nuclei participated in EA analgesia with their endogenous opiate like substance, and were playing an important role. It is also indicated that the electroacupuncture was used on the patients with some nuclei lesion or pathological changes should be careful to avoid making patients feel more painful. 3. Somatosensory area II (Sm II) of cerebral cortex participated in EA analgesia. The analgesic effects of EA at "Zusanli

  6. Conantokin probes of NMDA receptors in normal and Alzheimer disease human cerebral cortex

    International Nuclear Information System (INIS)

    Full text: The pharmacology of the N-methyl-D-aspartate (NMDA) receptor site was examined in pathologically affected and relatively spared regions of cerebral cortex tissue obtained at autopsy from Alzheimer disease cases and matched controls. The affinity and density of the [3H]MK-801 binding site were delineated along with the enhancement of [3H]MK-801 binding by glutamate and spermine. Sites with distinct pharmacologies were distributed regionally through the cortex. The differences could not be explained by variations in the parameters of [3H]MK-801 binding; rather, the data suggest that the subunit composition of NMDA receptors may be locally variable. Selective differences were also found between controls and Alzheimer disease cases in certain brain regions. The interactions of human NMDA sites with the Ala(7) and Lys(7) derivatives of conantokin-G (Con-G) were also characterized. Ala(7)-con-G showed the higher affinity of the two peptides, and also defined two distinct binding sites in controls. In distinction to the Ala(7) peptide, Lys(7)- con-G showed preferential binding to receptor sites in Alzheimer disease cf. control brain. Modified conantokins are useful for identifying differences in subunit composition of the NMDA receptors between brain areas. They may also have potential as protective agents against over-excitation mediated by specific NMDA receptors, which might contribute to localized brain damage in Alzheimer disease. For further characterization of the pharmacology of different NMDA receptor subunits, a mammalian expression system has been developed for the analysis of their responses to selected ligands, including conantokins. Copyright (2002) Australian Neuroscience Society

  7. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.

    Science.gov (United States)

    Jackson, Andrew; Fetz, Eberhard E

    2007-11-01

    We describe a small, chronically implantable microwire array for obtaining long-term unit recordings from the cortex of unrestrained nonhuman primates. After implantation, the depth of microwires can be individually adjusted to maintain large-amplitude action potential recordings from single neurons over many months. We present data recorded from the primary motor cortex of two monkeys by autonomous on-board electronic circuitry. Waveforms of individual neurons remained stable for recording periods of several weeks during unrestrained behavior. Signal-to-noise ratios, waveform stability, and rates of cell loss indicate that this method may be particularly suited to experiments investigating the neural correlates of processes extending over multiple days, such as learning and plasticity. PMID:17855584

  8. Exposure to brominated flame retardant PBDE-99 affects cytoskeletal protein expression in the neonatal mouse cerebral cortex

    DEFF Research Database (Denmark)

    Alm, Henrik; Kultima, Kim; Scholz, Birger;

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are environmental contaminants found in human and animal tissues worldwide. Neonatal exposure to the flame retardant 2,2', 4,4',5-pentabromodiphenyl ether (PBDE-99) disrupts normal brain development in mice, and results in disturbed spontaneous behavior in the...... adult. The mechanisms underlying the late effects of early exposure are not clear. To gain insight into the initial neurodevelopmental damage inflicted by PBDE-99, we investigated the short-term effects of PBDE-99 on protein expression in the developing cerebral cortex of neonatal mice, and the......-3 activity. These results indicate that the permanent neurological damage induced by PBDE-99 during the brain growth spurt involve detrimental effects on cytoskeletal regulation and neuronal maturation in the developing cerebral cortex....

  9. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    International Nuclear Information System (INIS)

    Saturable [3H]-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The Bmax values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding KD values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats

  10. Two separate subtypes of early non-subplate projection neurons in the developing cerebral cortex of rodents

    OpenAIRE

    Ana Espinosa; Cristina Gil-Sanz; Yuchio Yanagawa; Alfonso Fairén

    2009-01-01

    The preplate of the cerebral cortex contains projection neurons that connect the cortical primordium with the subpallium. These are collectively named pioneer neurons. After preplate partition, most of these pioneer neurons become subplate neurons. Certain preplate neurons, however, never associate with the subplate but rather with the marginal zone. In the present overview, we propose a novel classification of non-subplate pioneer neurons in rodents into two subtypes. In rats, the neurons of...

  11. Two Separate Subtypes of Early Non-Subplate Projection Neurons in the Developing Cerebral Cortex of Rodents

    OpenAIRE

    Espinosa, Ana; Gil-Sanz, Cristina; Yanagawa, Yuchio; Fairén, Alfonso

    2009-01-01

    The preplate of the cerebral cortex contains projection neurons that connect the cortical primordium with the subpallium. These are collectively named pioneer neurons. After preplate partition, most of these pioneer neurons become subplate neurons. Certain preplate neurons, however, never associate with the subplate but rather with the marginal zone. In the present overview, we propose a novel classification of non-subplate pioneer neurons in rodents into two subtypes. In rats, the neurons of...

  12. The Ascending Reticular Activating System in a Patient With Severe Injury of the Cerebral Cortex: A Case Report.

    Science.gov (United States)

    Jang, Sung Ho; Lee, Han Do

    2015-10-01

    We reported on the ascending reticular activating system (ARAS) finding of a patient in whom severe injury of the cerebral cortex was detected following a hypoxic-ischemic brain injury (HIBI).A 67-year-old female patient who suffered from HIBI induced by cardiac arrest after surgery for lumbar disc herniation underwent cardiopulmonary resuscitation approximately 20 to 30 minutes after cardiac arrest. The patient exhibited impaired alertness, with a Glasgow Coma Scale (GCS) score of 4 (eye opening: 2, best verbal response: 1, and best motor response: 1). Approximately 3 years after onset, she began to whimper sometimes and showed improved consciousness, with a GCS score of 10 (eye opening: 4, best verbal response: 2, and best motor response: 4) and Coma Recovery Scale-Revised score of 9 (auditory function: 1, visual function: 1, motor function: 2, verbal function: 2, communication: 1, and arousal: 2).Results of diffusion tensor tractography for the upper connectivity of the ARAS showed decreased neural connectivity to each cerebral cortex in both hemispheres. The right lower ARAS between the pontine reticular formation and the thalamic intralaminar nuclei (ILN) was thinner compared with the left side.Severe injury of the upper portion of the ARAS between the thalamic ILN and cerebral cortex was demonstrated in a patient with some level of consciousness. PMID:26496328

  13. Lettuce glycoside B ameliorates cerebral ischemia reperfusion injury by increasing nerve growth factor and neurotrophin-3 expression of cerebral cortex in rats

    Directory of Open Access Journals (Sweden)

    Heqin Zhan

    2014-01-01

    Full Text Available Aims: The aim of the study was to investigate the effects of LGB on cerebral ischemia-reperfusion (I/R injury in rats and the mechanisms of action of LGB. Materials and Methods: The study involved extracting LGB from P. laciniata, exploring affects of LGB on brain ischemia and action mechanism at the molecular level. The cerebral ischemia reperfusion injury of middle cerebral artery occlusion was established. We measured brain histopathology and brain infarct rate to evaluate the effects of LGB on brain ischemia injury. The expressions of nerve growth factor (NGF and neurotrophin-3 (NT-3 were also measured to investigate the mechanisms of action by the real-time polymerase chain reaction and immunohistochemistry. Statistical analysis: All results were mentioned as mean ± standard deviation. One-way analysis of variance was used to determine statistically significant differences among the groups. Values of P < 0.05 were considered to be statistically significant. Results: Intraperitoneal injection of LGB at the dose of 12, 24, and 48 mg/kg after brain ischemia injury remarkably ameliorated the morphology of neurons and brain infarct rate (P < 0.05 , P < 0.01. LGB significantly increased NGF and NT-3 mRNA (messenger RNA and both protein expression in cerebral cortex at the 24 and 72 h after drug administration (P < 0.05, P < 0.01. Conclusions: LGB has a neuroprotective effect in cerebral I/R injury and this effect might be attributed to its upregulation of NGF and NT-3 expression ability in the brain cortex during the latter phase of brain ischemia.

  14. Network structure of cerebral cortex shapes functional connectivity on multiple time scales

    Science.gov (United States)

    Honey, Christopher J.; Kötter, Rolf; Breakspear, Michael; Sporns, Olaf

    2007-01-01

    Neuronal dynamics unfolding within the cerebral cortex exhibit complex spatial and temporal patterns even in the absence of external input. Here we use a computational approach in an attempt to relate these features of spontaneous cortical dynamics to the underlying anatomical connectivity. Simulating nonlinear neuronal dynamics on a network that captures the large-scale interregional connections of macaque neocortex, and applying information theoretic measures to identify functional networks, we find structure–function relations at multiple temporal scales. Functional networks recovered from long windows of neural activity (minutes) largely overlap with the underlying structural network. As a result, hubs in these long-run functional networks correspond to structural hubs. In contrast, significant fluctuations in functional topology are observed across the sequence of networks recovered from consecutive shorter (seconds) time windows. The functional centrality of individual nodes varies across time as interregional couplings shift. Furthermore, the transient couplings between brain regions are coordinated in a manner that reveals the existence of two anticorrelated clusters. These clusters are linked by prefrontal and parietal regions that are hub nodes in the underlying structural network. At an even faster time scale (hundreds of milliseconds) we detect individual episodes of interregional phase-locking and find that slow variations in the statistics of these transient episodes, contingent on the underlying anatomical structure, produce the transfer entropy functional connectivity and simulated blood oxygenation level-dependent correlation patterns observed on slower time scales. PMID:17548818

  15. The fuzzy brain. Vagueness and mapping connectivity of the human cerebral cortex

    Science.gov (United States)

    Haueis, Philipp

    2012-01-01

    While the past century of neuroscientific research has brought considerable progress in defining the boundaries of the human cerebral cortex, there are cases in which the demarcation of one area from another remains fuzzy. Despite the existence of clearly demarcated areas, examples of gradual transitions between areas are known since early cytoarchitectonic studies. Since multi-modal anatomical approaches and functional connectivity studies brought renewed attention to the topic, a better understanding of the theoretical and methodological implications of fuzzy boundaries in brain science can be conceptually useful. This article provides a preliminary conceptual framework to understand this problem by applying philosophical theories of vagueness to three levels of neuroanatomical research. For the first two levels (cytoarchitectonics and fMRI studies), vagueness will be distinguished from other forms of uncertainty, such as imprecise measurement or ambiguous causal sources of activation. The article proceeds to discuss the implications of these levels for the anatomical study of connectivity between cortical areas. There, vagueness gets imported into connectivity studies since the network structure is dependent on the parcellation scheme and thresholds have to be used to delineate functional boundaries. Functional connectivity may introduce an additional form of vagueness, as it is an organizational principle of the brain. The article concludes by discussing what steps are appropriate to define areal boundaries more precisely. PMID:22973199

  16. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex

    International Nuclear Information System (INIS)

    Calcium (45Ca2+) efflux was studied from preloaded cortex in cats immobilized under local anesthesia, and exposed to a 3.0-mW/cm2 450-MHz field, sinusoidally amplitude modulated at 16 Hz modulation depth 85%). Tissue dosimetry showed a field of 33 V/m in the interhemispheric fissure (rate of energy deposition 0.29 W/kg). Field exposure lasted 60 min. By comparison with controls, efflux curves from field exposed brains were disrupted by waves of increased 45Ca2+ efflux. These waves were irregular in amplitude and duration, but many exhibited periods of 20-30 min. They continued into the postexposure period. Binomial probability analysis indicates that the field-exposed efflux curves constitute a different population from controls at a confidence level of 0.96. In about 70% of cases, initiation of field exposure was followed by increased end-tidal CO2 excretion for about 5 min. However, hypercapnea induced by hypoventilation did not elicit increased 45Ca2+ efflux. Thus this increase with exposure does not appear to arise as a secondary effect of raised cerebral CO2 levels. Radioactivity measurements in cortical samples after superfusion showed 45Ca2+ penetration at about 1.7 mm/hr, consistent with diffusion of the ion in free solution

  17. Astrocytic adaptation during cerebral angiogenesis follows the new vessel formation induced through chronic hypoxia in adult mouse cortex

    Science.gov (United States)

    Masamoto, Kazuto; Kanno, Iwao

    2014-03-01

    We examined longitudinal changes of the neuro-glia-vascular unit during cerebral angiogenesis induced through chronic hypoxia in the adult mouse cortex. Tie2-GFP mice in which the vascular endothelial cells expressed green fluorescent proteins (GFP) were exposed to chronic hypoxia, while the spatiotemporal developments of the cortical capillary sprouts and the neighboring astrocytic remodeling were characterized with repeated two-photon microscopy. The capillary sprouts appeared at early phases of the hypoxia adaptation (1-2 weeks), while the morphological changes of the astrocytic soma and processes were not detected in this phase. In the later phases of the hypoxia adaptation (> 2 weeks), the capillary sprouts created a new connection with existing capillaries, and its neighboring astrocytes extended their processes to the newly-formed vessels. The findings show that morphological adaptation of the astrocytes follow the capillary development during the hypoxia adaptation, which indicate that the newly-formed vessels provoke cellular interactions with the neighboring astrocytes to strengthen the functional blood-brain barrier.

  18. Ganoderma lucidum spore powder modulates Bcl-2 and Bax expression in the hippocampus and cerebral cortex, and improves learning and memory in pentylenetetrazole-kindled rats

    Institute of Scientific and Technical Information of China (English)

    Shuang Zhao; Shengchang Zhang; Shuqiu Wang

    2011-01-01

    We studied the effects of Ganoderma lucidum spore powder on Bax and Bcl-2 expression and neuronal apoptosis in pentylenetetrazole-kindled epileptic rats. Sixty adult rats were randomly divided into a control group, an epileptic group (kindled) and three medication groups ( 150, 300,450 mg/kg given to kindled rats). Bax and Bcl-2 immunohistochemistry and TUNEL labeling show ed that the number of Bax- and TUNEL-positive cells in the hippocampus and cerebral cortex decreased significantly in the high-dose medication group, while the number of Bcl-2immunoreactive cells increased. The Morris water maze test showed that high-dose treatment significantly shortened escape latency and increased spatial probe trial performance. Our findings indicate that a high dose of Ganoderma lucidum spore powder upregulates the expressionof antiapoptotic Bcl-2 protein in the hippocampus and cerebral cortex, inhibits proapoptotic Bax expression, and decreases seizure-induced neuronal apoptosis. Further,Ganoderma lucidum appears to protect against epilepsy-related learning and memory impairments.

  19. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism

    International Nuclear Information System (INIS)

    Local 5'-deiodination of serum thyroxine (T4) is the main source of triiodothyronine (T3) for the brain. Since we noted in previous studies that the cerebral cortex of neonatal rats tolerated marked reductions in serum T4 without biochemical hypothyroidism, we examined the in vivo T4 and T3 metabolism in that tissue and in the cerebellum of euthyroid and hypothyroid 2-wk-old rats. We also assessed the contribution of enhanced tissue T4 to T3 conversion and decreased T3 removal from the tissues to the T3 homeostasis in hypothyroid brain. Congenital and neonatal hypothyroidism was induced by adding methimazole to the drinking water. Serum, cerebral cortex (Cx), cerebellum (Cm), liver (L) and kidney (R) concentrations of 125I-T4, 125I-T3(T4), and 131I-T3 were measured at various times after injecting 125I-T4 and 131I-T3. The rate of T3 removal from the tissues was measured after injecting an excess of anti-T3-antibody to rats previously injected with tracer T3. In hypothyroidism, the fractional removal rates and clearances were reduced in all tissues, in cortex and cerebellum by 70%, and in liver and kidney ranging from 30 to 50%. While greater than 80% of the 125I-T3(T4) in the brain tissues of euthyroid rats was locally produced, in hypothyroid cerebral cortex and cerebellum the integrated concentrations of 125I-T3(T4) were 2.7- and 1.5-fold greater than in euthyroid rats

  20. Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex

    DEFF Research Database (Denmark)

    Fordsmann, Jonas Christoffer; ko, Rebecca; Choi, Hyun B;

    2013-01-01

    Cortical spreading depression (CSD) is associated with release of arachidonic acid (AA), impaired neurovascular coupling, and reduced cerebral blood flow (CBF), caused by cortical vasoconstriction. We tested the hypothesis that the released AA is metabolized by the cytochrome P450 enzyme to produce...... the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE), and that this mechanism explains cortical vasoconstriction and vascular dysfunction after CSD. CSD was induced in the frontal cortex of rats and the cortical electrical activity and local field potentials (LFPs) recorded by glass...

  1. Redox homeostasis is compromised in vivo by the metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency in rat cerebral cortex and liver.

    Science.gov (United States)

    da Rosa, M S; Seminotti, B; Amaral, A U; Fernandes, C G; Gasparotto, J; Moreira, J C F; Gelain, D P; Wajner, M; Leipnitz, G

    2013-12-01

    3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is a disorder biochemically characterized by the predominant accumulation of 3-hydroxy-3-methylglutarate (HMG), 3-methylglutarate (MGA), 3-methylglutaconate and 3-hydroxyisovalerate in tissues and biological fluids of the affected patients. Neurological symptoms and hepatopathy are commonly found in HL deficiency, especially during metabolic crises. Since the mechanisms of tissue damage in this disorder are not well understood, in the present study we evaluated the ex vivo effects of acute administration of HMG and MGA on important parameters of oxidative stress in cerebral cortex and liver from young rats. In vivo administration of HMG and MGA provoked an increase of carbonyl and carboxy-methyl-lysine formation in cerebral cortex, but not in liver, indicating that these metabolites induce protein oxidative damage in the brain. We also verified that HMG and MGA significantly decreased glutathione concentrations in both cerebral cortex and liver, implying a reduction of antioxidant defenses. Furthermore, HMG and MGA increased 2',7'-dichlorofluorescin oxidation, but did not alter nitrate and nitrite content in cerebral cortex and liver, indicating that HMG and MGA effects are mainly mediated by reactive oxygen species. HMG and MGA also increased the activities of superoxide dismutase and catalase in cerebral cortex and liver, whereas MGA decreased glutathione peroxidase activity in cerebral cortex. Our present data showing a disruption of redox homeostasis in cerebral cortex and liver caused by in vivo administration of HMG and MGA suggest that this pathomechanism may possibly contribute to the brain and liver abnormalities observed in HL-deficient patients. PMID:24127998

  2. General indices to characterize the electrical response of the cerebral cortex to TMS.

    Science.gov (United States)

    Casali, Adenauer G; Casarotto, Silvia; Rosanova, Mario; Mariotti, Maurizio; Massimini, Marcello

    2010-01-15

    Transcranial magnetic stimulation (TMS) combined with simultaneous high-density electroencephalography (hd-EEG) represents a straightforward way to gauge cortical excitability and connectivity in humans. However, the analysis, classification and interpretation of TMS-evoked potentials are hampered by scarce a priori knowledge about the physiological effect of TMS and by lack of an established data analysis framework. Here, we implemented a standardized, data-driven procedure to characterize the electrical response of the cerebral cortex to TMS by means of three synthetic indices: significant current density (SCD), phase-locking (PL) and significant current scattering (SCS). SCD sums up the amplitude of all significant currents induced by TMS, PL reflects the ability of TMS to reset the phase of ongoing cortical oscillations, while SCS measures the average distance of significantly activated sources from the site of stimulation. These indices are aimed at capturing different aspects of brain responsiveness, ranging from global cortical excitability towards global cortical connectivity. We analyzed the EEG responses to TMS of Brodmann's area 19 at increasing intensities in five healthy subjects. The spatial distribution and time course of SCD, PL and SCS revealed a reproducible profile of excitability and connectivity, characterized by a local activation threshold around a TMS-induced electric field of 50 V/m and by a selective propagation of TMS-evoked activation from occipital to ipsilateral frontal areas that reached a maximum at 70-100 ms. These general indices may be used to characterize the effects of TMS on any cortical area and to quantitatively evaluate cortical excitability and connectivity in physiological and pathological conditions. PMID:19770048

  3. Executive function and cerebral blood flow on dorsolateral prefrontal cortex in cases of subcortical infarction

    International Nuclear Information System (INIS)

    In order to clarify the extent of dysexecutive function of patients with subcortical infarctions, participants of this study underwent neuropsychological tests and single photon emission computerized tomography (SPECT). These participants were categorized into two groups; patients with basal ganglia lesions (BG group) (n=5) and those with white matter lesions (WM group) (n=12). Participants were administered executive function tests as a part of a comprehensive neuropsychological battery. Administered executive measures included the Wisconsin Card Sorting Test (WCST), the Ruff Figural Fluency Test (RFFT), the Controlled Oral Word Association Test (COWAT), and the Trait Making Test; Parts A and B. There were no group differences in their age, years of education and global cognitive performance. Student's t-tests were conducted to determine group differences in executive function. As a result, the number of total errors, the number of perseverative errors and the number of categories completed on the WCST were significantly worse for the BG group than for the WM group. These groups did not differ on other measures administered. In addition, all participants underwent SPECT, and their results were compared with the normal control data. Hypoperfusion was found on parts of the bilateral frontal, temporal, and parietal lobes for the BG and WM groups. These tendencies stood out in the right hemisphere of the BG group. The BG group exhibited decreased cerebral blood flow (CBF) on the area of right side dorsolateral prefrontal cortex (DLPFC) (e.g., Brodmann area 44). These analyses revealed that individuals with BG lesions showed significant executive declines that might be associated with decreased CBF in the subcortical-frontal system. It may support the idea that BG is connected with DLPFC via frontal-subcortical neuronal circuit. Patients with BG lesions may experience dysexecutive function due to the phenomenon of diaschisis from the disruption of this circuit. (author)

  4. Evidence that two stereochemically different alpha-2 adrenoceptors modulate norepinephrine release in rat cerebral cortex

    International Nuclear Information System (INIS)

    Cerebral cortex slices from the rat were loaded with [3H]norepinephrine ([3H]NE) and superfused in order to measure the release of radioactivity at rest and in response to electrical stimulation. The (-)-isomer and the (+)-isomer of CH-38083 (7,8-(methylenedioxy)-14- alpha-hydroxyalloberbane HCl), a selective alpha-2-adrenoceptor antagonist with an alloberbane skeleton, increased the electrically induced release of [3H]NE in a concentration-dependent manner, and a similar effect was observed with racemic CH-38083 and idazoxan. The stereoisomers of CH-38083 applied in a concentration range of 10(-8) to 10(-6) mol/l were equipotent in facilitating stimulation-evoked [3H]NE release: concentrations needed to enhance tritium outflow by 50% were 1.3 X 10(-7) mol/l for (-)-CH-38083 and 1.4 X 10(-7) mol/l for (+)-CH-38083. Exogenous NE decreased the electrically stimulated release of [3H]NE, and the stereoisomers of CH-38083 antagonized this inhibition with different potencies: the dissociation constant (KB) values for (-)-isomer and for (+)-isomer of CH-38083 were 14.29 and 97.18 nmol/l. These data indicate that presynaptic alpha-2 adrenoceptors that are available for NE released from axon terminals do not show stereospecificity toward enantiomers of CH-38083, whereas those that are occupied by exogenous NE are much more sensitive toward (-)-CH-38083. The alpha-1 adrenoceptor antagonist prazosin also differentiated between the alpha-2 adrenoceptor subtypes: prazosin (10(-6) mol/l) did not alter the increase of electrically induced [3H]NE release evoked by (-)- and (+)-CH-38083; however, in its presence, the stereoisomers of CH-38083 failed to antagonize the inhibitory effect of exogenous NE on its own release

  5. Differential binding of 3H-imipramine and 3H-mianserin in rat cerebral cortex

    International Nuclear Information System (INIS)

    Drug competition profiles, effect of raphe lesion, and sodium dependency of the binding of two antidepressant drugs 3H-imipramine and 3H-mianserin to rat cerebral cortex homogenate were compared to examine whether the drugs bound to a common ''antidepressant receptor.'' Of the neurotransmitters tested, only serotonin displaced binding of both 3H-imipramine and 3H-mianserin. 3H-Mianserin binding was potently displaced by serotonin S2 antagonists and exhibited a profile similar to that of 3H-spiperone binding. In the presence of the serotonin S2 antagonist spiperone, antihistamines (H1) potently displaced 3H-mianserin binding. 3H-Imipramine binding was displaced potently by serotonin uptake inhibitors. The order of potency of serotonergic drugs in displacing 3H-imipramine binding was not similar to their order in displacing 3H-spiperone or -3H-serotonin binding. Prior midbrain raphe lesions greatly decreased the binding of 3H-imipramine but did not alter binding of 3H-mianserin. Binding of 3H-imipramine but not 3H-mianserin was sodium dependent. These results show that 3H-imipramine and 3H-mianserin bind to different receptors. 3H-Imipramine binds to a presynaptic serotonin receptor which is probably related to a serotonin uptake recognition site, the binding of which is sodium dependent. 3H-Mianserin binds to postsynaptic receptors, possibly both serotonin S2 and histamine H1 receptors, the binding of which is sodium independent

  6. Molecular and histological changes in cerebral cortex and lung tissues under the effect of tramadol treatment.

    Science.gov (United States)

    Awadalla, Eatemad A; Salah-Eldin, Alaa-Eldin

    2016-08-01

    Tramadol abuse is one of the most frequent health problems in Egypt and worldwide. In most cases, tramadol abused by men face a problem with premature ejaculation. Tramadol like other opioids induces a decrease in plasma antioxidant levels, which may reflect a failure of the antioxidant defense mechanism against oxidative damage. The present work aimed to study the possible deleterious effects of oral administration of tramadol on brain and lung tissues in rats. Twenty adult male albino rats were divided into two groups; a control administered with normal saline and tramadol-treated (40mg/kg b.w.) group for 20 successive days. At the end of experimental period, blood was collected and specimens from brains and lungs were taken for histopathological and molecular studies. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities were measured in serum of control and tramadol-treated groups. Brain and lung specimens were histopathological evaluated using light microscopy. The expression levels of apoptotic related genes; Bcl-2, Bax and Caspase-3 were study in brain and lung tissues using RT-PCR analysis. We recorded a significant increase MDA level, while antioxidant enzymes; GSH, SOD and CAT were significantly decreased after tramadol-treatment. The obtained results revealed that tramadol induced a remarkable histomorphological changes in rats' brains (cerebral cortex and hippocampus) and severe histopathological changes in rats' lung when compared to that of control. On molecular level, the expression of the pro-apoptotic Bax and Caspase-3 showed a significant increase whereas the anti-apoptotic Bcl-2 decreased markedly indicating that tramadol is harmful at cellular level and can induce apoptotic changes in brain tissues. Our data confirmed the risk of increased oxidative stress, neuronal and pulmonary damage due to tramadol abuse. Although tramadol is reported to be effective in pain management, its toxicity should

  7. Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex

    Science.gov (United States)

    Mesquita, Rickson C.; Faseyitan, Olufunsho K.; Turkeltaub, Peter E.; Buckley, Erin M.; Thomas, Amy; Kim, Meeri N.; Durduran, Turgut; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Hamilton, Roy H.

    2013-06-01

    Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxygenation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemoglobin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from baseline were not observed contralateral to rTMS administration (all parameters, p>0.29). In total, these findings provide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects.

  8. Molecular adaptations of apoptotic pathways and signaling partners in the cerebral cortex of human cocaine addicts and cocaine-treated rats.

    Science.gov (United States)

    Alvaro-Bartolomé, M; La Harpe, R; Callado, L F; Meana, J J; García-Sevilla, J A

    2011-11-24

    Cocaine induces apoptotic effects in cultured cells and in the developing brain, but the aberrant activation of cell death in the adult brain remains inconclusive, especially in humans. This postmortem human brain study examined the status of canonical apoptotic pathways, signaling partners, and the cleavage of poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, in prefrontal cortex (PFC) of a small but well-characterized cohort of cocaine abusers (n=10). For comparison, the chosen targets were also quantified in the cerebral cortex of cocaine-treated rats. In the PFC of cocaine abusers, FS7-associated cell surface antigen (Fas) receptor aggregates and Fas-associated death domain (FADD) adaptor were reduced (-26% and -66%, respectively) as well as the content of mitochondrial cytochrome c (-61%). In the same brain samples of cocaine abusers, the proteolytic cleavage of PARP-1 was increased (+39%). Nuclear PARP-1 degradation, possibly a consequence of increased mitochondrial oxidative stress, involved the activation of apoptosis-inducing factor (AIF) and not that of caspase-3. In the PFC of cocaine abusers, several signaling molecules associated with cocaine/dopamine and/or apoptotic pathways were not significantly altered, with the exception of anti-apoptotic truncated DARPP-32 (t-DARPP), a truncated isoform of dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), whose content was decreased (-28%). Chronic exposure to cocaine in rats, including withdrawal for 3 days, did not alter Fas-FADD receptor complex, cytochrome c, caspase-3/fragments, AIF, PARP-1 cleavage, and associated signaling in the cerebral cortex. Chronic cocaine and abstinence, however, increased the content of t-DARPP (+39% and +47%) in rat brain cortex. The major findings indicate that cocaine addiction in humans is not associated with abnormal activation of extrinsic and intrinsic apoptotic pathways in PFC. The downregulation of Fas-FADD receptor complex and cytochrome c

  9. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... two different sets of interneurons. Our data imply that for a given cortical area the amplitude of vascular signals will depend critically on the type of input and hence on the type of neurons activated. In the second study I investigated the effect of cortical spreading depression (CSD) on the evoked...... Laser-Doppler Flowmetry for measurements of cerebral blood flow, glass microelectrodes for recording of synaptic activity – local field potentials – and ongoing cortical electrical activity and a Clark type electrode for measurements of tissue partial pressure of oxygen (tpO2). Offline calculations of...

  10. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism.

    OpenAIRE

    J.E. Silva; Matthews, P S

    1984-01-01

    Local 5'-deiodination of serum thyroxine (T4) is the main source of triiodothyronine (T3) for the brain. Since we noted in previous studies that the cerebral cortex of neonatal rats tolerated marked reductions in serum T4 without biochemical hypothyroidism, we examined the in vivo T4 and T3 metabolism in that tissue and in the cerebellum of euthyroid and hypothyroid 2-wk-old rats. We also assessed the contribution of enhanced tissue T4 to T3 conversion and decreased T3 removal from the tissue...

  11. Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex

    OpenAIRE

    Miao, W.; T.H. Bao; Han, J. H.; Yin, M.; Yan, Y.; Wang, W. W.; Zhu, Y. H.

    2015-01-01

    MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular changes that occur after traumatic brain injury (TBI). However, the changes and possible roles of miRNAs induced by voluntary exercise prior to TBI are still not known. In this report, the microarray method was used to demonstrate alterations in miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decrease...

  12. Protective effect and its mechanism of curcumin on ischemia-reperfusion injury of cerebral cortex in rats

    OpenAIRE

    Liu, Li; Bo-tao TAN; Li, Yu; Yu, Gang

    2013-01-01

    Objective  To investigate the effect of curcumin pretreatment on the expression of uncoupling protein 2 (UCP2) and mitochondrial transcription factor A (MTFA) in rats' cerebral cortex against focal ischemia reperfusion injury. Methods  Eighty male SD rats weighed 220g–300g were randomly divided into 4 groups: sham-operated group, ischemia/reperfusion (I/R) group, curcumine 50mg/kg+I/R (low dose) group, and curcumine 100mg/kg+I/R (high dose) group. The common carotid artery, external carotid a...

  13. Protective effect and its mechanism of curcumin on ischemia-reperfusion injury of cerebral cortex in rats

    Directory of Open Access Journals (Sweden)

    Li LIU

    2013-03-01

    Full Text Available Objective  To investigate the effect of curcumin pretreatment on the expression of uncoupling protein 2 (UCP2 and mitochondrial transcription factor A (MTFA in rats' cerebral cortex against focal ischemia reperfusion injury. Methods  Eighty male SD rats weighed 220g–300g were randomly divided into 4 groups: sham-operated group, ischemia/reperfusion (I/R group, curcumine 50mg/kg+I/R (low dose group, and curcumine 100mg/kg+I/R (high dose group. The common carotid artery, external carotid artery and internal carotid artery on the right side were exposed in the sham-operated group. Animals of the other groups were subjected to a 2-hour period of right middle cerebral artery occlusion, followed by 24 hours of reperfusion, and then they were sacrificed. Curcumin was administered (ip in a dose of 50mg/kg (low dose group or 100mg/kg (high dose group for 5 days, respectively, prior to arterial occlusion. The pathological changes in neurons and their mitochondria in the cerebral cortex supplied by middle cerebral artery were observed with Nissl staining and electron microscope, respectively. The expressions of UCP2 and MTFA in corresponding cotex were assessed by immunohistochemistry and RT-PCR. Results  Compared with sham-operated group, animals in I/R group presented edema of neurons in the corresponding cortex, reduction in the number of Nissl bodies, and swelling of mitochondria with broken, even lysis of cristae. Low dose and high dose of curcumin pretreatment before brain ischemia significantly alleviated the loss of neurons and the damage of mitochondria, accompanied with an increase in the expression of UCP2 and TFAM (P<0.05, and the changes appeared a dose-dependent manner (P<0.05. Conclusions  Curcumin may prevent neurons from focal cerebral ischemia reperfusion injury by up-regulating UCP2 and MTFA. Regulation of mitochondrial biogenesis may probably be a potential target of curcumin as a neuroprotective drug.

  14. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K(+ channel blocker 4-aminopyridine (4-AP, and this phenomenon was prevented by the chelating extracellular Ca(2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca(2+ concentration. Involvement of the Cav2.1 (P/Q-type channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2 and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK

  15. Physiological activation of the human cerebral cortex during auditory perception and speech revealed by regional increases in cerebral blood flow

    DEFF Research Database (Denmark)

    Lassen, N A; Friberg, L

    1988-01-01

    methods, that are based of the use of radioactive tracers, can be applied in the same manner for mapping cortex activity. In particular single photon tomography SPECT is readily applicable to clinical audiology, so that the cortical components of the auditory processing can be more closely investigated....

  16. Differential visually-induced gamma-oscillations in human cerebral cortex

    OpenAIRE

    Asano, Eishi; Nishida, Masaaki; Fukuda, Miho; Rothermel, Robert; Juhasz, Csaba; Sood, Sandeep

    2008-01-01

    Using intracranial electrocorticography, we determined how cortical gamma-oscillations (50–150Hz) were induced by different visual tasks in nine children with focal epilepsy. In all children, full-field stroboscopic flash-stimuli induced gamma-augmentation in the anterior-medial occipital cortex (starting on average at 31-msec after stimulus presentation) and subsequently in the lateral-polar occipital cortex; minimal gamma-augmentation was noted in the inferior occipital-temporal cortex; occ...

  17. Enhanced glutamate, IP3 and cAMP activity in the cerebral cortex of Unilateral 6-hydroxydopamine induced Parkinson's rats: Effect of 5-HT, GABA and bone marrow cell supplementation

    Directory of Open Access Journals (Sweden)

    Romeo Chinthu

    2011-01-01

    Full Text Available Abstract Parkinson's disease is characterized by progressive cell death in the substantia nigra pars compacta, which leads to dopamine depletion in the striatum and indirectly to cortical dysfunction. Increased glutamatergic transmission in the basal ganglia is implicated in the pathophysiology of Parkinson's disease and glutamate receptor mediated excitotoxicity has been suggested to be one of the possible causes of the neuronal degeneration. In the present study, the effects of serotonin, gamma-aminobutyric acid and bone marrow cells infused intranigrally to substantia nigra individually and in combination on unilateral 6-hydroxydopamine induced Parkinson's rat model was analyzed. Scatchard analysis of total glutamate and NMDA receptor binding parameters showed a significant increase in Bmax (P

  18. Effects of low-dose X-irradiation on the developing brain. 18. Change of radiosensitivity of neural cells in the ventricular zone of telencephalon of mouse and rat fetuses in the course of histogenesis of the cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, K.; Ito, Y.; Hayasaka, S.; Kameyama, Y.

    1987-03-01

    Two series of experiments were performed in ICR mouse and F344/DuCrj rat models. Mice and rats received whole-body X-ray irradiation in a single dose of 0.125 or 0.25 Gy at Day 10, 13, or 15 of gestation, and whole-body ..gamma..-ray irradiation in a single dose of 0.48 Gy at Day 13, 14, 15, 17, or 19, respectively. Serial observations for the ventricular zone of telencephalon of mouse fetuses one to 24 hr after irradiation revealed the incidence of pyknotic cells to be the higest at 6 - 9 hr after irradiation. The highest incidence in the case of rat fetuses was observed at 6 hr after irradiation. Extended experiment for the dose-response curves, with doses ranging from 0.03 to 0.5 Gy, revealed that the radiosensitivity of neural cells was highest at Day 13 in mouse fetuses and at Day 15 in rat fetuses. This confirmed that the ventricular zone is the most radiosensitive immediately after the beginning of the production of juvenile neural cells in both of the species.

  19. Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats

    Directory of Open Access Journals (Sweden)

    George Naijil

    2010-05-01

    Full Text Available Abstract Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  20. Chemical interactions with pyramidal neurons in layer 5 of the cerebral cortex: control of pain and anxiety.

    Science.gov (United States)

    Adams, J D

    2009-01-01

    Pyramidal neurons in layer 5 of the cerebral cortex are involved in learning and memory and have complex connections with other neurons through a very large array of dendrites. These dendrites can switch between long term depression and long term potentiation depending on global summation of various inputs. The plasticity of the input into pyramidal neurons makes the neuronal output variable. Many interneurons in the cerebral cortex and distant neurons in other brain regions are involved in providing input to pyramidal neurons. All of these neurons and interneurons have neurotransmitters that act through receptors to provide input to pyramidal neurons. Serotonin is one of the important neurotransmitters involved with pyramidal neurons and has been implicated in psychosis, psychedelic states and what are called sacred dreams. This review will discuss the various chemicals and receptors that are important with pyramidal neurons including opioids, nicotine, scopolamine, psilocybin, LSD, mescaline, ergot alkaloids, salvinorin A, ergine and other compounds that interact with opioid, nicotinic, muscarinic and serotonergic receptors. The natural compounds provide clues to structure activity relationships with the receptors. It has been postulated that each receptor in the body has a natural agonist and antagonist, in addition to the normal neurotransmitters. It is common for natural antagonists and agonists to be peptides. Various possible peptide structures will be proposed for natural antagonists and agonists at each receptor. Natural antagonists and agonists may provide new ways to explore the functions of pyramidal neurons in normal health and pain management. PMID:19799545

  1. Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex.

    Science.gov (United States)

    Ye, Tao; Ip, Jacque P K; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    During cerebral cortex development, pyramidal neurons migrate through the intermediate zone and integrate into the cortical plate. These neurons undergo the multipolar-bipolar transition to initiate radial migration. While perturbation of this polarity acquisition leads to cortical malformations, how this process is initiated and regulated is largely unknown. Here we report that the specific upregulation of the Rap1 guanine nucleotide exchange factor, RapGEF2, in migrating neurons corresponds to the timing of this polarity transition. In utero electroporation and live-imaging studies reveal that RapGEF2 acts on the multipolar-bipolar transition during neuronal migration via a Rap1/N-cadherin pathway. Importantly, activation of RapGEF2 is controlled via phosphorylation by a serine/threonine kinase Cdk5, whose activity is largely restricted to the radial migration zone. Thus, the specific expression and Cdk5-dependent phosphorylation of RapGEF2 during multipolar-bipolar transition within the intermediate zone are essential for proper neuronal migration and wiring of the cerebral cortex. PMID:25189171

  2. Pyramidal cells in prefrontal cortex: comparative observations reveal unparalleled specializations in neuronal structure among primate species.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2011-02-01

    Full Text Available The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterised by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC of higher primates endows specific biophysical properties and patterns of connectivity, which differ to those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial and orbital gPFC of cercopethicid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As neuron structure determines it’s computational abilities and memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species specific executive cortical functions in primates.

  3. A Laboratory Exercise Demonstrating the Limited Circumstances in which the Cerebral Cortex is Engaged in Over Ground Locomotion.

    Science.gov (United States)

    Buford, John A

    2005-01-01

    For neuroscience, memorable demonstrations of principles in action are crucial. Neural control of walking is particularly difficult to understand because the interaction of the cerebral cortex with a central pattern generator (CPG) makes the mode of control context-dependent. Beginning students tend to consider corticospinal control the basis of all movement, so they may not distinguish the limited circumstances in which the cerebral cortex bypasses the CPG to control leg movements directly for walking. The demonstration described here is designed to show that cortical involvement in normal walking is minimal unless visual control of foot placement is required. Cortical involvement in motor control is assessed by probing for spare attention while a student volunteer performs three different tasks: sitting, walking down a hallway, and walking through an obstacle course. Simple math quizzes with 20 oral questions are the probes. The class observes the demonstration and discusses the results. To evaluate learning, a multiple-choice question was administered two months after the demonstration, as well as 14 months later to cohorts from the previous year's class. The demonstration succeeded: quiz scores were similar for sitting and level walking, but lower for the obstacle course. Two months later, 86% of students correctly answered the multiple choice question; 42% of the previous year's cohorts answered correctly after 14 months. The demonstration shows that the cortex is engaged by walking through an obstacle course, not walking on a flat indoor surface. Initially, most students learned this distinction well, but after a year, many reverted to the idea that the corticospinal tract controls details of leg movements during walking. Thus this result emphasizes the need for review of advanced concepts. Overall, the experience was fun and could easily fit into basic or clinical neuroscience courses. PMID:23494163

  4. Ultrastructure of focal cerebral cortex tissue from rats with focal cortical dysplasia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    for observing its ultrastructure under a transmission electron microscope. MAIN OUTCOME MEASURES:①The ultrastructure of hippocampal tissue.②The conscious state and electrical activity of brain of rats. RESULTS:Eighteen rats were enrolled in the final analysis.① Observation of hippocampal ultrastructure: Electromicroscopic pathological findings showed that for each rat of the liquid nitrogen injured group, mitochondrium in the pyramidal neuron around the microgyrus was swelled,endoplasmic reticulum was expanded,glial cells were swelled,water gathered around the blood capillary,partial medullary sheath was degenerated,neuropilem was normal and no obviously abnormal synapse was found.② Changes in conscious state of rats:Rats in the normal control group and sham-operation group had no convulsive seizure, but those in the liquid nitrogen injured group had occasionally.Most of them showed increased activities, excitation and restlessness,scratching and frequent " watching face-like activities".③Electrical activity of brain of rats:Electroencephalogram recording of liquid nitrogen injured group showed that small wave amplitude of rhythm took the main part.No typical sharp wave,V wave,sharp and slow wave,V and slow waves were discharged. CONCLUSION:Liquid nitrogen can lead to cerebral cortical developmental disorder.Pathological changes of ultrastructure of focal tissue around the microgyrus can provide pathological basis for epilepsy associated with focal cortical developmental disorder.

