WorldWideScience

Sample records for cerebellar granule cell

  1. Segmental identity and cerebellar granule cell induction in rhombomere 1

    Directory of Open Access Journals (Sweden)

    Bell Esther

    2004-06-01

    Full Text Available Abstract Background Cerebellar granule cell precursors are specifically generated within the hindbrain segment, rhombomere 1, which is bounded rostrally by the midbrain/hindbrain isthmus and caudally by the boundary of the Hoxa2 expression domain. While graded signals from the isthmus have a demonstrable patterning role within this region, the significance of segmental identity for neuronal specification within rhombomere 1 is unexplored. We examined the response of granule cell precursors to the overexpression of Hoxa2, which normally determines patterns of development specific to the hindbrain. How much does the development of the cerebellum, a midbrain/hindbrain structure, reflect its neuromeric origin as a hindbrain segment? Results We show that a Gbx2-positive, Otx2-/Hoxa2-negative territory corresponding to rhombomere 1 forms prior to an identifiable isthmic organiser. Early global overexpression of Hoxa2 at embryonic day 0 has no effect on the expression of isthmic signalling molecules or the allocation of rhombomere 1 territory, but selectively results in the loss of granule cell markers at embryonic day 6 and the depletion of cell bodies from the external granule cell layer. By comparison the trochlear nucleus and locus coeruleus form normally in ventral rhombomere 1 under these conditions. Microsurgery, coupled with electroporation, to target Hoxa2 overexpression to rhombic lip precursors, reveals a profound, autonomous respecification of migration. Rhombic lip derivatives, normally destined to occupy the external granule cell layer, violate the cerebellar boundary to form a ventrolateral nucleus in a position comparable to that occupied by rhombic lip derived neurons in rhombomere 2. Conclusions Different overexpression strategies reveal that the recognition of migration cues by granule cell precursors is dependent on their identity as rhombomere 1 derivatives. Segmental patterning cues operate autonomously within the rhombic lip

  2. Mechanisms of ethanol-induced death of cerebellar granule cells.

    Science.gov (United States)

    Luo, Jia

    2012-03-01

    Maternal ethanol exposure during pregnancy may cause fetal alcohol spectrum disorders (FASD). FASD is the leading cause of mental retardation. The most deleterious effect of fetal alcohol exposure is inducing neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. The cerebellum is one of the brain areas that are most susceptible to ethanol during development. Ethanol exposure causes a loss of both cerebellar Purkinje cells and granule cells. This review focuses on the toxic effect of ethanol on cerebellar granule cells (CGC) and the underlying mechanisms. Both in vitro and in vivo studies indicate that ethanol induces apoptotic death of CGC. The vulnerability of CGC to ethanol-induced death diminishes over time as neurons mature. Several mechanisms for ethanol-induced apoptosis of CGC have been suggested. These include inhibition of N-methyl-D-aspartate receptors, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, disturbance of potassium channel currents, thiamine deficiency, and disruption of translational regulation. Cultures of CGC provide an excellent system to investigate cellular/molecular mechanisms of ethanol-induced neurodegeneration and to evaluate interventional strategies. This review will also discuss the approaches leading to neuroprotection against ethanol-induced neuroapoptosis.

  3. Stochastic differential equation model for cerebellar granule cell excitability.

    Science.gov (United States)

    Saarinen, Antti; Linne, Marja-Leena; Yli-Harja, Olli

    2008-02-29

    Neurons in the brain express intrinsic dynamic behavior which is known to be stochastic in nature. A crucial question in building models of neuronal excitability is how to be able to mimic the dynamic behavior of the biological counterpart accurately and how to perform simulations in the fastest possible way. The well-established Hodgkin-Huxley formalism has formed to a large extent the basis for building biophysically and anatomically detailed models of neurons. However, the deterministic Hodgkin-Huxley formalism does not take into account the stochastic behavior of voltage-dependent ion channels. Ion channel stochasticity is shown to be important in adjusting the transmembrane voltage dynamics at or close to the threshold of action potential firing, at the very least in small neurons. In order to achieve a better understanding of the dynamic behavior of a neuron, a new modeling and simulation approach based on stochastic differential equations and Brownian motion is developed. The basis of the work is a deterministic one-compartmental multi-conductance model of the cerebellar granule cell. This model includes six different types of voltage-dependent conductances described by Hodgkin-Huxley formalism and simple calcium dynamics. A new model for the granule cell is developed by incorporating stochasticity inherently present in the ion channel function into the gating variables of conductances. With the new stochastic model, the irregular electrophysiological activity of an in vitro granule cell is reproduced accurately, with the same parameter values for which the membrane potential of the original deterministic model exhibits regular behavior. The irregular electrophysiological activity includes experimentally observed random subthreshold oscillations, occasional spontaneous spikes, and clusters of action potentials. As a conclusion, the new stochastic differential equation model of the cerebellar granule cell excitability is found to expand the range of dynamics

  4. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Jørgensen, Ole Steen; Hack, N

    1988-01-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in t...

  5. Acute ethanol exposure inhibits silencing of cerebellar Golgi cell firing induced by granule cell axon input

    Directory of Open Access Journals (Sweden)

    Paolo eBotta

    2014-02-01

    Full Text Available Golgi cells (GoCs are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na+/K+ pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

  6. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    and establishment of synaptic transmission. Here, we used calcium imaging in slice cultures of the postnatal cerebellum, and observe spontaneous propagating calcium waves in NeuN-positive granule-like cells. Wave formation was blocked by TTX and the AMPA antagonist NBQX, but persisted after NMDA receptor blockade...

  7. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N;

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  8. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    Energy Technology Data Exchange (ETDEWEB)

    Schousboe, A.; Frandsen, A.; Drejer, J. (Univ. of Copenhagen (Denmark))

    1989-09-01

    Evoked release of ({sup 3}H)-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and (3H)-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.

  9. Mitotic Events in Cerebellar Granule Progenitor Cells that Expand Cerebellar Surface Area Are Critical for Normal Cerebellar Cortical Lamination in Mice

    Science.gov (United States)

    Chang, Joshua C.; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-01-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereological principles. We demonstrate that during the proliferative phase of the external granule layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding either 2 cells in the same layer to increase surface area (β-events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α-events). As the cerebellum grows, therefore, β-events lie upstream of α-events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify inter-mitotic times for β-events on a per-cell basis in post-natal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereological studies. PMID:25668568

  10. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, G H; Hösli, E; Belhage, B;

    1991-01-01

    GABAA-receptors were localized in explant cultures of rat cerebellum and in dissociated primary cultures of rat cerebellar granule cells and rat cerebellar astrocytes using the monoclonal antibody bd-17 directed against the beta-subunit of the GABAA/benzodiazepine/chloride channel complex. At the...

  11. Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells.

    Science.gov (United States)

    Ohashi, Ryo; Sakata, Shin-ichi; Naito, Asami; Hirashima, Naohide; Tanaka, Masahiko

    2014-04-01

    Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca(2+) release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single-cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain-derived neurotrophic factor (BDNF) in the culture medium. The ryanodine-induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells.

  12. GABA agonist promoted formation of low affinity GABA receptors on cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A;

    1988-01-01

    The ability of the GABA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) to promote formation of low affinity GABA receptors on cerebellar granule cells was tested using primary cultures of these neurons. Granule cells were exposed to THIP (150 microM) for 6 hr after......, respectively, 4, 7, 10 and 14 days in culture. It was found that THIP treatment of 4- and 7-day-old cultures led to formation of low affinity GABA receptors, whereas such receptors could not be detected after THIP treatment in the older cultures (10 and 14 days) in spite of the fact that these cultured granule...... cells expressed a high density of high affinity GABA receptors. It is concluded that the ability of THIP to promote formation of low affinity GABA receptors on cerebellar granule cells is restricted to an early developmental period....

  13. Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A;

    1987-01-01

    The temporal development of the effect of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) on the ultrastructure composition and GABA receptor expression in cerebellar granule cells was investigated by quantitative electron microscopy (morphometric analysis) and GABA binding assays...... exposed to THIP (150 microM) for 3 hr low affinity GABA receptors were induced. These findings show that the effect of THIP on the ultrastructure composition and GABA receptor expression in cultured cerebellar granule cells may be interrelated and moreover it is likely that the turn-over of GABA receptors...

  14. Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A

    1987-01-01

    . It was found that the cytoplasmic density of smooth endoplasmic reticulum was decreased, while the cytoplasmic density of rough endoplasmic reticulum, Golgi apparatus, vesicles and coated vesicles was greatly enhanced after exposure of the cells to THIP (150 microM) for only 1 hr. In cerebellar granule cells...

  15. Depletion of polyamines prevents the neurotrophic activity of the GABA-agonist THIP in cultured rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Abraham, J H; Hansen, Gert Helge; Seiler, N

    1993-01-01

    Effects of polyamine depletion by alpha-difluoromethylornithine (DFMO) were studied on the GABA-agonist mediated enhancement of the morphological development of cultured rat cerebellar granule cells. An increase in the number of neurite extending cells and in the cytoplasmic density of organelles...... endoplasmic reticulum, Golgi apparatus and different types of vesicles was prevented by the exposure to DFMO....

  16. Identification of MMP-2 as a novel enhancer of cerebellar granule cell proliferation.

    Science.gov (United States)

    Verslegers, Mieke; Van Hove, Inge; Buyens, Tom; Dekeyster, Eline; Knevels, Ellen; Moons, Lieve

    2013-11-01

    During the first postnatal days in the mouse, granule cells (GCs) undergo massive proliferation, which then gradually decreases. Matrix metalloproteinase-2 (MMP-2), a Zn(2+)-dependent proteolytic enzyme, is involved in a wide variety of pathological and physiological pathways. Evidence for a role of this proteinase in cell proliferation is emerging, reporting its involvement in pathological proliferation, as well as during neurogenesis and developmental proliferation of non-CNS tissues. In this study, MMP-2 protein expression was observed within the early postnatal cerebellar cortex, predominantly in Purkinje cells and within the GC proliferative zone, i.e. the superficial external granular layer (EGL). Consistently, the spatiotemporal MMP-2 mRNA and protein profiles highly correlated with the peak of GC precursor (GCP) proliferation and detailed morphometric analyses of MMP-2 deficient cerebella revealed a thinner EGL due to a decreased GCP proliferation. BrdU cumulative experiments, performed to measure the length of different cell cycle phases, further disclosed a transiently prolonged S-phase in MMP-2 deficient GCPs during early cerebellar development. In consequence, MMP-2 deficient animals displayed a transient delay in GC migration towards the IGL. In conclusion, our findings provide important evidence for a role for MMP-2 in neuronal proliferation and cell cycle kinetics in the developing CNS.

  17. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1988-01-01

    N-methyl-D-aspartate (NMDA) supplementation of cerebellar cultures enriched in granule neurones (about 90%) prevented the extensive cell loss which occurs when cultivation takes place, in serum containing media, in the presence of 'low' K+ (5-15 mM). Estimation of tetanus toxin receptors and N-CA...

  18. The survival of cultured mouse cerebellar granule cells is not dependent on elevated potassium-ion concentration

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Hack, N; Balázs, R

    1994-01-01

    The effects of K(+)-induced membrane depolarization were studied on the survival and biochemical parameters in mouse and rat cerebellar granule cells grown in micro-well cultures. Cell numbers were determined by estimating DNA content using the Hoechst 33258 fluorochrome binding assay. DNA from d...... that although cultivation in 'high' K+ promotes biochemical differentiation in mouse cerebellar granule cells, these cells differ from their rat counterparts in that they do not develop a survival requirement for K(+)-induced membrane depolarization.......The effects of K(+)-induced membrane depolarization were studied on the survival and biochemical parameters in mouse and rat cerebellar granule cells grown in micro-well cultures. Cell numbers were determined by estimating DNA content using the Hoechst 33258 fluorochrome binding assay. DNA from...... degenerated cells was removed by prior DNAase treatment. These DNA estimates of cell numbers were comparable with values obtained by direct counting of fluorescein diacetate-stained viable cells. In agreement with previous studies, the survival of rat granule cells was promoted by increasing the concentration...

  19. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Xinhua Zhou

    2015-01-01

    Full Text Available Edaravone (EDA is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA- induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities.

  20. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Science.gov (United States)

    Zhou, Xinhua; Zhu, Longjun; Wang, Liang; Guo, Baojian; Zhang, Gaoxiao; Sun, Yewei; Zhang, Zaijun; Lee, Simon Ming-Yuen; Yu, Pei; Wang, Yuqiang

    2015-01-01

    Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities. PMID:26557222

  1. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  2. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling

    OpenAIRE

    Rong Yang; Minglei Wang; Jia Wang; Xingxu Huang; Ru Yang; Wei-Qiang Gao

    2015-01-01

    Summary Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH) signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed) and Patche...

  3. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    Science.gov (United States)

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage.

  4. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor.

    Science.gov (United States)

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-07-19

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.

  5. Dynamic changes of [Ca2+]i in cerebellar granule cells exposed to pulsed electric fields

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Intracellular free Ca2+ concentration ([Ca2+]i) in embryonic chick cerebellar granule cells loaded with fluo-3/AM and exposed to a single pulsed electric field was investigated using a confocal laser scanning microscope and fluorescent microscope equipped with CCD video imaging system.The results showed that [Ca2+]i increased immediately and rose to the peak rapidly as the cells exposed to a single pulsed electric field.The amplitude and rate of the increases of [Ca2+]i depend on the intensity of external electric field.In the presence of Ca2+ chelant EGTA or Ca2+ channels blocker La3+ in the pulsation solutions,the increase of [Ca2+]i was still observable.It was also observed that [Ca2+]i of different intracellular areas in the cell elevated simultaneously while the peak of the increase of [Ca2+]i in the poles of the cell preceded to the peak in its somata and recovered to a plateau within a short time.

  6. Dynamic changes of [Ca2+]i in cerebellar granule cells exposed to pulsed electric fields

    Institute of Scientific and Technical Information of China (English)

    陈雅; 王彦; 孙彤; 张锦珠; 景向红; 李瑞午

    2000-01-01

    Intracellular free Ca2+ concentration ([Ca2+]i) in embryonic chick cerebellar granule cells loaded with fluo-3/AM and exposed to a single pulsed electric field was investigated using a confocal laser scanning microscope and fluorescent microscope equipped with CCD video imaging system. The results showed that [Ca2+]i increased immediately and rose to the peak rapidly as the cells exposed to a single pulsed electric field. The amplitude and rate of the increases of [Ca2+]i depend on the intensity of external electric field. In the presence of Ca2+ chelant EGTA or Ca2+ channels blocker La3+ in the pulsation solutions, the increase of [Ca2+]i was still observable. It was also observed that [Ca2+]i of different intracellular areas in the cell elevated simultaneously while the peak of the increase of [Ca2+]i in the poles of the cell preceded to the peak in its somata and recovered to a plateau within a short time.

  7. Silencing the Majority of Cerebellar Granule Cells Uncovers Their Essential Role in Motor Learning and Consolidation

    Directory of Open Access Journals (Sweden)

    Elisa Galliano

    2013-04-01

    Full Text Available Cerebellar granule cells (GCs account for more than half of all neurons in the CNS of vertebrates. Theoretical work has suggested that the abundance of GCs is advantageous for sparse coding during memory formation. Here, we minimized the output of the majority of GCs by selectively eliminating their CaV2.1 (P/Q-type Ca2+ channels, which mediate the bulk of their neurotransmitter release. This resulted in reduced GC output to Purkinje cells (PCs and stellate cells (SCs as well as in impaired long-term plasticity at GC-PC synapses. As a consequence modulation amplitude and regularity of simple spike (SS output were affected. Surprisingly, the overall motor performance was intact, whereas demanding motor learning and memory consolidation tasks were compromised. Our findings indicate that a minority of functionally intact GCs is sufficient for the maintenance of basic motor performance, whereas acquisition and stabilization of sophisticated memories require higher numbers of normal GCs controlling PC firing.

  8. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning.

    Science.gov (United States)

    Jiao, Jianwei; Nakajima, Akira; Janssen, William G M; Bindokas, Vytautas P; Xiong, Xiaoli; Morrison, John H; Brorson, James R; Tang, Ya-Ping

    2008-02-27

    It is believed that gene/environment interaction (GEI) plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s) that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.

  9. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning.

    Directory of Open Access Journals (Sweden)

    Jianwei Jiao

    Full Text Available It is believed that gene/environment interaction (GEI plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.

  10. Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells.

    Science.gov (United States)

    Wang, Dong; She, Liang; Sui, Ya-nan; Yuan, Xiao-bing; Wen, Yunqing; Poo, Mu-ming

    2012-12-18

    Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma.

  11. The Gs-linked receptor GPR3 inhibits the proliferation of cerebellar granule cells during postnatal development.

    Directory of Open Access Journals (Sweden)

    Shigeru Tanaka

    Full Text Available BACKGROUND: During postnatal murine and rodent cerebellar development, cerebellar granule precursors (CGP gradually stop proliferating as they differentiate after migration to the internal granule layer (IGL. Molecular events that govern this program remain to be fully elucidated. GPR3 belongs to a family of Gs-linked receptors that activate cyclic AMP and are abundantly expressed in the adult brain. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of this orphan receptor in CGP differentiation, we determined that exogenous GPR3 expression in rat cerebellar granule neurons partially antagonized the proliferative effect of Sonic hedgehog (Shh, while endogenous GPR3 inhibition by siRNA stimulated Shh-induced CGP proliferation. In addition, exogenous GPR3 expression in CGPs correlated with increased p27/kip expression, while GPR3 knock-down led to a decrease in p27/kip expression. In wild-type mice, GPR3 expression increased postnatally and its expression was concentrated in the internal granular layer (IGL. In GPR3 -/- mice, the IGL was widened with increased proliferation of CGPs, as measured by bromodeoxyuridine incorporation. Cell cycle kinetics of GPR3-transfected medulloblastoma cells revealed a G0/G1 block, consistent with cell cycle exit. CONCLUSIONS/SIGNIFICANCE: These results thus indicate that GPR3 is a novel antiproliferative mediator of CGPs in the postnatal development of murine cerebellum.

  12. GABA-agonists induce the formation of low-affinity GABA-receptors on cultured cerebellar granule cells via preexisting high affinity GABA receptors

    DEFF Research Database (Denmark)

    Belhage, B; Meier, E; Schousboe, A

    1986-01-01

    The kinetics of specific GABA-binding to membranes isolated from cerebellar granule cells, cultured for 12 days from dissociated cerebella of 7-day-old rats was studied using [3H]GABA as the ligand. The granule cells were cultured in the presence of the specific GABA receptor agonist 4, 5, 6, 7-t...

  13. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling

    Directory of Open Access Journals (Sweden)

    Rong Yang

    2015-11-01

    Full Text Available Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed and Patched+/− mice in which SHH signaling is activated, we find evidence for the existence of symmetric and asymmetric divisions that are closely associated with progenitor proliferation and differentiation. While activation of the SHH pathway enhances symmetric progenitor cell divisions, blockade of the SHH pathway reverses the cell division mode change in Math1-GFP;Dcx-DsRed;Patched+/− mice by promoting asymmetric divisions or terminal neuronal symmetric divisions. Thus, cell division mode change mediates the regulation of cerebellar granule neurogenesis controlled by SHH signaling.

  14. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release.

    Science.gov (United States)

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-06-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release.

  15. The chemokine growth-related gene product β protects rat cerebellar granule cells from apoptotic cell death through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors

    Science.gov (United States)

    Limatola, Cristina; Ciotti, Maria Teresa; Mercanti, Delio; Vacca, Fabrizio; Ragozzino, Davide; Giovannelli, Aldo; Santoni, Angela; Eusebi, Fabrizio; Miledi, Ricardo

    2000-01-01

    Cultured cerebellar granule neurons are widely used as a cellular model to study mechanisms of neuronal cell death because they undergo programmed cell death when switched from a culture medium containing 25 mM to one containing 5 mM K+. We have found that the growth-related gene product β (GROβ) partially prevents the K+-depletion-induced cell death, and that the neuroprotective action of GROβ on granule cells is mediated through the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type of ionotropic glutamate receptors. GROβ-induced survival was suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione, which is a specific antagonist of AMPA/kainate receptors; it was not affected by the inhibitor of N-methyl-d-aspartate receptors, 2-amino-5-phosphonopentanoic acid, and was comparable to the survival of granule cells induced by AMPA (10 μM) treatment. Moreover, GROβ-induced neuroprotection was abolished when granule cells were treated with antisense oligonucleotides specific for the AMPA receptor subunits, which significantly reduced receptor expression, as verified by Western blot analysis with subunit-specific antibodies and by granule cell electrophysiological sensitivity to AMPA. Our data demonstrate that GROβ is neurotrophic for cerebellar granule cells, and that this activity depends on AMPA receptors. PMID:10811878

  16. The brain-specific RasGEF very-KIND is required for normal dendritic growth in cerebellar granule cells and proper motor coordination

    Science.gov (United States)

    Hayashi, Kanehiro; Furuya, Asako; Sakamaki, Yuriko; Akagi, Takumi; Shinoda, Yo; Sadakata, Tetsushi; Hashikawa, Tsutomu; Shimizu, Kazuki; Minami, Haruka; Sano, Yoshitake; Nakayama, Manabu

    2017-01-01

    Very-KIND/Kndc1/KIAA1768 (v-KIND) is a brain-specific Ras guanine nucleotide exchange factor carrying two sets of the kinase non-catalytic C-lobe domain (KIND), and is predominantly expressed in cerebellar granule cells. Here, we report the impact of v-KIND deficiency on dendritic and synaptic growth in cerebellar granule cells in v-KIND knockout (KO) mice. Furthermore, we evaluate motor function in these animals. The gross anatomy of the cerebellum, including the cerebellar lobules, layered cerebellar cortex and densely-packed granule cell layer, in KO mice appeared normal, and was similar to wild-type (WT) mice. However, KO mice displayed an overgrowth of cerebellar granule cell dendrites, compared with WT mice, resulting in an increased number of dendrites, dendritic branches and terminals. Immunoreactivity for vGluT2 (a marker for excitatory presynapses of mossy fiber terminals) was increased in the cerebellar glomeruli of KO mice, compared with WT mice. The postsynaptic density around the terminals of mossy fibers was also increased in KO mice. Although there were no significant differences in locomotor ability between KO and WT animals in their home cages or in the open field, young adult KO mice had an increased grip strength and a tendency to exhibit better motor performance in balance-related tests compared with WT animals. Taken together, our results suggest that v-KIND is required for compact dendritic growth and proper excitatory synaptic connections in cerebellar granule cells, which are necessary for normal motor coordination and balance. PMID:28264072

  17. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1988-01-01

    N-methyl-D-aspartate (NMDA) supplementation of cerebellar cultures enriched in granule neurones (about 90%) prevented the extensive cell loss which occurs when cultivation takes place, in serum containing media, in the presence of 'low' K+ (5-15 mM). Estimation of tetanus toxin receptors and N......-CAM contents indicated that NMDA rescued primarily nerve cells. The influence of NMDA in promoting cell survival was blocked by the receptor antagonist, 2-amino-5-phosphonovalerate. The effect depended both on the concentration of NMDA and on the degree of depolarization of cells, the affinity in the presence...... of 15 mM K+ being similar to that of NMDA receptor binding. The results attest a new role for excitatory amino acid transmitters by showing that they can exert a stage-dependent trophic action on developing nerve cells....

  18. Apoptotic cell death of cerebellar granule neurons in genetically ataxia (ax) mice.

    Science.gov (United States)

    Ohgoh, M; Yamazaki, K; Ogura, H; Nishizawa, Y; Tanaka, I

    2000-07-21

    An autosomal recessive neurological mutant, ataxia (ax) mouse, was investigated to determine whether neuronal cell death occurs in the brain. The brains of homozygotes (ax(J)/ax(J)) and phenotypically normal littermates (ax(J)/+ or +/+) aged at 23-38 days were examined by the terminal dUTP nick-end-labeling (TUNEL) method. A few TUNEL-positive cells were observed in the granule cell layer of the cerebellum, the dentate gyrus, and the olfactory bulb of normal mice. In the affected mice, the number of TUNEL-positive cells was significantly increased in the cerebellum, particularly in the granule cell layer, compared to normal littermates. The findings suggest that ax mice will be useful as a model for studies on the genetic basis of apoptotic neuronal cell death.

  19. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Hösli, E; Belhage, B;

    1991-01-01

    . At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling...... of GABAA-receptors was observed in the plasma membrane of both the cell bodies and processes in dissociated primary cultures of cerebellar granule cells using an indirect preembedding immunogold staining technique which in contrast to the classical PAP technique allows quantitative estimations...... to be performed. Quantification of the labeling intensity revealed a higher concentration of GABAA-receptors per microns plasma membrane in the cell bodies than in the processes. In discrete areas an extremely high density of the GABAA-receptors was observed. No specific labeling of GABAA-receptors was observed...

  20. Casein Kinase 1δ Is an APC/CCdh1 Substrate that Regulates Cerebellar Granule Cell Neurogenesis

    Directory of Open Access Journals (Sweden)

    Clara Penas

    2015-04-01

    Full Text Available Although casein kinase 1δ (CK1δ is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/CCdh1 ubiquitin ligase, and conditional deletion of the APC/CCdh1 activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/CCdh1 also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/CCdh1 controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.

  1. Selective stimulation of excitatory amino acid receptor subtypes and the survival of cerebellar granule cells in culture: effect of kainic acid

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1990-01-01

    Our previous studies showed that the survival of cerebellar granule cells in culture is promoted by treatment with N-methyl-D-aspartate. Here we report on the influence of another glutamate analogue, kainic acid, which, in contrast to N-methyl-D-aspartate, is believed to stimulate transmitter rec...

  2. The effect of gallium nitride on long-term culture induced aging of neuritic function in cerebellar granule cells.

    Science.gov (United States)

    Chen, Chi-Ruei; Young, Tai-Horng

    2008-04-01

    Gallium nitride (GaN) has been developed for a variety of microelectronic and optical applications due to its unique electric property and chemical stability. In the present study, n-type and p-type GaN were used as substrates to culture cerebellar granule neurons to examine the effect of GaN on cell response for a long-term culture period. It was found that GaN could rapidly induce cultured neurons to exhibit a high phosphorylated Akt level after 20h of incubation. It was assumed that the anti-apoptotic effect of Akt phosphorylation could be correlated with cell survival, neurite growth and neuronal function for up to 35 days of incubation. Morphological studies showed GaN induced larger neuronal aggregates and neurite fasciculation to exhibit a dense fiber network after 8 days of incubation. Western blot analysis and immunocytochemical characterization showed that GaN still exhibited the expression of neurite growth and function, such as high levels of GAP-43, synapsin I and synaptophysin even after 35 days of incubation. In addition, survival of cerebellar granule neurons on GaN was improved by the analysis of lactate dehydrogenase (LDH) release from damaged cells. These results indicated that neuronal connections were formed on GaN by a gradual process from Akt activation and cell aggregation to develop neurite growth, fasciculation and function. Therefore, GaN offers a good model system to identify a well-characterized pattern of neuronal behavior for a long-term culture period, consistent with the development of a neurochip requiring the integration of biological system and semiconductor material.

  3. Gamma-aminobutyric acid agonist-induced alterations in the ultrastructure of cultured cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A;

    1988-01-01

    The effect of 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP) on the ultrastructural composition of cultured cerebellar granule cells was investigated during development by quantitative electron microscopy (morphometric analysis). Granule cells were exposed to THIP (150 microM) for 6 h after...... 7 and 14 days, respectively, in culture. THIP treatment of 7-day-old cultures led to a statistically significant increase in the cytoplasmic density of rough endoplasmic reticulum, Golgi apparatus, vesicles, and coated vesicles, whereas no significant increase in the cytoplasmic density...... of these organelles was observed in 14-day-old cultures exposed to THIP for 6 h. These findings show that the effect of THIP on the ultrastructural composition of cultured cerebellar granule cells is restricted to early development....

  4. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish.

    Science.gov (United States)

    Takeuchi, Miki; Yamaguchi, Shingo; Yonemura, Shigenobu; Kakiguchi, Kisa; Sato, Yoshikatsu; Higashiyama, Tetsuya; Shimizu, Takashi; Hibi, Masahiko

    2015-10-01

    Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.

  5. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Miki Takeuchi

    2015-10-01

    Full Text Available Granule cells (GCs are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs. Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.

  6. Developmental exposure to ethanol increases the neuronal vulnerability to oxygen-glucose deprivation in cerebellar granule cell cultures.

    Science.gov (United States)

    Le Duc, Diana; Spataru, Ana; Ceanga, Mihai; Zagrean, Leon; Schöneberg, Torsten; Toescu, Emil C; Zagrean, Ana-Maria

    2015-07-21

    Prenatal alcohol exposure is associated with microencephaly, cognitive and behavioral deficits, and growth retardation. Some of the mechanisms of ethanol-induced injury, such as high level oxidative stress and overexpression of pro-apoptotic genes, can increase the sensitivity of fetal neurons towards hypoxic/ischemic stress associated with normal labor. Thus, alcohol-induced sequelae may be the cumulative result of direct ethanol toxicity and increased neuronal vulnerability towards metabolic stressors, including hypoxia. We examined the effects of ethanol exposure on the fetal cerebellar granular neurons' susceptibility to hypoxic/hypoglycemic damage. A chronic ethanol exposure covered the entire prenatal period and 5 days postpartum through breastfeeding, a time interval partially extending into the third-trimester equivalent in humans. After a binge-like alcohol exposure at postnatal day 5, glutamatergic cerebellar granule neurons were cultured and grown for 7 days in vitro, then exposed to a 3-h oxygen-glucose deprivation to mimic a hypoxic/ischemic condition. Cellular viability was monitored by dynamic recording of propidium iodide fluorescence over 20 h reoxygenation. We explored differentially expressed genes on microarray data from a mouse embryonic ethanol-exposure model and validated these by real-time PCR on the present model. In the ethanol-treated cerebellar granule neurons we find an increased expression of genes related to apoptosis (Mapk8 and Bax), but also of genes previously described as neuroprotective (Dhcr24 and Bdnf), which might suggest an actively maintained viability. Our data suggest that neurons exposed to ethanol during development are more vulnerable to in vitro hypoxia/hypoglycemia and have higher intrinsic death susceptibility than unexposed neurons.

  7. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Kjaerulff, Karen M; Pedersen, Hans C

    2002-01-01

    BTB/POZ (broad complex tramtrack bric-a-brac/poxvirus and zinc finger) zinc finger factors are a class of nuclear DNA-binding proteins involved in development, chromatin remodeling, and cancer. However, BTB/POZ domain zinc finger factors linked to development of the mammalian cerebral cortex......, cerebellum, and macroglia have not been described previously. We report here the isolation and characterization of two novel nuclear BTB/POZ domain zinc finger isoforms, designated HOF(L) and HOF(S), that are specifically expressed in early hippocampal neurons, cerebellar granule cells, and gliogenic...

  8. Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Ca2+ by mobilization of cellular Ca2+ and activation of Ca2+ influx

    DEFF Research Database (Denmark)

    Bouchelouche, P; Belhage, B; Frandsen, A;

    1989-01-01

    The Ca2+ sensitive fluorescent probe, fura-2 has been used to monitor cytosolic free calcium levels in mature primary cultures of cerebellar granule cells during exposure to L-glutamate and other excitatory amino acids: quisqualate (QA) kainate (KA) and N-methyl-D-aspartate (NMDA). Glutamate...... at micromolar concentrations produced a prompt and dose-related increase in the intracellular concentration of free Ca2+, ([Ca2+]i), whereas QA, KA and NMDA had no effect. This increase was also seen in the absence of extracellular Ca2+, suggesting that L-glutamate promotes mobilization of Ca2+ from...

  9. TGFβ1 downregulates neurite outgrowth, expression of Ca2+ transporters, and mitochondrial dynamics of in vitro cerebellar granule cells.

    Science.gov (United States)

    Jaskova, Katarina; Pavlovicova, Michaela; Cagalinec, Michal; Lacinova, Lubica; Jurkovicova, Dana

    2014-03-26

    Acute injury to central nervous system (CNS) triggers neurodegenerative processes that can result in serious damage or complete loss of function. After injury, production of transforming growth factor β1 (TGFβ1) increases and initiates creation of a fibrotic scar that prevents normal growth, plasticity, and recovery of damaged neurons. Administration of TGFβ1 antagonists can prevent its pathological effects. To define consequences of increased TGFβ1 release on calcium signaling, neuronal plasticity, excitability, and mitochondrial dynamics in CNS neurons we directly exposed a rat primary culture of cerebellar granule neurons to TGFβ1. We focused on changes in expression of intracellular calcium transporters, especially inositol-1,4,5-trisphosphate receptor (IP3R) type 1, mitochondrial dynamics, and membrane excitability. TGFβ1 significantly decreased the gene and protein expression of inositol-1,4,5-trisphosphate receptor type 1 and the gene expression of additional intracellular Ca transporters such as IP3R2, ryanodine receptor type 1 (RyR1), RyR2, and SERCA2. Altered calcium signaling suppressed neurite outgrowth and significantly decreased the length of the mitochondria and the frequency of mitochondrial fusion. The resting membrane potential of cerebellar granule neurons was hyperpolarized and slow after depolarization of single action potential was suppressed. LY364947, a blocker of TGFβ1 receptor I, prevented these effects, and IP3 receptor blocker 2-aminoethoxydiphenyl borate (2APB) mimicked them. After CNS injury TGFβ1 downregulates intracellular Ca levels and alters Ca signaling within injured neurons. We suggest that in our model TGFβ1 may trigger both neurodegenerative and neuroprotective events through IP3-induced Ca signaling.

  10. Perinatal exposure to low-dose methylmercury induces dysfunction of motor coordination with decreases in synaptophysin expression in the cerebellar granule cells of rats.

    Science.gov (United States)

    Fujimura, Masatake; Cheng, Jinping; Zhao, Wenchang

    2012-06-29

    Methylmercury (MeHg) is an environmental pollutant that is toxic to the developing central nervous system (CNS) in children, even at low exposure levels. Perinatal exposure to MeHg is known to induce neurological symptoms with neuropathological changes in the CNS. However, the relationship between the neurological symptoms and neuropathological changes induced in offspring as a result of exposure to low-dose MeHg is not well defined. In the present study, neurobehavioral analyses revealed that exposure to a low level of MeHg (5 ppm in drinking water) during developmental caused a significant deficit in the motor coordination of rats in the rotating rod test. In contrast, general neuropathological findings, including neuronal cell death and the subsequent nerve inflammation, were not observed in the region of the cerebellum responsible for regulating motor coordination. Surprisingly, the expression of synaptophysin (SPP), a marker protein for synaptic formation, significantly decreased in cerebellar granule cells. These results showed that perinatal exposure to low-dose MeHg causes neurobehavioral impairment without general neuropathological changes in rats. We demonstrated for the first time that exposure to low-dose MeHg during development induces the dysfunction of motor coordination due to changes of synaptic homeostasis in cerebellar granule cells.

  11. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.

    Science.gov (United States)

    Babot, Zoila; Cristòfol, Rosa; Suñol, Cristina

    2005-01-01

    Excitotoxic neuronal death has been linked to neurological and neurodegenerative diseases. Several studies have sought to clarify the involvement of Cl(-) channels in neuronal excitotoxicity using either N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainic acid agonists. In this work we induced excitotoxic death in primary cultures of cerebellar granule cells by means of endogenously released glutamate. Excitotoxicity was provoked by exposure to high extracellular K(+) concentrations ([K(+)](o)) for 5 min. Under these conditions, a Ca(2+)-dependent release of glutamate was evoked. When extracellular glutamate concentration rose to between 2 and 4 microM, cell viability was significantly reduced by 30-40%. The NMDA receptor antagonists (MK-801 and D-2-amino-5-phosphonopentanoic acid) prevented cell death. Exposure to high [K(+)](o) produced a (36)Cl(-) influx which was significantly reduced by picrotoxinin. In addition, the GABA(A) receptor antagonists (bicuculline, picrotoxinin and SR 95531) protected cells from high [K(+)](o)-triggered excitotoxicity and reduced extracellular glutamate concentration. The Cl(-) channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid also exerted a neuroprotective effect and reduced extracellular glutamate concentration, even though they did not reduce high [K(+)](o)-induced (36)Cl(-) influx. Primary cultures of cerebellar granule cells also contain a population of GABAergic neurons that released GABA in response to high [K(+)](o). Chronic treatment of primary cultures with kainic acid abolished GABA release and rendered granule cells insensitive to high [K(+)](o) exposure, even though NMDA receptors were functional. Altogether, these results demonstrate that, under conditions of membrane depolarization, low micromolar concentrations of extracellular glutamate might induce an excitotoxic process through both NMDA and GABA(A) receptors and niflumic acid-sensitive Cl

  12. Anticonvulsive Activity in Audiogenic DBA/2 Mice of 1,4-Benzodiazepines and 1,5-Benzodiazepines with Different Activities at Cerebellar Granule Cell GABAA Receptors.

    Science.gov (United States)

    Gatta, Elena; Cupello, Aroldo; Di Braccio, Mario; Grossi, Giancarlo; Robello, Mauro; Scicchitano, Francesca; Russo, Emilio; De Sarro, Giovambattista

    2016-12-01

    Herein, we tested in a model of generalized reflex epilepsy in mice different 1,4-benzodiazepines and 1,5-benzodiazepines with agonistic activity at the GABAA receptor population contributing to the peak component of the chloride current elicited by GABA in cerebellar granule cells (CGCs) in culture. The substances have all higher lipophilia than clobazam, an antiepileptic drug well known and used in human therapy. This ensures that they all can pass relatively easily the blood-brain barrier (BBB). The benzodiazepines were administered intraperitoneally (i.p.) and tested for their activity against sound-induced tonic and clonic seizures in a genetic model of experimental epilepsy, the DBA/2 mouse. Our data demonstrates an interesting inverse correlation between the ED50s and the efficacy (E %) of the drugs in increasing the peak chloride current elicited by GABA in cerebellar granule cells in culture. There is indication of the existence of a threshold of E % above which the increase of ED50 with increasing E % becomes linear. This is statistically significant for the clonic phase, whereas it is at the limit of significance for the tonic one. A possible interpretation of these results is that in this epilepsy model, projections from the cerebellum exert a convulsion prevention activity.

  13. Interactive effects involving different classes of excitatory amino acid receptors and the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1990-01-01

    Differentiating granule cells develop survival requirements in culture which can be met by treatment with high K+ or N-methyl-D-aspartate (NMDA) and, according to our recent findings, also with low concentrations of kainic acid (KA, 50 microM). We have now attempted to elucidate the mechanism(s) ...

  14. GABA agonist induced changes in ultrastructure and GABA receptor expression in cerebellar granule cells is linked to hyperpolarization of the neurons

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Schousboe, A

    1990-01-01

    GABA has been shown to exert a neurotrophic like activity by enhancing the morphological and functional maturation of neurons. Mechanisms involved in this effect of GABA are largely unknown but since GABA has been shown to mediate a hyperpolarizing action on neurons it can be assumed...... that this action might be important. In order to investigate this possibility, the ability to mimic the trophic actions of GABA of different agents known to influence the membrane potential or the GABA gated chloride channels was studied. Hence, GABA receptor expression as well as the ultrastructure of cerebellar...... granule cells were monitored after exposure of the cells in culture to either bromide, valinomycin or picrotoxin. It was found that cells which at early developmental stages (4 days in culture) were exposed to bromide or valinomycin expressed low affinity GABA receptors similar to cells treated...

  15. Effect of a GABA agonist on the expression and distribution of GABAA receptors in the plasma membrane of cultured cerebellar granule cells: an immunocytochemical study

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A

    1991-01-01

    The effect of the gamma-aminobutyric acid (GABA) agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP, 150 microM) on the localization and density of GABAA receptors in the plasma membrane of rat cerebellar granule cells in primary cultures was studied at the electron microscope (EM) level...... by preembedding immunogold staining using the monoclonal antibody bd-17 directed against the beta-subunit of the GABAA receptor complex. In THIP-treated as well as untreated control cultures, GABAA receptors were found to be evenly distributed in the plasma membrane of cell bodies as well as processes. However...... at the EM level using the preembedding immunogold technique. It is likely that low-affinity GABAA receptors are preferentially located in the cell processes and to a considerable extent in the form of 'hot spots'. However, these 'hot spots' also contain high-affinity receptors....

  16. Effect of a GABA agonist on the expression and distribution of GABAA receptors in the plasma membrane of cultured cerebellar granule cells: an immunocytochemical study

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1991-01-01

    , the density of the GABAA receptors was significantly increased in the THIP-treated cultures as compared to the control cultures and this effect of THIP was particularly pronounced in the processes. GABAA receptors were occasionally observed to form 'hot spots' in process-like structures and again......The effect of the gamma-aminobutyric acid (GABA) agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP, 150 microM) on the localization and density of GABAA receptors in the plasma membrane of rat cerebellar granule cells in primary cultures was studied at the electron microscope (EM) level...... by preembedding immunogold staining using the monoclonal antibody bd-17 directed against the beta-subunit of the GABAA receptor complex. In THIP-treated as well as untreated control cultures, GABAA receptors were found to be evenly distributed in the plasma membrane of cell bodies as well as processes. However...

  17. Nitric oxide promotes survival of cerebellar granule neurons cultured in vitro through the Akt pathway

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Mei Li; Lihua Zhou

    2011-01-01

    In this study, cerebellar granule neurons were used to examine the role of nitric oxide on cell survival. The N-methyl-D-aspartic acid receptor antagonist, MK-801, and the soluble guanylate cyclase antagonist, 1H-[1, 2, 4]oxadiazolo-[4, 3-a] quinoxalin-1-one, decreased cell viability, induced caspase-3, and decreased phosphorylated-Akt levels, suggesting that blockade of nitric oxide production promotes apoptosis of differentiating cerebellar granule neurons. After administration of sodium nitroprusside, an endogenous nitric oxide donor, cell viability recovered,caspase-3 expression was decreased, and phosphorylated-Akt levels increased. This study provides direct evidence that nitric oxide can sustain the survival of developing cerebellar granule neurons in vitro through the nitric oxide-Akt pathway. Moreover, endogenous nitric oxide exerts these effects in a cyclic guanosine monophosphate-dependent manner while exogenous nitric oxide does so in a cyclic guanosine monophosphate-independent manner.

  18. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Meier, E;

    1990-01-01

    differentiation and GABA receptor expression was investigated in cultured cerebellar granule cells. After 4 days in culture the neurons were exposed to the inhibitors for 6 h in the simultaneous presence of THIP. Subsequently, cultures were either fixed for electron microscopic examination or used for preparation...... of membranes for [3H]GABA binding assays. In some experiments the functional activity of the newly induced low-affinity GABA receptors was assessed by investigation of the ability of GABA to inhibit neurotransmitter release from the neurons. These experiments were performed to differentiate between...... an intracellular and a plasma membrane localization of the receptors. In all experiments cultures treated with THIP alone served as controls. The inhibitors of protein synthesis totally abolished the ability of THIP to induce low-affinity GABA receptors. In contrast, the inhibitors of intracellular transport...

  19. File list: Unc.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  20. File list: DNS.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neuron...s SRX685885,SRX685878,SRX685882,SRX685877,SRX685880,SRX685883 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  1. File list: ALL.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neuron...s SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  2. File list: ALL.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neuron...s SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  3. File list: His.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  4. File list: Oth.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  5. File list: DNS.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neuron...s SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  6. File list: DNS.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neuron...s SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  7. File list: ALL.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neuron...s SRX685885,SRX685878,SRX685882,SRX685877,SRX685880,SRX685883 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: Pol.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  9. File list: Unc.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  10. File list: His.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule n...eurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  11. File list: His.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule n...eurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  12. File list: His.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule n...eurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  13. File list: Pol.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  14. File list: Unc.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  15. File list: Oth.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  16. File list: ALL.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar gran...ule neurons SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  17. File list: Oth.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  18. File list: Oth.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  19. File list: Pol.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  20. File list: Unc.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  1. File list: DNS.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule... neurons SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  2. Acute NMDA toxicity in cultured rat cerebellar granule neurons is accompanied by autophagy induction and late onset autophagic cell death phenotype

    Directory of Open Access Journals (Sweden)

    Kobeissy Firas H

    2010-02-01

    Full Text Available Abstract Background Autophagy, an intracellular response to stress, is characterized by double membrane cytosolic vesicles called autophagosomes. Prolonged autophagy is known to result in autophagic (Type II cell death. This study examined the potential role of an autophagic response in cultured cerebellar granule neurons challenged with excitotoxin N-methyl-D-aspartate (NMDA. Results NMDA exposure induced light chain-3 (LC-3-immunopositive and monodansylcadaverine (MDC fluorescent dye-labeled autophagosome formation in both cell bodies and neurites as early as 3 hours post-treatment. Elevated levels of Beclin-1 and the autophagosome-targeting LC3-II were also observed following NMDA exposure. Prolonged exposure of the cultures to NMDA (8-24 h generated MDC-, LC3-positive autophagosomal bodies, concomitant with the neurodegenerative phase of NMDA challenge. Lysosomal inhibition studies also suggest that NMDA-treatment diverted the autophagosome-associated LC3-II from the normal lysosomal degradation pathway. Autophagy inhibitor 3-methyladenine significantly reduced NMDA-induced LC3-II/LC3-I ratio increase, accumulation of autophagosomes, and suppressed NMDA-mediated neuronal death. ATG7 siRNA studies also showed neuroprotective effects following NMDA treatment. Conclusions Collectively, this study shows that autophagy machinery is robustly induced in cultured neurons subjected to prolonged exposure to excitotoxin, while autophagosome clearance by lysosomal pathway might be impaired. Our data further show that prolonged autophagy contributes to cell death in NMDA-mediated excitotoxicity.

  3. Protective effect of keishi-bukuryo-gan and its constituent medicinal plants against nitric oxide donor-induced neuronal death in cultured cerebellar granule cells.

    Science.gov (United States)

    Shimada, Y; Yokoyama, K; Goto, H; Sekiya, N; Mantani, N; Tahara, E; Hikiami, H; Terasawa, K

    2004-07-01

    Keishi-bukuryo-gan (Gui-Zhi-Fu-Ling-Wan) (KBG) is a traditional Chinese/Japanese medical (Kampo) formulation that has been administered to patients with "Oketsu" (blood stagnation) syndrome. In the process of neuronal cell death induced by brain ischemia, excessive generation of nitric oxide (NO) free radicals is implicated in the neurotoxicity. In the present study, we examined the protective effects of KBG and its constituent medicinal plants against NO donors, sodium nitroprusside (SNP) and 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (NOC18)-induced neuronal death in cultured rat cerebellar granule cells (CGCs). MTT assay showed cell viability to be significantly increased by the addition of KBG extract (KBGE) (100 microg/ml), Cinnamomi Cortex extract (CCE) (3, 10 and 30 microg/ml), Paeoniae Radix extract (PRE) (100 microg/ml) and Moutan Cortex extract (MCE) (10 and 30 microg/ml) compared with exposure to SNP (30 microM, 24 h) only. Also, cell viability was significantly increased by the addition of KBGE (100 and 300 microg/ml), CCE (30 and 100 microg/ml), PRE (100 and 300 microg/ml) and MCE (30 and 100 microg/ml) compared with exposure to NOC 18 (100 microM, 48 h) only. Persicae Semen extract and Hoelen extract did not protect against NO donor-induced neuronal death. These results suggest that KBG has protective effect against NO-mediated neuronal death in cultured CGCs and that it is derived from Cinnamomi Cortex, Paeoniae Radix and Moutan Cortex.