  5. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Viktor Kis

    Full Text Available Lipid droplets (LDs are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp, as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain.

  6. Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease.

    Science.gov (United States)

    Rosa, Luciana; Galant, Leticia S; Dall'Igna, Dhébora M; Kolling, Janaina; Siebert, Cassiana; Schuck, Patrícia F; Ferreira, Gustavo C; Wyse, Angela T S; Dal-Pizzol, Felipe; Scaini, Giselli; Streck, Emilio L

    2016-08-01

    Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds. PMID:26133302

  7. Evolutionary appearance of von Economo’s neurons in the mammalian cerebral cortex

    OpenAIRE

    Alessandro Vercelli

    2014-01-01

    von Economo’s neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like socia...

  8. Scanning microscopic evaluation on the development of the cerebral cortex in embryonic mouse subjected to γ-irradiation

    International Nuclear Information System (INIS)

    Morphological events occurring in the developing cerebral hemispheres of mice exposed to a single dose of 60Co γ-irradiation 1.5 Gy on embryonic day 13 (E13) were evaluated by scanning microscope. Twenty-four hr after the exposure, both cell debris and surviving cells had poured out into the ventricular lumen. Radial glial fibers were more crumpled than in the controls. By day E15, proliferating cells in different stages of the cell cycle appeared in the ventricular zone. The glial fibers formed a network through the brain mantle. By E17 many migrating cells attached to the disorderly glial fibers appeared in the different layers of the thin cerebral mantle. These findings suggest that development of the glial fibers was interrupted as early as 24 hr after the single exposure, implying that irradiation on the developing brain may disrupt neuronal migration. (author)

  9. Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: differences across development and with different DHA brain status.

    Science.gov (United States)

    Pélerin, Hélène; Jouin, Mélanie; Lallemand, Marie-Sylvie; Alessandri, Jean-Marc; Cunnane, Stephen C; Langelier, Bénédicte; Guesnet, Philippe

    2014-11-01

    Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process. PMID:25123062

  10. AT WHAT AGE IS THE DEVELOPING CEREBRAL-CORTEX OF THE RAT COMPARABLE TO THAT OF THE FULL-TERM NEWBORN HUMAN BABY

    NARCIS (Netherlands)

    ROMIJN, HJ; HOFMAN, MA; GRAMSBERGEN, A

    1991-01-01

    By means of a comparative study of experimental data from the literature we estimated at what age the rat cerebral cortex corresponds to that of the full-term newborn human infant with regard to the degree of maturation. As a result of this study we suggest that the 12-13-day-old rat pup fulfills th

  11. Antioxidant Activity of Grapevine Leaf Extracts against Oxidative Stress Induced by Carbon Tetrachloride in Cerebral Cortex, Hippocampus and Cerebellum of Rats

    Science.gov (United States)

    Wohlenberg, Mariane; Almeida, Daniela; Bokowski, Liane; Medeiros, Niara; Agostini, Fabiana; Funchal, Cláudia; Dani, Caroline

    2014-01-01

    In recent years, it has become increasingly important to study the beneficial properties of derivatives of grapes and grapevine. The objective of this study was to determine the antioxidant activity of Vitis labrusca leaf extracts, comparing conventional and organic grapevines, in different brain areas of rats. We used male Wistar rats treated with grapevine leaf extracts for a period of 14 days, and on the 15th day, we administered in half of the rats, mineral oil and the other half, carbon tetrachloride (CCl4). The animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were removed to assess oxidative stress parameters and the activity of antioxidant enzymes. Lipid peroxidation levels (TBARS) were unchanged. However, CCl4 induced oxidative damage to proteins in all tissues studied, and this injury was prevented by both extracts. Superoxide dismutase (SOD) activity was increased by CCl4 in the cerebral cortex and decreased in other tissues. However, CCl4 increased catalase (CAT) activity in the cerebellum and decreased it in the cerebral cortex. The SOD/CAT ratio was restored in the cerebellum by both extracts and only in the cerebral cortex by the organic extract. PMID:26784867

  12. Antioxidant Activity of Grapevine Leaf Extracts against Oxidative Stress Induced by Carbon Tetrachloride in Cerebral Cortex, Hippocampus and Cerebellum of Rats

    Directory of Open Access Journals (Sweden)

    Mariane Wohlenberg

    2014-04-01

    Full Text Available In recent years, it has become increasingly important to study the beneficial properties of derivatives of grapes and grapevine. The objective of this study was to determine the antioxidant activity of Vitis labrusca leaf extracts, comparing conventional and organic grapevines, in different brain areas of rats. We used male Wistar rats treated with grapevine leaf extracts for a period of 14 days, and on the 15th day, we administered in half of the rats, mineral oil and the other half, carbon tetrachloride (CCl4. The animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were removed to assess oxidative stress parameters and the activity of antioxidant enzymes. Lipid peroxidation levels (TBARS were unchanged. However, CCl4 induced oxidative damage to proteins in all tissues studied, and this injury was prevented by both extracts. Superoxide dismutase (SOD activity was increased by CCl4 in the cerebral cortex and decreased in other tissues. However, CCl4 increased catalase (CAT activity in the cerebellum and decreased it in the cerebral cortex. The SOD/CAT ratio was restored in the cerebellum by both extracts and only in the cerebral cortex by the organic extract.

  13. Wernicke's encephalopathy induced by total parenteral nutrition in patient with acute leukaemia: unusual involvement of caudate nuclei and cerebral cortex on MRI

    International Nuclear Information System (INIS)

    We report a 13-year-old girl with leukaemia and Wernicke's encephalopathy induced by total parenteral nutrition. MRI showed unusual bilateral lesions of the caudate nuclei and cerebral cortex, as well as typical lesions surrounding the third ventricle and aqueduct. After intravenous thiamine, the patient improved, and the abnormalities on MRI disappeared. (orig.)

  14. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anteri

  15. Short-term environmental enrichment exposure induces proliferation and maturation of doublecortin-positive cells in the prefrontal cortex

    Institute of Scientific and Technical Information of China (English)

    Chunling Fan; Mengqi Zhang; Lei Shang; Ngobe Akume Cynthia; Zhi Li; Zhenyu Yang; Dan Chen; Jufang Huang; Kun Xiong

    2014-01-01

    Previous studies have demonstrated that doublecortin-positive immature neurons exist pre-dominantly in the superficial layer of the cerebral cortex of adult mammals such as guinea pigs, and these neurons exhibit very weak properties of self-proliferation during adulthood under physiological conditions. To verify whether environmental enrichment has an impact on the proliferation and maturation of these immature neurons in the prefrontal cortex of adult guinea pigs, healthy adult guinea pigs were subjected to short-term environmental enrichment. Animals were allowed to play with various cognitive and physical stimulating objects over a period of 2 weeks, twice per day, for 60 minutes each. Immunolfuorescence staining results indicated that the number of doublecortin-positive cells in layer II of the prefrontal cortex was signiifcantly increased after short-term environmental enrichment exposure. In addition, these doublecortin-positive cells co-expressed 5-bromo-2-deoxyuridine (a marker of cell prolifera-tion), c-Fos (a marker of cell viability) and NeuN (a marker of mature neurons). Experimental ifndings showed that short-term environmental enrichment can induce proliferation, activation and maturation of doublecortin-positive cells in layer II of the prefrontal cortex of adult guinea pigs.

  16. An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Mercury (Hg) is a ubiquitous pollutant that can disrupt neurochemical signaling pathways in mammals. It is well documented that inorganic Hg (HgCl2) and methyl Hg (MeHg) can inhibit the binding of radioligands to the muscarinic acetylcholine (mACh) receptor in rat brains. However, little is known concerning this relationship in specific anatomical regions of the brain or in other species, including humans. The purpose of this study was to explore the inhibitory effects of HgCl2 and MeHg on [3H]-quinuclidinyl benzilate ([3H]-QNB) binding to the mACh receptor in the cerebellum and cerebral cortex regions from human, rat, mouse, mink, and river otter brain tissues. Saturation binding curves were obtained from each sample to calculate receptor density (B max) and ligand affinity (K d). Subsequently, samples were exposed to HgCl2 or MeHg to derive IC50 values and inhibition constants (K i). Results demonstrate that HgCl2 is a more potent inhibitor of mACh receptor binding than MeHg, and the receptors in the cerebellum are more sensitive to Hg-mediated mACh receptor inhibition than those in the cerebral cortex. Species sensitivities, irrespective of Hg type and brain region, can be ranked from most to least sensitive: river otter > rat > mink > mouse > humans. In summary, our data demonstrate that Hg can inhibit the binding [3H]-QNB to the mACh receptor in a range of mammalian species. This comparative study provides data on interspecies differences and a framework for interpreting results from human, murine, and wildlife studies

  17. Growth of the Developing Cerebral Cortex Is Controlled by MicroRNA-7 through the p53 Pathway

    Directory of Open Access Journals (Sweden)

    Andrew Pollock

    2014-05-01

    Full Text Available Proper growth of the mammalian cerebral cortex is crucial for normal brain functions and is controlled by precise gene-expression regulation. Here, we show that microRNA-7 (miR-7 is highly expressed in cortical neural progenitors and describe miR-7 sponge transgenic mice in which miR-7-silencing activity is specifically knocked down in the embryonic cortex. Blocking miR-7 function causes microcephaly-like brain defects due to reduced intermediate progenitor (IP production and apoptosis. Upregulation of miR-7 target genes, including those implicated in the p53 pathway, such as Ak1 and Cdkn1a (p21, is responsible for abnormalities in neural progenitors. Furthermore, ectopic expression of Ak1 or p21 and specific blockade of miR-7 binding sites in target genes using protectors in vivo induce similarly reduced IP production. Using conditional miRNA sponge transgenic approaches, we uncovered an unexpected role for miR-7 in cortical growth through its interactions with genes in the p53 pathway.

  18. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects.

    Science.gov (United States)

    Bogdanov, Volodymyr B; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2015-03-15

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n=7), increased (n=10) or stayed unchanged (n=7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  19. Two-dimensional electrophoretogram of acute brain injury-associated proteins Comparison between Injured and normal cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Xuejun Li; Xianrui Yuan; Cui Li; Zefeng Peng; Dun Yuan

    2008-01-01

    cerebral cortex; ②differential protein expression. RESULTS:①Two-dimensional electrophoresis of protein from cerebral cortex:two-dimensional gel electrophoretogram,which is considered to have high resolution and consistent duplication,was performed on injured cortical tissues and normal cortical tissues.The image analysis system detected 21 differential protein pots.②Differential protein spot expressions:mass spectrometry resulted in 17 differential protein spots that related to metabolic response,oxidative stress response,and signal transduction.CONCLUSION:MALDI/TOF MS and ESI-Qq TOF MS are exceptional methods for evaluating differential protein expression.Results from this study indicated 17 different craniocerebral injury-associated proteins.

  20. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Seyed Mojtaba Hosseini; Mohammad Farahmandnia; Zahra Razi; Somayeh Delavarifar; Benafsheh Shakibajahromi

    2015-01-01

    Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was eva...

  1. Early asymmetry of gene transcription between embryonic human left and right cerebral cortex

    OpenAIRE

    Sun, Tao; Patoine, Christina; Abu-Khalil, Amir; Visvader, Jane; Sum, Eleanor; Cherry, Timothy J.; Orkin, Stuart H.; Geschwind, Daniel H.; Walsh, Christopher A.

    2005-01-01

    The human left and right cerebral hemispheres are anatomically and functionally asymmetric. To test whether human cortical asymmetry has a molecular basis, we studied gene expression levels between the left and right embryonic hemispheres using Serial Analysis of Gene Expression (SAGE), and identified and verified 27 differentially expressed genes, suggesting that human cortical asymmetry is accompanied by early, striking transcriptional asymmetries. LMO4 is consistently more highly expressed...

  2. Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex

    OpenAIRE

    Martin, Lee J.; Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.

    2008-01-01

    Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. B...

  3. Na(+), K(+)-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures.

    Science.gov (United States)

    Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Katsuki, Hiroshi

    2016-08-01

    Cerebrovascular endothelial cell dysfunction resulting in imbalance of cerebral blood flow contributes to the onset of psychiatric disorders such as depression, schizophrenia and bipolar disorder. Although decrease in Na(+), K(+)-ATPase activity has been reported in the patients with schizophrenia and bipolar disorder, the contribution of Na(+), K(+)-ATPase to endothelial cell dysfunction remains poorly understood. Here, by using rat neonatal prefrontal cortex slice cultures, we demonstrated that pharmacological inhibition of Na(+), K(+)-ATPase by ouabain induced endothelial cell injury. Treatment with ouabain significantly decreased immunoreactive area of rat endothelial cell antigen-1 (RECA-1), a marker of endothelial cells, in a time-dependent manner. Ouabain also decreased Bcl-2/Bax ratio and phosphorylation level of glycogen synthase kinase 3β (GSK3β) (Ser9), which were prevented by lithium carbonate. On the other hand, ouabain-induced endothelial cell injury was exacerbated by concomitant treatment with LY294002, an inhibitor of phosphoinositide 3- (PI3-) kinase. We also found that xestospongin C, an inhibitor of inositol triphosphate (IP3) receptor, but not SEA0400, an inhibitor of Na(+), Ca(2+) exchanger (NCX), protected endothelial cells from cytotoxicity of ouabain. These results suggest that cerebrovascular endothelial cell degeneration induced by Na(+), K(+)-ATPase inhibition resulting in Ca(2+) release from endoplasmic reticulum (ER) and activation of GSK3β signaling underlies pathogenesis of these psychiatric disorders. PMID:27208492

  4. Reorganization of Human Cerebral Cortex : the Range of Changes following Use and Injury

    OpenAIRE

    Elbert, Thomas; Rockstroh, Brigitte

    2004-01-01

    Animal and human research over the past decades have increasingly detailed the brain s capacity for reorganization of neural network architecture to adapt to environmental needs. In this article, the authors outline the range of reorganization of human representational cortex, encompassing reconstruction in concurrence with enhanced behaviorally relevant afferent activity (examples include skilled musicians and blind Braille readers); injury-related response dynamics as, for instance, driven ...

  5. Glutamate-induced activation of nitric oxide synthase is impaired in cerebral cortex in vivo in rats with chronic liver failure.

    Science.gov (United States)

    Rodrigo, Regina; Erceg, Slaven; Rodriguez-Diaz, Jesus; Saez-Valero, Javier; Piedrafita, Blanca; Suarez, Isabel; Felipo, Vicente

    2007-07-01

    It has been proposed that impairment of the glutamate-nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in brain contributes to cognitive impairment in hepatic encephalopathy. The aims of this work were to assess whether the function of this pathway and of nitric oxide synthase (NOS) are altered in cerebral cortex in vivo in rats with chronic liver failure due to portacaval shunt (PCS) and whether these alterations are due to hyperammonemia. The glutamate-nitric oxide-cGMP pathway function and NOS activation by NMDA was analysed by in vivo microdialysis in cerebral cortex of PCS and control rats and in rats with hyperammonemia without liver failure. Similar studies were done in cortical slices from these rats and in cultured cortical neurons exposed to ammonia. Basal NOS activity, nitrites and cGMP are increased in cortex of rats with hyperammonemia or liver failure. These increases seem due to increased inducible nitric oxide synthase expression. NOS activation by NMDA is impaired in cerebral cortex in both animal models and in neurons exposed to ammonia. Chronic liver failure increases basal NOS activity, nitric oxide and cGMP but reduces activation of NOS induced by NMDA receptors activation. Hyperammonemia is responsible for both effects which will lead, independently, to alterations contributing to neurological alterations in hepatic encephalopathy. PMID:17286583

  6. Cortical chemoarchitecture shapes macroscale effective functional connectivity patterns in macaque cerebral cortex.

    Science.gov (United States)

    Turk, Elise; Scholtens, Lianne H; van den Heuvel, Martijn P

    2016-05-01

    The mammalian cortex is a complex system of-at the microscale level-interconnected neurons and-at the macroscale level-interconnected areas, forming the infrastructure for local and global neural processing and information integration. While the effects of regional chemoarchitecture on local cortical activity are well known, the effect of local neurotransmitter receptor organization on the emergence of large scale region-to-region functional interactions remains poorly understood. Here, we examined reports of effective functional connectivity-as measured by the action of strychnine administration acting on the chemical balance of cortical areas-in relation to underlying regional variation in microscale neurotransmitter receptor density levels in the macaque cortex. Linking cortical variation in microscale receptor density levels to collated information on macroscale functional connectivity of the macaque cortex, we show macroscale patterns of effective corticocortical functional interactions-and in particular, the strength of connectivity of efferent macroscale pathways-to be related to the ratio of excitatory and inhibitory neurotransmitter receptor densities of cortical areas. Our findings provide evidence for the microscale chemoarchitecture of cortical areas to have a direct stimulating influence on the emergence of macroscale functional connectivity patterns in the mammalian brain. Hum Brain Mapp 37:1856-1865, 2016. © 2016 Wiley Periodicals, Inc. PMID:26970255

  7. Phase sensitivity of complex cells in primary visual cortex.

    Science.gov (United States)

    Hietanen, M A; Cloherty, S L; van Kleef, J P; Wang, C; Dreher, B; Ibbotson, M R

    2013-05-01

    Neurons in the primary visual cortex are often classified as either simple or complex based on the linearity (or otherwise) of their response to spatial luminance contrast. In practice, classification is typically based on Fourier analysis of a cell's response to an optimal drifting sine-wave grating. Simple cells are generally considered to be linear and produce responses modulated at the fundamental frequency of the stimulus grating. In contrast, complex cells exhibit significant nonlinearities that reduce the response at the fundamental frequency. Cells can therefore be easily and objectively classified based on the relative modulation of their responses - the ratio of the phase-sensitive response at the fundamental frequency of the stimulus (F₁) to the phase-invariant sustained response (F₀). Cells are classified as simple if F₁/F₀>1 and complex if F₁/F₀<1. This classification is broadly consistent with criteria based on the spatial organisation of cells' receptive fields and is accordingly presumed to reflect disparate functional roles of simple and complex cells in coding visual information. However, Fourier analysis of spiking responses is sensitive to the number of spikes available - F₁/F₀ increases as the number of spikes is reduced, even for phase-invariant complex cells. Moreover, many complex cells encountered in the laboratory exhibit some phase sensitivity, evident as modulation of their responses at the fundamental frequency. There currently exists no objective quantitative means of assessing the significance or otherwise of these modulations. Here we derive a statistical basis for objectively assessing whether the modulation of neuronal responses is reliable, thereby adding a level of statistical certainty to measures of phase sensitivity. We apply our statistical analysis to neuronal responses to moving sine-wave gratings recorded from 367 cells in cat primary visual cortex. We find that approximately 60% of complex cells exhibit

  8. Nerve growth factor downregulates c-jun mRNA and Caspase-3 in striate cortex of rats after transient global cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Dacheng Jin; Tiemin Wang; Xiubin Fang

    2006-01-01

    BACKGROUND: Immediate early gene (LEG) c-jun is a sensitive marker for functional status of nerve cells.Caspase-3 is a cysteine protease,which is a critical regulator of apoptosis. The effect of exogenous nerve growth factor (NGF) on the expression of c-jun Mrna and Caspase-3 protein in striate cortex of rats with transient global cerebral ischemia/reperfusion (IR) is unclear.OBJECTIVE: To study the protective effect of exogenous NGF on the brain of rats with transient global cerebral IR and its effecting pathway by observing the expression of c-jun Mrna and Caspase-3 protein.DESIGN: Randomized controlled animal trial.SETTING: Department of Neural Anatomy, Institute of Brain,China Medical University.MATERTALS:Eighteen healthy male SD rats of clean grade, aged 1 to 3 months, with body mass of 250 to 300 g, were involved in this study. NGF was provided by Dalian Svate Pharmaceutical Co.,Ltd, c-jun in situ hybridization detection kit, Caspase-3 antibody and SABC kit were purchased from Boster Biotechnology Co. ,Ltd.METHODS: This trial was carried out in the Department of Neural Anatomy, Institute of Brain, China Medical University during September 2003 to April 2005. ①Experimental animals were randomized into three groups with 6 in each: sham-operation group,IR group and NGF group. ②After the rats were anesthetized,the bilateral common carotid arteries and right external carotid arteries of rats were bluntly dissected and bilateral common carotid arteries were clamped for 30 minutes with bulldog clamps. Reperfusion began after buldog clamps were removed. Normal saline of 1mL and NGF (1×106 U/L) of 1 Ml was injected into the common carotid artery of rats via right external carotid arteries in the IR group and NGF group respectively.The injection was conducted within 30 minutes, and then the right external carotid arteries were ligated. In the sham-operation group, occlusion of bilateral common carotid arteries and administration of drugs were phosphate buffer

  9. Translaminar Inhibitory Cells Recruited by Layer 6 Cortico-Thalamic Neurons Suppress Visual Cortex

    OpenAIRE

    Bortone, Dante S.; Olsen, Shawn R.; Scanziani, Massimo

    2014-01-01

    In layer 6 (L6), a principal output layer of the mammalian cerebral cortex, a population of excitatory neurons defined by the NTSR1-Cre mouse line inhibit cortical responses to visual stimuli. Here we show that of the two major types of excitatory neurons existing in L6, the NTSR1-Cre line selectively targets those whose axon innervate both cortex and thalamus and not those whose axons remain within the cortex. These cortico-thalamic neurons mediate widespread inhibition across all cortical l...

  10. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    International Nuclear Information System (INIS)

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA ≤ 28 weeks for frontal cortical region and GA≤22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  11. Culturated rat cerebral cortex explants and their application in the study of SPECT scan radiopharaceuticals

    International Nuclear Information System (INIS)

    In this thesis mechanics that result in the distinct localization of radiopharmaceuticals within the brain have been investigated. In order to 'get more insight' in uptake and binding of radiopharmaceuticals bu brain tissue, use has been made of the tissue culture technique. Tissue culture privides the opportunity of doing experiments with brain tissue under stable conditions, in the absence of a blood-brain barrier, and without interference by cerebral blood flow. The present thesis is presented in two sections. The first part focusses on longterm culture of 'organotypic' cerebral neocortex tissue, obtained from neonatal rat brain and explanted into a chemically defined medium. Procedures were developed which enabled culturing of this tissue without the occurence of central necrosis and with the preservation of a characteristic histiotypic organization. Morphological characteristics of the cultures were described and measured at various ages in vitro. In the second part, the cultures were used to study mechanisms that might contribute to the tissue uptake of radiopharmaceuticals which are in clinical use for SPECT brain imaging. (author). 369 refs.; 50 figs.; 13 tabs

  12. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  13. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR-2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices.

    Science.gov (United States)

    Zielińska, Magdalena; Fresko, Inez; Konopacka, Agnieszka; Felipo, Vicente; Albrecht, Jan

    2007-11-01

    The decrease of cyclic GMP (cGMP) level in the brain, contributing to cognitive and memory deficit in hyperammonemia (HA), has been attributed to the interference of ammonia with the NMDA/nitric oxide/soluble guanylate cyclase (GC)/cGMP pathway in neurons. The present study tested the hypotheses that (a) HA also affects cGMP synthesis elicited by stimulation of the natriuretic peptide receptor 2 (NPR-2) with its natural ligand, C-type natriuretic peptide (CNP) and (b) the latter effect may involve astrocytes, the ammonia-sensitive cells. In the cerebral cortical slices of control rats, CNP stimulated cGMP synthesis in a degree comparable to the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) used at an optimal concentration. Fluoroacetate (FA), a metabolic inhibitor specifically affecting astrocytic mitochondria, inhibited the CNP-dependent cGMP synthesis by about 50%. Ammonium acetate-induced HA decreased by 68% the CNP-dependent cGMP generation in slices incubated in the absence of FA. In slices incubated in the presence of FA, cGMP synthesis in slices derived from HA rats did not differ from that in control slices. The results indicate that HA inhibits CNP-dependent cGMP synthesis in the FA-vulnerable, astrocytic compartment, but not in the FA-resistant compartment(s) of the brain. HA did not affect the expression of NPR-2 mRNA in the cerebral cortex tissue as tested using real-time PCR, indicating that the effect of ammonia involves as yet unidentified events occurring posttranscriptionally. Deregulation of NPR-2 function in astrocytes by ammonia may contribute to neurophysiological symptoms of HA. PMID:17629948

  14. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Audet, M.A.; Doucet, G.; Oleskevich, S.; Descarries, L.

    1988-08-15

    The regional and laminar distribution of the noradrenaline (NA) innervation in the adult rat cerebral cortex was quantified in radioautographs of semithin sections from whole hemisphere slices incubated with tritiated catecholamines and a monoamine oxidase inhibitor. Uptake-labeled axonal varicosities (aggregates of silver grains) were counted with the help of a computerized image analyzer in seven cytoarchitectonic areas of the rostral half of the cortex: Cg3, rostral AID, Cg2, Fr1, Par1, caudal AID, and Pir (prepiriform) according to Zilles's nomenclature. Both dopamine (DA) and NA terminals were detected after incubation with (3H)DA and citalopram or with (3H)NA alone. In the presence of desipramine (DMI), DA terminals alone were demonstrated; the number of NA terminals was then obtained by subtraction from counts in adjacent slices incubated with or without DMI. These counts suggested that DA and NA varicosities were fully visualized only after labeling with their respective tritiated amine. Similar numbers of labeled NA varicosities as inferred after (3H)NA incubation with or without DMI were observed after (3H)NA incubation in the presence of benztropine (BZ). This indicated that NA terminals were then maximally detected to the exclusion of the DA ones, and the latter approach was adopted for the acquisition of normative data. Since the average diameter of the labeled NA varicosities was known from earlier measurements in electron microscope radioautographs, the initial counts of labeled sites/mm2 of histological section could be expressed as numbers of varicosities/mm3 of tissue following a double correction for incomplete detection at the chosen duration of radioautographic exposure and section thickness.

  15. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons.

    Directory of Open Access Journals (Sweden)

    Kimberly D Siegmund

    Full Text Available The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5' CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts--defined by chronic neurodegeneration (Alzheimer's or lack thereof (schizophrenia--were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase.

  16. Spatiotemporal characteristics of cerebral blood volume changes in different microvascular compartments evoked by sciatic nerve stimulation in rat somatosensory cortex

    Science.gov (United States)

    Li, Pengcheng; Luo, Qingming; Luo, Weihua; Chen, Shanbin; Cheng, Haiying; Zeng, Shaoqun

    2003-07-01

    The spatio-temporal characteristics of changes in cerebral blood volume associated with neuronal activity were investigated in the hindlimb somatosensory cortex of α-chloralose/urethan anesthetized rats (n=10) with optical imaging at 570nm through a thinned skull. Activation of cortex was carried out by electrical stimulation of the contralateral sciatic nerve with 5Hz, 0.3V pulses (0.5ms) for duration of 2s. The stimulation evoked a monophasic optical reflectance decrease at cortical parenchyma and arteries sites rapidly after the onset of stimulation, whereas no similar response was observed at vein compartments. The optical signal changes reached 10% of the peak response 0.70+/-0.32s after stimulation onset and no significant time lag in this 10% start latency time was observed between the response at cortical parenchyma and arteries compartments. The evoked optical reflectance decrease reached the peak (0.25%+/-0.047%) 2.66+/-0.61s after the stimulus onset at parenchyma site, 0.40+/-0.20s earlier (P<0.05) than that at arteries site (0.50+/-0.068% 3.06+/-0.70s). Variable location within the cortical parenchyma and arteries compartment themselves didn"t affect the temporal characteristics of the evoked signal significantly. These results suggest that the sciatic nerve stimulation evokes a local blood volume increase at both capillaries (cortical parenchyma) and arterioles rapidly after the stimulus onset but the evoked blood volume increase in capillaries could not be entirely accounted for by the dilation of arterioles.

  17. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex

    International Nuclear Information System (INIS)

    The regional and laminar distribution of the noradrenaline (NA) innervation in the adult rat cerebral cortex was quantified in radioautographs of semithin sections from whole hemisphere slices incubated with tritiated catecholamines and a monoamine oxidase inhibitor. Uptake-labeled axonal varicosities (aggregates of silver grains) were counted with the help of a computerized image analyzer in seven cytoarchitectonic areas of the rostral half of the cortex: Cg3, rostral AID, Cg2, Fr1, Par1, caudal AID, and Pir (prepiriform) according to Zilles's nomenclature. Both dopamine (DA) and NA terminals were detected after incubation with [3H]DA and citalopram or with [3H]NA alone. In the presence of desipramine (DMI), DA terminals alone were demonstrated; the number of NA terminals was then obtained by subtraction from counts in adjacent slices incubated with or without DMI. These counts suggested that DA and NA varicosities were fully visualized only after labeling with their respective tritiated amine. Similar numbers of labeled NA varicosities as inferred after [3H]NA incubation with or without DMI were observed after [3H]NA incubation in the presence of benztropine (BZ). This indicated that NA terminals were then maximally detected to the exclusion of the DA ones, and the latter approach was adopted for the acquisition of normative data. Since the average diameter of the labeled NA varicosities was known from earlier measurements in electron microscope radioautographs, the initial counts of labeled sites/mm2 of histological section could be expressed as numbers of varicosities/mm3 of tissue following a double correction for incomplete detection at the chosen duration of radioautographic exposure and section thickness

  18. Importance of Reelin C-terminal region in the development and maintenance of the postnatal cerebral cortex and its regulation by specific proteolysis

    DEFF Research Database (Denmark)

    Kohno, Takao; Honda, Takao; Kubo, Ken-Ichiro;

    2015-01-01

    strength, is increased in the KI mouse, indicating that the CTR is necessary for efficient induction of Dab1 phosphorylation in vivo. Formation of layer structures during embryonic development is normal in the KI mouse. Intriguingly, the marginal zone (MZ) of the cerebral cortex becomes narrower at......, which is not required for neuronal migration during embryonic stages but is required for the development and maintenance of the MZ in the postnatal cerebral cortex.......During brain development, Reelin exerts a variety of effects in a context-dependent manner, whereas its underlying molecular mechanisms remain poorly understood. We previously showed that the C-terminal region (CTR) of Reelin is required for efficient induction of phosphorylation of Dab1, an...

  19. Effects of transplantation with bone marrow-derived endothelial progenitor cells on learning, memory and neurons in the cortex of the parietal lobe after cerebral ischemia reperfusion injury of atherosclerotic model rats%内皮祖细胞移植对动脉粥样硬化模型大鼠脑缺血再灌注后学习记忆能力与脑顶叶皮质的影响

    Institute of Scientific and Technical Information of China (English)

    朱俊德; 王贵学; 余彦; 余资江; 肖朝伦; 王玉林

    2012-01-01

    目的 探讨内皮祖细胞(EPCs)移植对动脉粥样硬化(AS)模型大鼠脑缺血再灌注损伤(IRI)后学习记忆能力与脑顶叶皮质结构的影响.方法 高脂膳食饲养建立30只动脉粥样硬化大鼠模型,随机分为AS组,IRI组和EPCs移植组.采集骨髓分离EPCs并体外扩增培养,检测其表面标记物的表达;第7天采用线栓法制作局灶性IRI模型,建模成功后1d EPCs移植组经尾静脉移植EPCs,IRI组与AS组给予等量体积的磷酸盐缓冲液.移植后7d检测各组大鼠的行为能力、脑组织血管内皮生长因子(VEGF)含量及其mRNA表达与其结构的病理改变.结果 培养24h后见细胞贴壁生长逐渐变为梭形;第3天细胞明显增殖集落形成;第5天细胞集落逐渐增大呈现克隆样生长;第7天细胞汇合达80%;第10~14天细胞基本铺满瓶底呈铺路石样密集排列.荧光显微镜下,DIL-ac-LDL和FITC-UEA-1双荧光染色的细胞数占贴壁细胞数的75%以上.与IRI组相比,EPCs移植后大鼠的学习记忆能力较IRI组明显改善,VEGF含量及其mRNA表达显著下降(P<0.05).光镜下,EPCs移植组大鼠脑缺血侧顶叶皮质Caspase-3和胶质细胞原纤维酸性蛋白(GFAP)阳性神经元均较IRI组明显下降(P<0.05).结论 EPCs移植能改善AS模型大鼠脑IRI后的学习记忆能力、减轻脑组织的病理损害,这些变化提示EPCs促进了神经的修复.%Objective To study behavior abilities and morphological changes on neurons in the cortex of parietal lobe after cerebral ischemia reperfusion injury (IRI) of atherosclerotic ( AS) model rats and observe the effect of transplantation with bone marrow-derived endothelial progenitor cells (EPCs) on the AS model rat. Methods A total of thirty male adult Wister AS model rats were established by fat-rich diet feeding for six consecutive weeks. EPCs were obtained from the bone marrow and the cells cultured in vitro in M199. On the 7th day, middle cerebral artery occlusion (MCAO) rat models

  20. Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation

    DEFF Research Database (Denmark)

    Friberg, L; Olsen, T S; Roland, P E;

    1985-01-01

    This study is an attempt to reveal projection areas for vestibular afferents to the human brain. Changes in regional cerebral blood flow (rCBF) were measured over 254 cortical regions during caloric vestibular stimulation with warm water (44 degrees C). rCBF was measured when the external auditory...... meatus was irrigated with water at body temperature as a control to vestibular stimulation. During vestibular stimulation there was only a single cortical area, located in the superior temporal region, which showed a consistent focal activation in the hemisphere contralateral to the stimulated side....... On the rCBF display this area was located in the superior temporal region posterior to the auditory area, probably in the superior temporal gyrus. It is suggested that this area represents the primary projection area of the vestibular nerve and that it is the activation of this area during caloric...

  1. Effects of exercise after focal cerebral cortex infarction on basal ganglion.

    Science.gov (United States)

    Mizutani, Kenmei; Sonoda, Shigeru; Karasawa, Nobuyuki; Yamada, Keiki; Shimpo, Kan; Chihara, Takeshi; Takeuchi, Terumi; Hasegawa, Yoko; Kubo, Kin-Ya

    2013-06-01

    Identification of functional molecules in the brain related to improvement of motor dysfunction after stroke will contribute to establish a new treatment strategy for stroke rehabilitation. Hence, monoamine changes in basal ganglion related to motor control were examined in groups with/without voluntary exercise after cerebral infarction. Cerebral infarction was produced by photothrombosis in rats. Voluntary exercise using a running wheel was initiated from 2 days after surgery. Motor performance was measured by the accelerated rotarod test. Monoamine concentrations in striatum were analyzed using HPLC and immunohistochemical staining performed with anti-tyrosine hydroxylase antibody. In behavioral evaluation, the mean latency until falling from the rotating rod in the group with exercise (infarction-EX group) was significantly longer than that in the group without exercise (infarction-CNT group). When concerning the alteration of monoamine concentration between before and 2 days after infarction, dopamine level showed a significant increase 2 days after infarction. Subsequently, dopamine level was significantly decreased in the infarction-EX group at 10 days after infarction; in contrast, both norepinephrine and 5-HT concentrations were significantly higher in the infarction-EX group than in the infarction-CNT group. Furthermore, duration of rotarod test showed a significant inverse correlation with dopamine levels and a significant positive correlation with 5-HT levels. In immunohistochemical analysis, tyrosine hydroxylase immunoreactivity in substantia nigra pars compacta was shown to increase in the infarction-CNT group. In the present study, at least some of the alterations of monoamines associated with the improvement of paralysis in the basal ganglion related to motor control might have been detected. PMID:22718437

  2. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

    OpenAIRE

    Meltzer, Benjamin; Reichenbach, Chagit S.; Braiman, Chananel; Nicholas D Schiff; Hudspeth, A J; Reichenbach, Tobias

    2015-01-01

    The brain’s analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortic...

  3. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

    OpenAIRE

    Benjamin eMeltzer; Reichenbach, Chagit S.; Chananel eBraiman; Schiff, Nicholas D.; Hudspeth, A. J.; Tobias eReichenbach

    2015-01-01

    The brain's analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortic...

  4. G-protein activity in Percoll-purified plasma membranes, bulk plasma membranes, and low-density plasma membranes isolated from rat cerebral cortex

    Czech Academy of Sciences Publication Activity Database

    Bouřová, Lenka; Stöhr, Jiří; Lisý, Václav; Rudajev, Vladimír; Novotný, Jiří; Svoboda, Petr

    2009-01-01

    Roč. 15, č. 4 (2009), BR111-BR122. ISSN 1234-1010 R&D Projects: GA MŠk(CZ) LC554; GA MŠk(CZ) LC06063; GA ČR(CZ) GA309/06/0121; GA AV ČR(CZ) IAA500110606 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat cerebral cortex * plasma membrane * G-protein activity Subject RIV: CE - Biochemistry Impact factor: 1.543, year: 2009

  5. The expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N-Tera-2 neurodifferentiation

    OpenAIRE

    Chan, S Y; Martín-Santos, A; Loubière, L.S.; González, A.M.; Stieger, B.; Logan, A; McCabe, C.J.; Franklyn, J A; Kilby, M. D.

    2011-01-01

    Associations of neurological impairment with mutations in the thyroid hormone (TH) transporter, MCT8, and with maternal hypothyroxinaemia, suggest that THs are crucial for human fetal brain development. It has been postulated that TH transporters regulate the cellular supply of THs within the fetal brain during development. This study describes the expression of TH transporters in the human fetal cerebral cortex (7–20 weeks gestation) and during retinoic acid induced neurodifferentiation of t...

  6. Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates

    Directory of Open Access Journals (Sweden)

    Pedro Furtado De Mattos Ribeiro

    2014-04-01

    Full Text Available The olfactory bulb is an evolutionarily old structure that antedates the appearance of a six-layered mammalian cerebral cortex. As such, the neuronal scaling rules that apply to scaling the mass of the olfactory bulb as a function of its number of neurons might be shared across mammalian groups, as we have found to be the case for the ensemble of non-cortical, non-cerebellar brain structures. Alternatively, the neuronal scaling rules that apply to the olfactory bulb might be distinct in those mammals that rely heavily on olfaction. The group previously referred to as Insectivora includes small mammals, some of which are now placed in Afrotheria, a base group in mammalian radiation, and others in Eulipotyphla, a group derived later, at the base of Laurasitheria. Here we show that the neuronal scaling rules that apply to building the olfactory bulb differ across eulipotyphlans and other mammals such that eulipotyphlans have more neurons concentrated in an olfactory bulb of similar size than afrotherians, glires and primates. Most strikingly, while the cerebral cortex gains neurons at a faster pace than the olfactory bulb in glires, and afrotherians follow this trend, it is the olfactory bulb that gains neurons at a faster pace than the cerebral cortex in eulipotyphlans, which contradicts the common view that the cerebral cortex is the fastest expanding structure in brain evolution. Our findings emphasize the importance of not using brain structure size as a proxy for numbers of neurons across mammalian orders, and are consistent with the notion that different selective pressures have acted upon the olfactory system of eulipotyphlans, glires and primates, with eulipotyphlans relying more on olfaction for their behavior than glires and primates. Surprisingly, however, the neuronal scaling rules for primates predict that the human olfactory bulb has as many neurons as the larger eulipotyphlan olfactory bulbs, which questions the classification of

  7. Effects of percutaneous midband pulse current stimulation in hepatic region on free radical and nissl bodies in cerebral cortex of rats with exercise-induced fatigue

    OpenAIRE

    Zhang, Jia; Chang-lin HUANG

    2015-01-01

    Objective To investigate the effects of percutaneous midband pulse current stimulation in hepatic region on anti-exercise fatigue ability and the free radicals and nissl bodies in cerebral cortex tissue of rats with exercise-induced fatigue. Methods Seventy-two 8-week old male Wistar rats were randomly divided into 4 groups (18 each): control group (CG), fatigue group (FG), stimulation before fatigue group (SBF) and stimulation after fatigue group (SAF). Animals in FG, SBF and SAF group were ...

  8. Thickness of the Human Cerebral Cortex is Associated with Metrics of Cerebrovascular Health in a Normative Sample of Community Dwelling Older Adults

    OpenAIRE

    Leritz, Elizabeth C.; Salat, David H.; Williams, Victoria J.; Schnyer, David M.; Rudolph, James L.; Lipsitz, Lewis; Fischl, Bruce; McGlinchey, Regina E.; Milberg, William P.

    2010-01-01

    We examined how wide ranges in levels of risk factors for cerebrovascular disease are associated with thickness of the human cerebral cortex in 115 individuals ages 43–83 with no cerebrovascular or neurologic history. Cerebrovascular risk factors included blood pressure, cholesterol, body mass index, creatinine, and diabetes-related factors. Variables were submitted into a principal components analysis that confirmed four orthogonal factors (Blood Pressure, Cholesterol, Cholesterol/Metabolic ...

  9. Evaluation of Cerebral Cortex Function in Clients with Bipolar Mood Disorder I (BMD I) Compared With BMD II Using QEEG Analysis

    OpenAIRE

    Ali Khaleghi; Ali Sheikhani; MohammadReza Mohammadi; Ali Moti-Nasrabadi

    2015-01-01

    Objective: Early diagnosis of type I and type II bipolar mood disorder is very challenging particularly in adolescence. Hence, we aimed to investigate the cerebral cortex function in these patients, using quantitative electroencephalography analysis to obtain significant differences between them.Methods: Thirty- eight adolescents (18 patients with bipolar disorder I and 20 with BMD II) participated in this study. We recorded the electroencephalogram signals based on 10-20 international system...

  10. The Fezf2–Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex

    OpenAIRE

    Chen, Bin; Wang, Song S.; HATTOX, ALEXIS M.; Rayburn, Helen; Nelson, Sacha B.; McConnell, Susan K.

    2008-01-01

    Pyramidal neurons in the deep layers of the cerebral cortex can be classified into two major classes: callosal projection neurons and long-range subcortical neurons. We and others have shown that a gene expressed specifically by subcortical projection neurons, Fezf2, is required for the formation of axonal projections to the spinal cord, tectum, and pons. Here, we report that Fezf2 regulates a decision between subcortical vs. callosal projection neuron fates. Fezf2−/− neurons adopt the fate o...

  11. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: preliminary evidence for the energetic effects of an intention-based treatment modality on human neurophysiology.

    OpenAIRE

    Pike, C.; Vernon, D.; Hald, L.

    2014-01-01

    Objectives: Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anterior asymmetric activation may mediate the energetic effects of intention-based biofield treatments as well. The aim of the current study was to test this hypothesis by using a treatment ...

  12. Effect of hyperbaric oxygenation on mitochondrial function of neuronal cells in the cortex of neonatal rats after hypoxic-ischemic brain damage

    OpenAIRE

    Yang, L.; Hei, M.Y.; Dai, J.J.; Hu, N.; Xiang, X.Y.

    2016-01-01

    The timing and mechanisms of protection by hyperbaric oxygenation (HBO) in hypoxic-ischemic brain damage (HIBD) have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders) were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI) and continued once a da...

  13. Fluoxetine (prozac) and serotonin act on excitatory synaptic transmission to suppress single layer 2/3 pyramidal neuron-triggered cell assemblies in the human prefrontal cortex.

    OpenAIRE

    Komlosi, G.; Molnar, G.; Rozsa, M.; Olah, S.; Barzo, P.; Tamas, G.

    2012-01-01

    Selective serotonin reuptake inhibitors are the most widely prescribed drugs targeting the CNS with acute and chronic effects in cognitive, emotional and behavioral processes. This suggests that microcircuits of the human cerebral cortex are powerfully modulated by selective serotonin reuptake inhibitors, however, direct measurements of serotonergic regulation on human synaptic interactions are missing. Using multiple whole-cell patch-clamp recordings from neurons in acute cortical slices der...

  14. Evolutionary appearance of von Economo's neurons in the mammalian cerebral cortex.

    Science.gov (United States)

    Cauda, Franco; Geminiani, Giuliano Carlo; Vercelli, Alessandro

    2014-01-01

    von Economo's neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the "social brain." VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain. However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the "global Workspace" architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication) between salience-related insular and cingulate and other widely separated brain areas. Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the functional magnetic resonance imaging data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental

  15. Evolutionary appearance of Von Economo’s Neurons in the mammalian cerebral cortex

    Directory of Open Access Journals (Sweden)

    Franco eCauda

    2014-03-01

    Full Text Available Von Economo’s neurons (VENs are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months.VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the social brain. VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain.However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the global Workspace architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication between salience-related insular and cingulate and other widely separated brain areas.Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the fMRI data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental investigatio

  16. The direct pathway from the brainstem reticular formation to the cerebral cortex in the ascending reticular activating system: A diffusion tensor imaging study.

    Science.gov (United States)

    Jang, Sung Ho; Kwon, Hyeok Gyu

    2015-10-01

    Precise evaluation of the ascending reticular activating system (ARAS) is important for diagnosis, prediction of prognosis, and management of patients with disorders of impaired consciousness. In the current study, we attempted to reconstruct the direct neural pathway between the brainstem reticular formation (RF) and the cerebral cortex in normal subjects, using diffusion tensor imaging (DTI). Forty-one healthy subjects were recruited for this study. DTIs were performed using a sensitivity-encoding head coil at 1.5Tesla with FMRIB Software Library. For connectivity of the brainstem RF, we used two regions of interest (ROIs) for the brainstem RF (seed ROI) and the thalamus and hypothalamus (exclusion ROI). Connectivity was defined as the incidence of connection between the brainstem RF and target brain regions at the threshold of 5 and 50 streamlines. Regarding the thresholds of 5 and 50, the brainstem RF showed high connectivity to the lateral prefrontal cortex (lPFC, 67.1% and 20.7%) and ventromedial prefrontal cortex (vmPFC, 50.0% and 18.3%), respectively. In contrast, the brainstem RF showed low connectivity to the primary motor cortex (31.7% and 3.7%), premotor cortex (24.4% and 3.7%), primary somatosensory cortex (23.2% and 2.4%), orbitofrontal cortex (17.1% and 7.3%), and posterior parietal cortex (12.2% and 0%), respectively. The brainstem RF was mainly connected to the prefrontal cortex, particularly lPFC and vmPFC. We believe that the methodology and results of this study would be useful to clinicians involved in the care of patients with impaired consciousness and researchers in studies of the ARAS. PMID:26363340

  17. Brain banks as key part of biochemical and molecular studies on cerebral cortex involvement in Parkinson's disease.

    Science.gov (United States)

    Ravid, Rivka; Ferrer, Isidro

    2012-04-01

    Exciting developments in basic and clinical neuroscience and recent progress in the field of Parkinson's disease (PD) are partly a result of the availability of human specimens obtained through brain banks. These banks have optimized the methodological, managerial and organizational procedures; standard operating procedures; and ethical, legal and social issues, including the code of conduct for 21st Century brain banking and novel protocols. The present minireview focuses on current brain banking organization and management, as well as the likely future direction of the brain banking field. We emphasize the potentials and pitfalls when using high-quality specimens of the human central nervous system for advancing PD research. PD is a generalized disease in which α-synuclein is not a unique component but, instead, is only one of the players accounting for the complex impairment of biochemical/molecular processes involved in metabolic pathways. This is particularly important in the cerebral cortex, where altered cognition has a complex neurochemical substrate. Mitochondria and energy metabolism impairment, abnormal RNA, microRNA, protein synthesis, post-translational protein modifications and alterations in the lipid composition of membranes and lipid rafts are part of these complementary factors. We have to be alert to the possible pitfalls of each specimen and its suitability for a particular study. Not all samples qualify for the study of DNA, RNA, proteins, post-translational modifications, lipids and metabolomes, although the use of carefully selected samples and appropriate methods minimizes pitfalls and errors and guarantees high-quality reserach. PMID:22313511

  18. A nuclear localized protein ZCCHC9 is expressed in cerebral cortex and suppresses the MAPK signal pathway

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The CCHC-type zinc finger motif has numerous biological activities (such as DNA binding and RNA binding) and can also mediate protein-protein interaction. This article gives a primary report about the human ZCCHC9 gene. Protein ZCCHC9 contains four CCHC motifs and is highly conserved in humans, mice, and rats. The whole cDNA sequence of the ZCCHC9 gene has been amplified by PCR and a number of plasmids have been constructed for further study. The results show that ZCCHC9 is localized in the nucleus, and especially concentrated in the nucleolus. It is highly expressed in the brain and testicles of the mouse. This has been confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). In situ hybridization of the mouse brain indicates that ZCCHC9 is mainly expressed in the cerebral cortex. Reporter gene assay shows that ZCCHC9 suppresses the transcription activities of NF-kappa B and SRE,and may play roles in the Mitogen-Activated Protein Kinase (MAPK) signaling transduction pathway.

  19. Down-regulation of 3H-imipramine binding sites in rat cerebral cortex prenatal exposure to antidepressants

    International Nuclear Information System (INIS)

    Several antidepressant drugs were given to pregnant rats in the last 15 days of gestation and 3H-imipramine binding (3H-IMI) was subsequently measured in the cerebral cortex of the offspring. The selective serotonin (5-HT) uptake blockers chlorimipramine and fluoxetine as well as the selective monoamine oxidase (MAO) inhibitors clorgyline and deprenyl induced, after prenatal exposure, a down-regulation of 3H-IMI binding sites at postnatal day 25. The density of these binding sites was still reduced at postnatal day 90 in rats exposed in utero to the MAO inhibitors. The antidepressants desipramine and nomifensine were ineffective in this respect. After chronic treatment of adult animals, only chlorimipramine was able to down-regulate the 3H-IMI binding sites. Consequently, prenatal exposure of rats to different antidepressant drugs affecting predominantly the 5-HT systems induces more marked and long-lasting effects on cortical 3H-IMI binding sites. The results suggest that the developing brain is more susceptible to the actions of antidepressants

  20. Polychlorinated biphenyls, organochlorinated pesticides, and polybrominated diphenyl ethers in the cerebral cortex of wild river otters (Lontra canadensis)

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Niladri [National Wildlife Research Center, Canadian Wildlife Service, Environment Canada, Ottawa, Ontario, K1A 0H3 (Canada)]. E-mail: nbasu@uottawa.ca; Scheuhammer, Anton M. [National Wildlife Research Center, Canadian Wildlife Service, Environment Canada, Ottawa, Ontario, K1A 0H3 (Canada); O' Brien, Mike [Furbearers and Upland Game, Nova Scotia Department of Natural Resources, Kentville, Nova Scotia, B4N 4E5 (Canada)

    2007-09-15

    We measured the levels of ortho-substituted polychlorinated biphenyls (PCB), organochlorinated pesticides (OCP), and polybrominated diphenyl ethers (PBDE) in the cerebral cortex of river otters (Lontra canadensis) trapped from Ontario and Nova Scotia between 2002 and 2004. The mean concentration of total PCBs was 70.9 {+-} 12.1 ng/g l.w., and congeners 153, 180 and 138 accounted for nearly 60% of the sum. The mean concentration of total OCPs was 21.2 {+-} 3.7 ng/g l.w., and hexachlorobenzene (32.6% of total) and DDE (28.1%) accounted for the majority. The mean concentration of total PBDEs was 3.2 {+-} 0.6 ng/g l.w., and congeners 99 (44.9%), 153 (30.5%), and 100 (24.7%) were measured at the indicated percentages. There was no relationship between these residue data and concentrations of brain mercury or neurochemical receptors and enzymes as determined in earlier studies on these same animals. - River otters accumulated PCBs, OCPs, and PBDEs, but at levels below thresholds for neurotoxic effects.

  1. Polychlorinated biphenyls, organochlorinated pesticides, and polybrominated diphenyl ethers in the cerebral cortex of wild river otters (Lontra canadensis)

    International Nuclear Information System (INIS)

    We measured the levels of ortho-substituted polychlorinated biphenyls (PCB), organochlorinated pesticides (OCP), and polybrominated diphenyl ethers (PBDE) in the cerebral cortex of river otters (Lontra canadensis) trapped from Ontario and Nova Scotia between 2002 and 2004. The mean concentration of total PCBs was 70.9 ± 12.1 ng/g l.w., and congeners 153, 180 and 138 accounted for nearly 60% of the sum. The mean concentration of total OCPs was 21.2 ± 3.7 ng/g l.w., and hexachlorobenzene (32.6% of total) and DDE (28.1%) accounted for the majority. The mean concentration of total PBDEs was 3.2 ± 0.6 ng/g l.w., and congeners 99 (44.9%), 153 (30.5%), and 100 (24.7%) were measured at the indicated percentages. There was no relationship between these residue data and concentrations of brain mercury or neurochemical receptors and enzymes as determined in earlier studies on these same animals. - River otters accumulated PCBs, OCPs, and PBDEs, but at levels below thresholds for neurotoxic effects

  2. Disminución del número de neuronas que expresan GABA en la corteza cerebral de ratones infectados con rabia Decreased number neurons expressing GABA in the cerebral cortex of rabies-infected mice

    Directory of Open Access Journals (Sweden)

    Orlando Torres-Fernández

    2007-12-01

    have suggested that rabies viral infections affect the host GABAergic system.
    Objective. The effect of rabies virus infection on the expression of GABA was evaluated in neurons of the mouse cerebral cortex.
    Materials and methods. Adult mice were inoculated by intramuscular injection with the standard strain of rabies (CVS virus. The animals were sacrificed in the terminal stage of the illness and perfused with 4% paraformaldehyde and 1% glutaraldehyde. Frontal sections were obtained in a Vibratome® and treated with appropriate immunohistochemical reactions for identifying the GABAergic neurons in the cerebral cortex. Counts and comparative quantitative analysis of the GABA+ neurons were compared in samples of infected and normal mice.
    Results. In the animals infected with rabies virus, the distribution pattern of cortical GABAergic neurons was not changed, but their number diminished significantly. The mean value of GABA+ cells number in 1 μm2 of cerebral cortex was 293±32 in normal samples and 209±13 in infected samples. Despite the loss in GABA+ cell number, the average size of GABA+ cells per unit increased from 104±8 μm2 in normal mice to 122±10 μm2 in infected mice because the cell loss consisted more frequently of smaller neurons. Nevertheless, the rank of GABA+ cell sizes in infected samples was similar to normal samples.
    Conclusion. This evidence supported the hypothesis that GABA is involved in rabies pathology.

  3. Estrogen formation and binding in the cerebral cortex of the developing rhesus monkey

    International Nuclear Information System (INIS)

    These studies were undertaken to determine whether estrogen receptors and the microsomal enzyme system called the aromatase complex, which is responsible for conversion of androgen to estrogen, are present in the brain of the rhesus monkey during perinatal life. Four monkeys (three females-one fetus removed on day 153 of gestation and two infants, 5 and 6 days postnatal-and 1 male, 2 days postnatal) were studied. Cytosol estrogen receptors were detected in all brain regions examined. The apparent equilibrium dissociations constants for reaction of these sites with 3H-moxestrol were similar to those for uterine and pituitary cytosol estrogen receptors (0.3-1.1 nM). Within the brain, highest levels of binding were observed in the hypothalamus-preoptic area, with fairly even, lower concentrations throughout the cortical structures. Aromatase complex activity was detected in the majority of the tissue specimens. The highest levels of estrogen formation were observed in the hypothalamus. Among the cortical samples, the highest levels of aromatase complex activity were found in regions of the association cortex. The lowest levels of aromatase activity were found in the somatosensory and motor cortices of the postnatal animals. These results suggest that locally-formed estrogen may be involved in the effects of circulating androgens on the developing primate neocortex

  4. Patterns of Spontaneous Local Network Activity in Developing Cerebral Cortex: Relationship to Adult Cognitive Function.

    Directory of Open Access Journals (Sweden)

    Alejandro Peinado

    Full Text Available Detecting neurodevelopμental disorders of cognition at the earliest possible stages could assist in understanding them mechanistically and ultimately in treating them. Finding early physiological predictors that could be visualized with functional neuroimaging would represent an important advance in this regard. We hypothesized that one potential source of physiological predictors is the spontaneous local network activity prominent during specific periods in development. To test this we used calcium imaging in brain slices and analyzed variations in the frequency and intensity of this early activity in one area, the entorhinal cortex (EC, in order to correlate early activity with level of cognitive function later in life. We focused on EC because of its known role in different types of cognitive processes and because it is an area where spontaneous activity is prominent during early postnatal development in rodent models of cortical development. Using rat strains (Long-Evans, Wistar, Sprague-Dawley and Brattleboro known to differ in cognitive performance in adulthood we asked whether neonatal animals exhibit corresponding strain-related differences in EC spontaneous activity. Our results show significant differences in this activity between strains: compared to a high cognitive-performing strain, we consistently found an increase in frequency and decrease in intensity in neonates from three lower performing strains. Activity was most different in one strain considered a model of schizophrenia-like psychopathology. While we cannot necessarily infer a causal relationship between early activity and adult cognition our findings suggest that the pattern of spontaneous activity in development could be an early predictor of a developmental trajectory advancing toward sub-optimal cognitive performance in adulthood. Our results further suggest that the strength of dopaminergic signaling, by setting the balance between excitation and inhibition, is a

  5. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex

    Science.gov (United States)

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor

    2016-06-01

    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275–364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ∼80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  6. LIN7A depletion disrupts cerebral cortex development, contributing to intellectual disability in 12q21-deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Ayumi Matsumoto

    Full Text Available Interstitial deletion of 12q21 has been reported in four cases, which share several common clinical features, including intellectual disability (ID, low-set ears, and minor cardiac abnormalities. Comparative genomic hybridization (CGH analysis using the Agilent Human Genome CGH 180K array was performed with the genomic DNA from a two-year-old Japanese boy with these symptoms, as well as hypoplasia of the corpus callosum. Consequently, a 14 Mb deletion at 12q21.2-q21.33 (nt. 77 203 574-91 264 613 bp, which includes 72 genes, was detected. Of these, we focused on LIN7A, which encodes a scaffold protein that is important for synaptic function, as a possible responsible gene for ID, and we analyzed its role in cerebral cortex development. Western blotting analyses revealed that Lin-7A is expressed on embryonic day (E 13.5, and gradually increases in the mouse brain during the embryonic stage. Biochemical fractionation resulted in the enrichment of Lin-7A in the presynaptic fraction. Suppression of Lin-7A expression by RNAi, using in utero electroporation on E14.5, delayed neuronal migration on postnatal day (P 2, and Lin-7A-deficient neurons remained in the lower zone of the cortical plate and the intermediate zone. In addition, when Lin-7A was silenced in cortical neurons in one hemisphere, axonal growth in the contralateral hemisphere was delayed; development of these neurons was disrupted such that one half did not extend into the contralateral hemisphere after leaving the corpus callosum. Taken together, LIN7A is a candidate gene responsible for 12q21-deletion syndrome, and abnormal neuronal migration and interhemispheric axon development may contribute to ID and corpus callosum hypoplasia, respectively.

  7. Differential binding of /sup 3/H-imipramine and /sup 3/H-mianserin in rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Dumbrille-Ross, A.; Tang, S.W.; Coscina, D.V.

    1981-11-16

    Drug competition profiles, effect of raphe lesion, and sodium dependency of the binding of two antidepressant drugs /sup 3/H-imipramine and /sup 3/H-mianserin to rat cerebral cortex homogenate were compared to examine whether the drugs bound to a common ''antidepressant receptor.'' Of the neurotransmitters tested, only serotonin displaced binding of both /sup 3/H-imipramine and /sup 3/H-mianserin. /sup 3/H-Mianserin binding was potently displaced by serotonin S/sub 2/ antagonists and exhibited a profile similar to that of /sup 3/H-spiperone binding. In the presence of the serotonin S/sub 2/ antagonist spiperone, antihistamines (H/sub 1/) potently displaced /sup 3/H-mianserin binding. /sup 3/H-Imipramine binding was displaced potently by serotonin uptake inhibitors. The order of potency of serotonergic drugs in displacing /sup 3/H-imipramine binding was not similar to their order in displacing /sup 3/H-spiperone or -3H-serotonin binding. Prior midbrain raphe lesions greatly decreased the binding of /sup 3/H-imipramine but did not alter binding of /sup 3/H-mianserin. Binding of /sup 3/H-imipramine but not /sup 3/H-mianserin was sodium dependent. These results show that /sup 3/H-imipramine and /sup 3/H-mianserin bind to different receptors. /sup 3/H-Imipramine binds to a presynaptic serotonin receptor which is probably related to a serotonin uptake recognition site, the binding of which is sodium dependent. /sup 3/H-Mianserin binds to postsynaptic receptors, possibly both serotonin S/sub 2/ and histamine H/sub 1/ receptors, the binding of which is sodium independent.

  8. Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex.

    Science.gov (United States)

    Boitard, Michael; Bocchi, Riccardo; Egervari, Kristof; Petrenko, Volodymyr; Viale, Beatrice; Gremaud, Stéphane; Zgraggen, Eloisa; Salmon, Patrick; Kiss, Jozsef Z

    2015-03-01

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development. PMID:25732825

  9. An allometric scaling law between gray matter and white matter of cerebral cortex

    International Nuclear Information System (INIS)

    An allometric scaling relationship between cortical white and gray volumes is derived from a general model that describes brain's remarkable efficiency and prodigious communications between brain areas. The model assumes that (1) a cell's metabolic rate depends upon cell's surface; (2) the overall basal metabolic rates of brain areas depend upon their fractal structures; (3) differential brain areas have same basal metabolic rate at slow wave sleep. The obtained allometric exponent scaling white matter to gray matter is 1.2, which is very much close to Zhang and Sejnowski's observation data

  10. Functional integration of human neural precursor cells in mouse cortex.

    Directory of Open Access Journals (Sweden)

    Fu-Wen Zhou

    Full Text Available This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV-, calretinin (CR-, somatostatin (SS-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs. The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.

  11. Accumulation of Filamentous Tau in the Cerebral Cortex of Human Tau R406W Transgenic Mice

    OpenAIRE

    Ikeda, Masaki; Shoji†, Mikio; Kawarai, Toshitaka; Kawarabayashi, Takeshi; Matsubara, Etsuro; Murakami, Tetsuro; Sasaki, Atsushi; Tomidokoro, Yasushi; Ikarashi, Yasushi; Kuribara, Hisashi; Ishiguro, Koichi; Hasegawa, Masato; Yen, Shu-Hui; Chishti, M. Azhar; Harigaya, Yasuo

    2005-01-01

    Missense mutations of the tau gene cause autosomal dominant frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), an illness characterized by progressive personality changes, dementia, and parkinsonism. There is prominent frontotemporal lobe atrophy of the brain accompanied by abundant tau accumulation with neurofibrillary tangles and neuronal cell loss. Using a hamster prion protein gene expression vector, we generated several independent lines of transgenic (Tg) mice e...

  12. Wnt Signaling Regulates Multipolar-to-Bipolar Transition of Migrating Neurons in the Cerebral Cortex

    OpenAIRE

    Michael Boitard; Riccardo Bocchi; Kristof Egervari; Volodymyr Petrenko; Beatrice Viale; Stéphane Gremaud; Eloisa Zgraggen; Patrick Salmon; Jozsef Z. Kiss

    2015-01-01

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of can...

  13. aequorine bioluminescence response to calcium in vitro and in cerebral cortex

    OpenAIRE

    Tricoire, Ludovic

    2006-01-01

    During my PhD, I investigated in vitro the calcium-dependent bioluminescence of thephotoprotein aequorin and then used its bioluminescence to image neuronal activities in theneocortical network. This genetically encoded calcium sensor can be expressed in specific cell types and its bioluminescence is not toxic and exhibit a high signal/noise ratio.I first search for mutations modifying aequorin bioluminescence, using a randommutagenesis and in vitro evolution approach. I isolated mutants show...

  14. Contributions of Diverse Excitatory and Inhibitory Neurons to Recurrent Network Activity in Cerebral Cortex

    OpenAIRE

    Neske, Garrett T.; Patrick, Saundra L.; Connors, Barry W.

    2015-01-01

    The recurrent synaptic architecture of neocortex allows for self-generated network activity. One form of such activity is the Up state, in which neurons transiently receive barrages of excitatory and inhibitory synaptic inputs that depolarize many neurons to spike threshold before returning to a relatively quiescent Down state. The extent to which different cell types participate in Up states is still unclear. Inhibitory interneurons have particularly diverse intrinsic properties and synaptic...

  15. Wnt Signaling Regulates Multipolar-to-Bipolar Transition of Migrating Neurons in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Michael Boitard

    2015-03-01

    Full Text Available The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development.

  16. Prenatal carbon monoxide impairs migration of interneurons into the cerebral cortex.

    Science.gov (United States)

    Trentini, John F; O'Neill, J Timothy; Poluch, Sylvie; Juliano, Sharon L

    2016-03-01

    Prenatal exposure to carbon monoxide (CO) disrupts brain development, however little is known about effects on neocortical maturation. We exposed pregnant mice to CO from embryonic day 7 (E7) until birth. To study the effect of CO on neuronal migration into the neocortex we injected BrdU during corticogenesis and observed misplaced BrdU+ cells. The majority of cells not in their proper layer colocalized with GAD65/67, suggesting impairment of interneuron migration; interneuron subtypes were also affected. We subsequently followed interneuron migration from E15 organotypic cultures of mouse neocortex exposed to CO; the leading process length of migrating neurons diminished. To examine an underlying mechanism, we assessed the effects of CO on the cellular cascade mediating the cytoskeletal protein vasodilator-stimulated phosphoprotein (VASP). CO exposure resulted in decreased cGMP and in a downstream target, phosphorylated VASP. Organotypic cultures grown in the presence of the phosphodiesterase inhibitor IBMX resulted in a recovery of the leading processes. These data support the idea that CO acts as a signaling molecule and impairs function and neuronal migration by acting through the CO/NO-cGMP pathway. In addition, treated mice demonstrated functional impairment in behavioral tests. PMID:26582457

  17. Aluminum neurotoxicity effects on intracellular Ca2+homeostasis in the rat cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Rui Ren; Yang Zhang; Xiaofeng Zhang; Yanping Wu; Dandan Zhang; Baixiang Li

    2010-01-01

    Studies have suggested that aluminum,a neurotoxic metal,is involved in the progression of neurodegenerative diseases.Previous studies have confirmed that aluminum influences intracellular Ca2+homeostasis.However,it remains unclear whether aluminum increases or decreases intracellular Ca2+concentrations.The present study demonstrated that Al3+competitively binds to calmodulin(CAM),together with Ca2+,which resulted in loss of capacity of CaM to bind to Ca2+,leading to increased[Ca2+],.Al3+stimulated voltage-gated calcium channels on cell membranes,which allowed a small quantity of Ca2+into the cells.Al3+also promoted calcium release from organelles by stimulating L-Ca2+α1c to trigger calcium-induced calcium release.Although Al3+upregulated expression of Na+/Ca2+exchanger mRNA,increased levels of Ca2+and Na+/Ca2+exchanger did not maintain a normal Ca2+balance.Al3+resulted in disordered intracellular calcium homeostasis by affecting calcium channels,calcium buffering,and calcium expulsion.

  18. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Seyed Mojtaba Hosseini; Mohammad Farahmandnia; Zahra Razi; Somayeh Delavarifar; Benafsheh Shakibajahromi

    2015-01-01

    Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the lfuorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These ifndings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  19. Rapid Thyroxine to 3,5,3′-Triiodothyronine Conversion and Nuclear 3,5,3′-Triiodothyronine Binding in Rat Cerebral Cortex and Cerebellum

    OpenAIRE

    Crantz, F R; Larsen, P R

    1980-01-01

    Thyroxine (T4) to 3,5,3′-triiodothyronine (T3) conversion was evaluated in vivo in cerebral cortex, cerebellum, and anterior pituitary of male euthyroid Sprague-Dawley rats. Tracer quantities of 125I-T4 and 131I-T3 were injected into controls and iopanoic acid-pretreated rats 3 h before isolation of nuclei from these tissues. Specifically-bound nuclear 131I-T3, denoted T3(T3); 125I-T3, denoted T3(T4); and 125I-T4 were extracted and identified by chromatography. Plasma iodothyronines were simi...

  20. Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates

    OpenAIRE

    Ribeiro, Pedro F. M.; Manger, Paul R.; Catania, Kenneth C.; Kaas, Jon H.; Herculano-Houzel, Suzana

    2014-01-01

    The olfactory bulb is an evolutionarily old structure that antedates the appearance of a six-layered mammalian cerebral cortex. As such, the neuronal scaling rules that apply to scaling the mass of the olfactory bulb as a function of its number of neurons might be shared across mammalian groups, as we have found to be the case for the ensemble of non-cortical, non-cerebellar brain structures. Alternatively, the neuronal scaling rules that apply to the olfactory bulb might be distinct in those...

  1. Changes in synapse quantity and growth associated protein 43 expression in the motor cortex of focal cerebral ischemic rats following catalpol treatment

    Institute of Scientific and Technical Information of China (English)

    Dong Wan; Huifeng Zhu; Yong Luo; Peng Xie

    2011-01-01

    The present study investigated the effects of catalpol, the main constituent of the Chinese herb Rehmannia root, on neurons following brain ischemia. A rat model of focal permanent brain ischemia was established using electrocoagulation. The rats were intraperitoneally injected with catalpol, at a dose of 5 mg/kg, daily for 1 week. Results showed that the number of neuronal synapses in the motor cortex and growth associated protein 43 expression were increased following catalpol treatment, indicating that catalpol might contribute to neuroplasticity and ameliorate functional neurological deficits induced by cerebral ischemia.

  2. Human arachnoid granulations Part I: a technique for quantifying area and distribution on the superior surface of the cerebral cortex

    Directory of Open Access Journals (Sweden)

    Holman David W

    2007-07-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are herniations of the arachnoid membrane into the dural venous sinuses on the surface of the brain. Previous morphological studies of AGs have been limited in scope and only one has mentioned surface area measurements. The purpose of this study was to investigate the topographic distribution of AGs on the superior surface of the cerebral cortex. Methods En face images were taken of the superior surface of 35 formalin-fixed human brains. AGs were manually identified using Adobe Photoshop, with a pixel location containing an AG defined as 'positive'. A set of 25 standard fiducial points was marked on each hemisphere for a total of 50 points on each image. The points were connected on each hemisphere to create a segmented image. A standard template was created for each hemisphere by calculating the average position of the 25 fiducial points from all brains. Each segmented image was mapped to the standard template using a linear transformation. A topographic distribution map was produced by calculating the proportion of AG positive images at each pixel in the standard template. The AG surface area was calculated for each hemisphere and for the total brain superior surface. To adjust for different brain sizes, the proportional involvement of AGs was calculated by dividing the AG area by the total area. Results The total brain average surface area of AGs was 78.53 ± 13.13 mm2 (n = 35 and average AG proportional involvement was 57.71 × 10-4 ± 7.65 × 10-4. Regression analysis confirmed the reproducibility of AG identification between independent researchers with r2 = 0.97. The surface AGs were localized in the parasagittal planes that coincide with the region of the lateral lacunae. Conclusion The data obtained on the spatial distribution and en face surface area of AGs will be used in an in vitro model of CSF outflow. With an increase in the number of samples, this analysis technique can be used

  3. Cerebral and brain stem Langerhans cell histiocytosis

    International Nuclear Information System (INIS)

    Two patients with central nervous system manifestations of Langerhans cell histiocytosis, both with brain stem involvement, are reported. The onset of symptoms was at an age when the diagnosis might not have been considered. (orig.)

  4. Cerebral blood flow mapping using stable xenon-enhanced CT in sickle cell cerebrovascular disease

    International Nuclear Information System (INIS)

    The cerebral blood flow (CBF) of 25 patients with sickle cell cerebrovascular disease (SCCVD) was examined using a xenon-CT flow mapping method. Brain CT and MR findings were correlated with those of the xenon-CT flow studies. CBF defects on xenon-CT correlated reasonably well with the areas of cortical infarctions on the MR images, but in 27% of the cases, flow defects were slightly larger than the areas of infarctions on the MR images. In deep watershed or basal ganglia infarctions, abnormal CBF was noted about the cerebral cortex near infarctions in 72% of the patients, regardless of infarction sizes on the MR images. However, decreased CBF was recognized in 4 of the 9 children whose MR images were virtually normal. Thus, the extent of flow depletion cannot be predicted accurately by MR imaging alone. Xenon-CT flow mapping proved a safe and reliable procedure for evaluation of the CBF of patients with SCCVD. Although this study is preliminary, it may have a potential in selecting patients for hypertransfusion therapy, as a noninvasive test and for following children with SCCVD during their therapy. Careful correlation of results of CBF with those of MR imaging or of CT is important for objective interpretations of flow mapping images. (orig.)

  5. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Niara da Silva Medeiros

    2015-01-01

    Full Text Available Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS, protein oxidation (carbonyl, sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings.

  6. Nitrate and nitrite anion concentration in the intact cerebral cortex of preterm and nearterm fetal sheep: indirect index of in vivo nitric oxide formation.

    Science.gov (United States)

    Reynolds, J D; Zeballos, G A; Penning, D H; Kimura, K A; Atkins, B; Brien, J F

    1998-04-01

    Pregnant sheep with a microdialysis probe implanted in the fetal cerebral cortex were used to determine if nitrate and nitrite anions (nitrate/nitrite) could be quantitated in the microdialysate as an indirect index of in vivo nitric oxide formation. Pregnant ewes (term, about 147 days) were surgically instrumented at gestational day (GD) 90 (n = 3; preterm) and GD 121 (n = 3; nearterm). Three days later, following an overnight probe equilibration period, five dialysate samples were collected continuously on ice at 1-h intervals (infusion rate of 1 (microl/min). The nitrate/nitrite concentration was determined by reducing a 10-microl aliquot of each dialysate fraction with hot acidic vanadium followed by chemiluminescence quantitation of the nitric oxide product. The lower limit of quantitative sensitivity of the method is 25 picomoles. Nitrate/nitrite concentration was 16.6+/-7.3 microM for the preterm fetus and 19.7+/-1.9 microM for the nearterm fetus. The data demonstrate that nitrate/nitrite, as an index of in vivo nitric oxide formation, can be quantitated in microdialysate samples collected from the intact fetal sheep cerebral cortex. PMID:9741385

  7. Cerebral blood flow mapping in children with sickle cell disease

    International Nuclear Information System (INIS)

    A cerebral blood flow mapping system was applied to the evaluation of cerebral blood flow (CBF) in 21 patients with sickle cell cerebrovascular disease, by means of a Picker xenon computed tomographic (CT) scanner. Results indicate that (1) xenon CT is a safe and reliable procedure in children with cerebrovascular diseases; (2) CBF in the gray matter of children seems to be higher than in previously reported data obtained with use of isotopes; and (3) regional CBF can be altered significantly by changing the size of the region of interest (ROI). The term regional CBF probably has to be carefully defined in xenon CT flow mapping. Correlation with anatomy by means of CT or magnetic resonance imaging and comparison with the ROI of the contralateral side and/or adjacent sections is important

  8. Effects of movement training on synaptic interface structure in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere in cerebral infarction rats

    Institute of Scientific and Technical Information of China (English)

    Min Yang; Jiyan Cheng

    2008-01-01

    BACKGROUND: Movement is an effective way to provide sensory, movement and reflectivity afferent stimulation to the central nervous system. Movement plays an important role in functional recombination and compensation in the brain. OBJECTIVE: To observe movement training effects on texture parameters of synaptic interfaces in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere and on motor function in cerebral infarction rats. DESIGN, TIME AND SETTING: This neural morphology and pathology randomized controlled animal experiment was performed at the Center Laboratory, Affiliated Hospital of Luzhou Medical College, China from November 2004 to April 2005. MATERIALS: A total of 32 healthy male Wistar rats aged 8 weeks were equally and randomly assigned into model and movement training groups. METHODS: Rat models of right middle cerebral artery occlusion were established using the suture occlusion method in both groups. Rats in the movement training group underwent balance training, screen training, and rotating rod training starting on day 5 after surgery, for 40 minutes every day, 6 days per week, for 4 weeks. MAIN OUTCOME MEASURES: Texture parameters of synaptic interfaces were determined using a transmission electron microscope and image analyzer during week 5 following model induction. The following parameters were measured: synaptic cleft width; postsynaptic density thickness; synaptic interface curvature; and active zone length. Motor function was assessed using balance training, screen training, and rotating rod training. The lower score indicated a better motor function. RESULTS: The postsynaptic density thickness, synaptic interface curvature, and active zone length were significantly increased in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere of rats from the movement training group compared with the model group (P < 0.05 or 0.01). Curved synapses and perforated synapses were seen in the sensorimotor cortex

  9. Mimicking the mechanical properties of the cell cortex by the self-assembly of an actin cortex in vesicles

    Science.gov (United States)

    Luo, Tianzhi; Srivastava, Vasudha; Ren, Yixin; Robinson, Douglas N.

    2014-04-01

    The composite of the actin cytoskeleton and plasma membrane plays important roles in many biological events. Here, we employed the emulsion method to synthesize artificial cells with biomimetic actin cortex in vesicles and characterized their mechanical properties. We demonstrated that the emulsion method provides the flexibility to adjust the lipid composition and protein concentrations in artificial cells to achieve the desired size distribution, internal microstructure, and mechanical properties. Moreover, comparison of the cortical elasticity measured for reconstituted artificial cells to that of real cells, including those manipulated using genetic depletion and pharmacological inhibition, strongly supports that actin cytoskeletal proteins are dominant over lipid molecules in cortical mechanics. Our study indicates that the assembly of biological systems in artificial cells with purified cellular components provides a powerful way to answer biological questions.

  10. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    Science.gov (United States)

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-Oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 600-614, 2016. PMID:26297819

  11. Acute liver failure in rats activates glutamine-glutamate cycle but declines antioxidant enzymes to induce oxidative stress in cerebral cortex and cerebellum.

    Directory of Open Access Journals (Sweden)

    Santosh Singh

    Full Text Available BACKGROUND AND PURPOSE: Liver dysfunction led hyperammonemia (HA causes a nervous system disorder; hepatic encephalopathy (HE. In the brain, ammonia induced glutamate-excitotoxicity and oxidative stress are considered to play important roles in the pathogenesis of HE. The brain ammonia metabolism and antioxidant enzymes constitute the main components of this mechanism; however, need to be defined in a suitable animal model. This study was aimed to examine this aspect in the rats with acute liver failure (ALF. METHODS: ALF in the rats was induced by intraperitoneal administration of 300 mg thioacetamide/Kg. b.w up to 2 days. Glutamine synthetase (GS and glutaminase (GA, the two brain ammonia metabolizing enzymes vis a vis ammonia and glutamate levels and profiles of all the antioxidant enzymes vis a vis oxidative stress markers were measured in the cerebral cortex and cerebellum of the control and the ALF rats. RESULTS: The ALF rats showed significantly increased levels of ammonia in the blood (HA but little changes in the cortex and cerebellum. This was consistent with the activation of the GS-GA cycle and static levels of glutamate in these brain regions. However, significantly increased levels of lipid peroxidation and protein carbonyl contents were consistent with the reduced levels of all the antioxidant enzymes in both the brain regions of these ALF rats. CONCLUSION: ALF activates the GS-GA cycle to metabolize excess ammonia and thereby, maintains static levels of ammonia and glutamate in the cerebral cortex and cerebellum. Moreover, ALF induces oxidative stress by reducing the levels of all the antioxidant enzymes which is likely to play important role, independent of glutamate levels, in the pathogenesis of acute HE.

  12. Determinants of resting cerebral blood flow in sickle cell disease.

    Science.gov (United States)

    Bush, Adam M; Borzage, Matthew T; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J; Coates, Thomas D; Wood, John C

    2016-09-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated. This study examined the physiological determinants of CBF in 37 patients with sickle cell disease, 38 ethnicity matched control subjects and 16 patients with anemia of non-sickle origin. Cerebral blood flow was measured using phase contrast MRI of the carotid and vertebral arteries. CBF increased inversely to oxygen content (r(2)  = 0.69, P Brain oxygen delivery, the product of CBF and oxygen content, was normal in all groups. Brain composition, specifically the relative amounts of grey and white matter, was the next strongest CBF predictor, presumably by influencing cerebral metabolic rate. Grey matter/white matter ratio and CBF declined monotonically until the age of 25 in all subjects, consistent with known maturational changes in brain composition. Further CBF reductions were observed with age in subjects older than 35 years of age, likely reflecting microvascular aging. On multivariate regression, CBF was independent of disease state, hemoglobin S, hemoglobin F, reticulocyte count and cell free hemoglobin, suggesting that it is regulated similarly in patients and control subjects. In conclusion, sickle cell disease patients had sufficient oxygen delivery at rest, but accomplish this only by marked increases in their resting CBF, potentially limiting their ability to further augment flow in response to stress. Am. J. Hematol. 91:912-917, 2016. © 2016 Wiley Periodicals, Inc. PMID:27263497

  13. Self-organizing actomyosin patterns on the cell cortex at epithelial cell-cell junctions.

    Science.gov (United States)

    Moore, Thomas; Wu, Selwin K; Michael, Magdalene; Yap, Alpha S; Gomez, Guillermo A; Neufeld, Zoltan

    2014-12-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  14. Quantitative histological studies on aging changes in cerebral cortex of rhesus monkey and albino rat with notes on effects of prolonged low-dose ionizing irradiation in the rat

    International Nuclear Information System (INIS)

    Brains of a series of eight young adult control (150 days) and eight middle-aged control (550 days) rats were fixed by a two-stage perfusion procedure employing Heidenhain's 'susa' solution. An equal number of rats were exposed to γ-irradiation at 6.5 R/day beginning on the 50th postnatal day and were sacrificed in the same manner and at the same age levels as the previous group. Paraffin sections were cut at 20 and 6 μ from cerebral cortical area 3 in the rat brains. Sections used for cell counts were stained with Harris' hematoxylin and eosin or iron hematoxylin, gallocyanin, acid fuchsin and ponceau de xylidene. Counts of neurons and glia were carried out at 20 equally spaced submolecular depth levels, and cell frequency profiles were plotted for each of the two cell types. The mean neuron and glial packing density for the total depth of the submolecular cortex of area 3 was not significantly different in young adult and middle-aged controls or in young adult irradiated (total dose 650 R) and control animals. However, statistical evaluation of data for relative depth levels 7 through 20 indicated that the packing density in this zone was significantly less (P<0.02) in middle-aged controls than in young adult animals. In middle-aged irradiated rats (total dose about 3250 R) neuron and glial packing densities for total depth of submolecular cortex were not significantly different than in control animals at the same age level. However, the values obtained for neuron packing density at relative depth levels 1 through 8 were significantly lower in middle-aged irradiated than in middle-aged control rats. The neuron packing density in middle-aged irradiated rats was significantly lower than in the young adult irradiated males. In electron micrographs, an increase in the amount of glycogen granules in astrocyte cell processes in cerebral cortex of irradiated middle-aged rats was noted, but there was no evidence of any other ultrastructural alterations

  15. Liquid-Diet with Alcohol Alters Maternal, Fetal and Placental Weights and the Expression of Molecules Involved in Integrin Signaling in the Fetal Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Ujjwal K. Rout

    2010-11-01

    Full Text Available Maternal alcohol consumption during pregnancy causes wide range of behavioral and structural deficits in children, commonly known as Fetal Alcohol Syndrome (FAS. Children with FAS may suffer behavioral deficits in the absence of obvious malformations. In rodents, the exposure to alcohol during gestation changes brain structures and weights of offspring. The mechanism of FAS is not completely understood. In the present study, an established rat (Long-Evans model of FAS was used. The litter size and the weights of mothers, fetuses and placentas were examined on gestation days 18 or 20. On gestation day 18, the effects of chronic alcohol on the expression levels of integrin receptor subunits, phospholipase-Cγ and N-cadherin were examined in the fetal cerebral cortices. Presence of alcohol in the liquid-diet reduced the consumption and decreased weights of mothers and fetuses but increased the placental weights. Expression levels of β1 and α3 integrin subunits and phospholipase-Cγ2 were significantly altered in the fetal cerebral cortices of mothers on alcohol containing diet. Results show that alcohol consumption during pregnancy even with protein, mineral and vitamin enriched diet may affect maternal and fetal health, and alter integrin receptor signaling pathways in the fetal cerebral cortex disturbing the development of fetal brains.