  4. In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism

    Directory of Open Access Journals (Sweden)

    Carducci Claudia

    2012-04-01

    Full Text Available Abstract Background The discovery of the inherited disorders of creatine (Cr synthesis and transport in the last few years disclosed the importance of blood Cr supply for the normal functioning of the brain. These putatively rare diseases share a common pathogenetic mechanism (the depletion of brain Cr and similar phenotypes characterized by mental retardation, language disturbances, seizures and movement disorders. In the effort to improve our knowledge on the mechanisms regulating Cr pool inside the nervous tissue, Cr transport and synthesis and related gene transcripts were explored in primary cultures of rat cerebellar granule cells and astrocytes. Methods Cr uptake and synthesis were explored in vitro by incubating monotypic primary cultures of rat type I astrocytes and cerebellar granule cells with: a D3-Creatine (D3Cr and D3Cr plus β-guanidinopropionate (GPA, an inhibitor of Cr transporter, and b labelled precursors of Guanidinoacetate (GAA and Cr (Arginine, Arg; Glycine, Gly. Intracellular D3Cr and labelled GAA and Cr were assessed by ESI-MS/MS. Creatine transporter (CT1, L-arginine:glycine amidinotransferase (AGAT, and S-adenosylmethionine:guanidinoacetate N-methyltransferase (GAMT gene expression was assessed in the same cells by real time PCR. Results D3Cr signal was extremely high in cells incubated with this isotope (labelled/unlabelled Cr ratio reached about 10 and 122, respectively in cerebellar granule cells and astrocytes and was reduced by GPA. Labelled Arg and Gly were taken up by the cells and incorporated in GAA, whose concentration paralleled that of these precursors both in the extracellular medium and inside the cells (astrocytes. In contrast, the increase of labelled Cr was relatively much more limited since labelled Cr after precursors' supplementation did not exceed 2,7% (cerebellar granule cells and 21% (astrocytes of unlabelled Cr. Finally, AGAT, GAMT and SLC6A8 were expressed in both kind of cells. Conclusions Our

  5. Prenatal exposure to bisphenol A interferes with the development of cerebellar granule neurons in mice and chicken.

    Science.gov (United States)

    Mathisen, Gro H; Yazdani, Mazyar; Rakkestad, Kirsten E; Aden, Petra K; Bodin, Johanna; Samuelsen, Mari; Nygaard, Unni C; Goverud, Ingeborg L; Gaarder, Mona; Løberg, Else Marit; Bølling, Anette K; Becher, Rune; Paulsen, Ragnhild E

    2013-12-01

    In mice, prenatal exposure to low doses of bisphenol A has been shown to affect neurogenesis and neuronal migration in cortex, resulting in disturbance of both neuronal positioning and the network formation between thalamus and cortex in the offspring brain. In the present study we investigated whether prenatal exposure to bisphenol A disturbs the neurodevelopment of the cerebellum. Two different model systems were used; offspring from two strains of mice from mothers receiving bisphenol A in the drinking water before mating, during gestation and lactation, and chicken embryos exposed to bisphenol A (in the egg) on embryonic day 16 for 24h before preparation of cerebellar granule cell cultures. In the cerebellum, tight regulation of the level of transcription factor Pax6 is critical for correct development of granule neurons. During the development, the Pax6 level in granule neurons is high when these cells are located in the external granule layer and during their migration to the internal granule layer, and it is then reduced. We report that bisphenol A induced an increase in the thickness of the external granule layer and also an increase in the total cerebellar Pax6 level in 11 days old mice offspring. In cultured chicken cerebellar granule neurons from bisphenol A injected eggs the Pax6 level was increased day 6 in vitro. Together, these findings indicate that bisphenol A may affect the granule neurons in the developing cerebellum and thereby may disturb the correct development of the cerebellum.

  6. Exposure to extremely low-frequency electromagnetic fields modulates Na+ currents in rat cerebellar granule cells through increase of AA/PGE2 and EP receptor-mediated cAMP/PKA pathway.

    Directory of Open Access Journals (Sweden)

    Yan-Lin He

    Full Text Available Although the modulation of Ca(2+ channel activity by extremely low-frequency electromagnetic fields (ELF-EMF has been studied previously, few reports have addressed the effects of such fields on the activity of voltage-activated Na(+ channels (Na(v. Here, we investigated the effects of ELF-EMF on Na(v activity in rat cerebellar granule cells (GCs. Our results reveal that exposing cerebellar GCs to ELF-EMF for 10-60 min significantly increased Na(v currents (I(Na by 30-125% in a time- and intensity-dependent manner. The Na(v channel steady-state activation curve, but not the steady-state inactivation curve, was significantly shifted (by 5.2 mV towards hyperpolarization by ELF-EMF stimulation. This phenomenon is similar to the effect of intracellular application of arachidonic acid (AA and prostaglandin E(2 (PGE(2 on I(Na in cerebellar GCs. Increases in intracellular AA, PGE(2 and phosphorylated PKA levels in cerebellar GCs were observed following ELF-EMF exposure. Western blottings indicated that the Na(V 1.2 protein on the cerebellar GCs membrane was increased, the total expression levels of Na(V 1.2 protein were not affected after exposure to ELF-EMF. Cyclooxygenase inhibitors and PGE(2 receptor (EP antagonists were able to eliminate this ELF-EMF-induced increase in phosphorylated PKA and I(Na. In addition, ELF-EMF exposure significantly enhanced the activity of PLA(2 in cerebellar GCs but did not affect COX-1 or COX-2 activity. Together, these data demonstrate for the first time that neuronal I(Na is significantly increased by ELF-EMF exposure via a cPLA2 AA PGE(2 EP receptors PKA signaling pathway.

  7. File list: InP.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: NoD.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  9. File list: NoD.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  10. File list: InP.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  11. File list: InP.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  12. File list: InP.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  13. File list: NoD.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  14. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors

    DEFF Research Database (Denmark)

    Carlson, B X; Belhage, B; Hansen, Gert Helge

    1997-01-01

    , no significant change in [3H]Ro15-4513 binding was observed for the 56-kDa polypeptide. Immunolabeling of the alpha6 subunit using silver-enhanced, immuno-gold staining of granule cells showed a significant effect with THIP treatment only at 4 DIV and not at 8 DIV. Examination by light microscopy demonstrated...

  15. Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2003-01-01

    Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, wa...

  16. Talpid3-binding centrosomal protein Cep120 is required for centriole duplication and proliferation of cerebellar granule neuron progenitors.

    Directory of Open Access Journals (Sweden)

    Chuanqing Wu

    Full Text Available Granule neuron progenitors (GNPs are the most abundant neuronal type in the cerebellum. GNP proliferation and thus cerebellar development require Sonic hedgehog (Shh secreted from Purkinje cells. Shh signaling occurs in primary cilia originating from the mother centriole. Centrioles replicate only once during a typical cell cycle and are responsible for mitotic spindle assembly and organization. Recent studies have linked cilia function to cerebellar morphogenesis, but the role of centriole duplication in cerebellar development is not known. Here we show that centrosomal protein Cep120 is asymmetrically localized to the daughter centriole through its interaction with Talpid3 (Ta3, another centrosomal protein. Cep120 null mutant mice die in early gestation with abnormal heart looping. Inactivation of Cep120 in the central nervous system leads to both hydrocephalus, due to the loss of cilia on ependymal cells, and severe cerebellar hypoplasia, due to the failed proliferation of GNPs. The mutant GNPs lack Hedgehog pathway activity. Cell biological studies show that the loss of Cep120 results in failed centriole duplication and consequently ciliogenesis, which together underlie Cep120 mutant cerebellar hypoplasia. Thus, our study for the first time links a centrosomal protein necessary for centriole duplication to cerebellar morphogenesis.

  17. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Seung Joon Lee

    Full Text Available Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP cells. Sonic hedgehog (Shh is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.

  18. Electrophysiological evidence for glial-subtype glutamate transporter functional expression in rat cerebellar granule neurons

    Directory of Open Access Journals (Sweden)

    Mafra R.A.

    2003-01-01

    Full Text Available A glutamate-sensitive inward current (Iglu is described in rat cerebellar granule neurons and related to a glutamate transport mechanism. We examined the features of Iglu using the patch-clamp technique. In steady-state conditions the Iglu measured 8.14 ± 1.9 pA. Iglu was identified as a voltage-dependent inward current showing a strong rectification at positive potentials. L-Glutamate activated the inward current in a dose-dependent manner, with a half-maximal effect at about 18 µM and a maximum increase of 51.2 ± 4.4%. The inward current was blocked by the presence of dihydrokainate (0.5 mM, shown by others to readily block the GLT1 isoform. We thus speculate that Iglu could be attributed to the presence of a native glutamate transporter in cerebellar granule neurons.

  19. Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells

    OpenAIRE

    Hull, Court; Chu, YunXiang; Thanawala, Monica; Regehr, Wade G.

    2013-01-01

    Golgi cells (GoCs) are inhibitory interneurons that influence the cerebellar cortical response to sensory input by regulating the excitability of the granule cell layer. While GoC inhibition is essential for normal motor coordination, little is known about the circuit dynamics that govern the activity of these cells. In particular, while GoC spontaneous spiking influences the extent of inhibition and gain throughout the granule cell layer, it is not known whether this spontaneous activity can...

  20. GABA agonist induced changes in ultrastructure and GABA receptor expression in cerebellar granule cells is linked to hyperpolarization of the neurons

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A

    1990-01-01

    treatment did not lead to formation of low affinity GABA receptors. Studies of the ultrastructure of the cells (4-day-old cultures) showed that exposure to bromide or valinomycin mimicked the ability of THIP to enhance the cytoplasmic density of rough endoplasmic reticulum, Golgi apparatus, vesicles...

  1. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Immerdal, Lissi; Niels-Christiansen, Lise-Lotte W;

    2005-01-01

    , reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor...

  2. Differential distribution of GABAA receptor subunits in soma and processes of cerebellar granule cells: effects of maturation and a GABA agonist

    DEFF Research Database (Denmark)

    Elster, L; Hansen, Gert Helge; Belhage, B;

    1995-01-01

    or absence of the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4c]pyridin-3-ol (THIP). THIP (150 microM) induced a 2-fold increase in the number of alpha 1 and beta 2/3 subunits in both cell bodies and processes in 4-day-old cultures. Extending the culture period to 8 days led to a polarization...... composition. Interestingly, receptor subunit clusters, consisting of alpha 1 alone, were more frequently observed than composite (alpha 1; beta 2/3) clusters. This substantiates the view that receptors not having alpha 1 and beta 2/3 subunits in the same complex may exist....

  3. Subcellular distribution and early signalling events of P2X7 receptors from mouse cerebellar granule neurons.

    Science.gov (United States)

    Sánchez-Nogueiro, Jesús; Marín-García, Patricia; Bustillo, Diego; Olivos-Oré, Luis Alcides; Miras-Portugal, María Teresa; Artalejo, Antonio R

    2014-12-05

    The subcellular distribution and early signalling events of P2X7 receptors were studied in mouse cerebellar granule neurons. Whole-cell patch-clamp recordings evidenced inwardly directed non-desensitizing currents following adenosine 5'-triphosphate (ATP; 600 µM) or 2'-3'-o-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP; 100 µM) administration to cells bathed in a medium with no-added divalent cations (Ca(2+) and Mg(2+)). Nucleotide-activated currents were inhibited by superfusion of 2.5 mM Ca(2+), 1.2 mM Mg(2+) or 100 nM Brilliant Blue G (BBG), hence indicating the expression of ionotropic P2X7 receptors. Fura-2 calcium imaging showed [Ca(2+)]i elevations in response to ATP or BzATP at the somas and at a small number of axodendritic regions of granule neurons. Differential sensitivity of these [Ca(2+)]i increases to three different P2X7 receptor antagonists (100 nM BBG, 10 μM 4-[(2S)-2-[(5-isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl] phenyl isoquinolinesulfonic acid ester, KN-62, and 1 μM 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine hydrochloride hydrate, A-438079) revealed that P2X7 receptors are co-expressed with different P2Y receptors along the plasmalemma of granule neurons. Finally, experiments with the fluorescent dye YO-PRO-1 indicated that prolonged stimulation of P2X7 receptors does not lead to the opening of a membrane pore permeable to large cations. Altogether, our results emphasise the expression of functional P2X7 receptors at both the axodendritic and somatic levels in mouse cerebellar granule neurons, and favour the notion that P2X7 receptors might function in a subcellular localisation-specific manner: presynaptically, by controlling glutamate release, and on the cell somas, by supporting granule neuron survival against glutamate excytotoxicity.

  4. NF1 regulation of RAS/ERK signaling is required for appropriate granule neuron progenitor expansion and migration in cerebellar development.

    Science.gov (United States)

    Sanchez-Ortiz, Efrain; Cho, Woosung; Nazarenko, Inga; Mo, Wei; Chen, Jian; Parada, Luis F

    2014-11-01

    Cerebellar development is regulated by a coordinated spatiotemporal interplay between granule neuron progenitors (GNPs), Purkinje neurons, and glia. Abnormal development can trigger motor deficits, and more recent data indicate important roles in aspects of memory, behavior, and autism spectrum disorders (ASDs). Germline mutation in the NF1 tumor suppressor gene underlies Neurofibromatosis type 1, a complex disease that enhances susceptibility to certain cancers and neurological disorders, including intellectual deficits and ASD. The NF1 gene encodes for neurofibromin, a RAS GTPase-activating protein, and thus negatively regulates the RAS signaling pathway. Here, using mouse models to direct conditional NF1 ablation in either embryonic cerebellar progenitors or neonatal GNPs, we show that neurofibromin is required for appropriate development of cerebellar folia layering and structure. Remarkably, neonatal administration of inhibitors of the ERK pathway reversed the morphological defects. Thus, our findings establish a critical cell-autonomous role for the NF1-RAS-ERK pathway in the appropriate regulation of cerebellar development and provide a basis for using neonatal ERK inhibitor-based therapies to treat NF1-induced cerebellar disorders.

  5. Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation.

    Directory of Open Access Journals (Sweden)

    Megumi Kaneko

    Full Text Available Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.

  6. Self-Organization of Polarized Cerebellar Tissue in 3D Culture of Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Keiko Muguruma

    2015-02-01

    Full Text Available During cerebellar development, the main portion of the cerebellar plate neuroepithelium gives birth to Purkinje cells and interneurons, whereas the rhombic lip, the germinal zone at its dorsal edge, generates granule cells and cerebellar nuclei neurons. However, it remains elusive how these components cooperate to form the intricate cerebellar structure. Here, we found that a polarized cerebellar structure self-organizes in 3D human embryonic stem cell (ESC culture. The self-organized neuroepithelium differentiates into electrophysiologically functional Purkinje cells. The addition of fibroblast growth factor 19 (FGF19 promotes spontaneous generation of dorsoventrally polarized neural-tube-like structures at the level of the cerebellum. Furthermore, addition of SDF1 and FGF19 promotes the generation of a continuous cerebellar plate neuroepithelium with rhombic-lip-like structure at one end and a three-layer cytoarchitecture similar to the embryonic cerebellum. Thus, human-ESC-derived cerebellar progenitors exhibit substantial self-organizing potential for generating a polarized structure reminiscent of the early human cerebellum at the first trimester.

  7. Cerebellar endocannabinoids: retrograde signaling from purkinje cells.

    Science.gov (United States)

    Marcaggi, Païkan

    2015-06-01

    The cerebellar cortex exhibits a strikingly high expression of type 1 cannabinoid receptor (CB1), the cannabinoid binding protein responsible for the psychoactive effects of marijuana. CB1 is primarily found in presynaptic elements in the molecular layer. While the functional importance of cerebellar CB1 is supported by the effect of gene deletion or exogenous cannabinoids on animal behavior, evidence for a role of endocannabinoids in synaptic signaling is provided by in vitro experiments on superfused acute rodent cerebellar slices. These studies have demonstrated that endocannabinoids can be transiently released by Purkinje cells and signal at synapses in a direction opposite to information transfer (retrograde). Here, following a description of the reported expression pattern of the endocannabinoid system in the cerebellum, I review the accumulated in vitro data, which have addressed the mechanism of retrograde endocannabinoid signaling and identified 2-arachidonoylglycerol as the mediator of this signaling. The mechanisms leading to endocannabinoid release, the effects of CB1 activation, and the associated synaptic plasticity mechanisms are discussed and the remaining unknowns are pointed. Notably, it is argued that the spatial specificity of this signaling and the physiological conditions required for its induction need to be determined in order to understand endocannabinoid function in the cerebellar cortex.

  8. Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells.

    Science.gov (United States)

    Watanabe, Masahiko

    2008-03-01

    Cerebellar Purkinje cells (PCs) play a principal role in motor coordination and motor learning. To fulfill these functions, PCs receive and integrate two types of excitatory inputs, climbing fiber (CF) and parallel fiber (PF). CFs are projection axons from the inferior olive, and convey error signals to PCs. On the other hand, PFs are T-shaped axons of cerebellar granule cells, and convey sensory and motor information carried through the pontocerebellar and spinocerebellar mossy fiber pathways. The most remarkable feature of PC circuits is the highly territorial innervation by these two excitatory afferents. A single climbing CF powerfully and exclusively innervates proximal PC dendrites, whereas hundreds of thousands of PFs innervate distal PC dendrites. Recent studies using gene-manipulated mice have been elucidating that the PC circuitry is formed and maintained by molecular mechanisms that fuel homosynaptic competition among CFs and heterosynaptic competition between CFs and PFs. GluRdelta2 (a PC-specific glutamate receptor) and precerebellin or Cbln1 (a granule cell-derived secretory protein) cooperatively work for selective strengthening of PF-PC synapses, and prevent excessive distal extension of CFs that eventually causes multiple innervation at distal dendrites. In contrast, P/Q-type Ca2+ channels, which mediate Ca2+ influx upon CF activity, selectively strengthen the innervation by a single main CF, and expel PFs and other CFs from proximal dendrites that it innervates. Therefore, we now understand that owing to these mechanisms, territorial innervation by CFs and PFs is properly structured and mono-innervation by CFs is established. Several key issues for future study are also discussed.

  9. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    Directory of Open Access Journals (Sweden)

    Egidio eD‘Angelo

    2013-05-01

    Full Text Available The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through double feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of the neuron. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and extension of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.

  10. Cesium chloride protects cerebellar granule neurons from apoptosis induced by low potassium.

    Science.gov (United States)

    Zhong, Jin; Yao, Weiguo; Lee, Weihua

    2007-10-01

    Neuronal apoptosis plays a critical role in the pathogenesis of neurodegenerative disorders, and neuroprotective agents targeting apoptotic signaling could have therapeutic use. Here we report that cesium chloride, an alternative medicine in treating radiological poison and cancer, has neuroprotective actions. Serum and potassium deprivation induced cerebellar granule neurons to undergo apoptosis, which correlated with the activation of caspase-3. Cesium prevented both the activation of caspase-3 and neuronal apoptosis in a dose-dependent manner. Cesium at 8 mM increased the survival of neurons from 45 +/- 3% to 91 +/- 5% of control. Cesium's neuroprotection was not mediated by PI3/Akt or MAPK signaling pathways, since it was unable to activate either Akt or MAPK by phosphorylation. In addition, specific inhibitors of PI3 kinase and MAP kinase did not block cesium's neuroprotective effects. On the other hand, cesium inactivated GSK3beta by phosphorylation of serine-9 and GSK3beta-specific inhibitor SB415286 prevented neuronal apoptosis. These data indicate that cesium's neuroprotection is likely via inactivating GSK3beta. Furthermore, cesium also prevented H(2)O(2)-induced neuronal death (increased the survival of neurons from 72 +/- 4% to 89 +/- 3% of control). Given its relative safety and good penetration of the brain blood barrier, our findings support the potential therapeutic use of cesium in neurodegenerative diseases.

  11. Mitochondrial swelling impairs the transport of organelles in cerebellar granule neurons.

    Science.gov (United States)

    Kaasik, Allen; Safiulina, Dzhamilja; Choubey, Vinay; Kuum, Malle; Zharkovsky, Alexander; Veksler, Vladimir

    2007-11-09

    Organelle transport in neuronal processes is central to the organization, developmental fate, and functions of neurons. Organelles must be transported through the slender, highly branched neuronal processes, making the axonal transport vulnerable to any perturbation. However, some intracellular structures like mitochondria are able to considerably modify their volume. We therefore hypothesized that swollen mitochondria could impair the traffic of other organelles in neurite shafts. To test this hypothesis, we have investigated the effects of mitochondrial swellers on the organelle traffic. Our data demonstrate that treatment of neurons with potassium ionophore valinomycin led to the fast time-dependent inhibition of organelle movement in cerebellar granule neurons. Similar inhibition was observed in neurons treated with the inhibitors of the mitochondrial respiratory chain, sodium azide and antimycin, which also induced swelling. No decrease in the motility of organelles was observed in cultures treated with inhibitors of ATP production or transport, oligomycin or bongkrekic acid, suggesting that inhibition of the ATP-generating activity itself without swelling does not affect the motility of organelles. The effect of swellers on the traffic was more important in thin processes, thus indicating the role of steric hindrance of swollen mitochondria. We propose that the size and morphology of the transported cargo is also relevant for seamless axonal transport and speculate that mitochondrial swelling could be one of the reasons for impaired organelle transport in neuronal processes.

  12. Hippocampal granule cells opt for early retirement.

    Science.gov (United States)

    Alme, C B; Buzzetti, R A; Marrone, D F; Leutgeb, J K; Chawla, M K; Schaner, M J; Bohanick, J D; Khoboko, T; Leutgeb, S; Moser, E I; Moser, M-B; McNaughton, B L; Barnes, C A

    2010-10-01

    Increased excitability and plasticity of adult-generated hippocampal granule cells during a critical period suggests that they may "orthogonalize" memories according to time. One version of this "temporal tag" hypothesis suggests that young granule cells are particularly responsive during a specific time period after their genesis, allowing them to play a significant role in sculpting CA3 representations, after which they become much less responsive to any input. An alternative possibility is that the granule cells active during their window of increased plasticity, and excitability become selectively tuned to events that occurred during that time and participate in later reinstatement of those experiences, to the exclusion of other cells. To discriminate between these possibilities, rats were exposed to different environments at different times over many weeks, and cell activation was subsequently assessed during a single session in which all environments were revisited. Dispersing the initial experiences in time did not lead to the increase in total recruitment at reinstatement time predicted by the selective tuning hypothesis. The data indicate that, during a given time frame, only a very small number of granule cells participate in many experiences, with most not participating significantly in any. Based on these and previous data, the small excitable population of granule cells probably correspond to the most recently generated cells. It appears that, rather than contributing to the recollection of long past events, most granule cells, possibly 90-95%, are effectively "retired." If granule cells indeed sculpt CA3 representations (which remains to be shown), then a possible consequence of having a new set of granule cells participate when old memories are reinstated is that new representations of these experiences might be generated in CA3. Whatever the case, the present data may be interpreted to undermine the standard "orthogonalizer" theory of the role of

  13. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  14. Postnatal dendritic morphogenesis of cerebellar basket and stellate cells in vitro.

    Science.gov (United States)

    Spatkowski, Gabriele; Schilling, Karl

    2003-05-01

    Inhibitory interneurons in the molecular layer of the cerebellar cortex play an essential role in cerebellar physiology by providing feed-forward inhibition to efferent Purkinje cells. Morphologic characteristics have been utilized to classify these cells as either basket cells or stellate cells. Conflicting evidence exists as to whether these cells are of distinct lineage and develop by employing discrete genetic programs, or whether their characteristic morphologic differences result from external cues that they encounter only after they have settled in their final territory in the molecular layer. We used primary dissociated cerebellar cultures established from early postnatal mice to study dendritogenesis of basket/stellate cells, identified by immunostaining for parvalbumin, under experimentally controlled conditions. We find that the radial axonal orientation of stem dendrites is non-random, suggesting a cell-intrinsic component defining this morphologic trait. In contrast, the expanse and complexity of basket/stellate cell dendrites is modulated by the granule cell derived neurotrophin, BDNF. BDNF-induced morphogenetic effects decline with ongoing development. Overall, our data do not provide evidence for a distinct lineage or genetic makeup of cerebellar molecular layer inhibitory interneurons.

  15. The apical complex protein Pals1 is required to maintain cerebellar progenitor cells in a proliferative state.

    Science.gov (United States)

    Park, Jun Young; Hughes, Lucinda J; Moon, Uk Yeol; Park, Raehee; Kim, Sang-Bae; Tran, Khoi; Lee, Ju-Seog; Cho, Seo-Hee; Kim, Seonhee

    2016-01-01

    Through their biased localization and function within the cell, polarity complex proteins are necessary to establish the cellular asymmetry required for tissue organization. Well-characterized germinal zones, mitogenic signals and cell types make the cerebellum an excellent model for addressing the crucial function of polarity complex proteins in the generation and organization of neural tissues. Deletion of the apical polarity complex protein Pals1 in the developing cerebellum results in a remarkably undersized cerebellum with disrupted layers in poorly formed folia and strikingly reduced granule cell production. We demonstrate that Pals1 is not only essential for cerebellum organogenesis, but also for preventing premature differentiation and thus maintaining progenitor pools in cerebellar germinal zones, including cerebellar granule neuron precursors in the external granule layer. In the Pals1 mouse mutants, the expression of genes that regulate the cell cycle was diminished, correlating with the loss of the proliferating cell population of germinal zones. Furthermore, enhanced Shh signaling through activated Smo cannot overcome impaired cerebellar cell generation, arguing for an epistatic role of Pals1 in proliferation capacity. Our study identifies Pals1 as a novel intrinsic factor that regulates the generation of cerebellar cells and Pals1 deficiency as a potential inhibitor of overactive mitogenic signaling.

  16. The cellular state determines the effect of melatonin on the survival of mixed cerebellar cell culture.

    Directory of Open Access Journals (Sweden)

    Daiane Gil Franco

    Full Text Available The constitutive activation of nuclear factor-κB (NF-κB, a key transcription factor involved in neuroinflammation, is essential for the survival of neurons in situ and of cerebellar granule cells in culture. Melatonin is known to inhibit the activation of NF-κB and has a cytoprotective function. In this study, we evaluated whether the cytoprotective effect of melatonin depends on the state of activation of a mixed cerebellar culture that is composed predominantly of granule cells; we tested the effect of melatonin on cultured rat cerebellar cells stimulated or not with lipopolysaccharide (LPS. The addition of melatonin (0.1 nM-1 µM reduced the survival of naïve cells while inhibiting LPS-induced cell death. Melatonin (100 nM transiently (15 min inhibited the nuclear translocation of both NF-κB dimers (p50/p50, p50/RelA and, after 60 min, increased the activation of p50/RelA. Melatonin-induced p50/RelA activity in naïve cells resulted in the transcription of inducible nitric oxide synthase (iNOS and the production of NO. Otherwise, in cultures treated with LPS, melatonin blocked the LPS-induced activation of p50/RelA and the reduction in p50/p50 levels and inhibited iNOS expression and NO synthesis. Therefore, melatonin in vehicle-treated cells induces cell death, while it protects against LPS-induced cytotoxicity. In summary, we confirmed that melatonin is a neuroprotective drug when cerebellar cells are challenged; however, melatonin can also lead to cell death when the normal balance of the NF-κB pathway is disturbed. Our data provide a mechanistic basis for understanding the influence of cell context on the final output response of melatonin.

  17. Quantitative analysis of synaptic vesicle pool replenishment in cultured cerebellar granule neurons using FM dyes.

    Science.gov (United States)

    Cheung, Giselle; Cousin, Michael A

    2011-11-11

    obtain two additional elements of information. Firstly, sequential unloading stimuli are used to differentially unload the RRP and the RP, to allow quantification of the replenishment of specific SV pools. Secondly, each nerve terminal undergoes the protocol twice. Thus, the response of the same nerve terminal at S1 can be compared against the presence of a test substance at phase S2 (Figure 2), providing an internal control. This is important, since the extent of SV recycling across different nerve terminals is highly variable(11). Any adherent primary neuronal cultures may be used for this protocol, however the plating density, solutions and stimulation conditions are optimised for cerebellar granule neurons (CGNs)(12,13).

  18. Axonal abnormalities in cerebellar Purkinje cells of the Ts65Dn mouse.

    Science.gov (United States)

    Necchi, Daniela; Lomoio, Selene; Scherini, Elda

    2008-10-31

    Ts65Dn mice are a genetic model for Down syndrome. Among others, these mice have cerebellar pathology features which parallel those seen in Down syndrome patients. Both individuals with Down syndrome and Ts65Dn mice have reduced cerebellar volume and numbers of granule and Purkinje cells. In this report, we describe morphological abnormalities of axons of Purkinje cells in the cerebellum of Ts65Dn mice, by using anti-calbindin immunocytochemistry. A consistent number of Purkinje cells shows axons bearing giant varicosities along their transit through the granular layer. The cerebellar arbor vitae made by fasciculated Purkinje cell axons has a patchy appearance, some tracks being devoid of calbindin staining. The infraganglionic plexus, formed by recurrent collaterals of Purkinje cell axons, has enormously increased density, which is evidence for a compensatory reaction to degeneration of distal segments of axons. These alterations are accompanied by strong glial reaction as evidenced by GFAP immunocytochemistry. Moreover, the alterations are more consistent in the anterior lobules of the vermis and intermediate cortex. The axonal pathology of Purkinje cells may explain the impairment in cerebellar functions observed in Ts65Dn mice at the adulthood.

  19. Reactive oxygen species are related to ionic fluxes and volume decrease in apoptotic cerebellar granule neurons: role of NOX enzymes.

    Science.gov (United States)

    Hernández-Enríquez, Berenice; Guemez-Gamboa, Alicia; Morán, Julio

    2011-05-01

    Reactive oxygen species (ROS) are produced early during apoptosis of cerebellar granule neurons induced by low potassium (K5) and staurosporine (Sts). In addition, K5 and Sts activate NADPH oxidases (NOX). Recently, we described that K5 and Sts induce apoptotic volume decrease (AVD) at a time when ROS generation and NOX activity occur. In the present study, we evaluated the relationship between ROS generation and ionic fluxes during AVD. Here, we showed that K5- and Sts-induced AVD was inhibited by antioxidants and that direct ROS production induced AVD. Moreover, NOX inhibitors eliminated AVD induced by both K5 and Sts. Sts, but not K5, failed to induce AVD in cerebellar granule neurons from NOX2 knockout mice. These findings suggest that K5- and Sts-induced AVD is largely mediated by ROS produced by NOX. On the other hand, we also found that the blockage of ionic fluxes involved in AVD inhibited both ROS generation and NOX activity. These findings suggest that ROS generation and NOX activity are involved in ionic fluxes activation, which in turn could maintain ROS generation by activating NOX, leading to a self-amplifying cycle.

  20. Low in situ expression of antioxidative enzymes in rat cerebellar granular cells susceptible to methylmercury.

    Science.gov (United States)

    Fujimura, M; Usuki, F

    2014-01-01

    Methylmercury (MeHg), an environmental neurotoxicant, induces site-specific toxicity in the brain. Although oxidative stress has been demonstrated with MeHg toxicity, the site-specific toxicity is not completely understood. Among the cerebellar neurons, cerebellar granule cells (CGCs) appear vulnerable to MeHg, whereas Purkinje cells and molecular layer neurons are resistant. Here, we use a MeHg-intoxicated rat model to investigate these cerebellar neurons for the different causes of susceptibility to MeHg. Rats were exposed to 20 ppm MeHg for 4 weeks and subsequently exhibited neuropathological changes in the cerebellum that were similar to those observed in humans. We first isolated the three cerebellar neuron types using a microdissection system and then performed real-time PCR analyses for antioxidative enzymes. We observed that expression of manganese-superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1), and thioredoxin reductase 1 (TRxR1) was significantly higher in Purkinje cells and molecular layer neurons than in CGCs. Finally, we performed immunohistochemical analyses on the cerebellum. Immunohistochemistry showed increased expression of Mn-SOD, GPx1, and TRxR1 in Purkinje cells and molecular layer neurons, which was coincident with the mRNA expression patterns. Considering Mn-SOD, GPx1, and TRxR1 are critical for protecting cells against MeHg intoxication, the results indicate that low expression of these antioxidative enzymes increases CGCs vulnerability to MeHg toxicity.

  1. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  2. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    Science.gov (United States)

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  3. Primary culture and identification of cerebellar granule neurons from newborn rats%新生大鼠小脑颗粒神经元原代培养与鉴定

    Institute of Scientific and Technical Information of China (English)

    周礼华; 徐淑秀; 江城梅

    2011-01-01

    目的:建立一种较为理想的小脑颗粒神经元原代培养方法.方法:取新生5~7天SD大鼠,分离小脑皮质,胰酶消化后差速贴壁,种植在预先涂有左旋多聚赖氨酸的培养板内,第3天加入阿糖胞苷纯化神经元;采用神经元特异性烯醇化酶免疫细胞荧光技术鉴定神经元.结果:细胞存活率达(98±1.07)%;24 h内基本贴壁;第3天细胞突起增多、变长;培养6~8天,细胞突起交织成网,形成典型的神经细胞网络;神经元特异性烯醇化酶鉴定神经元细胞占90%左右.结论:实验获取神经元纯度较高,是小脑颗粒神经元体外培养的一种较理想的方法.%Objective: To establish a suitable primary culture method of rat cerebellar granule neurons. Methods: Rat cerebellar granule neurons were prepared from 5 -7 day old Sprague-Dawley rat pups, the cerebella was freed of meninges, minced, trypsinized,then the cell suspension was preplated for 30 min for remove any glial cells, dissociated cells were seeded at plates which had been pre-coated with Poly-L-Lysine, arabinosylcytosine was added to the culture medium on day 3 after seeding for inhibition of non-neuronal cell division. Neurons were identified by neuron-specific enolase immunofluorescence technic. Results:The survival rate of the cells was (98 ± 1.07)% ;the neurons were affixed to the culture plate after 24 hours,neurite growth was apparently on day 3,integrated neural network was formed on day 6 - 8. Cerebellar granule neurons was about 90% by neuron-specific enolase identifying. Conclusions:Neuron purity was higher in the experiment;it is a perfect technique for primary culture of rat cerebellar granule neurons.

  4. Mapping the development of cerebellar Purkinje cells in zebrafish.

    Science.gov (United States)

    Hamling, Kyla R; Tobias, Zachary J C; Weissman, Tamily A

    2015-11-01

    The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene function, thus a quantitative metric of normal zebrafish cerebellar development is key for understanding how gene mutations affect the cerebellum. To begin to quantitatively measure cerebellar development in zebrafish, we have characterized the spatial and temporal patterning of Purkinje cells during the first 2 weeks of development. Differentiated Purkinje cells first emerged by 2.8 days post fertilization and were spatially patterned into separate dorsomedial and ventrolateral clusters that merged at around 4 days. Quantification of the Purkinje cell layer revealed that there was a logarithmic increase in both Purkinje cell number as well as overall volume during the first 2 weeks, while the entire region curved forward in an anterior, then ventral direction. Purkinje cell dendrites were positioned next to parallel fibers as early as 3.3 days, and Purkinje cell diameter decreased significantly from 3.3 to 14 days, possibly due to cytoplasmic reappropriation into maturing dendritic arbors. A nearest neighbor analysis showed that Purkinje cells moved slightly apart from each other from 3 to 14 days, perhaps spreading as the organized monolayer forms. This study establishes a quantitative spatiotemporal map of Purkinje cell development in zebrafish that provides an important metric for studies of cerebellar development and disease.

  5. A peptide antagonist of ErbB receptors, Inherbin3, induces neurite outgrowth from rat cerebellar granule neurons through ErbB1 inhibition

    DEFF Research Database (Denmark)

    Xu, Ruodan; Pankratova, Stanislava; Christiansen, Søren Hofman

    2013-01-01

    ErbB receptors not only function in cancer, but are also key developmental regulators in the nervous system. We previously identified an ErbB1 peptide antagonist, Inherbin3, that is capable of inhibiting tumor growth in vitro and in vivo. In this study, we found that inhibition of ErbB1 kinase...... outgrowth in rat cerebellar granule neurons, indicating that this effect mainly was due to inhibition of ErbB1 activation....

  6. Study of light scattering by a granulated coated sphere - a model of granulated blood cells

    NARCIS (Netherlands)

    M.A. Yurkin; D. de Kanter; A.G. Hoekstra

    2008-01-01

    We performed extensive simulations of light scattering by granulated coated sphere model using the discrete dipole approximation and varying model parameters in the ranges of sizes and refractive indices of granulated blood cells. We compared these results with predictions of Maxwell-Garnett effecti

  7. Rapid signaling actions of environmental estrogens in developing granule cell neurons are mediated by estrogen receptor ß.

    Science.gov (United States)

    Le, Hoa H; Belcher, Scott M

    2010-12-01

    Estrogenic endocrine disrupting chemicals (EDCs) constitute a diverse group of man-made chemicals and natural compounds derived from plants and microbial metabolism. Estrogen-like actions are mediated via the nuclear hormone receptor activity of estrogen receptor (ER)α and ERβ and rapid regulation of intracellular signaling cascades. Previous study defined cerebellar granule cell neurons as estrogen responsive and that granule cell precursor viability was developmentally sensitive to estrogens. In this study experiments using Western blot analysis and pharmacological approaches have characterized the receptor and signaling modes of action of selective and nonselective estrogen ligands in developing cerebellar granule cells. Estrogen treatments were found to briefly increase ERK1/2-phosphorylation and then cause prolonged depression of ERK1/2 activity. The sensitivity of granule cell precursors to estrogen-induced cell death was found to require the integrated activation of membrane and intracellular ER signaling pathways. The sensitivity of granule cells to selective and nonselective ER agonists and a variety of estrogenic and nonestrogenic EDCs was also examined. The ERβ selective agonist DPN, but not the ERα selective agonist 4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol or other ERα-specific ligands, stimulated cell death. Only EDCs with selective or nonselective ERβ activities like daidzein, equol, diethylstilbestrol, and bisphenol A were observed to induce E2-like neurotoxicity supporting the conclusion that estrogen sensitivity in granule cells is mediated via ERβ. The presented results also demonstrate the utility of estrogen sensitive developing granule cells as an in vitro assay for elucidating rapid estrogen-signaling mechanisms and to detect EDCs that act at ERβ to rapidly regulate intracellular signaling.

  8. A role for mixed lineage kinases in granule cell apoptosis induced by cytoskeletal disruption.

    Science.gov (United States)

    Müller, Georg Johannes; Geist, Marie Aavang; Veng, Lone Merete; Willesen, Mette Georgi; Johansen, Flemming Fryd; Leist, Marcel; Vaudano, Elisabetta

    2006-03-01

    Microtubule disruption by colchicine induces apoptosis in selected neuronal populations. However, little is known about the upstream death signalling events mediating the neurotoxicity. We investigated first whether colchicine-induced granule cell apoptosis activates the c-Jun N-terminal kinase (JNK) pathway. Cultured murine cerebellar granule cells were exposed to 1 microm colchicine for 24 h. Activation of the JNK pathway was detected by western blotting as well as immunocytochemistry using antibodies against phospho-c-Jun (p-c-Jun). Next, adult male rats were injected intracerebroventricularly with colchicine (10 microg), and JNK pathway activation in dentate granule cells (DGCs) was detected by antibodies against p-c-Jun. The second part of the study tested the involvement of mixed lineage kinases (MLK) as upstream activators of the JNK pathway in colchicine toxicity, using CEP-1347, a potent MLK inhibitor. In vitro, significant inhibition of the JNK pathway, activated by colchicine, was achieved by 100-300 nm CEP-1347, which blocked both activation of cell death proteases and apoptosis. Moreover, CEP-1347 markedly delayed neurite fragmentation and cell degeneration. In vivo, CEP-1347 (1 mg/kg) significantly prevented p-c-jun increase following injection of colchicine, and enhanced survival of DGCs. We conclude that colchicine-induced neuronal apoptosis involves the JNK/MLK pathway, and that protection of granule cells can be achieved by MLK inhibition.

  9. Increased excitability and altered action potential waveform in cerebellar granule neurons of the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Usowicz, Maria M; Garden, Claire L P

    2012-07-17

    Down syndrome (DS) is characterized by intellectual disability and impaired motor control. Lack of coordinated movement, poor balance, and unclear speech imply dysfunction of the cerebellum, which is known to be reduced in volume in DS. The principal cause of the smaller cerebellum is a diminished number of granule cells (GCs). These neurons form the 'input layer' of the cerebellar cortex, where sensorimotor information carried by incoming mossy fibers is transformed before it is conveyed to Purkinje cells and inhibitory interneurons. However, it is not known how processing of this information is affected in the hypogranular cerebellum that characterizes DS. Here we explore the possibility that the electrical properties of the surviving GCs are changed. We find that in the Ts65Dn mouse model of DS, GCs have a higher input resistance at voltages approaching the threshold for firing, which causes them to be more excitable. In addition, they fire narrower and larger amplitude action potentials. These subtly modified electrical properties may result in atypical transfer of information at the input layer of the cerebellum.

  10. Development of the cerebellar body in sharks: spatiotemporal relations of Pax6 expression, cell proliferation and differentiation.

    Science.gov (United States)

    Rodríguez-Moldes, Isabel; Ferreiro-Galve, Susana; Carrera, Iván; Sueiro, Catalina; Candal, Eva; Mazan, Sylvie; Anadón, Ramón

    2008-02-20

    We have studied the patterns of cell proliferation, regional organization and differentiation in the cerebellar body of embryos and juveniles of two shark species by immunohistochemistry with antibodies against proliferating cell nuclear antigen (PCNA), Pax6, reelin (RELN), GABA, glutamic acid decarboxylase (GAD) and calretinin (CR). The organization of Pax6-expressing cells was also studied by in situ hybridization. Our results reveal that a transient secondary matrix zone, the external germinal layer, is formed in sharks at early stages of cerebellar development and is the source of the earliest Pax6-expressing (granule) cells. Later in development, new granule Pax6-expressing cells arise from medial proliferation zones and accumulate medially in the granular eminences. The GABAergic components appear very early, and show clear regional differences. The medial proliferation zones remain active even in adults. Taken together, the proliferation and differentiation markers used in the present study highlight striking similarities during development between the cerebellar body of elasmobranchs and the cerebella of tetrapods. These results show the importance of elasmobranch models to reconstruct the evolutionary developmental history of the vertebrate cerebellum.

  11. NMDA-Receptors Are Involved in Cu2+/Paraquat-Induced Death of Cultured Cerebellar Granule Neurons.

    Science.gov (United States)

    Stelmashook, E V; Genrikhs, E E; Aleksandrova, O P; Amelkina, G A; Zelenova, E A; Isaev, N K

    2016-08-01

    Rat cultured cerebellar granule neurons (CGNs) were not sensitive to CuCl2 (1-10 µM, 24 h), whereas paraquat (150 µM) decreased neuronal survival to 79 ± 3% of control level. Simultaneous treatment of CGNs with paraquat and CuCl2 (2, 5, or 10 µM Cu2+/paraquat) caused significant copper dose-dependent death, lowering their survival to 56 ± 4, 37 ± 3, or 16 ± 2%, respectively, and stimulating elevated production of free radicals in CGNs. Introduction of vitamin E, a non-competitive antagonist of NMDA subtype of glutamate receptors (MK-801), and also removal of glutamine from the incubation medium decreased toxicity of Cu2+/paraquat mixture. However, addition of Cu2+ into the incubation medium did not affect CGNs death caused by glutamate. These data emphasize that excessive copper in the brain may trigger oxidative stress, which in turn results in release of glutamate, overstimulation of glutamate receptors, and neuronal death.

  12. Developmental features of rat cerebellar neural cells cultured in a chemically defined medium

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, V.; Ciotti, M.T.; Aloisi, F.; Levi, G.

    1986-01-01

    We studied some aspects of the differentiation of rat cerebellar neural cells obtained from 8-day postnatal animals and cultured in a serum-free, chemically defined medium (CDM). The ability of the cells to take up radioactive transmitter amino acids was analyzed autoradiographically. The L-glutamate analogue /sup 3/H-D-aspartate was taken up by astroglial cells, but not by granule neurons, even in late cultures (20 days in vitro). This is in agreement with the lack of depolarization-induced release of /sup 3/H-D-aspartate previously observed in this type of culture. In contrast, /sup 3/H-(GABA) was scarcely accumulated by glial-fibrillary-acidic-protein (GFAP)-positive astrocytes, but taken up by glutamate-decarboxylase-positive inhibitory interneurons and was released in a Ca2+-dependent way upon depolarization: /sup 3/H-GABA evoked release progressively increased with time in culture. Interestingly, the expression of the vesicle-associated protein synapsin I was much reduced in granule cells cultured in CDM as compared to those maintained in the presence of serum. These data would indicate that in CDM the differentiation of granule neurons is not complete, while that of GABAergic neurons is not greatly affected. Whether the diminished differentiation of granule cells must be attributed only to serum deprivation or also to other differences in the composition of the culture medium remains to be established. /sup 3/H-GABA was avidly taken up also by a population of cells which were not recognized by antibodies raised against GFAP, glutamate decarboxylase, and microtubule-associated protein 2. These cells have been characterized as bipotential precursors of oligodendrocytes and of a subpopulation of astrocytes bearing a stellate shape and capable of high-affinity /sup 3/H-GABA uptake.

  13. Cytotoxic CD8+ T cells and CD138+ plasma cells prevail in cerebrospinal fluid in non-paraneoplastic cerebellar ataxia with contactin-associated protein-2 antibodies

    Directory of Open Access Journals (Sweden)

    Melzer Nico

    2012-07-01

    Full Text Available Abstract Objective The purpose of this paper is to report a patient with otherwise unexplained cerebellar ataxia with serum antibodies against contactin-associated protein-2 (CASPR-2 and provide a detailed description of the composition of cellular infiltrates in the cerebrospinal fluid (CSF compared to the peripheral blood (PB. CASPR-2 antibodies strongly labeling axons of cerebellar granule neurons have recently been identified in sera from nine patients with otherwise unexplained progressive cerebellar ataxia with mild to severe cerebellar atrophy. Design This is a report of a single case. Methods The study methods used were neurologic examination, magnetic resonance imaging, fluorodeoxyglucose positron emisson tomography, lumbar puncture and multicolor flow-cytometry. Results A 23-year-old Caucasian male presented with a two-year history of a progressive cerebellar and brainstem syndrome. Magnetic resonance imaging (MRI showed pronounced cerebellar atrophy, especially of the medial parts of the hemispheres and the vermis. Cerebral fluorodeoxyglucose positron emission tomography (FDG-PET showed pronounced hypometabolism of the whole cerebellum. CASPR-2 antibodies were detected in the serum but not the CSF, and none of the staging and laboratory assessments revealed other causes of progressive cerebellar degeneration. Interestingly, flow-cytometry of the CSF as compared to the PB showed increased fractions of CD138+ plasma cells as well as human leukocyte antigen (HLA-DR+ CD8+ T cells suggesting that both B cells and CD8+ T cells were preferentially recruited to and activated within the CSF- (and putatively central nervous system (CNS- compartment. Conclusion We confirm the association of CASPR-2 serum antibodies with cerebellar ataxia and provide the first evidence for a combined humoral and cellular immune response in this novel antibody-associated inflammatory CNS disease.

  14. Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

    Science.gov (United States)

    Salavati, Parvin; Ramezani, Mina; Monsef-Esfahani, Hamid R; Hajiagha, Reza; Parsa, Maliheh; Tavajohi, Shoreh; Ostad, Seyed Nasser

    2013-01-01

    Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss (Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pups Cerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were prepared and cultured. The experiments were performed after 8 days in culture. The plant was collected from the northeastern part (Ruin region) of Iran and air-dried at room temperature. The total extract was prepared with maceration of prepared powder in ethanol 80% for three times. Sequential extracts were obtained using dried and powdered aerial parts with increasingly polar solvents: petroleum ether, chloroform, ethyl acetate and methanol 80% solution. Cultured cells were exposed to 125 μM of glutamate for 12 h following a 24 h of incubation with test fractions at concentration of 10 mcg/mL. Morphological assay was performed using invert light microscope after fixation and staining with haematoxylin. Neuronal viability was measured using MTT assay. Statistical analysis was done using SPSS software. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test. Values were considered statistically significant when p-value ≤ 0.05. Results of this study showed a significant neuroprotective activity of high polarity methanolic fraction of aerial parts of Scrophularia striata against glutamate-induced neurotoxicity in a dosedependent manner. Treatment with 10 mcg/mL of the fractions showed the best result. PMID:24250613

  15. Growth hormone-releasing peptide-6 inhibits cerebellar cell death in aged rats.

    Science.gov (United States)

    Pañeda, Covadonga; Arroba, Ana I; Frago, Laura M; Holm, Anne Mette; Rømer, John; Argente, Jesús; Chowen, Julie A

    2003-08-26

    Insulin-like growth factor (IGF)-I is essential for cerebellar granule neuron survival and a decline in IGF-I is implicated in various age-dependent processes. Here we show that IGF-I mRNA levels are decreased in the cerebellum of old rats compared with young rats and this was associated with increased cell death and activation of caspases 3 and 9. Growth hormone-releasing peptide (GHRP)-6, a synthetic ligand for the ghrelin receptor, increased IGF-I mRNA levels, decreased cell death and inhibited caspase 3 and 9 activation in the cerebellum of aged rats. These results suggest that increasing IGF-I expression in the cerebellum can decrease cell death in aged rats via inhibition of caspase 3 and 9 activation.