  16. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

    Directory of Open Access Journals (Sweden)

    Benjamin eMeltzer

    2015-08-01

    Full Text Available The brain's analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortical functions such as speech comprehension and attention. It remains unclear, however, whether the cortex also responds to the natural rhythmic structure of music and how the response, if present, is influenced by higher cognitive processes. Here we employ electroencephalography (EEG to show that the cortex responds to the beat of music and that this steady-state response reflects musical comprehension and attention. We show that the cortical response to the beat is weaker when subjects listen to a familiar tune than when they listen to an unfamiliar, nonsensical musical piece. Furthermore, we show that in a task of intermodal attention there is a larger neural response at the beat frequency when subjects attend to a musical stimulus than when they ignore the auditory signal and instead focus on a visual one. Our findings may be applied in clinical assessments of auditory processing and music cognition as well as in the construction of auditory brain-machine interfaces.

  17. Coupling of cerebral blood flow and oxygen metabolism is conserved for chromatic and luminance stimuli in human visual cortex

    OpenAIRE

    Leontiev, Oleg; Buracas, Giedrius T.; Liang, Christine; Ances, Beau M.; Perthen, Joanna E.; Shmuel, Amir; Buxton, Richard B.

    2012-01-01

    The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation...

  18. Changes in the BDNF-immunopositive cell population of neocortical layers I and II/III after focal cerebral ischemia in rats.

    Science.gov (United States)

    Choi, Yongwon; Kang, Sung Goo; Kam, Kyung-Yoon

    2015-04-24

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and is widely distributed in the central nervous system, including the cerebral cortex. BDNF plays an important role in normal neural development, survival of existing neurons, and activity-dependent neuroplasticity. BDNF can also be neuroprotective and evoke neurogenesis in certain pathological conditions, such as cerebral ischemia. Neocortical layer I is an important region that can integrate feedforward and feedback information from other cortical areas and subcortical regions. In addition, it has recently been proposed as a possible source of neuronal progenitor cells after ischemia. Therefore, we investigated changes in the BDNF-immunoreactive cell population of neocortical layers I and II/III after middle cerebral artery occlusion (MCAO)-induced cerebral ischemia in rats. In unaffected condition, the number of BDNF(+) cells in layer I was significantly less than in layer II/III in the cingulate cortex and in the motor and sensory areas. The increase in the number of BDNF(+) cells in layer I 8 days after MCAO was more remarkable than layer II/III, in all regions except the area of cingulate cortex farthest from the infarct core. Only BDNF(+)-Ox-42(+) cells showed a tendency to increase consistently toward the infarct core in both layers I and II/III, implying a major source of BDNF for response to ischemic injury. The present study suggests that some beneficial effects during recovery from ischemic injury, such as increased supportive microglia/macrophages, occur owing to a sensitive response of BDNF in layer I. PMID:25681548

  19. Kainate-enhanced release of D-(3H)aspartate from cerebral cortex and striatum: reversal by baclofen and pentobarbital

    Energy Technology Data Exchange (ETDEWEB)

    Potashner, S.J.; Gerard, D.

    1983-06-01

    A study was made of the actions of the excitant neurotoxin, kainic acid, on the uptake and the release of D-(2,3-3H)aspartate (D-ASP) in slices of guinea pig cerebral neocortex and striatum. The slices took up D-ASP, reaching concentrations of the amino acid in the tissue which were 14-23 times that in the medium. Subsequently, electrical stimulation of the slices evoked a Ca2+-dependent release of a portion of the D-ASP. Kainic acid (10(-5)-10(-3) M) produced a dose-dependent inhibition of D-ASP uptake. The electrically evoked release of D-ASP was increased 1.6-2.0 fold by 10(-5) and 10(-4)M kainic acid. The kainate-enlarged release was Ca2+-dependent. Dihydrokainic acid, an analogue of kainic acid with little excitatory or toxic action, did not increase D-ASP release but depressed D-ASP uptake. Attempts were made to block the action of kainic acid with baclofen and pentobarbital, compounds which depress the electrically evoked release of L-glutamate (L-GLU) and L-aspartate (L-ASP). Baclofen (4 X 10(-6)M), an antispastic drug, and pentobarbital (10(-4)M), an anesthetic agent, each inhibited the electrically evoked release of D-ASP and prevented the enhancement of the release above control levels usually produced by 10(-4)M kainic acid. It is proposed that 10(-5) and 10(-4)M kainic acid may enhance the synaptic release of L-GLU and L-ASP from neurons which use these amino acids as transmitters. This action is prevented by baclofen and pentobarbital. In view of the possibility that cell death in Huntington's disease could involve excessive depolarization of striatal and other cells by glutamate, baclofen might be effective in delaying the loss of neurons associated with this condition.

  20. Cerebral blood flow in sickle cell cerebrovascular disease

    International Nuclear Information System (INIS)

    Cerebral blood flow (CBF) has been studied by the xenon-133 (133Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the 133Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The 133Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke

  1. Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep

    OpenAIRE

    Nima eDehghani; Hatsopoulos, Nicholas G.; Haga, Zach D.; Rebecca eParker; Bradley eGreger; Eric eHalgren; Sydney S Cash; Alain eDestexhe

    2012-01-01

    Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and ...

  2. Effects of percutaneous midband pulse current stimulation in hepatic region on free radical and nissl bodies in cerebral cortex of rats with exercise-induced fatigue

    Directory of Open Access Journals (Sweden)

    Jia ZHANG

    2015-06-01

    Full Text Available Objective To investigate the effects of percutaneous midband pulse current stimulation in hepatic region on anti-exercise fatigue ability and the free radicals and nissl bodies in cerebral cortex tissue of rats with exercise-induced fatigue. Methods Seventy-two 8-week old male Wistar rats were randomly divided into 4 groups (18 each: control group (CG, fatigue group (FG, stimulation before fatigue group (SBF and stimulation after fatigue group (SAF. Animals in FG, SBF and SAF group were used to reproduce the swimming-exhaustion models. Midband current stimulation (1024Hz, 10mA, current cycle 1sec for 20 minutes was given to the rats of group SBF before swimming, and to those in group SAF after exhaustion. At the weekend of the 1st, 3rd and 5th week after modeling, the exhaustive swimming time of rats in all but CG group was observed. Cerebral cortex tissue was harvested for the estimation of the level of lipid peroxidation, including SOD, MDA, GSH-Px and SOD/MDA, and the histopathological changes in nissl bodies in neurons were observed. Results At the 1st weekend after modeling, no significant difference was found in all the indexes among the 4 groups, while at the 3rd weekend, the exhaustive time was obviously longer in SAF group than in FG group, and also in SAF group than in FG and SBF group at the 5th weekend (P<0.05. At the 5th weekend, the SOD and GSH-Px levels and SOD/MDA contents were obviously lower in FG and SBF group than in CG and SAF group, and the MDA content was obviously higher in FG and SBF group than in CG and SAF group (P<0.05. As regarding the nissl bodies in neurons, it is observed that the ratio of number/area was obviously higher in SAF group than in FG and SBF group at the 5th weekend (P<0.01. Conclusion Percutaneous stimulation of hepatic region with midband pulse current can effectively reduce the lipid peroxidation damage of cerebral cortex tissue and decrease the dissolution and loss of nissl bodies in

  3. Dynamic pattern of gene expression of ZnT-4, caspase-3, LC3, and PRG-3 in rat cerebral cortex following flurothyl-induced recurrent neonatal seizures.

    Science.gov (United States)

    Ni, Hong; Feng, Xing; Xiao, Zhuo-jun; Tao, Lu-yang; Jin, Mei-fang

    2011-12-01

    Zinc transporters, plasticity-related genes, and autophagic/apoptotic pathway both are associated with developmental seizure-induced brain excitotoxicity. Here, for the first time, we report the timing of expression pattern of zinc transporter 4 (ZnT-4), plasticity-related gene 3 (PRG-3), specific marker of autophagic vacuoles (LC3), and apoptotic marker caspase-3 in cerebral cortex following neonatal seizures. A seizure was induced by inhalant flurothyl daily in neonatal Sprague-Dawley rats from postnatal day 6 (P6). Rats were assigned into the recurrent-seizure group (RS, seizures induced in six consecutive days) and the control group. At 1.5 h, 3 h, 6 h, 12 h, 24 h, 48 h, 7 days, and 14 days after the last seizure, the mRNA level of the four genes in cerebral cortex was detected using RT-PCR method. At an early period 6 h or 12 h after the last seizures, both ZnT-4 and LC3 showed significantly up-regulated mRNA level while PRG-3 showed significantly down-regulated mRNA level at 12 h in cerebral cortex of RS group than those at the corresponding time point in control group. In the long-term time point of 7 days after the last seizure, the mRNA level of caspase-3 down-regulated; meanwhile, there was up-regulated mRNA level of LC-3 in RS group when compared to the control rats. This is the first report investigating the gene expression pattern of ZnT-4, PRG-3, LC-3, and caspase-3 in the developing brain. The results suggest that the disturbed expression pattern of the four genes might play a role in the pathophysiology of recurrent neonatal seizure-induced acute and long-term brain damage. PMID:21286846

  4. Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    OpenAIRE

    León, Alex; Elgueda, Diego; Silva, María A.; Hamamé, Carlos M.; Delano, Paul H.

    2012-01-01

    Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory...

  5. DI-3-butylphthalide-enhanced hematopoietic stem cell transplantation and endogenous stem cell mobilization for the treatment of cerebral infarcts

    Institute of Scientific and Technical Information of China (English)

    Baoquan Lu; Xiaoming Shang; Yongqiu Li; Hongying Ma; Chunqin Liu; Jianmin Li; Yingqi Zhang; Shaoxin Yao

    2011-01-01

    Exogenous stem cell transplantation and endogenous stem cell mobilization are both effective for the treatment of acute cerebral infarction. The compound dl-3-butylphthalide is known to improve microcirculation and help brain cells at the infarct loci. This experiment aimed to investigate the effects of dl-3-butylphthalide intervention based on the transplantation of hematopoietic stem cells and mobilization of endogenous stem cells in a rat model of cerebral infarction, following middle cerebral artery occlusion. Results showed that neurological function was greatly improved and infarct volume was reduced in rats with cerebral infarction. Data also showed that dl-3-butylphthalide can promote hematopoietic stem cells to transform into vascular endothelial cells and neuronal-like cells, and also enhance the therapeutic effect on cerebral infarction by hematopoietic stem cell transplantation and endogenous stem cell mobilization.

  6. Ethanol activation of protein kinase A regulates GABA-A receptor subunit expression in the cerebral cortex and contributes to ethanol-induced hypnosis

    Directory of Open Access Journals (Sweden)

    A LeslieMorrow

    2012-04-01

    Full Text Available Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking and synaptic excitability. Both protein kinase C (PKC and A (PKA are involved in regulation of γ-aminobutyric acid type A (GABA-A receptors through phosphorylation. However, the role of PKA in regulating GABA-A receptors following acute ethanol exposure is not known. The present study investigated the role of PKA in ethanol effects on GABA-A receptor α1 subunit expression in the P2 synaptosomal fraction of the rat cerebral cortex. Additionally, GABA-related behaviors were also examined. Rats were administered ethanol (2.0 – 3.5 g/kg or saline and PKC, PKA and GABA-A receptor α1 subunit levels were measured by Western blot analysis. Ethanol (3.5 g/kg transiently increased GABA-A receptor α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, the moderate ethanol dose (2.0g/kg had no effect on GABA-A α1 subunit levels although PKA RIIα and RIIβ were increased at 10 and 60 minutes, when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABA-A α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABA-A receptor α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex duration. This effect appears to be mediated in part by GABA-A receptors as increasing PKA activity also increased the duration of muscimol-induced loss of righting reflex. Overall these data suggest that PKA mediates ethanol-induced GABA-A receptor expression and contributes to ethanol behavioral effects involving GABA-A receptors.

  7. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the grey matter, three in the white matter, and explains local variations in cortical folding

    Directory of Open Access Journals (Sweden)

    Pedro F. M. Ribeiro

    2013-09-01

    Full Text Available The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital that differ in how neurons distributed across their grey matter volume and in three zones (prefrontal, occipital, and non-occipital that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non

  8. Morphological properties of nociceptive and non-nociceptive neurons in primary somatic cerebral cortex (SI) of cat

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With the techniques of intracellular recording and labelling, we investigated pain sensation and modulation of the somatic cortical cortex at the neuron's level. After observing the evoked potentials from stimulating the saphenous nerves (SN) of 654 neurons in SI area of the cats, we labelled 30 of the neurons with Neurobiotin to preserve the distribution and the morphologic characteristics of the neurons in the cortex. Based on the tridimensional reconstruction in addition to the eletrophysiological functions, we found clear morphological distinctions between nociceptive and non-nociceptive neurons (P<0.01). This result provided new experimental material to illustrate the function of nociceptive neurons in somatosensory cortex (SI) and presented further evidence to support the "specificity theory" of pain sensation in terms of morphology.

  9. Effects of the gamma-aminobutyrate transaminase inhibitors gabaculine and gamma-vinyl GABA on gamma-aminobutyric acid release from slices of rat cerebral cortex

    International Nuclear Information System (INIS)

    The release of [3H]gamma-aminobutyric acid (GABA) from pre-loaded slices of rat cerebral cortex was investigated in the presence and absence of the GABA-transaminase inhibitors gabaculine and gamma-vinyl GABA. In the experiments carried out without an inhibitor, an ion-exchange column chromatographic technique was used to separate [3H]GABA from tritiated metabolites released with it into the superfusate. The presence of gabaculine (5 microM) substantially reduced the Ca2+-dependence of the release of [3H]GABA evoked by a 4 min 30 mM K+ pulse, whereas this was not appreciably reduced by the presence of gamma-vinyl GABA (2 mM or 10 mM). Nevertheless, the characteristics of [3H]GABA release were not identical in the presence and absence of either inhibitor

  10. Characterization of the Fiber Connectivity Profile of the Cerebral Cortex in Schizotypal Personality Disorder: A Pilot Study.

    Science.gov (United States)

    Liu, Kai; Zhang, Teng; Zhang, Qing; Sun, Yueji; Wu, Jianlin; Lei, Yi; Chu, Winnie C W; Mok, Vincent C T; Wang, Defeng; Shi, Lin

    2016-01-01

    Schizotypal personality disorder (SPD) is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs) by combining the techniques of brain surface morphometry and white matter tractography. Diffusion and structural MR data were collected from 20 subjects with SPD (all males; age, 19.7 ± 0.9 years) and 18 healthy controls (all males; age, 20.3 ± 1.0 years). To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD) value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA 9 and BA 10) and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected). Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02). Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis. PMID:27303358

  11. Characterization of the fiber connectivity profile of the cerebral cortex in schizotypal personality disorder: A pilot study

    Directory of Open Access Journals (Sweden)

    Kai eLiu

    2016-05-01

    Full Text Available Schizotypal personality disorder (SPD is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs by combining the techniques of brain surface morphometry and white matter (WM tractography. Diffusion and structural MR data were collected from twenty subjects with SPD (all males; age, 19.7 ± 0.9 yrs and eighteen healthy controls (all males; age, 20.3 ± 1.0 yrs. To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA9 and BA10 and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected. Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02. Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.

  12. Characterization of the Fiber Connectivity Profile of the Cerebral Cortex in Schizotypal Personality Disorder: A Pilot Study

    Science.gov (United States)

    Liu, Kai; Zhang, Teng; Zhang, Qing; Sun, Yueji; Wu, Jianlin; Lei, Yi; Chu, Winnie C. W.; Mok, Vincent C. T.; Wang, Defeng; Shi, Lin

    2016-01-01

    Schizotypal personality disorder (SPD) is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs) by combining the techniques of brain surface morphometry and white matter tractography. Diffusion and structural MR data were collected from 20 subjects with SPD (all males; age, 19.7 ± 0.9 years) and 18 healthy controls (all males; age, 20.3 ± 1.0 years). To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD) value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA 9 and BA 10) and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected). Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02). Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis. PMID:27303358

  13. Evaluation of Cerebral Cortex Function in Clients with Bipolar Mood Disorder I (BMD I Compared With BMD II Using QEEG Analysis

    Directory of Open Access Journals (Sweden)

    Ali Khaleghi

    2015-10-01

    Full Text Available Objective: Early diagnosis of type I and type II bipolar mood disorder is very challenging particularly in adolescence. Hence, we aimed to investigate the cerebral cortex function in these patients, using quantitative electroencephalography analysis to obtain significant differences between them.Methods: Thirty- eight adolescents (18 patients with bipolar disorder I and 20 with BMD II participated in this study. We recorded the electroencephalogram signals based on 10-20 international system by 21 electrodes in eyes open and eyes closed condition resting conditions. Forty seconds segments were selected from each recorded signals with minimal noise and artifacts. Periodogram Welch was used to estimate power spectrum density from each segment. Analysis was performed in five frequency bands (delta, theta, alpha, beta and gamma, and we assessed power, mean, entropy, variance and skewness of the spectrums, as well as mean of the thresholded spectrum and thresholded spectrogram. We only used focal montage for comparison. Eventually, data were analyzed by independent Mann-Whitney test and independent t test.Results: We observed significant differences in some brain regions and in all frequency bands. There were significant differences in prefrontal lobe, central lobe, left parietal lobe, occipital lobe and temporal lobe between BMD I and BMD II (P < 0.05. In patients with BMD I, spectral entropy was compared to patients with BMD II. The most significant difference was observed in the gamma frequency band. Also, the power and entropy of delta frequency band was larger in the left parietal lobe in the BMD I patients compared to BMD II patients (P < 0.05. In the temporal lobe, significant differences were observed in the spectrum distribution of beta and gamma frequency bands (P < 0.05.Conclusion: The QEEG and entropy measure are simple and available tools to help detect cerebral cortex deficits and distinguish BMD I from BMD II.

  14. Attenuation by methyl mercury and mercuric sulfide of pentobarbital induced hypnotic tolerance in mice through inhibition of ATPase activities and nitric oxide production in cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Chuu, Jiunn-Jye; Huang, Zih-Ning; Yu, Hsun-Hsin; Chang, Liang-Hao [College of Engineering, Southern Taiwan University, Institute of Biotechnology, Tainan (China); Lin-Shiau, Shoei-Yn [College of Medicine, National Taiwan University, Institute of Pharmacology, Taipei (China)

    2008-06-15

    This study is aimed at exploring the possible mechanism of hypnosis-enhancing effect of HgS or cinnabar (a traditional Chinese medicine containing more than 95% HgS) in mice treated with pentobarbital. We also examined whether the effect of HgS is different from that of the well-known methyl mercury (MeHg). After a short period (7 days) of oral administration to mice, a nontoxic dose (0.1 g/kg) of HgS not only significantly enhanced pentobarbital-induced hypnosis but also attenuated tolerance induction; while a higher dose (1 g/kg) of HgS or cinnabar exerted an almost irreversible enhancing effect on pentobarbital-hypnosis similar to that of MeHg (2 mg/kg) tested, which was still effective even after 10 or 35 days cessation of administration. To study comparatively the effects of different mercury forms from oral administration of MeHg and HgS on membrane ATPase activities of experimental mice, analysis of the Hg content in the cerebral cortex revealed that correlated with the decrease of Na{sup +}/K{sup +}-ATPase and Ca{sup 2+}-ATPase activities. Furthermore, NO levels of blood but not that of cerebral cortex were also decreased by mercuric compounds. Although pentobarbital alone enhanced cytochrome p450-2C9 in time dependent manner, all of mercurial compounds tested had no such effect. All of these findings indicated that the mercurial compounds including cinnabar, HgS and MeHg exert a long-lasting enhancing hypnotic activity without affecting pentobarbital metabolism, which provides evidence-based sedative effect of cinnabar used in Chinese traditional medicine for more than 2,000 years. The nontoxic HgS dosing (0.1 g/kg/day) for consecutive 7 days is perhaps useful for delaying or preventing pentobarbital-tolerance. (orig.)

  15. Binding of transcription factors to Presenilin 1 and 2 promoter cis-acting elements varies during the development of mouse cerebral cortex.

    Science.gov (United States)

    Kumar, Ashish; Thakur, M K

    2016-08-15

    Previously, we reported differential expression of Presenilin (PS)1 and 2 and epigenetic modifications of their gene promoter in the cerebral cortex of mice during development. We identified the crucial role of DNA methylation and H3K9/14 acetylation in stage specific PS expression during brain development. Interestingly, we noted differential DNA methylation in putative binding sites of transcription factors considered pivotal for brain development. This prompted us to study the binding of transcription factors to cis-acting elements of PS1 and PS2 promoter in the cerebral cortex of mice during development. In-silico analysis revealed various cis-acting elements of PS1 and PS2 promoter and their putative transcription factors. We selected those cis-acting elements that were proven by wet lab experiments to interact with the transcription factors crucial for brain development. Electrophoretic mobility shift assay revealed that the binding of nuclear proteins to PS1 promoter cis-acting elements like HSF-1, Cdx1, Ets-1 and Sp1 significantly increased at embryonic day (E) 12.5, postnatal day (P) 45 and 20 weeks (w) as compared to P0. The binding pattern of these factors correlated well with the PS1 expression profile, indicating their cumulative influence on PS1 gene transcription. For PS2 promoter, the binding of Nkx2.2 and HFH-2 was high at prenatal stages (E12.5 and E18.5) while that of Cdx1 and NF-κB was maximum at postnatal stages (P45 and 20w). Taken together, our study shows that the binding of HSF-1, Cdx1, Ets-1 and Sp1 to PS1 promoter and that of Nkx2.2, HFH-2, Cdx1 and NF-κB to PS2 promoter regulate their differential expression during brain development. PMID:27177724

  16. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants

    DEFF Research Database (Denmark)

    Samuelsen, Grethe B; Pakkenberg, Bente; Bogdanović, Nenad;

    2007-01-01

    controls. The daily increase in brain cells in the future cortex was only half of that of the controls. In the 3 other developmental zones, no significant differences in cell numbers could be demonstrated. CONCLUSIONS: IUGR in humans is associated with a severe reduction in cortical growth and a...... estimated in 9 severely affected IUGR fetuses and 15 controls using the optical fractionator. Cell numbers were estimated within 4 developmental zones. The gestational ages were 19-41 weeks. RESULTS: The total cell number in the future cortex was significantly reduced in the IUGR fetuses, compared with...

  17. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Walker, John A.; George, Mark S.; Leenders, Klaus L.

    2009-01-01

    The left parietal cortex contributes to goal-directed hand movement. In this study, we targeted this region with transcranial magnetic stimulation (TMS) to assess the effects on a wider distributed circuitry related to motor control. Ten healthy subjects underwent 3 Tesla functional magnetic resonan

  18. Repetitive Transcranial Magnetic Stimulation Changes Cerebral Oxygenation on the Left Dorsolateral Prefrontal Cortex in Bulimia Nervosa: A Near-Infrared Spectroscopy Pilot Study.

    Science.gov (United States)

    Sutoh, Chihiro; Koga, Yasuko; Kimura, Hiroshi; Kanahara, Nobuhisa; Numata, Noriko; Hirano, Yoshiyuki; Matsuzawa, Daisuke; Iyo, Masaomi; Nakazato, Michiko; Shimizu, Eiji

    2016-01-01

    Previous studies showed that food craving in eating disorders can be weakened with high-frequency repetitive transcranial magnetic stimulation (rTMS) on the left dorsolateral prefrontal cortex (DLPFC). The aims of this study were to assess cerebral oxygenation change induced with rTMS and to assess the short-term impact of rTMS on food craving and other bulimic symptoms in patients with bulimia nervosa (BN). Eight women diagnosed with BN according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria participated in this study. We measured haemoglobin concentration changes in the DLPFC with near-infrared spectroscopy during cognitive tasks measuring self-regulatory control in response to food photo stimuli, both at baseline and after a single session of rTMS. Subjective ratings for food cravings demonstrated significant reduction. A significant decrease in cerebral oxygenation of the left DLPFC was also observed after a single session of rTMS. Measurement with NIRS after rTMS intervention may be applicable for discussing the mechanisms underlying rTMS modulation in patients with BN. PMID:26481583

  19. Photoaffinity labeling of [3H]flunitrazepam- and [3H]Ro15-4513-bound pellets in rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Irreversible incorporation of [3H]flunitrazepam and [3H]Ro15-4513 into GABA/benzodiazepine receptor subunits was studied by UV/irradiation using ligand-bound membrane pellets from rat cerebral cortical and cerebellar synaptic membranes. Specific incorporation for [3H]flunitrazepam was greater in the pellet than in the suspension. The incorporation was identical for [3H]Ro15-4513 in both pellet and suspension. With the ligand-bound pellets, 50% of the available binding sites were photolabeled by both ligands in cortex and cerebellum. SDS polyacrylamide gel electrophoresis and fluorography of [3H]flunitrazepam photo-labeled receptor revealed the same number of major sites in both brain regions. In contrast, [3H]Ro15-4513 appears to label fewer sites in cortex and cerebellum. Photoaffinity labeling with [3H]flunitrazepam in ligand-bound membrane pellet provides a more selective and reliable method for studying the subunit structure of GABA/benzodiazepine receptor complex

  20. Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep.

    Directory of Open Access Journals (Sweden)

    Nima eDehghani

    2012-08-01

    Full Text Available Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes, monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes in epileptic patients. In neuronal avalanches defined from units (up to 160 single units, the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs and in particular LFP negative peaks (nLFPs among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices. In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.

  1. Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons

    OpenAIRE

    Guo, Shuzhen; Kim, Woo Jean; Lok, Josephine; Lee, Sun-Ryung; Besancon, Elaine; Luo, Bing-Hao; Stins, Monique F.; Wang, Xiaoying; Dedhar, Shoukat; Lo, Eng H.

    2008-01-01

    The neurovascular unit is an emerging concept that emphasizes homeostatic interactions between endothelium and cerebral parenchyma. Here, we show that cerebral endothelium are not just inert tubes for delivering blood, but they also secrete trophic factors that can be directly neuroprotective. Conditioned media from cerebral endothelial cells broadly protects neurons against oxygen-glucose deprivation, oxidative damage, endoplasmic reticulum stress, hypoxia, and amyloid neurotoxicity. This ph...

  2. Stem cells therapy in cerebral palsy: A systematic review.

    Science.gov (United States)

    Kułak-Bejda, Agnieszka; Kułak, Piotr; Bejda, Grzegorz; Krajewska-Kułak, Elżbieta; Kułak, Wojciech

    2016-09-01

    The aim of this study was to systematically present the best available stem cell therapies for children with cerebral palsy (CP). The databases Medline, PubMed, EMBASE, and the Cochrane Controlled Trials Register for RCTs were searched for studies published from 1967 to August 2015. Systematic reviews, randomised controlled trials (RCTs), controlled trials, uncontrolled trials, cohort studies, open-label studies, and a meta-analysis were analysed. Of 360 articles, seven fulfilled the inclusion criteria: one RCT and six were open-label trials. In these studies, one application of stem cells for children with CP was typical, and the total number of cells administered to patients ranged from 10(6) to 10(8)/kg. Different routes of cell delivery were used, though in most studies motor development was applied as an indicator of primary outcomes. In three articles, neuroimaging studies were also implemented to confirm the efficacy of the therapies. Observation periods varied from 3months to 5years, and patients' tolerance of the therapy was generally good. Stem cell therapy may improve some symptoms in patients with CP, though larger studies are needed to examine the impact of stem cell therapy upon CP. PMID:27004672

  3. Radiation-induced cerebral cell apoptosis in rats

    International Nuclear Information System (INIS)

    Objective: To study the influence of radiation on rat cerebral cells including neurons and gliocytes. Methods: The rats were divided into control group and X-ray radiation groups with different doses. The apoptosis of cells at different time points after radiation was observed by optic microscopy, electron microscopy and DNA agarose gel electrophoresis. The double label method (in situ end-labeling of DNA strand breaks for labeling apoptotic cells, and immunohistochemistry for labeling cell type) was used to label apoptotic neurons and gliocytes cells separately. Results: The distinct morphological features of apoptosis and the DNA fragmentation ladders on agarose gel electrophoresis were seen in radiation groups. The rate of apoptosis in the adult rat brain was low. There were many apoptotic glial cells (about 93%) and a few apoptotic neurons (about 5%) after radiation. The apoptotic rate in high dose group was higher than that in low dose group. Conclusion: Apoptosis can be induced by radiation in rat brain, the apoptotic rate increases with a increasing dose in the range of 2-8 Gy. The gliocytes are more sensitive to radiation-induced apoptosis than the neurons

  4. 5-azacytidine and purine nucleotide synthesis in guinea-pig cerebral cortex slices by salvage pathway from adenine

    International Nuclear Information System (INIS)

    The effect of the cytostatic, immunosuppressive and antiviral drug 5-azacytidine was studied on the synthesis of purine nucleotides and the total RNA fraction by the salvage pathway of adenine in in vitro experiments on slices from the brain cortex while the azapyrimidine nucleoside only decreased the specific radioactivity of nucleotide adenine and quanine in a relatively high resulting concentration (10-2M), no differences were found between the slices of the brain cortex incubated with and without 5-azacytidine. The comparison of the specific radioactivities of adenine of the total RNA fraction gave a similar picture. No substantial differences were observed between the levels of adenine nucleotides and the total RNA fraction in slices incubated with and without 5-azacytidine. (author)

  5. Towards a sharable numeric and symbolic knowledge base on cerebral cortex anatomy: lessons learned from a prototype.

    Science.gov (United States)

    Dameron, Olivier; Gibaud, Bernard; Burgun, Anita; Morandi, Xavier

    2002-01-01

    We propose a knowledge base that combines numeric and symbolic knowledge about sulco-gyral brain cortex. This knowledge base is implemented using Web technologies. It is intended to be easily reusable in various application contexts such as teaching, decision support in neurosurgery and sharing of neuroimaging data for research purposes. Our analysis shows that (1) a formal representation of taxonomy and mereotopology, and (2) use of identity criteria to represent symbolic concepts, are needed to serve those applications. PMID:12463812

  6. Towards a sharable numeric and symbolic knowledge base on cerebral cortex anatomy: lessons learned from a prototype.

    OpenAIRE

    Dameron, Olivier; Gibaud, Bernard; Burgun, Anita; Morandi, Xavier

    2002-01-01

    We propose a knowledge base that combines numeric and symbolic knowledge about sulco-gyral brain cortex. This knowledge base is implemented using Web technologies. It is intended to be easily reusable in various application contexts such as teaching, decision support in neurosurgery and sharing of neuroimaging data for research purposes. Our analysis shows that (1) a formal representation of taxonomy and mereotopology, and (2) use of identity criteria to represent symbolic concepts, are neede...

  7. Dynamic distribution and stem cell characteristics of Sox1-expressing cells in the cerebellar cortex

    Institute of Scientific and Technical Information of China (English)

    Joelle Alcock; Virginie Sottile

    2009-01-01

    Bergmann glia cells are a discrete radial glia population surrounding Purkinje cells in the cerebellar cortex. Al-though Bergmann glia are essential for the development and correct arborization of Purkinje cells, little is known about the regulation of this cell population after the developmental phase. In an effort to characterize this population at the molecular level, we have analyzed marker expression and established that adult Bergmann glia express Soxl, Sox2 and Sox9, a feature otherwise associated with neural stem cells (NSCs). In the present study, we have further analyzed the developmental pattern of Soxl-expressing cells in the developing cerebellum. We report that before be-coming restricted to the Purkinje cell layer, Soxl-positive cells are present throughout the immature tissue, and that these cells show characteristics of Bergmann glia progenitors. Our study shows that these progenitors express Soxl, Sox2 and Sox9, a signature maintained throughout cerebellar maturation into adulthood. When isolated in culture, the Soxl-expressing cerebellar population exhibited neurosphere-forming ability, NSC-marker characteristics, and demonstrated multipotency at the clonal level. Our results show that the Bergmann glia population expresses Soxl during cerebellar development, and that these cells can be isolated and show stem cell characteristics in vitro, sug-gesting that they could hold a broader potential than previously thought.

  8. Modulatory effects of N-acetylcysteine on cerebral cortex and cerebellum regions of ageing rat brain Efectos moduladores de la N-acetilcisteína sobre la corteza cerebral y las regiones cerebelosas sobre la del cerebro senescente de rata

    Directory of Open Access Journals (Sweden)

    S. Singh Kanwar

    2007-02-01

    Full Text Available Oxidative stress has been implicated in brain ageing and in age-related neurodegenerative disorders. Since Nacetylcysteine (NAC has recently been shown to prevent oxidative damage in ageing brain, we have examined the effects of this thiolic antioxidant on the age associated oxidative stress related parameters in rat brain regions. The lipid peroxide formation, reduced glutathione (GSH content along with the activities of superoxide dismutase (SOD and catalase were determined in the cerebral cortex and cerebellum brain regions of the young (4 months and older (14 months female rats. The lipid peroxidation was observed to be increased in the cerebral cortex regions accompanied by simultaneous decrease in the GSH content in both the regions of older rats. The SOD activity was reduced in both the regions while catalase was reduced only in cerebellum region of the older rats. Following NAC supplementation (160 mg/kg. b. wt./ day, lipid peroxidation was observed to be reduced which was accompanied by enhanced GSH levels, along with enhanced SOD and catalase in both the brain regions of older rats. Further, in the younger rats the NAC treatment resulted in the decrease of lipid peroxidation in both the regions that was accompanied by the increase catalase activity in cerebral cortex region along with increase in GSH content and SOD in cerebellum regions. Our result suggests that the normal brain ageing is associated with the decrease in antioxidative defense status and the supplementation of thiol antioxidants like NAC may prove helpful in managing the age related brain disorders characterized by compromised antioxidative defense systems.El estrés oxidativo se ha implicado en el envejecimiento cerebral y en los trastornos neurodegenerativos asociados con la edad. Puesto que recientemente se ha demostrado que la N-acetilcisteína (NAC previene el daño oxidativo en el cerebro senescente, hemos explorado los efectos de este antioxidante tiólico sobre

  9. A Cognição Social e o Córtex Cerebral Social Cognition and the Brain Cortex

    Directory of Open Access Journals (Sweden)

    Judith Butman

    2001-01-01

    Full Text Available A cognição social é o processo que orienta condutas frente a outros indivíduos da mesma espécie. Várias estruturas cerebrais têm um papel chave para controlar as condutas sociais: o córtex pré-frontal ventromedial, a amígdala, o córtex somatosensorial direito e a ínsula. O córtex pré-frontal ventromedial está comprometido com o raciocínio social e com a tomada de decisões; a amígdala com o julgamento social de faces; o córtex somatosensorial direito, com a empatia e com a simulação; enquanto que a insula, com a resposta autonômica. Estes achados estão de acordo com a hipótese do marcador somático, um mecanismo específico por meio do qual adquirimos, representamos ou memorizamos os valores de nossas ações. Estas estruturas cerebrais atuam como mediadores entre as representações perceptuais dos estímulos sensoriais e a recuperação do conhecimento que o estímulo pode ativar. O sistema límbico é a zona limítrofe; nela, a psicologia se encontra com a neurologia. A correta sincronização destas zonas e estruturas, no adulto, é a chave para uma situação livre de patologia.Social cognition refers to the processes that subserve behavior in response to other individuals of the same species. Several brain structures play a key role in guiding social behaviors: ventromedial prefrontal cortex, amygdala, right somatosensory cortex and insula. The ventromedial prefrontal cortex is most directly involved in social reasoning and decision making; the amygdala in social judgment of faces, the right somatosensory cortex in empathy and simulation and the insula in autonomic responses. These findings are corresponding to the somatic marker hypothesis, particular mechanism by which we acquire, represent and retrieve the values of our actions. These brain structures appear to mediate between perceptual representation of social stimuli and retrieval of knowledge that such stimuli can trigger. The limbic system is the border zone

  10. Recovery of slow potentials in AC-coupled electrocorticography: application to spreading depolarizations in rat and human cerebral cortex

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Dreier, Jens P;

    2009-01-01

    Cortical spreading depolarizations (spreading depressions and peri-infarct depolarizations) are a pathology intrinsic to acute brain injury, generating large negative extracellular slow potential changes (SPCs) that, lasting on the order of minutes, are studied with DC-coupled recordings in animals....... The spreading SPCs of depolarization waves are observed in human cortex with AC-coupled electrocorticography (ECoG), although SPC morphology is distorted by the high-pass filter stage of the amplifiers. Here, we present a signal processing method to reverse these distortions and recover approximate...

  11. EFFECTS OF RAPAMYCIN ON CEREBRAL OXYGEN SUPPLY AND CONSUMPTION DURING REPERFUSION AFTER CEREBRAL ISCHEMIA

    Science.gov (United States)

    CHI, O. Z.; BARSOUM, S.; VEGA-COTTO, N. M.; JACINTO, E.; LIU, X.; MELLENDER, S. J.; WEISS, H. R.

    2016-01-01

    Abstract—Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia–reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with and without rapamycin (20 mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5 ± 0.8% control vs. 21.5 ± 0.9% rapamycin). We also found that ischemia–reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia–reperfusion. PMID:26742793

  12. Coupling of cerebral blood flow and oxygen metabolism is conserved for chromatic and luminance stimuli in human visual cortex.

    Science.gov (United States)

    Leontiev, Oleg; Buracas, Giedrius T; Liang, Christine; Ances, Beau M; Perthen, Joanna E; Shmuel, Amir; Buxton, Richard B

    2013-03-01

    The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation in the capacity for oxygen metabolism. The goal of this study was to test whether CBF/CMRO(2) coupling differed when these subpopulations of neurons were preferentially stimulated, using chromatic and luminance stimuli to preferentially stimulate either the blob or interblob regions. A dual-echo spiral arterial spin labeling (ASL) technique was used to measure CBF and BOLD responses simultaneously in 7 healthy human subjects. When the stimulus contrast levels were adjusted to evoke similar CBF responses (mean 65.4% ± 19.0% and 64.6% ± 19.9%, respectively for chromatic and luminance contrast), the BOLD responses were remarkably similar (1.57% ± 0.39% and 1.59% ± 0.35%) for both types of stimuli. We conclude that CBF-CMRO(2) coupling is conserved for the chromatic and luminance stimuli used, suggesting a consistent coupling for blob and inter-blob neuronal populations despite the difference in CO concentration. PMID:23238435

  13. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice.

    Science.gov (United States)

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-06-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies. PMID:27174054

  14. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice

    Science.gov (United States)

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-01-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies. PMID:27174054

  15. Effect of hyperbaric oxygenation on mitochondrial function of neuronal cells in the cortex of neonatal rats after hypoxic-ischemic brain damage

    Directory of Open Access Journals (Sweden)

    L. Yang

    2016-01-01

    Full Text Available The timing and mechanisms of protection by hyperbaric oxygenation (HBO in hypoxic-ischemic brain damage (HIBD have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI.

  16. Effect of hyperbaric oxygenation on mitochondrial function of neuronal cells in the cortex of neonatal rats after hypoxic-ischemic brain damage.

    Science.gov (United States)

    Yang, L; Hei, M Y; Dai, J J; Hu, N; Xiang, X Y

    2016-01-01

    The timing and mechanisms of protection by hyperbaric oxygenation (HBO) in hypoxic-ischemic brain damage (HIBD) have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders) were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI) and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm) occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI. PMID:27119428

  17. Diffusion-Weighted MRI in Creutzfeldt-Jakob Disease: Focus on the Cerebral Cortex and Chronologic Change

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun; Song, Chang Joon; Lee, In Ho [Chungnam National University, Daejeon (Korea, Republic of); Yu, In Kyu [Eulji University Hospital, Seoul (Korea, Republic of); Choi, See Sung [Wonkwang University Hospital, Iksan (Korea, Republic of)

    2010-08-15

    To evaluate high cortical signal intensity and chronologic changes for diffusion-weighted MR imaging (DWI) in sporadic Creutzfeldt-Jakob disease. We retrospectively analyzed the DWI results of 16 patients with probable CJD (according to WHO criteria) and evaluated the distribution, extent and bilaterality of the lesions in the cortex, basal ganglia and thalamus. We also reviewed the chronologic changes of the lesions by evaluating the followup MR examination results in 8 of 16 patients. Cortical abnormalities were present in 15 (94%) of 16 patients. Isolated cortical involvement was present in 6 patients (40%), while the combined involvement of the cortex and basal ganglia was present in 9 patients (60%). The distribution of the lesions was bilateral in 12 patients and predominantly on the right side in 8 patients. Upon follow-up MR imaging, the cortical lesions showed progress in terms of extent and signal intensity. Basal ganglia abnormalities were present in 9 of 15 patients. Moreover, 4 of 6 patients who had no abnormal signal intensity in the basal ganglia on the initial MR imaging results, showed abnormally high signal intensity upon follow-up MR imaging. The characteristically high cortical signal intensities on DWI in an elderly patient with rapidly progressive dementia should point to the diagnosis of early phase CJD and might be useful for the differential diagnosis.

  18. Protection of Cactus Polysaccharide against H2O2-induced damage in the rat cerebral cortex and hippocampus Differences In time of administration

    Institute of Scientific and Technical Information of China (English)

    Xianju Huang; Qin Li; Lianjun Guo; Zankai Yan

    2008-01-01

    BACKGROUND: Pharmacological research has shown that cactus polysaccharide (CP) has anti-oxidant, anti-inflammatory, antitumor, anti-aging, and immune-stimulating activities. It may also provide protective effects against oxidative stress injuries in the rat brain.OBJECTIVE: To validate the effects of CP on H2O2-induced oxidative stress injuries in the ratcerebral cortex and hippocampal slices 30 minutes prior to injury, as well as 30 minutes and 2.5 hours after injury.DESIGN: A randomized controlled experiment.SETTINGS: Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology; Department of Pharmacology, College of Medical Science, Yangtze University.MATERIALS: A total of 50 male Sprague Dawley (SD) rats, normal grade and weighing 200-300 g, were provided by the Laboratory Animal Center of Tongji Medical College, Huazhong University of Science and Technology. The protocol was performed in accordance with ethical guidelines for the use and care of ani-mals. Cactus polysaccharide, a dried needle crystal, was extracted from Opuntia milpa alta at the Chemistry and Environment Engineering School of Yangtze University. The following chemicals and instruments were used: 2,3,5-triphenyl tetrazolium chloride (Sigma, St Louis, Missouri, USA); lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione (GSH), and total antioxidant competence (T-AOC) assays (Jiancheng-Bioeng Institute, Nanjing); McIllwain tissue chopper (Mickle Laboratory Engineering, USA); and ELISA reader and Magellan software (TECAN, Austria).METHODS: This experiment was performed at the Department of Pharmacology, Medical College of Yangtze University, between March and June 2006. All rats were sacrificed after anesthesia. The cerebral cortex and hippocampus were dissected. Several cerebral cortex and hippocampus slices were selected as controls, while other sections were co-incubated with H2O2 for 30 minutes to induce an oxidative stress injury. The

  19. Are bone marrow regenerative cells ideal seed cells for the treatment of cerebral ischemia?

    Institute of Scientific and Technical Information of China (English)

    Yi Li; Xuming Hua; Fang Hua; Wenwei Mao; Liang Wan; Shiting Li

    2013-01-01

    Bone marrow cells for the treatment of ischemic brain injury may depend on the secretion of a large number of neurotrophic factors. Bone marrow regenerative cells are capable of increasing the secretion of neurotrophic factors. In this study, after tail vein injection of 5-fluorouracil for 7 days, bone marrow cells and bone marrow regenerative cells were isolated from the tibias and femurs of rats, and then administered intravenously via the tail vein after focal cerebral ischemia. Immunohistological staining and reverse transcription-PCR detection showed that transplanted bone marrow cells and bone marrow regenerative cells could migrate and survive in the ischemic regions, such as the cortical and striatal infarction zone. These cells promote vascular endothelial cell growth factor mRNA expression in the ischemic marginal zone surrounding the ischemic penumbra of the cortical and striatal infarction zone, and have great advantages in promoting the recovery of neurological function, reducing infarct size and promoting angiogenesis. Bone marrow regenerative cells exhibited stronger neuroprotective effects than bone marrow cells. Our experimental findings indicate that bone marrow regenerative cells are preferable over bone marrow cells for cell therapy for neural regeneration after cerebral ischemia. Their neuroprotective effect is largely due to their ability to induce the secretion of factors that promote vascular regeneration, such as vascular endothelial growth factor.

  20. Spatio-temporal characteristics of cerebral blood volume changes in different microvascular compartments evoked by sciatic nerve stimulation in rat somatosensory cortex

    Science.gov (United States)

    Li, Pengcheng; Luo, Qingming; Luo, Weihua; Chen, Shangbin; Chen, Haiying; Zeng, Shaoqun

    2003-10-01

    The spatio-temporal characteristics of changes in cerebral blood volume associated with neuronal activity were investigated in the hindlimb somatosensory cortex of α-chloralose/urethan anesthetized rats (n=10) with optical imaging at 570nm through a thinned skull. Activation of cortex was carried out by electrical stimulation of the contralateral sciatic nerve with 5Hz, 0.3V pulses (0.5ms) for duration of 2s. The stimulation evoked a monophasic optical reflectance decrease at cortical parenchyma and arteries sites rapidly after the onset of stimulation, whereas no similar response was observed at vein compartments. The optical signal changes reached 10% of the peak response 0.70+/-0.32s after stimulation onset and no significant time lag in this 10% start latency time was observed between the response at cortical parenchyma and arteries compartments. The evoked optical reflectance decrease reached the peak (0.25%+/-0.047%)2.66+/-0.61s after the stimulus onset at parenchyma site, 0.40+/-0.20s earlier (P<0.05) than that at arteries site (0.50%+/-0.068% 3.06+/-0.70s). Variable location within the cortical parenchyma and arteries compartment themselves didn"t affect the temporal characteristics of the evoked signal significantly. These results suggest that the sciatic nerve stimulation evokes a local blood volume increase at both capillaries (cortical parenchyma) and arterioles rapidly after the stimulus onset but the evoked blood volume increase in capillaries could not be entirely accounted for by the dilation of arterioles.

  1. Regional differences of relationships between atrophy and glucose metabolism of cerebral cortex in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Aim: The purpose of this paper is to estimate a correlation between the extent of atrophy and the decline in the brain function measured with PET study among the patients with Alzheimer's disease by each brain lobe. Materials and Methods: Two groups, the normal controls (male: 8, female: 22 age: 62.4±4.9) and the patients with Alzheimer's disease (male: 6, female: 24, age: 65.9±7.2) participated in this study. The extent of atrophy was evaluated from the extracted gyrus on 2D-projection magnetic resonance imaging (MRI) and the cerebral cortical glucose metabolism was assessed on 2D-projection positron emission tomography (PET) image, and then a relationship between the cerebral atrophy and the function was evaluated by each brain lobe extracted automatically. 2D-projection of PET and MR images were made by means of the Mollweide method which keeps the area of the brain surface. In order to extract brain lobes from each subject automatically, the bitmap with different value by each brain lobe was made from a standard brain image and was automatically transformed to match each subject's brain image by using SPM99. A correlation image was generated between 2D-projection images of glucose metabolism and the area of the sulcus and the gyrus extracted from the correlation between MR and PET images clustered by K-means method. Results: The glucose metabolism of Alzheimer's disease was lower than that of normal control subjects at the frontal, parietal, and temporal lobes with the same extent of atrophy as that of the normal. There was high correlation between the area of gyrus and the glucose metabolism, and the correlation tendency of the Alzheimer's disease was steeper than that of the normal control at the parietal lobe. Conclusions: Combined analysis of regional morphology and function may be useful to distinguish pathological process such as early stage of Alzheimer's disease from normal physiological aging

  2. Collective dynamics of actomyosin cortex endow cells with intrinsic mechanosensing properties

    CERN Document Server

    Étienne, Jocelyn; Fouchard, Jonathan; Bufi, Nathalie; Durand-Smet, Pauline; Asnacios, Atef

    2014-01-01

    Living cells adapt and respond actively to the mechanical properties of their environment. In addition to biochemical mechanotransduction, evidence exists for a myosin-dependent, purely mechanical sensitivity to the stiffness of the surroundings at the scale of the whole cell. Using a minimal model of the dynamics of actomyosin cortex, we show that the interplay of myosin power strokes with the rapidly remodelling actin network results in a regulation of force and cell shape that adapts to the stiffness of the environment. Instantaneous changes of the environment stiffness are found to trigger an intrinsic mechanical response of the actomyosin cortex. Cortical retrograde flow resulting from actin polymerisation at the edges is shown to be modulated by the stress resulting from myosin contractility, which in turn regulates the cell size in a force-dependent manner. The model describes the maximum force that cells can exert and the maximum speed at which they can contract, which are measured experimentally. The...

  3. 5HT2 receptors in cerebral cortex of migraineurs studied using PET and 18F-fluorosetoperoene

    International Nuclear Information System (INIS)

    Since the brain 5HT2 might be implicated in migraine pathogenesis, the authors have used positron emission tomography and 18F-fluorosetoperone, a 5HT2 specific radioligand, to investigate in vivo the cortical 5HT2 receptors in migraine subjects. Nine migraineurs who had either migraine with and without aura or only migraine without aura were studied between attacks. 12 unmedicated healthy subjects of similar mean age were used as controls. Brain radioactivity was measured after 18F-setoperone IV injection for 90 min. A decrease of the regional specific distribution volumes (SDV) of the ligand was observed both in migraineurs and in controls. The age adjusted group means of SDV did not differ between patients and controls for the whole and for the right or left frontal, temporal, parietal and occipital cortex. These results suggest that cortical 5HT2 receptors may be unaltered between attacks in migraine sufferers. 30 refs., 4 figs., 2 tabs

  4. Pentylenetetrazol-induced seizures are associated with Na⁺,K⁺-ATPase activity decrease and alpha subunit phosphorylation state in the mice cerebral cortex.

    Science.gov (United States)

    Marquezan, Bárbara P; Funck, Vinícius R; Oliveira, Clarissa V; Pereira, Letícia M; Araújo, Stífani M; Zarzecki, Micheli S; Royes, Luiz Fernando F; Furian, Ana Flávia; Oliveira, Mauro S

    2013-08-01

    The present study aimed to investigate whether Na(+),K(+)-ATPase activity and phosphorylation state of the catalytic α subunit are altered by pentylenetetrazol (PTZ)-induced seizures. PTZ (30, 45 or 60 g/kg, i.p.) was administered to adult male Swiss mice, and Na(+),K(+)-ATPase activity and phosphorylation state were measured in the cerebral cortex 15 min after PTZ administration. Na(+),K(+)-ATPase activity significantly decreased after PTZ-induced seizures (60 mg/kg). Immunoreactivity of phosphorylated Ser943 at α subunit was increased after PTZ-induced seizures. A significant positive correlation between Na(+),K(+)-ATPase activity and latency to myoclonic jerks and generalized seizures was found. Conversely, a strong negative correlation between Ser943 phosphorylation and latency to generalized seizures was detected. Given the role of Na(+),K(+)-ATPase as a major regulator of brain excitability, Ser943 at Na(+),K(+)-ATPase α subunit may represent a potentially valuable new target for drug development for seizure disorders. PMID:23602551

  5. Identification and characterization of inward K ~+-channels in plasma membranes of Arabidopsis root cortex cells

    Institute of Scientific and Technical Information of China (English)

    于川江; 武维华

    1999-01-01

    Patch clamping whole-cell reeording techniques were apphed to study the inward K+ channels in Arabidopsis root cortex cells. The inward K+-channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective tor K+ ions over Na+ ions. The channel activity was significantly inbibited by the external TEA(?) or Ba(?) The changes in cytoplasmic Ca2+ concentrations did not affect the whole-cell inward K+-currents. The possible asso(?)ation betw(?)en the channel selectivity to K+ and Na(?) ions and plant salt-tolerance was also discussed.

  6. Neurofisiologia e plasticidade no córtex cerebral pela estimulação magnética transcraniana repetitiva Plasticity of the human cerebral cortex as revealed by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Joaquim Brasil Neto

    2004-01-01

    Full Text Available Um velho dogma da biologia afirma que só existiria capacidade de reorganização cortical (neuroplasticidade em animais muito jovens; no adulto, tal capacidade seria pequena ou mesmo inexistente. Aqui, revisamos estudos realizados em animais e em humanos que demonstram uma capacidade de reorganização cortical nos sistemas sensoriais e motores em indivíduos adultos. Destacamos os estudos realizados com a técnica de estimulação magnética transcraniana. O córtex cerebral asulto é capaz de reorganização após lesões do sistema nervoso periférico ou central ou no contexto do aprendizado.An old biological dogma states that a potencial for cortical reorganization (neuroplasticity exists nly in young animals, being lost in adlt life. Here we review studies carried out both in animals and humans, whixh demonstrate cortical reorganization in sensory and motor systems in adult subjects. We particulary emphasiza human studies carried out with the aid of transcranial magnetic stimulation. The adult cortex is capable of reorganization after peripheral or central nervous system lesions and as a result of learning.

  7. 5HT{sub 2} receptors in cerebral cortex of migraineurs studied using PET and {sup 18}F-fluorosetoperoene

    Energy Technology Data Exchange (ETDEWEB)

    Chabriat, H.; Tehindrazanarivelo, A.; Vera, P.; Samson, Y.; Pappata, S.; Boullais, N.; Bousser, M.G. [Hospital Saint Antoine, Paris (France)

    1995-04-01

    Since the brain 5HT{sub 2} might be implicated in migraine pathogenesis, the authors have used positron emission tomography and {sup 18}F-fluorosetoperone, a 5HT{sub 2} specific radioligand, to investigate in vivo the cortical 5HT{sub 2} receptors in migraine subjects. Nine migraineurs who had either migraine with and without aura or only migraine without aura were studied between attacks. 12 unmedicated healthy subjects of similar mean age were used as controls. Brain radioactivity was measured after {sup 18}F-setoperone IV injection for 90 min. A decrease of the regional specific distribution volumes (SDV) of the ligand was observed both in migraineurs and in controls. The age adjusted group means of SDV did not differ between patients and controls for the whole and for the right or left frontal, temporal, parietal and occipital cortex. These results suggest that cortical 5HT{sub 2} receptors may be unaltered between attacks in migraine sufferers. 30 refs., 4 figs., 2 tabs.

  8. Species-Dependent Post-Transcriptional Regulation of NOS1 by FMRP in the Developing Cerebral Cortex

    Science.gov (United States)

    Kwan, Kenneth Y.; Lam, Mandy M. S.; Johnson, Matthew B.; Dube, Umber; Shim, Sungbo; Rašin, Mladen-Roko; Sousa, André M. M.; Fertuzinhos, Sofia; Chen, Jie-Guang; Arellano, Jon I.; Chan, Daniel W.; Pletikos, Mihovil; Vasung, Lana; Rowitch, David H.; Huang, Eric J.; Schwartz, Michael L.; Willemsen, Rob; Oostra, Ben A.; Rakic, Pasko; Heffer, Marija; Kostović, Ivica; Judaš, Milos; Šestan, Nenad

    2012-01-01

    SUMMARY Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here we show that FMRP regulates the translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is ubiquitously expressed, NOS1 protein is transiently co-expressed with FMRP during early synaptogenesis in layer- and region-specific subpopulations of pyramidal neurons. These include mid-fetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Broca’s area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases but not FMRP-deficient mice. Thus, alterations in FMRP post-transcriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS. PMID:22579290

  9. Experimental study on alteration of adrenergic receptors activity in neuronal membranes protein of cerebral cortex following brain trauma in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-wei; XU Ru-xiang; QI Yi-long; CHEN Chang-cai

    2001-01-01

    Objective: To define the course of changes taken by α1 and β adrenergic receptors (AR) activity after traumatic brain injury (TBI) and explore the approach for secondary brain injury (SBI) management. Methods: The neuronal membrane protein of cortex were extracted from the rats subject to traumatic brain injury, and the changes of α1- and β-AR activities in the neuronal membranes were examined by radio ligand binding assay (RLBA). Results: α1- and β-AR activities underwent obvious changes, reaching their peak values at 24 h after TBI. α1-AR binding density (Bmax) reduced by 22.6%while the ligand affinity increased by 66.7%, and for β-AR, however, Bmax increased by 116.9% and the ligand affinity reduced by 50.7%. Their antagonists could counteract the changes ofα1- and β-AR activity. Conclusion: The patterns of changes varies between α1- and β-AR activity after TBI, suggesting their different roles in the neuronal membranes after brain trauma, and timely administration of AR antagonists is potentially beneficial in TBI management.

  10. Apoptosis of endothelial cells of cerebral basilar arteries in symptomatic cerebral vasospasm rabbit models Electron microscopic observation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Recent researchers report that vasospasm is caused by that, on one hand, damage of endothelial cells reduces synthesis and liberation of vessel dilator; on the other hand, defluxion of endothelial cells directly exposure vascular smooth muscles in active materials of vasoconstriction in blood.OBJECTIVE: To study whether apoptosis of cerebrovascular cells occurs in symptomatic cerebral vasospasm (CVS) rabbit models by using transmission electron microscope.DESIGN: Contrast observation.SETTINGS: The Fifth Endemic Area, the 89 Hospital of Chinese PLA; Minimally Invasive Neurosurgical Center, Tangdu Hospital, the Fourth Military Medical University of Chinese PLA.MATERIALS: A total of 24 New Zealand rabbits, of either sex, weighing 2.4 - 3.0 kg, of clear grade, were selected from the Experimental Animal Center of the Fourth Military Medical University of Chinese PLA.JEM-2000EX transmission electron microscope was made in Japan.METHODS: The experiment was carried out in the Laboratory of Anatomy (National Key Laboratory), the Fourth Military Medical University of Chinese PLA from April 2001 to April 2002. ① Preparation of symptomatic CVS models: Eighteen animals which were successfully modeled were randomly divided into experimental group (n =13) and control group (n =5). Animals in the experimental group were poured with blood into cavitas subarachnoidealis; while, animals in the control group were poured with the same volume of saline into cavitas subarachnoidealis. At the 5th day injection, three rabbits selected from the experimental group were anesthetized and perfused into left ventricle. And then, aorta pectoralis and caval vein were blocked by using ring clamp. Cranium was rapidly cut open to obtain cerebral basilar artery and a few of brain tissues. Both of them were fixed for 8 hours. Two rabbits selected from the control group were perfused with the same method to obtain basilar artery and brain tissues and fix. ② After fixation by using optic

  11. FGF-2 deficiency causes dysregulation of Arhgef6 and downstream targets in the cerebral cortex accompanied by altered neurite outgrowth and dendritic spine morphology.

    Science.gov (United States)

    Baum, Philip; Vogt, Miriam A; Gass, Peter; Unsicker, Klaus; von Bohlen Und Halbach, Oliver

    2016-05-01

    Fibroblast growth factor 2 (FGF-2) is an abundant growth factor in the brain and exerts multiple functions on neural cells ranging from cell division, cell fate determination to differentiation. However, many details of the molecular mechanisms underlying the diverse functions of FGF-2 are poorly understood. In a comparative microarray analysis of motor sensory cortex (MSC) tissue of adult knockout (FGF-2(-/-)) and control (FGF-2(+/+)) mice, we found a substantial number of regulated genes, which are implicated in cytoskeletal machinery dynamics. Specifically, we found a prominent downregulation of Arhgef6. Arhgef6 mRNA was significantly reduced in the FGF-2(-/-) cortex, and Arhgef6 protein virtually absent, while RhoA protein levels were massively increased and Cdc42 protein levels were reduced. Since Arhgef6 is localized to dendritic spines, we next analyzed dendritic spines of adult FGF2(-/-) and control mouse cortices. Spine densities were significantly increased, whereas mean length of spines on dendrites of layer V of MSC neurons in adult FGF-2(-/-) mice was significantly decreased as compared to respective controls. Furthermore, neurite length in dissociated cortical cultures from E18 FGF-2(-/-) mice was significantly reduced at DIV7 as compared to wildtype neurons. Despite the fact that altered neuronal morphology and alterations in dendritic spines were observed, FGF-2(-/-) mice behave relatively unsuspicious in several behavioral tasks. However, FGF-2(-/-) mice exhibited decreased thermal pain sensitivity in the hotplate-test. PMID:26970009

  12. 青春期氰戊菊酯暴露对小鼠大脑皮层性激素的影响%Effects of fenvalerate exposure during puberty on gonadal hormone in cerebral cortex of mice

    Institute of Scientific and Technical Information of China (English)

    刘萍; 孟秀红; 王华; 姬艳丽; 陈远华; 张程; 徐德祥

    2011-01-01

    . Cerebral cortex was excised. The remained mice were killed after four weeks , whose cerebral cortex was also excised. Protein expression of StAR,testosterone synthetic enzymes, androgen receptor ( AR ), two estrogen receptors( ERa and ERβ )in cerebral cortex were analyzed by Western blot. The content of testosterone ( T ) and estradiol ( E2 ) in cerebral cortex were measured by radioimmunoassay ( RIA ). Results Pubertal fenvalerate ( 30 mg/kg ) exposure markedly decreased T and E2 in cerebral cortex of male mice, whereas the level was significantly elevated in females. In agreement with above results, pubertal fenvalerate exposure obviously downregulated protein expression of 17β-HSD in cerebral cortex of males , and upregulated 17β-HSD expression in cerebral cortex of females. Additionally, pubertal fenvalerate exposure for two weeks and four weeks significantly enhanced the protein expression of AR in cerebral cortex of females, whereas in males, the protein expression of AR and ERβ in cerebral cortex was markedly upregulated in pubertal fenvalerate exposure for four weeks. Conclusion Pubertal fenvalerate exposure disrupts T and E2 synthesis and AR expression in cerebral cortex of mice. These alterations of steroids and the receptors in cerebral cortex might be detrimental to neurobehavioral development.

  13. Cerebral ischemia in rabbit: a new experimental model with immunohistochemical investigation.

    Science.gov (United States)

    Yamamoto, K; Yoshimine, T; Yanagihara, T

    1985-12-01

    Regional cerebral ischemia was produced in the rabbit by unilateral transorbital occlusion of the middle cerebral artery (procedure I); the middle cerebral and azygos anterior cerebral or anterior communicating artery (procedure II); or the middle cerebral, azygos anterior cerebral or anterior communicating, and internal carotid artery (procedure III). Evolution of ischemic lesions was examined with the immunohistochemical reaction for tubulin. With procedure I, ischemic lesions did not become constantly visible for 6 h in the basal ganglia and for 8 h in the frontoparietal region of the cerebral cortex. With procedure II, it was shortened to 3 h in the basal ganglia and to 6 h in the cerebral cortex. With procedure III, the ischemic lesions were observed in 1 h both in the basal ganglia and in the cerebral cortex as loss of the reaction for tubulin in the neuropil, nerve cell bodies, and dendrites. The evidence of neuronal damage became apparent in the same areas later by staining with hematoxylin-eosin. The experimental model presented here may be suitable for investigation of the mechanism that shifts reversible ischemia to cerebral infarction and for evaluation of the effectiveness of pharmacological intervention. PMID:3932374

  14. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats.

    Science.gov (United States)

    Györffy, Balázs A; Gulyássy, Péter; Gellén, Barbara; Völgyi, Katalin; Madarasi, Dóra; Kis, Viktor; Ozohanics, Olivér; Papp, Ildikó; Kovács, Péter; Lubec, Gert; Dobolyi, Árpád; Kardos, József; Drahos, László; Juhász, Gábor; Kékesi, Katalin A

    2016-08-01

    An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which

  15. Endothelial glycocalyx on brain endothelial cells is lost in experimental cerebral malaria

    DEFF Research Database (Denmark)

    Hempel, Casper; Hyttel, Poul; Kurtzhals, Jørgen Al

    2014-01-01

    We hypothesized that the glycocalyx, which is important for endothelial integrity, is lost in severe malaria. C57BL/6 mice were infected with Plasmodium berghei ANKA, resulting in cerebral malaria, or P. chabaudi AS, resulting in uncomplicated malaria. We visualized the glycocalyx with transmission...... electron microscopy and measured circulating glycosaminoglycans by dot blot and ELISA. The glycocalyx was degraded in brain vasculature in cerebral and to a lesser degree uncomplicated malaria. It was affected on both intact and apoptotic endothelial cells. Circulating glycosaminoglycan levels suggested...... that glycocalyx disruption preceded cerebral manifestations. The contribution of this loss to pathogenesis should be studied further....

  16. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports

    OpenAIRE

    Jeon, Yeon Jin; Lee, Hyun Young; Jung, In Ah; Cho, Won-Kyoung; Cho, Bin; Suh, Byung-Kyu

    2015-01-01

    Cerebral salt-wasting syndrome (CSWS) is a rare disease characterized by a extracellular volume depletion and hyponatremia induced by marked natriuresis. It is mainly reported in patients who experience a central nervous system insult, such as cerebral hemorrhage or encephalitis. The syndrome of inappropriate antidiuretic hormone secretion is a main cause of severe hyponatremia after hematopoietic stem cell transplantation, whereas CSWS is rarely reported. We report 3 patients with childhood ...

  17. Improved Quality of Life in A Case of Cerebral Palsy after Bone Marrow Mononuclear Cell Transplantation

    OpenAIRE

    Alok Sharma; Hemangi Sane; Pooja Kulkarni; Myola D’sa; Nandini Gokulchandran; Prerna Badhe

    2015-01-01

    Cerebral palsy (CP) is a non progressive, demyelinating disorder that affects a child’s development and posture and may be associated with sensation, cognition, communication and perception abnormalities. In CP, cerebral white matter is injured resulting in the loss of oligodendrocytes. This causes damage to the myelin and disruption of nerve conduction. Cell therapy is being explored as an alternate therapeutic strategy as there is no treatment currently available for CP. To s...

  18. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  19. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    International Nuclear Information System (INIS)

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of [3H] norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 x 10-5-10-3 M, enhanced potassium stimulated [3H] norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of [3H] norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABAA receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABAA agonist muscimol, 10-4 M, mimicked the effect of GABA, but the GABAB agonist (±)baclofen, 10-4 M, did not affect the release of [3H] norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABAA, but not GABAB, receptors. In contrast to the results that would be predicted for an event involving GABAA receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10-8 and 10-4 M. Thus these receptors may constitute a subclass of GABAA receptors. These results support a role of GABA uptake and GABAA receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat

  20. The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex

    OpenAIRE

    Finn, Ian M.; Priebe, Nicholas J.; Ferster, David

    2007-01-01

    Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models relying on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. 1) Depolarizations evoked by orthogonal stimuli are determi...

  1. Quantitative changes of GABA-immunoreactive cells in the hindlimb representation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension

    Science.gov (United States)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.

    1996-01-01

    The present study was aimed at evaluating quantitatively gamma-aminobutyric acid (GABA) immunoreactivity in the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension. A reduction in the number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-containing terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system of hindlimb-suspended animals, it is suggested that the unloading due to hindlimb suspension alters afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the reduction in immunoreactivity of local circuit GABAergic neurons and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  2. la bioluminescence de l'aequorine en réponse au calcium In vitro et dans le Cortex cerebral

    OpenAIRE

    Tricoire, Ludovic

    2006-01-01

    During my PhD, I investigated in vitro the calcium-dependent bioluminescence of thephotoprotein aequorin and then used its bioluminescence to image neuronal activities in theneocortical network. This genetically encoded calcium sensor can be expressed in specific cell types and its bioluminescence is not toxic and exhibit a high signal/noise ratio.I first search for mutations modifying aequorin bioluminescence, using a randommutagenesis and in vitro evolution approach. I isolated mutants show...

  3. A Clinical Study of Autologous Bone Marrow Mononuclear Cells for Cerebral Palsy Patients: A New Frontier

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2015-01-01

    Full Text Available Cerebral palsy is a nonprogressive heterogeneous group of neurological disorders with a growing rate of prevalence. Recently, cellular therapy is emerging as a potential novel treatment strategy for cerebral palsy. The various mechanisms by which cellular therapy works include neuroprotection, immunomodulation, neurorestoration, and neurogenesis. We conducted an open label, nonrandomized study on 40 cases of cerebral palsy with an aim of evaluating the benefit of cellular therapy in combination with rehabilitation. These cases were administered autologous bone marrow mononuclear cells intrathecally. The follow-up was carried out at 1 week, 3 months, and 6 months after the intervention. Adverse events of the treatment were also monitored in this duration. Overall, at six months, 95% of patients showed improvements. The study population was further divided into diplegic, quadriplegic, and miscellaneous group of cerebral palsy. On statistical analysis, a significant association was established between the symptomatic improvements and cell therapy in diplegic and quadriplegic cerebral palsy. PET-CT scan done in 6 patients showed metabolic improvements in areas of the brain correlating to clinical improvements. The results of this study demonstrate that cellular therapy may accelerate the development, reduce disability, and improve the quality of life of patients with cerebral palsy.

  4. Stimulus selectivity and response latency in putative inhibitory and excitatory neurons of the primate inferior temporal cortex

    OpenAIRE

    Mruczek, Ryan E. B.; David L Sheinberg

    2012-01-01

    The cerebral cortex is composed of many distinct classes of neurons. Numerous studies have demonstrated corresponding differences in neuronal properties across cell types, but these comparisons have largely been limited to conditions outside of awake, behaving animals. Thus the functional role of the various cell types is not well understood. Here, we investigate differences in the functional properties of two widespread and broad classes of cells in inferior temporal cortex of macaque monkey...

  5. Properties of doublecortin-(DCX-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice.

    Directory of Open Access Journals (Sweden)

    Friederike Klempin

    Full Text Available The piriform cortex receives input from the olfactory bulb and (via the entorhinal cortex sends efferents to the hippocampus, thereby connecting the two canonical neurogenic regions of the adult rodent brain. Doublecortin (DCX is a cytoskeleton-associated protein that is expressed transiently in the course of adult neurogenesis. Interestingly, the adult piriform cortex, which is usually considered non-neurogenic (even though some reports exist that state otherwise, also contains an abundant population of DCX-positive cells. We asked how similar these cells would be to DCX-positive cells in the course of adult hippocampal neurogenesis. Using BAC-generated transgenic mice that express GFP under the DCX promoter, we studied DCX-expression and electrophysiological properties of DCX-positive cells in the mouse piriform cortex in comparison with the dentate gyrus. While one class of cells in the piriform cortex indeed showed features similar to newly generated immature granule neurons, the majority of DCX cells in the piriform cortex was mature and revealed large Na+ currents and multiple action potentials. Furthermore, when proliferative activity was assessed, we found that all DCX-expressing cells in the piriform cortex were strictly postmitotic, suggesting that no DCX-positive "neuroblasts" exist here as they do in the dentate gyrus. We conclude that DCX in the piriform cortex marks a unique population of postmitotic neurons with a subpopulation that retains immature characteristics associated with synaptic plasticity. DCX is thus, per se, no marker of neurogenesis but might be associated more broadly with plasticity.

  6. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    Science.gov (United States)

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850576

  7. Estudos genéticos e moleculares em um grande grupo de pacientes com malformações do córtex cerebral Genetics and molecular study in group of patients with malformations of cerebral cortex

    Directory of Open Access Journals (Sweden)

    Fábio Rossi Torres

    2008-09-01

    Full Text Available OBJETIVOS: As malformações do córtex cerebral (MCC são uma causa importante de epilepsia. Nossas metas foram: triagem de mutações em genes associados às MCC (FLN1, LIS1, DCX e EMX2, investigar funcionalmente as mutações e mapear o locus para polimicrogiria perisylviana familiar. MÉTODOS: A triagem de mutações foi realizada por PCR, DHPLC e sequênciamento. Estudo funcional foi realizado por RT-PCR, PCR em tempo real e HUMARA. O estudo de ligação foi realizado por PCR e análise com programas Fragment Profiler® e MLINK®. RESULTADOS: Mutações deletérias foram identificadas em 3/108 pacientes. Uma mutação de splicing (G987C em FLN1 foi identificada em duas pacientes aparentadas com heterotopia nodular periventricular. Mudança no padrão de inativação do cromossomo X é responsável pelas diferenças clínicas entre as pacientes. Uma substituição A1385C (H277P foi identificada em LIS1 em um indivíduo com lissencefalia. Alterações neutras foram identificadas em DCX e EMX2. A análise de ligação identificou um locus em Xq27.2-Xq27.3 para polimicrogiria familiar. CONCLUSÃO: Mosaicismo, mutações em regiões não codificantes, deleções, rearranjos e casos atípicos podem estar contribuindo para a baixa freqüência de mutações identificadas. Esquizencefalia e polimicrogiria parecem não ter base genética relacionada com o gene EMX2. Um novo locus candidato em Xq27.2-Xq27.3 foi identificado para polimicrogiria perisylviana familiar.OBJECTIVES: Malformations of cerebral cortex (MCC are an important cause of epilepsy. Our main goals were: to search for mutations in genes responsible for MCC (FLN1, LIS1, DCX and EMX2, to map the locus for familial perisylvian polymicrogyria and to investigate the molecular mechanisms of the mutations identified. Methods: Mutation screening was performed by PCR, DHPLC and sequencing. HUMARA and Real Time PCR were performed to study the molecular mechanisms of mutations. Linkage analysis

  8. 先天性甲状腺功能减退症新生大鼠大脑蛋白质差异表达的研究%Proteomic changes in cerebral cortex of neonatal rats with experimental congenital hypothyroidism

    Institute of Scientific and Technical Information of China (English)

    刘春蓉; 于保国; 刘燕青; 刘亚敏; 杨术旺; 张永亮

    2011-01-01

    Objective To screen differentially expressed brain proteins with proteomic method in cerebral cortex of neonatal rats with congenital hypothyroidism. Method From the 13th day of gestation,pregnant Wistar rats from the experimental group were given intragastrically with 2. 5 ml of 1%propylthiouracil daily. Cerebral cortex specimens were collected from the control and hypothyroidism neonatal rats. Two-directional electrophoresis (2-DE) was applied to analyze protein expression diversities between the euthyroid and hypothyroidism neonatal rat cerebral cortex. Protein spots with significantly different expression were screened and identified by mass spectrometry. Radioimmunoassay (RIA) was used to analyze serum FT3 , FT4 levels of each groups. Result The body weight of hypothyroid neonatal rats were lower than those in the corresponding control group (t = -8.07, P <0. 01 ). The FT3 levels of hypothyroid neonatal rats were lower than those in the corresponding control group ( t = 5. 39, P < 0. 01 ). The FT4 levels of hypothyroid neonatal rats were lower than those in the corresponding control group (t = 7.62, P < 0. 01 ).Stable 2-DE maps of normal and CH neonatal rat were constantly obtained. The maps were analyzed by software. Seven protein spots with high reproducibility, high resolution and significantly different expression were chosen and identified by mass spectrometry, including collapsing response mediator protein 2, actin related protein 2/3 complex subunit 5, ubiquitin-conjugating enzyme E2-25K, ATP synthase subunit d, CuZn superoxide dismutase, synuclein alpha, and nucleoside diphosphate kinase. Conclusion The value of this research is demonstrated here by the identification of several proteins known to be associated with nerve synapse structures formation, cell survival, metabolism, cell signal transduction, neural differentiation and nerve growth in the central nervous system. Furthermore this study identified several proteins except for collapsing

  9. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    International Nuclear Information System (INIS)

    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells

  10. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Sarah C. [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Edrissi, Hamidreza [University of Ottawa, Neuroscience Graduate Program, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Burger, Dylan [Ottawa Hospital Research Institute, Kidney Centre, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Cadonic, Robert; Hakim, Antoine [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Thompson, Charlie, E-mail: charliet@uottawa.ca [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada)

    2014-07-18

    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells.

  11. Tributyltin induces oxidative damage, inflammation and apoptosis via disturbance in blood–brain barrier and metal homeostasis in cerebral cortex of rat brain: An in vivo and in vitro study

    International Nuclear Information System (INIS)

    Highlights: • Sustainable blood–brain barrier disruption was found by single acute dose of TBTC (up to 1 week). • Imbalance in essential metal homeostasis in the cortical tissue may lead to oxidative stress. • Astroglial activation and inflammation resulted in neuronal loss. • TBTC primarily induced apoptosis as found in in-vitro study via activation of calcium, p38 signaling, ROS and caspases. • Calcium inhibitors and anti-oxidants showed protective efficacy in TBTC induced cell death. - Abstract: Tributyltin (TBT), a member of the organotin family, is primarily used for its biocidal activity. Persistent environmental levels of TBT pose threat to the ecosystem. Since neurotoxic influence of TBT remains elusive, we therefore, studied its effect on cerebral cortex of male Wistar rats. A single oral dose of Tributyltin-Chloride (TBTC) (10, 20, 30 mg/kg) was administered and the animals were sacrificed on day 3 and day 7. Blood–brain barrier permeability remained disrupted significantly till day 7 with all the doses of TBTC. Pro-oxidant metal levels (Fe, Cu) were increased with a concomitant decrease in Zn. ROS generation was substantially raised resulting in oxidative damage (increased protein carbonylation and lipid peroxidation) with marked decline in tissue antioxidant status (GSH/GSSG levels). Protein expression studies indicated astrocyte activation, upregulation of inflammatory molecules (IL-6, Cox-2 and NF-κB) and simultaneous elevation in the apoptotic index (Bax/Bcl2). Neurodegeneration was evident by reduced neurofilament expression and increased calpain cleaved Tau levels. The in-vitro study demonstrated involvement of calcium and signaling molecules (p38), with downstream activation of caspase-3 and -8, and apoptotic cell death was evident by nuclear fragmentation, DNA laddering and Annexin V binding experiments. Ca2+ inhibitors (BAPTA-AM, EGTA, and RR) and free radical scavengers (NAC and biliprotein [C-PC]) increased cell viability (MTT

  12. Treatment of one case of cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells

    OpenAIRE

    Li Min; Yu Aixue; Zhang Fangfang; Dai GuangHui; Cheng Hongbin; Wang Xiaodong; An Yihua

    2012-01-01

    Abstract Background Cerebral palsy is currently one of the major diseases that cause severe paralysis of the nervous system in children; approximately 9–30% of cerebral palsy patients are also visually impaired, for which no effective treatment is available. Bone marrow mesenchymal stem cells (BMSCs) have very strong self-renewal, proliferation, and pluripotent differentiation potentials. Therefore, autologous BMSC transplantation has become a novel method for treating cerebral palsy. Methods...

  13. Neurochemical Phenotype of Reelin Immunoreactive Cells in the Piriform Cortex Layer II

    Science.gov (United States)

    Carceller, Hector; Rovira-Esteban, Laura; Nacher, Juan; Castrén, Eero; Guirado, Ramon

    2016-01-01

    Reelin, a glycoprotein expressed by Cajal-Retzius neurons throughout the marginal layer of developing neocortex, has been extensively shown to play an important role during brain development, guiding neuronal migration and detachment from radial glia. During the adult life, however, many studies have associated Reelin expression to enhanced neuronal plasticity. Although its mechanism of action in the adult brain remains mostly unknown, Reelin is expressed mainly by a subset of mature interneurons. Here, we confirm the described phenotype of this subpopulation in the adult neocortex. We show that these mature interneurons, although being in close proximity, lack polysialylated neural cell adhesion molecule (PSA-NCAM) expression, a molecule expressed by a subpopulation of mature interneurons, related to brain development and involved in neuronal plasticity of the adult brain as well. However, in the layer II of Piriform cortex there is a high density of cells expressing Reelin whose neurochemical phenotype and connectivity has not been described before. Interestingly, in close proximity to these Reelin expressing cells there is a numerous subpopulation of immature neurons expressing PSA-NCAM and doublecortin (DCX) in this layer of the Piriform cortex. Here, we show that Reelin cells express the neuronal marker Neuronal Nuclei (NeuN), but however the majority of neurons lack markers of mature excitatory or inhibitory neurons. A detail analysis of its morphology indicates these that some of these cells might correspond to semilunar neurons. Interestingly, we found that the majority of these cells express T-box brain 1 (TBR-1) a transcription factor found not only in post-mitotic neurons that differentiate to glutamatergic excitatory neurons but also in Cajal-Retzius cells. We suggest that the function of these Reelin expressing cells might be similar to that of the Cajal-Retzius cells during development, having a role in the maintenance of the immature phenotype of the

  14. Computational analysis of cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Hidemasa; Abe, Osamu; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan)

    2010-08-15

    Magnetic resonance imaging (MRI) has been used in many in vivo anatomical studies of the brain. Computational neuroanatomy is an expanding field of research, and a number of automated, unbiased, objective techniques have been developed to characterize structural changes in the brain using structural MRI without the need for time-consuming manual measurements. Voxel-based morphometry is one of the most widely used automated techniques to examine patterns of brain changes. Cortical thickness analysis is also becoming increasingly used as a tool for the study of cortical anatomy. Both techniques can be relatively easily used with freely available software packages. MRI data quality is important in order for the processed data to be accurate. In this review, we describe MRI data acquisition and preprocessing for morphometric analysis of the brain and present a brief summary of voxel-based morphometry and cortical thickness analysis. (orig.)

  15. Effect of Contrast on Visual Spatial Summation in Different Cell Categories in Cat Primary Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Ke Chen

    Full Text Available Multiple cell classes have been found in the primary visual cortex, but the relationship between cell types and spatial summation has seldom been studied. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. In this study, we classified V1 cells into fast-spiking units (FSUs and regular-spiking units (RSUs and then examined spatial summation at high and low contrast. Our results revealed that the excitatory classical receptive field and the suppressive non-classical receptive field expanded at low contrast for both FSUs and RSUs, but the expansion was more marked for the RSUs than for the FSUs. For most V1 neurons, surround suppression varied as the contrast changed from high to low. However, FSUs exhibited no significant difference in the strength of suppression between high and low contrast, although the overall suppression decreased significantly at low contrast for the RSUs. Our results suggest that the modulation of spatial summation by stimulus contrast differs across populations of neurons in the cat primary visual cortex.

  16. Renal T-cell lymphoma with cerebral metastasis in a dog with chronic canine ehrlichiosis

    Directory of Open Access Journals (Sweden)

    E.P. Lane

    2002-07-01

    Full Text Available A renal T-cell lymphoma with exclusive cerebral metastasis was diagnosed in a 5-year-old Staffordshire bull terrier bitch euthanased for aggression. This is the first recorded case of primary renal lymphoma in a dog. Immune suppression, due to chronic canine monocytic ehrlichiosis, mayaccount for the unusual primary site and metastatic patternof the tumour.