  16. Polyamines are present in mast cell secretory granules and are important for granule homeostasis.

    Directory of Open Access Journals (Sweden)

    Gianni García-Faroldi

    Full Text Available BACKGROUND: Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG present within the granules. Polyamines (putrescine, spermidine and spermine are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules. METHODOLOGY/PRINCIPAL FINDINGS: Spermidine was released by mouse bone marrow derived mast cells (BMMCs after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system. CONCLUSIONS/SIGNIFICANCE: Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.

  17. Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss.

    Science.gov (United States)

    Ramadoss, Jayanth; Lunde, Emilie R; Ouyang, Nengtai; Chen, Wei-Jung A; Cudd, Timothy A

    2008-08-01

    Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258+/-10 mg/dl peak blood ethanol concentration) or saline in a "3 days/wk binge" pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis.

  18. Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1 in normal and transformed cerebellar cells

    Directory of Open Access Journals (Sweden)

    Baader Stephan L

    2007-10-01

    Full Text Available Abstract Background Mtss1 encodes an actin-binding protein, dysregulated in a variety of tumors, that interacts with sonic hedgehog/Gli signaling in epidermal cells. Given the prime importance of this pathway for cerebellar development and tumorigenesis, we assessed expression of Mtss1 in the developing murine cerebellum and human medulloblastoma specimens. Results During development, Mtss1 is transiently expressed in granule cells, from the time point they cease to proliferate to their synaptic integration. It is also expressed by granule cell precursor-derived medulloblastomas. In the adult CNS, Mtss1 is found exclusively in cerebellar Purkinje cells. Neuronal differentiation is accompanied by a switch in Mtss1 splicing. Whereas immature granule cells express a Mtss1 variant observed also in peripheral tissues and comprising exon 12, this exon is replaced by a CNS-specific exon, 12a, in more mature granule cells and in adult Purkinje cells. Bioinformatic analysis of Mtss1 suggests that differential exon usage may affect interaction with Fyn and Src, two tyrosine kinases previously recognized as critical for cerebellar cell migration and histogenesis. Further, this approach led to the identification of two evolutionary conserved nuclear localization sequences. These overlap with the actin filament binding site of Mtss1, and one also harbors a potential PKA and PKC phosphorylation site. Conclusion Both the pattern of expression and splicing of Mtss1 is developmentally regulated in the murine cerebellum. These findings are discussed with a view on the potential role of Mtss1 for cytoskeletal dynamics in developing and mature cerebellar neurons.

  19. Early disruption of the actin cytoskeleton in cultured cerebellar granule neurons exposed to 3-morpholinosydnonimine-oxidative stress is linked to alterations of the cytosolic calcium concentration.

    Science.gov (United States)

    Tiago, Teresa; Marques-da-Silva, Dorinda; Samhan-Arias, Alejandro K; Aureliano, Manuel; Gutierrez-Merino, Carlos

    2011-03-01

    Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidant-induced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594-DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure of CGN to a flux of peroxynitrite as low as 0.5-1μM/min during 30min (achieved with 0.1mM SIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca(2+) channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca(2+) dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca(2+) concentration response to the L-VOCC's agonist FPL-64176 and to the L-VOCC's blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca(2+) influx through L-VOCC. Combined analysis of cytosolic Ca(2+) concentration and G-actin/F-actin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.

  20. Proteoglycans support proper granule formation in pancreatic acinar cells.

    Science.gov (United States)

    Aroso, Miguel; Agricola, Brigitte; Hacker, Christian; Schrader, Michael

    2015-10-01

    Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. The molecular mechanisms of their biogenesis and the sorting of zymogens are still incompletely understood. Here, we investigated the role of proteoglycans in granule formation and secretion of zymogens in pancreatic AR42J cells, an acinar model system. Cupromeronic Blue cytochemistry and biochemical studies revealed an association of proteoglycans primarily with the granule membrane. Removal of proteoglycans by carbonate treatment led to a loss of membrane curvature indicating a supportive role in the maintenance of membrane shape and stability. Chemical inhibition of proteoglycan synthesis impaired the formation of normal electron-dense granules in AR42J cells and resulted in the formation of unusually small granule structures. These structures still contained the zymogen carboxypeptidase, a cargo molecule of secretory granules, but migrated to lighter fractions after density gradient centrifugation. Furthermore, the basal secretion of amylase was increased in AR42J cells after inhibitor treatment. In addition, irregular-shaped granules appeared in pancreatic lobules. We conclude that the assembly of a proteoglycan scaffold at the ZG membrane is supporting efficient packaging of zymogens and the proper formation of stimulus-competent storage granules in acinar cells of the pancreas.

  1. Ectopic overexpression of engrailed-2 in cerebellar Purkinje cells causes restricted cell loss and retarded external germinal layer development at lobule junctions.

    Science.gov (United States)

    Baader, S L; Sanlioglu, S; Berrebi, A S; Parker-Thornburg, J; Oberdick, J

    1998-03-01

    Members of the En and Wnt gene families seem to play a key role in the early specification of the brain territory that gives rise to the cerebellum, the midhindbrain junction. To analyze the possible continuous role of the En and Wnt signaling pathway in later cerebellar patterning and function, we expressed En-2 ectopically in Purkinje cells during late embryonic and postnatal cerebellar development. As a result of this expression, the cerebellum is greatly reduced in size, and Purkinje cell numbers throughout the cerebellum are reduced by more than one-third relative to normal animals. Detailed analysis of both adult and developing cerebella reveals a pattern of selectivity to the loss of Purkinje cells and other cerebellar neurons. This is observed as a general loss of prominence of cerebellar fissures that is highlighted by a total loss of sublobular fissures. In contrast, mediolateral patterning is generally only subtly affected. That En-2 overexpression selectively affects Purkinje cells in the transition zone between lobules is evidenced by direct observation of selective Purkinje cell loss in certain fissures and by the observation that growth and migration of the external germinal layer (EGL) is selectively retarded in the deep fissures during early postnatal development. Thus, in addition to demonstrating the critical role of Purkinje cells in the generation and migration of granule cells, the heterogeneous distribution of cellular effects induced by ectopic En expression suggests a relatively late morphogenetic role for this and other segment polarity proteins, mainly oriented at lobule junctions.

  2. Agonists of fibroblast growth factor receptor induce neurite outgrowth and survival of cerebellar granule neurons

    DEFF Research Database (Denmark)

    Li, Shizhong; Christensen, Claus; Køhler, Lene B;

    2009-01-01

    Fibroblast growth factor receptor (FGFR) signaling is pivotal in the regulation of neurogenesis, neuronal differentiation and survival, and synaptic plasticity both during development and in adulthood. In order to develop low molecular weight agonists of FGFR, seven peptides, termed hexafins......, corresponding to the beta6-beta7 loop region of the FGF 1, 2, 3, 8, 9, 10, and 17, were synthesized. This region shares a homologous amino acid sequence with the FG-loop region of the second fibronectin Type III module of the neural cell adhesion molecule (NCAM) that binds to the FGFR. Hexafins were shown...... by surface plasmon resonance to bind to FGFR1-IIIc-Ig2-3 and FGFR2-IIIb-Ig2-3. The heparin analog sucrose octasulfate inhibited hexafin binding to FGFR1-IIIc-Ig2-3 indicating overlapping binding sites. Hexafin-binding to FGFR1-IIIc resulted in receptor phosphorylation, but inhibited FGF1-induced FGFR1...

  3. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Directory of Open Access Journals (Sweden)

    Susana González-Reyes

    2013-01-01

    Full Text Available Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1 expression and by 5.6–14.3-fold glutathione (GSH levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS production, by 94% the reduction of GSH/glutathione disulfide (GSSG ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2-like 2 (Nrf2 translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death.

  4. Cbln1 regulates rapid formation and maintenance of excitatory synapses in mature cerebellar Purkinje cells in vitro and in vivo.

    Science.gov (United States)

    Ito-Ishida, Aya; Miura, Eriko; Emi, Kyoichi; Matsuda, Keiko; Iijima, Takatoshi; Kondo, Tetsuro; Kohda, Kazuhisa; Watanabe, Masahiko; Yuzaki, Michisuke

    2008-06-04

    Although many synapse-organizing molecules have been identified in vitro, their functions in mature neurons in vivo have been mostly unexplored. Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is the most recently identified protein involved in synapse formation in the mammalian CNS. In the cerebellum, Cbln1 is predominantly produced and secreted from granule cells; cbln1-null mice show ataxia and a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs), the axon bundle of granule cells. Here, we show that application of recombinant Cbln1 specifically and reversibly induced PF synapse formation in dissociated cbln1-null Purkinje cells in culture. Cbln1 also rapidly induced electrophysiologically functional and ultrastructurally normal PF synapses in acutely prepared cbln1-null cerebellar slices. Furthermore, a single injection of recombinant Cbln1 rescued severe ataxia in adult cbln1-null mice in vivo by completely, but transiently, restoring PF synapses. Therefore, Cbln1 is a unique synapse organizer that is required not only for the normal development of PF-Purkinje cell synapses but also for their maintenance in the mature cerebellum both in vitro and in vivo. Furthermore, our results indicate that Cbln1 can also rapidly organize new synapses in adult cerebellum, implying its therapeutic potential for cerebellar ataxic disorders.

  5. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

    Science.gov (United States)

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections). PMID:25983678

  6. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

    Directory of Open Access Journals (Sweden)

    Ruben Dario Pinzon Morales

    2015-05-01

    Full Text Available The cerebellar granule cells (GCs have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to textcolor{red}{support} motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF, an unstable two-wheel balancing robot (2 DOFs, and a simulation model of a quadcopter (6 DOFs. Results showed that adequate control was maintained with a relatively small number of GCs ($<$ 200 in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs. It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights. Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections.

  7. Cerebellar clear cell ependymoma in a 10 year old girl

    Energy Technology Data Exchange (ETDEWEB)

    Thinzar Aye Nyein; Moon, Ah Rim; Hwang, Sun Chul; Hong, Hyun Sook; Lee, A Leum; Chang, Kee Hyun; Kim, Hee Kyung; Chin, Su Sie [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Park, Ji Sang [Soonchunhyang University Gumi Hospital, Gumi (Korea, Republic of)

    2016-01-15

    Clear cell ependymoma (CCE) is a histological rare variant (1–5%) of ependymoma, which is distinguished from other histological subtypes by the presence of fusiform cells arrayed radially around small blood vessels. These alleged perivascular pseudorosettes are significant characteristic features of ependymomas. About 95% of infratentorial ependymomas are found in the fourth ventricle and the remainder occurs as cerebellopontine angle lesions. In previous reports, the cerebellum is found to be a rare location for ependymoma. In this study we report one case of CCE originating from the cerebellar hemisphere, showing unusual morphology on 3T MRI.

  8. Primary cerebellar extramedullary myeloid cell tumor mimicking oligodendroglioma.

    Science.gov (United States)

    Ho, D M; Wong, T T; Guo, W Y; Chang, K P; Yen, S H

    1997-10-01

    Extramedullary myeloid cell tumors (EMCTs) are tumors consisting of immature cells of the myeloid series that occur outside the bone marrow. Most of them are associated with acute myelogenous leukemia or other myeloproliferative disorders, and a small number occur as primary lesions, i.e., are not associated with hematological disorders. Occurrence inside the cranium is rare, and there has been only one case of primary EMCT involving the cerebellum reported in the literature. The case we report here is a blastic EMCT occurring in the cerebellum of a 3-year-old boy who had no signs of leukemia or any hematological disorder throughout the entire course. The cerebellar tumor was at first misdiagnosed as an "oligodendroglioma" because of the uniformity and "fried egg" artifact of the tumor cells. The tumor disappeared during chemotherapy consisting of 12 treatments. However, it recurred and metastasized to the cerebrospinal fluid (CSF) shortly after the therapy was completed. A diagnosis of EMCT was suspected because of the presence of immature myeloid cells in the CSF, and was confirmed by anti-myeloperoxidase and anti-lysozyme immunoreactivity of the cerebellar tumor. The patient succumbed 1 year and 3 months after the first presentation of the disease.

  9. Congenital Cerebellar Mixed Germ Cell Tumor Presenting with Hemorrhage in a Newborn

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Mok; Kim, Ji Hye; Yoo, So Young; Park, Won Soon; Jang, Yun Sil; Shin, Hyung Jin; Suh, Yeon Lim [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2008-07-15

    We report here on a neonate with congenital cerebellar mixed germ cell tumor, and this initially presented as cerebellar hemorrhage. Postnatal cranial ultrasonography revealed an echogenic cerebellar mass that exhibited the signal characteristics of hemorrhage rather than tumor on MR images. The short-term follow-up images also suggested a resolving cerebellar hemorrhage. One month later, the neonate developed vomiting. A second set of MR images demonstrated an enlarged mass that exhibited changed signal intensity at the same site, which suggested a neoplasm. Histological examination after the surgical resection revealed a mixed germ cell tumor.

  10. Platelet granule exocytosis: A comparison with chromaffin cells

    Directory of Open Access Journals (Sweden)

    Jennifer eFitch-Tewfik

    2013-06-01

    Full Text Available The rapid secretion of bioactive amines from chromaffin cells constitutes an important component of the fight or flight response of mammals to stress. Platelets respond to stresses within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infection. Although chromaffin cells derive from the neural crest and platelets from bone marrow megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a mechanism for efficient release. This article will provide an overview of granule formation and exocytosis in platelets with an emphasis on areas in which the study of chromaffin cells has influenced that of platelets and on similarities between the two secretory systems. Commonalities include the use of transporters to concentrate bioactive amines and other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and the use of granules to provide membrane for cytoplasmic projections. The SNAREs and SNARE accessory proteins used by each cell type will also be considered. Finally, we will discuss the newly appreciated role of dynamin family proteins in regulated fusion pore formation. This evaluation of the comparative cell biology of regulated exocytosis in platelets and chromaffin cells demonstrates a convergence of mechanisms between two disparate cell types both tasked with responding rapidly to physiological stimuli.

  11. Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABA(A) receptor δ subunit in cerebellar granule neurons and delays motor development in rats.

    Science.gov (United States)

    Diaz, Marvin R; Vollmer, Cyndel C; Zamudio-Bulcock, Paula A; Vollmer, William; Blomquist, Samantha L; Morton, Russell A; Everett, Julie C; Zurek, Agnieszka A; Yu, Jieying; Orser, Beverley A; Valenzuela, C Fernando

    2014-04-01

    Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ∼60 mM (∼0.28 g/dl) during the 4 h of exposure. EtOH levels gradually decreased to baseline 8 h after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABA(A) receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats.

  12. Characterization of mast cell secretory granules and their cell biology.

    Science.gov (United States)

    Azouz, Nurit Pereg; Hammel, Ilan; Sagi-Eisenberg, Ronit

    2014-10-01

    Exocytosis and secretion of secretory granule (SG) contained inflammatory mediators is the primary mechanism by which mast cells exert their protective immune responses in host defense, as well as their pathological functions in allergic reactions and anaphylaxis. Despite their central role in mast cell function, the molecular mechanisms underlying the biogenesis and secretion of mast cell SGs remain largely unresolved. Early studies have established the lysosomal nature of the mast cell SGs and implicated SG homotypic fusion as an important step occurring during both their biogenesis and compound secretion. However, the molecular mechanisms that account for key features of this process largely remain to be defined. A novel high-resolution imaging based methodology allowed us to screen Rab GTPases for their phenotypic and functional impact and identify Rab networks that regulate mast cell secretion. This screen has identified Rab5 as a novel regulator of homotypic fusion of the mast cell SGs that thereby regulates their size and cargo composition.

  13. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development

    Science.gov (United States)

    Dengler, Christopher G.; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A.

    2017-01-01

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses. PMID:28218241

  14. Molecular markers of neuronal progenitors in the embryonic cerebellar anlage.

    Science.gov (United States)

    Morales, Daniver; Hatten, Mary E

    2006-11-22

    The cerebellum, like the cerebrum, includes a nuclear structure and an overlying cortical structure. Experiments in the past decade have expanded knowledge beyond the traditional function of the cerebellum to include critical roles in motor learning and memory and sensory discrimination. The initial steps in cerebellar development depend on inductive signaling involving FGF and Wnt proteins produced at the mesencephalic/metencephalic boundary. To address the issue of how individual cerebellar cell fates within the cerebellar territory are specified, we examined the expression of transcription factors, including mammalian homologues of LIM homeodomain-containing proteins, basic helix-loop-helix proteins, and three amino acid loop-containing proteins. The results of these studies show that combinatorial codes of transcription factors define precursors of the cerebellar nuclei, and both Purkinje cells and granule neurons of the cerebellar cortex. Examination of gene expression patterns in several hundred lines of Egfp-BAC (bacterial artificial chromosome) transgenic mice in the GENSAT Project revealed numerous genes with restricted expression in cerebellar progenitor populations, including genes specific for cerebellar nuclear precursors and Purkinje cell precursors. In addition, we identified patterns of gene expression that link granule and Purkinje cells to their precerebellar nuclei. These results identify molecular pathways that offer new insights on the development of the nuclear and cortical structures of the cerebellum, as well as components of the cerebellar circuitry.

  15. Activation of c—Jun and suppression of phospho—p44/42 were involved in diphenylhydantoin—induced apoptosis of cultured rat cerebellar granule neurons

    Institute of Scientific and Technical Information of China (English)

    ZHAOLing-Zhi; SUXing-Wen; HUANGYi-Jun; QIUPeng-Xin; YANGGuang-Mei

    2003-01-01

    AIM:To investigate possible intracellular signal molecules involved in diphenylhydantoin (DPH)-mediated apoptosis of cerebellar granule neurons (CGN) and explore possible nolecular mechanisms of neurotoxicity of DPH.METHODS: Fluorescein diacetate (FDA) stain, hochest 33258 stain, and agar gel electrophoresis were used to test morphological and biological characters of primary CGN and cortical neurons (CN) in the presence or absence of 100μmol/L DPH; Western blot and RT-PCR were employed to further investigate apoptotic/survival signal moleculars involved in the neuronal apoptotic signal transdution. RESULTS:DPH 100μmol/L induced a typical apoptosis of CGN but had no toxicity on CN. Cerebellar granule neural apoptosis induced by 100μmol/L DPH was significantly inhibited by pre-treatment with SB203580(10μmol/L) or CEP-11004(1μmol/L) for 1h. DPH markedly upregulated the levels of phospho-c-Jun (active c-Jun), total c-Jun protein and c-jun mRNA in CGN. The levels of phospho-c-Jun dramatically elevated by DPH at 8 h were significantly inhibited by SB203580(10μmol/L) or CEP-11004 (1μmol/L). Moreover, the activities of p44/42 (ERK1/ERK2), other members of MAP kinases and generally believed to be important survival effetors in CGN, were markedly suppressed. However, the activities of both JNK and p38 were little affected in the process of apoptosis of CGN induced by 100μmol/L DPH. CONCLUSION: The selective toxicity of DPH on CGN is likely due to its ability to induce apoptosis of CGN, it is a process involved activation of c-Jun and suppression of the activity of p44/42.

  16. Intrinsic properties and mechanisms of spontaneous firing in mouse cerebellar unipolar brush cells.

    Science.gov (United States)

    Russo, Marco J; Mugnaini, Enrico; Martina, Marco

    2007-06-01

    Neuronal firing patterns are determined by the cell's intrinsic electrical and morphological properties and are regulated by synaptic interactions. While the properties of cerebellar neurons have generally been studied in much detail, little is known about the unipolar brush cells (UBCs), a type of glutamatergic interneuron that is enriched in the granular layer of the mammalian vestibulocerebellum and participates in the representation of head orientation in space. Here we show that UBCs can be distinguished from adjacent granule cells on the basis of differences in membrane capacitance, input resistance and response to hyperpolarizing current injection. We also show that UBCs are intrinsically firing neurons. Using action potential clamp experiments and whole-cell recordings we demonstrate that two currents contribute to this property: a persistent TTX-sensitive sodium current and a ruthenium red-sensitive, TRP-like cationic current, both of which are active during interspike intervals and have reversal potentials positive to threshold. Interestingly, although UBCs are also endowed with a large I(h) current, this current is not involved in their intrinsic firing, perhaps because it activates at voltages that are more hyperpolarized than those associated with autonomous activity.

  17. Asymmetric cell division of granule neuron progenitors in the external granule layer of the mouse cerebellum.

    Science.gov (United States)

    Haldipur, Parthiv; Sivaprakasam, Iswariya; Periasamy, Vinod; Govindan, Subashika; Mani, Shyamala

    2015-05-15

    The plane of division of granule neuron progenitors (GNPs) was analysed with respect to the pial surface in P0 to P14 cerebellum and the results showed that there was a significant bias towards the plane of cell division being parallel to pial surface across this developmental window. In addition, the distribution of β-Catenin in anaphase cells was analysed, which showed that there was a significant asymmetry in the distribution of β-Catenin in dividing GNPs. Further, inhibition of Sonic Hedgehog (Shh) signalling had an effect on plane of cell division. Asymmetric distribution of β-Catenin was shown to occur towards the source of a localized extracellular cue.

  18. Cerebellar and basal ganglion involvement in Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, I.; Baskan, O.; Haliloglu, M.; Aydingoz, U. [Department of Radiology, Hacettepe University Hospital, Sihhiye 06100, Ankara (Turkey)

    1999-06-01

    Langerhans cell histiocytosis (LCH) is a disease of unknown cause characterised by proliferation of histiocytic granulomas in tissues; the primary cerebral manifestation is diabetes insipidus caused by hypothalamic infiltration. We present a patient in whom, except for the absence of high signal on T 1 weighting in the posterior pituitary, consistent with central diabetes insipidus, MRI showed no evidence of hypothalamic involvement by histiocytosis, despite the long duration of the disease. However, there was bilateral, symmetrical involvement of the cerebellum and globus pallidus in addition to a calvarial lesion. High signal in the cerebellar white matter on T 2-weighted images may represent demyelination, gliosis and cell loss, as previously reported on pathologic examination. (orig.) With 5 figs., 22 refs.

  19. Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions.

    Science.gov (United States)

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita

    2013-10-15

    The cerebellum consists of the cerebellar cortex and the cerebellar nuclei. Although the basic neuronal circuitry of the cerebellar cortex is uniform everywhere, anatomical data demonstrate that the input and output relationships of the cortex are spatially segregated between different cortical areas, which suggests that there are functional distinctions between these different areas. Perturbation of cerebellar cortical functions in a spatially restricted fashion is thus essential for investigating the distinctions among different cortical areas. In the cerebellar cortex, Purkinje cells are the sole output neurons that send information to downstream cerebellar and vestibular nuclei. Therefore, selective manipulation of Purkinje cell activities, without disturbing other neuronal types and passing fibers within the cortex, is a direct approach to spatially restrict the effects of perturbations. Although this type of approach has for many years been technically difficult, recent advances in optogenetics now enable selective activation or inhibition of Purkinje cell activities, with high temporal resolution. Here we discuss the effectiveness of using Purkinje cell-specific optogenetic approaches to elucidate the functions of local cerebellar cortex regions. We also discuss what improvements to current methods are necessary for future investigations of cerebellar functions to provide further advances.

  20. UVC-induced stress granules in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Mohamed Taha Moutaoufik

    Full Text Available Stress granules (SGs are well characterized cytoplasmic RNA bodies that form under various stress conditions. We have observed that exposure of mammalian cells in culture to low doses of UVC induces the formation of discrete cytoplasmic RNA granules that were detected by immunofluorescence staining using antibodies to RNA-binding proteins. UVC-induced cytoplasmic granules are not Processing Bodies (P-bodies and are bone fide SGs as they contain TIA-1, TIA-1/R, Caprin1, FMRP, G3BP1, PABP1, well known markers, and mRNA. Concomitant with the accumulation of the granules in the cytoplasm, cells enter a quiescent state, as they are arrested in G1 phase of the cell cycle in order to repair DNA damages induced by UVC irradiation. This blockage persists as long as the granules are present. A tight correlation between their decay and re-entry into S-phase was observed. However the kinetics of their formation, their low number per cell, their absence of fusion into larger granules, their persistence over 48 hours and their slow decay, all differ from classical SGs induced by arsenite or heat treatment. The induction of these SGs does not correlate with major translation inhibition nor with phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α. We propose that a restricted subset of mRNAs coding for proteins implicated in cell cycling are removed from the translational apparatus and are sequestered in a repressed form in SGs.

  1. Asymmetric cell division of granule neuron progenitors in the external granule layer of the mouse cerebellum

    OpenAIRE

    Parthiv Haldipur; Iswariya Sivaprakasam; Vinod Periasamy; Subashika Govindan; Shyamala Mani

    2015-01-01

    ABSTRACT The plane of division of granule neuron progenitors (GNPs) was analysed with respect to the pial surface in P0 to P14 cerebellum and the results showed that there was a significant bias towards the plane of cell division being parallel to pial surface across this developmental window. In addition, the distribution of β-Catenin in anaphase cells was analysed, which showed that there was a significant asymmetry in the distribution of β-Catenin in dividing GNPs. Further, inhibition of S...

  2. Dynamic distribution and stem cell characteristics of Sox1-expressing cells in the cerebellar cortex

    Institute of Scientific and Technical Information of China (English)

    Joelle Alcock; Virginie Sottile

    2009-01-01

    Bergmann glia cells are a discrete radial glia population surrounding Purkinje cells in the cerebellar cortex. Al-though Bergmann glia are essential for the development and correct arborization of Purkinje cells, little is known about the regulation of this cell population after the developmental phase. In an effort to characterize this population at the molecular level, we have analyzed marker expression and established that adult Bergmann glia express Soxl, Sox2 and Sox9, a feature otherwise associated with neural stem cells (NSCs). In the present study, we have further analyzed the developmental pattern of Soxl-expressing cells in the developing cerebellum. We report that before be-coming restricted to the Purkinje cell layer, Soxl-positive cells are present throughout the immature tissue, and that these cells show characteristics of Bergmann glia progenitors. Our study shows that these progenitors express Soxl, Sox2 and Sox9, a signature maintained throughout cerebellar maturation into adulthood. When isolated in culture, the Soxl-expressing cerebellar population exhibited neurosphere-forming ability, NSC-marker characteristics, and demonstrated multipotency at the clonal level. Our results show that the Bergmann glia population expresses Soxl during cerebellar development, and that these cells can be isolated and show stem cell characteristics in vitro, sug-gesting that they could hold a broader potential than previously thought.

  3. RNA granules

    OpenAIRE

    Anderson, Paul; Kedersha, Nancy

    2006-01-01

    Cytoplasmic RNA granules in germ cells (polar and germinal granules), somatic cells (stress granules and processing bodies), and neurons (neuronal granules) have emerged as important players in the posttranscriptional regulation of gene expression. RNA granules contain various ribosomal subunits, translation factors, decay enzymes, helicases, scaffold proteins, and RNA-binding proteins, and they control the localization, stability, and translation of their RNA cargo. We review the relationshi...

  4. Lack of Rb and p53 delays cerebellar development and predisposes to large cell anaplastic medulloblastoma through amplification of N-Myc and Ptch2.

    Science.gov (United States)

    Shakhova, Olga; Leung, Carly; van Montfort, Erwin; Berns, Anton; Marino, Silvia

    2006-05-15

    Medulloblastomas are among the most common malignant brain tumors in childhood. They typically arise from neoplastic transformation of granule cell precursors in the cerebellum via deregulation of molecular pathways involved in normal cerebellar development. In a mouse model, we show here that impairment of the balance between proliferation and differentiation of granule cell precursors in the external granular layer of the developing cerebellum predisposes but is not sufficient to induce neoplastic transformation of these progenitor cells. Using array-based chromosomal comparative genomic hybridization, we show that genetic instability resulting from inactivation of the p53 pathway together with deregulation of proliferation induced by Rb loss eventually leads to neoplastic transformation of these cells by acquiring additional genetic mutations, mainly affecting N-Myc and Ptch2 genes. Moreover, we show that p53 loss influences molecular mechanisms that cannot be mimicked by the loss of either p19(ARF), p21, or ATM.

  5. Uneven distribution of NG2 cells in the rat cerebellar vermis and changes in aging

    Directory of Open Access Journals (Sweden)

    S. Lomoio

    2012-06-01

    Full Text Available We describe by NG2 (neuron-glia chondroitin sulphate proteoglycan 2 immunocytochemistry an uneven distribution of NG2 glial cells in the rat cerebellum, being them more represented in the central lobules of the cerebellar vermis, belonging to the cerebrocerebellum. The cerebellar distribution of NG2 cells changes in aging rats, in which the area where the cells appear to be densely scattered throughout all cerebellar layers involves also more rostral and caudal lobules. In addition, in aging rats, in the most rostral and caudal lobules belonging to the spinocerebellum, punctate reaction product is present at the apical pole of Purkinje cells, i.e. in the area where the majority of synapses between olivary climbing fibers and Purkinje cells occur. Data suggest that the different distribution of NG2 cells is correlated to differences in physiology among cerebellar areas and reflects changes during aging.

  6. Uneven distribution of NG2 cells in the rat cerebellar vermis and changes in aging

    Science.gov (United States)

    Lomoio, S.; Necchi, D.; Scherini, E.

    2012-01-01

    We describe by NG2 (neuron-glia chondroitin sulphate proteoglycan 2) immunocytochemistry an uneven distribution of NG2 glial cells in the rat cerebellum, being them more represented in the central lobules of the cerebellar vermis, belonging to the cerebrocerebellum. The cerebellar distribution of NG2 cells changes in aging rats, in which the area where the cells appear to be densely scattered throughout all cerebellar layers involves also more rostral and caudal lobules. In addition, in aging rats, in the most rostral and caudal lobules belonging to the spinocerebellum, punctate reaction product is present at the apical pole of Purkinje cells, i.e. in the area where the majority of synapses between olivary climbing fibers and Purkinje cells occur. Data suggest that the different distribution of NG2 cells is correlated to differences in physiology among cerebellar areas and reflects changes during aging. PMID:23027343

  7. Isolating stromal stem cells from periodontal granulation tissues.

    Science.gov (United States)

    Hung, Tzu-Yuan; Lin, Hsiang-Chun; Chan, Ying-Jen; Yuan, Kuo

    2012-08-01

    Stem cell therapy is a promising area in regenerative medicine. Periodontal granulation tissues are often discarded during conventional surgery. If stromal stem cells can be isolated from these tissues, they can be used for subsequent surgery on the same patient. Fifteen human periodontal granulation tissue samples were obtained from intrabony defects during surgery. Immunohistochemistry (IHC) was carried out on five of the samples to identify STRO-1, a marker of mesenchymal stem cells. Five samples underwent flow cytometry analysis for the same marker. The remaining five samples were characterized by "colony formation unit-fibroblast" (CFU-f) assay and selected for proliferation assay, flow cytometry of stem cell markers, immunocytochemistry (ICC), multipotent differentiation assays, and repairing critical-size defects in mice. The ratio of STRO-1(+) cells detected by IHC was 5.91 ± 1.50%. The analysis of flow cytometry for STRO-1 was 6.70 ± 0.81%. Approximately two thirds of the CFU-f colonies had a strong reaction to STRO-1 in ICC staining. The cells were multipotent both in vitro and in vivo. Mice given bone grafts and stem cells showed significantly better bone healing than those without stem cells. Multipotent stromal stem cells can be isolated from human periodontal granulation tissues. These cells improve new bone formation when transplanted in mouse calvarial defects. Isolating stem cells from relatively accessible sites without extra procedures is clinically advantageous. This study demonstrated that human periodontal granulation tissues contain isolatable multipotent stem cells. The cells may be a good source for autotransplantation in subsequent treatment.

  8. Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens

    Science.gov (United States)

    Ogbomo, Henry; Mody, Christopher H.

    2017-01-01

    Natural killer (NK) cells kill or inhibit the growth of a number of fungi including Cryptococcus, Candida, Aspergillus, Rhizopus, and Paracoccidioides. Although many fungi are not dangerous, invasive fungal pathogens, such as Cryptococcus neoformans, cause life-threatening disease in individuals with impaired cell-mediated immunity. While there are similarities to cell-mediated killing of tumor cells, there are also important differences. Similar to tumor killing, NK cells directly kill fungi in a receptor-mediated and cytotoxic granule-dependent manner. Unlike tumor cell killing where multiple NK cell-activating receptors cooperate and signal events that mediate cytotoxicity, only the NKp30 receptor has been described to mediate signaling events that trigger the NK cell to mobilize its cytolytic payload to the site of interaction with C. neoformans and Candida albicans, subsequently leading to granule exocytosis and fungal killing. More recently, the NKp46 receptor was reported to bind Candida glabrata adhesins Epa1, 6, and 7 and directly mediate fungal clearance. A number of unanswered questions remain. For example, is only one NK cell-activating receptor sufficient for signaling leading to fungal killing? Are the signaling pathways activated by fungi similar to those activated by tumor cells during NK cell killing? How do the cytolytic granules traffic to the site of interaction with fungi, and how does this process compare with tumor killing? Recent insights into receptor use, intracellular signaling and cytolytic granule trafficking during NK cell-mediated fungal killing will be compared to tumor killing, and the implications for therapeutic approaches will be discussed. PMID:28123389

  9. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron–Purkinje cell synapses in vivo in mice

    Directory of Open Access Journals (Sweden)

    De-Lai eQiu

    2015-06-01

    Full Text Available Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC, parallel fiber–molecular layer interneurons (PF–MLI and mossy fiber–granule cell (MF–GC synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1 receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1 antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.

  10. Asymmetric cell division of granule neuron progenitors in the external granule layer of the mouse cerebellum

    Directory of Open Access Journals (Sweden)

    Parthiv Haldipur

    2015-07-01

    Full Text Available The plane of division of granule neuron progenitors (GNPs was analysed with respect to the pial surface in P0 to P14 cerebellum and the results showed that there was a significant bias towards the plane of cell division being parallel to pial surface across this developmental window. In addition, the distribution of β-Catenin in anaphase cells was analysed, which showed that there was a significant asymmetry in the distribution of β-Catenin in dividing GNPs. Further, inhibition of Sonic Hedgehog (Shh signalling had an effect on plane of cell division. Asymmetric distribution of β-Catenin was shown to occur towards the source of a localized extracellular cue.

  11. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available BACKGROUND: Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice. METHODS AND MAIN RESULTS: Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation. CONCLUSIONS: These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  12. FIB/SEM cell sectioning for intracellular metal granules characterization

    Science.gov (United States)

    Milani, Marziale; Brundu, Claudia; Santisi, Grazia; Savoia, Claudio; Tatti, Francesco

    2009-05-01

    Focused Ion Beams (FIBs) provide a cross-sectioning tool for submicron dissection of cells and subcellular structures. In combination with Scanning Electron Microscope (SEM), FIB provides complementary morphological information, that can be further completed by EDX (Energy Dispersive X-ray Spectroscopy). This study focus onto intracellular microstructures, particularly onto metal granules (typically Zn, Cu and Fe) and on the possibility of sectioning digestive gland cells of the terrestrial isopod P. scaber making the granules available for a compositional analysis with EDX. Qualitative and quantitative analysis of metal granules size, amount and distribution are performed. Information is made available of the cellular storing pattern and, indirectly, metal metabolism. The extension to human level is of utmost interest since some pathologies of relevance are metal related. Apart from the common metal-overload-diseases (hereditary hemochromatosis, Wilson's and Menkes disease) it has been demonstrated that metal in excess can influence carcinogenesis in liver, kidney and breast. Therefore protocols will be established for the observation of mammal cells to improve our knowledge about the intracellular metal amount and distribution both in healthy cells and in those affected by primary or secondary metal overload or depletion.

  13. Calcium dynamics in the secretory granules of neuroendocrine cells.

    Science.gov (United States)

    Alvarez, Javier

    2012-01-01

    Cellular Ca(2+)signaling results from a complex interplay among a variety of Ca(2+) fluxes going across the plasma membrane and across the membranes of several organelles, together with the buffering effect of large numbers of Ca(2+)-binding sites distributed along the cell architecture. Endoplasmic and sarcoplasmic reticulum, mitochondria and even nucleus have all been involved in cellular Ca(2+) signaling, and the mechanisms for Ca(2+) uptake and release from these organelles are well known. In neuroendocrine cells, the secretory granules also constitute a very important Ca(2+)-storing organelle, and the possible role of the stored Ca(2+) as a trigger for secretion has attracted considerable attention. However, this possibility is frequently overlooked, and the main reason for that is that there is still considerable uncertainty on the main questions related with granular Ca(2+) dynamics, e.g., the free granular [Ca(2+)], the physical state of the stored Ca(2+) or the mechanisms for Ca(2+) accumulation and release from the granules. This review will give a critical overview of the present state of knowledge and the main conflicting points on secretory granule Ca(2+) homeostasis in neuroendocrine cells.

  14. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo.

    Science.gov (United States)

    Henze, Darrell A; Wittner, Lucia; Buzsáki, György

    2002-08-01

    Processing of neuronal information depends on interactions between the anatomical connectivity and cellular properties of single cells. We examined how these computational building blocks work together in the intact rat hippocampus. Single spikes in dentate granule cells, controlled intracellularly, generally failed to discharge either interneurons or CA3 pyramidal cells. In contrast, trains of spikes effectively discharged both CA3 cell types. Increasing the discharge rate of the granule cell increased the discharge probability of its target neuron and decreased the delay between the onset of a granule cell train and evoked firing in postsynaptic targets. Thus, we conclude that the granule cell to CA3 synapses are 'conditional detonators,' dependent on granule cell firing pattern. In addition, we suggest that information in single granule cells is converted into a temporal delay code in target CA3 pyramidal cells and interneurons. These data demonstrate how a neural circuit of the CNS may process information.

  15. Signal transduction pathways in mast cell granule-mediated endothelial cell activation

    Directory of Open Access Journals (Sweden)

    Luqi Chi

    2003-01-01

    Full Text Available Background: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8.

  16. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  17. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms.

    Science.gov (United States)

    Dar, M Saeed

    2015-08-01

    The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.

  18. The input-output transformation of the hippocampal granule cells: from grid cells to place fields

    OpenAIRE

    de Almeida, Licurgo; Idiart, Marco; Lisman, John E.

    2009-01-01

    Grid cells in the rat medial entorhinal cortex fire (periodically) over the entire environment. These cells provide input to hippocampal granule cells whose output is characterized by one or more small place fields. We sought to understand how this input-output transformation occurs. Available information allows simulation of this process with no freely adjustable parameters. We first examined the spatial distribution of excitation in granule cells produced by the convergence of excitatory in...

  19. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui, E-mail: fuyh@fudan.edu.cn

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  20. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    Directory of Open Access Journals (Sweden)

    Nakkrasae La-Iad

    2008-05-01

    Full Text Available Abstract Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7 is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network.

  1. Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning

    Science.gov (United States)

    Green, John T.; Steinmetz, Joseph E.

    2005-01-01

    The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus. Rabbits were trained in an interstimulus interval discrimination procedure in which one tone signaled a 250-msec conditioned stimulus-unconditioned stimulus (CS-US) interval and a second tone signaled a 750-msec CS-US interval. All rabbits showed conditioned responses to each CS with mean onset and peak latencies that coincided with the CS-US interval. Many anterior lobe Purkinje cells showed significant learning-related activity after eyeblink conditioning to one or both of the CSs. More Purkinje cells responded with inhibition than with excitation to CS presentation. In addition, when the firing patterns of all conditioning-related Purkinje cells were pooled, it appeared that the population showed a pattern of excitation followed by inhibition during the CS-US interval. Using cholera toxin-conjugated horseradish peroxidase, Purkinje cells in recording areas were found to project to the interpositus nucleus. These data support previous studies that have suggested a role for the anterior cerebellar cortex in eyeblink conditioning as well as models of cerebellar-mediated CR timing that postulate that Purkinje cell activity inhibits conditioned response (CR) generation during the early portion of a trial by inhibiting the deep cerebellar nuclei and permits CR generation during the later portion of a trial through disinhibition of the cerebellar nuclei. PMID:15897252

  2. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    Science.gov (United States)

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity.

  3. Voltage-gated sodium channels in cerebellar Purkinje cells of mormyrid fish

    NARCIS (Netherlands)

    M.M. de Ruiter (Martijn); C.I. de Zeeuw (Chris); C.R.W. Hansel (Christian)

    2006-01-01

    textabstractCerebellar Purkinje cells of mormyrid fish differ in some morphological as well as physiological parameters from their counterparts in mammals. Morphologically, Purkinje cells of mormyrids have larger dendrites that are characterized by a lower degree of branching in the molecular layer.

  4. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Science.gov (United States)

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  5. Forkhead transcription factor FoxM1 regulates mitotic entry and prevents spindle defects in cerebellar granule neuron precursors

    NARCIS (Netherlands)

    Schueller, Ulrich; Zhao, Qing; Godinho, Susana A.; Heine, Vivi M.; Medema, Rene H.; Pellman, David; Rowitch, David H.

    2007-01-01

    The forkhead transcription factor FoxM1 has been reported to regulate, variously, proliferation and/or spindle formation during the G(2)/M transition of the cell cycle. Here we define specific functions of FoxM1 during brain development by the investigation of FoxM1 loss-of-function mutations in the

  6. Peptides modeled after the alpha-domain of metallothionein induce neurite outgrowth and promote survival of cerebellar granule neurons

    DEFF Research Database (Denmark)

    Asmussen, Johanne Wirenfeldt; Ambjørn, Malene; Bock, Elisabeth;

    2009-01-01

    Metallothionein (MT) is a metal-binding protein capable of preventing oxidative stress and apoptotic cell death in the central nervous system of mammals, and hence is of putative therapeutic value in the treatment of neurodegenerative disorders. Recently, we demonstrated that a peptide modeled...

  7. The input-output transformation of the hippocampal granule cells: from grid cells to place fields.

    Science.gov (United States)

    de Almeida, Licurgo; Idiart, Marco; Lisman, John E

    2009-06-10

    Grid cells in the rat medial entorhinal cortex fire (periodically) over the entire environment. These cells provide input to hippocampal granule cells whose output is characterized by one or more small place fields. We sought to understand how this input-output transformation occurs. Available information allows simulation of this process with no freely adjustable parameters. We first examined the spatial distribution of excitation in granule cells produced by the convergence of excitatory inputs from randomly chosen grid cells. Because the resulting summation depends on the number of inputs, it is necessary to use a realistic number (approximately 1200) and to take into consideration their 20-fold variation in strength. The resulting excitation maps have only modest peaks and valleys. To analyze how this excitation interacts with inhibition, we used an E%-max (percentage of maximal suprathreshold excitation) winner-take-all rule that describes how gamma-frequency inhibition affects firing. We found that simulated granule cells have firing maps that have one or more place fields whose size and number approximates those observed experimentally. A substantial fraction of granule cells have no place fields, as observed experimentally. Because the input firing rates and synaptic properties are known, the excitatory charge into granule cells could be calculated (2-3 pC) and was found to be only somewhat larger than required to fire granule cells (1 pC). We conclude that the input-output transformation of dentate granule does not depend strongly on synaptic modification; place field formation can be understood in terms of simple summation of randomly chosen excitatory inputs, in conjunction with a winner-take-all network mechanism.

  8. 3H-D-aspartate release from cerebellar granule neurons is differentially regulated by glutamate- and K(+)-stimulation

    DEFF Research Database (Denmark)

    Belhage, B; Rehder, V; Hansen, Gert Helge

    1992-01-01

    in neurites as well as cell bodies employing the fluorescent Ca2+ indicator fura-2. Transmitter release was assayed using 3H-D-aspartate to label the exogenously accessible glutamate pools, which in these neurons is believed to also include the transmitter pool. In an attempt to distinguish whether...... vesicles become increasingly prominent, the Ca2+ responses and transmitter release evoked by the two different stimuli were investigated as a function of the culture period. K+ and glutamate were found to increase intracellular [Ca2+] differentially. In 1-day-old cultures K+ elicited a small albeit...... significant increase in [Ca2+]i while glutamate was completely without effect. In 7-day-old neurons both agents induced a large increase in [Ca2+].(ABSTRACT TRUNCATED AT 250 WORDS)...

  9. The critical role of lipid rafts nanodomains in the cross-talk between calcium and reactive oxygen and nitrogen species in cerebellar granule neurons apoptosis by extracellular potassium deprivation

    Directory of Open Access Journals (Sweden)

    Carlos Gutierrez-Merino

    2016-01-01

    Full Text Available The apoptosis of cerebellar granule neurons (CGN induced by low-potassium in serum free medium in vitro has become a widely used model for neuronal apoptosis during in vivo brain development. In this review we shall summarize first the basic features of this model for neuronal apoptosis. Next, we shall focus on the L-type calcium channels (LTCC inactivation as the primary pro-apoptotic signal in low K+-induced CGN death. This apoptotic process can be split into two major and sequential cellular signaling phases: one reversible phase that offers a temporal window for therapeutic interventions to prevent neuronal death, and an irreversible later phase. Therefore, we shall comment next the critical role of reactive oxygen species (ROS production and major ROS sources triggering the entry of CGN in the irreversible stages of low K+-induced apoptosis. Then, we shall present the experimental evidences showing clustering of LTCC and ROS producing enzymes in plasma membrane lipid rafts of CGN matured in vitro, which have opened new perspectives for cell signaling in the early and reversible phase of this apoptosis. The role of lipid rafts nanodomains as fast response calcium/nitric oxide transducers of the switch of CGN to low K+ medium will be discussed next. The two major conclusions drawn from this review are: (1 deregulation of the pool of cytochrome b5 reductase associated to plasma membrane-lipid rafts, at least in part due to overexpression of cytochrome b5, can account for the critical superoxide anion overshot which triggers the entry in the irreversible phase of low K+ apoptosis of CGN, and (2 LTCC inactivation is rapidly transduced by lipid rafts nanodomains into a large drop of cytosolic calcium, a switch-off of nitric oxide production and subsequent inactivation of survival signaling pathways dependent on the activity of CaMKII, PKA and Akt/PKB kinases.

  10. Role of synchronous activation of cerebellar purkinje cell ensembles in multi-joint movement control

    NARCIS (Netherlands)

    T.M. Hoogland (Tycho); J.R. de Gruijl (Jornt); L. Witter (Laurens); M.I. Canto (Marcia Irene); C.I. de Zeeuw (Chris)

    2015-01-01

    textabstractIt is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated

  11. Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control

    NARCIS (Netherlands)

    Hoogland, Tycho M; De Gruijl, Jornt R; Witter, Laurens; Canto, Cathrin B; De Zeeuw, Chris I

    2015-01-01

    It is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated to what ext

  12. [Mathematical simulation of induction of long-term depression in cerebellar Purkinje cells].

    Science.gov (United States)

    Murzina, G B

    2003-01-01

    Mechanisms of associative and homosynaptic long-term depression (LTD) in cerebellar Purkinje cells are discussed. The possibility of LTD induction related to a decrease in efficacy of AMPA receptors through either their dephosphorylation or phosphorylation is investigated by mathematical simulation.

  13. Mathematical simulation of the induction of long-term depression in cerebellar Purkinje cells.

    Science.gov (United States)

    Murzina, G B

    2004-02-01

    The question of the mechanisms underlying the induction of associative and homosynaptic long-term depression in cerebellar Purkinje cells is addressed. Mathematical simulation was used to investigate the possibility that long-term depression, which is associated with a decrease in the efficiency of AMPA receptors, could be induced both by phosphorylation and dephosphorylation of these receptors.