  17. Postnatal maturation of somatostatin-expressing inhibitory cells in the somatosensory cortex of GIN mice

    Directory of Open Access Journals (Sweden)

    Erika E. Fanselow

    2012-05-01

    Full Text Available Postnatal inhibitory neuron development affects mammalian brain function, and failure of this maturation process may underlie pathological conditions such as epilepsy, schizophrenia and depression. Furthermore, understanding how physiological properties of inhibitory neurons change throughout development is critical to understanding the role(s these cells play in cortical processing. One subset of inhibitory neurons that may be affected during postnatal development is somatostatin-expressing cells. A subset of these cells is labeled with green-fluorescent protein (GFP in a line of mice known as the GIN line. Here, we studied how intrinsic electrophysiological properties of these cells changed in the somatosensory cortex of GIN mice between postnatal ages P11 to P32+. GIN cells were targeted for whole-cell current clamp recordings and ranges of positive and negative current steps were presented to each cell. The results showed that as the neocortical circuitry matured during this critical time period, multiple intrinsic and firing properties of GIN inhibitory neurons, as well as those of excitatory (regular-spiking [RS] cells, were altered. Furthermore, these changes were such that the output of GIN cells, but not RS cells, increased over this developmental period. We quantified changes in excitability by examining the input-output relationship of both GIN and RS cells. We found that the firing frequency of GIN cells increased with age, while the rheobase current remained constant across development. This created a multiplicative increase in the input-output relationship in the GIN cells, leading to increases in gain with age. The input-output relationship of the RS cells, on the other hand, showed primarily an additive shift with age, but no substantial change in gain. These results suggest that as the neocortex matures, inhibition coming from GIN cells may become more influential in the circuit and play a greater role in the modulation of

  18. A Multidisciplinary Health Care Team's Efforts to Improve Educational Attainment in Children with Sickle-Cell Anemia and Cerebral Infarcts

    Science.gov (United States)

    King, Allison; Herron, Sonya; McKinstry, Robert; Bacak, Stephen; Armstrong, Melissa; White, Desiree; DeBaun, Michael

    2006-01-01

    The primary objective of this study was to improve the educational success of children with sickle-cell disease (SCD) and cerebral infarcts. A prospective intervention trial was conducted; a multidisciplinary team was created to maximize educational resources for children with SCD and cerebral infarcts. Students were evaluated systematically…

  19. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  20. Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex

    Directory of Open Access Journals (Sweden)

    Daniel James Miller

    2014-05-01

    Full Text Available Determining the cellular composition of specific brain regions is crucial to our understanding of the function of neurobiological systems. It is therefore useful to identify the extent to which different methods agree when estimating the same properties of brain circuitry. In this study, we estimated the number of neuronal and non-neuronal cells in the primary visual cortex (area 17 or V1 of both hemispheres from a single chimpanzee. Specifically, we processed samples distributed across V1 of the right hemisphere after cortex was flattened into a sheet using two variations of the isotropic fractionator cell and neuron counting method. We processed the left hemisphere as serial brain slices for stereological investigation. The goal of this study was to evaluate the agreement between these methods in the most direct manner possible by comparing estimates of cell density across one brain region of interest in a single individual. In our hands, these methods produced similar estimates of the total cellular population (approximately 1 billion as well as the number of neurons (approximately 675 million in chimpanzee V1, providing evidence that both techniques estimate the same parameters of interest. In addition, our results indicate the strengths of each distinct tissue preparation procedure, highlighting the importance of attention to anatomical detail. In summary, we found that the isotropic fractionator and the stereological optical fractionator produced concordant estimates of the cellular composition of V1, and that this result supports the conclusion that chimpanzees conform to the primate pattern of exceptionally high packing density in V1. Ultimately, our data suggest that investigators can optimize their experimental approach by using any of these counting methods to obtain reliable cell and neuron counts.

  1. MR angiographic and parenchymal evaluation of cerebral infaraction in sickle cell anemia

    International Nuclear Information System (INIS)

    Cerebral infarction is an important complication of sickle cell anemia, believed to be related to large-vessel stenoses/occlusion and/or capillary/venous sickling resulting in thrombosis. Identification of these complications (especially large-vessel arterial disease) is important in selecting patients for transfusion therapy. The purpose of this study was to determine the suitability of combined three-dimensional Fourier transform time-of-flight MR angiographic and parenchymal T2-weighted spin-echo examinations for evaluation of central nervous system (CNS) complications of sickle cell anemia. Seven patients (age range, 5-14 years) were evaluated. Five had documented strokes while two had symptoms resembling those of transient ischemic attack. The preliminary data indicate that combined MR angiographic and parenchymal studies are capable of identifying those patients with sickle cell anemia complicated by large-vessel CNS occlusive disease and cerebral infarction and can be used as a noninvasive guide to therapy

  2. Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?

    Directory of Open Access Journals (Sweden)

    Manuel Schottdorf

    Full Text Available It has been argued that the emergence of roughly periodic orientation preference maps (OPMs in the primary visual cortex (V1 of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs. The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.

  3. TRPV4 Regulates Breast Cancer Cell Extravasation, Stiffness and Actin Cortex.

    Science.gov (United States)

    Lee, Wen Hsin; Choong, Lee Yee; Mon, Naing Naing; Lu, SsuYi; Lin, Qingsong; Pang, Brendan; Yan, Benedict; Krishna, Vedula Sri Ram; Singh, Himanshu; Tan, Tuan Zea; Thiery, Jean Paul; Lim, Chwee Teck; Tan, Patrick Boon Ooi; Johansson, Martin; Harteneck, Christian; Lim, Yoon Pin

    2016-01-01

    Metastasis is a significant health issue. The standard mode of care is combination of chemotherapy and targeted therapeutics but the 5-year survival rate remains low. New/better drug targets that can improve outcomes of patients with metastatic disease are needed. Metastasis is a complex process, with each step conferred by a set of genetic aberrations. Mapping the molecular changes associated with metastasis improves our understanding of the etiology of this disease and contributes to the pipeline of targeted therapeutics. Here, phosphoproteomics of a xenograft-derived in vitro model comprising 4 isogenic cell lines with increasing metastatic potential implicated Transient Receptor Potential Vanilloid subtype 4 in breast cancer metastasis. TRPV4 mRNA levels in breast, gastric and ovarian cancers correlated with poor clinical outcomes, suggesting a wide role of TRPV4 in human epithelial cancers. TRPV4 was shown to be required for breast cancer cell invasion and transendothelial migration but not growth/proliferation. Knockdown of Trpv4 significantly reduced the number of metastatic nodules in mouse xenografts leaving the size unaffected. Overexpression of TRPV4 promoted breast cancer cell softness, blebbing, and actin reorganization. The findings provide new insights into the role of TRPV4 in cancer extravasation putatively by reducing cell rigidity through controlling the cytoskeleton at the cell cortex. PMID:27291497

  4. Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism.

    Directory of Open Access Journals (Sweden)

    Christina R Muratore

    Full Text Available The folate and vitamin B12-dependent enzyme methionine synthase (MS is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression.

  5. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports.

    Science.gov (United States)

    Jeon, Yeon Jin; Lee, Hyun Young; Jung, In Ah; Cho, Won-Kyoung; Cho, Bin; Suh, Byung-Kyu

    2015-12-01

    Cerebral salt-wasting syndrome (CSWS) is a rare disease characterized by a extracellular volume depletion and hyponatremia induced by marked natriuresis. It is mainly reported in patients who experience a central nervous system insult, such as cerebral hemorrhage or encephalitis. The syndrome of inappropriate antidiuretic hormone secretion is a main cause of severe hyponatremia after hematopoietic stem cell transplantation, whereas CSWS is rarely reported. We report 3 patients with childhood acute leukemia who developed CSWS with central nervous system complication after hematopoietic stem cell transplantation. The diagnosis of CSW was made on the basis of severe hyponatremia accompanied by increased urine output with clinical signs of dehydration. All patients showed elevated natriuretic peptide and normal antidiuretic hormone. Aggressive water and sodium replacement treatment was instituted in all 3 patients and 2 of them were effectively recovered, the other one was required to add fludrocortisone administration. PMID:26817009

  6. Primary angiitis of the central nervous system with diffuse cerebral mass effect and giant cells.

    LENUS (Irish Health Repository)

    Kinsella, J A

    2012-02-01

    Primary angiitis of the central nervous system (PACNS), also called primary CNS vasculitis, is an idiopathic inflammatory condition affecting only intracranial and spinal cord vessels, particularly medium-sized and smaller arteries and arterioles. Angiography and histopathology typically do not reveal evidence of systemic vasculitis.(1,2) Histopathology usually reveals granulomatous inflammation affecting arterioles and small arteries of the parenchyma and\\/or leptomeninges, similar to that seen in Takayasu\\'s or giant cell arteritis.(1-3) We report a patient with biopsy-proven PACNS with giant cells and cerebral mass effect on MRI. Magnetic resonance angiography and cerebral angiography appeared normal and there was no evidence of extracranial vasculitis.

  7. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  8. Primary cerebral non-Langerhans cell histiocytosis: MRI and differential diagnosis

    International Nuclear Information System (INIS)

    We report a young woman with primary cerebral non-Langerhans cell histiocytosis of the juvenile xanthogranuloma family. The clinical course was complicated by extensive infiltration of cranial nerves and meninges and epi- and intramedullary spinal dissemination. Whereas the cutaneous form of juvenile xanthogranuloma is usually benign and self-limited, central nervous system involvement is associated with high morbidity and mortality and might therefore be considered a separate clinical entity. (orig.)

  9. Primary cerebral non-Langerhans cell histiocytosis: MRI and differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ernemann, U.; Skalej, M.; Voigt, K. [Department of Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany); Hermisson, M.; Platten, M. [Department of Neurology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany); Jaffe, R. [Pathology Department, Children' s Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213 (United States)

    2002-09-01

    We report a young woman with primary cerebral non-Langerhans cell histiocytosis of the juvenile xanthogranuloma family. The clinical course was complicated by extensive infiltration of cranial nerves and meninges and epi- and intramedullary spinal dissemination. Whereas the cutaneous form of juvenile xanthogranuloma is usually benign and self-limited, central nervous system involvement is associated with high morbidity and mortality and might therefore be considered a separate clinical entity. (orig.)

  10. Heparin Attenuates the Expression of TNFα-induced Cerebral Endothelial Cell Adhesion Molecule

    OpenAIRE

    Lee, Jeong Ho; Kim, Chul Hoon; Seo, Gi Ho; Lee, Jinu; Kim, Joo Hee; Kim, Dong Goo; Ahn, Young Soo

    2008-01-01

    Heparin is a well-known anticoagulant widely used in various clinical settings. Interestingly, recent studies have indicated that heparin also has anti-inflammatory effects on neuroinflammation-related diseases, such as Alzheimer's disease and meningitis. However, the underlying mechanism of its actions remains unclear. In the present study, we examined the anti-inflammatory mechanism of heparin in cultured cerebral endothelial cells (CECs), and found that heparin inhibited the tumor necrosis...

  11. The role of Rho/Rho-kinase pathway and the neuroprotective effects of fasudil in chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Ya-yun Yan; Xiao-ming Wang; Yan Jiang; Han Chen; Jin-ting He; Jing Mang; Yan-kun Shao; Zhong-xin Xu

    2015-01-01

    The Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic cerebral ischemia. In this study, rat models of chronic cerebral ischemia were established by permanent bilateral common carotid artery occlusion and intra-gastrically administered 9 mg/kg fasudil, a powerful ROCK inhibitor, for 9 weeks. Morris water maze results showed that cognitive impairment progressively worsened as the cerebral ischemia proceeded. Immunohistochemistry, semi-quantitative RT-PCR and western blot analysis showed that the expression levels of Rho-kinase, its substrate myosin-binding subunit, and its relat-ed protein alpha smooth muscle actin, significantly increased after chronic cerebral ischemia. TUNEL staining showed that chronic cerebral ischemia could lead to an increase in neuronal apoptosis, as well as the expression level of caspase-3 in the frontal cortex of rats subjected to chronic cerebral ischemia. Fasudil treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, and decreased the expression level of Rho-kinase, myosin-binding subunit and alpha smooth muscle actin. Furthermore, fasudil could regulate cerebral injury by reducing cell apoptosis and decreasing caspase-3 expression in the frontal cortex. These ifndings demonstrate that fasudil can protect against cognitive impairment induced by chronic cerebral ischemiavia the Rho/Rho-kinase signaling pathway and anti-apoptosis mechanism.

  12. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection.

    Directory of Open Access Journals (Sweden)

    Catherine Q Nie

    2009-04-01

    Full Text Available Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis.

  13. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex

    Science.gov (United States)

    Cruz-Martín, Alberto; El-Danaf, Rana N.; Osakada, Fumitaka; Sriram, Balaji; Dhande, Onkar S.; Nguyen, Phong L.; Callaway, Edward M.; Ghosh, Anirvan; Huberman, Andrew D.

    2014-03-01

    How specific features in the environment are represented within the brain is an important unanswered question in neuroscience. A subset of retinal neurons, called direction-selective ganglion cells (DSGCs), are specialized for detecting motion along specific axes of the visual field. Despite extensive study of the retinal circuitry that endows DSGCs with their unique tuning properties, their downstream circuitry in the brain and thus their contribution to visual processing has remained unclear. In mice, several different types of DSGCs connect to the dorsal lateral geniculate nucleus (dLGN), the visual thalamic structure that harbours cortical relay neurons. Whether direction-selective information computed at the level of the retina is routed to cortical circuits and integrated with other visual channels, however, is unknown. Here we show that there is a di-synaptic circuit linking DSGCs with the superficial layers of the primary visual cortex (V1) by using viral trans-synaptic circuit mapping and functional imaging of visually driven calcium signals in thalamocortical axons. This circuit pools information from several types of DSGCs, converges in a specialized subdivision of the dLGN, and delivers direction-tuned and orientation-tuned signals to superficial V1. Notably, this circuit is anatomically segregated from the retino-geniculo-cortical pathway carrying non-direction-tuned visual information to deeper layers of V1, such as layer 4. Thus, the mouse harbours several functionally specialized, parallel retino-geniculo-cortical pathways, one of which originates with retinal DSGCs and delivers direction- and orientation-tuned information specifically to the superficial layers of the primary visual cortex. These data provide evidence that direction and orientation selectivity of some V1 neurons may be influenced by the activation of DSGCs.

  14. Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium.

    Science.gov (United States)

    Bement, William M; Leda, Marcin; Moe, Alison M; Kita, Angela M; Larson, Matthew E; Golding, Adriana E; Pfeuti, Courtney; Su, Kuan-Chung; Miller, Ann L; Goryachev, Andrew B; von Dassow, George

    2015-11-01

    Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, although Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modelling results show that waves represent excitable dynamics of a reaction-diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation. PMID:26479320

  15. Application of magnetic resonance imaging for monitoring stem cell transplantation for the treatment of cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Xianglin Zhang; Gang Wang; Furen Dong; Zhiming Wang

    2012-01-01

    OBJECTIVE: To identify global research trends in the application of MRI for monitoring stem cell transplantation using a bibliometric analysis of Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies relating to the application of MRI for detecting stem cell transplantation for the treatment of cerebral ischemia using papers in Web of Science published from 2002 to 2011. SELECTION CRITERIA: The inclusion criteria were: (a) peer-reviewed articles on the application of MRI for detecting transplanted stem cells published and indexed in Web of Science; (b) year of publication between 2002 and 2011. Exclusion criteria were: (a) articles that required manual searching or telephone access; (b) some corrected papers.MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to journals; (3) distribution according to institution; (4) distribution according to country; (5) top cited authors over the last 10 years.RESULTS: A total of 1 498 studies related to the application of MRI for monitoring stem cell transplantation appeared in Web of Science from 2002 to 2011, almost half of which were derived from American authors and institutes. The number of studies on the application of MRI for detecting stem cell transplantation has gradually increased over the past 10 years. Most papers on this topic appeared in Magnetic Resonance in Medicine. CONCLUSION: This analysis suggests that few experimental studies have been investigated the use of MRI for tracking SPIO-labeled human umbilical cord blood-derived mesenchymal stem cells during the treatment of cerebral ischemia.

  16. Prolonged Exposure to NMDAR Antagonist Induces Cell-type Specific Changes of Glutamatergic Receptors in Rat Prefrontal Cortex

    OpenAIRE

    Wang, Huai-Xing; Gao, Wen-Jun

    2011-01-01

    N-methyl-D-aspartic acid (NMDA) receptors are critical for both normal brain functions and the pathogenesis of schizophrenia. We investigated the functional changes of glutamatergic receptors in the pyramidal cells and fast-spiking (FS) interneurons in the adolescent rat prefrontal cortex in MK-801 model of schizophrenia. We found that although both pyramidal cells and FS interneurons were affected by in vivo subchronic blockade of NMDA receptors, MK-801 induced distinct changes in αamino-3-h...

  17. The change of pathology and expression of caspase-3 in cerebral cortex and hippocampus and cerebellum of alcoholism rats%大鼠酒精中毒后大脑皮质、海马、小脑的病理学改变及caspase-3的异常表达

    Institute of Scientific and Technical Information of China (English)

    贾明月; 朱丹; 陈嘉峰

    2012-01-01

    nervous system damages. The cell in cerebral cortex, hippocampus and cerebellum pyramidal of alcoholic group had diminuted in number,and the nerve cell had arranged disorder by HE dyes medthod. Apoptosis cells of alcoholic group increased obviously compare to control group by TUNEL method (P < 0.05). Alcoholic groups increased caspase-3 expression by SP dying method ( P < 0. 05). Conclusion The chronic alcoholism may cause the rats cerebral cortex,hippocampus and cerebellums pathology change and nerve cell apoptosis and caapase-3 mRNA masculine expression with the corresponds spot of apoptosis.

  18. Cryopreserved ovarian cortex from patients with leukemia in complete remission contains no apparent viable malignant cells

    DEFF Research Database (Denmark)

    Greve, Tine; Clasen-Linde, Erik; Andersen, Morten T; Andersen, Mette K; Sørensen, Stine D; Rosendahl, Mikkel; Ralfkiær, Elisabeth; Yding Andersen, Claus

    2012-01-01

    Some women suffering from leukemia require bone marrow transplantation to be cured. Bone marrow transplantation is associated with a high risk of sterility and some patients are offered fertility preservation by cryopreservation of ovarian cortex. Transplantation of ovarian cortex to women cured of...

  19. Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria.

    Directory of Open Access Journals (Sweden)

    Tovah N Shaw

    Full Text Available There is significant evidence that brain-infiltrating CD8+ T cells play a central role in the development of experimental cerebral malaria (ECM during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the mechanisms through which they mediate their pathogenic activity during malaria infection remain poorly understood. Utilizing intravital two-photon microscopy combined with detailed ex vivo flow cytometric analysis, we show that brain-infiltrating T cells accumulate within the perivascular spaces of brains of mice infected with both ECM-inducing (P. berghei ANKA and non-inducing (P. berghei NK65 infections. However, perivascular T cells displayed an arrested behavior specifically during P. berghei ANKA infection, despite the brain-accumulating CD8+ T cells exhibiting comparable activation phenotypes during both infections. We observed T cells forming long-term cognate interactions with CX3CR1-bearing antigen presenting cells within the brains during P. berghei ANKA infection, but abrogation of this interaction by targeted depletion of the APC cells failed to prevent ECM development. Pathogenic CD8+ T cells were found to colocalize with rare apoptotic cells expressing CD31, a marker of endothelial cells, within the brain during ECM. However, cellular apoptosis was a rare event and did not result in loss of cerebral vasculature or correspond with the extensive disruption to its integrity observed during ECM. In summary, our data show that the arrest of T cells in the perivascular compartments of the brain is a unique signature of ECM-inducing malaria infection and implies an important role for this event in the development of the ECM-syndrome.

  20. Age-Dependent Decrease and Alternative Splicing of Methionine Synthase mRNA in Human Cerebral Cortex and an Accelerated Decrease in Autism

    OpenAIRE

    Muratore, Christina R.; Hodgson, Nathaniel W.; Trivedi, Malav S.; Abdolmaleky, Hamid M.; Persico, Antonio M.; Lintas, Carla; de la Monte, Suzanne; Deth, Richard C.

    2013-01-01

    The folate and vitamin B12-dependent enzyme methionine synthase (MS) is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years ...

  1. Voluntary Running in Young Adult Mice Reduces Anxiety-Like Behavior and Increases the Accumulation of Bioactive Lipids in the Cerebral Cortex

    OpenAIRE

    Santos-Soto, Iván J.; Chorna, Nataliya; Carballeira, Néstor M.; Vélez-Bartolomei, José G.; Méndez-Merced, Ana T.; Chornyy, Anatoliy P.; de Ortiz, Sandra Peña

    2013-01-01

    Combinatorial therapies using voluntary exercise and diet supplementation with polyunsaturated fatty acids have synergistic effects benefiting brain function and behavior. Here, we assessed the effects of voluntary exercise on anxiety-like behavior and on total FA accumulation within three brain regions: cortex, hippocampus, and cerebellum of running versus sedentary young adult male C57/BL6J mice. The running group was subjected to one month of voluntary exercise in their home cages, while t...

  2. Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. : ErbB signaling in human astrocytes

    OpenAIRE

    Sharif, Ariane; Duhem-Tonnelle, Véronique; Allet, Cécile; Baroncini, Marc; Loyens, Anne; Kerr-Conte, Julie; Collier, Francis; Blond, Serge; Ojeda, Sergio; Junier, Marie-Pierre; Prévot, Vincent

    2009-01-01

    Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron-glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of...

  3. Improvement of learning and memory abilities and motor function in rats with cerebral infarction by intracerebral transplantation of neuron-like cells derived from bone marrow stromal cells

    Institute of Scientific and Technical Information of China (English)

    Ying Wang; Yubin Deng; Ye Wang; Yan Li; Zhenzhen Hu

    2006-01-01

    BACKGROUND: Transplantation of fetal cell suspension or blocks of fetal tissue can ameliorate the nerve function after the injury or disease in the central nervous system,and it has been used to treat neurodegenerative disorders induced by Parkinson disease.OBJECTIVE:To observe the effects of the transplantation of neuron-like cells derived from bone marrow stromal cells (rMSCs) into the brain in restoring the dysfunctions of muscle strength and balance as well as learning and memory in rat models of cerebral infarction.DESIGN : A randomized controlled experiment.SETTING: Department of Pathophysiology, Zhongshan Medical College of Sun Yat-sen University.MATERIALS: Twenty-four male SD rats (3-4 weeks of age, weighing 200-220 g) were used in this study (Certification number:2001A027).METHODS:The experiments were carried out in Zhongshan Medical College of Sun Yat-sen University be tween December 2003 and December 2004.① Twenty-four male SD rats randomized into three groups with 8 rats in each: experimental group, control group and sham-operated group. Rats in the experiment al group and control group were induced into models of middle cerebral artery occlusion (MCAO). After in vitro cultured, purified and identified with digestion, the Fischer344 rMSCs were induced to differentiate by tanshinone IIA, which was locally injected into the striate cortex (18 area) of rats in the experimental group, and the rats in the control group were injected by L-DMEM basic culture media (without serum) of the same volume to the corresponding brain area.In the sham-operated group, only muscle and vessel of neck were separated.② At 2 and 8 weeks after the transplantation,the rats were given the screen test,prehensile-traction test,balance beam test and Morris water-maze test. ③ The survival and distribution of the induced cells in corresponding brain area were observed with Nissl stained with toluidine blue and hematoxylin and eosin (HE) staining in the groups.MAIN OUTCOME

  4. Terapia celular no acidente vascular cerebral Cell therapy in strokes

    Directory of Open Access Journals (Sweden)

    Rosalia Mendez-Otero

    2009-05-01

    Full Text Available O AVC é o recordista em número de óbitos e a maior causa de incapacidade no Brasil. Apesar das inúmeras pesquisas realizadas ao longo dos últimos anos não há terapias farmacológicas adequadas para este quadro e, neste cenário, as terapias celulares vêm sendo consideradas como alternativas terapêuticas para diminuir as perdas funcionais decorrentes do AVC. Nesta revisão comentaremos os resultados de diversos estudos pré-clinicos e de alguns clínicos que utilizaram diferentes tipos de células-tronco em AVC.Stroke is the leading cause of death and incapacity in Brazil. Over the last few years, numerous preclinical and clinical studies have been carried out, however to date, none of the drugs tested in these studies were effective in patients. The emerging field of stem cell research has raised hope of therapy to ameliorate the functional loss after strokes. In this review we will discuss the results of several preclinical studies and clinical trials using different types of stem cells in the treatment of strokes.

  5. The Change of Mobility and Deformability of Red Cell Membrane in the Patients with Cerebral Infarction

    Institute of Scientific and Technical Information of China (English)

    Wang Hongyu

    2000-01-01

    To study the blood cell hemoyheology,the mobility and deformability of red cell membrane,the activity and assembly of platelets ,the content of cholesterol crvstals and thrombus in circulation in cerebral infarction patientrs. Observing the cell hemorheologi cal condition of the red clee, platelet,cholesterol cryitals, and active thrombus in active blood analysis with Bradford's microscope(15,000 times). The study indicates that in the ceredral infarction patients,the red cell appeared rowleax and its deformbility was poor and its membrane mobility reduvde(P<0.05). In this group blood viscosity was higher, the platelet assembling rate rose and the thrombus in circulation increases more signifi cantly than the nomal group (P<0.01). The change of membrane mobility,the rsising of platelet assemble rate, the in creasing of plasma viscosity and flowing embolism are the important pathological basis of cerebral infarction. It may provide important material and practical meaning for precluding,diagnosing,curing and prognosising ischmia cerebralvas cular diseases.

  6. 先天性HCMV感染胎鼠大脑皮层ET-1 mRNA的研究%Study on endothelin-1 mRNA of cerebral cortex of fetal mouse following congenital human cytomegalovirus infection

    Institute of Scientific and Technical Information of China (English)

    袁中玉; 王明丽; 陈贵海; 李京培

    2001-01-01

    目的 对先天性人巨细胞病毒(HCMV)感染的胎鼠大脑皮层内皮素-1(ET-1)mRNA进行测定,以探讨先天性HCMV感染致脑损害的机制。方法 在建立先天性HCMV中枢神经系统(CNS)感染胎鼠模型的基础上,用逆转录-聚合酶链式反应(RT-PCR)测定受不同病毒剂量感染的胎鼠大脑皮层ET-1mRNA,并用地高辛标记的ET-1寡核苷酸探针对大脑皮层细胞印片进行原位杂交以检测相应mRNA转录量及胞内定位。结果 在大脑皮层组织的上清液中HCMV分离阳性;病理学研究证实受染胎鼠大脑皮层表现为侵袭性脑膜脑炎性改变,并在神经细胞内发现特异性核内嗜碱性包涵体。RT-PCR和原位杂交研究发现,受染胎鼠大脑皮层内ET-1mRNA转录量增加,以1.0ml和0.5ml组为显著,而0.25ml组与正常对照组比较无明显差别。结论 HCMV可经胎盘垂直传播至胎鼠脑组织。先天性HCMV感染可刺激受染胎鼠CNSET-1mRNA的转录,且与母鼠所接种的病毒量存在一定的量效关系。这些结果提示,ET-1在先天性HCMV感染脑损害过程中,早期可导致组织缺血性改变,而晚期则与受损大脑皮层的功能恢复有关。这对了解先天性HCMV感染致CNS损伤的机理将提供有价值的参考依据,同时也为临床防治和优生优育提供一种有价值的手段。%Objective To explore mechanisms of brain damage followingcongenitally infected human cytomegalovirus, the transcription of endothelin-1 (ET-1) mRNA of fetal mouse cerebral cortex (HCMV) were analyzed. Methods On the basis of developing congenital HCMV infective fetal model, reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine ET-1 mRNA of fetal mouse cerebral cortex infected by different inoculum size meanwhile the intracellular location of mRNA's was conducted with in situ hybridization by digoxigenin labelled ET-1 mRNA oligonucleotide probe. Virus isolation and sections coated

  7. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction*

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Xiaofeng Wang; Ying Liu; Na Yang; Jing Xu; Xiaotun Ren

    2013-01-01

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neo-natal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cel s in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cel apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cel line-derived neuro-trophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cel apoptosis through the glial cel line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  8. Frontoparietal cortical atrophy with gliosis in the gray matter of cerebral cortex: case report Atrofia cortical frontoparietal com gliose na substância cinzenta do córtex cerebral: relato de caso

    Directory of Open Access Journals (Sweden)

    Paulo Roberto de Brito-Marques

    2002-06-01

    Full Text Available The case of a patient who suffered from progressive amnesia, depressive humor, language and visuospatial disturbances, and hallucination episodies with interference at the daily living activities is reported. She had moderate neuropsichological diffuse deficits at the first examination, especially at the executive and visuo-constructive functions. Her cerebrospinal fluid test presented high total protein. Magnetic resonance image showed slight white matter increase in periventricular, semi-oval center bilateral and left external capsule regions, besides light frontal and parietal lobe atrophy, bilaterally. Brain single photon emission computerized tomography revealed both a bilateral moderate frontal and a severe parietal lobe hypoperfusion, especially on the left side. Macroscopic examination showed cortical atrophy, severe on the frontal, moderate on the parietal and mild on the posterior third temporal lobes, bilaterally. There was a slight atrophy on the neostriatum in the basal ganglia. The histopathological findings of the autopsy showed severe neuronal loss with intensive gemioscytic gliosis and variable degrees of status spongiosus in cortical layer. Hematoxylin-eosin and Bielschowsky staining did not show neuronal swelling (balooned cell, argyrophilic inclusion (Pick's bodies, neurofibrillary tangles nor senile plaques. Immunohistochemical staining for anti-ubiquitin, anti-tau, anti-beta-amyloide, and anti-prion protein were tested negative.É descrito o caso de uma paciente que apresentava amnésia, humor deprimido, distúrbio de linguagem e visoespacial, e alucinação visual com evolução progressiva, interferindo nas atividades de vida diária. Na primeira avaliação neuropsicológica havia déficit difuso de intensidade moderada, especialmente nas funções executivas e viso-construtivas. O exame de líquido céfalo-raqueano mostrou a taxa de proteína elevada. Ressonância magnética evidenciou leve hiperintensidade de sinal na

  9. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Prida, Javier [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Pavón-Fuentes, Nancy [International Centre for Neurological Restoration (CIREN), Ave. 25 e/ 158 y 160, Playa, PO Box: 11300, Havana (Cuba); Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R. [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Delgado-Roche, Liván [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pardo-Andreu, Gilberto L. [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Polentarutti, Nadia [Istituto Clinico Humanitas (IRCCS), Rozzano (Italy); Riva, Federica [Department of Veterinary Science and Public Health (DIVET), University of Milano (Italy); Pentón-Arias, Eduardo [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pentón-Rol, Giselle [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba)

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  10. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    International Nuclear Information System (INIS)

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H2O2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H2O2 and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy

  11. Effect of Batroxobin on Neuronal Apoptosis During Focal Cerebral Ischemia and Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    吴卫平; 匡培根; 李振洲

    2001-01-01

    We have found that Batroxobin plays a protactive role in ischemic brain injury, which attracted us to investigate the effect of Batroxobin on apoptosis of neurons during cerebral ischemia and reperfusion. The apoptotic cells in ischemic rat brains at different reperfusion intervals were tested with method of TdT-mediated dUTP-DIG nick end labeling (TUNEL) and the effect of Batroxobin on the apoptosis of neurons was studied in left middle cerebral artery (LMCA) occlusion and reperfusion in rat models (n=18). The results showed that few scattered apoptosis cells were observed in right cerebral hemispheres after LMCA occlusion and reperfusion, and that a lot of apoptosis cells were found in left ischemic cortex and caudoputamen at 12h reperfusion, and they reached peak at 24h~48h reperfusion. However, in the rats pretreated with Batroxobin, the number of apoptosis cells in left cerebral cortex and caudoputamen reduced significantly and the neuronal damage was much milder at 24h reperfusion than that of saline-treated rats. The results indicate that administration of Batroxobin may reduce the apoptosis of neurons induced by cerebral ischemia and reperfusion and afford significant cerebroprotection in the model of focal cerebral ischemia and reperfusion.

  12. Memory strategy training in children with cerebral infarcts related to sickle cell disease.

    Science.gov (United States)

    Yerys, Benjamin E; White, Desirée A; Salorio, Cynthia F; McKinstry, Robert; Moinuddin, Asif; DeBaun, Michael

    2003-06-01

    Cerebral infarcts occur in approximately 30% of children with sickle cell disease (SCD), but little information exists regarding remediation of associated cognitive deficits. The authors examined the benefits of training children with infarcts to use memory strategies. Six children with SCD-related infarcts received academic tutoring; three of these children received additional training in memory strategies (silent rehearsal to facilitate short-term memory and semantic organization to facilitate long-term memory). The performance of children receiving strategy training appeared to improve more than that of children receiving only tutoring. Memory in children with SCD-related infarcts may be enhanced through strategy training. PMID:12794531

  13. Effect of acute administration of Pistacia lentiscus L. essential oil on rat cerebral cortex following transient bilateral common carotid artery occlusion

    Directory of Open Access Journals (Sweden)

    Quartu Marina

    2012-01-01

    Full Text Available Abstract Background Ischemia/reperfusion leads to inflammation and oxidative stress which damages membrane highly polyunsaturated fatty acids (HPUFAs and eventually induces neuronal death. This study evaluates the effect of the administration of Pistacia lentiscus L. essential oil (E.O., a mixture of terpenes and sesquiterpenes, on modifications of fatty acid profile and endocannabinoid (eCB congener concentrations induced by transient bilateral common carotid artery occlusion (BCCAO in the rat frontal cortex and plasma. Methods Adult Wistar rats underwent BCCAO for 20 min followed by 30 min reperfusion (BCCAO/R. 6 hours before surgery, rats, randomly assigned to four groups, were gavaged either with E.O. (200 mg/0.45 ml of sunflower oil as vehicle or with the vehicle alone. Results BCCAO/R triggered in frontal cortex a decrease of docosahexaenoic acid (DHA, the membrane highly polyunsaturated fatty acid most susceptible to oxidation. Pre-treatment with E.O. prevented this change and led further to decreased levels of the enzyme cyclooxygenase-2 (COX-2, as assessed by Western Blot. In plasma, only after BCCAO/R, E.O. administration increased both the ratio of DHA-to-its precursor, eicosapentaenoic acid (EPA, and levels of palmytoylethanolamide (PEA and oleoylethanolamide (OEA. Conclusions Acute treatment with E.O. before BCCAO/R elicits changes both in the frontal cortex, where the BCCAO/R-induced decrease of DHA is apparently prevented and COX-2 expression decreases, and in plasma, where PEA and OEA levels and DHA biosynthesis increase. It is suggested that the increase of PEA and OEA plasma levels may induce DHA biosynthesis via peroxisome proliferator-activated receptor (PPAR alpha activation, protecting brain tissue from ischemia/reperfusion injury.

  14. Clinical Neuroimaging of cerebral ischemia

    International Nuclear Information System (INIS)

    Notice points in clinical imaging of cerebral ischemia are reviewed. When cerebral blood flow is determined in acute stage of cerebral embolism (cerebral blood flow SPECT), it is important to find area of ischemic core and ischemic penumbra. When large cortex area is assigned to ischemic penumbra, thrombolytic therapy is positively adapted, but cautious correspondence is necessary when ischemic core is recognized. DWI is superior in the detection of area equivalent to ischemic core of early stage, but, in imaging of area equivalent to ischemic penumbra, perfusion image or distribution image of cerebral blood volume (CBV) by MRI need to be combined. Luxury perfusion detected by cerebral blood flow SPECT in the cases of acute cerebral embolism suggests vascular recanalization, but a comparison with CT/MRI and continuous assessment of cerebral circulation dynamics were necessary in order to predict brain tissue disease (metabolic abnormality). In hemodynamic cerebral ischemia, it is important to find stage 2 equivalent to misery perfusion by quantification of cerebral blood flow SPECT. Degree of diaschisis can indicate seriousness of brain dysfunction for lacuna infarct. Because cerebral circulation reserve ability (perfusion pressure) is normal in all areas of the low cerebral blood flow by diaschisis mechanism, their areas are easily distinguished from those of hemodynamic cerebral ischemia. (K.H.)

  15. Improved Quality of Life in A Case of Cerebral Palsy after Bone Marrow Mononuclear Cell Transplantation.

    Science.gov (United States)

    Sharma, Alok; Sane, Hemangi; Kulkarni, Pooja; D'sa, Myola; Gokulchandran, Nandini; Badhe, Prerna

    2015-01-01

    Cerebral palsy (CP) is a non progressive, demyelinating disorder that affects a child's development and posture and may be associated with sensation, cognition, communication and perception abnormalities. In CP, cerebral white matter is injured resulting in the loss of oligodendrocytes. This causes damage to the myelin and disruption of nerve conduction. Cell therapy is being explored as an alternate therapeutic strategy as there is no treatment currently available for CP. To study the benefits of this treatment we have administered autologous bone marrow mononuclear cells (BMMNCs) to a 12-year-old CP case. He was clinically re-evaluated after six months and found to demonstrate positive clinical and functional outcomes. His trunk strength, upper limb control, hand functions, walking stability, balance, posture and coordination improved. His ability to perform activities of daily living improved. On repeating the Functional Independence Measure (FIM), the score increased from 90 to 113. A repeat positron emission tomography-computed tomography (PET-CT) scan of the brain six months after intervention showed progression of the mean standard deviation values towards normalization which correlated to the functional changes. At one year, all clinical improvements have remained. This indicated that cell transplantation may improve quality of life and have a potential for treatment of CP. PMID:26199918

  16. Improved Quality of Life in A Case of Cerebral Palsy after Bone Marrow Mononuclear Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2015-07-01

    Full Text Available Cerebral palsy (CP is a non progressive, demyelinating disorder that affects a child’s development and posture and may be associated with sensation, cognition, communication and perception abnormalities. In CP, cerebral white matter is injured resulting in the loss of oligodendrocytes. This causes damage to the myelin and disruption of nerve conduction. Cell therapy is being explored as an alternate therapeutic strategy as there is no treatment currently available for CP. To study the benefits of this treatment we have administered autologous bone marrow mononuclear cells (BMMNCs to a 12-year-old CP case. He was clinically re-evaluated after six months and found to demonstrate positive clinical and functional outcomes. His trunk strength, upper limb control, hand functions, walking stability, balance, posture and coordination improved. His ability to perform activities of daily living improved. On repeating the Functional Independence Measure (FIM, the score increased from 90 to 113. A repeat positron emission tomography- computed tomography (PET-CT scan of the brain six months after intervention showed progression of the mean standard deviation values towards normalization which correlated to the functional changes. At one year, all clinical improvements have remained. This indicated that cell transplantation may improve quality of life and have a potential for treatment of CP.

  17. Estimates of volumes and pyramidal cell numbers in the prelimbic subarea of the prefrontal cortex in experimental hypothyroid rats.

    OpenAIRE

    Madeira, M. D.; A. Pereira; Cadete-Leite, A; Paula-Barbosa, M M

    1990-01-01

    In previous quantitative studies we demonstrated that the volumes of the cerebellar and hippocampal granular layers, as well as their total number of cells, were reduced in 30 days old hypothyroid rats. We decided to extend these studies to the prelimbic subarea of the medial prefrontal cortex using the same morphometric procedures. The cortical volume and the total number of neurons of its Layer III were determined. After correcting for the tissue shrinkage factor, it was found that the volu...

  18. Yeast Num1p associates with the mother cell cortex during S/G2 phase and affects microtubular functions

    OpenAIRE

    1995-01-01

    The NUM1 gene is involved in the control of nuclear migration in Saccharomyces cerevisiae. The content of NUM1 mRNA fluctuates during the cell cycle, reaching a maximum at S/G2 phase, and the translation product Num1p associates with the cortex of mother cells mainly during S, G2, and mitosis, as seen by indirect immunofluorescence. The nuclear spindle in NUM1-deficient large-budded cells often fails to align along the mother/bud axis, while abnormally elongated astral microtubules emanate fr...

  19. Single-cell correlates of a representational boundary in rat somatosensory cortex.

    Science.gov (United States)

    Hickmott, P W; Merzenich, M M

    1998-06-01

    In primary somatosensory cortex (S1), the transition from one representation to the next is typically abrupt when assayed physiologically. However, the extent of anatomical projections to and within the cortex do not strictly respect these physiologically defined transitions. Physiological properties, such as synaptic strengths or intracortical inhibition, have been hypothesized to account for the functionally defined precision of these representational borders. Because these representational borders can be translocated across the cortex by manipulations or behaviors that change the activity patterns of inputs to the cortex, understanding the physiological mechanisms that delimit representations is also an important starting point for understanding cortical plasticity. A novel in vivo and in vitro preparation has been developed to examine the cellular and synaptic mechanisms that underlie representational borders in the rat. In vivo, a short segment of the border between the forepaw-lower jaw representations in rat S1 was mapped using standard electrophysiological methods and was visibly marked using iontophoresis of pontamine sky blue dye. Slices were then obtained from this marked region and maintained in vitro. Intracellularly recorded responses to electrical stimulation of supragranular cortex were obtained from single neurons near the border in response to stimulation within the representational zone or across the border. Both excitatory and inhibitory responses were smaller when evoked by stimuli that activated projections that crossed borders, as compared with stimuli to projections that did not. These findings indicate that intracortical network properties are contributing to the expressions of representational discontinuities in the cortex. PMID:9592117

  20. Cerebral Arteriosclerosis

    Science.gov (United States)

    ... the brain can cause a hemorrhagic stroke. Both types of stroke can be fatal. Cerebral arteriosclerosis is also related to a condition known as vascular dementia, in which small, symptom-free strokes cause cumulative damage and death to neurons (nerve cells) in the brain. Personality changes in ...