  14. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  15. Partitioning and Exocytosis of Secretory Granules during Division of PC12 Cells

    Directory of Open Access Journals (Sweden)

    Nickolay Vassilev Bukoreshtliev

    2012-01-01

    Full Text Available The biogenesis, maturation, and exocytosis of secretory granules in interphase cells have been well documented, whereas the distribution and exocytosis of these hormone-storing organelles during cell division have received little attention. By combining ultrastructural analyses and time-lapse microscopy, we here show that, in dividing PC12 cells, the prominent peripheral localization of secretory granules is retained during prophase but clearly reduced during prometaphase, ending up with only few peripherally localized secretory granules in metaphase cells. During anaphase and telophase, secretory granules exhibited a pronounced movement towards the cell midzone and, evidently, their tracks colocalized with spindle microtubules. During cytokinesis, secretory granules were excluded from the midbody and accumulated at the bases of the intercellular bridge. Furthermore, by measuring exocytosis at the single granule level, we showed, that during all stages of cell division, secretory granules were competent for regulated exocytosis. In conclusion, our data shed new light on the complex molecular machinery of secretory granule redistribution during cell division, which facilitates their release from the F-actin-rich cortex and active transport along spindle microtubules.

  16. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Ma Wei-Hsien

    2011-08-01

    Full Text Available Abstract Background Spinocerebellar ataxia (SCA refers to a disease entity in which polyglutamine aggregates are over-produced in Purkinje cells (PCs of the cerebellum as well as other neurons in the central nervous system, and the formation of intracellular polyglutamine aggregates result in the loss of neurons as well as deterioration of motor functions. So far there is no effective neuroprotective treatment for this debilitating disease although numerous efforts have been made. Mesenchymal stem cells (MSCs possess multi-lineage differentiation potentials as well as immuno-modulatory properties, and are theoretically good candidates for SCA treatment. The purpose of this study is to investigate whether transplantation of human MSCs (hMSCs can rescue cerebellar PCs and ameliorate motor function deterioration in SCA in a pre-clinical animal model. Method Transgenic mice bearing poly-glutamine mutation in ataxin-2 gene (C57BL/6J SCA2 transgenic mice were serially transplanted with hMSCs intravenously or intracranially before and after the onset of motor function loss. Motor function of mice was evaluated by an accelerating protocol of rotarod test every 8 weeks. Immunohistochemical stain of whole brain sections was adopted to demonstrate the neuroprotective effect of hMSC transplantation on cerebellar PCs and engraftment of hMSCs into mice brain. Results Intravenous transplantation of hMSCs effectively improved rotarod performance of SCA2 transgenic mice and delayed the onset of motor function deterioration; while intracranial transplantation failed to achieve such neuroprotective effect. Immunohistochemistry revealed that intravenous transplantation was more effective in the preservation of the survival of cerebellar PCs and engraftment of hMSCs than intracranial injection, which was compatible to rotarod performance of transplanted mice. Conclusion Intravenous transplantation of hMSCs can indeed delay the onset as well as improve the motor

  17. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  18. Altered Morphology of Hippocampal Dentate Granule Cell Presynaptic and Postsynaptic Terminals Following Conditional Deletion of TrkB

    OpenAIRE

    Danzer, Steve C.; Kotloski, Robert J.; Walter, Cynthia; Hughes, Maya; McNamara, James O.

    2008-01-01

    Dentate granule cells play a critical role in the function of the entorhinal-hippocampal circuitry in health and disease. Dentate granule cells are situated to regulate the flow of information into the hippocampus, a structure required for normal learning and memory. Correspondingly, impaired granule cell function leads to memory deficits, and, interestingly, altered granule cell connectivity may contribute to the hyperexcitability of limbic epilepsy. It is important, therefore, to understand...

  19. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry.

    Science.gov (United States)

    Takeuchi, Miki; Matsuda, Koji; Yamaguchi, Shingo; Asakawa, Kazuhide; Miyasaka, Nobuhiko; Lal, Pradeep; Yoshihara, Yoshihiro; Koga, Akihiko; Kawakami, Koichi; Shimizu, Takashi; Hibi, Masahiko

    2015-01-01

    The cerebellum is involved in some forms of motor coordination and motor learning. Here we isolated transgenic (Tg) zebrafish lines that express a modified version of Gal4-VP16 (GFF) in the cerebellar neural circuits: granule, Purkinje, or eurydendroid cells, Bergmann glia, or the neurons in the inferior olive nuclei (IO) which send climbing fibers to Purkinje cells, with the transposon Tol2 system. By combining GFF lines with Tg lines carrying a reporter gene located downstream of Gal4 binding sequences (upstream activating sequence: UAS), we investigated the anatomy and developmental processes of the cerebellar neural circuitry. Combining an IO-specific Gal4 line with a UAS reporter line expressing the photoconvertible fluorescent protein Kaede demonstrated the contralateral projections of climbing fibers. Combining a granule cell-specific Gal4 line with a UAS reporter line expressing wheat germ agglutinin (WGA) confirmed direct and/or indirect connections of granule cells with Purkinje cells, eurydendroid cells, and IO neurons in zebrafish. Time-lapse analysis of a granule cell-specific Gal4 line revealed initial random movements and ventral migration of granule cell nuclei. Transgenesis of a reporter gene with another transposon Tol1 system visualized neuronal structure at a single cell resolution. Our findings indicate the usefulness of these zebrafish Gal4 Tg lines for studying the development and function of cerebellar neural circuits.

  20. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    You Kure Wu

    Full Text Available Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  1. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine

    2013-01-01

    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  2. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons

    Directory of Open Access Journals (Sweden)

    Pontus eGeborek

    2014-10-01

    Full Text Available We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT and the dorsal spinocerebellar tract (DSCT, respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF and the ipsilateral LF (iLF at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e. that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.

  3. Syntaxin clusters assemble reversibly at sites of secretory granules in live cells.

    Science.gov (United States)

    Barg, S; Knowles, M K; Chen, X; Midorikawa, M; Almers, Wolfhard

    2010-11-30

    Syntaxin resides in the plasma membrane, where it helps to catalyze membrane fusion during exocytosis. The protein also forms clusters in cell-free and granule-free plasma-membrane sheets. We imaged the interaction between syntaxin and single secretory granules by two-color total internal reflection microscopy in PC12 cells. Syntaxin-GFP assembled in clusters at sites where single granules had docked at the plasma membrane. Clusters were intermittently present at granule sites, as syntaxin molecules assembled and disassembled in a coordinated fashion. Recruitment to granules required the N-terminal domain of syntaxin, but not the entry of syntaxin into SNARE complexes. Clusters facilitated exocytosis and disassembled once exocytosis was complete. Syntaxin cluster formation defines an intermediate step in exocytosis.

  4. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, A.J.; Clark, D.T.; Dash, J. (Portland State Univ., OR (USA))

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  5. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells.

    Science.gov (United States)

    Li, Guoshi; Linster, Christiane; Cleland, Thomas A

    2015-12-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.

  6. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells

    Science.gov (United States)

    Linster, Christiane

    2015-01-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function. PMID:26334007

  7. Cerebellar Dysfunction in a Patient with HIV.

    Science.gov (United States)

    Gonzalez-Ibarra, Fernando; Abdul, Waheed; Eivaz-Mohammadi, Sahar; Foscue, Christopher; Gongireddy, Srinivas; Syed, Amer

    2014-01-01

    A 50-year-old AIDS patient with a CD4 T-cell count of 114/mm(3) was admitted with cerebellar symptoms of left CN XI weakness, wide-based gait with left-sided dysmetria, abnormal heel-knee-shin test, and dysdiadochokinesia. MRI showed region of hyperintensity in the left inferior cerebellar hemisphere involving the cortex and underlying white matter. Serological tests for HSV1, HSV2, and syphilis were negative. Her CSF contained high protein content and a WBC of 71/mm(3), predominantly lymphocytes. The CSF was also negative for cryptococcal antigen and VDRL. CSF culture did not grow microbes. CSF PCR assay was negative for HSV1 and HSV2 but was positive for JC virus (1,276 copies). The most likely diagnosis is granule cell neuronopathy (GCN), which can only be definitively confirmed with biopsy and immunohistochemistry.

  8. Formation of tRNA granules in the nucleus of heat-induced human cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Ryu [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Mizuno, Rie [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Watanabe, Kazunori, E-mail: watanabe@ric.u-tokyo.ac.jp [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Ijiri, Kenichi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  9. A new Purkinje cell antibody (anti-Ca associated with subacute cerebellar ataxia: immunological characterization

    Directory of Open Access Journals (Sweden)

    Horn Sigrun

    2010-03-01

    Full Text Available Abstract We report on a newly discovered serum and cerebrospinal fluid (CSF reactivity to Purkinje cells (PCs associated with subacute inflammatory cerebellar ataxia. The patient, a previously healthy 33-year-old lady, presented with severe limb and gait ataxia, dysarthria, and diplopia two weeks after she had recovered from a common cold. Immunohistochemical studies on mouse, rat, and monkey brain sections revealed binding of a high-titer (up to 1:10,000 IgG antibody to the cerebellar molecular layer, Purkinje cell (PC layer, and white matter. The antibody is highly specific for PCs and binds to the cytoplasm as well as to the inner side of the membrane of PC somata, dendrites and axons. It is produced by B cell clones within the CNS, belongs to the IgG1 subclass, and activates complement in vitro. Western blotting of primate cerebellum extract revealed binding of CSF and serum IgG to an 80-97 kDa protein. Extensive control studies were performed to rule out a broad panel of previously described paraneoplastic and non-paraneoplastic antibodies known to be associated with cerebellar ataxia. Screening of >9000 human full length proteins by means of a protein array and additional confirmatory experiments revealed Rho GTPase activating protein 26 (ARHGAP26, GRAF, oligophrenin-1-like protein as the target antigen. Preadsorption of the patient's serum with human ARHGAP26 but not preadsorption with other proteins resulted in complete loss of PC staining. Our findings suggest a role of autoimmunity against ARHGAP26 in the pathogenesis of subacute inflammatory cerebellar ataxia, and extend the panel of diagnostic markers for this devastating disease.

  10. Recruitment of an inhibitory hippocampal network after bursting in a single granule cell

    OpenAIRE

    Mori, M; Gähwiler, B; Gerber, U.

    2007-01-01

    The hippocampal CA3 area, an associational network implicated in memory function, receives monosynaptic excitatory as well as disynaptic inhibitory input through the mossy-fiber axons of the dentate granule cells. Synapses made by mossy fibers exhibit low release probability, resulting in high failure rates at resting discharge frequencies of 0.1 Hz. In recordings from functionally connected pairs of neurons, burst firing of a granule cell increased the probability of glutamate release onto b...

  11. Purinergic P2X7 receptors mediate cell death in mouse cerebellar astrocytes in culture.

    Science.gov (United States)

    Salas, Elvira; Carrasquero, Luz María G; Olivos-Oré, Luis A; Bustillo, Diego; Artalejo, Antonio R; Miras-Portugal, Maria Teresa; Delicado, Esmerilda G

    2013-12-01

    The brain distribution and functional role of glial P2X7 receptors are broader and more complex than initially anticipated. We characterized P2X7 receptors from cerebellar astrocytes at the molecular, immunocytochemical, biophysical, and cell physiologic levels. Mouse cerebellar astrocytes in culture express mRNA coding for P2X7 receptors, which is translated into P2X7 receptor protein as proven by Western blot analysis and immunocytochemistry. Fura-2 imaging showed cytosolic calcium responses to ATP and the synthetic analog 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) exhibited two components, namely an initial transient and metabotropic component followed by a sustained one that depended on extracellular calcium. This latter component, which was absent in astrocytes from P2X7 receptor knockout mice (P2X7 KO), was modulated by extracellular Mg(2+), and was sensitive to Brilliant Blue G (BBG) and 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A438079) antagonism. BzATP also elicited inwardly directed nondesensitizing whole-cell ionic currents that were reduced by extracellular Mg(2+) and P2X7 antagonists (BBG and calmidazolium). In contrast to that previously reported in rat cerebellar astrocytes, sustained BzATP application induced a gradual increase in membrane permeability to large cations, such as N-methyl-d-glucamine and 4-[3-methyl-2(3H)-benzoxazolylidene)-methyl]-1-[3-(triethylammonio)propyl]diiodide, which ultimately led to the death of mouse astrocytes. Cerebellar astrocyte cell death was prevented by BBG but not by calmidazolium, removal of extracellular calcium, or treatment with the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone, thus suggesting a necrotic-type mechanism of cell death. Since this cellular response was not observed in astrocytes from P2X7 KO mice, this study suggests that stimulation of P2X7 receptor may convey a cell death signal to cerebellar astrocytes in a species-specific manner.

  12. A role for Bicaudal-D2 in radial cerebellar granule cell migration

    NARCIS (Netherlands)

    Jaarsma, Dick; van den Berg, Robert; Wulf, Phebe S; van Erp, Susan; Keijzer, Nanda; Schlager, Max A; de Graaff, Esther; De Zeeuw, Chris I; Pasterkamp, R Jeroen; Akhmanova, Anna; Hoogenraad, Casper C

    2014-01-01

    Bicaudal-D (BICD) belongs to an evolutionary conserved family of dynein adaptor proteins. It was first described in Drosophila as an essential factor in fly oogenesis and embryogenesis. Missense mutations in a human BICD homologue, BICD2, have been linked to a dominant mild early onset form of spina

  13. A role for Bicaudal-D2 in radial cerebellar granule cell migration

    NARCIS (Netherlands)

    D. Jaarsma (Dick); R. van den Berg (Robert); P. Wulf (Phebe); S. van Erp (Susan); N. Keijzer (Nanda); M.A. Schlager (Max); E. de Graaff (Esther); C.I. de Zeeuw (Chris); R. Jeroen Pasterkamp (R.); A.S. Akhmanova (Anna); C.C. Hoogenraad (Casper)

    2014-01-01

    textabstractBicaudal-D (BICD) belongs to an evolutionary conserved family of dynein adaptor proteins. It was first described in Drosophila as an essential factor in fly oogenesis and embryogenesis. Missense mutations in a human BICD homologue, BICD2, have been linked to a dominant mild early onset f

  14. Purkinje cell heterotopy with cerebellar hypoplasia in two free-living American kestrels (Falco sparverius).

    Science.gov (United States)

    Armién, A G; McRuer, D L; Ruder, M G; Wünschmann, A

    2013-01-01

    Two wild fledgling kestrels exhibited lack of motor coordination, postural reaction deficits, and abnormal propioception. At necropsy, the cerebellum and brainstem were markedly underdeveloped. Microscopically, there was Purkinje cells heterotopy, abnormal circuitry, and hypoplasia with defective foliation. Heterotopic neurons were identified as immature Purkinje cells by their size, location, immunoreactivity for calbindin D-28 K, and ultrastructural features. The authors suggest that this cerebellar abnormality was likely due to a disruption of molecular mechanisms that dictate Purkinje cell migration, placement, and maturation in early embryonic development. The etiology of this condition remains undetermined. Congenital central nervous system disorders have rarely been reported in birds.

  15. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  16. An FNA pitfall: Mammary analog secretory carcinoma mistaken for acinic cell carcinoma due to cytoplasmic granules

    Directory of Open Access Journals (Sweden)

    Nouf Hijazi, MD

    2014-12-01

    Full Text Available In the salivary gland, a key differential feature of Mammary analog secretory carcinoma (MASC from acinic cell carcinoma (ACC is the lack of cytoplasmic granules. We report a case of a parotid mass incorrectly diagnosed on fine needle aspirate as acinic cell carcinoma due to many cells with basophilic granules suggesting serous acinar differention. Tumor resection revealed a tumor consistent with low grade adenocarcinoma that had eosinophilic, microvacuolar cytoplasm with distinct basophilic granules staining with PASD and mucicarmine. The diagnosis of MASC was confirmed with stains for GCDF-15, mammoglobin, and S100 and FISH consistent with a t(12;15 translocation. Relying on the absence of cytoplasmic granules as a feature to distinguish ACC from MASC is a diagnostic pitfall.

  17. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice.

    Science.gov (United States)

    Mendonça, Liliana S; Nóbrega, Clévio; Hirai, Hirokazu; Kaspar, Brian K; Pereira de Almeida, Luís

    2015-02-01

    Machado-Joseph disease is a neurodegenerative disease without effective treatment. Patients with Machado-Joseph disease exhibit significant motor impairments such as gait ataxia, associated with multiple neuropathological changes including mutant ATXN3 inclusions, marked neuronal loss and atrophy of the cerebellum. Thus, an effective treatment of symptomatic patients with Machado-Joseph disease may require cell replacement, which we investigated in this study. For this purpose, we injected cerebellar neural stem cells into the cerebellum of adult Machado-Joseph disease transgenic mice and assessed the effect on the neuropathology, neuroinflammation mediators and neurotrophic factor levels and motor coordination. We found that upon transplantation into the cerebellum of adult Machado-Joseph disease mice, cerebellar neural stem cells differentiate into neurons, astrocytes and oligodendrocytes. Importantly, cerebellar neural stem cell transplantation mediated a significant and robust alleviation of the motor behaviour impairments, which correlated with preservation from Machado-Joseph disease-associated neuropathology, namely reduction of Purkinje cell loss, reduction of cellular layer shrinkage and mutant ATXN3 aggregates. Additionally, a significant reduction of neuroinflammation and an increase of neurotrophic factors levels was observed, indicating that transplantation of cerebellar neural stem cells also triggers important neuroprotective effects. Thus, cerebellar neural stem cells have the potential to be used as a cell replacement and neuroprotective approach for Machado-Joseph disease therapy.

  18. Competition from newborn granule cells does not drive axonal retraction of silenced old granule cells in the adult hippocampus

    Directory of Open Access Journals (Sweden)

    Carla M Lopez

    2012-11-01

    Full Text Available In the developing nervous system synaptic refinement, typified by the neuromuscular junction where supernumerary connections are eliminated by axon retraction leaving the postsynaptic target innervated by a single dominant input, critically regulates neuronal circuit formation. Whether such competition based pruning continues in established circuits of mature animals remains unknown. This question is particularly relevant in the context of adult neurogenesis where newborn cells must integrate into preexisting circuits, and thus, potentially compete with functionally mature synapses to gain access to their postsynaptic targets. The hippocampus plays an important role in memory formation/retrieval and the dentate gyrus subfield (DG exhibits continued neurogenesis into adulthood. Therefore, this region contains both mature granule cells (old GCs and immature recently born GCs that are generated throughout adult life (young GCs, providing a neurogenic niche model to examine the role of competition in synaptic refinement. Recent work from an independent group in developing animals indicated that embryonically/early postnatal generated GCs placed at a competitive disadvantage by selective expression of tetanus toxin (TeTX to prevent synaptic release rapidly retracted their axons, and that this retraction was driven by competition from newborn GCs lacking TeTX. In contrast, following 3-6 months of selective TeTX expression in old GCs of adult mice we did not observe any evidence of axon retraction. Indeed ultrastructural analyses indicated that the terminals of silenced GCs even maintained synaptic contact with their postsynaptic targets. Furthermore, we did not detect any significant differences in the electrophysiological properties between old GCs in control and TeTX conditions. Thus, our data demonstrate a remarkable stability in the face of a relatively prolonged period of altered synaptic competition between two populations of neurons within the

  19. ERK1/2 activation is involved in the neuroprotective action of P2Y13 and P2X7 receptors against glutamate excitotoxicity in cerebellar granule neurons.

    Science.gov (United States)

    Ortega, Felipe; Pérez-Sen, Raquel; Delicado, Esmerilda G; Teresa Miras-Portugal, M

    2011-12-01

    Cerebellar granule neurons express several types of nucleotide receptors, with the metabotropic P2Y(13) and the ionotropic P2X7 being the most relevant in this model. In the present study we investigated the role of P2Y(13) and P2X7 nucleotide receptors in ERK1/2 signalling. The nucleotidic agonists 2MeSADP (2-methylthioadenosine-5'-diphosphate) for P2Y(13) and BzATP (2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate) for P2X7 receptors were coupled to ERK1/2 activation in granule neurons, being able to increase around two-fold the levels of ERK1/2 phosphorylation. These effects were sensitive to the inhibitory action of the antagonists MRS-2211 and A-438079, specific for P2Y(13) and P2X7 receptors, respectively. Although both receptor subtypes shared the same pattern of transient ERK1/2 phosphorylation, they differed in the intracellular cascades they triggered, being PI3K-dependent for P2Y(13) and calcium/calmodulin kinase II (CaMKII)-dependent for P2X7. These two different ERK-mediated pathways were involved in the neuroprotective effects displayed by both P2Y(13) and P2X7 receptors against apoptosis induced by an excitotoxic concentration of glutamate, in a similar manner to the neurotrophin, BDNF. In addition, P2Y(13) and P2X7 receptor agonists were also able to phosphorylate and activate the ERK-dependent target CREB, which could be involved in their neuroprotective effect. These results indicate that nucleotide receptors share with trophic factors the same survival routes in neurons, such as the ERK signalling route, and therefore, can contribute to the maintenance of granule neurons in conditions in which survival is being compromised.

  20. Alcohol Impairs Long-Term Depression at the Cerebellar Parallel Fiber–Purkinje Cell Synapse

    Science.gov (United States)

    Belmeguenai, Amor; Botta, Paolo; Weber, John T.; Carta, Mario; De Ruiter, Martijn; De Zeeuw, Chris I.; Valenzuela, C. Fernando; Hansel, Christian

    2008-01-01

    Acute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects long-term depression (LTD) and long-term potentiation (LTP) at excitatory parallel fiber (PF) to Purkinje cell synapses, which are assumed to mediate forms of cerebellar motor learning. To examine ethanol effects on PF synaptic transmission and plasticity, we performed whole cell patch-clamp recordings from Purkinje cells in rat cerebellar slices. We found that ethanol (50 mM) selectively blocked PF–LTD induction, whereas it did not change the amplitude of excitatory postsynaptic currents at PF synapses. In contrast, ethanol application reduced voltage-gated calcium currents and type 1 metabotropic glutamate receptor (mGluR1)–dependent responses in Purkinje cells, both of which are involved in PF–LTD induction. The selectivity of these effects is emphasized by the observation that ethanol did not impair PF–LTP and that PF–LTP could readily be induced in the presence of the group I mGluR antagonist AIDA or the mGluR1a antagonist LY367385. Taken together, these findings identify calcium currents and mGluR1-dependent signaling pathways as potential ethanol targets and suggest that an ethanol-induced blockade of PF–LTD could contribute to the motor coordination deficits resulting from alcohol consumption. PMID:18922952

  1. Properties and expression of Kv3 channels in cerebellar Purkinje cells.

    Science.gov (United States)

    Sacco, Tiziana; De Luca, Annarita; Tempia, Filippo

    2006-10-01

    In cerebellar Purkinje cells, Kv3 potassium channels are indispensable for firing at high frequencies. In Purkinje cells from young mice (P4-P7), Kv3 currents, recorded in whole-cell in slices, activated at -30 mV, with rapid activation and deactivation kinetics, and they were partially blocked by blood depressing substance-I (BDS-I, 1 microM). At positive potentials, Kv3 currents were slowly but completely inactivating, while the recovery from inactivation was about eightfold slower, suggesting that a previous firing activity or a small change of the resting potential could in principle accumulate inactivated Kv3 channels, thereby finely tuning Kv3 current availability for subsequent action potentials. Single-cell RT-PCR analysis showed the expression by all Purkinje cells (n=10 for each subunit) of Kv3.1, Kv3.3 and Kv3.4 mRNA, while Kv3.2 was not expressed. These results add to the framework for interpreting the physiological function and the molecular determinants of Kv3 currents in cerebellar Purkinje cells.

  2. Altered morphology of hippocampal dentate granule cell presynaptic and postsynaptic terminals following conditional deletion of TrkB.

    Science.gov (United States)

    Danzer, Steve C; Kotloski, Robert J; Walter, Cynthia; Hughes, Maya; McNamara, James O

    2008-01-01

    Dentate granule cells play a critical role in the function of the entorhinal-hippocampal circuitry in health and disease. Dentate granule cells are situated to regulate the flow of information into the hippocampus, a structure required for normal learning and memory. Correspondingly, impaired granule cell function leads to memory deficits, and, interestingly, altered granule cell connectivity may contribute to the hyperexcitability of limbic epilepsy. It is important, therefore, to understand the molecular determinants of synaptic connectivity of these neurons. Brain-derived neurotrophic factor and its receptor TrkB are expressed at high levels in the dentate gyrus (DG) of the hippocampus, and are implicated in regulating neuronal development, neuronal plasticity, learning, and the development of epilepsy. Whether and how TrkB regulates granule cell structure, however, is incompletely understood. To begin to elucidate the role of TrkB in regulating granule cell morphology, here we examine conditional TrkB knockout mice crossed to mice expressing green fluorescent protein in subsets of dentate granule cells. In stratum lucidum, where granule cell mossy fiber axons project, the density of giant mossy fiber boutons was unchanged, suggesting similar output to CA3 pyramidal cell targets. However, filopodial extensions of giant boutons, which contact inhibitory interneurons, were increased in number in TrkB knockout mice relative to wildtype controls, predicting enhanced feedforward inhibition of CA3 pyramidal cells. In knockout animals, dentate granule cells possessed fewer primary dendrites and enlarged dendritic spines, indicative of disrupted excitatory synaptic input to the granule cells. Together, these findings demonstrate that TrkB is required for development and/or maintenance of normal synaptic connectivity of the granule cells, thereby implying an important role for TrkB in the function of the granule cells and hippocampal circuitry.

  3. Cerebellar Mutism

    OpenAIRE

    1994-01-01

    Of a series of 15 children operated for cerebellar tumor at University Hospital Rotterdam-Dijkzigt, The Netherlands, 5 developed “cerebellar mutism” and subsequent dysarthria after surgery, and 2 had mild speech problems.

  4. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    Science.gov (United States)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  5. Serglycin determines secretory granule repertoire and regulates natural killer cell and cytotoxic T lymphocyte cytotoxicity.

    Science.gov (United States)

    Sutton, Vivien R; Brennan, Amelia J; Ellis, Sarah; Danne, Jill; Thia, Kevin; Jenkins, Misty R; Voskoboinik, Ilia; Pejler, Gunnar; Johnstone, Ricky W; Andrews, Daniel M; Trapani, Joseph A

    2016-03-01

    The anionic proteoglycan serglycin is a major constituent of secretory granules in cytotoxic T lymphocyte (CTL)/natural killer (NK) cells, and is proposed to promote the safe storage of the mostly cationic granule toxins, granzymes and perforin. Despite the extensive defects of mast cell function reported in serglycin gene-disrupted mice, no comprehensive study of physiologically relevant CTL/NK cell populations has been reported. We show that the cytotoxicity of serglycin-deficient CTL and NK cells is severely compromised but can be partly compensated in both cell types when they become activated. Reduced intracellular granzyme B levels were noted, particularly in CD27(+) CD11b(+) mature NK cells, whereas serglycin(-/-) TCR-transgenic (OTI) CD8 T cells also had reduced perforin stores. Culture supernatants from serglycin(-/-) OTI T cells and interleukin-2-activated NK contained increased granzyme B, linking reduced storage with heightened export. By contrast, granzyme A was not significantly reduced in cells lacking serglycin, indicating differentially regulated trafficking and/or storage for the two granzymes. A quantitative analysis of different granule classes by transmission electronmicroscopy showed a selective loss of dense-core granules in serglycin(-/-) CD8(+) CTLs, although other granule types were maintained quantitatively. The findings of the present study show that serglycin plays a critical role in the maturation of dense-core cytotoxic granules in cytotoxic lymphocytes and the trafficking and storage of perforin and granzyme B, whereas granzyme A is unaffected. The skewed retention of cytotoxic effector molecules markedly reduces CTL/NK cell cytotoxicity, although this is partly compensated for as a result of activating the cells by physiological means.

  6. Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice.

    Science.gov (United States)

    Todorov, Boyan; Kros, Lieke; Shyti, Reinald; Plak, Petra; Haasdijk, Elize D; Raike, Robert S; Frants, Rune R; Hess, Ellen J; Hoebeek, Freek E; De Zeeuw, Chris I; van den Maagdenberg, Arn M J M

    2012-03-01

    The Cacna1a gene encodes the α(1A) subunit of voltage-gated Ca(V)2.1 Ca(2+) channels that are involved in neurotransmission at central synapses. Ca(V)2.1-α(1)-knockout (α1KO) mice, which lack Ca(V)2.1 channels in all neurons, have a very severe phenotype of cerebellar ataxia and dystonia, and usually die around postnatal day 20. This early lethality, combined with the wide expression of Ca(V)2.1 channels throughout the cerebellar cortex and nuclei, prohibited determination of the contribution of particular cerebellar cell types to the development of the severe neurobiological phenotype in Cacna1a mutant mice. Here, we crossed conditional Cacna1a mice with transgenic mice expressing Cre recombinase, driven by the Purkinje cell-specific Pcp2 promoter, to specifically ablate the Ca(V)2.1-α(1A) subunit and thereby Ca(V)2.1 channels in Purkinje cells. Purkinje cell Ca(V)2.1-α(1A)-knockout (PCα1KO) mice aged without difficulties, rescuing the lethal phenotype seen in α1KO mice. PCα1KO mice exhibited cerebellar ataxia starting around P12, much earlier than the first signs of progressive Purkinje cell loss, which appears in these mice between P30 and P45. Secondary cell loss was observed in the granular and molecular layers of the cerebellum and the volume of all individual cerebellar nuclei was reduced. In this mouse model with a cell type-specific ablation of Ca(V)2.1 channels, we show that ablation of Ca(V)2.1 channels restricted to Purkinje cells is sufficient to cause cerebellar ataxia. We demonstrate that spatial ablation of Ca(V)2.1 channels may help in unraveling mechanisms of human disease.

  7. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Ohira, Koji

    2010-09-01

    Full Text Available Abstract New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO, whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.

  8. Effects of Zi Chong Granules on Estradiol Synthesis in the Cultured Ovarian Granular Cells of Mice

    Institute of Scientific and Technical Information of China (English)

    陆华; 高小平; 尹巧芝

    2004-01-01

    Objective: To investigate the effect of Zi Chong Granules (资冲颗粒) on estradiol (E2) synthesis in the cultured ovarian granular cells of the mice, so as to probe into the mechanism of the drug in promoting follicular development. Methods: Testosterone (T) with different concentration were added to the cultured ovarian granular cells, and 24 and 48 hours later the enzyme immunoassay (EIA) was used to determine the required concentration of T and time for E2 synthesis; Zi Chong Granules, its active components for tonifying the kidney and removing blood stasis, and the mouse serum containing Zi Chong Granules were respectively added to the medium of the cultured mouse ovarian granular cells and the mixtures were cultured for 48 hours to determine the E2 concentration in various cultures, with insulin increase the E2 level in the medium of the cultured ovarian granular cells to a certain extent, and the active components for tonifying the kidney or those for removing the blood stasis did not increase the E2 level,but the mouse serum containing Zi Chong Granules could significantly increase the level of E2.Conclusion: To promote the E2 synthesis in the ovarian granular cells is one of mechanisms of Zi Chong Granules in stimulating follicular development.

  9. Regulation and functional roles of rebound potentiation at cerebellar stellate cell - Purkinje cell synapses

    Directory of Open Access Journals (Sweden)

    Tomoo eHirano

    2014-02-01

    Full Text Available Purkinje cells receive both excitatory and inhibitory synaptic inputs and send sole output from the cerebellar cortex. Long-term depression, a type of synaptic plasticity, at excitatory parallel fiber–Purkinje cell synapses has been studied extensively as a primary cellular mechanism of motor learning. On the other hand, at inhibitory synapses on a Purkinje cell, postsynaptic depolarization induces long-lasting potentiation of GABAergic synaptic transmission. This synaptic plasticity is called rebound potentiation (RP, and its molecular regulatory mechanisms have been studied. The increase in intracellular Ca2+ concentration caused by depolarization induces RP through enhancement of GABAA receptor (GABAAR responsiveness. RP induction depends on binding of GABAAR with GABAAR associated protein (GABARAP which is regulated by Ca2+/calmodulin-dependent kinase II (CaMKII. Whether RP is induced or not is determined by the balance between phosphorylation and de-phosphorylation activities regulated by intracellular Ca2+ and by metabotropic GABA and glutamate receptors. Recent studies have revealed that the subunit composition of CaMKII has significant impact on RP induction. A Purkinje cell expresses both alpha- and beta-CaMKII, and the latter has much higher affinity for Ca2+/calmodulin than the former. It was shown that when the relative amount of alpha- to beta-CaMKII is large, RP induction is suppressed. The functional significance of RP has also been studied using transgenic mice in which a peptide inhibiting association of GABARAP and GABAAR is expressed selectively in Purkinje cells. The transgenic mice show abrogation of RP and subnormal adaptation of vestibulo-ocular reflex, a type of motor learning. Thus, RP is involved in a certain type of motor learning.

  10. Localization of Cyclo-Oxygenase and Prostaglandin E2 in the Secretory Granule of the Mast Cell

    Science.gov (United States)

    1989-01-01

    cascade during exocytosis. Keywords: Cyclo-oxygenase; Prostaglandin E2; Secretory granules; Mast cell ; Exocytosis; Lipid mediators; Inflammation; Arachidonic acid; Eicosanoids; Immunocytochemistry; Reprints. (KT)

  11. Dendritic morphology, synaptic transmission, and activity of mature granule cells born following pilocarpine-induced status epilepticus in the rat

    Directory of Open Access Journals (Sweden)

    Fei eGao

    2015-10-01

    Full Text Available To understand the potential role of enhanced hippocampal neurogenesis after pilocarpine-induced status epilepticus (SE in the development of epilepsy, we quantitatively analyzed the geometry of apical dendrites, synaptic transmission, and activation levels of normotopically distributed mature newborn granule cells in the rat.SE in male Sprague-Dawley rats lasting for more than 2 hours was induced by an intraperitoneal injection of pilocarpine. The complexity, spine density, miniature post-synaptic currents, and activity-regulated cytoskeleton-associated protein (Arc expression of granule cells born five days after SE were studied at least 10 weeks after CAG-GFP retroviral vector-mediated labeling.Mature granule cells born after SE had dendritic complexity similar to that of granule cells born naturally, but with denser mushroom-like spines in dendritic segments located in the outer molecular layer. Miniature inhibitory post-synaptic currents (mIPSCs were similar between the controls and rats subjected to SE; however, smaller miniature excitatory post-synaptic current (mEPSC amplitude with a trend toward less frequent was found in mature granule cells born after SE. After maturation, granule cells born after SE did not show denser Arc expression in the resting condition or after being activated by transient seizure activity than vicinal GFP-unlabeled granule cells.Thus our results suggest that normotopic granule cells born after pilocarpine-induced SE are no more active when mature than age-matched, naturally born granule cells.

  12. Dipeptidyl peptidase IV is sorted to the secretory granules in pancreatic islet A-cells

    DEFF Research Database (Denmark)

    Poulsen, Mona Dam; Hansen, Gert Helge; Dabelsteen, Erik

    1993-01-01

    Dipeptidyl peptidase IV (DP IV:EC 3.4.14.5) was localized in endocrine cells of pig pancreas by immunohistochemical and enzyme histochemical methods. Immunolight microscopy with both monoclonal and polyclonal antibodies demonstrated DP IV immunoreactivity in cells located in the peripheral part...... labeling using a monoclonal glucagon antibody as the second primary antibody. These results show that DP IV is sorted to secretory granules in the pig pancreatic islet A-cells. Furthermore, this secretory granule enzyme, as opposed to intestinal brush border DP IV, is suggested to be a soluble protein...

  13. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  14. Preferential Transport and Metabolism of Glucose in Bergmann Glia over Purkinje Cells: A Multiphoton Study of Cerebellar Slices

    Institute of Scientific and Technical Information of China (English)

    L.F.BARROS; R.COURJARET; P.JAKOBY; A.LOAIZA; C.LOHR; J.W.DEITMER

    2009-01-01

    了解不同类型的细胞如何处理葡萄糖有助于解释能量供应是如何是如何根据大脑能量需求来进行调整的.荧光追踪结合共聚焦显微镜技术已用于研究培养的脑细胞摄取葡萄糖的实时动态过程.本文采用这种技术利用多光子显微镜观察急性制备的大鼠小脑脑片.带荧光的葡萄糖类似物2NBDG和6NBDG在小脑皮质的分子层中的转运速度比其在蒲肯野细胞胞体和颗粒细胞中快若干倍.洗脱游离示踪剂后,可见大部分磷酸化示踪剂都位于Bergmann胶质细胞,用胶质细胞标记物sulforhodamine 101免疫染色后进一步确认这一结果.有效回收荧光光漂白后显示,2NBDG-P可通过Bergmann胶质细胞之间的缝隙连接沿着分子层水平扩散.本文的结果表明在急性小脑切片中,Bergmann胶质细胞对葡萄糖的转运能力和糖酵解率高于蒲肯野细胞若干倍.由于小脑主要由葡萄糖提供能量,蒲肯野神经元被认为比Bergmann胶质细胞更耗能量,这些结果表明,在胶质细胞和神经元之间存在类似乳酸的能量代谢物介导的环路.%Knowing how different cell types handle glucose should help to decipher how energy supply is adjusted to energy demand in the brain. Previously, the uptake of glucose by cultured brain cells was studied in real-time using fluorescent tracers and confocal microscopy. Here, we have adapted this technique to acute slices prepared from the rat cerebellum by means of multiphoton microscopy. The transport of the fluorescent glucose analogs 2NBDG and 6NBDG was several-fold faster in the molecular layer of the cerebellar cortex than in Purkinje cell somata and granule cells. After washout of free tracer, it became apparent that most phosphorylated tracer was located in Bergmann glia, which was confirmed by counterstaining with the glial marker sulforhodamine 101. The effective recovery of fluorescence after photobleaching showed that 2NBDG-P can diffuse

  15. Climbing fiber synapse elimination in cerebellar Purkinje cells.

    Science.gov (United States)

    Watanabe, Masahiko; Kano, Masanobu

    2011-11-01

    Innervation of Purkinje cells (PCs) by multiple climbing fibers (CFs) is refined into mono-innervation during the first three postnatal weeks of rodents' lives. In this review article, we will integrate the current knowledge on developmental process and mechanisms of CF synapse elimination. In the 'creeper' stage of CF innervation (postnatal day 0 (P0)∼), CFs creep among PC somata to form transient synapses on immature dendrites. In the 'pericellular nest' stage (P5∼), CFs densely surround and innervate PC somata. CF innervation is then displaced to the apical portion of PC somata in the 'capuchon' stage (P9∼), and translocate to dendrites in the 'dendritic' (P12∼) stage. Along with the developmental changes in CF wiring, functional and morphological distinctions become larger among CF inputs. PCs are initially innervated by more than five CFs with similar strengths (∼P3). During P3-7 only a single CF is selectively strengthened (functional differentiation), and it undergoes dendritic translocation from P9 on (dendritic translocation). Following the functional differentiation, perisomatic CF synapses are eliminated nonselectively; this proceeds in two distinct phases. The early phase (P7-11) is conducted independently of parallel fiber (PF)-PC synapse formation, while the late phase (P12-17) critically depends on it. The P/Q-type voltage-dependent Ca(2+) channel in PCs triggers selective strengthening of single CF inputs, promotes dendritic translocation of the strengthened CFs, and drives the early phase of CF synapse elimination. In contrast, the late phase is mediated by the mGluR1-Gαq-PLCβ4-PKCγ signaling cascade in PCs driven at PF-PC synapses, whose structural connectivity is stabilized and maintained by the GluRδ2-Cbln1-neurexin system.

  16. Cbln1 downregulates the formation and function of inhibitory synapses in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Ito-Ishida, Aya; Kakegawa, Wataru; Kohda, Kazuhisa; Miura, Eriko; Okabe, Shigeo; Yuzaki, Michisuke

    2014-04-01

    The formation of excitatory and inhibitory synapses must be tightly coordinated to establish functional neuronal circuitry during development. In the cerebellum, the formation of excitatory synapses between parallel fibers and Purkinje cells is strongly induced by Cbln1, which is released from parallel fibers and binds to the postsynaptic δ2 glutamate receptor (GluD2). However, Cbln1's role, if any, in inhibitory synapse formation has been unknown. Here, we show that Cbln1 downregulates the formation and function of inhibitory synapses between Purkinje cells and interneurons. Immunohistochemical analyses with an anti-vesicular GABA transporter antibody revealed an increased density of interneuron-Purkinje cell synapses in the cbln1-null cerebellum. Whole-cell patch-clamp recordings from Purkinje cells showed that both the amplitude and frequency of miniature inhibitory postsynaptic currents were increased in cbln1-null cerebellar slices. A 3-h incubation with recombinant Cbln1 reversed the increased amplitude of inhibitory currents in Purkinje cells in acutely prepared cbln1-null slices. Furthermore, an 8-day incubation with recombinant Cbln1 reversed the increased interneuron-Purkinje cell synapse density in cultured cbln1-null slices. In contrast, recombinant Cbln1 did not affect cerebellar slices from mice lacking both Cbln1 and GluD2. Finally, we found that tyrosine phosphorylation was upregulated in the cbln1-null cerebellum, and acute inhibition of Src-family kinases suppressed the increased inhibitory postsynaptic currents in cbln1-null Purkinje cells. These findings indicate that Cbln1-GluD2 signaling inhibits the number and function of inhibitory synapses, and shifts the excitatory-inhibitory balance towards excitation in Purkinje cells. Cbln1's effect on inhibitory synaptic transmission is probably mediated by a tyrosine kinase pathway.

  17. Seizure-Induced Motility of Differentiated Dentate Granule Cells Is Prevented by the Central Reelin Fragment

    Science.gov (United States)

    Orcinha, Catarina; Münzner, Gert; Gerlach, Johannes; Kilias, Antje; Follo, Marie; Egert, Ulrich; Haas, Carola A.

    2016-01-01

    Granule cell dispersion (GCD) represents a pathological widening of the granule cell layer in the dentate gyrus and it is frequently observed in patients with mesial temporal lobe epilepsy (MTLE). Recent studies in human MTLE specimens and in animal epilepsy models have shown that a decreased expression and functional inactivation of the extracellular matrix protein Reelin correlates with GCD formation, but causal evidence is still lacking. Here, we used unilateral kainate (KA) injection into the mouse hippocampus, an established MTLE animal model, to precisely map the loss of reelin mRNA-synthesizing neurons in relation to GCD along the septotemporal axis of the epileptic hippocampus. We show that reelin mRNA-producing neurons are mainly lost in the hilus and that this loss precisely correlates with the occurrence of GCD. To monitor GCD formation in real time, we used organotypic hippocampal slice cultures (OHSCs) prepared from mice which express enhanced green fluorescent protein (eGFP) primarily in differentiated dentate granule cells. Using life cell microscopy we observed that increasing doses of KA resulted in an enhanced motility of eGFP-positive granule cells. Moreover, KA treatment of OHSC resulted in a rapid loss of Reelin-producing interneurons mainly in the hilus, as observed in vivo. A detailed analysis of the migration behavior of individual eGFP-positive granule cells revealed that the majority of these neurons actively migrate toward the hilar region, where Reelin-producing neurons are lost. Treatment with KA and subsequent addition of the recombinant R3–6 Reelin fragment significantly prevented the movement of eGFP-positive granule cells. Together, these findings suggest that GCD formation is indeed triggered by a loss of Reelin in hilar interneurons. PMID:27516734

  18. Seizure-induced motility of differentiated dentate granule cells is prevented by the central Reelin fragment

    Directory of Open Access Journals (Sweden)

    Catarina Orcinha

    2016-07-01

    Full Text Available Granule cell dispersion (GCD represents a pathological widening of the granule cell layer (GCL in the dentate gyrus and it is frequently observed in patients with mesial temporal lobe epilepsy (MTLE. Recent studies in human MTLE specimens and in animal epilepsy models have shown that a decreased expression and functional inactivation of the extracellular matrix protein Reelin correlates with GCD formation, but causal evidence is still lacking. Here, we used unilateral kainate (KA injection into the mouse hippocampus, an established MTLE animal model, to precisely map the loss of reelin mRNA-synthesizing neurons in relation to GCD along the septotemporal axis of the epileptic hippocampus. We show that reelin mRNA-producing neurons are mainly lost in the hilus and that this loss precisely correlates with the occurrence of GCD. To monitor GCD formation in real time, we used organotypic hippocampal slice cultures (OHSC prepared from mice which express enhanced green fluorescent protein (eGFP primarily in differentiated dentate granule cells. Using life cell microscopy we observed that increasing doses of KA resulted in an enhanced motility of eGFP-positive granule cells. Moreover, KA treatment of OHSC resulted in a rapid loss of Reelin-producing interneurons mainly in the hilus as observed in vivo. A detailed analysis of the migration behavior of individual eGFP-positive granule cells revealed that the majority of these neurons actively migrate towards the hilar region where Reelin-producing neurons are lost. Treatment with KA and subsequent addition of the recombinant R3-6 Reelin fragment significantly prevented the movement of eGFP-positive granule cells. Together these findings suggest that GCD formation is indeed triggered by a loss of Reelin in hilar interneurons.

  19. Seizure-Induced Motility of Differentiated Dentate Granule Cells Is Prevented by the Central Reelin Fragment.

    Science.gov (United States)

    Orcinha, Catarina; Münzner, Gert; Gerlach, Johannes; Kilias, Antje; Follo, Marie; Egert, Ulrich; Haas, Carola A

    2016-01-01

    Granule cell dispersion (GCD) represents a pathological widening of the granule cell layer in the dentate gyrus and it is frequently observed in patients with mesial temporal lobe epilepsy (MTLE). Recent studies in human MTLE specimens and in animal epilepsy models have shown that a decreased expression and functional inactivation of the extracellular matrix protein Reelin correlates with GCD formation, but causal evidence is still lacking. Here, we used unilateral kainate (KA) injection into the mouse hippocampus, an established MTLE animal model, to precisely map the loss of reelin mRNA-synthesizing neurons in relation to GCD along the septotemporal axis of the epileptic hippocampus. We show that reelin mRNA-producing neurons are mainly lost in the hilus and that this loss precisely correlates with the occurrence of GCD. To monitor GCD formation in real time, we used organotypic hippocampal slice cultures (OHSCs) prepared from mice which express enhanced green fluorescent protein (eGFP) primarily in differentiated dentate granule cells. Using life cell microscopy we observed that increasing doses of KA resulted in an enhanced motility of eGFP-positive granule cells. Moreover, KA treatment of OHSC resulted in a rapid loss of Reelin-producing interneurons mainly in the hilus, as observed in vivo. A detailed analysis of the migration behavior of individual eGFP-positive granule cells revealed that the majority of these neurons actively migrate toward the hilar region, where Reelin-producing neurons are lost. Treatment with KA and subsequent addition of the recombinant R3-6 Reelin fragment significantly prevented the movement of eGFP-positive granule cells. Together, these findings suggest that GCD formation is indeed triggered by a loss of Reelin in hilar interneurons.

  20. The Changeable Nervous System: Studies On Neuroplasticity In Cerebellar Cultures

    Science.gov (United States)

    Seil, Fredrick J.

    2014-01-01

    Circuit reorganization after injury was studied in a cerebellar culture model. When cerebellar cultures derived from newborn mice were exposed at explantation to a preparation of cytosine arabinoside that destroyed granule cells and oligodendrocytes and compromised astrocytes, Purkinje cells surviving in greater than usual numbers were unensheathed by astrocytic processes and received twice the control number of inhibitory axosomatic synapses. Purkinje cell axon collaterals sprouted and many of their terminals formed heterotypical synapses with other Purkinje cell dendritic spines. The resulting circuit reorganization preserved inhibition in the cerebellar cortex. Following this reorganization, replacement of the missing granule cells and glia was followed by a restitution of the normal circuitry. Most of these developmental and reconstructive changes were not dependent on neuronal activity, the major exception being inhibitory synaptogenesis. The full complement of inhibitory synapses did not develop in the absence of neuronal activity, which could be mitigated by application of exogenous TrkB receptor ligands. Inhibitory synaptogenesis could also be promoted by activity-induced release of endogenous TrkB receptor ligands or by antibody activation of the TrkB receptor. PMID:24933693

  1. Rab3D is critical for secretory granule maturation in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Tanja Kögel

    Full Text Available Neuropeptide- and hormone-containing secretory granules (SGs are synthesized at the trans-Golgi network (TGN as immature secretory granules (ISGs and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs. Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.