  1. Disodium cromoglycate, a mast-cell stabilizer, alters postradiation regional cerebral blood flow in primates

    Energy Technology Data Exchange (ETDEWEB)

    Cockerham, L.G.; Doyle, T.F.; Pautler, E.L.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure, and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with systemic hypotension and a dramatic release of mast-cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomena and the postradiation decrease in cerebral blood flow, primates were given the mast-cell stabilizers disodium cromoglycate (DSCG) or BRL 22321 before exposure to 100 Gy whole-body gamma radiation. Hypothalamic and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. The data indicated that DSCG was successful in diminishing postradiation decrease in cerebral blood flow. Irradiated animals pretreated with DSCG, showed only a 10% decrease in hypothalamic blood flow 60 min postradiation, while untreated, irradiated animals showed a 57% decrease. The cortical blood flow of DSCG treated, irradiated animals showed a triphasic response, with a decrease of 38% at 10 min postradiation, then a rise to 1% below baseline at 20 min, followed by a fall to 42% below baseline by 50 min postradiation. In contrast, the untreated, irradiated animals showed a steady decrease in cortical blood flow to 79% below baseline by 50 min postradiation. There was no significant difference in blood-pressure response between the treated and untreated, irradiated animals. Systemic blood pressure showed a 60% decrease at 10 min postradiation, falling to a 71% decrease by 60 min.

  2. Compartmentalised energy metabolism supporting glutamatergic neurotransmission in response to increased activity in the rat cerebral cortex: A 13C MRS study in vivo at 14.1 T.

    Science.gov (United States)

    Sonnay, Sarah; Duarte, João Mn; Just, Nathalie; Gruetter, Rolf

    2016-05-01

    Many tissues exhibit metabolic compartmentation. In the brain, while there is no doubt on the importance of functional compartmentation between neurons and glial cells, there is still debate on the specific regulation of pathways of energy metabolism at different activity levels. Using (13)C magnetic resonance spectroscopy (MRS) in vivo, we determined fluxes of energy metabolism in the rat cortex under α-chloralose anaesthesia at rest and during electrical stimulation of the paws. Compared to resting metabolism, the stimulated rat cortex exhibited increased glutamate-glutamine cycle (+67 nmol/g/min, +95%, P chloralose anaesthesia is associated to similar enhancement of neuronal and glial oxidative metabolism. PMID:26823472

  3. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction.

    Science.gov (United States)

    Zhang, Jin-Sheng; Zhang, Bao-Xia; Du, Mei-Mei; Wang, Xiao-Ya; Li, Wei

    2016-02-01

    After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Panax notoginseng saponins, and Xuesaitong is one of the main drugs used for promoting blood circulation and removing blood stasis. We established rat models of cerebral infarction by occlusion of the middle cerebral artery and then intragastrically administered Xuesaitong capsules (20, 40 and 60 mg/kg per day) for 28 successive days. Enzyme-linked immunosorbent assay showed that in rats with cerebral infarction, middle- and high-dose Xuesaitong significantly increased the level of stem cell factors and the number of CD117-positive cells in plasma and bone marrow and significantly decreased the number of CD54- and CD106-positive cells in plasma and bone marrow. The effect of low-dose Xuesaitong on these factors was not obvious. These findings demonstrate that middle- and high-dose Xuesaitong and hence Panax notoginseng saponins promote and increase the level and mobilization of bone marrow mesenchymal stem cells in peripheral blood. PMID:27073383

  4. Brain immune cell composition and functional outcome after cerebral ischemia: Comparison of two mouse strains

    Directory of Open Access Journals (Sweden)

    Hyun Ah eKim

    2014-11-01

    Full Text Available Inflammatory cells may contribute to secondary brain injury following cerebral ischemia. The C57Bl/6 mouse strain is known to exhibit a T helper 1-prone, pro-inflammatory type response to injury, whereas the FVB strain is relatively T helper 2-prone, or anti-inflammatory, in its immune response. We tested whether stroke outcome is more severe in C57Bl/6 than FVB mice. Male mice of each strain underwent sham surgery or 1 h occlusion of the middle cerebral artery followed by 23 h of reperfusion. Despite no difference in infarct size, C57Bl/6 mice displayed markedly greater functional deficits than FVB mice after stroke, as assessed by neurological scoring and hanging wire test. Total numbers of CD45+ leukocytes tended to be larger in the brains of C57Bl/6 than FVB mice after stroke, but there were marked differences in leukocyte composition between the two mouse strains. The inflammatory response in C57Bl/6 mice primarily involved T and B lymphocytes, whereas neutrophils, monocytes and macrophages were more prominent in FVB mice. Our data are consistent with the concept that functional outcome after stroke is dependent on the immune cell composition which develops following ischemic brain injury.

  5. Visualization of cell death in mice with focal cerebral ischemia using fluorescent annexin A5, propidium iodide, and TUNEL staining

    OpenAIRE

    Bahmani, Peyman; Schellenberger, Eyk; Klohs, Jan; Steinbrink, Jens; Cordell, Ryan; Zille, Marietta; Müller, Jochen; Harhausen, Denise; Hofstra, Leo; Reutelingsperger, Chris; Farr, Tracy Deanne; Dirnagl, Ulrich; Wunder, Andreas

    2011-01-01

    To monitor stroke-induced brain damage and assess neuroprotective therapies, specific imaging of cell death after cerebral ischemia in a noninvasive manner is highly desirable. Annexin A5 has been suggested as a marker for imaging cell death under various disease conditions including stroke. In this study, C57BL6/N mice received middle cerebral artery occlusion (MCAO) and were injected intravenously with either active or inactive Cy5.5-annexin A5 48 hours after reperfusion. Some mice also rec...

  6. Cerebral blood flow and red cell delivery in normal subjects and in multiple sclerosis

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF) was determined in 77 normal females and 53 normal males of different ages and in 26 men and 45 women with multiple sclerosis by the inhalation of radioactive Xe133 method. In the normal subjects the CBF was relatively high in the teens and fell, at first rapidly and then slowly in both sexes with age. During adult life the flow in females was significantly higher than in males. The delivery of packed red cells (RCD) was determined by multiplying the CBF by the percentage concentration of red cells (HCT). The RCD for both sexes was nearly the same. In the patients with multiple sclerosis there occurred a progressive generalized decrease in CBF and in RCD with age which was significantly greater than observed in normal subjects. The rate of decrease in CBF and RCD correlated directly with the rate of progress of the disease

  7. Developmental changes of mast cell populations in the cerebral meninges of the rat

    Science.gov (United States)

    Michaloudi, Helen; Batzios, Christos; Chiotelli, Maria; Papadopoulos, Georgios C

    2007-01-01

    It is known that both the dura and the pia mater attract and support the differentiation of mast cells. The present study shows that unevenly distributed mast cells in the cerebral meninges of the rat can be found in perivascular sites and vessel ramification points, but can also be unrelated to the meningeal vasculature. It also documents changes in the number, localization and staining preferences of the mast cells in the two meninges of the developing and mature rat brain. Quantitative examination of all types of histochemically differentiated meningeal mast cells reveals no major (although some exist) differences between right and left side subpopulations, but strongly suggests a different origin and fate of the dural and the pial mast cells. The number of dural mast cells, already high from postnatal day 0, although declining from postnatal day 21 onwards, remains conspicuous up to postnatal day 180. In contrast, pial mast cells are comparatively very few in the first day of the postnatal life, and despite a transient significant increase in the following two weeks, they reach almost zero levels from postnatal day 21. PMID:17822416

  8. T cell mediated cerebral hemorrhages and microhemorrhages during passive Aβ immunization in APPPS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    de Calignon Alix

    2011-03-01

    Full Text Available Abstract Background Immunization against amyloid-β (Aβ, the peptide that accumulates in the form of senile plaques and in the cerebrovasculature in Alzheimer's disease (AD, causes a dramatic immune response that prevents plaque formation and clears accumulated Aβ in transgenic mice. In a clinical trial of Aβ immunization, some patients developed meningoencephalitis and hemorrhages. Neuropathological investigations of patients who died after the trial showed clearance of amyloid pathology, but also a powerful immune response involving activated T cells probably underlying the negative effects of the immunization. Results To define the impact of T cells on this inflammatory response we used passive immunization and adoptive transfer to separate the effect of IgG and T cell mediated effects on microhemorrhage in APPPS1 transgenic mice. Neither anti Aβ IgG nor adoptively transferred T cells, alone, led to increased cerebrovascular damage. However, the combination of adoptively transferred T cells and passive immunization led to massive cerebrovascular bleeding that ranged from multiple microhemorrhages in the parenchyma to large hematomas. Conclusions Our results indicate that vaccination can lead to Aβ and T cell induced cerebral micro-hemorrhages and acute hematomas, which are greatly exacerbated by T cell mediated activity.

  9. 双环己酮草酰二腙诱导的精神分裂症样小鼠大脑皮质体积及有髓神经纤维的体视学观测%Stereological observation of cerebral cortex volume and myelinated fibers in cerebral cortices of cuprizone-induced schizophrenia-like mice

    Institute of Scientific and Technical Information of China (English)

    彭超; 程国华; 王芸; 李永德; 陈林; 卢伟; 孔吉明; 肖岚; 唐勇

    2013-01-01

    目的 探讨双环己酮草酰二腙(cuprizone,CPZ)诱导的精神分裂症样小鼠大脑皮质体积及其内有髓神经纤维的改变.方法 将6周龄的雄性C57BL/6小鼠分为CPZ组和对照组,CPZ组小鼠用含0.2% CPZ混合饲料饲育,对照组小鼠用标准的实验室饲料饲育.6周后进行行为学实验以证实精神分裂症样动物模型造模成功.然后运用透射电镜技术和体视学方法对小鼠大脑皮质体积和大脑皮质内有髓神经纤维进行定量研究.结果 行为学实验中CPZ组小鼠出现精神分裂症样表现,体视学定量研究中CPZ组与对照组小鼠相比大脑皮质总体积没有显著性改变(P>0.05).与对照组小鼠相比,CPZ组小鼠大脑皮质有髓神经纤维长度密度和总长度分别显著性降低了64.3%和68.9% (P <0.01),有髓神经纤维平均直径显著性增加了17.8% (P <0.01).直径为0.2~<0.4 μm、0.4~<0.6 μm和0.6~ <0.8 μm的大脑皮质有髓神经纤维总长度与对照组小鼠相比分别显著性减少了4.317、3.313 km和0.940 km(P <0.01),CPZ组小鼠其他直径段大脑皮质有髓神经纤维总长度与对照组小鼠相比无显著性差异(P>0.05).结论 CPZ组小鼠存在大脑皮质有髓神经纤维总长度的降低和平均直径的增加,有髓神经纤维总长度的降低主要是由小直径纤维丢失造成的.%Objective To investigate the changes of cerebral cortex volume and myelinated fibers in the cerebral cortices of cuprizone ( CPZ) -induced schizophrenia-like mice. Methods Six-week old male C57BL/6 mice were divided into a CPZ group arid a control group. The mice in the CPZ group were fed with mixed standard rodent chow containing 0. 2% CPZ, while those in the control group were fed with standard lab chow. After six weeks, behavioral tests were performed to confirm the success of schizophrenia-like animal model. Then the cerebral cortex volume and myelinated fibers in the cerebral cortices were

  10. Effect of destruction of central noradrenergic and serotonergic nerve terminals by systemic neurotoxins on the long-term effects of antidepressants on. beta. -adrenoceptors and 5-HT/sub 2/ binding sites in the rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Hall, H.; Ross, S.B.; Saellemark, M. (Astra Pharmaceuticals AB, Soedertaelje (Sweden))

    1984-01-01

    The dependence of intact noradrenergic and serotonergic nerve terminals for the decrease in the number of ..beta..-adrenoceptors and 5-HT/sub 2/ binding sites in the cerebral cortex produced by long-term treatment of rats with antidepressant drugs was examined. Noradrenergic nerve terminals were destroyed with the selective noradrenaline neurotoxin DSP4, and serotonergic nerve terminals were destroyed with p-chloroamphetamine (PCA). It was found that lesioning of the noradrenergic nerve terminals abolished the decrease in ..beta..-adrenoceptors produced by desipramine, mianserin and zimeldine and partially antagonized that of the ..beta..-adrenoceptor agonist clenbuterol. PCA pretreatment did not antagonize the long-term effects on the ..beta..-adrenoceptor produced by these compounds. Lesioning of serotonergic nerve terminals affected the down-regulation of 5-HT/sub 2/ binding sites produced by long-term treatment with mianserin, desipramine and amiflamine. DSP4 pretreatment partially abolished the down-regulation of 5-HT/sub 2/ binding sites produced by long-term treatment with desipramine, while the effects of mianserin and amiflamine were inaffected by pretreatment with DSP4.

  11. Effect of destruction of central noradrenergic and serotonergic nerve terminals by systemic neurotoxins on the long-term effects of antidepressants on β-adrenoceptors and 5-HT2 binding sites in the rat cerebral cortex

    International Nuclear Information System (INIS)

    The dependence of intact noradrenergic and serotonergic nerve terminals for the decrease in the number of β-adrenoceptors and 5-HT2 binding sites in the cerebral cortex produced by long-term treatment of rats with antidepressant drugs was examined. Noradrenergic nerve terminals were destroyed with the selective noradrenaline neurotoxin DSP4, and serotonergic nerve terminals were destroyed with p-chloroamphetamine (PCA). It was found that lesioning of the noradrenergic nerve terminals abolished the decrease in β-adrenoceptors produced by desipramine, mianserin and zimeldine and partially antagonized that of the β-adrenoceptor agonist clenbuterol. PCA pretreatment did not antagonize the long-term effects on the β-adrenoceptor produced by these compounds. Lesioning of serotonergic nerve terminals affected the down-regulation of 5-HT2 binding sites produced by long-term treatment with mianserin, desipramine and amiflamine. DSP4 pretreatment partially abolished the down-regulation of 5-HT2 binding sites produced by long-term treatment with desipramine, while the effects of mianserin and amiflamine were inaffected by pretreatment with DSP4. (Author)

  12. Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex.

    Science.gov (United States)

    Hore, Victoria R A; Troy, John B; Eglen, Stephen J

    2012-11-01

    The receptive fields of on- and off-center parasol cell mosaics independently tile the retina to ensure efficient sampling of visual space. A recent theoretical model represented the on- and off-center mosaics by noisy hexagonal lattices of slightly different density. When the two lattices are overlaid, long-range Moiré interference patterns are generated. These Moiré interference patterns have been suggested to drive the formation of highly structured orientation maps in visual cortex. Here, we show that noisy hexagonal lattices do not capture the spatial statistics of parasol cell mosaics. An alternative model based upon local exclusion zones, termed as the pairwise interaction point process (PIPP) model, generates patterns that are statistically indistinguishable from parasol cell mosaics. A key difference between the PIPP model and the hexagonal lattice model is that the PIPP model does not generate Moiré interference patterns, and hence stimulated orientation maps do not show any hexagonal structure. Finally, we estimate the spatial extent of spatial correlations in parasol cell mosaics to be only 200-350 μm, far less than that required to generate Moiré interference. We conclude that parasol cell mosaics are too disordered to drive the formation of highly structured orientation maps in visual cortex. PMID:23110776

  13. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction

    OpenAIRE

    Bao-xia Zhang; Jin-sheng Zhang; Mei-mei Du; Xiao-ya Wang; Wei Li

    2016-01-01

    After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Pana...

  14. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism

    Directory of Open Access Journals (Sweden)

    Semmler Alexander

    2008-09-01

    Full Text Available Abstract Background Septic encephalopathy is a severe brain dysfunction caused by systemic inflammation in the absence of direct brain infection. Changes in cerebral blood flow, release of inflammatory molecules and metabolic alterations contribute to neuronal dysfunction and cell death. Methods To investigate the relation of electrophysiological, metabolic and morphological changes caused by SE, we simultaneously assessed systemic circulation, regional cerebral blood flow and cortical electroencephalography in rats exposed to bacterial lipopolysaccharide. Additionally, cerebral glucose uptake, astro- and microglial activation as well as changes of inflammatory gene transcription were examined by small animal PET using [18F]FDG, immunohistochemistry, and real time PCR. Results While the systemic hemodynamic did not change significantly, regional cerebral blood flow was decreased in the cortex paralleled by a decrease of alpha activity of the electroencephalography. Cerebral glucose uptake was reduced in all analyzed neocortical areas, but preserved in the caudate nucleus, the hippocampus and the thalamus. Sepsis enhanced the transcription of several pro- and anti-inflammatory cytokines and chemokines including tumor necrosis factor alpha, interleukin-1 beta, transforming growth factor beta, and monocot chemoattractant protein 1 in the cerebrum. Regional analysis of different brain regions revealed an increase in ED1-positive microglia in the cortex, while total and neuronal cell counts decreased in the cortex and the hippocampus. Conclusion Together, the present study highlights the complexity of sepsis induced early impairment of neuronal metabolism and activity. Since our model uses techniques that determine parameters relevant to the clinical setting, it might be a useful tool to develop brain specific therapeutic strategies for human septic encephalopathy.

  15. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Chen Guojun

    2013-01-01

    Full Text Available Abstract Background Stem cell therapy is a promising treatment for cerebral palsy, which refers to a category of brain diseases that are associated with chronic motor disability in children. Autologous MSCs may be a better cell source and have been studied for the treatment of cerebral palsy because of their functions in tissue repair and the regulation of immunological processes. Methods To assess neural stem cell–like (NSC-like cells derived from autologous marrow mesenchymal stem cells as a novel treatment for patients with moderate-to-severe cerebral palsy, a total of 60 cerebral palsy patients were enrolled in this open-label, non-randomised, observer-blinded controlled clinical study with a 6-months follow-up. For the transplantation group, a total of 30 cerebral palsy patients received an autologous NSC-like cells transplantation (1-2 × 107 cells into the subarachnoid cavity and rehabilitation treatments whereas 30 patients in the control group only received rehabilitation treatment. Results We recorded the gross motor function measurement scores, language quotients, and adverse events up to 6 months post-treatment. The gross motor function measurement scores in the transplantation group were significantly higher at month 3 (the score increase was 42.6, 95% CI: 9.8–75.3, P=.011 and month 6 (the score increase was 58.6, 95% CI: 25.8–91.4, P=.001 post-treatment compared with the baseline scores. The increase in the Gross Motor Function Measurement scores in the control group was not significant. The increases in the language quotients at months 1, 3, and 6 post-treatment were not statistically significant when compared with the baseline quotients in both groups. All the 60 patients survived, and none of the patients experienced serious adverse events or complications. Conclusion Our results indicated that NSC-like cells are safe and effective for the treatment of motor deficits related to cerebral palsy. Further randomised clinical

  16. THE FATE OF MDACH1-EXPRESSING CELLS IN THE DORSAL PART OF THE LATERAL VENTRICLES FOLLOWING FOCAL CEREBRAL ISCHEMIA

    Czech Academy of Sciences Publication Activity Database

    Anděrová, Miroslava; Pivoňková, Helena; Honsa, Pavel

    2013-01-01

    Roč. 61, Supplement 1 (2013), S125-S126. ISSN 0894-1491. [European Meeting on Glial Cell Function in Health and Disease /11./. 03.07.2013-06.07.2013, Berlin] Institutional support: RVO:68378041 Keywords : cerebral ischemia * neuroscience * MDACH1 Subject RIV: FH - Neurology

  17. D-erythro-N,N-dimethylsphingosine inhibits bFGF-induced proliferation of cerebral, aortic and coronary smooth muscle cells

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zhang, Yaping; Stenman, Emelie;

    2002-01-01

    The role of sphingosine kinase (SphK) on basic fibroblast growth factor (bFGF)-induced proliferation of cerebral, aortic and coronary smooth muscle cells (SMC) was addressed using D-erythro-N,N-dimethylsphingosine (DMS), an inhibitor of SphK which blocks conversion of sphingosine to sphingosine-1......-phosphate (S1P). DMS concentration-dependently reduced the bFGF-induced proliferation of rat cerebral and aortic, and human coronary SMC. This suggests that SphK is one of the key enzymes in the mitogenic response to bFGF in vascular SMC as supported by the finding that S1P stimulated proliferation of SMC...

  18. Asthma is a risk factor for acute chest syndrome and cerebral vascular accidents in children with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Scott Paul J

    2005-01-01

    Full Text Available Abstract Background Asthma and sickle cell disease are common conditions that both may result in pulmonary complications. We hypothesized that children with sickle cell disease with concomitant asthma have an increased incidence of vaso-occlusive crises that are complicated by episodes of acute chest syndrome. Methods A 5-year retrospective chart analysis was performed investigating 48 children ages 3–18 years with asthma and sickle cell disease and 48 children with sickle cell disease alone. Children were matched for age, gender, and type of sickle cell defect. Hospital admissions were recorded for acute chest syndrome, cerebral vascular accident, vaso-occlusive pain crises, and blood transfusions (total, exchange and chronic. Mann-Whitney test and Chi square analysis were used to assess differences between the groups. Results Children with sickle cell disease and asthma had significantly more episodes of acute chest syndrome (p = 0.03 and cerebral vascular accidents (p = 0.05 compared to children with sickle cell disease without asthma. As expected, these children received more total blood transfusions (p = 0.01 and chronic transfusions (p = 0.04. Admissions for vasoocclusive pain crises and exchange transfusions were not statistically different between cases and controls. SS disease is more severe than SC disease. Conclusions Children with concomitant asthma and sickle cell disease have increased episodes of acute chest syndrome, cerebral vascular accidents and the need for blood transfusions. Whether aggressive asthma therapy can reduce these complications in this subset of children is unknown and requires further studies.

  19. In vivo Calcium Imaging of Evoked Calcium Waves in the Embryonic Cortex

    OpenAIRE

    Yuryev, Mikhail; Pellegrino, Christophe; Jokinen, Ville; Andriichuk, Liliia; Khirug, Stanislav; Khiroug, Leonard; Rivera, Claudio

    2016-01-01

    The dynamics of intracellular calcium fluxes are instrumental in the proliferation, differentiation, and migration of neuronal cells. Knowledge thus far of the relationship between these calcium changes and physiological processes in the developing brain has derived principally from ex vivo and in vitro experiments. Here, we present a new method to image intracellular calcium flux in the cerebral cortex of live rodent embryos, whilst attached to the dam through the umbilical cord. Using this ...

  20. Treatment of one case of cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-05-01

    Full Text Available Abstract Background Cerebral palsy is currently one of the major diseases that cause severe paralysis of the nervous system in children; approximately 9–30% of cerebral palsy patients are also visually impaired, for which no effective treatment is available. Bone marrow mesenchymal stem cells (BMSCs have very strong self-renewal, proliferation, and pluripotent differentiation potentials. Therefore, autologous BMSC transplantation has become a novel method for treating cerebral palsy. Methods An 11-year-old boy had a clear history of dystocia and asphyxia after birth; at the age of 6 months, the family members observed that his gaze roamed and noted that he displayed a lack of attention. A brain MRI examination at the age of 7 years showed that the child had cerebral palsy with visual impairment (i.e., posterior visual pathway injury. The patient was hospitalized for 20 days and was given four infusions of intravenous autologous BMSCs. Before transplantation and 1, 6, and 12 months after transplantation, a visual evoked potential test, an electrocardiogram, routine blood tests, and liver and kidney function tests were performed. Results The patient did not have any adverse reactions during hospitalization or postoperative follow-up. After discharge, the patient could walk more smoothly than he could before transplantation; furthermore, his vision significantly improved 6 months after transplantation, which was also supported by the electrophysiological examinations. Conclusions The clinical application of BMSCs is effective for improving vision in a patient with cerebral palsy combined with visual impairment.

  1. Treatment of Cerebral Palsy with Stem Cells: A Report of 17 Cases

    Science.gov (United States)

    Abi Chahine, Nassim H.; Wehbe, Tarek W.; Hilal, Ramzi A.; Zoghbi, Victoria V.; Melki, Alia E.; Bou Habib, Emil B.

    2016-01-01

    Cerebral Palsy (CP) is a disabling condition that affects a child’s life and his/her family irreversibly. It is usually a non-progressive condition but improvement over time is rarely seen. The condition can be due to prenatal hypoxia, metabolic, genetic, infectious, traumatic or other causes. It is therefore a heterogeneous group that results in functional motor disability associated with different degrees of cognitive abnormalities. There are no treatments that can cure or even improve CP and the best available approach aims at functional, social and nutritional supportive care and counseling. In this paper, we report 17 sequential patients with CP treated with intrathecal administration of Bone Marrow Mononuclear Cells (BMMC). All patients had an uneventful post-injection course with 73% of the evaluable patients treated having a good response using the Gross Motor Function Classification System (GMFCS). The average improvement was 1.3 levels on the GMFCS with cognitive improvements as well. PMID:27426090

  2. EBV-positive B cell cerebral lymphoma 12 years after sex-mismatched kidney transplantation: post-transplant lymphoproliferative disorder or donor-derived lymphoma?

    LENUS (Irish Health Repository)

    Phelan, Paul J

    2010-06-01

    We present a follow-up case report of possible transmission of lymphoma 12 years after deceased-donor renal transplantation from a male donor who was found at autopsy to have had an occult lymphoma. The female recipient underwent prompt transplant nephrectomy. However, 12 years later, she presented with cerebral B cell lymphoma. A donor origin for the cerebral lymphoma was supported by in situ hybridization demonstration of a Y chromosome in the lymphoma. There was a dramatic resolution of the cerebral lesions with tapering of immunosuppression and introduction of rituximab treatment. The finding of a Y chromosome in the cerebral lymphoma does not exclude a host contribution to lymphoma development.

  3. Ultrastructural changes in aster yellows phytoplasma affected Limonium sinuatum Mill. plants II. Pathology of cortex parenchyma cells

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-02-01

    Full Text Available In Limonium sinuatum Mill, plants with severe symptoms of aster yellows infection phytoplasmas were present not only in the phloem but also in some cortex parenchymas cells. These parenchyma cells were situated at some distance from the conducting bundles. The phytoplasmas were observed directly in parenchyma cells cytoplasm. The number of phytoplasmas present in each selected cell varies. The cells with a small number of phytoplasmas show little pathological changes compared with the unaffected cells of the same zone of the stem as well with the cells of healthy plants. The cells filled with a number of phytoplasmas had their protoplast very much changed. The vacuole was reduced and in the cytoplasm a reduction of the number of ribosomes was noted and regions of homogenous structure appeared. Mitochondria were moved in the direction of the tonoplast and plasma membrane. Compared to the cells unaffected by phytoplasma, the mitochondria were smaller and had an enlarged cristae internal space. The chloroplasts from affected cells had a very significant reduction in size and the tylacoids system had disappeared. The role of these changes for creating phytoplasma friendly enviroment is discused.

  4. bcl-xl over-expression in transgenic mice reduces cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Furong Wang; Yongsheng Jiang; Yan Liu; Wenwu Xiao; Suming Zhang

    2008-01-01

    BACKGROUND: Basal cell lymphoma-extra large (bcl-xl) can inhibit neuronal apoptosis by stabilizing the mitochondrial membrane and suppressing cytochrome C release into the cytoplasm. OBJECTIVE: This study aimed to further investigate the cascade reaction pathway of cellular apoptosis. We established an ischemia/dreperfusion model by middle cerebral artery occlusion (MCAO) in transgenic and wild-type mice, and observed changes in the number and distribution of apoptotic neural cells, differences in cerebral infarct volume, in neurological function score, and in cytochrome C expression in the ischemic cerebral cortex, at different time points, DESIGN AND SETTING: The present gene engineering and cell biology experiment was performed at the Laboratory of Biology, Hubei Academy of Agricultural Sciences and at the Laboratory of Immunology, Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Male bcl-xl over-expression Kunming mice aged 8 weeks and age-matched male wild-type mice were used for this study. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) kits were purchased from Boliman, France. Cytochrome C antibody and Bcl-x immunohistochemical kit were purchased from PharMingen, USA and Santa Cruz Biotechnology, USA, respectively. METHODS: Following MCAO and reperfusion, apoptosis in the ischemic cerebral cortex was detected by the TUNEL assay. Prior to MCAO and 3 hours after reperfusion, the Bcl-xl protein level in the ischemic cerebral cortex was measured by immunohistochemistry. At 3, 6, 12 and 24 hours after reperfusion, the level of cytochrome C in the ischemic cerebral cortex was examined by western blot analysis. Subsequent to MCAO, cerebral infarct volume measurement and neurological examination were performed. MAIN OUTCOME MEASURES: Neural cell apoptosis and cytochrome C expression in the ischemic cerebral cortex; cerebral infarct volume and neurological function score. RESULTS: Twenty-four hours after

  5. Amylin: Localization, Effects on Cerebral Arteries and on Local Cerebral Blood Flow in the Cat

    Directory of Open Access Journals (Sweden)

    Lars Edvinsson

    2001-01-01

    Full Text Available Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP. We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir; some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Time�PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL and receptor-activity-modifying proteins (RAMPs in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF2a-precontracted segment (with or without endothelium whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the a-chloralose�anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.

  6. Activation of cerebral sodium-glucose transporter type 1 function mediated by post-ischemic hyperglycemia exacerbates the development of cerebral ischemia.

    Science.gov (United States)

    Yamazaki, Y; Ogihara, S; Harada, S; Tokuyama, S

    2015-12-01

    The regulation of post-ischemic hyperglycemia plays an important role in suppressing neuronal damage in therapeutic strategies for cerebral ischemia. We previously reported that the cerebral sodium-glucose transporter (SGLT) was involved in the post-ischemic hyperglycemia-induced exacerbation of cerebral ischemic neuronal damage. Cortical SGLT-1, one of the cerebral SGLT isoforms, is dramatically increased by focal cerebral ischemia. In this study, we focused on the involvement of cerebral SGLT-1 in the development of cerebral ischemic neuronal damage. It was previously reported that activation of 5'-adenosine monophosphate-activated protein kinase (AMPK) increases SGLT-1 expression. Moreover, ischemic stress-induced activation of AMPK exacerbates cerebral ischemic neuronal damage. Therefore, we directly confirmed the relationship between cerebral SGLT-1 and cerebral AMPK activation using in vitro primary culture of mouse cortical neurons. An in vivo mouse model of focal cerebral ischemia was generated using a middle cerebral artery occlusion (MCAO). The development of infarct volume and behavioral abnormalities on day 3 after MCAO were ameliorated in cerebral SGLT-1 knock down mice. Cortical and striatal SGLT-1 expression levels were significantly increased at 12h after MCAO. Immunofluorescence revealed that SGLT-1 and the neuronal nuclear antigen (NeuN) were co-localized in the cortex and striatum of MCAO mice. In the in vitro study, primary cortical neurons were cultured for five days before each treatment with reagents. Concomitant treatment with hydrogen peroxide and glucose induced the elevation of SGLT-1 and phosphorylated AMPK/AMPK ratio, and this elevation was suppressed by compound C, an AMPK inhibitor in primary cortical neurons. Moreover, compound C suppressed neuronal cell death induced by concomitant hydrogen peroxide/glucose treatment in primary cortical neurons. Therefore, we concluded that enhanced cerebral SGLT-1 function mediated by post

  7. Cell-type Specific Development of NMDA Receptors in the Interneurons of Rat Prefrontal Cortex

    OpenAIRE

    Wang, Huai-Xing; Gao, Wen-Jun

    2009-01-01

    In the prefrontal cortex, N-methyl-D-aspartic acid (NMDA) receptors are critical not only for normal prefrontal functions but also for the pathological processes of schizophrenia. Little is known, however, about the developmental properties of NMDA receptors in the functionally diverse subpopulations of interneurons. We investigated the developmental changes of NMDA receptors in rat prefrontal interneurons using patch clamp recording in cortical slices. We found that fast-spiking (FS) interne...

  8. Cerebral cell renewal in adult mice controls the onset of obesity.

    Directory of Open Access Journals (Sweden)

    Alexandra Gouazé

    Full Text Available The hypothalamus plays a crucial role in the control of the energy balance and also retains neurogenic potential into adulthood. Recent studies have reported the severe alteration of the cell turn-over in the hypothalamus of obese animals and it has been proposed that a neurogenic deficiency in the hypothalamus could be involved in the development of obesity. To explore this possibility, we examined hypothalamic cell renewal during the homeostatic response to dietary fat in mice, i.e., at the onset of diet-induced obesity. We found that switching to high-fat diet (HFD accelerated cell renewal in the hypothalamus through a local, rapid and transient increase in cell proliferation, peaking three days after introducing the HFD. Blocking HFD-induced cell proliferation by central delivery of an antimitotic drug prevented the food intake normalization observed after HFD introduction and accelerated the onset of obesity. This result showed that HFD-induced dividing brain cells supported an adaptive anorectic function. In addition, we found that the percentage of newly generated neurons adopting a POMC-phenotype in the arcuate nucleus was increased by HFD. This observation suggested that the maturation of neurons in feeding circuits was nutritionally regulated to adjust future energy intake. Taken together, these results showed that adult cerebral cell renewal was remarkably responsive to nutritional conditions. This constituted a physiological trait required to prevent severe weight gain under HFD. Hence this report highlighted the amazing plasticity of feeding circuits and brought new insights into our understanding of the nutritional regulation of the energy balance.

  9. Role of ROS in Aβ42 Mediated Activation of Cerebral Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Andrey Tsoy

    2014-12-01

    Full Text Available Introduction. There is substantial evidence that the deposition of aggregated amyloid-beta peptide (Aβ in brain parenchyma and brain vessels is the main cause of neuronal dysfunction and death in Alzheimer’s disease (AD. Aβ exhibits multiple cytotoxic effects on neurons and glial cells and causes dysfunction of the blood brain barrier (BBB. In AD brains, an increased deposition of Aβ in the cerebral vasculature has been found to be correlated with increased transmigration of blood-borne inflammatory cells and neurovascular inflammation. However, regulatory mediators of these processes remain to be elucidated. In this study, we examined the role of ROS in actin polymerization and expression of adhesion molecules (P-selectin on the surface of the cerebral endothelial cells (CECs that are activated by Aβ42.Materials and methods. Mouse BEnd3 line (ATCC was used in this research. BEnd3 cells respond to Aβ treatment similarly to human primary CECs and are a common model to investigate CECs’ function. We used immortalized bEnd3 cells as the following: controls; cells incubated with Aβ42 for 10, 30, and 60 minutes; cells incubated with 30 mM of antioxidant N-acetylcysteine (NAC for 1 hr; and, cells pre-treated with NAC followed by Aβ42 exposure. We measured DHE fluorescence to investigate intracellular ROS production. Immunofluorescent microscopy of anti-P-selectin and oregon green phalloidin was used to quantify the surface P-selectin expression and actin polymerization, and Western blot analysis was used to analyze total P-selectin expression.Results. The results of this study have demonstrated a significant time-dependent ROS accumulation after 10 minutes, 30 minutes, and 60 minutes of Aβ42 treatment, while Aβ42 stimulated ROS production in CECs was attenuated by pre-treatment with the NAC antioxidant. We also found that Aβ42 increased P-selectin fluorescence at the surface of bEnd3 cells in a time dependent manner in parallel to ROS

  10. What's new in cerebral palsy.

    Science.gov (United States)

    JONES, M H

    1953-11-01

    Among new researches bearing on cerebral palsy are the growth of brain cells in tissue cultures for experimentation; the use of polysaccharides to prevent the formation of a glial barrier to nerve growth after injury; observation of changes in reactions of neurons at various stages of development; the finding of hypernatremia and hyperchloremia in lesions of the frontal lobe and the thalamus; stimulation of cerebral blood flow by injection of sodium bicarbonate and retardation with ammonium chloride; and studies of serial sections of brains of palsied children who died. Study of development in the early months of life has made possible the detection of significant abnormalities in behavior early in life. Loss of hearing may be tested in very young children by measuring minute variations in electrical resistance of the skin upon auditory stimulation of the sympathetic nervous system. Conditions which have been described as having been confused with cerebral palsy are dislocation of a cervical vertebra, hereditary spastic paraplegia, transverse myelopathy, injury to the spinal cord or cauda equina by anomalous growths of the spine, and also encephalitis and meningitis. Sedation has proved a valuable adjunct to electroencephalographic study of cerebral palsy. Better criteria for abnormality in the young child should be determined and the application of them more clearly standardized. Simple exercises are useful for early training of palsied children to stimulate development. "Crossed laterality"-the dominant eye being contralateral to the preferred hand-has been counteracted by special training with great success in eliminating emotional and behavior problems and accelerating development.Recent studies indicate that only 50 per cent of cerebral palsy patients have normal or better intelligence. Subluxation of the hip joint, a common deformity associated with cerebral palsy, can sometimes be corrected by operation if detected at an early stage. Radical ablation of

  11. Cerebral Hypoxia

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Cerebral Hypoxia Information Page Synonym(s): Hypoxia, Anoxia Table of Contents ( ... Trials Organizations Publicaciones en Español What is Cerebral Hypoxia? Cerebral hypoxia refers to a condition in which ...

  12. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    Science.gov (United States)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  13. Gamma Knife Radiosurgery for Treatment of Cerebral Metastases From Non–Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate clinical and physico-dosimetric variables affecting clinical outcome of patients treated with Gamma Knife radiosurgery (GKRS) for brain metastases from non–small cell lung cancer (NSCLC). Methods and Materials: Between 2001 and 2006, 373 patients (298 men and 75 women, median age 65 years) with brain metastases from NSCLC underwent GKRS. All of them had KPS ≥ 60%, eight or fewer brain metastases, confirmed histopathological diagnosis and recent work-up (3. Median marginal dose was 22.5 Gy at 50% isodose.; median 10 Gy and 12 Gy isodose volumes were 30.8 cm3 and 15.8 cm3, respectively. Follow-up with MRI was performed every 3 months. Overall survival data were collected from internal database, telephone interviews, and identifying registries. Results: Mean follow-up after GKRS was 51 months (range, 6 to 96 months); mean overall survival was 14.2 months. Of 373 patients, 29 were alive at time of writing, 104 had died of cerebral progression, and 176 had died of systemic progression. In 64 cases it was not possible to ascertain the cause. Univariate and multivariate analysis were adjusted for the following: RPA class, surgery, WBRT, age, gender, number of lesions, median tumor volume, median peripheral dose, and 10 Gy and 12 Gy volumes. Identified RPA class and overall tumor volume >5 cc were the only two covariates independently predictive of overall survival in patients who died of cerebral progression. Conclusions: Global volume of brain disease should be the main parameter to consider for performing GKRS, which is a first-line therapy for patient in good general condition and controlled systemic disease.

  14. Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex.

    Science.gov (United States)

    Narayanan, Rajeevan T; Egger, Robert; Johnson, Andrew S; Mansvelder, Huibert D; Sakmann, Bert; de Kock, Christiaan P J; Oberlaender, Marcel

    2015-11-01

    Vertical thalamocortical afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles that underlie communication between columns remain however unknown. Here we unravel these by reconstructing in vivo-labeled neurons from all excitatory cell types in the vibrissal part of rat primary somatosensory cortex (vS1). Integrating the morphologies into an exact 3D model of vS1 revealed that the majority of intracortical (IC) axons project far beyond the borders of the principal column. We defined the corresponding innervation volume as the IC-unit. Deconstructing this structural cortical unit into its cell type-specific components, we found asymmetric projections that innervate columns of either the same whisker row or arc, and which subdivide vS1 into 2 orthogonal [supra-]granular and infragranular strata. We show that such organization could be most effective for encoding multi whisker inputs. Communication between columns is thus organized by multiple highly specific horizontal projection patterns, rendering IC-units as the primary structural entities for processing complex sensory stimuli. PMID:25838038

  15. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Wang-shu Xu

    2016-01-01

    Full Text Available Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.

  16. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    Science.gov (United States)

    Xu, Wang-shu; Sun, Xuan; Song, Cheng-guang; Mu, Xiao-peng; Ma, Wen-ping; Zhang, Xing-hu; Zhao, Chuan-sheng

    2016-01-01

    Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.

  17. Equol increases cerebral blood flow in rats via activation of large-conductance Ca(2+)-activated K(+) channels in vascular smooth muscle cells.

    Science.gov (United States)

    Yu, Wei; Wang, Yan; Song, Zheng; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2016-05-01

    The present study was designed to investigate the effect of equol on cerebral blood flow and the underlying molecular mechanisms. The regional cerebral blood flow in parietal lobe of rats was measured by using a laser Doppler flowmetry. Isolated cerebral basilar artery and mesenteric artery rings from rats were used for vascular reactivity measurement with a multi wire myography system. Outward K(+) current in smooth muscle cells of cerebral basilar artery, large-conductance Ca(2+)-activated K(+) (BK) channel current in BK-HEK 293 cells stably expressing both human α (hSlo)- and β1-subunits, and hSlo channel current in hSlo-HEK 293 cells expressing only the α-subunit of BK channels were recorded with whole cell patch-clamp technique. The results showed that equol significantly increased regional cerebral blood flow in rats, and produced a concentration-dependent but endothelium-independent relaxation in rat cerebral basilar arteries. Both paxilline and iberiotoxin, two selective BK channel blockers, significantly inhibited equol-induced vasodilation in cerebral arteries. Outward K(+) currents in smooth muscle cells of cerebral basilar artery were increased by equol and fully reversed by washout or blockade of BK channels with iberiotoxin. Equol remarkably enhanced human BK current in BK-HEK 293 cells, but not hSlo current in hSlo-HEK 293 cells, and the increase was completely abolished by co-application of paxilline. Our findings provide the first information that equol selectively stimulates BK channel current by acting on its β1 subunit, which may in turn contribute to the equol-mediated vasodilation and cerebral blood flow increase. PMID:26995303

  18. Recombinant human erythropoietin increases cerebral cortical width index and neurogenesis following ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Zhongmin Wen; Peiji Wang

    2012-01-01

    The cerebral cortical expansion index refers to the ratio between left and right cortex width and is recognized as an indicator for cortical hyperplasia. Cerebral ischemia was established in CB-17 mice in the present study, and the mice were subsequently treated with recombinant human erythropoietin via subcutaneous injection. Results demonstrated that cerebral cortical width index significantly increased. Immunofluorescence detection showed that the number of nuclear antigen antibody/5-bromodeoxyuridine-positive cells at the infarction edge significantly increased. Correlation analysis revealed a negative correlation between neurological scores and cortical width indices in rats following ischemic stroke. These experimental findings suggested that recombinant human erythropoietin promoted cerebral cortical hyperplasia, increased cortical neurogenesis, and enhanced functional recovery following ischemic stroke.