  2. Early maternal deprivation in rats induces gender-dependent effects on developing hippocampal and cerebellar cells.

    Science.gov (United States)

    Llorente, Ricardo; Gallardo, Meritxell López; Berzal, Alvaro Llorente; Prada, Carmen; Garcia-Segura, Luis Miguel; Viveros, María-Paz

    2009-05-01

    Adult animals submitted to a single prolonged episode of maternal deprivation [24h, postnatal day 9-10] show behavioral alterations that resemble specific symptoms of schizophrenia. According to the neurodevelopmental theory, these behavioral deficits might be mediated by detrimental neurodevelopmental processes that might be associated, at least partially, with stress-induced corticosterone responses. In order to address this hypothesis, we have focused on the hippocampus and cerebellar cortex, two brain regions that show high density of glucocorticoid receptors, and analyzed possible neuronal and glial alterations by immunohistochemical techniques. To evaluate the presence of degenerated neurons we used Fluoro-Jade-C (FJ-C) staining and for the study of astrocytes we employed glial fibrillary acidic protein (GFAP). Within control animals, females showed significantly more GFAP positive cells than males and a trend towards more FJ-C positive cells. Maternal deprivation induced neuronal degeneration and astroglial changes in the hippocampus and cerebellar cortex of neonatal rats that, in general, were more marked in males. This differential effect may be attributable to a greater vulnerability of males to this kind of early environmental insult and/or to sex-dependent differences in the onset and/or progression of the effects. The present experimental procedure may be instrumental in elucidating sex-dependent mechanisms of neurodevelopmental psychiatric disorders with a basis in early environmental insults.

  3. Regulation of granule cell excitability by a low-threshold calcium spike in turtle olfactory bulb

    DEFF Research Database (Denmark)

    Pinato, Giulietta; Midtgaard, Jens

    2003-01-01

    Granule cells excitability in the turtle olfactory bulb was analyzed using whole cell recordings in current- and voltage-clamp mode. Low-threshold spikes (LTSs) were evoked at potentials that are subthreshold for Na spikes in normal medium. The LTSs were evoked from rest, but hyperpolarization...

  4. An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting.

    Science.gov (United States)

    Furuya, S; Makino, A; Hirabayashi, Y

    1998-11-01

    We report here a novel cell culture protocol which facilitates in vitro survival and dendritic differentiation of cerebellar Purkinje cells in a monolayer, mixed culture setting. We found that the type of culture medium is a critical factor for the maintenance of these cells. Purkinje cells present in the single cell suspension of embryonic rat cerebellum were best maintained in a medium based on Dulbecco's modified Eagle's medium (DMEM)/F-12 without the addition of known neurotrophic factors. These cells maintained in DMEM/F-12-based media displayed an approximately 2.5-3.5-fold increase in survival compared with cells maintained in the widely used Basal Medium Eagle's (BME)-based serum-free culture medium with the same supplements. This novel protocol permits not only enhanced survival but also accelerated, improved dendritic differentiation of these cells. Purkinje cells developed highly branched spiny dendrites by 14-16 days in vitro, which matches the time course of the dendritic growth of these cells in vivo. The Purkinje cells expressed metabotropic glutamate receptor 1alpha in the cell bodies and branched dendrites, and the intradendritic calcium concentration increased when trans-ACPD, a selective agonist of this receptor, was applied. This novel protocol allows the development of functional branched dendrites and therefore is useful for electrophysiological and ion-imaging studies on dendrites of Purkinje cells grown in vitro.

  5. Granulated metrial gland cells in the virgin and early pregnant mouse uterus.

    OpenAIRE

    Stewart, I.; Peel, S

    1981-01-01

    A study has been made of the distribution of granulated metrial gland cells in the non-pregnant uterus, in the pre-implantation uterus and in the post-implantation interconceptual uterus of pregnant albino mice. Granulated cells were only rarely seen in the non-pregnant uterus. In the pre-implantation uterus, they were regularly seen after day 2 1/2 of pregnancy and were randomly distributed within the endometrium although there was considerable variation in numbers between animals. In interc...

  6. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Liang; Fei Gao; Fajun Wang; Xiaochen Wang; Xinyu Song; Kejing Liu; Ren-Zhi Zhan

    2013-01-01

    Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer.

  7. Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus.

    Science.gov (United States)

    Tanabe, Koji; Kani, Shuichi; Shimizu, Takashi; Bae, Young-Ki; Abe, Takaya; Hibi, Masahiko

    2010-12-15

    Neurons have highly polarized structures that determine what parts of the soma elaborate the axon and dendrites. However, little is known about the mechanisms that establish neuronal polarity in vivo. Cerebellar Purkinje cells extend a single primary dendrite from the soma that ramifies into a highly branched dendritic arbor. We used the zebrafish cerebellum to investigate the mechanisms by which Purkinje cells acquire these characteristics. To examine dendritic morphogenesis in individual Purkinje cells, we marked the cell membrane using a Purkinje cell-specific promoter to drive membrane-targeted fluorescent proteins. We found that zebrafish Purkinje cells initially extend multiple neurites from the soma and subsequently retract all but one, which becomes the primary dendrite. In addition, the Golgi apparatus specifically locates to the root of the primary dendrite, and its localization is already established in immature Purkinje cells that have multiple neurites. Inhibiting secretory trafficking through the Golgi apparatus reduces dendritic growth, suggesting that the Golgi apparatus is involved in the dendritic morphogenesis. We also demonstrated that in a mutant of an atypical protein kinase C (aPKC), Prkci, Purkinje cells retain multiple primary dendrites and show disrupted localization of the Golgi apparatus. Furthermore, a mosaic inhibition of Prkci in Purkinje cells recapitulates the aPKC mutant phenotype. These results suggest that the aPKC cell autonomously controls the Golgi localization and thereby regulates the specification of the primary dendrite of Purkinje cells.

  8. Mechanisms of Granule Membrane Recapture following Exocytosis in Intact Mast Cells*

    Science.gov (United States)

    Cabeza, Jose M.; Acosta, Jorge; Alés, Eva

    2013-01-01

    In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified “large-capacitance flickers” that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent “compound cavicapture,” most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event. PMID:23709219

  9. Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells.

    Science.gov (United States)

    McKay, B E; Turner, R W

    2004-08-01

    The ability of cells to generate an appropriate spike output depends on a balance between membrane depolarizations and the repolarizing actions of K(+) currents. The high-voltage-activated Kv3 class of K(+) channels repolarizes Na(+) spikes to maintain high frequencies of discharge. However, little is known of the ability for these K(+) channels to shape Ca(2+) spike discharge or their ability to regulate Ca(2+) spike-dependent burst output. Here we identify the role of Kv3 K(+) channels in the regulation of Na(+) and Ca(2+) spike discharge, as well as burst output, using somatic and dendritic recordings in rat cerebellar Purkinje cells. Kv3 currents pharmacologically isolated in outside-out somatic membrane patches accounted for approximately 40% of the total K(+) current, were very fast and high voltage activating, and required more than 1 s to fully inactivate. Kv3 currents were differentiated from other tetraethylammonium-sensitive currents to establish their role in Purkinje cells under physiological conditions with current-clamp recordings. Dual somatic-dendritic recordings indicated that Kv3 channels repolarize Na(+) and Ca(2+) spikes, enabling high-frequency discharge for both types of cell output. We further show that during burst output Kv3 channels act together with large-conductance Ca(2+)-activated K(+) channels to ensure an effective coupling between Ca(2+) and Na(+) spike discharge by preventing Na(+) spike inactivation. By contributing significantly to the repolarization of Na(+) and especially Ca(2+) spikes, our data reveal a novel function for Kv3 K(+) channels in the maintenance of high-frequency burst output for cerebellar Purkinje cells.

  10. Expression of classical cadherins in the cerebellar anlage: quantitative and functional aspects.

    Science.gov (United States)

    Gliem, Michael; Weisheit, Gunnar; Mertz, Kirsten D; Endl, Elmar; Oberdick, John; Schilling, Karl

    2006-12-01

    During central nervous system (CNS) development, cell migration precedes and is key to the integration of diverse sets of cells. Mechanistically, CNS histogenesis is realized through a balanced interplay of cell-cell and cell-matrix adhesion molecules. Here, we summarize experiments that probe the developmental expression and potential significance of a set of cadherins, including M-, N- and R-cadherin, for patterning of the cerebellar cortex. We established a transgenic marker that allows cerebellar granule cells to be followed from the neuroblast stage to their final, postmitotic settlement. In conjunction with flow cytometry, this allowed us to derive a quantitative view of cadherin expression in differentiating granule cells and relate it to the expression of the same cadherins in cerebellar inhibitory interneuronal precursors. In vitro reaggregation analysis supports a role for cadherins in cell sorting and migration within the nascent cerebellar cortex that may be rationalized within the context of the differential adhesion hypothesis (Foty, R.A. and Steinberg, M.S., 2005. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255-263.).

  11. Synthesis of Prostaglandins and Eicosanoids by the Mast Cell Secretory Granule

    Science.gov (United States)

    1988-01-01

    constituents of the so-called "slow reacting substance of anaphylaxis" (SRS-A) (1,3). Like many other cell types, the mast cell can incorporate exogenous...arachidonic acid into its cellular phospholipid. The stimulation of mast cells which have been pre-loaded with radioactive arachidonic acid can result in...synthesis of eicosanoids has not been identified. Recently, we found that the secretory granule of the quiescent mast cell contains a large amount of matrix

  12. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish

    Directory of Open Access Journals (Sweden)

    Yoshida Masayuki

    2012-10-01

    Full Text Available Abstract Background Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. Methods Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. Results The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned

  13. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function

    Directory of Open Access Journals (Sweden)

    Chris I De Zeeuw

    2015-07-01

    Full Text Available Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the Bergmann glial cell in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum.

  14. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  15. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  16. A role for mixed lineage kinases in granule cell apoptosis induced by cytoskeletal disruption

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Geist, Marie Aavang; Veng, Lone Merete

    2006-01-01

    Microtubule disruption by colchicine induces apoptosis in selected neuronal populations. However, little is known about the upstream death signalling events mediating the neurotoxicity. We investigated first whether colchicine-induced granule cell apoptosis activates the c-Jun N-terminal kinase...

  17. Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes.

    Science.gov (United States)

    Hibi, T; Hirashima, N; Nakanishi, M

    2000-04-29

    In neuronal cells, it is generally agreed that SNARE proteins underlie the release of neurotransmitter. It is controversial, however, whether they also work functionally in the degranulation of RBL-2H3 cells because the expression of SNARE proteins has not been confirmed and the degranulation is not inhibited by tetanus toxin which cleaves one of SNARE proteins, VAMP-2. We investigated the expression and the localization of SNARE proteins including VAMP-7 which is insensitive to tetanus toxin. RT-PCR analysis showed the existence of SNARE proteins, including syntaxin-2, -3, -4, SNAP-23, VAMP-2, and VAMP-7. Experiments using GFP-conjugated proteins revealed that VAMP-7 was localized only in granule membranes, whereas syntaxin-3 was in both the plasma and granule membranes. Upon antigen stimulation, these proteins in granule membranes moved to the cell surface due to the fusion of granules with the plasma membrane. The results suggest the involvement of SNARE proteins in the degranulation of RBL-2H3 cells.

  18. Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei.

    Science.gov (United States)

    Husson, Zoé; Rousseau, Charly V; Broll, Ilja; Zeilhofer, Hanns Ulrich; Dieudonné, Stéphane

    2014-07-09

    The principal neurons of the cerebellar nuclei (CN), the sole output of the olivo-cerebellar system, receive a massive inhibitory input from Purkinje cells (PCs) of the cerebellar cortex. Morphological evidence suggests that CN principal cells are also contacted by inhibitory interneurons, but the properties of this connection are unknown. Using transgenic, tracing, and immunohistochemical approaches in mice, we show that CN interneurons form a large heterogeneous population with GABA/glycinergic phenotypes, distinct from GABAergic olive-projecting neurons. CN interneurons are found to contact principal output neurons, via glycine receptor (GlyR)-enriched synapses, virtually devoid of the main GABA receptor (GABAR) subunits α1 and γ2. Those clusters account for 5% of the total number of inhibitory receptor clusters on principal neurons. Brief optogenetic stimulations of CN interneurons, through selective expression of channelrhodopsin 2 after viral-mediated transfection of the flexed gene in GlyT2-Cre transgenic mice, evoked fast IPSCs in principal cells. GlyR activation accounted for 15% of interneuron IPSC amplitude, while the remaining current was mediated by activation of GABAR. Surprisingly, small GlyR clusters were also found at PC synapses onto principal CN neurons in addition to α1 and γ2 GABAR subunits. However, GlyR activation was found to account for <3% of the PC inhibitory synaptic currents evoked by electrical stimulation. This work establishes CN glycinergic neurons as a significant source of inhibition to CN principal cells, forming contacts molecularly distinct from, but functionally similar to, Purkinje cell synapses. Their impact on CN output, motor learning, and motor execution deserves further investigation.

  19. Morphological changes among hippocampal dentate granule cells exposed to early kindling-epileptogenesis.

    Science.gov (United States)

    Singh, Shatrunjai P; He, Xiaoping; McNamara, James O; Danzer, Steve C

    2013-12-01

    Temporal lobe epilepsy is associated with changes in the morphology of hippocampal dentate granule cells. These changes are evident in numerous models that are associated with substantial neuron loss and spontaneous recurrent seizures. By contrast, previous studies have shown that in the kindling model, it is possible to administer a limited number of stimulations sufficient to produce a lifelong enhanced sensitivity to stimulus evoked seizures without associated spontaneous seizures and minimal neuronal loss. Here we examined whether stimulation of the amygdala sufficient to evoke five convulsive seizures (class IV or greater on Racine's scale) produce morphological changes similar to those observed in models of epilepsy associated with substantial cell loss. The morphology of GFP-expressing granule cells from Thy-1 GFP mice was examined either 1 day or 1 month after the last evoked seizure. Interestingly, significant reductions in dendritic spine density were evident 1 day after the last seizure, the magnitude of which had diminished by 1 month. Further, there was an increase in the thickness of the granule cell layer 1 day after the last evoked seizure, which was absent a month later. We also observed an increase in the area of the proximal axon, which again returned to control levels a month later. No differences in the number of basal dendrites were detected at either time point. These findings demonstrate that the early stages of kindling epileptogenesis produce transient changes in the granule cell body layer thickness, molecular layer spine density, and axon proximal area, but do not produce striking rearrangements of granule cell structure.

  20. Ethanol Modulates the Spontaneous Complex Spike Waveform of Cerebellar Purkinje Cells Recorded in vivo in Mice

    Science.gov (United States)

    Zhang, Guang-Jian; Wu, Mao-Cheng; Shi, Jin-Di; Xu, Yin-Hua; Chu, Chun-Ping; Cui, Song-Biao; Qiu, De-Lai

    2017-01-01

    Cerebellar Purkinje cells (PCs) are sensitive to ethanol, but the effect of ethanol on spontaneous complex spike (CS) activity in these cells in vivo is currently unknown. Here, we investigated the effect of ethanol on spontaneous CS activity in PCs in urethane-anesthetized mice using in vivo patch-clamp recordings and pharmacological manipulation. Ethanol (300 mM) induced a decrease in the CS-evoked pause in simple spike (SS) firing and in the amplitude of the afterhyperpolarization (AHP) under current clamp conditions. Under voltage-clamp conditions, ethanol significantly decreased the area under the curve (AUC) and the number of CS spikelets, without changing the spontaneous frequency of the CSs or the instantaneous frequency of the CS spikelets. Ethanol-induced a decrease in the AUC of spontaneous CSs was concentration dependent. The EC50 of ethanol for decreasing the AUC of spontaneous CSs was 168.5 mM. Blocking N-methyl-D-aspartate receptors (NMDARs) failed to prevent the ethanol-induced decreases in the CS waveform parameters. However, blockade of cannabinoid receptor 1 (CB1) significantly suppressed the ethanol-induced effects on the CS-evoked pause in SS firing, amplitude of the AHP, spikelet number and the AUC of CSs. Moreover, a CB1 receptor agonist not only reduced the number of spikelets and the AUC of CSs, but also prevented the ethanol-induced inhibition of CS activity. Our results indicate that ethanol inhibits CS activity via activation of the CB1 receptor in vivo in mice, suggesting that excessive ethanol intake inhibits climbing fiber (CF)–PC synaptic transmission by modulating CB1 receptors in the cerebellar cortex. PMID:28293172

  1. Immunohistological comparison of granulated cell proteins in induced immediate urticarial dermographism and delayed pressure urticaria lesions.

    Science.gov (United States)

    McEvoy, M T; Peterson, E A; Kobza-Black, A; English, J S; Dover, J S; Murphy, G M; Bhogal, B; Greaves, M W; Winkelmann, R K; Leiferman, K M

    1995-12-01

    Urticarial dermographism and delayed pressure urticaria are two forms of physical urticaria which are well defined clinically and histologically. Previous studies have shown eosinophil granule protein deposition in urticarial reactions, including chronic urticaria, solar urticaria and delayed pressure urticaria. To evaluate and compare the involvement of granulated inflammatory cells in urticarial dermographism and delayed pressure urticaria, we studied sequential biopsies of induced lesions of urticarial dermographism and delayed pressure urticaria by indirect immunofluorescence, to detect eosinophil granule major basic protein (MBP) and neutrophil granule elastase. Biopsies from dermographic lesions at time 0, 5 min, 15 min, 2 h and 24 h, showed few infiltrating eosinophils, with minimal extracellular MBP deposition, and a few infiltrating neutrophils, with minimal neutrophil elastase deposition, throughout the evolution of the lesions. Sequential biopsies of delayed pressure urticaria at time 0, 20 min, 6, 12 and 24 h, showed eosinophil infiltration with extensive MBP deposition beginning at 20 min, and neutrophil infiltration with variable elastase deposition beginning at 20 min. Control tissue specimens from normal volunteers showed neutrophil infiltration and slight degranulation, but no eosinophil infiltration or degranulation. Comparison of urticarial dermographism with delayed pressure urticaria showed marked differences in the patterns of infiltration. Delayed pressure urticaria, with eosinophil and neutrophil degranulation, was strikingly similar to the IgE-mediated late phase reaction. In contrast, eosinophil and neutrophil involvement in urticarial dermographism was minimal. Considering the extent of eosinophil granule protein deposition and the biological activities of the eosinophil granule proteins, the findings in delayed pressure urticaria point to an important pathophysiological role of eosinophils in the disease.

  2. KIF20A-Mediated RNA Granule Transport System Promotes the Invasiveness of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2014-12-01

    Full Text Available Pancreatic cancers are aggressive because they are highly invasive and highly metastatic; moreover, effective treatments for aggressive pancreatic cancers are lacking. Here, we report that the motor kinesin protein KIF20A promoted the motility and invasiveness of pancreatic cancer cells through transporting the RNA-binding protein IGF2BP3 and IGF2BP3-bound transcripts toward cell protrusions along microtubules. We previously reported that IGF2BP3 and its target transcripts are assembled into cytoplasmic stress granules of pancreatic cancer cells, and that IGF2BP3 promotes the motility and invasiveness of pancreatic cancer cells through regulation of localized translation of IGF2BP3-bound transcripts in cell protrusions. We show that knockdown of KIF20A inhibited accumulation of IGF2BP3-containing stress granules in cell protrusions and suppressed local protein expression from specific IGF2BP3-bound transcripts, ARF6 and ARHGEF4, in the protrusions. Our results provide insight into the link between regulation of KIF20A-mediated trafficking of IGF2BP3-containing stress granules and modulation of the motility and invasiveness in pancreatic cancers.

  3. On the origins of the universal dynamics of endogenous granules in mammalian cells.

    Science.gov (United States)

    Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G

    2009-12-01

    Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.

  4. Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics

    Directory of Open Access Journals (Sweden)

    Rose John W

    2009-10-01

    Full Text Available Abstract Background Immunoglobulin G (IgG antibodies reactive with intracellular neuronal proteins have been described in paraneoplastic and other autoimmune disorders. Because neurons have been thought impermeable to immunoglobulins, however, such antibodies have been considered unable to enter neurons and bind to their specific antigens during life. Cerebellar Purkinje cells - an important target in paraneoplastic and other autoimmune diseases - have been shown in experimental animals to incorporate a number of molecules from cerebrospinal fluid. IgG has also been detected in Purkinje cells studied post mortem. Despite the possible significance of these findings for human disease, immunoglobulin uptake by Purkinje cells has not been demonstrated in living tissue or studied systematically. Methods To assess Purkinje cell uptake of immunoglobulins, organotypic cultures of rat cerebellum incubated with rat IgGs, human IgG, fluorescein-conjugated IgG, and rat IgM were studied by confocal microscopy in real time and following fixation. An IgG-daunorubicin immunotoxin was used to determine whether conjugation of pharmacological agents to IgG could be used to achieve Purkinje cell-specific drug delivery. Results IgG uptake was detected in Purkinje cell processes after 4 hours of incubation and in Purkinje cell cytoplasm and nuclei by 24-48 hours. Uptake could be followed in real time using IgG-fluorochrome conjugates. Purkinje cells also incorporated IgM. Intracellular immunoglobulin did not affect Purkinje cell viability, and Purkinje cells cleared intracellular IgG or IgM within 24-48 hours after transfer to media lacking immunoglobulins. The IgG-daunomycin immunotoxin was also rapidly incorporated into Purkinje cells and caused extensive, cell-specific death within 8 hours. Purkinje cell death was not produced by unconjugated daunorubicin or control IgG. Conclusion Purkinje cells in rat organotypic cultures incorporate and clear host (rat and non

  5. Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cerebellar Purkinje cells.

    Science.gov (United States)

    Fukumitsu, Kansai; Hatsukano, Tetsu; Yoshimura, Azumi; Heuser, John; Fujishima, Kazuto; Kengaku, Mineko

    2016-03-01

    Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells.

  6. N-cadherin is dispensable for pancreas development but required for beta-cell granule turnover.

    Science.gov (United States)

    Johansson, Jenny K; Voss, Ulrikke; Kesavan, Gokul; Kostetskii, Igor; Wierup, Nils; Radice, Glenn L; Semb, Henrik

    2010-06-01

    The cadherin family of cell adhesion molecules mediates adhesive interactions that are required for the formation and maintenance of tissues. Previously, we demonstrated that N-cadherin, which is required for numerous morphogenetic processes, is expressed in the pancreatic epithelium at E9.5, but later becomes restricted to endocrine aggregates in mice. To study the role of N-cadherin during pancreas formation and function we generated a tissue-specific knockout of N-cadherin in the early pancreatic epithelium by inter-crossing N-cadherin-floxed mice with Pdx1Cre mice. Analysis of pancreas-specific ablation of N-cadherin demonstrates that N-cadherin is dispensable for pancreatic development, but required for beta-cell granule turnover. The number of insulin secretory granules is significantly reduced in N-cadherin-deficient beta-cells, and as a consequence insulin secretion is decreased.

  7. Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells

    Directory of Open Access Journals (Sweden)

    Sergio Solinas

    2007-12-01

    Full Text Available The Golgi cells have been recently shown to beat regularly in vitro (Forti et al., 2006. J. Physiol. 574, 711-729. Four main currents were shown to be involved, namely a persistent sodium current (INa-p, an h current (Ih, an SK-type calcium-dependent potassium current (IK-AHP, and a slow M-like potassium current (IK-slow. These ionic currents could take part, together with others, also to different aspects of neuronal excitability like responses to depolarizing and hyperpolarizing current injection. However, the ionic mechanisms and their interactions remained largely hypothetical. In this work, we have investigated the mechanisms of Golgi cell excitability by developing a computational model. The model predicts that pacemaking is sustained by subthreshold oscillations tightly coupled to spikes. INa-p and IK-slow emerged as the critical determinants of oscillations. Ih also played a role by setting the oscillatory mechanism into the appropriate membrane potential range. IK-AHP, though taking part to the oscillation, appeared primarily involved in regulating the ISI following spikes. The combination with other currents, in particular a resurgent sodium current (INa-r and an A-current (IK-A, allowed a precise regulation of response frequency and delay. These results provide a coherent reconstruction of the ionic mechanisms determining Golgi cell intrinsic electroresponsiveness and suggests important implications for cerebellar signal processing, which will be fully developed in a companion paper (Solinas et al., 2008. Front. Neurosci. 1:4.

  8. SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells.

    Science.gov (United States)

    Ohtsuki, Gen; Piochon, Claire; Adelman, John P; Hansel, Christian

    2012-07-12

    Small-conductance Ca(2+)-activated K(+) channels (SK channels) modulate excitability and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here, we demonstrate long-lasting plasticity of intrinsic excitability (IE) in dendrites that results from changes in the gain of this regulatory mechanism. Using dendritic patch-clamp recordings from rat cerebellar Purkinje cells, we find that somatic depolarization or parallel fiber (PF) burst stimulation induce long-term amplification of synaptic responses to climbing fiber (CF) or PF stimulation and enhance the amplitude of passively propagated sodium spikes. Dendritic plasticity is mimicked and occluded by the SK channel blocker apamin and is absent in Purkinje cells from SK2 null mice. Triple-patch recordings from two dendritic sites and the soma and confocal calcium imaging studies show that local stimulation limits dendritic plasticity to the activated compartment of the dendrite. This plasticity mechanism allows Purkinje cells to adjust the SK2-mediated control of dendritic excitability in an activity-dependent manner.

  9. Myeloperoxidase and crystalline bodies in the granules of DMBA-induced rat chloroma cells.

    Science.gov (United States)

    Ioachim, H L; Keller, S; Sabbath, M; Andersson, B; Dorsett, B; Essner, E

    1972-01-01

    Chloroma (chloroleukemia) was induced in a splenectomized rat by repeatedly administering dimethylbenz(a)anthracene (DMBA) and was serially transplanted thereafter. Composed of immature myeloid cells, the tumor imparted a green discoloration to the tissues that it infiltrated extensively. Chloroma cells fluoresced red in ultraviolet light, produced a characteristic curve in spectrophotometry, and contained large amounts of myeloperoxidase. They included numerous intracytoplasmic granules of both types A and B, which contained occasional crystalline bars. Permanent lines of chloroma cells were established in tissue culture. These cells, while maintaining their initial morphology, ceased producing myeloperoxidase and subsequently induced white tumors when they were isotransplanted.

  10. Effects of eugenol on granule cell dispersion in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Jeong, Kyoung Hoon; Lee, Dong-Seok; Kim, Sang Ryong

    2015-09-01

    Granule cell dispersion (GCD), a structural abnormality, is characteristic of temporal lobe epilepsy (TLE). Eugenol (EUG) is an essential component of medicinal herbs and is suggested to exert anticonvulsant activity. However, it is unclear whether EUG ameliorates the abnormal morphological changes in granule cells induced by epileptic insults. In the present study, we examined whether intraperitoneal injection of EUG attenuated increased seizure activity and GCD following intrahippocampal injection of kainic acid (KA). Our results showed that EUG significantly increased the seizure threshold, resulting in delayed seizure onset, and reduced GCD in KA-induced epilepsy. Moreover, EUG treatment significantly attenuated KA-induced activation of mammalian target of rapamycin complex 1 (mTORC1), which is involved in GCD development, in the dentate gyrus (DG). These results suggest that EUG may have beneficial effects in the treatment of epilepsy through its ability to inhibit GCD via suppression of KA-induced mTORC1 activation in the hippocampal DG in vivo.

  11. A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation.

    Directory of Open Access Journals (Sweden)

    Lihong Zhao

    2011-05-01

    Full Text Available Sphingolipids, lipids with a common sphingoid base (also termed long chain base backbone, play essential cellular structural and signaling functions. Alterations of sphingolipid levels have been implicated in many diseases, including neurodegenerative disorders. However, it remains largely unclear whether sphingolipid changes in these diseases are pathological events or homeostatic responses. Furthermore, how changes in sphingolipid homeostasis shape the progression of aging and neurodegeneration remains to be clarified. We identified two mouse strains, flincher (fln and toppler (to, with spontaneous recessive mutations that cause cerebellar ataxia and Purkinje cell degeneration. Positional cloning demonstrated that these mutations reside in the Lass1 gene. Lass1 encodes (dihydroceramide synthase 1 (CerS1, which is highly expressed in neurons. Both fln and to mutations caused complete loss of CerS1 catalytic activity, which resulted in a reduction in sphingolipid biosynthesis in the brain and dramatic changes in steady-state levels of sphingolipids and sphingoid bases. In addition to Purkinje cell death, deficiency of CerS1 function also induced accumulation of lipofuscin with ubiquitylated proteins in many brain regions. Our results demonstrate clearly that ceramide biosynthesis deficiency can cause neurodegeneration and suggest a novel mechanism of lipofuscin formation, a common phenomenon that occurs during normal aging and in some neurodegenerative diseases.

  12. Persistent posttetanic depression at cerebellar parallel fiber to Purkinje cell synapses.

    Directory of Open Access Journals (Sweden)

    Astrid Bergerot

    Full Text Available Plasticity at the cerebellar parallel fiber to Purkinje cell synapse may underlie information processing and motor learning. In vivo, parallel fibers appear to fire in short high frequency bursts likely to activate sparsely distributed synapses over the Purkinje cell dendritic tree. Here, we report that short parallel fiber tetanic stimulation evokes a ∼7-15% depression which develops over 2 min and lasts for at least 20 min. In contrast to the concomitantly evoked short-term endocannabinoid-mediated depression, this persistent posttetanic depression (PTD does not exhibit a dependency on the spatial pattern of synapse activation and is not caused by any detectable change in presynaptic calcium signaling. This persistent PTD is however associated with increased paired-pulse facilitation and coefficient of variation of synaptic responses, suggesting that its expression is presynaptic. The chelation of postsynaptic calcium prevents its induction, suggesting that post- to presynaptic (retrograde signaling is required. We rule out endocannabinoid signaling since the inhibition of type 1 cannabinoid receptors, monoacylglycerol lipase or vanilloid receptor 1, or incubation with anandamide had no detectable effect. The persistent PTD is maximal in pre-adolescent mice, abolished by adrenergic and dopaminergic receptors block, but unaffected by adrenergic and dopaminergic agonists. Our data unveils a novel form of plasticity at parallel fiber synapses: a persistent PTD induced by physiologically relevant input patterns, age-dependent, and strongly modulated by the monoaminergic system. We further provide evidence supporting that the plasticity mechanism involves retrograde signaling and presynaptic diacylglycerol.

  13. Acute cerebellar ataxia

    Science.gov (United States)

    Cerebellar ataxia; Ataxia - acute cerebellar; Cerebellitis; Post-varicella acute cerebellar ataxia; PVACA ... Acute cerebellar ataxia in children, especially younger than age 3, may occur several weeks after an illness caused by a virus. ...

  14. High-frequency stimulation induces gradual immediate early gene expression in maturing adult-generated hippocampal granule cells.

    Science.gov (United States)

    Jungenitz, Tassilo; Radic, Tijana; Jedlicka, Peter; Schwarzacher, Stephan W

    2014-07-01

    Increasing evidence shows that adult neurogenesis of hippocampal granule cells is advantageous for learning and memory. We examined at which stage of structural maturation and age new granule cells can be activated by strong synaptic stimulation. High-frequency stimulation of the perforant pathway in urethane-anesthetized rats elicited expression of the immediate early genes c-fos, Arc, zif268 and pCREB133 in almost 100% of mature, calbindin-positive granule cells. In contrast, it failed to induce immediate early gene expression in immature doublecortin-positive granule cells. Furthermore, doublecortin-positive neurons did not react with c-fos or Arc expression to mild theta-burst stimulation or novel environment exposure. Endogenous expression of pCREB133 was increasingly present in young cells with more elaborated dendrites, revealing a close correlation to structural maturation. Labeling with bromodeoxyuridine revealed cell age dependence of stimulation-induced c-fos, Arc and zif268 expression, with only a few cells reacting at 21 days, but with up to 75% of cells activated at 35-77 days of cell age. Our results indicate an increasing synaptic integration of maturing granule cells, starting at 21 days of cell age, but suggest a lack of ability to respond to activation with synaptic potentiation on the transcriptional level as long as immature cells express doublecortin.

  15. Selective loss of Purkinje cells in a patient with anti-gliadin-antibody-positive autoimmune cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Hasegawa Akira

    2011-02-01

    Full Text Available Abstract The patient was an 84-year-old woman who had the onset of truncal ataxia at age 77 and a history of Basedow's disease. Her ataxic gait gradually deteriorated. She could not walk without support at age 81 and she was admitted to our hospital at age 83. Gaze-evoked nystagmus and dysarthria were observed. Mild ataxia was observed in all limbs. Her deep tendon reflex and sense of position were normal. IgA anti-gliadin antibody, IgG anti-gliadin antibody, anti-SS-A/Ro antibody, anti-SS-B/La antibody and anti-TPO antibody were positive. A conventional brain MRI did not show obvious cerebellar atrophy. However, MRI voxel based morphometry (VBM and SPECT-eZIS revealed cortical cerebellar atrophy and reduced cerebellar blood flow. IVIg treatment was performed and was moderately effective. After her death at age 85, the patient was autopsied. Neuropathological findings were as follows: selective loss of Purkinje cells; no apparent degenerative change in the efferent pathways, such as the dentate nuclei or vestibular nuclei; no prominent inflammatory reaction. From these findings, we diagnosed this case as autoimmune cerebellar atrophy associated with gluten ataxia. All 3 autopsies previously reported on gluten ataxia have noted infiltration of inflammatory cells in the cerebellum. In this case, we postulated that the infiltration of inflammatory cells was not found because the patient's condition was based on humoral immunity. The clinical conditions of gluten ataxia have not yet been properly elucidated, but are expected to be revealed as the number of autopsied cases increases.

  16. Increased GAD67 mRNA expression in cerebellar interneurons in autism: implications for Purkinje cell dysfunction.

    Science.gov (United States)

    Yip, Jane; Soghomonian, Jean-Jacques; Blatt, Gene J

    2008-02-15

    It has been widely reported that in autism, the number of Purkinje cells (PCs) is decreased, and recently, decreased expression of glutamic acid decarboxylase 67 (GAD67) mRNA in Purkinje cells also has been observed. However, the autism literature has not addressed key GABAergic inputs into Purkinje cells. Inhibitory basket and stellate cell interneurons in the molecular layer of the cerebellar cortex provide direct key GABAergic input into Purkinje cells and could potently influence the output of Purkinje cells to deep cerebellar nuclei. We investigated the capacity for interneuronal synthesis of gamma-amino butyric acid (GABA) in both types of interneurons that innervate the remaining PCs in the posterolateral cerebellar hemisphere in autism. The level of GAD67 mRNA, one of the isoforms of the key synthesizing enzymes for GABA, was quantified at the single-cell level using in situ hybridization in brains of autistic and aged-matched controls. The National Institutes of Health imaging system showed that expression of GAD67 mRNA in basket cells was significantly up-regulated, by 28%, in eight autistic brains compared with that in eight control brains (mean +/- SEM pixels per cell, 1.03 +/- 0.05 versus 0.69 +/- 0.05, respectively; P levels, but this did not reach significance. The results suggest that basket cells likely provide increased GABAergic feed-forward inhibition to PCs in autism, directly affecting PC output to target neurons in the dentate nucleus and potentially disrupting its modulatory role in key motor and/or cognitive behaviors in autistic individuals.

  17. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte;

    2009-01-01

    in closer detail the synthesis and storage of LBP in the intestinal mucosal epithelium, we performed an immunolocalization of LBP in mouse small intestine. By immunofluorescence microscopy, an antibody recognizing the 58-60 kDa protein of LBP distinctly labeled a small population of cells located deep......Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein involved in the host's response to endotoxin and mainly synthesized and secreted to the blood by the liver. But in addition, LBP is also made by extrahepatic cells, including the enterocyte-like cell line Caco-2. To study...... into the crypts. This cell population was also positive for lysozyme and alpha-defensin 4, identifying Paneth cells as the main intestinal LBP-producing cells. By immunogold electron microscopy, intense labeling was observed in the secretory granules of these cells. We conclude that Paneth cells express LBP...

  18. Dietary Restriction reduces hippocampal neurogenesis and granule cell neuron density without affecting the density of mossy fibers.

    Science.gov (United States)

    Staples, Miranda C; Fannon-Pavlich, McKenzie J; Mysore, Karthik K; Dutta, Rahul R; Ongjoco, Alexandria T; Quach, Leon W; Kharidia, Khush M; Somkuwar, Sucharita S; Mandyam, Chitra D

    2017-03-08

    The hippocampal formation undergoes significant morphological and functional changes after prolonged caloric and dietary restriction (DR). In this study we tested whether prolonged DR results in deleterious alterations in hippocampal neurogenesis, density of granule cell neurons and mossy fibers, all of which support plasticity in the dentate gyrus. Young adult animals either experienced free access to food (control condition), or every-other-day feeding regimen (DR condition) for 3 months. The number of Ki-67 cells and 28-day old 5-bromo-2'-deoxyuridine (BrdU) cells were quantified in the dorsal and ventral dentate gyrus to determine the effect of DR on cellular proliferation and survival of neural progenitor cells in the anatomically defined regions of the dentate gyrus. The density of granule cell neurons and synaptoporin were also quantified to determine the effect of DR on granule cell neurons and mossy fiber projections in the dentate gyrus. Our results show that DR increases cellular proliferation and concurrently reduces survival of newly born neurons in the ventral dentate gyrus without effecting the number of cells in the dorsal dentate gyrus. DR reduced density of granule cell neurons in the dorsal dentate gyrus. These alterations in the number of granule cell neurons did not affect mossy fiber density in DR animals, which was visualized as no differences in synaptoporin expression. Our findings demonstrate that granule cell neurons in the dentate gyrus are vulnerable to chronic DR and that the reorganization of granule cells in the dentate gyrus subregions is not producing concomitant alterations in dentate gyrus neuronal circuitry with this type of dietary restriction.

  19. Modulation of p53 and met expression by Krüppel-like factor 8 regulates zebrafish cerebellar development.

    Science.gov (United States)

    Tsai, Ming-Yuan; Lu, Yu-Fen; Liu, Yu-Hsiu; Lien, Huang-Wei; Huang, Chang-Jen; Wu, Jen-Leih; Hwang, Sheng-Ping L

    2015-09-01

    Krüppel-like factor 8 (Klf8) is a zinc-finger transcription factor implicated in cell proliferation, and cancer cell survival and invasion; however, little is known about its role in normal embryonic development. Here, we show that Klf8 is required for normal cerebellar development in zebrafish embryos. Morpholino knockdown of klf8 resulted in abnormal cerebellar primordium morphology and the induction of p53 in the brain region at 24 hours post-fertilization (hpf). Both p53-dependent reduction of cell proliferation and augmentation of apoptosis were observed in the cerebellar anlage of 24 hpf-klf8 morphants. In klf8 morphants, expression of ptf1a in the ventricular zone was decreased from 48 to 72 hpf; on the other hand, expression of atohla in the upper rhombic lip was unaffected. Consistent with this finding, Purkinje cell development was perturbed and granule cell number was reduced in 72 hpf-klf8 morphants; co-injection of p53 MO(sp) or klf8 mRNA substantially rescued development of cerebellar Purkinje cells in klf8 morphants. Hepatocyte growth factor/Met signaling is known to regulate cerebellar development in zebrafish and mouse. We observed decreased met expression in the tectum and rhombomere 1 of 24 hpf-klf8 morphants, which was largely rescued by co-injection with klf8 mRNA. Moreover, co-injection of met mRNA substantially rescued formation of Purkinje cells in klf8 morphants at 72 hpf. Together, these results demonstrate that Klf8 modulates expression of p53 and met to maintain ptf1a-expressing neuronal progenitors, which are required for the appropriate development of cerebellar Purkinje and granule cells in zebrafish embryos.

  20. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ohara-Imaizumi, Mica; Aoyagi, Kyota [Department of Biochemistry, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 (Japan); Akimoto, Yoshihiro [Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 (Japan); Nakamichi, Yoko; Nishiwaki, Chiyono [Department of Biochemistry, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 (Japan); Kawakami, Hayato [Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 (Japan); Nagamatsu, Shinya, E-mail: shinya@ks.kyorin-u.ac.jp [Department of Biochemistry, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 (Japan)

    2009-12-04

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.

  1. Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells.

    Science.gov (United States)

    Solinas, Sergio; Forti, Lia; Cesana, Elisabetta; Mapelli, Jonathan; De Schutter, Erik; D'Angelo, Egidio

    2007-01-01

    The Golgi cells have been recently shown to beat regularly in vitro (Forti et al., 2006. J. Physiol. 574, 711-729). Four main currents were shown to be involved, namely a persistent sodium current (I(Na-p)), an h current (I(h)), an SK-type calcium-dependent potassium current (I(K-AHP)), and a slow M-like potassium current (I(K-slow)). These ionic currents could take part, together with others, also to different aspects of neuronal excitability like responses to depolarizing and hyperpolarizing current injection. However, the ionic mechanisms and their interactions remained largely hypothetical. In this work, we have investigated the mechanisms of Golgi cell excitability by developing a computational model. The model predicts that pacemaking is sustained by subthreshold oscillations tightly coupled to spikes. I(Na-p) and I(K-slow) emerged as the critical determinants of oscillations. I(h) also played a role by setting the oscillatory mechanism into the appropriate membrane potential range. I(K-AHP), though taking part to the oscillation, appeared primarily involved in regulating the ISI following spikes. The combination with other currents, in particular a resurgent sodium current (I(Na-r)) and an A-current (I(K-A)), allowed a precise regulation of response frequency and delay. These results provide a coherent reconstruction of the ionic mechanisms determining Golgi cell intrinsic electroresponsiveness and suggests important implications for cerebellar signal processing, which will be fully developed in a companion paper (Solinas et al., 2008. Front. Neurosci. 2:4).

  2. Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable.

    Directory of Open Access Journals (Sweden)

    Julián Tejada

    Full Text Available Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.

  3. Transient fusion ensures granule replenishment to enable repeated release after IgE-mediated mast cell degranulation.

    Science.gov (United States)

    Balseiro-Gomez, Santiago; Flores, Juan A; Acosta, Jorge; Ramirez-Ponce, M Pilar; Ales, Eva

    2016-11-01

    To ensure normal immune function, mast cells employ different pathways to release mediators. Here, we report a thus far unknown capacity of mast cells to recycle and reuse secretory granules after an antigen-evoked degranulation process under physiological conditions; this phenomenon involves the existence of a recycling secretory granule pool that is available for release in a short time scale. Rapid endocytic modes contributed to the recycling of ∼60% of the total secretory granule population, which involved kiss-and-run and cavicapture mechanisms, causing retention of the intragranular matrix. We found the presence of normal-size granules and giant actomyosin- and dynamin-dependent granules, which were characterized by large quantal content. These large structures allowed the recovered mast cells to release a large amount of 5-HT, compensating for the decrease in the number of exocytosed secretory granules. This work uncovers a new physiological role of the exo-endocytosis cycle in the immunological plasticity of mast cells and reveals a new property of their biological secretion.

  4. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    2015-01-01

    Full Text Available Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α -/- mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV, a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2, structural (neurofilament heavy chain, Nefh, and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1 functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α -/- mice. We observed a significant loss of Purkinje cells by six weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α’s actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency.

  5. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α

    Science.gov (United States)

    Lucas, Elizabeth K.; Reid, Courtney S.; McMeekin, Laura J.; Dougherty, Sarah E.; Floyd, Candace L.; Cowell, Rita M.

    2014-01-01

    Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α) have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α−/− mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV), a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2), structural (neurofilament heavy chain, Nefh), and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1) functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α−/− mice. We observed a significant loss of Purkinje cells by 6 weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α's actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency. PMID

  6. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Gabriela Huelgas-Morales

    2016-04-01

    Full Text Available In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures.

  7. RBP-J is not required for granule neuron progenitor development and medulloblastoma initiated by Hedgehog pathway activation in the external germinal layer

    Directory of Open Access Journals (Sweden)

    Hallahan Andrew R

    2010-10-01

    Full Text Available Abstract Background The Notch signalling pathway plays crucial roles in neural development, functioning by preventing premature differentiation and promotion of glial cell fates. In the developing cerebellum Notch pathway components are expressed in granule neuron progenitors of the external germinal layer (EGL but the precise function of Notch in these cells is unclear. The Hedgehog pathway is also crucial in cerebellar development, mainly via control of the cell cycle, and persistent activation of the pathways leads to the cerebellar tumour medulloblastoma. Interactions between Hedgehog and Notch have been reported in normal brain development as well as in Hedgehog pathway induced medulloblastoma but the molecular details of this interaction are not known and we investigate here the role of Notch signalling in the development of the EGL and the intersection between the two pathways in cerebellar granule neuron progenitors and in medulloblastoma. Results RBP-J is the major downstream effector of all four mammalian Notch receptors and the RBP-J conditional mouse facilitates inactivation of canonical Notch signals. Patched1 is a negative regulator of Hedgehog signalling and the Patched1 conditional mouse is widely used to activate Hedgehog signalling via Patched1 deletion in specific cell types. The conditional mouse lines were crossed with a Math1-Cre line to delete the two genes in granule neuron progenitors from embryonic day 10.5. While deletion of only Patched1 as well as Patched1 together with RBP-J leads to formation of medulloblastoma concomitant with disorganisation of cell layers, loss of RBP-J from granule neuron progenitors has no obvious effect on overall cerebellar morphology or differentiation and maturation of the different cerebellar cell types. Conclusions Our results suggest that even though Notch signalling has been shown to play important roles in cerebellar development, signalling via RBP-J is surprisingly not required in

  8. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients

    Science.gov (United States)

    Ravel-Chapuis, Aymeric; Klein Gunnewiek, Amanda; Bélanger, Guy; Crawford Parks, Tara E.; Côté, Jocelyn; Jasmin, Bernard J.

    2016-01-01

    Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUGexp) in the DMPK mRNA 3′UTR. CUGexp-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1– and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type–specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUGexp mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1. PMID:27030674

  9. Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons.

    Science.gov (United States)

    Tan, Y P; Llano, I

    1999-10-01

    1. Action potential-evoked [Ca2+]i rises in basket cell axons of rat cerebellar slices were studied using two-photon laser scanning microscopy and whole-cell recording, to identify the K+ channels controlling the shape of the axonal action potential. 2. Whole-cell recordings of Purkinje cell IPSCs were used to screen K+ channel subtypes which could contribute to axonal repolarization. alpha-Dendrotoxin, 4-aminopyridine, charybdotoxin and tetraethylammonium chloride increased IPSC rate and/or amplitude, whereas iberiotoxin and apamin failed to affect the IPSCs. 3. The effects of those K+ channel blockers that enhanced transmitter release on the [Ca2+]i rises elicited in basket cell axons by action potentials fell into three groups: 4-aminopyridine strongly increased action potential-evoked [Ca2+]i; tetraethylammonium and charybdotoxin were ineffective alone but augmented the effects of 4-aminopyridine; alpha-dendrotoxin had no effect. 4. We conclude that cerebellar basket cells contain at least three pharmacologically distinct K+ channels, which regulate transmitter release through different mechanisms. 4-Aminopyridine-sensitive, alpha-dendrotoxin-insensitive K+ channels are mainly responsible for repolarization in basket cell presynaptic terminals. K+ channels blocked by charybdotoxin and tetraethylammonium have a minor role in repolarization. alpha-Dendrotoxin-sensitive channels are not involved in shaping the axonal action potential waveform. The two last types of channels must therefore exert control of synaptic activity through a pathway unrelated to axonal action potential broadening.