  19. Selective antagonization of activated Nrf2 and inhibition of cancer cell proliferation by procyanidins from Cinnamomi Cortex extract.

    Science.gov (United States)

    Ohnuma, Tomokazu; Anzai, Eri; Suzuki, Yohei; Shimoda, Mai; Saito, Shin; Nishiyama, Takahito; Ogura, Kenichiro; Hiratsuka, Akira

    2015-11-01

    Nuclear factor-E2-related factor 2 (Nrf2) is an important transcription factor and plays a central role in inducible expression of many cytoprotective genes. Recent studies have reported that various cancer cells having unrestrained Nrf2 due to its overexpression exhibit increased proliferation and resistance to chemotherapy. Suppression of abnormal Nrf2 activation is needed for a new therapeutic approach against these cancers. Our previous study found that procyanidins prepared from Cinnamomi Cortex extract (CCE) have an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells. In the present study, we investigated the effect of CCE procyanidins on Nrf2 activity and cell proliferation in several cancer cells, which have normal or constitutively active Nrf2. Interestingly, CCE procyanidin treatment selectively reduced Nrf2 expression and inhibited cell proliferation in cancer cells that overexpress Nrf2, but these phenomena were not seen in cells with low Nrf2 expression. Moreover, transfection assay demonstrated that CCE procyanidins had selective inhibition of activated Nrf2. These results suggest that CCE procyanidins might be an effective cancer therapeutic agent to selectively suppress abnormal Nrf2 activation responsible for enhanced proliferation. PMID:26365032

  20. Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro

    International Nuclear Information System (INIS)

    Isolation of a true self-renewing stem cell from the human brain would be of great interest as a reliable source of neural tissue. Here, we report that human fetal cortical cells grown in epidermal growth factor expressed low levels of telomerase and telomeres in these cultures shortened over time leading to growth arrest after 30 weeks. Following leukemia inhibitory factor (LIF) supplementation, growth rates and telomerase expression increased. This was best demonstrated following cell cycle synchronization and staining for telomerase using immunocytochemistry. This increase in activity resulted in the maintenance of telomeres at approximately 7 kb for more than 60 weeks in vitro. However, all cultures displayed a lack of oligodendrotye production, decreases in neurogenesis over time and underwent replicative senescence associated with increased expression of p21 before 70 weeks in vitro. Thus, under our culture conditions, these cells are not stable, multipotent, telomerase expressing self-renewing stem cells. They may be more accurately described as human neural progenitor cells (hNPC) with limited lifespan and bi-potent potential (neurons/astrocytes). Interestingly, hNPC follow a course of proliferation, neuronal production and growth arrest similar to that seen during expansion and development of the human cortex, thus providing a possible model neural system. Furthermore, due to their high expansion potential and lack of tumorogenicity, these cells remain a unique and safe source of tissue for clinical transplantation

  1. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer's disease-like cerebral amyloidosis.

    Science.gov (United States)

    Ferretti, M T; Merlini, M; Späni, C; Gericke, C; Schweizer, N; Enzmann, G; Engelhardt, B; Kulic, L; Suter, T; Nitsch, R M

    2016-05-01

    Cerebral beta-amyloidosis, one of the pathological hallmarks of Alzheimer's disease (AD), elicits a well-characterised, microglia-mediated local innate immune response. In contrast, it is not clear whether cells of the adaptive immune system, in particular T-cells, react to cerebral amyloidosis in AD. Even though parenchymal T-cells have been described in post-mortem brains of AD patients, it is not known whether infiltrating T-cells are specifically recruited to the extracellular deposits of beta-amyloid, and whether they are locally activated into proliferating, effector cells upon interaction with antigen-presenting cells (APCs). To address these issues we have analysed by confocal microscopy and flow-cytometry the localisation and activation status of both T-cells and APCs in transgenic (tg) mice models of AD-like cerebral amyloidosis. Increased numbers of infiltrating T-cells were found in amyloid-burdened brain regions of tg mice, with concomitant up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1, compared to non-tg littermates. The infiltrating T-cells in tg brains did not co-localise with amyloid plaques, produced less interferon-gamma than those in controls and did not proliferate locally. Bona-fide dendritic cells were virtually absent from the brain parenchyma of both non-tg and tg mice, and APCs from tg brains showed an immature phenotype, with accumulation of MHC-II in intracellular compartments. These results indicate that cerebral amyloidosis promotes T-cell infiltration but interferes with local antigen presentation and T-cell activation. The inability of the brain immune surveillance to orchestrate a protective immune response to amyloid-beta peptide might contribute to the accumulation of amyloid in the progression of the disease. PMID:26872418

  2. Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex

    Directory of Open Access Journals (Sweden)

    Tomonori eFurukawa

    2014-03-01

    Full Text Available γ-Aminobutyric acid (GABA depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67GFP/GFP to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose-response properties of cells labeled to detect GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67GFP/GFP mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidinoethanesulfonic acid (GES, and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl oxobutyric acid (DCPIB, as examined through high-performance liquid chromatography (HPLC. GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the

  3. Intracranial germ cell tumors with special emphasis on computed tomography and cerebral angiography

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Tomohiro; Miyasaka, Kazuo; Abe, Satoru; Takei, Hidetoshi; Aida, Toshimitsu; Abe, Hiroshi; Tsuru, Mitsuo (Hokkaido Univ., Sapporo (Japan). School of Medicine)

    1984-10-01

    Germ cell tumors have been classified into germinoma, embryonal carcinoma, choriocarcinoma and teratoma by a World Health Organization proposal, although this subgrouping is still controversial. This paper reviews clinical, computed tomographic (CT) and angiographic data of 14 patients with histologically verified germ cell tumors. These 13 males and one female, ranging from 5 to 34 years in age, included 6 cases of teratoma, 5 of germinoma and 3 of embryonal carcinoma. On plain CT, perifocal edema was never seen in cases with teratoma or germinoma, but was usual in those with embryonal carcinoma. Teratoma, although often containing calcium deposits, was isodense in most parts of the mass, while germinoma was always hyperdense in the solid part. CT with intravenous iodine demonstrated some enhancing effect within the tumor mass in all cases, but it differed in intensity from one group to another. Enhancement was less intense or slight in germinoma, whereas it was marked in all of embryonal carcinoma and most of teratoma. Cerebral angiography showed abnormal tumor vessels and dense tumor stain in embryonal carcinoma, but these were not observed in teratoma and faintly in rare occasions of germinoma.

  4. EFFECTS OF TOTAL SAPONINS OF PANAX NOTOGINSENG AND LIGUSTRAZINE ON THE PROLIFERATION OF CEREBRAL MICROVASCULAR ENDOTHELIAL CELLS OF RATS

    Institute of Scientific and Technical Information of China (English)

    李敏杰; 刘勇; 丁海燕

    2002-01-01

    Objective To investigate the effects of Total Saponins of Panax notoginseng(PNS) and Liguastrazine(LIT) on the proliferation of cultured cerebral microvascular endothelial cells. Methods The inverted microscope was used to observe endothelial cells and immunochemical methods was also used to detect FVIII-related antigens so as to observe endothelial cells. PNS or LIT in concentrations 0.5 g*L-1, 1.0 g*L-1 and 2.0 g*L-1 were used on the cultured cerebral endothelial cells of rats for 24 hours. MTT method was adopted to determine the outcome of endothelial proliferation. Results 1. Immunochemical methods was used to detect FVIII-related antigens. The brownish yellow showed positive, and the observation of the cultured endothelial cells under inverted microscope showed that the cells appeared to be in the morphological form of cobble-stones. 2. PNS in lower concentration (0.5 g*L-1) could facilitate the proliferation of the cells, while 1 g*L-1 and 2 g*L-1 of PNS could inhibit the proliferation of the cells. 0.5 g*L-1 of LIT could facilitate the proliferation of cellswhile LIT of 1 g*L-1 and 2 g*L-1 had no significant effect. Conclusion The two kind of TCM ingredients extracted in lower concentration could facilitate the proliferation of the cells. And, at the same concentration, the inhibition of PNS on the cells is stronger than that of LIT.

  5. Radix Ilicis Pubescentis total flavonoids combined with mobilization of bone marrow stem cells to protect cerebral ischemia/reperfusion injury

    OpenAIRE

    Ming-san Miao; Lin Guo; Rui-qi Li; Xiao Ma

    2016-01-01

    Previous studies have shown that Radix Ilicis Pubescentis total flavonoids have a neuroprotective effect, but it remains unclear whether Radix Ilicis Pubescentis total flavonoids have a synergistic effect with the recombinant human granulocyte colony stimulating factor-mobilized bone marrow stem cell transplantation on cerebral ischemia/reperfusion injury. Rat ischemia models were administered 0.3, 0.15 and 0.075 g/kg Radix Ilicis Pubescentis total flavonoids from 3 days before modeling to 2 ...

  6. Changing microcircuits in the subplate of the developing cortex

    OpenAIRE

    Viswanathan, Sarada; Bandyopadhyay, Sharba; Kao, Joseph P.Y.; Kanold, Patrick O.

    2012-01-01

    Subplate neurons (SPNs) are a population of neurons in the mammalian cerebral cortex that exist predominantly in the prenatal and early postnatal period. Loss of SPNs prevents the functional maturation of the cerebral cortex. SPNs receive subcortical input from the thalamus and relay this information to the developing cortical plate and thereby can influence cortical activity in a feed-forward manner. Little is known about potential feedback projections from the cortical plate to SPNs. Thus, ...

  7. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  8. Androgen receptor immunoreactivity in rat occipital cortex after callosotomy

    Directory of Open Access Journals (Sweden)

    G Lepore

    2009-08-01

    Full Text Available Gonadal steroidogenesis can be influenced by direct neural links between the central nervous system and the gonads. It is known that androgen receptor (AR is expressed in many areas of the rat brain involved in neuroendocrine control of reproduction, such as the cerebral cortex. It has been recently shown that the occipital cortex exerts an inhibitory effect on testicular stereoidogenesis by a pituitary-independent neural mechanism. Moreover, the complete transection of the corpus callosum leads to an increase in testosterone (T secretion of hemigonadectomized rats. The present study was undertaken to analyze the possible corticocortical influences regulating male reproductive activities. Adult male Wistar rats were divided into 4 groups: 1 intact animals as control; 2 rats undergoing sham callosotomy; 3 posterior callosotomy; 4 gonadectomy and posterior callosotomy. Western blot analysis showed no remarkable variations in cortical AR expression in any of the groups except in group I where a significant decrease in AR levels was found. Similarly, both immunocytochemical study and cell count estimation showed a lower AR immunoreactivity in occipital cortex of callosotomized rats than in other groups. In addition, there was no difference in serum T and LH concentration between sham-callosotomized and callosotomized rats. In conclusion, our results show that posterior callosotomy led to a reduction in AR in the right occipital cortex suggesting a putative inhibiting effect of the contralateral cortical area.

  9. Mobilization of CD133+ progenitor cells in patients with acute cerebral infarction.

    Directory of Open Access Journals (Sweden)

    Dominik Sepp

    Full Text Available Progenitor cells (PCs contribute to the endogenous repair mechanism after ischemic events. Interleukin-8 (IL-8 as part of the acute inflammatory reaction may enhance PC mobilization. Also, statins are supposed to alter number and function of circulating PCs. We aimed to investigate PC mobilization after acute ischemic stroke as well as its association with inflammatory markers and statin therapy. Sixty-five patients with ischemic stroke were enrolled in the study. The number of CD133+ PCs was analyzed by flow cytometry. Blood samples were drawn within 24 hours after symptom onset and after 5 days. The number of CD133+ PCs increased significantly within 5 days (p<0.001. We found no correlation between CD133+ PCs and the serum levels of IL-8, IL-6, or C-reactive protein (CRP. Multivariate analysis revealed that preexisting statin therapy correlated independently with the increase of CD133+ PCs (p=0.001. This study showed a mobilization of CD133+ PCs in patients with acute cerebral infarction within 5 days after symptom onset. The early systemic inflammatory response did not seem to be a decisive factor in the mobilization of PCs. Preexisting statin therapy was associated with the increase in CD133+ PCs, suggesting a potentially beneficial effect of statin therapy in patients with stroke.

  10. Recombinant T cell receptor ligands improve outcome after experimental cerebral ischemia.

    Science.gov (United States)

    Akiyoshi, Kozaburo; Dziennis, Suzan; Palmateer, Julie; Ren, Xuefang; Vandenbark, Arthur A; Offner, Halina; Herson, Paco S; Hurn, Patricia D

    2011-09-01

    A key target for novel stroke therapy is the regulation of post-ischemic inflammatory mechanisms. Recent evidence emphasizes the role of T lymphocytes of differing subtypes in the evolution is ischemic brain damage. We have recently demonstrated the benefit of myelin antigen-specific immunodulatory agents known as recombinant T cell receptor ligands (RTLs) in a standard murine model of focal stroke. The aim of the current study was to extend this initial observation to RTL treatment in a therapeutically relevant timing after middle cerebral artery occlusion (MCAO) and verify functional benefit to complement histological outcome measures. We observed that the administration of mouse-specific RTL551 reduced infarct size and improved sensorimotor outcome when administered within a 3 h post-ischemic therapeutic window. RTL551 treatment reduced cortical, caudate putamen, and total infarct volume as compared to vehicle-treated mice. Using a standard behavioral testing repertoire, we observed that RTL551 reduced sensorimotor impairment 3 days after MCAO. Humanized RTL1000 (HLA-DR2 moiety linked to hMOG-35-55 peptide) also reduced infarct size in HLA-DR2 transgenic mice. These data indicate that this neuroantigen-specific immunomodulatory agent reduces damage when administered in a therapeutically relevant reperfusion timeframe. PMID:21961027

  11. A radial glia-specific role of RhoA in double cortex formation

    DEFF Research Database (Denmark)

    Cappello, Silvia; Böhringer, Christian R J; Bergami, Matteo;

    2012-01-01

    The positioning of neurons in the cerebral cortex is of crucial importance for its function as highlighted by the severe consequences of migrational disorders in patients. Here we show that genetic deletion of the small GTPase RhoA in the developing cerebral cortex results in two migrational diso...

  12. Cytoarchitecture-Dependent Decrease in Propagation Velocity of Cortical Spreading Depression in the Rat Insular Cortex Revealed by Optical Imaging.

    Science.gov (United States)

    Fujita, Satoshi; Mizoguchi, Naoko; Aoki, Ryuhei; Cui, Yilong; Koshikawa, Noriaki; Kobayashi, Masayuki

    2016-04-01

    Cortical spreading depression (SD) is a self-propagating wave of depolarization accompanied by a substantial disturbance of the ionic distribution between the intra- and extracellular compartments. Glial cells, including astrocytes, play critical roles in maintenance of the extracellular environment, including ionic distribution. Therefore, SD propagation in the cerebral cortex may depend on the density of astrocytes. The present study aimed to examine the profile of SD propagation in the insular cortex (IC), which is located between the neocortex and paleocortex and is where the density of astrocytes gradually changes. The velocity of SD propagation in the neocortex, including the somatosensory, motor, and granular insular cortices (5.7 mm/min), was higher than that (2.8 mm/min) in the paleocortex (agranular insular and piriform cortices). Around thick vessels, including the middle cerebral artery, SD propagation was frequently delayed and sometimes disappeared. Immunohistological analysis of glial fibrillary acidic protein (GFAP) demonstrated the sparse distribution of astrocytes in the somatosensory cortex and the IC dorsal to the rhinal fissure, whereas the ventral IC showed a higher density of astrocytes. These results suggest that cortical cytoarchitectonic features, which possibly involve the distribution of astrocytes, are crucial for regulating the velocity of SD propagation in the cerebral cortex. PMID:25595184

  13. Tuberculoma cerebral Cerebral tuberculoma

    OpenAIRE

    ELIZABETH CLARA BARROSO; TÂNIA REGINA BRÍGIDO DE OLIVEIRA; ANA MARIA DANTAS DO AMARAL; VALÉRIA GÓES FERREIRA PINHEIRO; ANA LÚCIA DE OLIVEIRA SOUSA

    2002-01-01

    Relata-se o caso de paciente com crises convulsivas de início recente. A tomografia computadorizada cerebral evidenciou imagem sugestiva de lesão expansiva metastática frontoparietal direita. A investigação de tumor primário ou outra doença foi negativa e o exame histopatológico do tecido cerebral diagnosticou tuberculoma. As convulsões foram controladas com a associação de hidantoína 300mg/dia ao esquema específico, utilizado por 18 meses. A tuberculose do sistema nervoso central representa ...

  14. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    Science.gov (United States)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  15. Immunoisolated transplantation of purified langerhans islet cells in testis cortex of male rats for treatment of streptozotocin induced diabetes mellitus.

    Science.gov (United States)

    Farhangi, Ali; Norouzian, Dariush; Mehrabi, Mohammad Reza; Chiani, Mohsen; Saffari, Zahra; Farahnak, Maryam; Akbarzadeh, Azim

    2014-10-01

    The objective of this study is to induce experimental diabetes mellitus by streptozotocin in normal adult Wistar rats via comparison of changes in body weight, consumption of food, volume of water, urine and levels of glucose, insulin and C-peptide in serum, between normal and diabetic rats. Intra-venous injection of 60 mg/kg dose of streptozotocin in 250-300 g (75-90 days) adult Wistar rats makes pancreas swell and causes degeneration in Langerhans islet β-cells and induces experimental diabetes mellitus in 2-4 days. For a microscopic study of degeneration of Langerhans islet β-cells of diabetic rats, biopsy from pancreas tissue of diabetic and normal rats, staining and comparison between them, were done. In this process, after collagenase digestion of pancreas, islets were isolated, dissociated and identified by dithizone method and then with enzymatic procedure by DNase and trypsin, the islet cells changed into single cells and β-cells were identified by immune fluorescence method and then assayed by flow-cytometer. Donor tissue in each step of work was prepared from 38 adult male Wistar rats weighted 250-300 g (75-90 days). Transplantation was performed in rats after 2-4 weeks of diabetes induction. In this study, the levels of insulin, C-peptide and glucose in diabetic rats reached to normal range as compared to un-diabetic rats in 20 days after transplantation of islet cells. Transplantation was performed under the cortex of testis as immunoisolated place for islet cells transplantation. PMID:25298622

  16. Descending projections from auditory cortex to excitatory and inhibitory cells in the nucleus of the brachium of the inferior colliculus

    Directory of Open Access Journals (Sweden)

    Jeffrey Garrett Mellott

    2014-10-01

    Full Text Available Descending projections from the auditory cortex (AC terminate in subcortical auditory centers from the medial geniculate nucleus (MG to the cochlear nucleus, allowing the AC to modulate the processing of acoustic information at many levels of the auditory system. The nucleus of the brachium of the inferior colliculus (NBIC is a large midbrain auditory nucleus that is a target of these descending cortical projections. The NBIC is a source of several auditory projections, including an ascending projection to the MG. This ascending projection appears to originate from both excitatory and inhibitory NBIC cells, but whether the cortical projections contact either of these cell groups is unknown. In this study, we first combined retrograde tracing and immunochemistry for glutamic acid decarboxylase (GAD, a marker of GABAergic cells to identify GABAergic and non-GABAergic NBIC projections to the MG. Our first result is that GAD-immunopositive cells constitute ~17% of the NBIC to MG projection. We then used anterograde labeling and electron microscopy to examine the AC projection to the NBIC. Our second result is that cortical boutons in the NBIC form synapses with round vesicles and asymmetric synapses, consistent with excitatory effects. Finally, we combined fluorescent anterograde labeling of corticofugal axons with immunochemistry and retrograde labeling of NBIC cells that project to the MG. These final results suggest first that AC axons contact both GAD-negative and GAD-positive NBIC cells and, second, that some of cortically-contacted cells project to the MG. Overall, the results imply that corticofugal projections can modulate both excitatory and inhibitory ascending projections from the NBIC to the auditory thalamus.

  17. PrP fragment 106-126 is toxic to cerebral endothelial cells expressing PrP(C).

    Science.gov (United States)

    Deli, M A; Sakaguchi, S; Nakaoke, R; Abrahám, C S; Takahata, H; Kopacek, J; Shigematsu, K; Katamine, S; Niwa, M

    2000-11-27

    A hydrophobic, fibrillogenic peptide fragment of human prion protein (PrP106-126) had in vitro toxicity to neurons expressing cellular prion protein (PrP(C)). In this study, we proved that primary cultures of mouse cerebral endothelial cells (MCEC) express PrP(C). Incubation of MCEC with PrP106-126 (25-200 microM) caused a dose-dependent toxicity assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase release, bis-benzimide staining for nuclear morphology, and trypan blue exclusion test. Pentosan polysulphate (50-100 microg/ml), a drug effective in scrapie prophylaxis, dose-dependently attenuated the injury. MCEC cultures from mice homogenous for the disrupted PrP gene were resistant to the toxicity of PrP106-126. In conclusion, cerebral endothelium expressing PrP(C) may be directly damaged during spongiform encephalopathies. PMID:11117517

  18. Correlation of glucose metabolism in brain cells and brain morphological changes with clinical typing in children with cerebral palsy

    Institute of Scientific and Technical Information of China (English)

    Qiongxiang Zhai; Huixian Qiao; Jiqing Liu

    2006-01-01

    BACKGROUND:It is widely known that fluorino-18-fluorodeoxyglucose positron emission tomography(18F-FDG PET)is commonly used to evaluate and diagnose epilepsy;however,whether it is beneficial to understand functional metabolism of bra in cells so as to reflect injured site and degree of brain cells or not should be studied further.OBJECTIVE:To evaluate the correlation between glucose metabolism and clinical typling as well as the conelation between active function of brain cells and degree of brain injury among children with cerbral palsy with 18F-FDG PET and MRI and compare the results of them.DESIGN:Case analysis.SETTING:Department of Pediatrics,People's Hospital of Guangdong Province.PARTICIPANTS:A total of 31 children with cerebral palsy were selected from Out-patient Clinic and In-patient Department of People's Hospital of Guangdong Province from July 2001 to August 2004.Based on clinical criteria of cerebral palsy,patients were classified into spasm(n=10),gradual movement(n=4),mixed type(n =13)and ataxia(n=4).There were 18 boys and 13 girls aged from 10 months to 4 years.All of them were met the diagnostic criteria of cerebral palsy and all parents of them were told the facts.Exclusion cdteria:Patients who had cerebral palsy caused by genetic metabolism disease were excluded.METHODS:①All children accepted MRI examination after hospitalization with Philips Acs NT 15T superconductling magnetic resonance scanner.②All children were fasted for 4 hours.And then,PET image of brain was collected based on T+EID type.If obvious hypermetabolism or hypometabolism region successively occurred on two layers, the image was regarded as abnormality. ③Different correlations of various abnormal greups of MRI and vadous types of cerebral palsy with PET image were compared and analyzed with Erusal-Willas rank sum test.MAIN OUTCOME MEASURES:①Results of 18F-FDG PET;②Results of MRI examination;③Correlation of variously abnormal groups of MRI and various types of cerebral

  19. Brain cells in the avian 'prefrontal cortex' code for features of slot-machine-like gambling.

    Directory of Open Access Journals (Sweden)

    Damian Scarf

    Full Text Available Slot machines are the most common and addictive form of gambling. In the current study, we recorded from single neurons in the 'prefrontal cortex' of pigeons while they played a slot-machine-like task. We identified four categories of neurons that coded for different aspects of our slot-machine-like task. Reward-Proximity neurons showed a linear increase in activity as the opportunity for a reward drew near. I-Won neurons fired only when the fourth stimulus of a winning (four-of-a-kind combination was displayed. I-Lost neurons changed their firing rate at the presentation of the first nonidentical stimulus, that is, when it was apparent that no reward was forthcoming. Finally, Near-Miss neurons also changed their activity the moment it was recognized that a reward was no longer available, but more importantly, the activity level was related to whether the trial contained one, two, or three identical stimuli prior to the display of the nonidentical stimulus. These findings not only add to recent neurophysiological research employing simulated gambling paradigms, but also add to research addressing the functional correspondence between the avian NCL and primate PFC.

  20. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis

    Science.gov (United States)

    FENG, NIANPING; HAO, GUANG; YANG, FENGGANG; QU, FUJUN; ZHENG, HAIHONG; LIANG, SONGLAN; JIN, YONGHUA

    2016-01-01

    Cerebral ischemia, which may lead to cerebral hypoxia and damage of the brain tissue, is a leading cause of human mortality and adult disability. Mesenchymal stem cells (MSCs) are a class of adult progenitor cells with the ability to differentiate into multiple cell types. The transplantation of bone marrow-derived MSCs is a potential therapeutic strategy for cerebral ischemia. However, the underlying mechanism has yet to be elucidated. In the present study, primary MSCs were isolated from healthy rats, labeled and transplanted into the brains of middle cerebral artery occlusion rat models. The location of the labeled MSCs in the rat brains were determined by fluorescent microscopy, and the neurological functions of the rats were scored. Immunohistochemical analyses demonstrated that the protein expression levels of myelin-associated inhibitors of regeneration, including Nogo-A, oligodendrocyte myelin glycoprotein and myelin-associated glycoprotein, were decreased following transplantation of the bone marrow-derived MSCs. Furthermore, the mRNA expression levels of Capase-3 and B-cell lymphoma 2, as determined by reverse transcription-quantitative polymerase chain reactions, were downregulated and upregulated, respectively, in the MSC-transplanted rats; thus suggesting that neural apoptosis was inhibited. The results of the present study suggested that the transplantation of bone marrow-derived MSCs was able to promote the functional recovery of the central nervous system following cerebral ischemia. Accordingly, inhibitors targeting myelin-associated inhibitors and apoptosis may be of clinical significance for cerebral ischemia in the future.

  1. Developmental malformations of the cerebral cortex

    International Nuclear Information System (INIS)

    Migration disorders (MD) are increasingly recognized as an important cause of epilepsy and developmental delay. Up to 25% of children with refractory epilepsy have a cortical malformation. MD encompass a wide spectrum with underlying genetic etiologies and clinical manifestations. Research regarding the delineation of the genetic and molecular basis of these disorders has provided greater insight into the pathogenesis of not only the malformation but also the process involved in normal cortical development. Diagnosis of MD is important since patients who fail three antiepileptic medications are less likely to have their seizures controlled with additional trials of medications and therefore epilepsy surgery should be considered. Recent improvements in neuroimaging have resulted in a significant increase in the recognition of MD. Findings can be subdivided in disorders due to abnormal neurogenesis, neuronal migration, neuronal migration arrest and neuronal organization resulting in different malformations like microcephaly, lissencephaly, schizencephaly and heterotopia. The examination protocol should include T1-w and T2-w sequences in adequate slice orientation. T1-w turbo-inversion recovery sequences (TIR) can be helpful to diagnose heterotopia. Contrast agent is needed only to exclude other differential diagnoses. (orig.)

  2. NADPH-diaphorase activity in area 17 of the squirrel monkey visual cortex: neuropil pattern, cell morphology and laminar distribution

    Directory of Open Access Journals (Sweden)

    Franca J.G.

    1997-01-01

    Full Text Available We studied the distribution of NADPH-diaphorase activity in the visual cortex of normal adult New World monkeys (Saimiri sciureus using the malic enzyme "indirect" method. NADPH-diaphorase neuropil activity had a heterogeneous distribution. In coronal sections, it had a clear laminar pattern that was coincident with Nissl-stained layers. In tangential sections, we observed blobs in supragranular layers of V1 and stripes throughout the entire V2. We quantified and compared the tangential distribution of NADPH-diaphorase and cytochrome oxidase blobs in adjacent sections of the supragranular layers of V1. Although their spatial distributions were rather similar, the two enzymes did not always overlap. The histochemical reaction also revealed two different types of stained cells: a slightly stained subpopulation and a subgroup of deeply stained neurons resembling a Golgi impregnation. These neurons were sparsely spined non-pyramidal cells. Their dendritic arbors were very well stained but their axons were not always evident. In the gray matter, heavily stained neurons showed different dendritic arbor morphologies. However, most of the strongly reactive cells lay in the subjacent white matter, where they presented a more homogenous morphology. Our results demonstrate that the pattern of NADPH-diaphorase activity is similar to that previously described in Old World monkeys

  3. Visualization of cell death in mice with focal cerebral ischemia using fluorescent annexin A5, propidium iodide, and TUNEL staining.

    Science.gov (United States)

    Bahmani, Peyman; Schellenberger, Eyk; Klohs, Jan; Steinbrink, Jens; Cordell, Ryan; Zille, Marietta; Müller, Jochen; Harhausen, Denise; Hofstra, Leo; Reutelingsperger, Chris; Farr, Tracy Deanne; Dirnagl, Ulrich; Wunder, Andreas

    2011-05-01

    To monitor stroke-induced brain damage and assess neuroprotective therapies, specific imaging of cell death after cerebral ischemia in a noninvasive manner is highly desirable. Annexin A5 has been suggested as a marker for imaging cell death under various disease conditions including stroke. In this study, C57BL6/N mice received middle cerebral artery occlusion (MCAO) and were injected intravenously with either active or inactive Cy5.5-annexin A5 48 hours after reperfusion. Some mice also received propidium iodide (PI), a cell integrity marker. Only in mice receiving active Cy5.5-annexin A5 were fluorescence intensities significantly higher over the hemisphere ipsilateral to MCAO than on the contralateral side. This was detected noninvasively and ex vivo 4 and 8 hours after injection. The majority of cells positive for fluorescent annexin A5 were also positive for PI and fragmented DNA as detected by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL) staining. This study demonstrates the high specificity of annexin A5 for visualization of cell death in a mouse model of stroke. To our knowledge, this is the first study to compare the distribution of injected active and inactive annexin A5, PI, and TUNEL staining. It provides important information on the experimental and potential clinical applications of annexin A5-based imaging agents in stroke. PMID:21245871

  4. A neural network model on self-organizing emergence of simple-cell receptive field with orientation selectivity in visual cortex

    Institute of Scientific and Technical Information of China (English)

    杨谦; 齐翔林; 汪云九

    2001-01-01

    In order to probe into the self-organizing emergence of simple cell orientation selectivity,we tried to construct a neural network model that consists of LGN neurons and simple cells in visual cortex and obeys the Hebbian learning rule. We investigated the neural coding and representation of simple cells to a natural image by means of this model. The results show that the structures of their receptive fields are determined by the preferred orientation selectivity of simple cells.However, they are also decided by the emergence of self-organization in the unsupervision learning process. This kind of orientation selectivity results from dynamic self-organization based on the interactions between LGN and cortex.

  5. Ipsilateral Cerebral and Contralateral Cerebellar Hyperperfusion in Patients with Unilateral Cerebral Infarction; SPM Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sun Pyo; Yoon, Joon Kee; Choi, Bong Hoi; Joo, In Soo; Yoon, Seok Nam [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2008-10-15

    Cortical reorganization has an important role in the recovery of stroke. We analyzed the compensatory cerebral and cerebellar perfusion change in patients with unilateral cerebral infarction using statistical parametric mapping (SPM). Fifty seven {sup 99m}Tc-Ethylene Cystein Diethylester (ECD) cerebral perfusion SPECT images of 57 patients (male/female=38/19, mean age=56{+-}17 years) with unilateral cerebral infarction were evaluated retrospectively. Patients were divided into subgroups according to the location (left, right) and the onset (acute, chronic) of infarction. Each subgroup was compared with normal controls (male/female=11/1, mean age =36{+-}10 years) in a voxel-by-voxel manner (two sample t-test, p<0.001) using SPM. All 4 subgroups showed hyperperfusion in the ipsilateral cerebral cortex, but not in the contralateral cerebral cortex. Chronic left and right infarction groups revealed hyperperfusion in the ipsilateral primary sensorimotor cortex, meanwhile, acute subgroups did not. Contralateral cerebellar hyperperfusion was also demonstrated in the chronic left infarction group. Using {sup 99m}Tc-ECD SPECT, we observed ipsilateral cerebral and contralateral cerebeller hyperperfusion in patients with cerebral infarction. However, whether these findings are related to the recovery of cerebral functions should be further evaluated.

  6. Effect of Hypoxic Preconditioning on Neural Cell Apoptosis and Expression of Bcl-2 and Bax in Cerebral Ischemia-Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to investigate the protective effect of hypoxic preconditioning on the cerebral ischemia-reperfusion injury, the expression of Bcl-2 and Bax was detected by using immunohistochemical staining after 3 h cerebral ischemia followed by 1, 6, 12, 24 and 48 h reperfusion respectively in rats treated with or without hypoxic preconditioning before cerebral ischemia. In addition,the apoptosis of neural cells and the behavioral scores for neurological functions recovery were evaluated by TUNEL staining and "crawvling method", respectively. Compared with control group (cerebral ischemia-reperfusion without hypoxic preconditioning), the expression of Bcl-2 was significantly increased, but that of Bax decreased in the hypoxic preconditioning group (cerebral ischemiareperfusion with hypoxic preconditioning), both P<0. 05. The pre-treatment with hypoxic preconditioning could reduce the apoptosis of neural cells and promote the neurological function recovery as compared to control group. It was suggested that hypoxic preconditioning may have protective effects on the cerebral ischemia-reperfusion injury by inhibiting the apoptosis of neural cells, increase the expression of Bcl-2 and decrease the expression of Bax.

  7. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    Science.gov (United States)

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure

  8. 碱性成纤维细胞生长因子对慢性酒精中毒大鼠自由基与脂质过氧化作用的影响%Effects of bFGF on free radical and lipid peroxidation in cerebral cortex and liver tissue of rat model of alcoholism

    Institute of Scientific and Technical Information of China (English)

    黄俊杰; 王彩冰; 黄丽娟; 何显教; 黄彦峰; 赵善民; 李倩茗; 黄巨恩

    2012-01-01

    OBJECTIVE To study the effects of basic fibroblast growth factor (bFGF) on the superoxide dismutase (SOD) , malondialdehyde (MDA) and hydroxyl radical (OH.) in cerebral cortex and liver tissue of rat model of alcoholism. METHODS The rat model of alcoholism was established by perfusing stomach with alcohol. Wistar rats were randomly divided into of model of control group, model of alcoholism group, normal saline (NS) and bFGF treatment group. The SOD, MDA and (OH.) in cerebral cortex and liver tissue were detected. RESULTS MDA and (OH.) in cerebral cortex and liver tissue of rat model of alcoholism were significantly increased than those in control group, but the activities of SOD was significantly decreased than those in control group.After bFGF intervention, MDA and (OH.) in cerebral cortex and liver tissue of the bFGF group were significantly decreased compared with the NS group and model of alcoholism group respectively. But the activities of SOD were significantly increased. CONCLUSION bFGF possesses the reliable function of eliminating free radicals in cerebral cortex and liver tissue in alcohol induced alcoholism model rats. bFGF can protect alcoholic brain damage and liver damage in rats.%目的 观察碱性成纤维细胞生长因子(bFGF)对慢性酒精中毒大鼠脑和肝组织超氧化物歧化酶(SOD)活力、丙二醛(MDA)含量和羟自由基含量的影响,探讨bFGF对慢性酒精中毒所致的脑损伤、肝损伤的保护作用.方法 选择成年Wistar雄性大鼠,采用白酒灌胃建立慢性酒精中毒模型,慢性酒精中毒模型建立成功的大鼠随机抽签法分为酒精中毒组、生理盐水(NS)对照组和bFGF治疗组,每组10只.另10只不灌白酒作为正常对照组.bFGF治疗组大鼠按12μg/kg剂量肌肉注射bFGF,共14d.各组大鼠到d 14后取出各组大鼠脑、肝组织制成匀浆,测定脑、肝组织SOD活力、MDA含量和抑制羟自由基能力.结果 与正常对照组相比,慢性酒精中毒后大鼠

  9. Cerebral Palsy

    Science.gov (United States)

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  10. Parasitic lesion of the insula suggesting cerebral sparganosis: case report

    International Nuclear Information System (INIS)

    Cerebral sparganosis, a parasitic disease, rarely produces a chronic active inflammatory response in the brain. Clinically and radiographically the process may mimic a neoplasm. We report a 30-year-old man who underwent surgical exploration for a mass in the insular cortex. Histology revealed a densely fibrotic mass heavily infiltrated with plasma cells and lymphocytes, in which were embedded parasitic forms consistent with sparganosis. We describe the MRI appearances and pathologic features. Intracranial mass lesions secondary to sparganosis must be considered in patients with a history of travel to endemic areas, especially Asia. (orig.)

  11. Parasitic lesion of the insula suggesting cerebral sparganosis: case report

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, T.J.; Madden, J.F.; McLendon, R.E. [Department of Pathology, Duke University Medical Center, Durham, NC (United States); Gray, L. [Department of Neuroradiology, Duke University Medical Center, Durham, NC (United States); Friedman, A.H. [Department of Neurosurgery, Duke University Medical Center, Durham, NC (United States)

    2000-03-01

    Cerebral sparganosis, a parasitic disease, rarely produces a chronic active inflammatory response in the brain. Clinically and radiographically the process may mimic a neoplasm. We report a 30-year-old man who underwent surgical exploration for a mass in the insular cortex. Histology revealed a densely fibrotic mass heavily infiltrated with plasma cells and lymphocytes, in which were embedded parasitic forms consistent with sparganosis. We describe the MRI appearances and pathologic features. Intracranial mass lesions secondary to sparganosis must be considered in patients with a history of travel to endemic areas, especially Asia. (orig.)

  12. Inhibition of Ectodermal-Neural Cortex 1 Protects Neural Cells from Apoptosis Induced by Hypoxia and Hypoglycemia.

    Science.gov (United States)

    Lei, Hongtao; Li, Jing; Zhao, Zhi; Liu, Li

    2016-05-01

    Ectodermal-neural cortex 1 (Enc1), a member of the KELCH family, is widely expressed in the nervous system and plays an important role in nervous system development. However, the function of Enc1 in neural survival following apoptosis induced by hypoxia and hypoglycemia remains unclear. In this study, we aimed to investigate the role of Enc1 in the cell survival of neurons subjected to apoptosis induced by oxygen-glucose deprivation (OGD) and the potential underlying mechanism. The in vitro cell model of neuron OGD was established by anoxia/hypoglycemic injury. Real-time quantitative PCR and Western blot analyses showed that Enc1 was significantly reduced in neurons under anoxia/hypoglycemic injury. Knockdown of Enc1 by small interfering RNA markedly promoted the survival of neurons under anoxia/hypoglycemia. Moreover, knockdown of Enc1 inhibited neuronal apoptosis. Conversely, overexpression of Enc1 showed the opposite effect. Further, data demonstrated that Enc1 might regulate neuron survival through heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor (Nrf2). Taken together, our study suggests that knockdown of Enc1 protects newborn neurons from apoptosis induced by OGD associated with Nrf2 and HO-1, providing a novel molecular target for the treatment of neonatal apoptosis induced by hypoxia and hypoglycemia brain injury. PMID:27039095

  13. Increased stress vulnerability after a prefrontal cortex lesion in female rats

    NARCIS (Netherlands)

    Gerrits, M; Westenbroek, C; Fokkema, DS; Jongsma, ME; Den Boer, JA; Ter Horst, GJ

    2003-01-01

    Neuroimaging studies in patients suffering from affective disorders have shown decreased volume and reduced regional cerebral blood flow in multiple areas of the prefrontal cortex, including the medial prefrontal cortex and the orbitofrontal cortex. This aberrant brain activity is among other things

  14. Cerebral Atrophy

    Science.gov (United States)

    ... Alzheimer’s disease, Pick’s disease, and fronto-temporal dementia cerebral palsy , in which lesions (damaged areas) may impair motor ... lead to cerebral atrophy. NIH Patient Recruitment for Cerebral Atrophy Clinical Trials ... by: Office of Communications and Public Liaison National Institute of Neurological Disorders ...

  15. How does the cortex get its folds? The role of tension-based morphogenesis

    Science.gov (United States)

    van Essen, David

    The cerebral cortex is a sheet-like structure that is convoluted to varying degrees in different species and, for human cortex, shows remarkable variability across individuals - even in identical twins. This talk will discuss key biological events and physical forces involved in how the cortex gets its folds. The early stages of cortical morphogenesis are established by exquisitely regulated patterns of cellular proliferation and migration that place the right numbers of cells in an appropriate starting configuration. A major focus will be on the proposed role of mechanical tension in the next stages of morphogenesis. Does tension along apical dendrites of cortical pyramidal cells help make the cortex a sheet? Does tension along long-distance axons cause the cortex to fold? These are attractive but controversial ideas. I will suggest ways in which physicists can contribute critical models and analyses that may help distinguish the relative contributions of several mechanisms (differential proliferation, buckling of the cortical sheet, and tension-based cortical folding). Physicists can also help in evaluating the degree to which cortical circuits reflect principles of compact wiring and the putative role of tension-based morphogenesis in wiring length minimization.

  16. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells.

    Science.gov (United States)

    Kim, Jae-Hyun; Kim, Eun-Young; Lee, Bina; Min, Ju-Hee; Song, Dea-Uk; Lim, Jeong-Min; Eom, Ji Whan; Yeom, Mijung; Jung, Hyuk-Sang; Sohn, Youngjoo

    2016-03-01

    Post-menopausal osteoporosis is a serious age-related disease. After the menopause, estrogen deficiency is common, and excessive osteoclast activity causes osteoporosis. Osteoclasts are multinucleated cells generated from the differentiation of monocyte/macrophage precursor cells such as RAW 264.7 cells. The water extract of Lycii Radicis Cortex (LRC) is made from the dried