  10. Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Michele Migliore

    2010-09-01

    Full Text Available Odors are encoded in spatio-temporal patterns within the olfactory bulb, but the mechanisms of odor recognition and discrimination are poorly understood. It is reasonable to postulate that the olfactory code is sculpted by lateral and feedforward inhibition mediated by granule cells onto the mitral cells. Recent viral tracing and physiological studies revealed patterns of distributed granule cell synaptic clusters that provided additional clues to the possible mechanisms at the network level. The emerging properties and functional roles of these patterns, however, are unknown. Here, using a realistic model of 5 mitral and 100 granule cells we show how their synaptic network can dynamically self-organize and interact through an activity-dependent dendrodendritic mechanism. The results suggest that the patterns of distributed mitral-granule cell connectivity may represent the most recent history of odor inputs, and may contribute to the basic processes underlying mixture perception and odor qualities. The model predicts how and why the dynamical interactions between the active mitral cells through the granule cell synaptic clusters can account for a variety of puzzling behavioral results on odor mixtures and on the emergence of synthetic or analytic perception.

  11. The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression

    Science.gov (United States)

    Whittaker, Danielle E.; Riegman, Kimberley L.H.; Kasah, Sahrunizam; Mohan, Conor; Yu, Tian; Sala, Blanca Pijuan; Hebaishi, Husam; Caruso, Angela; Marques, Ana Claudia; Michetti, Caterina; Smachetti, María Eugenia Sanz; Shah, Apar; Sabbioni, Mara; Kulhanci, Omer; Tee, Wee-Wei; Reinberg, Danny; Scattoni, Maria Luisa; McGonnell, Imelda; Wardle, Fiona C.; Fernandes, Cathy

    2017-01-01

    The mechanisms underlying the neurodevelopmental deficits associated with CHARGE syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems, and autistic features, have not been identified. CHARGE syndrome has been associated with mutations in the gene encoding the ATP-dependent chromatin remodeler CHD7. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown. Here we have shown that deletion of Chd7 from cerebellar granule cell progenitors (GCps) results in reduced GCp proliferation, cerebellar hypoplasia, developmental delay, and motor deficits in mice. Genome-wide expression profiling revealed downregulated expression of the gene encoding the glycoprotein reelin (Reln) in Chd7-deficient GCps. Recessive RELN mutations have been associated with severe cerebellar hypoplasia in humans. We found molecular and genetic evidence that reductions in Reln expression contribute to GCp proliferative defects and cerebellar hypoplasia in GCp-specific Chd7 mouse mutants. Finally, we showed that CHD7 is necessary for maintaining an open, accessible chromatin state at the Reln locus. Taken together, this study shows that Reln gene expression is regulated by chromatin remodeling, identifies CHD7 as a previously unrecognized upstream regulator of Reln, and provides direct in vivo evidence that a mammalian CHD protein can control brain development by modulating chromatin accessibility in neuronal progenitors. PMID:28165338

  12. Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Sebastian Jessberger

    2008-11-01

    Full Text Available Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell-specific knockdown of cyclin-dependent kinase 5 (cdk5 activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.

  13. Glucose Toxic Effects on Granulation Tissue Productive Cells: The Diabetics’ Impaired Healing

    Directory of Open Access Journals (Sweden)

    Jorge Berlanga-Acosta

    2013-01-01

    Full Text Available Type 2 diabetes mellitus is a metabolic noncommunicable disease with an expanding pandemic magnitude. Diabetes predisposes to lower extremities ulceration and impairs the healing process leading to wound chronification. Diabetes also dismantles innate immunity favoring wound infection. Amputation is therefore acknowledged as one of the disease’s complications. Hyperglycemia is the proximal detonator of systemic and local toxic effectors including proinflammation, acute-phase proteins elevation, and spillover of reactive oxygen and nitrogen species. Insulin axis deficiency weakens wounds’ anabolism and predisposes to inflammation. The systemic accumulation of advanced glycation end-products irreversibly impairs the entire physiology from cells-to-organs. These factors in concert hamper fibroblasts and endothelial cells proliferation, migration, homing, secretion, and organization of a productive granulation tissue. Diabetic wound bed may turn chronically inflammed, procatabolic, and an additional source of circulating pro-inflammatory cytokines, establishing a self-perpetuating loop. Diabetic fibroblasts and endothelial cells may bear mitochondrial damages becoming prone to apoptosis, which impairs granulation tissue cellularity and perfusion. Endothelial progenitor cells recruitment and tubulogenesis are also impaired. Failure of wound reepithelialization remains a clinical challenge while it appears to be biologically multifactorial. Ulcer prevention by primary care surveillance, education, and attention programs is of outmost importance to reduce worldwide amputation figures.

  14. Increased expression of BDNF and proliferation of dentate granule cells after bacterial meningitis.

    Science.gov (United States)

    Tauber, Simone C; Stadelmann, Christine; Spreer, Annette; Brück, Wolfgang; Nau, Roland; Gerber, Joachim

    2005-09-01

    Proliferation and differentiation of neural progenitor cells is increased after bacterial meningitis. To identify endogenous factors involved in neurogenesis, expression of brain-derived neurotrophic factor (BDNF), TrkB, nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) was investigated. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneumoniae. Mice were killed 30 hours later or treated with ceftriaxone and killed 4 days after infection. Hippocampal BDNF mRNA levels were increased 2.4-fold 4 days after infection (p = 0.026). Similarly, BDNF protein levels in the hippocampal formation were higher in infected mice than in control animals (p = 0.0003). This was accompanied by an elevated proliferation of dentate granule cells (p = 0.0002). BDNF protein was located predominantly in the hippocampal CA3/4 area and the hilus of the dentate gyrus. The density of dentate granule cells expressing the BDNF receptor TrkB as well as mRNA levels of TrkB in the hippocampal formation were increased 4 days after infection (p = 0.027 and 0.0048, respectively). Conversely, NGF mRNA levels at 30 hours after infection were reduced by approximately 50% (p = 0.004). No significant changes in GDNF expression were observed. In conclusion, increased synthesis of BDNF and TrkB suggests a contribution of this neurotrophic factor to neurogenesis after bacterial meningitis.

  15. Kv3.3 channels harbouring a mutation of spinocerebellar ataxia type 13 alter excitability and induce cell death in cultured cerebellar Purkinje cells.

    Science.gov (United States)

    Irie, Tomohiko; Matsuzaki, Yasunori; Sekino, Yuko; Hirai, Hirokazu

    2014-01-01

    The cerebellum plays crucial roles in controlling sensorimotor functions. The neural output from the cerebellar cortex is transmitted solely by Purkinje cells (PCs), whose impairment causes cerebellar ataxia. Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominant disease, and SCA13 patients exhibit cerebellar atrophy and cerebellar symptoms. Recent studies have shown that missense mutations in the voltage-gated K(+) channel Kv3.3 are responsible for SCA13. In the rodent brain, Kv3.3 mRNAs are expressed most strongly in PCs, suggesting that the mutations severely affect PCs in SCA13 patients. Nevertheless, how these mutations affect the function of Kv3.3 in PCs and, consequently, the morphology and neuronal excitability of PCs remains unclear. To address these questions, we used lentiviral vectors to express mutant mouse Kv3.3 (mKv3.3) channels harbouring an R424H missense mutation, which corresponds to the R423H mutation in the Kv3.3 channels of SCA13 patients, in mouse cerebellar cultures. The R424H mutant-expressing PCs showed decreased outward current density, broadened action potentials and elevated basal [Ca(2+)]i compared with PCs expressing wild-type mKv3.3 subunits or those expressing green fluorescent protein alone. Moreover, expression of R424H mutant subunits induced impaired dendrite development and cell death selectively in PCs, both of which were rescued by blocking P/Q-type Ca(2+) channels in the culture conditions. We therefore concluded that expression of R424H mutant subunits in PCs markedly affects the function of endogenous Kv3 channels, neuronal excitability and, eventually, basal [Ca(2+)]i, leading to cell death. These results suggest that PCs in SCA13 patients also exhibit similar defects in PC excitability and induced cell death, which may explain the pathology of SCA13.

  16. Genetic deletion of Rab27B in pancreatic acinar cells affects granules size and has inhibitory effects on amylase secretion.

    Science.gov (United States)

    Hou, Yanan; Ernst, Stephen A; Lentz, Stephen I; Williams, John A

    2016-03-18

    Small G protein Rab27B is expressed in various secretory cell types and plays a role in mediating secretion. In pancreatic acinar cells, Rab27B was found to be expressed on the zymogen granule membrane and by overexpression to regulate the secretion of zymogen granules. However, the effect of Rab27B deletion on the physiology of pancreatic acinar cells is unknown. In the current study, we utilized the Rab27B KO mouse model to better understand the role of Rab27B in the secretion of pancreatic acinar cells. Our data show that Rab27B deficiency had no obvious effects on the expression of major digestive enzymes and other closely related proteins, e.g. similar small G proteins, such as Rab3D and Rab27A, and putative downstream effectors. The overall morphology of acinar cells was not changed in the knockout pancreas. However, the size of zymogen granules was decreased in KO acinar cells, suggesting a role of Rab27B in regulating the maturation of secretory granules. The secretion of digestive enzymes was moderately decreased in KO acini, compared with the WT control. These data indicate that Rab27B is involved at a different steps of zymogen granule maturation and secretion, which is distinct from that of Rab3D.

  17. Study of the Interaction of 1,4- and 1,5-Benzodiazepines with GABAA Receptors of Rat Cerebellum Granule Cells in Culture.

    Science.gov (United States)

    Nikas, Periklis; Gatta, Elena; Cupello, Aroldo; Di Braccio, Mario; Grossi, Giancarlo; Pellistri, Francesca; Robello, Mauro

    2015-08-01

    The effects of a classical 1,4-benzodiazepine agonist, such as diazepam, its catabolite N-desmethyl-diazepam (nordiazepam), and 1,5-benzodiazepines such as clobazam and RL 214 (a triazolobenzodiazepine previously synthesized in our labs) were evaluated on native GABAA receptors of cerebellar granule cells in culture. The parameter studied was the increase of GABA-activated chloride currents caused by these substances. The contributions of α6 β2/3 γ2 and α1 α6 β2/3 γ2 receptor subtypes to the increase of GABA-activated chloride current were investigated by comparing the effects of such substances in the presence vs. the absence of furosemide. Furosemide is in fact able to block such receptors. It was found that the percent enhancement of peak GABA-activated current doubled for diazepam, clobazam, and RL 214. However, it did not change for N-desmethyl-diazepam. These results indicate that diazepam, clobazam, and RL 214 interact exclusively with α1 β2/3 γ2 receptors, while N-desmethyl-diazepam seems to interact with not only α1- but also α6-containing receptors.

  18. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse

    NARCIS (Netherlands)

    A. Belmeguenai (Amor); P. Botta (Paolo); J.T. Weber (John); M. Carta (Mario); M.M. de Ruiter (Martijn); C.I. de Zeeuw (Chris); C.F. Valenzuela (Fernando); C.R.W. Hansel (Christian)

    2008-01-01

    textabstractAcute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cere

  19. The treasury of the commons: making use of public gene expression resources to better characterize the molecular diversity of inhibitory interneurons in the cerebellar cortex.

    Science.gov (United States)

    Schilling, Karl; Oberdick, John

    2009-12-01

    We mined the Allen Mouse Brain Atlas for genes expressed in cerebellar cortical inhibitory interneurons that would allow identification and possibly distinction of these cells. We identified some 90 genes that are highly expressed in specific subsets of cerebellar cortical inhibitory interneurons or various combinations thereof. Four genes are exclusively expressed, within the cerebellar cortex, in molecular layer interneurons, and ten genes label exclusively inhibitory interneurons in the granule cell layer or subsets thereof. Differential expression of many of these genes in cells residing in the lower versus the upper molecular layer provides evidence that these cells, traditionally referred to as basket and stellate cells, are indeed molecularly distinct. Two genes could be identified as novel markers for unipolar brush cells. Intersection of these data with embryonic expression patterns as documented in the genepaint repository does not support a hierarchical model of cerebellar interneuron development, but may be more easily reconciled with the view that cerebellar inhibitory interneurons derive from a common precursor pool from which they are specified only late into their development. The novel markers identified here should prove useful for probing the timing and mechanisms supporting cerebellar cortical interneuron specification and diversification.

  20. The effect of Jujuboside A on the evoked field potentials of granule cells in dentate gyrus

    Institute of Scientific and Technical Information of China (English)

    封洲燕; 郑筱祥

    2002-01-01

    Jujuboside A (JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus. The authors have not seen any report on JuA's direct effect on the neurons of the central nervous system. This study aimed to assess the effect of JuA on paired-pulse responses of dentate gyrus granule cells in urethane-anaesthetized rats, used intracerebroventricular (i.c.v.) JuA to mimic in vitro bath conditions in vivo. Paired-pulse stimuli with 80ms interpulse interval were used to stimulate the perforant pathway. Evoked responses were recorded in the dentate gyrus cell layer after i.c.v. administration of 0.9% normal saline or JuA. In the first responses, the slopes of excitatory postsynaptic potential (EPSP1) and the amplitudes of population spike (PS1) decreased significantly after administration of JuA while the PS1 latencies increased significantly. In the second responses, the EPSP2 slopes and PS2 latencies were changed similarly to those of the first ones, but PS2 amplitudes increased. The results showed that JuA may have some inhibitory effect on the granule cell excitability mediated by presynaptic mechanism but may have little effect on the excitability mediated by postsynaptic mechanism since the second evoked N-methyl-D-aspartic mediating paired-pulse facilitation is a postsynaptic mechanism.

  1. Effect of vagus nerve stimulation on the secretory-granule volume of the principal cells of the mouse gallbladder epithelium.

    Science.gov (United States)

    Wahlin, T; Hulliger, M; Axelsson, H

    1979-07-01

    Experiments in mice were performed in order to investigate whether vagal activity could affect glycoprotein secretion from gallbladder principal cells. This cell type was studied with the electron microscope in control animals and after electric stimulation of the right or left nervus vagus. The volume density of glycoprotein containing granules was determined using morphometry. It was found that stimulation of the left vagus nerve significantly reduced the relative cellular volume of secretory granules in the principal cells of the gallbladder. Right vagus stimulation was accompanied by a weak but insignificant increase in secretory granule content. It is suggested that the left vagus nerve may exert a direct influence on glycoprotein secretion from gallbladder principal cells.

  2. Mice lacking the transcription factor SHOX2 display impaired cerebellar development and deficits in motor coordination.

    Science.gov (United States)

    Rosin, Jessica M; McAllister, Brendan B; Dyck, Richard H; Percival, Christopher J; Kurrasch, Deborah M; Cobb, John

    2015-03-01

    Purkinje cells of the developing cerebellum secrete the morphogen sonic hedgehog (SHH), which is required to maintain the proliferative state of granule cell precursors (GCPs) prior to their differentiation and migration to form the internal granule layer (IGL). Despite a wealth of knowledge regarding the function of SHH during cerebellar development, the upstream regulators of Shh expression during this process remain largely unknown. Here we report that the murine short stature homeobox 2 (Shox2) gene is required for normal Shh expression in dorsal-residing Purkinje cells. Using two different Cre drivers, we show that elimination of Shox2 in the brain results in developmental defects in the inferior colliculus and cerebellum. Specifically, loss of Shox2 in the cerebellum results in precocious differentiation and migration of GCPs from the external granule layer (EGL) to the IGL. This correlates with premature bone morphogenetic protein 4 (Bmp4) expression in granule cells of the dorsal cerebellum. The size of the neonatal cerebellum is reduced in Shox2-mutant animals, which is consistent with a reduction in the number of GCPs present in the EGL, and could account for the smaller vermis and thinner IGL present in adult Shox2mutants. Shox2-mutant mice also display reduced exploratory activity, altered gait and impaired motor coordination. Our findings are the first to show a role for Shox2 in brain development. We provide evidence that Shox2 plays an important role during cerebellar development, perhaps to maintain the proper balance of Shh and Bmp expression levels in the dorsal vermis, and demonstrate that in the absence of Shox2, mice display both cerebellar impairments and deficits in motor coordination, ultimately highlighting the importance of Shox2 in the cerebellum.

  3. Temporal and spacial relationships between PSA-NCAM-expressing, newly generated granule cells, and radial glia-like cells in the adult dentate gyrus.

    Science.gov (United States)

    Seki, T; Arai, Y

    1999-08-02

    The granule cell layer of the adult dentate gyrus possesses two characteristics of an immature nervous system. The first is that granule cells continue to be generated in the innermost region of the granule cell layer, and newly generated and developing granule cells in the adult express highly polysialylated neural cell adhesion molecule (PSA-NCAM). PSA-NCAM-expressing apical dendrites have dynamically unstable processes such as irregular shafts and many stick-like or fan-shaped fine processes. The second is that radial glia-like cells expressing glial fibrillary acidic protein (GFAP) remain in a similar region of the granular layer. The numbers of PSA-NCAM-expressing granule cells and GFAP-expressing radial glia-like cells show a parallel age-dependent decrease during aging. Moreover, by using confocal laser scanning microscopy and immunoelectron microscopy, we demonstrated that PSA-NCAM-expressing dendrites and GFAP-expressing radial processes are partly in contact with each other, and occasionally the radial glial processes envelop the PSA-NCAM-positive dendritic processes. The temporal and spatial relationship between the two immature elements suggests that the processes of the radial glia-like cells are closely associated with the dendritic growth of the newly generated granule cells in the adult dentate gyrus and that these two immature features of neurons and glia in the dentate gyrus diminish with age.

  4. Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus.

    Science.gov (United States)

    Abrahám, Hajnalka; Veszprémi, Béla; Kravják, András; Kovács, Krisztina; Gömöri, Eva; Seress, László

    2009-04-01

    Calbindin (CB) is a calcium-binding protein that is present in principal cells as well as in interneurons of the hippocampal formation of various species including humans. Studies with transgenic mice revealed that CB is essential for long-term potentiation and synaptic plasticity which are the cellular basis of learning and memory. In a previous study we have shown that CB expression in granule cells of the dentate gyrus correlates with the functional maturation of the hippocampal formation in the rat. In the present study we examined the ontogeny of CB using immunohistochemistry in the human hippocampal formation paying special attention to the granule cells of the dentate gyrus. As early as the 14(th) week of gestation (GW), CB was being expressed by pyramidal cells of CA1-3 regions in the deepest cell rows of the pyramidal layer towards the ventricular zone. Later, CB sequentially appears in more superficial cell rows. After midgestation, CB disappears from CA3 pyramidal neurons. Expression of CB by granule cells starts at the 22(nd)-23(rd) GW, first by the most superficial neurons of the ectal end of the dorsal blade. At the 24(th) GW, CB is expressed by granule cells of the crest and medial portion of the ventral blade whereas later the entire ventral blade revealed CB immunoreactivity. At term, and in the first few postnatal months, CB-immunoreaction is detected in granule cells of both blades except for those neurons in the deepest cell rows at the hilar border. At around 2-3 years of age, all granule cells of the entire cell layer are CB-immunoreactive. Axons of granule cells, the mossy fibers, start to express CB around the 30(th) GW in stratum lucidum of CA3a. With further development, CB is expressed in CA3b and c, as well as in the hilus. An adult-like pattern of CB-immunoreactivity could be observed at 11 years of age. Our results indicate that (i) CB is expressed by hippocampal pyramidal cells a few weeks before midgestation; (ii) similarly to

  5. Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells.

    Science.gov (United States)

    Rapp, M; Segev, I; Yarom, Y

    1994-01-01

    1. Purkinje cells (PCs) from guinea-pig cerebellar slices were physiologically characterized using intracellular techniques. Extracellular caesium ions were used to linearize the membrane properties of PCs near the resting potential. Under these conditions the average input resistance, RN, was 29 M omega, the average system time constant, tau 0, was 82 ms and the average cable length, LN, was 0.59. 2. Three PCs were fully reconstructed following physiological measurements and staining with horseradish peroxidase. Assuming that each spine has an area of 1 micron 2 and that the spine density over the spiny dendrites is ten spines per micrometre length, the total membrane area of each PC is approximately 150,000 microns 2, of which approximately 100,000 microns 2 is in the spines. 3. Detailed passive cable and compartmental models were built for each of the three reconstructed PCs. Computational methods were devised to incorporate globally the huge number of spines into these models. In all three cells the models predict that the specific membrane resistivity, Rm, of the soma is much lower than the dendritic Rm (approximately 500 and approximately 100,000 omega cm2 respectively). The specific membrane capacitance, Cm, is estimated to be 1.5-2 muF cm-2 and the specific cytoplasm resistivity, Ri, is 250 omega cm. 4. The average cable length of the dendrites according to the model is 0.13 lambda, suggesting that under caesium conditions PCs are electrically very compact. Brief somatic spikes, however, are expected to attenuate 30-fold when spreading passively into the dendritic terminals. A simulated 200 Hz train of fast, 90 mV somatic spikes produced a smooth 12 mV steady depolarization at the dendritic terminals. 5. A transient synaptic conductance increase, with a 1 nS peak at 0.5 ms and a driving force of 60 mV, is expected to produce approximately 20 mV peak depolarization at the spine head membrane. This EPSP then attenuates between 200- and 900-fold into the soma

  6. Interleukin-1 mediates long-term hippocampal dentate granule cell loss following postnatal viral infection.

    Science.gov (United States)

    Orr, Anna G; Sharma, Anup; Binder, Nikolaus B; Miller, Andrew H; Pearce, Bradley D

    2010-05-01

    Viral infections of the developing CNS can cause long-term neuropathological sequela through undefined mechanisms. Proinflammatory cytokines such as IL-1beta have gained attention in mediating neurodegeneration in corticohippocampal structures due to a variety of insults in adults, though there is less information on the developing brain. Little is known concerning the spatial-temporal pattern of IL-1beta induction in the developing hippocampus following live virus infection, and there are few studies addressing the long-term consequences of this cytokine induction. We report that infection of rats with lymphocytic choriomeningitis virus on postnatal day 4 induces IL-1beta protein in select regions of the hippocampus on 6, 15, 21, and 45 days after infection. This infection resulted in a 71% reduction of dentate granule cell neurons by the time the rats reached mid-adulthood. We further investigated the causative role of IL-1 in this dentate granule cell loss by blocking IL-1 activity using an IL-1ra-expressing adenoviral vector administered at the time of infection. Blockade of IL-1 abrogated the infection-associated neuron loss in this vivo model. Considering that IL-1 can be triggered by multiple perinatal insults, our findings suggest that early therapy with anti-inflammatory agents that block IL-1 may be effective for reducing adulthood neuropathology.

  7. The effect of Jujuboside A on the evoked field potentials of Granule cells in dentate gyrus

    Institute of Scientific and Technical Information of China (English)

    封洲燕; 郑筱祥

    2002-01-01

    Jujuboside A( JuA) is a main component of Jujubogenin extracted from the seeds of Ziziphus.The authors have not seen report on JuA's direct effect on the neruons of the central nervous system.This study aimed to assess the effect of JuA on paried-pulse responses of dentate gyrus granule cells in urethaneanasesthetized rats,used intracerebroventricular(i.c.v.) JuA to mimic in vitro tath conditions in vivo.Pariedpulse stimuli with 80ms interpulse interval were used to stimulate the perforant pathway.Evoked responses first responses,the slopoes of excitatory postsynaptic potential(EPSP1) and the amplitudes of population spike (PS1) decreased significantly after administration of JuA while the PS1 latencies increased significantly.In the second responses.the EPSP2 slops and PS2 latencies were changed similarly to those of the first ones.but PS2 amplitudes increased.The results showed that JuA may have some inhibitory effect on the granule cell excitability mediated by presynaptic mechanism but may have little effect on the excitability mediated by postsynaptic mechanism since the second evoked N-methyl-D-aspartic mediating paired-pulse facilitation is a postsynaptic mechanism.

  8. Telocytes as a Source of Progenitor Cells in Regeneration and Repair Through Granulation Tissue.

    Science.gov (United States)

    Díaz-Flores, Lucio; Gutiérrez, Ricardo; Pino García, Maria; González, Miriam; Díaz-Flores, Lucio; Francisco Madrid, Juan

    2016-01-01

    This review outlines the role of CD34+ stromal cells/telocytes (CD34+ SC/TCs) in repair and considers the following issues. Firstly, the conceptual aspects of repair, including regeneration and repair through granulation tissue (RTGT) as two types of repair, RTGT stages (inflammatory, proliferative, and remodeling), and tissue in repair as a substrate to assess the in vivo behavior of activated CD34+ SC/TCs. Subsequently, current knowledge of CD34+ SC/TCs, such as identification, characteristics, and functions, as well as possible stages (quiescent and activated) are taken into account. We then consider the role in regeneration of quiescent CD34+ SC/TCs (in unperturbed physiological conditions) as a nurse of stem cells (e.g., in the heart, skin, respiratory tree, gastrointestinal tract, liver, eye, and choroid plexus). Special attention is paid to the characteristics of activated CD34+ SC/TCs and the overlapping steps of activation with and without loss of CD34 expression and with and without gain of αSMA expression. With this contribution, we establish the role of CD34+ SC/TCs as progenitor cells and as a source of fibroblasts and myofibroblasts in repair through granulation tissue, fibrosis, and tumor stroma. Activated CD34+ SC/TCs in encapsulation and other processes (e.g., Reinke's edema, cutaneous myxoid cyst, mixomatous mitral valve degeneration, and fibrous papula of the face) are also outlined. Finally, similarities between modifications of CD34+ SC/TCs during in vivo activation and of multipotent mesenchymal stromal/stem cells in culture are examined in order to correlate the growing literature on CD34+ SC/TCs and the exponential research in cultured mesenchymal stromal/stem cells.

  9. Cerebellar Structure and Function in Male Wistar-Kyoto Hyperactive Rats

    Science.gov (United States)

    Thanellou, Alexandra; Green, John T.

    2014-01-01

    Previous research has suggested that the Wistar-Kyoto Hyperactive (WKHA) rat strain may model some of the behavioral features associated with attention-deficit/hyperactivity disorder (ADHD). We have shown that, in cerebellar-dependent eyeblink conditioning, WKHA emit eyeblink CRs with shortened onset latencies. To further characterize the shortened CR onset latencies seen in WKHA rats, we examined 750-ms delay conditioning with either a tone CS or a light CS, we extended acquisition training, and we included Wistar rats as an additional, outbred control strain. Our results indicated that WKHAs learned more quickly and showed a shortened CR onset latency to a tone CS compared to both Wistar-Kyoto Hypertensive (WKHT) and Wistars. WKHAs and Wistars show a lengthening of CR onset latency over conditioning with a tone CS and an increasing confinement of CRs to the later part of the tone CS (inhibition of delay). WKHAs learned more quickly to a light CS only in comparison to WKHTs and showed a shortened CR onset latency only in comparison to Wistars. Wistars showed an increasing confinement of CRs to the late part of the light CS over conditioning. We used unbiased stereology to estimate the number of Purkinje and granule cells in the cerebellar cortex of the three strains. Our results indicated that WKHAs have more granule cells than Wistars and WKHTs and more Purkinje cells than Wistars. Results are discussed in terms of CS processing and cerebellar cortical contributions to EBC. PMID:23398437

  10. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Alice C N Brown

    2011-09-01

    Full Text Available Natural Killer (NK cells are innate immune cells that secrete lytic granules to directly kill virus-infected or transformed cells across an immune synapse. However, a major gap in understanding this process is in establishing how lytic granules pass through the mesh of cortical actin known to underlie the NK cell membrane. Research has been hampered by the resolution of conventional light microscopy, which is too low to resolve cortical actin during lytic granule secretion. Here we use two high-resolution imaging techniques to probe the synaptic organisation of NK cell receptors and filamentous (F-actin. A combination of optical tweezers and live cell confocal microscopy reveals that microclusters of NKG2D assemble into a ring-shaped structure at the centre of intercellular synapses, where Vav1 and Grb2 also accumulate. Within this ring-shaped organisation of NK cell proteins, lytic granules accumulate for secretion. Using 3D-structured illumination microscopy (3D-SIM to gain super-resolution of ~100 nm, cortical actin was detected in a central region of the NK cell synapse irrespective of whether activating or inhibitory signals dominate. Strikingly, the periodicity of the cortical actin mesh increased in specific domains at the synapse when the NK cell was activated. Two-colour super-resolution imaging revealed that lytic granules docked precisely in these domains which were also proximal to where the microtubule-organising centre (MTOC polarised. Together, these data demonstrate that remodelling of the cortical actin mesh occurs at the central region of the cytolytic NK cell immune synapse. This is likely to occur for other types of cell secretion and also emphasises the importance of emerging super-resolution imaging technology for revealing new biology.

  11. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy.

    Science.gov (United States)

    Brown, Alice C N; Oddos, Stephane; Dobbie, Ian M; Alakoskela, Juha-Matti; Parton, Richard M; Eissmann, Philipp; Neil, Mark A A; Dunsby, Christopher; French, Paul M W; Davis, Ilan; Davis, Daniel M

    2011-09-01

    Natural Killer (NK) cells are innate immune cells that secrete lytic granules to directly kill virus-infected or transformed cells across an immune synapse. However, a major gap in understanding this process is in establishing how lytic granules pass through the mesh of cortical actin known to underlie the NK cell membrane. Research has been hampered by the resolution of conventional light microscopy, which is too low to resolve cortical actin during lytic granule secretion. Here we use two high-resolution imaging techniques to probe the synaptic organisation of NK cell receptors and filamentous (F)-actin. A combination of optical tweezers and live cell confocal microscopy reveals that microclusters of NKG2D assemble into a ring-shaped structure at the centre of intercellular synapses, where Vav1 and Grb2 also accumulate. Within this ring-shaped organisation of NK cell proteins, lytic granules accumulate for secretion. Using 3D-structured illumination microscopy (3D-SIM) to gain super-resolution of ~100 nm, cortical actin was detected in a central region of the NK cell synapse irrespective of whether activating or inhibitory signals dominate. Strikingly, the periodicity of the cortical actin mesh increased in specific domains at the synapse when the NK cell was activated. Two-colour super-resolution imaging revealed that lytic granules docked precisely in these domains which were also proximal to where the microtubule-organising centre (MTOC) polarised. Together, these data demonstrate that remodelling of the cortical actin mesh occurs at the central region of the cytolytic NK cell immune synapse. This is likely to occur for other types of cell secretion and also emphasises the importance of emerging super-resolution imaging technology for revealing new biology.

  12. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    Science.gov (United States)

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process.

  13. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously.

    Directory of Open Access Journals (Sweden)

    Balakrishnan Kunasundari

    Full Text Available Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha was famous as a potential single cell protein (SCP in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.

  14. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously.

    Science.gov (United States)

    Kunasundari, Balakrishnan; Murugaiyah, Vikneswaran; Kaur, Gurjeet; Maurer, Frans H J; Sudesh, Kumar

    2013-01-01

    Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha) was famous as a potential single cell protein (SCP) in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB) storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.

  15. Frequency-dependent reliability of spike propagation is function of axonal voltage-gated sodium channels in cerebellar Purkinje cells.

    Science.gov (United States)

    Yang, Zhilai; Wang, Jin-Hui

    2013-12-01

    The spike propagation on nerve axons, like synaptic transmission, is essential to ensure neuronal communication. The secure propagation of sequential spikes toward axonal terminals has been challenged in the neurons with a high firing rate, such as cerebellar Purkinje cells. The shortfall of spike propagation makes some digital spikes disappearing at axonal terminals, such that the elucidation of the mechanisms underlying spike propagation reliability is crucial to find the strategy of preventing loss of neuronal codes. As the spike propagation failure is influenced by the membrane potentials, this process is likely caused by altering the functional status of voltage-gated sodium channels (VGSC). We examined this hypothesis in Purkinje cells by using pair-recordings at their somata and axonal blebs in cerebellar slices. The reliability of spike propagation was deteriorated by elevating spike frequency. The frequency-dependent reliability of spike propagation was attenuated by inactivating VGSCs and improved by removing their inactivation. Thus, the functional status of axonal VGSCs influences the reliability of spike propagation.

  16. Effects of Xiaoke granule on transforming growth factor-beta1 expression and proliferation in rat mesangial cells

    Institute of Scientific and Technical Information of China (English)

    JI Xiao-mei; WANG Qian; GONG Mu-xin; DU Yu-qiong; JIA De-xian

    2006-01-01

    @@ Diabetic nephropathy, one of the major causes of death of diabetes patients, is diagnosed as the thickening of glomerular basement membrane and progressive expansion of the glomerular mesangium and tubulointerstitium. Intensive studies have shown that hyperglycemia is the key factor for renal sclerosis which can lead to end-stage renal disease for diabetic patients.1,2 Our previous studies demonstrated that Xiaoke granule can inhibit the progression of diabetic nephropathy. However, its mechanisms remain unknown.3,4 In this study, we found that Xiaoke granule coincidently depresses transforming growth factor-beta1 (TGF-β1)expression and inhibits the effect of high glucose on mesangial cell proliferation. This might suggest that the effect of Xiaoke granule on inhibiting progression of diabetic nephropathy through down-regulating TGF-β1 expression.

  17. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells

    DEFF Research Database (Denmark)

    Boding, Lasse; Hansen, Ann K; Meroni, Germana

    2014-01-01

    upregulated in murine cytotoxic lymphocytes (CTLs), and that it controls TCR signaling, centrosome trafficking and exocytosis of lytic granules. In accordance, we find that the killing capacity of MID1(-/-) CTLs is impaired. Transfection of MID1 into MID1(-/-) CTLs completely rescued lytic granule exocytosis......, and vice versa, knock-down of MID1 inhibited exocytosis of lytic granules in wild-type CTLs, cementing a central role for MID1 in the regulation of granule exocytosis. Thus, MID1 orchestrates multiple events in CTL responses, adding a novel level of regulation to CTL activation and cytotoxicity...

  18. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers.

    Directory of Open Access Journals (Sweden)

    John E Greenlee

    Full Text Available Anti-Yo antibodies are immunoglobulin G (IgG autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1 Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2 whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3 whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient

  19. Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer.

    Directory of Open Access Journals (Sweden)

    Takeru Honda

    2011-07-01

    Full Text Available Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg²⁺ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg²⁺ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state. In contrast, for lower Mg²⁺ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state. It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.

  20. Effect of Rougan Huaqian granules combined with human mesenchymal stem cell transplantation on liver fibrosis in cirrhosis rats

    Institute of Scientific and Technical Information of China (English)

    Zhen-Chang Wang; Shan Yang; Jing-Jing Huang; Song-Lin Chen; Quan-Qiang Li; Yuan Li

    2014-01-01

    Objective:To observe the effect ofRouganHuaqian granules combined with human mesenchymal stem cell(hMSC) transplantation on the liver fibrosis in carbon tetrachloride-induced cirrhosis rats.Methods:SixtySD rats were randomly divided into five groups.The rats in control group received intraperitoneal injection of saline, while those in model control group, treatment groupA, groupB and groupC received intraperitoneal injection of carbon tetrachloride oily solution to induce liver cirrhosis within8 weeks.Then, the rats in the model control group, treatment groupA, treatment groupB, treatment groupC received vein tail injection of saline, RouganHuaqian granules, hMSC suspension andRouganHuaqian granules combined with hMSC suspension.Results:The treatment groups had significantly different liverfunction(AST levels), liver fibrosis index(laminin andHA), hepatic sinusoidal wallsα-smooth muscle actin,Ⅳ collagen and laminin protein expression andⅠ,Ⅲ collagen from the model group(P<0.05). The transplanted cells showed human hepatocyte-like cells differentiation trend in the liver. Conclusions:TheRouganHuaqian granules combined with hMSC transplantation can alleviate liver fibrosis in cirrhosis rats.

  1. Application of acid-treated yeast cell wall (AYC) as a pharmaceutical additive. III. AYC aqueous coating onto granules and film formation mechanism of AYC.

    Science.gov (United States)

    Yuasa, Hiroshi; Kaneshige, Junichi; Ozeki, Tetsuya; Kasai, Takahide; Eguchi, Takahiro; Ishiwaki, Naomu

    2002-04-26

    From the viewpoint of effective utilization of natural resources and development of new pharmaceutical materials, acid-treated yeast cell wall (AYC) was prepared via a novel approach involving acidification of brewers' yeast cell wall. AYC aqueous dispersion containing 5% (w/v) AYC and 0.5% (w/v) glycerol was prepared. Subsequently, AYC was coated onto core granules containing acetaminophen (AAP). Spray mist size under various spray conditions and viscosity of the AYC aqueous dispersion at various AYC concentrations were measured. AYC spray mists were optically observed. The surface of AYC cast film and AYC-coated granules were observed with a confocal scanning laser microscope. We attempted to show the utility of AYC as a novel material for granule coating, following the tablet coating in our previous report. In addition, the film formation mechanism of AYC was investigated. A smooth surface of the AYC-coated granules was obtained at a coating ratio of only 5%, which generally requires approximately 15-30% coating against the core granule weight, with no aggregation. These results are attributable to the fact that the granules were coated with a large number of small mists of AYC and the coating progressed efficiently, and the thin film layer of AYC was formed on the granules by mutual tangling of the hydrogel layers of AYC polysaccharides. AAP release from AYC-coated granules was obviously rapid, suggesting the high utility of AYC as a coating material for the rapidly releasing granules.

  2. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    Science.gov (United States)

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  3. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane

    DEFF Research Database (Denmark)

    Rørvig, Sara; Østergaard, Ole; Heegaard, Niels Henrik Helweg;

    2013-01-01

    granules, SVs, and plasma membrane has been performed before. Here, we performed subcellular fractionation on freshly isolated human neutrophils by nitrogen cavitation and density centrifugation on a four-layer Percoll gradient. Granule subsets were pooled and subjected to SDS-PAGE, and gel pieces were in...

  4. Potential implications of a monosynaptic pathway from mossy cells to adult-born granule cells of the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Helen eScharfman

    2015-08-01

    Full Text Available The dentate gyrus (DG is important to many aspects of hippocampal function, but there are many aspects of the DG that are incompletely understood. One example is the role of mossy cells (MCs, a major DG cell type that is glutamatergic and innervates the primary output cells of the DG, the granule cells (GCs. MCs innervate the GCs as well as local circuit neurons that make GABAergic synapses on GCs, so the net effect of MCs on GCs - and therefore the output of the DG - is unclear.Here we first review fundamental information about MCs and the current hypotheses for their role in the normal DG and in diseases that involve the DG. Then we review previously published data which suggest that MCs are a source of input to a subset of GCs that are born in adulthood (adult-born GCs. In addition, we discuss the evidence that adult-born GCs may support the normal inhibitory 'gate' functions of the DG, where the GCs are a filter or gate for information from the entorhinal cortical input to area CA3. The implications are then discussed in the context of seizures and temporal lobe epilepsy (TLE. In TLE, it has been suggested that the DG inhibitory gate is weak or broken and MC loss leads to insufficient activation of inhibitory neurons, causing hyperexcitability. That idea was called the dormant basket cell hypothesis. Recent data suggest that loss of normal adult-born GCs may also cause disinhibition, and seizure susceptibility. Therefore, we propose a reconsideration of the dormant basket cell hypothesis with an intervening adult-born GC between the MC and basket cell and call this hypothesis the dormant immature granule cell hypothesis.

  5. Molecular and functional characterization of GAD67-expressing, newborn granule cells in mouse dentate gyrus

    Science.gov (United States)

    Cabezas, Carolina; Irinopoulou, Theano; Cauli, Bruno; Poncer, Jean Christophe

    2013-01-01

    Dentate gyrus granule cells (GCs) have been suggested to synthesize both GABA and glutamate immediately after birth and under pathological conditions in the adult. Expression of the GABA synthesizing enzyme GAD67 by GCs during the first few weeks of postnatal development may then allow for transient GABA synthesis and synaptic release from these cells. Here, using the GAD67-EGFP transgenic strain G42, we explored the phenotype of GAD67-expressing GCs in the mouse dentate gyrus. We report a transient, GAD67-driven EGFP expression in differentiating GCs throughout ontogenesis. EGFP expression correlates with the expression of GAD and molecular markers of GABA release and uptake in 2–4 weeks post-mitotic GCs. These rather immature cells are able to fire action potentials (APs) and are synaptically integrated in the hippocampal network. Yet they show physiological properties that differentiate them from mature GCs. Finally, GAD67-expressing GCs express a specific complement of GABAA receptor subunits as well as distinctive features of synaptic and tonic GABA signaling. Our results reveal that GAD67 expression in dentate gyrus GCs is a transient marker of late differentiation that persists throughout life and the G42 strain may be used to visualize newborn GCs at a specific, well-defined differentiation stage. PMID:23565079

  6. Regulation of Dense-Core Granule Replenishment by Autocrine BMP Signalling in Drosophila Secondary Cells.

    Science.gov (United States)

    Redhai, Siamak; Hellberg, Josephine E E U; Wainwright, Mark; Perera, Sumeth W; Castellanos, Felix; Kroeger, Benjamin; Gandy, Carina; Leiblich, Aaron; Corrigan, Laura; Hilton, Thomas; Patel, Benjamin; Fan, Shih-Jung; Hamdy, Freddie; Goberdhan, Deborah C I; Wilson, Clive

    2016-10-01

    Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic β-cells, BMP signalling is also implicated in the control of secretion.

  7. Electrophysiological changes of CA3 neurons and dentate granule cells following transient forebrain ischemia.

    Science.gov (United States)

    Howard, E M; Gao, T M; Pulsinelli, W A; Xu, Z C

    1998-07-06

    The electrophysiological responses of CA3 pyramidal neurons and dentate granule (DG) cells in rat hippocampus were studied after transient forebrain ischemia using intracellular recording and staining techniques in vivo. Approximately 5 min of ischemic depolarization was induced using 4-vessel occlusion method. The spike threshold and rheobase of CA3 neurons remained unchanged up to 12 h following reperfusion. No significant change in spike threshold was observed in DG cells but the rheobase transiently increased 6-9 h after ischemia. The input resistance and time constant of CA3 neurons increased 0-3 h after ischemia and returned to control ranges at later time periods. The spontaneous firing rate in CA3 neurons transiently decreased shortly following reperfusion, while that of DG cells progressively decreased after ischemia. In CA3 neurons, the amplitude and slope of excitatory postsynaptic potentials (EPSPs) transiently decreased 0-3 h after reperfusion, and the stimulus intensity threshold for EPSPs transiently increased at the same time. No significant changes in amplitude and slope of EPSPs were observed in DG cells, but the stimulus intensity threshold for EPSPs slightly increased shortly after reperfusion. The present study demonstrates that the excitability of CA3 pyramidal neurons and DG cells after 5 min ischemic depolarization is about the same as control levels, whereas the synaptic transmission to these cells was transiently suppressed after the ischemic insult. These results suggest that synaptic transmission is more sensitive to ischemia than membrane properties, and the depression of synaptic transmission may be a protective mechanism against ischemic insults.

  8. Urethral Reconstruction Using Mesothelial Cell-Seeded Autogenous Granulation Tissue Tube: An Experimental Study in Male Rabbits

    Science.gov (United States)

    Jiang, Shiwei; Xu, Zhonghua; Zhao, Yuanyuan; Yan, Lei; Zhou, Zunlin

    2017-01-01

    Objective. This study was to evaluate the utility of the compound graft for tubularized urethroplasty by seeding mesothelial cells onto autogenous granulation tissue. Methods. Silastic tubes were implanted subcutaneously in 18 male rabbits, of which nine underwent omentum biopsies simultaneously for in vitro expansion of mesothelial cells. The granulation tissue covering the tubes was harvested 2 weeks after operation. Mesothelial cells were seeded onto and cocultured with the tissue for 7 days. A pendulous urethral segment of 1.5 cm was totally excised. Urethroplasty was performed with mesothelial cell-seeded tissue tubes in an end-to-end fashion in nine rabbits and with unseeded grafts in others as controls. Serial urethrograms were performed at 1, 2, and 6 months postoperatively. Meanwhile, the neourethra was harvested and analyzed grossly and histologically. Results. Urethrograms showed cell-seeded grafts maintained wide at each time point, while strictures formation was found in unseeded grafts. Histologically, layers of urothelium surrounded by increasingly organized smooth muscles were observed in seeded grafts. In contrast, myofibroblasts accumulation and extensive scarring occurred in unseeded grafts. Conclusions. Mesothelial cell-seeded granulation tissue tube can be successfully used for tubularized urethroplasty in male rabbits.

  9. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.

    Science.gov (United States)

    Bao, S; Chen, L; Qiao, X; Knusel, B; Thompson, R F

    1998-01-01

    In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expression of brain-derived neurotrophic factor (BDNF) was selectively absent in the cerebellar granule cells. The cytoarchitecture of the waggler cerebellum appeared to be normal at the light microscope level. The mutant mice exhibited no sensory deficits to auditory stimuli or heat-induced pain. However, they were massively impaired in classic eye-blink conditioning. These results suggest that BDNF may have a role in normal cerebellar neuronal function, which, in turn, is essential for classic eye-blink conditioning.

  10. Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue

    Directory of Open Access Journals (Sweden)

    Mehta Bhavya C

    2005-10-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are projections of the arachnoid membrane into the dural venous sinuses. They function, along with the extracranial lymphatics, to circulate the cerebrospinal fluid (CSF to the systemic venous circulation. Disruption of normal CSF dynamics may result in increased intracranial pressures causing many problems including headaches and visual loss, as in idiopathic intracranial hypertension and hydrocephalus. To study the role of AGs in CSF egress, we have grown cells from human AG tissue in vitro and have characterized their expression of those cytoskeletal and junctional proteins that may function in the regulation of CSF outflow. Methods Human AG tissue was obtained at autopsy, and explanted to cell culture dishes coated with fibronectin. Typically, cells migrated from the explanted tissue after 7–10 days in vitro. Second or third passage cells were seeded onto fibronectin-coated coverslips at confluent densities and grown to confluency for 7–10 days. Arachnoidal cells were tested using immunocytochemical methods for the expression of several common cytoskeletal and junctional proteins. Second and third passage cultures were also labeled with the common endothelial markers CD-31 or VE-cadherin (CD144 and their expression was quantified using flow cytometry analysis. Results Confluent cultures of arachnoidal cells expressed the intermediate filament protein vimentin. Cytokeratin intermediate filaments were expressed variably in a subpopulation of cells. The cultures also expressed the junctional proteins connexin43, desmoplakin 1 and 2, E-cadherin, and zonula occludens-1. Flow cytometry analysis indicated that second and third passage cultures failed to express the endothelial cell markers CD31 or VE-cadherin in significant quantities, thereby showing that these cultures did not consist of endothelial cells from the venous sinus wall. Conclusion To our knowledge, this is the first report of

  11. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    Science.gov (United States)

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  12. Cancer metastasis-suppressing peptide metastin upregulates excitatory synaptic transmission in hippocampal dentate granule cells.

    Science.gov (United States)

    Arai, Amy C; Xia, Yan-Fang; Suzuki, Erika; Kessler, Markus; Civelli, Olivier; Nothacker, Hans-Peter

    2005-11-01

    Metastin is an antimetastatic peptide encoded by the KiSS-1 gene in cancer cells. Recent studies found that metastin is a ligand for the orphan G-protein-coupled receptor GPR54, which is highly expressed in specific brain regions such as the hypothalamus and parts of the hippocampus. This study shows that activation of GPR54 by submicromolar concentrations of metastin reversibly enhances excitatory synaptic transmission in hippocampal dentate granule cells in a mitogen-activated protein (MAP) kinase-dependent manner. Synaptic enhancement by metastin was suppressed by intracellular application of the G-protein inhibitor GDP-beta-S and the calcium chelator BAPTA. Analysis of miniature excitatory postsynaptic currents (mEPSCs) revealed an increase in the mean amplitude but no change in event frequency. This indicates that GPR54 and the mechanism responsible for the increase in EPSCs are postsynaptic. Metastin-induced synaptic potentiation was abolished by 50 microM PD98059 and 20 microM U0126, two inhibitors of the MAP kinases ERK1 and ERK2. The effect was also blocked by inhibitors of calcium/calmodulin-dependent kinases and tyrosine kinases. RT-PCR experiments showed that both KiSS-1 and GPR54 are expressed in the hippocampal dentate gyrus. Metastin is thus a novel endogenous factor that modulates synaptic excitability in the dentate gyrus through mechanisms involving MAP kinases, which in turn may be controlled upstream by calcium-activated kinases and tyrosine kinases.

  13. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts.

    Science.gov (United States)

    Bernhardt, A; Dittrich, R; Lode, A; Despang, F; Gelinsky, M

    2013-07-01

    Conventionally sintered hydroxyapatite-based materials for bone repair show poor resorbability due to the loss of nanocrystallinity. The present study describes a method to establish nanocrystalline hydroxyapatite granules. The material was prepared by ionotropic gelation of an alginate sol containing hydroxyapatite (HA) powder. Subsequent thermal elimination of alginate at 650 °C yielded non-sintered, but unexpectedly stable hydroxyapatite granules. By adding stearic acid as an organic filler to the alginate/HA suspension, the granules exhibited macropores after thermal treatment. A third type of material was achieved by additional coating of the granules with silica particles. Microstructure and specific surface area of the different materials were characterized in comparison to the already established granular calcium phosphate material Cerasorb M(®). Cytocompatibility and potential for bone regeneration of the materials was evaluated by in vitro examinations with osteosarcoma cells and osteoclasts. Osteoblast-like SaOS-2 cells proliferated on all examined materials and showed the typical increase of alkaline phosphatase (ALP) activity during cultivation. Expression of bone-related genes coding for ALP, osteonectin, osteopontin, osteocalcin and bone sialoprotein II on the materials was proven by RT-PCR. Human monocytes were seeded onto the different granules and osteoclastogenesis was examined by activity measurement of tartrate-specific acid phosphatase (TRAP). Gene expression analysis after 23 days of cultivation revealed an increased expression of osteoclast-related genes TRAP, vitronectin receptor and cathepsin K, which was on the same level for all examined materials. These results indicate, that the nanocrystalline granular materials are of clinical interest, especially for bone regeneration.

  14. Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells

    Science.gov (United States)

    Bosch, Carles; Masachs, Nuria; Exposito-Alonso, David; Martínez, Albert; Teixeira, Cátia M.; Fernaud, Isabel; Pujadas, Lluís; Ulloa, Fausto; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2016-01-01

    The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated. Significance Statement The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic

  15. Tracing CD34+ Stromal Fibroblasts in Palatal Mucosa and Periodontal Granulation Tissue as a Possible Cell Reservoir for Periodontal Regeneration.

    Science.gov (United States)

    Roman, Alexandra; Páll, Emőke; Mihu, Carmen M; Petruţiu, Adrian S; Barbu-Tudoran, Lucian; Câmpian, Radu S; Florea, Adrian; Georgiu, Carmen

    2015-08-01

    The aim of the present research was to trace CD34+ stromal fibroblastic cells (CD34+ SFCs) in the palatal connective tissue harvested for muco-gingival surgical procedures and in granulation tissues from periodontal pockets using immunohistochemical and transmission electron microscopy. Immunohistochemical analysis targeted the presence of three antigens: CD31, α-smooth muscle actin (α-SMA), and CD34. In the palate, CD31 staining revealed a colored inner ring of the vessels representing the endothelium, α-SMA+ was located in the medial layer of the vasculature, and CD34 was intensely expressed by endothelial cells and artery adventitial cells (considered to be CD34+ SFCs). Granulation tissue showed the same pattern for CD31+ and α-SMA, but a different staining pattern for CD34. Ultrastructural examination of the palatal tissue highlighted perivascular cells with fibroblast-like characteristics and pericytes in close spatial relationship to endothelial cells. The ultrastructural evaluation of granulation tissue sections confirmed the presence of neovasculature and the inflammatory nature of this tissue. The present study traced the presence of CD34+ SFCs and of pericytes in the palatal connective tissue thus highlighting once more its intrinsic regenerative capabilities. The clinical and systemic factors triggering mobilization and influencing the fate of local CD34+SCFs and other progenitors are issues to be further investigated.

  16. Early events of secretory granule formation in the rat parotid acinar cell under the influence of isoproterenol. An ultrastructural and lectin cytochemical study

    Directory of Open Access Journals (Sweden)

    F D’Amico

    2009-12-01

    Full Text Available The events involved in the maturation process of acinar secretory granules of rat parotid gland were investigated ultrastructurally and cytochemically by using a battery of four lectins [Triticum vulgaris agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, Glycine max agglutinin (SBA, Arachys hypogaea agglutinin (PNA]. In order to facilitate the study, parotid glands were chronically stimulated with isoproterenol to induce secretion. Specimens were embedded in the Lowicryl K4M resin. The trans-Golgi network (TGN derived secretory granules, which we refer to as immature secretory granules, were found to be intermediate structures in the biogenesis process of the secretory granules in the rat parotid acinar cell. These early structures do not seem to be the immediate precursor of the mature secretory granules: in fact, a subsequent interaction process between these early immature granule forms and TGN elements seems to occur, leading, finally, to the mature granules. These findings could explain the origin of the polymorphic subpopulations of the secretory granules in the normal acinar cells of the rat parotid gland. The lectin staining patterns were characteristic of each lectin. Immature and mature secretory gran- ules were labelled with WGA, SBA, PNA, and lightly with UEA-I. Cis and intermediate cisternae of the Golgi apparatus were labelled with WGA, and trans cisternae with WGA and SBA.

  17. Effect of Dachengqi Tang(大承气汤)Granule on Proliferation of Intestinal Epithelial Cells in Rats with Experimental Intestinal Obstruction

    Institute of Scientific and Technical Information of China (English)

    KANGYi; LINXiu-zhen

    2003-01-01

    Objective:To study the effects of Dachengqi Tang(DCQT) granule on the proliferation of the intestinal epithelial cells in rats with experimental intestinal obstruction.Methods:Experimental intes-tinal obstruction models were established in rats and autoradiography with 3H-TdR was used to determine 3H-TdR labeling counts of intestinal epithelial cells in rats.Results:DCQT granule had no effects on 3H-TdR labeling counts of intestinal epithelial cells in normal rats.DCQT granule obviously increases the rate of renovation in intestinal epithelial cells of the intestinal obstruction rats.Conclusion:DCQT granule could reinforce the intestinal mucosa's defensive function by means of increasing the proliferation of intesti-nal epithelial cells.

  18. Effect of Dachengqi Tang (大承气汤) Granule on Proliferation of Intestinal Epithelial Cells in Rats with Experimental Intestinal Obstruction

    Institute of Scientific and Technical Information of China (English)

    康毅; 林秀珍

    2003-01-01

    Objective: To study the effects of Dachengqi Tang (DCQT) granule on the proliferation of the intestinal epithelial cells in rats with experimental intestinal obstruction. Methods: Experimental intestinal obstruction models were established in rats and autoradiography with 3H-TdR was used to determine 3H-TdR labeling counts of intestinal epithelial cells in rats. Results: DCQT granule had no effects on 3H-TdR labeling counts of intestinal epithelial cells in normal rats. DCQT granule obviously increases the rate of renovation in intestinal epithelial cells of the intestinal obstruction rats. Conclusion: DCQT granule could reinforce the intestinal mucosa's defensive function by means of increasing the proliferation of intestinal epithelial cells.

  19. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats.

    Science.gov (United States)

    Prastiwi, D; Djunaidi, A; Partadiredja, G

    2015-11-01

    Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells.

  20. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus.

    Science.gov (United States)

    Katoh-Semba, Ritsuko; Asano, Tomiko; Ueda, Hiroshi; Morishita, Rika; Takeuchi, Ikuo K; Inaguma, Yutaka; Kato, Kanefusa

    2002-08-01

    The dentate gyrus of the hippocampus, generating new cells throughout life, is essential for normal recognition memory performance. Reduction of brain-derived neurotrophic factor (BDNF) in this structure impairs its functions. To elucidate the association between BDNF levels and hippocampal neurogenesis, we first conducted a search for compounds that stimulate endogenous BDNF production in hippocampal granule neurons. Among ion channel modulators tested, riluzole, a neuroprotective agent with anticonvulsant properties that is approved for treatment of amyotrophic lateral sclerosis, was highly effective as a single dose by an intraperitoneal injection, causing a rise in BDNF localized in dentate granule neurons, the hilus, and the stratum radiatum of the CA3 region. Repeated, but not single, injections resulted in prolonged elevation of hippocampal BDNF and were associated with increased numbers of newly generated cells in the granule cell layer. This appeared due to promoted proliferation rather than survival of precursor cells, many of which differentiated into neurons. Intraventricular administration of BDNF-specific antibodies blocked such riluzole effects, suggesting that BDNF increase is necessary for the promotion of precursor proliferation. Our results suggest the basis for a new strategy for treatment of memory dysfunction.

  1. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers.

    Science.gov (United States)

    Tamura, Makoto; Tamura, Naohiro; Ikeda, Takamitsu; Koyama, Ryuta; Ikegaya, Yuji; Matsuki, Norio; Yamada, Maki K

    2009-01-31

    Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.

  2. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers

    Directory of Open Access Journals (Sweden)

    Tamura Makoto

    2009-01-01

    Full Text Available Abstract Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF, a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.

  3. Is bilirubin able to affect the cell cycle in Gunn rat brain? - An in vivo and in vitro study -

    OpenAIRE

    Robert, Maria Celeste

    2012-01-01

    The hyperbilirubinemic jj Gunn rat is a well established animal model for Crigler-Najjar type I Syndrome and neonatal jaundice. Similarly to humans, they present neurological deficits and what is more a marked cerebellar hypoplasia with a prominent loss and degeneration of Purkinje cells and granule neurons. Since high levels of bilirubin have been proven to arrest the cell cycle progression, we addressed the question if the cerebellar hypoplasia observed in the hyperbilirubinemic Gunn rat co...

  4. Mathematical modeling and statistical analysis of calcium-regulated insulin granule exocytosis in ß-cells from mice and humans

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Cortese, Giuliana; Eliasson, Lena

    2011-01-01

    on depolarization-evoked Ca2+-currents and corresponding capacitance measurements. Using a statistical mixed-effects model, we show that the data indicate that pool depletion is negligible in response to short depolarizations in mouse ß-cells. We then review mathematical models of granule dynamics and exocytosis...... in rodent ß-cells and present a mathematical description of Ca2+-evoked exocytosis in human ß-cells, which show clear differences to their rodent counterparts. The model suggests that L- and P/Q-type Ca2+-channels are involved to a similar degree in exocytosis during electrical activity in human ß-cells....

  5. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells

    OpenAIRE

    Temprana, Silvio G.; Mongiat, Lucas A.; Yang, Sung M.; Trinchero, Mariela F.; Alvarez, Diego D.; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M.; Schinder, Alejandro F.

    2014-01-01

    Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (four-week-old) GCs can efficiently driv...

  6. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers

    OpenAIRE

    Tamura Makoto; Tamura Naohiro; Ikeda Takamitsu; Koyama Ryuta; Ikegaya Yuji; Matsuki Norio; Yamada Maki K

    2009-01-01

    Abstract Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced a...

  7. 2,3,7,8-Tetracholorodibenzo-p-dioxin exposure disrupts granule neuron precursor maturation in the developing mouse cerebellum.

    Science.gov (United States)

    Collins, Loretta L; Williamson, Mary A; Thompson, Bryan D; Dever, Daniel P; Gasiewicz, Thomas A; Opanashuk, Lisa A

    2008-05-01

    The widespread environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been linked to developmental neurotoxicity associated with abnormal cerebellar maturation in both humans and rodents. TCDD mediates toxicity via binding to the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of xenobiotic metabolizing enzymes and growth regulatory molecules. Our previous studies demonstrated that cerebellar granule neuron precursor cells (GNPs) express transcriptionally active AhR during critical developmental periods. TCDD exposure also impaired GNP proliferation and survival in vitro. Therefore, this study tested the hypothesis that TCDD exposure disrupts cerebellar development by interfering with GNP differentiation. In vivo experiments indicated that TCDD exposure on postnatal day (PND) 6 resulted in increased expression of a mitotic marker and increased thickness of the external granule layer (EGL) on PND10. Expression of the early differentiation marker TAG-1 was also more pronounced in postmitotic, premigratory granule neurons of the EGL, and increased apoptosis of GNPs was observed. On PND21, expression of the late GNP differentiation marker GABA(A alpha 6) receptor (GABAR(A alpha 6)) and total estimated cell numbers were both reduced following exposure on PND6. Studies in unexposed adult AhR(-/-) mice revealed lower GABAR(A alpha 6) levels and DNA content. In vitro studies showed elevated expression of the early differentiation marker p27/Kip1 and the GABAR(A alpha 6) in GNPs following TCDD exposure, and the expression patterns of proteins related to granule cell neurite outgrowth, beta III-tubulin and polysialic acid neural cell adhesion molecule, were consistent with enhanced neuroblast differentiation. Together, our data suggest that TCDD disrupts a normal physiological role of AhR, resulting in compromised GNP maturation and neuroblast survival, which impacts final cell number in the cerebellum.

  8. Synaptic kainate receptors in interplay with INaP shift the sparse firing of dentate granule cells to a sustained rhythmic mode in temporal lobe epilepsy.

    Science.gov (United States)

    Artinian, Julien; Peret, Angélique; Marti, Geoffrey; Epsztein, Jérôme; Crépel, Valérie

    2011-07-27

    Dentate granule cells, at the gate of the hippocampus, use coincidence detection of synaptic inputs to code afferent information under a sparse firing regime. In both human patients and animal models of temporal lobe epilepsy, mossy fibers sprout to form an aberrant glutamatergic network between dentate granule cells. These new synapses operate via long-lasting kainate receptor-mediated events, which are not present in the naive condition. Here, we report that in chronic epileptic rat, aberrant kainate receptors in interplay with the persistent sodium current dramatically expand the temporal window for synaptic integration. This introduces a multiplicative gain change in the input-output operation of dentate granule cells. As a result, their sparse firing is switched to an abnormal sustained and rhythmic mode. We conclude that synaptic kainate receptors dramatically alter the fundamental coding properties of dentate granule cells in temporal lobe epilepsy.

  9. Coexpression of CD1a, langerin and Birbeck's granules in Langerhans cell histiocytoses (LCH in children: ultrastructural and immunocytochemical studies.

    Directory of Open Access Journals (Sweden)

    Marzena Podhorska-Okołów

    2007-03-01

    Full Text Available Langerhans cell histiocytoses (LCH represent rare diseases of unclear etiology and pathogenesis. Most of the cases include children, 1 to 15 years of age, and various organs are involved (bones, skin, liver, lymph nodes, bone marrow and other. The diagnosis of LCH used to be established by biopsy of the inflamed tissue and demonstration of expression of markers specific for Langerhans cells: CD1a and langerin. The diagnosis can be ultimately confirmed by demonstration of Birbeck's granules in the electron microscopy. The present study was aimed at immunocytochemical demonstration, in the examined LCH material (skin, bones, lymph nodes, of the specific antigen expression and at comparing it with the presence of Birbeck's granules. In the examined 11 cases co-expression of CD1a with langerin and with the presence of Birbeck's granules was noted. Also in all examined biopsies the expression of S-100 protein on inflammatory cells was found. The results corroborate the usefulness of immunocytochemical studies on CD 1 a and langerin expression in diagnosis of LCH.

  10. Exocytosis from pancreatic β-cells: mathematical modelling of the exit of low-molecular-weight granule content.

    Science.gov (United States)

    Galvanovskis, Juris; Braun, Matthias; Rorsman, Patrik

    2011-02-06

    Pancreatic β-cells use Ca(2+)-dependent exocytosis of large dense core vesicles to release insulin. Exocytosis in β-cells has been studied biochemically, biophysically and optically. We have previously developed a biophysical method to monitor release of endogenous intragranular constituents that are co-released with insulin. This technique involves the expression of ionotropic membrane receptors in the β-cell plasma membrane and enables measurements of exocytosis of individual vesicles with sub-millisecond resolution. Like carbon fibre amperometry, this method allows fine details of the release process, like the expansion of the fusion pore (the narrow connection between the granule lumen and the extracellular space), to be monitored. Here, we discuss experimental data obtained with this method within the framework of a simple mathematical model that describes the release of low-molecular constituents during exocytosis of the insulin granules. Our findings suggest that the fusion pore functions as a molecular sieve, allowing differential release of low- and high-molecular-weight granule constituents.

  11. Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones.

    Science.gov (United States)

    Li, An-Jie; Hou, Bao-Lian; Li, Mei-Xi

    2015-11-01

    In this study, six N-acyl-homoserine lactone (AHL) molecules (C6-HSL, C8-HSL, C10-HSL, 3-oxo-C6-HSL, 3-oxo-C8-HSL and 3-oxo-C10-HSL) were each dosed into a bioreactor and seeded using autotrophic nitrifying sludge (ANS). The effects of the AHLs on cell adhesion, nitrification and sludge granulation were investigated. The results indicated that the efficiencies of cell adhesion and ammonia removal both had a close correlation with the side chain length and β position substituent group of the AHLs. The best-performing AHL in terms of accelerating bacterial attached-growth was 3-oxo-C6-HSL, whereas C6-HSL outperformed the others in terms of the ammonia degradation rate. The addition of 3-oxo-C6-HSL or C6-HSL increased the biomass growth rate, microbial activity, extracellular proteins and nitrifying bacteria, which can accelerate the formation of nitrifying granules. Consequently, selecting AHL molecules that could improve bacteria in attached-growth mode and nitrification efficiency simultaneously will most likely facilitate the rapid granulation of nitrifying sludge.

  12. Platelets can neutralize hydrogen peroxide in an acute toxicity model with cells involved in granulation tissue formation.

    Science.gov (United States)

    Kandler, Barbara; Maitz, Philipp; Fischer, Michael B; Watzek, Georg; Gruber, Reinhard

    2005-04-01

    Platelets play a key role in the replacement of the blood clot with granulation tissue during the early steps of bone regeneration. We hypothesized that activated platelets can neutralize locally produced reactive oxygen species, thereby protecting cells involved in granulation tissue formation. The potential of platelet-released supernatant (PRS) to neutralize hydrogen peroxide (H(2)O(2)) was tested in an acute toxicity model with osteogenic, inflammatory, and endothelial cells. In the human fetal osteoblastic cell line 1.19 (hFOB), considerable morphological changes, cell shedding, and dysfunction of the respiratory chain were observed when cells were exposed to 3 mM H(2)O(2). Caspase-3 and poly-(ADP-ribose)-polymerase were not activated, suggesting that cell death occurred by necrosis. Preincubation of osteogenic cells, leukocytes, or endothelial cells with PRS decreased the acute toxicity of H(2)O(2). The capacity of platelets to release H(2)O(2)-detoxifying activity was retained for up to 72 h. Aminotriazole, an inhibitor of catalase, decreased the cytoprotective activity of PRS, whereas blocking of glutathione peroxidase by mercaptosuccinate had no effect. These results suggest that platelet-released catalase can rapidly neutralize cytotoxic amounts of H(2)O(2), a process that may play a role during the early stages of bone regeneration.

  13. Improved Light Conversion Efficiency Of Dye-Sensitized Solar Cell By Dispersing Submicron-Sized Granules Into The Nano-Sized TiO2 Layer

    Directory of Open Access Journals (Sweden)

    Song S.A.

    2015-06-01

    Full Text Available In this work, TiO2 nanoparticles and submicron-sized granules were synthesized by a hydrothermal method and spray pyrolysis, respectively. Submicron-sized granules were dispersed into the nano-sized TiO2 layer to improve the light conversion efficiency. Granules showed better light scattering, but lower in terms of the dye-loading quantity and recombination resistance compared with nanoparticles. Consequently, the nano-sized TiO2 layer had higher cell efficiency than the granulized TiO2 layer. When dispersed granules into the nanoparticle layer, the light scattering was enhanced without the loss of dye-loading quantities. The dispersion of granulized TiO2 led to increase the cell efficiency up to 6.51%, which was about 5.2 % higher than that of the electrode consisting of only TiO2 nanoparticles. Finally, the optimal hydrothermal temperature and dispersing quantity of granules were found to be 200°C and 20 wt%, respectively.

  14. Distinct early molecular responses to mutations causing vLINCL and JNCL presage ATP synthase subunit C accumulation in cerebellar cells.

    Directory of Open Access Journals (Sweden)

    Yi Cao

    Full Text Available Variant late-infantile neuronal ceroid lipofuscinosis (vLINCL, caused by CLN6 mutation, and juvenile neuronal ceroid lipofuscinosis (JNCL, caused by CLN3 mutation, share clinical and pathological features, including lysosomal accumulation of mitochondrial ATP synthase subunit c, but the unrelated CLN6 and CLN3 genes may initiate disease via similar or distinct cellular processes. To gain insight into the NCL pathways, we established murine wild-type and CbCln6(nclf/nclf cerebellar cells and compared them to wild-type and CbCln3(Δex7/8/Δex7/8 cerebellar cells. CbCln6(nclf/nclf cells and CbCln3(Δex7/8/Δex7/8 cells both displayed abnormally elongated mitochondria and reduced cellular ATP levels and, as cells aged to confluence, exhibited accumulation of subunit c protein in Lamp 1-positive organelles. However, at sub-confluence, endoplasmic reticulum PDI immunostain was decreased only in CbCln6(nclf/nclf cells, while fluid-phase endocytosis and LysoTracker® labeled vesicles were decreased in both CbCln6(nclf/nclf and CbCln3(Δex7/8/Δex7/8 cells, though only the latter cells exhibited abnormal vesicle subcellular distribution. Furthermore, unbiased gene expression analyses revealed only partial overlap in the cerebellar cell genes and pathways that were altered by the Cln3(Δex7/8 and Cln6(nclf mutations. Thus, these data support the hypothesis that CLN6 and CLN3 mutations trigger distinct processes that converge on a shared pathway, which is responsible for proper subunit c protein turnover and neuronal cell survival.

  15. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    Science.gov (United States)

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses.

  16. Anion exchange polymer coated graphite granule electrodes for improving the performance of anodes in unbuffered microbial fuel cells

    Science.gov (United States)

    Wang, Xu; Li, Dengfeng; Mao, Xuhui; Yu, Eileen Hao; Scott, Keith; Zhang, Enren; Wang, Dihua

    2016-10-01

    In this paper, graphite granule composite electrodes are prepared for microbial fuel cells (MFCs) by coating commercial graphite granules with the mixture of quaternary DABCO polysulfone or Nafion ion exchange polymer and carbon black. The results of electrochemical impedance spectroscopy (EIS) suggest that the addition of carbon black could significantly improve the electrical conductivity of graphite granule anodes. When phosphate buffer solution (PBS) is replaced by NaCl solution, the current densities of the pristine anode, 0.08 g Nafion coated anode and 0.16 g QDPSU coated anode decrease by 52.6%, 20.6% and 10.3% at -0.2 V (vs. Ag/AgCl), respectively. The solution resistance of ion exchange polymer coated anodes is more stable in comparison with that of pristine anode. After 40 operational days, the performance drop of 0.16 g QDPSU coated anode when switching the solution from PBS to NaCl is still smaller than that of pristine anode. However, 0.08 g Nafion coated anode shows the similar performance in NaCl solution to the pristine anode after long term operation. This study reveals that QDPSU anion exchange polymer is more suitable for the anode modification. The QDPSU coated anode promises a great potential for three-dimensional anode based MFCs to treat domestic wastewater.

  17. Transcriptional Profiling of Newly Generated Dentate Granule Cells Using TU Tagging Reveals Pattern Shifts in Gene Expression during Circuit Integration1,2

    Science.gov (United States)

    Chatzi, Christina; Shen, Rongkun; Goodman, Richard H.

    2016-01-01

    Abstract Despite representing only a small fraction of hippocampal granule cells, adult-generated newborn granule cells have been implicated in learning and memory (Aimone et al., 2011). Newborn granule cells undergo functional maturation and circuit integration over a period of weeks. However, it is difficult to assess the accompanying gene expression profiles in vivo with high spatial and temporal resolution using traditional methods. Here we used a novel method [“thiouracil (TU) tagging”] to map the profiles of nascent mRNAs in mouse immature newborn granule cells compared with mature granule cells. We targeted a nonmammalian uracil salvage enzyme, uracil phosphoribosyltransferase, to newborn neurons and mature granule cells using retroviral and lentiviral constructs, respectively. Subsequent injection of 4-TU tagged nascent RNAs for analysis by RNA sequencing. Several hundred genes were significantly enhanced in the retroviral dataset compared with the lentiviral dataset. We compared a selection of the enriched genes with steady-state levels of mRNAs using quantitative PCR. Ontology analysis revealed distinct patterns of nascent mRNA expression, with newly generated immature neurons showing enhanced expression for genes involved in synaptic function, and neural differentiation and development, as well as genes not previously associated with granule cell maturation. Surprisingly, the nascent mRNAs enriched in mature cells were related to energy homeostasis and metabolism, presumably indicative of the increased energy demands of synaptic transmission and their complex dendritic architecture. The high spatial and temporal resolution of our modified TU-tagging method provides a foundation for comparison with steady-state RNA analyses by traditional transcriptomic approaches in defining the functional roles of newborn neurons. PMID:27011954

  18. Effects of spaced learning in the water maze on development of dentate granule cells generated in adult mice.

    Science.gov (United States)

    Trinchero, Mariela F; Koehl, Muriel; Bechakra, Malik; Delage, Pauline; Charrier, Vanessa; Grosjean, Noelle; Ladeveze, Elodie; Schinder, Alejandro F; Abrous, D Nora

    2015-11-01

    New dentate granule cells (GCs) are generated in the hippocampus throughout life. These adult-born neurons are required for spatial learning in the Morris water maze (MWM). In rats, spatial learning shapes the network by regulating their number and dendritic development. Here, we explored whether such modulatory effects exist in mice. New GCs were tagged using thymidine analogs or a GFP-expressing retrovirus. Animals were exposed to a reference memory protocol for 10-14 days (spaced training) at different times after newborn cells labeling. Cell proliferation, cell survival, cell death, neuronal phenotype, and dendritic and spine development were examined using immunohistochemistry. Surprisingly, spatial learning did not modify any of the parameters under scrutiny including cell number and dendritic morphology. These results suggest that although new GCs are required in mice for spatial learning in the MWM, they are, at least for the developmental intervals analyzed here, refractory to behavioral stimuli generated in the course of learning in the MWM.

  19. Low-threshold Ca2+ currents in dendritic recordings from Purkinje cells in rat cerebellar slice cultures.

    Science.gov (United States)

    Mouginot, D; Bossu, J L; Gähwiler, B H

    1997-01-01

    Voltage-dependent Ca2+ conductances were investigated in Purkinje cells in rat cerebellar slice cultures using the whole-cell and cell-attached configurations of the patch-clamp technique. In the presence of 0.5 mM Ca2+ in the extracellular solution, the inward current activated with a threshold of -55 +/- 1.5 mV and reached a maximal amplitude of 2.3 +/- 0.4 nA at -31 +/- 2 mV. Decay kinetics revealed three distinct components: a fast (24.6 +/- 2 msec time constant), a slow (304 +/- 46 msec time constant), and a nondecaying component. Rundown of the slow and sustained components of the current, or application of antagonists for the P/Q-type Ca2+ channels, allowed isolation of the fast-inactivating Ca2+ current, which had a threshold for activation of -60 mV and reached a maximal amplitude of 0.7 nA at a membrane potential of -33 mV. Both activation and steady-state inactivation of this fast-inactivating Ca2+ current were described with Boltzmann equations, with half-activation and inactivation at -51 mV and -86 mV, respectively. This Ca2+ current was nifedipine-insensitive, but its amplitude was reduced reversibly by bath-application of NiCl2 and amiloride, thus allowing its identification as a T-type Ca2+ current. Channels with a conductance of 7 pS giving rise to a fast T-type ensemble current (insensitive to omega-Aga-IVA) were localized with a high density on the dendritic membrane. Channel activity responsible for the ensemble current sensitive to omega-Aga-IVA was detected with 10 mM Ba2+ as the charge carrier. These channels were distributed with a high density on dendritic membranes and in rare cases were also seen in somatic membrane patches.

  20. Synaptically released neurotransmitter fails to desensitize postsynaptic GABA(A) receptors in cerebellar cultures.

    Science.gov (United States)

    Mellor, J R; Randall, A D

    2001-05-01

    GABA concentration jump experiments performed on membrane patches predict that postsynaptic GABA(A) receptors will become desensitized following the release of the contents of a single GABA-containing synaptic vesicle. To examine this we used a single synaptic bouton stimulation technique to directly examine whether postsynaptic GABA(A) receptors in cultured cerebellar granule cells exhibit transmitter-induced desensitization. In a large number of recordings, no evidence was found for desensitization of postsynaptic GABA(A) receptors by vesicularly released transmitter. This was the case even when as many as 40 vesicles were released from a single bouton within 1.5 s. In addition, postsynaptic depolarization and application of the benzodiazepine flunitrazepam, manipulations previously shown to enhance desensitization of GABA(A) receptors, failed to unmask transmitter-induced desensitization. In contrast, a single 2- to 3-s application of a high concentration of exogenous GABA was able to depress synaptic responsiveness for up to 70 s. Furthermore, pharmacological depletion of GABA eliminated inhibitory synaptic communication, suggesting that GABA is the transmitter and the desensitization-resistant inhibitory postsynaptic currents are not mediated by a "nondesensitizing" ligand such as beta-alanine. Overall our data indicate that a specific desensitization-resistant population of GABA(A) receptors are present at postsynaptic sites on cultured cerebellar granule cells.

  1. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression.

    Science.gov (United States)

    Bougdour, Alexandre; Tardieux, Isabelle; Hakimi, Mohamed-Ali

    2014-03-01

    Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm-blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine-tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long-term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole-containing parasites and reach the host cell nucleus to reshape the host genome expression.

  2. A note on the definition and the development of cerebellar purkinje cell zones

    NARCIS (Netherlands)

    J. Voogd (Jan)

    2012-01-01

    textabstractThe definition of Purkinje cell zones by their white matter comprtments, their physiological properties, and their molecular identity and the birthdate of their Purkinje cells will be reviewed.

  3. Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro.

    Science.gov (United States)

    Crepel, F; Jaillard, D

    1991-01-01

    1. An in vitro slice preparation of rat cerebellar cortex was used to analyse long-lasting modifications of synaptic transmission at parallel fibre (PF)-Purkinje cell (PC) synapses. These use-dependent changes were induced by pairing PF-mediated EPSPs evoked at low frequency (1 Hz) with different levels of membrane polarization (or bioelectrical activities) of PCs for 15 min. 2. Experiments were performed on forty-eight PCs recorded intracellularly in a conventional perfused chamber, and in fifty other cells maintained in a static chamber either in the presence (n = 21) or in the absence (n = 29) of 400 nM-phorbol 12,13-dibutyrate (PDBu). 3. In these three experimental conditions, PF-mediated EPSPs were always measured on PCs maintained at a holding potential of -75 mV, and further hyperpolarized by constant hyperpolarizing pulses. This allowed us both to test the input resistance of PCs and to avoid their firing during PF-mediated EPSPs. 4. In all cells retained for the present study, latencies of PF-mediated EPSPs evoked at 0.2 Hz were stable during the pre-pairing period, and the same was true for their amplitude and time course. 5. In the perfused chamber, pairing of PF-mediated EPSPs with the same hyperpolarization of PCs as that used for measurements of synaptic responses had no effect on these EPSPs in 30% of PCs. It induced long-term depression (LTD) and long-term potentiation (LTP) in 23 and 47% of the tested cells respectively (n = 17). 6. In the perfused chamber, pairing of PF-mediated EPSPs with moderate depolarization of PCs (n = 19) giving rise to a sustained firing of sodium spikes significantly favoured the appearance of LTP as compared to the previous pairing protocol. However, there were still 27 and 15% of cells which showed no modification and LTD respectively. 7. In contrast, pairing of PF-mediated EPSPs with calcium (Ca2+) spikes evoked by strong depolarization of PCs (n = 12) led to LTD of synaptic transmission in nearly half of the tested

  4. Effervescent Granules Prepared Using Eucommia ulmoides Oliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xiang-Zhou Li

    2016-01-01

    Full Text Available Eucommia ulmoides Oliv. (E. ulmoides Oliv. and moso bamboo (Phyllostachys pubescens leaves are used as folk medicines in central-western China to treat diabetes. To investigate the hypoglycemic activity of the effervescent granules prepared using E. ulmoides Oliv. and moso bamboo leaves (EBEG in HepG2 cells, EBEG were prepared with 5% of each of polysaccharides and chlorogenic acids from moso bamboo and E. ulmoides Oliv. leaves, respectively. HepG2 cells cultured in a high-glucose medium were classified into different groups. The results displayed EBEG-treated cells showed better glucose utilization than the negative controls; thus, the hypoglycemic effect of EBEG was much greater than that of granules prepared using either component alone, thereby indicating that this effect was due to a synergistic action of the components. Further, glucose consumption levels in the cells treated with EBEG (156.35% at 200 μg/mL and the positive controls (metformin, 162.29%; insulin, 161.52% were similar. Thus, EBEG exhibited good potential for use as a natural antidiabetic agent. The hypoglycemic effect of EBEG could be due to the synergistic action of polysaccharides from the moso bamboo leaves and chlorogenic acids from E. ulmoides Oliv. leaves via the inhibition of alpha-glucosidase and glucose-6-phosphate displacement enzyme.

  5. Hydrogen sulfide induces hyperpolarization and decreases the exocytosis of secretory granules of rat GH3 pituitary tumor cells.

    Science.gov (United States)

    Mustafina, Alsu N; Yakovlev, Aleksey V; Gaifullina, Aisylu Sh; Weiger, Thomas M; Hermann, Anton; Sitdikova, Guzel F

    2015-10-02

    The aim of the present study was to evaluate the effects of hydrogen sulfide (H2S) on the membrane potential, action potential discharge and exocytosis of secretory granules in neurosecretory pituitary tumor cells (GH3). The H2S donor - sodium hydrosulfide (NaHS) induced membrane hyperpolarization, followed by truncation of spontaneous electrical activity and decrease of the membrane resistance. The NaHS effect was dose-dependent with an EC50 of 152 μM (equals effective H2S of 16-19 μM). NaHS effects were not altered after inhibition of maxi conductance calcium-activated potassium (BK) channels by tetraethylammonium or paxilline, but were significantly reduced after inhibition or activation of ATP-dependent potassium channels (KATP) by glibenclamide or by diazoxide, respectively. In whole-cell recordings NaHS increased the amplitude of KATP currents, induced by hyperpolarizing pulses and subsequent application of glibenclamide decreased currents to control levels. Using the fluorescent dye FM 1-43 exocytosis of secretory granules was analyzed in basal and stimulated conditions (high K(+) external solution). Prior application of NaHS decreased the fluorescence of the cell membrane in both conditions which links with activation of KATP currents (basal secretion) and activation of KATP currents and BK-currents (stimulated exocytosis). We suggest that H2S induces hyperpolarization of GH3 cells by activation of KATP channels which results in a truncation of spontaneous action potentials and a decrease of hormone release.

  6. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    OpenAIRE

    Kaslin, Jan; Kroehne, Volker; Benato, Francesca; Argenton, Francesco; Brand, Michael

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost...

  7. Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI.

    Science.gov (United States)

    Schreurs, B G; Gusev, P A; Tomsic, D; Alkon, D L; Shi, T

    1998-07-15

    Intradendritic recordings in Purkinje cells from a defined area in parasaggital slices of cerebellar lobule HVI, obtained after rabbits were given either paired (classical conditioning) or explicitly unpaired (control) presentations of tone and periorbital electrical stimulation, were used to assess the nature and duration of conditioning-specific changes in Purkinje cell dendritic membrane excitability. We found a strong relationship between the level of conditioning and Purkinje cell dendritic membrane excitability after initial acquisition of the conditioned response. Moreover, conditioning-specific increases in Purkinje cell excitability were still present 1 month after classical conditioning. Although dendritically recorded membrane potential, input resistance, and amplitude of somatic and dendritic spikes were not different in cells from paired or control animals, the size of a potassium channel-mediated transient hyperpolarization was significantly smaller in cells from animals that received classical conditioning. In slices of lobule HVI obtained from naive rabbits, the conditioning-related increases in membrane excitability could be mimicked by application of potassium channel antagonist tetraethylammonium chloride, iberiotoxin, or 4-aminopyridine. However, only 4-aminopyridine was able to reduce the transient hyperpolarization. The pharmacological data suggest a role for potassium channels and, possibly, channels mediating an IA-like current, in learning-specific changes in membrane excitability. The conditioning-specific increase in Purkinje cell dendritic excitability produces an afterhyperpolarization, which is hypothesized to release the cerebellar deep nuclei from inhibition, allowing conditioned responses to be elicited via the red nucleus and accessory abducens motorneurons.

  8. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells

    OpenAIRE

    Yu LIU; Savtchouk, Iaroslav; Acharjee, Shoana; Liu, Siqiong June

    2011-01-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca2+ and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the durati...

  9. Somatically expressed germ-granule components, PGL-1 and PGL-3, repress programmed cell death in C. elegans

    Science.gov (United States)

    Al-Amin, Mohammad; Min, Hyemin; Shim, Yhong-Hee; Kawasaki, Ichiro

    2016-01-01

    We previously reported that germline apoptosis in C. elegans increased by loss of PGL-1 and PGL-3, members of a family of constitutive germ-granule components, from germ cells in adult hermaphrodite gonads. In this study, we found that somatic apoptosis was reduced in synthetic multivulva class B (synMuv B) mutants due to ectopic expression of PGL-1 and PGL-3 in the soma. In synMuv B-mutant somatic cells, CED-4 expression level was reduced due to ectopic expression of PGL-1. Furthermore, in contrast to wild type, somatic apoptosis in synMuv B mutants increased following DNA damage in a SIR-2.1-dependent manner. Intriguingly, somatic apoptosis was repressed not only in synMuv B mutants but also by ectopically expressing pgl-1 and/or pgl-3 transgenes in wild-type somatic cells. Our study demonstrates that germ-granule components, PGL-1 and PGL-3, can serve as negative regulators of apoptosis not only in the germline but also in the soma in C. elegans. PMID:27650246

  10. Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: Simulations of their impact in vivo

    Directory of Open Access Journals (Sweden)

    Sergio Solinas

    2007-12-01

    Full Text Available The Golgi cells are inhibitory interneurons of the cerebellar granular layer, which respond to afferent stimulation in vivo with a burst-pause sequence interrupting their irregular background low-frequency firing (Vos et al., 1999a. Eur. J. Neurosci. 11, 2621–2634. However, Golgi cells in vitro are regular pacemakers (Forti et al., 2006. J. Physiol. 574, 711–729, raising the question how their ionic mechanisms could impact on responses during physiological activity. Using patch-clamp recordings in cerebellar slices we show that the pacemaker cycle can be suddenly reset by spikes, making the cell highly sensitive to input variations. Moreover, the neuron resonates around the pacemaker frequency, making it specifically sensitive to patterned stimulation in the theta-frequency band. Computational analysis based on a model developed to reproduce Golgi cell pacemaking (Solinas et al., 2008 Front. Neurosci., 1:2 predicted that phase-reset required spike-triggered activation of SK channels and that resonance was sustained by a slow voltage-dependent potassium current and amplified by a persistent sodium current. Adding balanced synaptic noise to mimic the irregular discharge observed in vivo, we found that pacemaking converts into spontaneous irregular discharge, that phase-reset plays an important role in generating the burst-pause pattern evoked by sensory stimulation, and that repetitive stimulation at theta-frequency enhances the time-precision of spike coding in the burst. These results suggest that Golgi cell intrinsic properties exert a profound impact on time-dependent signal processing in the cerebellar granular layer.

  11. Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo.

    Science.gov (United States)

    Solinas, Sergio; Forti, Lia; Cesana, Elisabetta; Mapelli, Jonathan; De Schutter, Erik; D'Angelo, Egidio

    2007-01-01

    The Golgi cells are inhibitory interneurons of the cerebellar granular layer, which respond to afferent stimulation in vivo with a burst-pause sequence interrupting their irregular background low-frequency firing (Vos et al., 1999a. Eur. J. Neurosci. 11, 2621-2634). However, Golgi cells in vitro are regular pacemakers (Forti et al., 2006. J. Physiol. 574, 711-729), raising the question how their ionic mechanisms could impact on responses during physiological activity. Using patch-clamp recordings in cerebellar slices we show that the pacemaker cycle can be suddenly reset by spikes, making the cell highly sensitive to input variations. Moreover, the neuron resonates around the pacemaker frequency, making it specifically sensitive to patterned stimulation in the theta-frequency band. Computational analysis based on a model developed to reproduce Golgi cell pacemaking (Solinas et al., 2008Front. Neurosci., 2:2) predicted that phase-reset required spike-triggered activation of SK channels and that resonance was sustained by a slow voltage-dependent potassium current and amplified by a persistent sodium current. Adding balanced synaptic noise to mimic the irregular discharge observed in vivo, we found that pacemaking converts into spontaneous irregular discharge, that phase-reset plays an important role in generating the burst-pause pattern evoked by sensory stimulation, and that repetitive stimulation at theta-frequency enhances the time-precision of spike coding in the burst. These results suggest that Golgi cell intrinsic properties exert a profound impact on time-dependent signal processing in the cerebellar granular layer.

  12. Acute onset paraneoplastic cerebellar degeneration in a patient with small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Bhatia R

    2003-04-01

    Full Text Available A patient with small cell lung cancer presented with a rare presentation of an acute onset pancerebellar dysfunction. His clinical condition markedly improved following the surgical removal of the tumor and chemo- and radiotherapy.

  13. Purkinje cell heterotopy with cerebellar hypoplasia in two free-living American kestrels (Falco sparverius)

    Science.gov (United States)

    Two wild fledgling kestrels exhibited lack of motor coordination, postural reaction deficits, and abnormal propioception. At necropsy, the cerebellum and brainstem were markedly underdeveloped. Microscopically, there was Purkinje cells heterotopy, abnormal circuitry, and hypoplasia with defective fo...

  14. Differential expression of cytoskeletal proteins in the dendrites of parvalbumin-positive interneurons versus granule cells in the adult rat dentate gyrus.

    Science.gov (United States)

    de Haas Ratzliff, A; Soltesz, I

    2000-01-01

    Parvalbumin-positive interneurons and granule cells of the dentate gyrus exhibit characteristic differences in morphological, cytochemical, physiological, and pathophysiological properties. Several of these defining features, including dendritic morphology, spine density, and sensitivity to insults, are likely to be influenced by the neuronal cytoskeleton. The data in this paper demonstrate striking differences in the expression levels of all three neurofilament triplet proteins, as well as alpha-internexin and beta-tubulin III, between the parvalbumin-positive interneurons and dentate granule cells. Therefore, the molecular composition of intermediate filaments and microtubules in the dendritic domain of parvalbumin-positive dentate interneurons is distinct from the cytoskeleton of neighboring granule cells, indicating the existence of highly cell type-specific cytoskeletal architecture within the dentate gyrus.

  15. The Effect of Salvia Rhytidea Extract on the Number of Cells of Different Layers of Cerebellar Cortex Following Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    M Farahmand

    2016-09-01

    Full Text Available Background & aim: Salvia has anti-oxidant oxygen free radicals which are generated during the interruption and reestablishment of ischemia reperfusion.  The aim of study was to investigate the effect of Salvia Rhytidea extract on the number of cells of different layers of cerebellar cortex following ischemia reperfusion in rats. Methods: In the present experimental study, 35 adult male rats were randomly divided into 7 groups of 5: Group 1 (control-: Sampling without ischemia. Group 2 (control +: Cerebellar ischemia with administration of normal saline. Group 3(sham: Manipulation without ischemia with normal saline administration. Group 4   received (3.2 mg/kg aqueous and alcoholic Salvia extract 2 hours after ischemia. Group 5 received 50 mg/kg silymarin drug, 2 hours after ischemia. Group 6 received 3.2 mg/kg aqueous and alcoholic Salvia extract 72, 48, 24 and 0 h before ischemia and group 7 received silymarin drug (50 mg/kg, 0, 24, 48, and 72, hrs. before ischemia. 24 hrs. following reperfusion, the rats were euthanized and samples of the cerebellum were obtained. By using routine histological technique, the sections were stained by H&E. The measurement of cell count in cerebellar cortex were accomplished. Data were evaluated with One-Way ANOVA and Tukey diagnostic tests. Results: A significant decrease was observed in the number of neural cells in granular layer in the non-treated ischemia group and in the groups which received Salvia extract and silymarin, two hours after the ischemia (p< 0.05. No significant decrease was observed in the number of cells of this layer in the groups which received salvia extract before ischemia. But regarding the cell number of molecular and purkinje layers in above groups, no significant difference was observed compared to the control group (P˃0.05. However, no significant differences was seen in the number of cells layers compared to the control group (P˃0.05. Conclusion: Finally, administration of

  16. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells.

    Science.gov (United States)

    Liu, Yu; Savtchouk, Iaroslav; Acharjee, Shoana; Liu, Siqiong June

    2011-07-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca(2+) and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the duration of action potentials can suppress the expression of GluR2-containing AMPARs at stellate cell synapses. We find that large-conductance Ca(2+)-activated potassium (BK) channels mediate a large proportion of the depolarization-evoked noninactivating potassium current in stellate cells. Pharmacological blockade of BK channels prolonged the action potential duration in postsynaptic stellate cells and altered synaptic AMPAR subtype from GluR2-lacking to GluR2-containing Ca(2+)-impermeable AMPARs. An L-type channel blocker abolished an increase in Ca(2+) entry that was associated with spike broadening and also prevented the BK channel blocker-induced switch in AMPAR phenotype. Thus blocking BK potassium channels prolongs the action potential duration and increases the expression of GluR2-containing receptors at the synapse by enhancing Ca(2+) entry in cerebellar stellate cells.

  17. Synchrony and neural coding in cerebellar circuits

    Directory of Open Access Journals (Sweden)

    Abigail L Person

    2012-12-01

    Full Text Available The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input-output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor

  18. Diacylglycerol kinase ε localizes to subsurface cisterns of cerebellar Purkinje cells.

    Science.gov (United States)

    Hozumi, Yasukazu; Fujiwara, Hiroki; Kaneko, Kenya; Fujii, Satoshi; Topham, Matthew K; Watanabe, Masahiko; Goto, Kaoru

    2017-02-13

    Following activation of Gq protein-coupled receptors, phospholipase C yields a pair of second messengers: diacylglycerol (DG) and inositol 1,4,5-trisphosphate. Diacylglycerol kinase (DGK) phosphorylates DG to produce phosphatidic acid, another second messenger. Of the DGK family, DGKε is the only DGK isoform that exhibits substrate specificity for DG with an arachidonoyl acyl chain at the sn-2 position. Recently, we demonstrated that hydrophobic residues in the N-terminus of DGKε play an important role in targeting the endoplasmic reticulum in transfected cells. However, its cellular expression and subcellular localization in the brain remain elusive. In the present study, we investigate this issue using specific DGKε antibody. DGKε was richly expressed in principal neurons of higher brain regions, including pyramidal cells in the hippocampus and neocortex, medium spiny neurons in the striatum and Purkinje cells in the cerebellum. In Purkinje cells, DGKε was localized to the subsurface cisterns and colocalized with inositol 1,4,5-trisphosphate receptor-1 in dendrites and axons. In dendrites of Purkinje cells, DGKε was also distributed in close apposition to DG lipase-α, which catalyzes arachidonoyl-DG to produce 2-arachidonoyl glycerol, a major endocannabinoid in the brain. Behaviorally, DGKε-knockout mice exhibited hyper-locomotive activities and impaired motor coordination and learning. These findings suggest that DGKε plays an important role in neuronal and brain functions through its distinct neuronal expression and subcellular localization and also through coordinated arrangement with other molecules involving the phosphoinositide signaling pathway.

  19. Ex vivo detection of primary leukemia cells resistant to granule cytotoxin-induced cell death: a rapid isolation method to study granzyme-B-mediated cell death.

    Science.gov (United States)

    Grüllich, Carsten; Friske, Viktoria; Finke, Jürgen

    2008-09-01

    Cytotoxic T lymphocytes and natural killer cells (CTL/NK) induce cell death in leukemia cells by the granzyme B (grB)-dependent granule cytotoxin (GC) pathway. Resistance to GC may be involved in immune evasion of leukemia cells. The delivery of active grB into the cytoplasma is dependent on the presence of perforin (PFN) and grB complexes. We developed a rapid method for the isolation of GC to investigate GC-mediated cell death in primary leukemia cells. We isolated GC containing grB, grB complexes and PFN by detergent free hypotonic lysis of the human NK cell leukemia line YT. The GC induce grB-mediated, caspase-dependent apoptosis in live cells. The human leukemia cell lines KG-1, U937, K562 (myeloid leukemia), Jurkat, Daudi, and BV173 (lymphoblastic leukemia) treated with GC internalized grB and underwent cell death. In primary leukemia cells analyzed ex vivo, we found GC-resistant leukemia cells in three out of seven patients with acute myeloid leukemia and one out of six patients with acute lymphoblastic leukemia. We conclude that our method is fast (approximately 1 h) and yields active GC that induce grB-dependent cell death. Furthermore, resistance to GC can be observed in acute leukemias and may be an important mechanism contributing to leukemia cell immune evasion.

  20. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb.

    Science.gov (United States)

    Bhalla, U S; Bower, J M

    1993-06-01

    1. Detailed compartmental computer simulations of single mitral and granule cells of the vertebrate olfactory bulb were constructed using previously published geometric data. Electrophysiological properties were determined by comparing model output to previously published experimental data, mainly current-clamp recordings. 2. The passive electrical properties of each model were explored by comparing model output with intracellular potential data from hyperpolarizing current injection experiments. The results suggest that membrane resistivity in both cells is nonuniform, with somatas having a substantially lower resistivity than the dendrites. 3. The active properties of these cells were explored by incorporating active ion channels into modeled compartments. On the basis of evidence from the literature, the mitral cell model included six channel types: fast sodium, fast delayed rectifier (Kfast), slow delayed rectifier (K), transient outward potassium current (KA), voltage- and calcium-dependent potassium current (KCa), and L-type calcium current. The granule cell model included four channel types: rat brain sodium, K, KA, and the non-inactivating muscarinic potassium current (KM). Modeled channels were based on the Hodgkin-Huxley formalism. 4. Representative kinetics for each of the channel classes above were obtained from the literature. The experimentally unknown spatial distributions of each included channel were obtained by systematic parameter searches. These were conducted in two ways: large-scale simulation series, in which each parameter was varied in turn, and an adaptation of a multidimensional conjugate gradient method. In each case, the simulated results were compared wtih experimental data using a curve-matching function evaluating mean squared differences of several aspects of the simulated and experimental voltage waveforms. 5. Systematic parameter variations revealed a single distinct region of parameter space in which the mitral cell model best

  1. Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex

    DEFF Research Database (Denmark)

    Walløe, Solveig; Pakkenberg, Bente; Fabricius, Katrine

    2014-01-01

    Our knowledge of the relationship between brain structure and cognitive function is still limited. Human brains and individual cortical areas vary considerably in size and shape. Studies of brain cell numbers have historically been based on biased methods, which did not always result in correct e...

  2. The number of granule cells in rat hippocampus is reduced after chronic mild stress and re-established after chronic escitalopram treatment

    DEFF Research Database (Denmark)

    Jayatissa, Magdalena N; Bisgaard, Christina; West, Mark J

    2008-01-01

    mild stress and chronic escitalopram treatment. Furthermore, we investigated which classes of immature granule cells are affected by stress and targeted by escitalopram. Rats were initially exposed to 2weeks of CMS and 4weeks of escitalopram treatment with concurrent exposure to stress. The behavioral...... changes, indicating a decrease in sensitivity to a reward, were assessed in terms of sucrose consumption. We found a significant 22.4% decrease in the total number of granule cells in the stressed rats. This decrease was reversed in the stressed escitalopram treated rats that responded to the treatment......, but not in the rats that did not respond to escitalopram treatment. These changes were not followed by alterations in the volume of the granule cell layer. We also showed a differential regulation of dentate neurons, in different stages of development, by chronic stress and chronic escitalopram treatment. Our study...

  3. Bilateral otogenic cerebellar abscesses.

    Directory of Open Access Journals (Sweden)

    Nadkarni T

    1993-01-01

    Full Text Available An unusual presentation of bilateral otogenic cerebellar abscesses observed in two of our patients is reported. Both gave a history of otorrhoea, fever, headache, vomiting and had bilateral cerebellar signs and conductive hearing loss. The abscesses were detected on computerised tomography. X-rays revealed bilateral mastoiditis. The therapy followed was excision of abscesses, mastoidectomy and antibiotic therapy.

  4. Granule cell dispersion is not a predictor of surgical outcome in temporal lobe epilepsy with mesial temporal sclerosis.

    Science.gov (United States)

    da Costa Neves, Rafael Scarpa; Jardim, Anaclara Prada; Caboclo, Luís Otávio; Lancellotti, Carmen; Marinho, Taissa Ferrari; Hamad, Ana Paula; Marinho, Murilo; Centeno, Ricardo; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Targas Yacubian, Elza Márcia

    2013-01-01

    The aim of this retrospective study of a series of patients with mesial temporal lobe epilepsy (MTLE) and mesial temporal sclerosis (MTS) was to analyze the association of granule cell dispersion (GCD) with surgical prognosis, patterns of MTS and clinical data. Hippocampal specimens from 66 patients with MTLE and unilateral MTS and from 13 controls were studied. Quantitative neuropathological evaluation was performed on NeuN-stained hippocampal sections. Patients' clinical data, types of MTS and surgical outcome were reviewed. GCD occurred in 45.5% of cases and was not correlated with clinical variable. More severe neuronal loss was observed in patients with GCD. Except for MTS Type 2 - observed only in four no- GCD patients - groups did not differ with respect to the types of MTS. Surgical outcome was similar in both groups. In conclusion, GCD was associated with the degree of hippocampal cell loss, but was not a predictor of surgical outcome.

  5. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.L.; Austen, K.F. (Brigham and Women' s Hospital, Boston, MA (USA)); Fox, C.C.; Lichtenstein, L.M. (Johns Hopkins School of Medicine, Baltimore, MD (USA))

    1988-04-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of {sup 35}S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although ({sup 35}S)heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. The authors demonstrate that human lung mast cells of 96% purity incorporate ({sup 35}S)sulfate into separate heparin and chondroitin sulfate proteoglycans in an {approx}2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin ({sup 35}S)sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin ({sup 35}S)sulfate E proteoglycans and the ({sup 35}S)heparin proteoglycans were exocytosed from the ({sup 35}S)sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of {sup 35}S-labeled proteoglycans reside in the secretory granules of these human lung mast cells.

  6. Case of subacute cerebellar degeneration associated with pleocytosis and cerebellar swelling shown in computed tomography scanning

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Hiide; Anezaki, Toshiharu; Takashima, Noriko; Inuzuka, Takashi; Miyatake, Tadashi

    1988-02-01

    A 44 year old woman was healthy until January 3, 1986, when she had headache. On January 9, she developed gait ataxia and dysarthria. Cerebellar ataxia worsened rapidly. Aftar a week she could not sit without support and her consciousness was disturbed. Corticosteroid was administrated and consciousness proved alert, but cerebellar ataxia and dysarthria remained unchanged. The patient was found carcinoma of the lung in August 1986. Characteristic features of clinical and laboratory findings of this patient are acute progression, cerebrospinal fluid pleocytosis of 1,064/3 cells (860 mononuclear cell, 204 polymorphonuclear cell), and cerebellar swelling shown in computed tomography scanning. Though the mechanism of acute cerebellar degeneration is still uncertained, inflammatory process was supported to exist in cerebellum of this case.

  7. Mutant human FUS Is ubiquitously mislocalized and generates persistent stress granules in primary cultured transgenic zebrafish cells.

    Science.gov (United States)

    Acosta, Jamie Rae; Goldsbury, Claire; Winnick, Claire; Badrock, Andrew P; Fraser, Stuart T; Laird, Angela S; Hall, Thomas E; Don, Emily K; Fifita, Jennifer A; Blair, Ian P; Nicholson, Garth A; Cole, Nicholas J

    2014-01-01

    FUS mutations can occur in familial amyotrophic lateral sclerosis (fALS), a neurodegenerative disease with cytoplasmic FUS inclusion bodies in motor neurons. To investigate FUS pathology, we generated transgenic zebrafish expressing GFP-tagged wild-type or fALS (R521C) human FUS. Cell cultures were made from these zebrafish and the subcellular localization of human FUS and the generation of stress granule (SG) inclusions examined in different cell types, including differentiated motor neurons. We demonstrate that mutant FUS is mislocalized from the nucleus to the cytosol to a similar extent in motor neurons and all other cell types. Both wild-type and R521C FUS localized to SGs in zebrafish cells, demonstrating an intrinsic ability of human FUS to accumulate in SGs irrespective of the presence of disease-associated mutations or specific cell type. However, elevation in relative cytosolic to nuclear FUS by the R521C mutation led to a significant increase in SG assembly and persistence within a sub population of vulnerable cells, although these cells were not selectively motor neurons.

  8. Mutant human FUS Is ubiquitously mislocalized and generates persistent stress granules in primary cultured transgenic zebrafish cells.

    Directory of Open Access Journals (Sweden)

    Jamie Rae Acosta

    Full Text Available FUS mutations can occur in familial amyotrophic lateral sclerosis (fALS, a neurodegenerative disease with cytoplasmic FUS inclusion bodies in motor neurons. To investigate FUS pathology, we generated transgenic zebrafish expressing GFP-tagged wild-type or fALS (R521C human FUS. Cell cultures were made from these zebrafish and the subcellular localization of human FUS and the generation of stress granule (SG inclusions examined in different cell types, including differentiated motor neurons. We demonstrate that mutant FUS is mislocalized from the nucleus to the cytosol to a similar extent in motor neurons and all other cell types. Both wild-type and R521C FUS localized to SGs in zebrafish cells, demonstrating an intrinsic ability of human FUS to accumulate in SGs irrespective of the presence of disease-associated mutations or specific cell type. However, elevation in relative cytosolic to nuclear FUS by the R521C mutation led to a significant increase in SG assembly and persistence within a sub population of vulnerable cells, although these cells were not selectively motor neurons.

  9. Morphological changes in the frog cerebellar cortex after unilateral section of the statoacustic nerve

    Directory of Open Access Journals (Sweden)

    D. Necchi

    2010-05-01

    Full Text Available To investigate a possible role of the cerebellum in vestibular compensation that follows a lesion to the vestibular apparatus, the morphological changes of the cerebellar cortex of adult frogs following unilateral statoacustic nerve section was analyzed by means of electron microscopy starting from 3 days after the neurectomy for up to 6 months. On the ipsilateral side, massive abnormality was found in all layers at early postsurgical intervals. This involved both nerve fibers and cell bodies. Fibers often appeared condensed or vacuolated with poorly compacted myelin sheath. Cells had electronlucent and vacuolated cytoplasm to varying extent. Alterations became less conspicuous after 30 days and after 60 days altered nerve cells were no longer present. On the contralateral side, only a few Purkinje and granule cells were affected at early postsurgical stages. This may derive from the fact that, in the frog, some of the vestibular primary afferents reach contralateral cerebellar cortex. At 30 days, alterations had substantially progressed, and at 60 days they involved all the cortical layers. Fiber debris was present in the granular and molecular layers and numerous 317 Purkinje cells were electrondense and shrunken. This lateness in alteration may be a consequence of the prolonged silence of the vestibular nucleus contralateral to the lesion. At 4 and 6 months the tissue architecture was normal.

  10. Iatrogenic postoperative cerebellar cyst.

    Science.gov (United States)

    Sharif, Robin; Moscovici, Samuel; Wygoda, Marc; Eliahou, Ruth; Spektor, Sergey

    2016-12-01

    Cerebellar cyst is a known but uncommon entity. It is congenital in most cases, or may develop after brain parenchyma injuries or interventions. To our knowledge, de novo cerebellar cyst after extra-axial tumor excision, has not been described in the literature. We present the first reported case of a de novo cerebellar cyst developing in a 70-year-old woman following retrosigmoid craniotomy for vestibular schwannoma excision, and discuss the possible causes. Following cyst fenestration, there was no clinical or radiological evidence of a residual cyst.

  11. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells.

    Science.gov (United States)

    Temprana, Silvio G; Mongiat, Lucas A; Yang, Sung M; Trinchero, Mariela F; Alvarez, Diego D; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M; Schinder, Alejandro F

    2015-01-07

    Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (4-week-old) GCs can efficiently drive distal CA3 targets but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition toward maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus.

  12. Twin screw granulation: steps in granule growth.

    Science.gov (United States)

    Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2012-11-15

    The present work focuses on the study of the progression of granules in different compartments along the length of screws in a twin screw granulator (TSG). The effects of varying powder feed rate; liquid to solid ratio and viscosity of granulation liquid on properties of granules was studied. The bigger granules produced at the start of the process were found to change in terms of size, shape and strength along the screw length at all the conditions investigated. The granules became more spherical and their strength increased along the screw length. Tracer granules were also introduced in order to understand the role of kneading and conveying elements in the TSG. The kneading elements promoted consolidation and breakage while the conveying elements led to coalescence, breakage and some consolidation. The results presented here help to provide a qualitative and quantitative understanding of the twin screw granulation process.

  13. Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short‐term facilitation at mossy fibre to CA3 pyramidal cell synapses

    Science.gov (United States)

    Booker, Sam A.; Campbell, Graham R.; Mysiak, Karolina S.; Brophy, Peter J.; Kind, Peter C.

    2017-01-01

    Key points Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity.Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low‐frequency dentate to CA3 glutamatergic synaptic transmission.High‐frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase‐deficient mice.Intact presynaptic mitochondrial function is critical for the short‐term dynamics of mossy fibre to CA3 synaptic function. Abstract Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole‐cell patch‐clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV‐deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy‐fibre synapse because the amplitude, input–output relationship and 50 ms paired‐pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short‐term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired‐pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect

  14. Selective sorting of alpha-granule proteins.

    Science.gov (United States)

    Italiano, J E; Battinelli, E M

    2009-07-01

    One of the main functions of blood platelets is to secrete a variety of substances that can modify a developing thrombus, regulate the growth of the vasculature, promote wound repair, and contribute to cell-adhesive events. A majority of this vast array of secreted proteins are stored in alpha-granules. Until recently, it was assumed that platelets contained one homogeneous population of alpha-granules that undergo complete de-granulation during platelet activation. This review focuses on the mechanisms of alpha-granule biogenesis and secretion, with a particular emphasis on recent findings that clearly demonstrate that platelets contain distinct subpopulations of alpha-granules that undergo differential release during activation. We consider the implications of this new paradigm of platelet secretion, discuss mechanisms of alpha-granule biogenesis, and review the molecular basis of transport and delivery of alpha-granules to assembling platelets.

  15. Alternative splicing generates a smaller assortment of CaV2.1 transcripts in cerebellar Purkinje cells than in the cerebellum.

    Science.gov (United States)

    Kanumilli, Srinivasan; Tringham, Elizabeth W; Payne, C Elizabeth; Dupere, Jonathan R B; Venkateswarlu, Kanamarlapudi; Usowicz, Maria M

    2006-01-12

    P/Q-type calcium channels control many calcium-driven functions in the brain. The CACNA1A gene encoding the pore-forming CaV2.1 (alpha1A) subunit of P/Q-type channels undergoes alternative splicing at multiple loci. This results in channel variants with different phenotypes. However, the combinatorial patterns of alternative splice events at two or more loci, and hence the diversity of CaV2.1 transcripts, are incompletely defined for specific brain regions and types of brain neurons. Using RT-PCR and splice variant-specific primers, we have identified multiple CaV2.1 transcript variants defined by different pairs of splice events in the cerebellum of adult rat. We have uncovered new splice variations between exons 28 and 34 (some of which predict a premature stop codon) and a new variation in exon 47 (which predicts a novel extended COOH-terminus). Single cell RT-PCR reveals that each individual cerebellar Purkinje neuron also expresses multiple alternative CaV2.1 transcripts, but the assortment is smaller than in the cerebellum. Two of these variants encode different extended COOH-termini which are not the same as those previously reported in Purkinje cells of the mouse. Our patch-clamp recordings show that calcium channel currents in the soma and dendrites of Purkinje cells are largely inhibited by a concentration of omega-agatoxin IVA selective for P-type over Q-type channels, suggesting that the different transcripts may form phenotypic variants of P-type calcium channels in Purkinje cells. These results expand the known diversity of CaV2.1 transcripts in cerebellar Purkinje cells, and propose the selective expression of distinct assortments of CaV2.1 transcripts in different brain neurons and species.

  16. Mitochondrial trafficking through Rhot1 is involved in the aggregation of germinal granule components during primordial germ cell formation in Xenopus embryos.

    Science.gov (United States)

    Tada, Haru; Taira, Yuya; Morichika, Keisuke; Kinoshita, Tsutomu

    2016-10-01

    In many animals, the germ plasm is sufficient and necessary for primordial germ cell (PGC) formation. It contains germinal granules and abundant mitochondria (germline-Mt). However, the role of germline-Mt in germ cell formation remains poorly understood. In Xenopus, the germ plasm is distributed as many small islands at the vegetal pole, which gradually aggregates to form a single large mass in each of the four vegetal pole cells at the early blastula stage. Polymerized microtubules and the adapter protein kinesin are required for the aggregation of germ plasm. However, it remains unknown whether germline-Mt trafficking is important for the cytoplasmic transport of germinal granules during germ plasm aggregation. In this study, we focused on the mitochondrial small GTPase protein Rhot1 to inhibit mitochondrial trafficking during the germ plasm aggregation. Expression of Rhot1ΔC, which lacks the C-terminal mitochondrial transmembrane domain, inhibited the aggregation of germline-Mt during early development. In Rhot1-inhibited embryos, germinal granule components did not aggregate during cleavage stages, which reduced the number of PGCs on the genital ridge at tail-bud stage. These results suggest that mitochondrial trafficking is involved in the aggregation of germinal granule components, which are essential for the formation of PGCs.

  17. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  18. Cerebellar cortex granular layer interneurons in the macaque monkey are functionally driven by mossy fiber pathways through net excitation or inhibition.

    Directory of Open Access Journals (Sweden)

    Jean Laurens

    Full Text Available The granular layer is the input layer of the cerebellar cortex. It receives information through mossy fibers, which contact local granular layer interneurons (GLIs and granular layer output neurons (granule cells. GLIs provide one of the first signal processing stages in the cerebellar cortex by exciting or inhibiting granule cells. Despite the importance of this early processing stage for later cerebellar computations, the responses of GLIs and the functional connections of mossy fibers with GLIs in awake animals are poorly understood. Here, we recorded GLIs and mossy fibers in the macaque ventral-paraflocculus (VPFL during oculomotor tasks, providing the first full inventory of GLI responses in the VPFL of awake primates. We found that while mossy fiber responses are characterized by a linear monotonic relationship between firing rate and eye position, GLIs show complex response profiles characterized by "eye position fields" and single or double directional tunings. For the majority of GLIs, prominent features of their responses can be explained by assuming that a single GLI receives inputs from mossy fibers with similar or opposite directional preferences, and that these mossy fiber inputs influence GLI discharge through net excitatory or inhibitory pathways. Importantly, GLIs receiving mossy fiber inputs through these putative excitatory and inhibitory pathways show different firing properties, suggesting that they indeed correspond to two distinct classes of interneurons. We propose a new interpretation of the information flow through the cerebellar cortex granular layer, in which mossy fiber input patterns drive the responses of GLIs not only through excitatory but also through net inhibitory pathways, and that excited and inhibited GLIs can be identified based on their responses and their intrinsic properties.

  19. Optogenetic modulation and multi-electrode analysis of cerebellar networks in vivo.

    Directory of Open Access Journals (Sweden)

    Wolfgang Kruse

    Full Text Available The firing patterns of cerebellar Purkinje cells (PCs, as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs, climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2 expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice.

  20. Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo

    Science.gov (United States)

    Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan

    2014-01-01

    The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735

  1. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.

    Science.gov (United States)

    MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W

    2015-04-24

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis.

  2. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons

    Science.gov (United States)

    Lenzi, Jessica; De Santis, Riccardo; de Turris, Valeria; Morlando, Mariangela; Laneve, Pietro; Calvo, Andrea; Caliendo, Virginia; Chiò, Adriano; Rosa, Alessandro; Bozzoni, Irene

    2015-01-01

    ABSTRACT Patient-derived induced pluripotent stem cells (iPSCs) provide an opportunity to study human diseases mainly in those cases for which no suitable model systems are available. Here, we have taken advantage of in vitro iPSCs derived from patients affected by amyotrophic lateral sclerosis (ALS) and carrying mutations in the RNA-binding protein FUS to study the cellular behavior of the mutant proteins in the appropriate genetic background. Moreover, the ability to differentiate iPSCs into spinal cord neural cells provides an in vitro model mimicking the physiological conditions. iPSCs were derived from FUSR514S and FUSR521C patient fibroblasts, whereas in the case of the severe FUSP525L mutation, in which fibroblasts were not available, a heterozygous and a homozygous iPSC line were raised by TALEN-directed mutagenesis. We show that aberrant localization and recruitment of FUS into stress granules (SGs) is a prerogative of the FUS mutant proteins and occurs only upon induction of stress in both undifferentiated iPSCs and spinal cord neural cells. Moreover, we show that the incorporation into SGs is proportional to the amount of cytoplasmic FUS, strongly correlating with the cytoplasmic delocalization phenotype of the different mutants. Therefore, the available iPSCs represent a very powerful system for understanding the correlation between FUS mutations, the molecular mechanisms of SG formation and ALS ethiopathogenesis. PMID:26035390

  3. The plastic neurotransmitter phenotype of the hippocampal granule cells and of the moss in their messy fibers.

    Science.gov (United States)

    Gutiérrez, Rafael

    2016-04-01

    The granule cells (GCs) and their axons, the mossy fibers (MFs), make synapses with interneurons in the hilus and CA3 area of the hippocampus and with pyramidal cells of CA3, each with distinct anatomical and functional characteristics. Many features of synaptic communication observed at the MF synapses are not usually observed in most cortical synapses, and thus have drawn the attention of many groups studying different aspects of the transmission of information. One particular aspect of the GCs, that makes their study unique, is that they express a dual glutamatergic-GABAergic phenotype and several groups have contributed to the understanding of how two neurotransmitters of opposing actions can act on a single target when simultaneously released. Indeed, the GCs somata and their mossy fibers express in a regulated manner glutamate and GABA, GAD, VGlut and VGAT, all markers of both phenotypes. Finally, their activation provokes both glutamate-R-mediated and GABA-R-mediated synaptic responses in the postsynaptic cell targets and even in the MFs themselves. The developmental and activity-dependent expression of these phenotypes seems to follow a "logical" way to maintain an excitation-inhibition balance of the dentate gyrus-to-CA3 communication.

  4. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons

    Directory of Open Access Journals (Sweden)

    Jessica Lenzi

    2015-07-01

    Full Text Available Patient-derived induced pluripotent stem cells (iPSCs provide an opportunity to study human diseases mainly in those cases for which no suitable model systems are available. Here, we have taken advantage of in vitro iPSCs derived from patients affected by amyotrophic lateral sclerosis (ALS and carrying mutations in the RNA-binding protein FUS to study the cellular behavior of the mutant proteins in the appropriate genetic background. Moreover, the ability to differentiate iPSCs into spinal cord neural cells provides an in vitro model mimicking the physiological conditions. iPSCs were derived from FUSR514S and FUSR521C patient fibroblasts, whereas in the case of the severe FUSP525L mutation, in which fibroblasts were not available, a heterozygous and a homozygous iPSC line were raised by TALEN-directed mutagenesis. We show that aberrant localization and recruitment of FUS into stress granules (SGs is a prerogative of the FUS mutant proteins and occurs only upon induction of stress in both undifferentiated iPSCs and spinal cord neural cells. Moreover, we show that the incorporation into SGs is proportional to the amount of cytoplasmic FUS, strongly correlating with the cytoplasmic delocalization phenotype of the different mutants. Therefore, the available iPSCs represent a very powerful system for understanding the correlation between FUS mutations, the molecular mechanisms of SG formation and ALS ethiopathogenesis.

  5. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells is altered by high temperature during grain fill

    Science.gov (United States)

    Hurkman, William J.; Wood, Delilah F.

    2010-06-01

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. 'Butte 86') was produced under a 24/17°C or 37/28°C day/night regimen imposed from flowering to maturity and starch and protein deposition examined using scanning electron microscopy. The high temperature regimen shortened the duration of grain fill from 40 to 18 days. Under the 37/28°C regimen, A- and B-type starch granules decreased in size. A-type starch granules also exhibited pitting, suggesting enhanced action of starch degradative enzymes. Under both temperature regimens, protein bodies originated early in development and coalesced during mid to late development to form a continuous protein matrix surrounding the starch granules. Under the 37/28°C regimen, the proportion of protein matrix increased in endosperm cells of mature grain. Taken together, the changes in starch granule number and size and in protein matrix amount provide clues for understanding how high temperature during grain fill can affect end use properties of wheat flour.

  6. Loqs depends on R2D2 to localize in D2 body-like granules and functions in RNAi pathways in silkworm cells.

    Science.gov (United States)

    Zhu, Li; Tatsuke, Tsuneyuki; Xu, Jian; Li, Zhiqing; Mon, Hiroaki; Lee, Jae Man; Kusakabe, Takahiro

    2015-09-01

    The phenomenon of RNA interference (RNAi) has been found in various organisms. However, the proteins implicated in RNAi pathway in different species show distinct roles. Knowledge on the underlying mechanism of lepidopteron RNAi is quite lacking such as the roles of Loquacious (Loqs) and R2D2, the dsRNA-binding proteins in silkworm RNAi pathway. Here, we report that Loqs and R2D2 protein depletion affected efficiency of dsRNA-mediated RNAi pathway. Besides, Loqs was found to co-localize with Dicer2 to some specific cytoplasmic foci, which were looked like D2-bodies marked by R2D2 and Dicer2 in Fly cells, thereby calling the foci as D2 body-like granules. Using RNAi methods, Loqs was found to be the key protein in these granules, although R2D2 determined the localization of Loqs in D2 body-like granules. Interestingly, in the R2D2-depeted silkworm cells, the formation of processing bodies, another cytoplasmic foci, was affected. These data indicated R2D2 regulated these two kinds of cytoplasmic foci. Domain deletion analysis demonstrated that dsRBD 1 and 2 were required for Loqs in D2 body-like granules and dsRBD 2 and 3 were required for Loqs to interact with R2D2 and Ago1, respectively. Altogether, our observations provide important information for further study on D2 body-like granules, the newly found cytoplasmic foci in silkworm cells.

  7. Effect of Paeonia lactiflora formula granule against the damage of LO2 cells induced by carbon tetrachloride

    Directory of Open Access Journals (Sweden)

    Yan-qing REN

    2016-06-01

    Full Text Available Objective  To investigate the effect of Paeonia lactiflora formula granule (PLFG against the damage of LO2 cells induced by carbon tetrachloride (CCl4 and explore its mechanism. Methods  LO2 cells were divided into control group, CCl4 model group, PLFG (1, 5, 10mg/L groups and Vit E (50mmol/L group. LO2 cells of PLFG groups and Vit E group were pretreated by drugs for 24 hours, then except control group, other groups were treated by 10mmol/L CCl4 for 6 hours, which induced hepatic cell damage, the alanine aminotransferase (ALT and aspartate transaminase (AST content of the cell culture supernatant were measured, the survival rates of LO2 cells were analyzed by MTT method. LO2 cells were divided into control group, CCl4 model group, PLFG (10mg/L group and Vit E (50mmol/L group, cell loss, changes in nuclear size and morphology, DNA content, mitochondrial membrane potential (MMP, cell permeability changes, and cytochrome C release were measured simultaneously by high content analysis (HCA. Results  Compared with CCl4 model group, PLFG and Vit E pretreatment could obviously decrease the level of ALT and AST (P<0.05 or P<0.01, especially in the 10mg/L PLFG group and Vit E group. PLFG (1, 5, 10mg/L and Vit E could also significantly weaken the decrease of LO2 cell viability, which were induced by CCl4 treatment, the results showed in dose-dependent to some extents (P<0.05 or P<0.01. Meanwhile, treatment with 10mg/L PLFG and Vit E could significantly increase the level of MMP (P<0.01, prevent cytochrome C release (P<0.01, decrease the membrane permeability (P<0.01, increase nuclear size (P<0.01, decrease total nuclear intensity (P<0.01 and increase the cell count (P<0.05. Conclusion  PLFG may act an obvious protective effect against the liver injury induced by CCl 4, and it might be due to protecting the integrity of mitochondria membrane, decreasing cell membrane permeability and inhibiting the apoptosis of LO2 cells. DOI: 10.11855/j

  8. Selective sorting of alpha-granule proteins

    OpenAIRE

    Italiano, J.E.; Battinelli, E. M.

    2009-01-01

    One of the main functions of blood platelets is to secrete a variety of substances that can modify a developing thrombus, regulate the growth of the vasculature, promote wound repair, and contribute to cell-adhesive events. The majority of this vast array of secreted proteins is stored in alpha-granules. Until recently, it was assumed that platelets contained one homogeneous population of alpha-granules that undergo complete de-granulation during platelet activation. This review focuses on th...

  9. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Meier, E

    1990-01-01

    preparations. This indicates that the low-affinity receptors were not located in the plasma membrane. This is in good agreement with the corresponding morphological findings, that monensin treatment led to an intense vacuolization of the Golgi apparatus, thereby preventing intracellular transport of the newly...

  10. Gamma-aminobutyric acid agonist-induced alterations in the ultrastructure of cultured cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A

    1988-01-01

    7 and 14 days, respectively, in culture. THIP treatment of 7-day-old cultures led to a statistically significant increase in the cytoplasmic density of rough endoplasmic reticulum, Golgi apparatus, vesicles, and coated vesicles, whereas no significant increase in the cytoplasmic density...

  11. Effect of Aggregated β-Amyloid (1-42 on Synaptic Plasticity of Hippocampal Dentate Gyrus Granule Cells in Vivo

    Directory of Open Access Journals (Sweden)

    Shirin Babri

    2012-12-01

    Full Text Available Introduction: Alzheimer’s disease (AD is a common neurodegenerative disorder in elderly people with an impairment of cognitive decline and memory loss. β-amyloid (Aβ as a potent neurotoxic peptide has a pivotal role in the pathogenesis of AD. This disease begins with impairment in synaptic functions before developing into later neuro­degeneration and neuronal loss. The aim of this study was to evaluate the synaptic plasticity and electrophysiological function of granule cells in hippocampal dentate gyrus (DG after intracerebroventricular (i.c.v. administration of aggregated Aβ (1-42 peptide in vivo. Methods: Animals were divided to control and Aβ (1-42 groups. Long-term potentia­tion (LTP in perforant path-DG synapses was assessed in order to investigate the effect of aggregated Aβ (1-42 on synaptic plasticity. Field excitatory post-synaptic potential (fEPSP slope and population spike (PS amplitude were measured. Results: Administration of Aβ (1-42 significantly decreased fEPSP slope and PS amplitude in Aβ (1-42 group comparing with the control group and had no effect on baseline activity of neurons. Conclusion: The present study indicates that administration of aggregated form of Aβ (1-42 into the lateral ventricle effectively inhibits LTP in granular cells of the DG in hippocampus in vivo.

  12. Corruption of the dentate gyrus by "dominant" granule cells: Implications for dentate gyrus function in health and disease.

    Science.gov (United States)

    Scharfman, Helen E; Myers, Catherine E

    2016-03-01

    The dentate gyrus (DG) and area CA3 of the hippocampus are highly organized lamellar structures which have been implicated in specific cognitive functions such as pattern separation and pattern completion. Here we describe how the anatomical organization and physiology of the DG and CA3 are consistent with structures that perform pattern separation and completion. We then raise a new idea related to the complex circuitry of the DG and CA3 where CA3 pyramidal cell 'backprojections' play a potentially important role in the sparse firing of granule cells (GCs), considered important in pattern separation. We also propose that GC axons, the mossy fibers, already known for their highly specialized structure, have a dynamic function that imparts variance--'mossy fiber variance'--which is important to pattern separation and completion. Computational modeling is used to show that when a subset of GCs become 'dominant,' one consequence is loss of variance in the activity of mossy fiber axons and a reduction in pattern separation and completion in the model. Empirical data are then provided using an example of 'dominant' GCs--subsets of GCs that develop abnormally and have increased excitability. Notably, these abnormal GCs have been identified in animal models of disease where DG-dependent behaviors are impaired. Together these data provide insight into pattern separation and completion, and suggest that behavioral impairment could arise from dominance of a subset of GCs in the DG-CA3 network.

  13. The 40-year history of modeling active dendrites in cerebellar Purkinje cells: Emergence of the first single cell 'Community Model'

    Directory of Open Access Journals (Sweden)

    James M Bower

    2015-10-01

    Full Text Available The subject of the effects of the active properties of the Purkinje cell dendrite on neuronal function has been an active subject of study for more than 40 years. Somewhat unusually, some of these investigations, from the outset have involved an interacting combination of experimental and model-based techniques. This paper recounts that 40-year history, and the view of the functional significance of the active properties of the Purkinje cell dendrite that has emerged. It specifically considers the emergence from these efforts of what is arguably the first single cell ‘community’ model in neuroscience. The paper also considers the implications of the development of this model for future studies of the complex properties of neuronal dendrites.

  14. Studies on cell migration, adenylate cyclase and membrane-coating granules in the buccal epithelium of the zinc-deficient rabbit, including the influence of isoproterenol.

    Science.gov (United States)

    Chen, S Y

    1988-01-01

    Cell migration was slightly increased; cytochemical reaction deposits of adenylate cyclase and the area density of membrane-coating granules (MCG) were significantly increased. Upon isoproterenol stimulation, the MCG area density was significantly increased, whereas the cell migration rate was unchanged. Thus in zinc deficiency, there may be a simultaneous increase in the production and secretion of MCGs, in adenylate cyclase activity, and in cell migration. The non-significantly increased cell migration rate may not keep pace with the significantly increased cell-production rate, resulting in thickening of the epithelium.

  15. Fluorescent labeling of newborn dentate granule cells in GAD67-GFP transgenic mice: a genetic tool for the study of adult neurogenesis.

    Directory of Open Access Journals (Sweden)

    Shengli Zhao

    Full Text Available Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP(+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP(+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells.

  16. GGPPS-mediated Rab27A geranylgeranylation regulates β cell dysfunction during type 2 diabetes development by affecting insulin granule docked pool formation.

    Science.gov (United States)

    Jiang, Shan; Shen, Di; Jia, Wen-Jun; Han, Xiao; Shen, Ning; Tao, Weiwei; Gao, Xiang; Xue, Bin; Li, Chao-Jun

    2016-01-01

    Loss of first-phase insulin secretion associated with β cell dysfunction is an independent predictor of type 2 diabetes mellitus (T2DM) onset. Here we found that a critical enzyme involved in protein prenylation, geranylgeranyl pyrophosphate synthase (GGPPS), is required to maintain first-phase insulin secretion. GGPPS shows a biphasic expression pattern in islets of db/db mice during the progression of T2DM: GGPPS is increased during the insulin compensatory period, followed by a decrease during β cell dysfunction. Ggpps deletion in β cells results in typical T2DM β cell dysfunction, with blunted glucose-stimulated insulin secretion and consequent insulin secretion insufficiency. However, the number and size of islets and insulin biosynthesis are unaltered. Transmission electron microscopy shows a reduced number of insulin granules adjacent to the cellular membrane, suggesting a defect in docked granule pool formation, while the reserve pool is unaffected. Ggpps ablation depletes GGPP and impairs Rab27A geranylgeranylation, which is responsible for the docked pool deficiency in Ggpps-null mice. Moreover, GGPPS re-expression or GGPP administration restore glucose-stimulated insulin secretion in Ggpps-null islets. These results suggest that GGPPS-controlled protein geranylgeranylation, which regulates formation of the insulin granule docked pool, is critical for β cell function and insulin release during the development of T2DM.

  17. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  18. Cocultures of GFP(+) -granule cells with GFP(-) -pyramidal cells and interneurons for the study of mossy fiber neurotransmission with paired recordings.

    Science.gov (United States)

    Osorio, Beatriz; León, Uriel; Galván, Emilio J; Gutiérrez, Rafael

    2013-04-01

    Synaptic transmission of the granule cells (GCs) via their axons, the mossy fibers (MFs), is traditionally studied on acutely prepared or cultured slices. Usually, extracellular, bulk or minimal stimulation is used to evoke transmitter release from MF terminals, while recording from their postsynaptic target cells, the pyramidal cells and interneurons of CA3. However, the ideal method to assess MF neurotransmission, the simultaneous recording of a presynaptic GC and one of its target cells, is extremely difficult to achieve using slices. Alternatively, cultures of GCs establishing autapses have been developed, but in these, GCs do not contact their natural targets. We developed cocultures of GCs, dissociated from transgenic GFP(+) rats, with pyramidal cells and interneurons of CA3, dissociated from wild-type rats, and confirmed the expression of cell-specific markers by immunofluorescence. We conducted recordings of GFP(+) -GCs synaptically connected with their GFP(-) -target cells, and demonstrate that synaptic transmission and its plasticity have the signature of transmission of MF. Besides being strongly depressed by activation of mGluRs, high frequency activation of GC-to-pyramidal cells synapses undergo LTP, while GC-to-interneuron synapses undergo LTD. This coculture method allows a high reproducibility of recording connected pairs of identified cells, constituting a valuable tool to study MF transmission, as well as different combinations of identifiable pre- and postsynaptic cells.

  19. Effects of gadolinium-based contrast agents on thyroid hormone receptor action and thyroid hormone-induced cerebellar Purkinje cell morphogenesis

    Directory of Open Access Journals (Sweden)

    Noriyuki Koibuchi

    2016-08-01

    Full Text Available Gadolinium (Gd-based contrast agents (GBCAs are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs are critical to the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs. We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and thyroid hormone-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA GBCAs were accumulated without inducing cell death in CV-1 cells. In contrast, Gd chloride (GdCl3 treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8–10−6 M augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 – 10−4 M, with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10-9 M T4 was augmented by low-dose Gd-DTPA-BMA (10−7 M but was suppressed by higher dose (10−5 M. Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10-9 M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10-5 M as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization

  20. Cerebellar anatomy as applied to cerebellar microsurgical resections

    Directory of Open Access Journals (Sweden)

    Alejandro Ramos

    2012-06-01

    Full Text Available OBJECTIVE: To define the anatomy of dentate nucleus and cerebellar peduncles, demonstrating the surgical application of anatomic landmarks in cerebellar resections. METHODS: Twenty cerebellar hemispheres were studied. RESULTS: The majority of dentate nucleus and cerebellar peduncles had demonstrated constant relationship to other cerebellar structures, which provided landmarks for surgical approaching. The lateral border is separated from the midline by 19.5 mm in both hemispheres. The posterior border of the cortex is separated 23.3 mm from the posterior segment of the dentate nucleus; the lateral one is separated 26 mm from the lateral border of the nucleus; and the posterior segment of the dentate nucleus is separated 25.4 mm from the posterolateral angle formed by the junction of lateral and posterior borders of cerebellar hemisphere. CONCLUSIONS: Microsurgical anatomy has provided important landmarks that could be applied to cerebellar surgical resections.

  1. Climbing fiber signaling and cerebellar gain control

    NARCIS (Netherlands)

    G. Ohtsuki (Gen); C. Piochon (Claire); C.R.W. Hansel (Christian)

    2009-01-01

    textabstractThe physiology of climbing fiber signals in cerebellar Purkinje cells has been studied since the early days of electrophysiology. Both the climbing fiber-evoked complex spike and the role of climbing fiber activity in the induction of long-term depression (LTD) at parallel fiber-Purkinje

  2. Naringin attenuates granule cell dispersion in the dentate gyrus in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Jang, Hannah; Jeong, Kyoung Hoon; Kim, Sang Ryong

    2016-07-01

    Morphological abnormalities of the dentate gyrus (DG) are an important phenotype in the hippocampus of patients with temporal lobe epilepsy. We recently reported that naringin, a bioflavonoid in grapefruit and citrus fruits, exerts beneficial effects in the kainic acid (KA) mouse model of epilepsy. We found that naringin treatment reduced seizure activities and decreased autophagic stress and neuroinflammation in the hippocampus following in vivo lesion with KA. However, it remains unclear whether naringin may also attenuate seizure-induced morphological changes in the DG, collectively known as granule cell dispersion (GCD). To clarify whether naringin treatment reduces GCD, we evaluated the effects of intraperitoneal injection of naringin on GCD and activation of mammalian target of rapamycin complex 1 (mTORC1), an important regulator of GCD, following intrahippocampal injection of KA. Our results showed that naringin treatment significantly reduced KA-induced GCD and mTORC1 activation, which was confirmed by assessing the phosphorylated form of the mTORC1 substrate, 4E-BP1, in the hippocampus. These results suggest that naringin treatment may help prevent epilepsy-induced hippocampal injury by inhibiting mTORC1 activation and thereby reducing GCD in the hippocampus in vivo.

  3. Effects of the ephedra alkaloid methylephedrine on the basal evoked potential transportation and the long-term potentiation (LTP) in the rat hippocampal dentate granule cells in vivo

    Institute of Scientific and Technical Information of China (English)

    PENG Xiao-dong

    2008-01-01

    Objective The effect of the ephedra/ephedrine alkaloid methylephedrine (dl-methylephedrine hydrochloride for testing in this paper) on cognitive related synaptic plasticity was investigated by recording extracellular field evoked potentials and its LTP in hippocampal dentate granule cells in urethane-anaesthetized rats in vivo. Methods Single pathway recording of evoked field potentials was made from the dentate granule cells of hippocampal hemisphere in response to stimulation of the ipsilateral medial perforant path (MPP). Two parameters, the amplitude of population spike (PS amplitude) and the latency of the PS, were employed to evaluate the effects of drug on the overall changes in cellular responses. Results The present study show that methylephedrine 90 mg·kg-1 intraperitoneally, about 1/3 LD50, could increase the latency of the PS in hippocampal dentate granule cells by constant single stimulation of the MPP as the basal ransportation. However, the 30 mg·kg-1 and 10 mg·kg-1 dosage had no effect on the latency, and there are no influences of PS amplitude for all examinational groups. The methylephedrine 90 mg·kg-1 group significant enhanced the development of amplitude LTP in hippocampal dentate granule cells that induced by 60 Hz, 60 pulses conditional tetanus in medial perforant path area. Also, the 30 mg·kg-1 group can promoted the maintenance of LTP induced by this tetanus, but no promotion on PS amplitude LTP appeared in this dosage and no any changes been found in 10 mg·kg-1 dosage group. Conclusions The ephedra/ephedrine alkaloid methylephedrine can modulate the synaptic plasticity in the lateral perforant path. A possible mechanism of methylephedrine on hippocampal LTP is been discussed.

  4. Cerebellar Hypoplasia and Autism

    OpenAIRE

    1989-01-01

    The size of the cerebellar hemisphere and vermal lobules was measured in ten autistic and eight normal control subjects at the Neuropsychology Research Laboratory, Children’s Hospital Research Center, and the Departments of Neurosciences and Radiology, School of Medicine, University of California at San Diego, LaJolla.

  5. Role of astrocytes in depolarization-coupled release of glutamate in cerebellar cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2004-01-01

    Release of preloaded D-[3H]aspartate in response to depolarization induced by high potassium, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or the endogenous agonist glutamate was studied using cultured glutamatergic cerebellar granule neurons, cerebell...

  6. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  7. Effect of methotrexate on cerebellar development in infant rats.

    Science.gov (United States)

    Sugiyama, Akihiko; Sun, Jing; Ueda, Kota; Furukawa, Satoshi; Takeuchi, Takashi

    2015-07-01

    Six-day-old rats were treated intraperitoneal injections with methotrexate 1 mg/kg, and the cerebellum was examined. Both the length and width of the vermis decreased in the methotrexate-treated group instead of the control from 4 day after treatment (DAT) onward. A significant reduction in the width of the external granular layer was detected on 2 and 3 DAT in the methotrexate group. By 4 DAT, the width of the external granular layer of the methotrexate group was indistinguishable from the control, and by 8 DAT, it was greater than that of the control. The molecular layer of methotrexate group on 8 and 15 DAT was thinner than that of the control. On 1 DAT, in the methotrexate group, there were many TUNEL and cleaved caspase-3-positive granular cells throughout the external granular layer, and they decreased time-dependently. On 1 DAT, in the methotrexate group, phospho-histone H3-positive cells in the external granular layer were fewer than in the control and tended to increase on 2-4 DAT. The p21-positive-rate of the external granule cells in the MTX group was higher than in the control on 1-4 DAT. These results suggested that methotrexate exposure on postnatal day 6 induces a delay, slowing in the migration of external granular cells to the inner granular layer, attributed to decrease or inhibition in the production of external granular cells that had arisen from apoptosis and the decrease in cell proliferative activity, resulting in cerebellar hypoplasia.

  8. Noradrenaline blocks potassium conductance in rat dentate granule cells in vitro.

    Science.gov (United States)

    Haas, H L; Rose, G M

    1987-07-22

    The actions of noradrenaline and the beta-adrenergic agonist, isoproterenol, were studied on the dentate gyrus in hippocampal slices from rats using extra- and intracellular recording. These agents facilitated field EPSPs (excitatory postsynaptic potentials) and population spikes evoked by perforant path stimulation. Intracellular recording revealed an attenuation of the long lasting afterhyperpolarization (AHP) and the accommodation of cell discharge in response to depolarizing current injection. It is suggested that beta-receptor activation blocks a calcium-dependent potassium current.

  9. Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells

    OpenAIRE

    2015-01-01

    The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula). Kalkitoxin exhibited N-methyl-d-aspartate (NMDA)-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure ...

  10. Mathematical modelling of the citric acid cycle for the analysis of glutamine isotopomers from cerebellar astrocytes incubated with [1(-13)C]glucose.

    Science.gov (United States)

    Merle, M; Martin, M; Villégier, A; Canioni, P

    1996-08-01

    A mathematical model of the citric acid cycle devoted to the analysis of 13C-NMR data was developed for determining the relative flux of molecules through the anaplerotic versus oxidative pathways and the relative pyruvate carboxylase versus pyruvate dehydrogenase activities. Different variants of the model were considered depending on the reversibility of the conversion of fumarate into malate and oxaloacetate. The model also included the possibility of orientation-conserved transfer of the four-carbon citric acid cycle intermediates, leading to conversion of succinyl-CoA C1 into either malate C1 or C4. It was used to analyse NMR data from glutamine isotopomers produced by cerebellar astrocytes incubated with [1-13C]glucose. Partial cycling (39%) between oxaloacetate and fumarate was evident from the analysis. Application of the model to glutamate isotopomers from granule cells incubated with [1-13C]glucose [Martin, M.. Portais, J.C.. Labouesse. J., Canioni. P, & Merle, M. (1993) Eur. J. Biochem. 217, 617-625] indicated that total cycling of oxaloacetate into fumarate was, in this case, required to get the best fit. The results emphasized some important differences in carbon metabolism between cerebellar astrocytes and granule cells concerning the sources of carbon fuelling the citric acid cycle and the carbon fluxes on different pathways.

  11. Increased efficiency of homologous recombination in Toxoplasma gondii dense granule protein 3 demonstrates that GRA3 is not necessary in cell culture but does contribute to virulence.

    Science.gov (United States)

    Craver, Mary Patricia J; Knoll, Laura J

    2007-06-01

    Toxoplasma gondii possesses unique secretory organelles, which synchronously release proteins during and after invasion. One of these organelles, the dense granules, secrete proteins after invasion which are thought to be important in development of the parasite throughout all stages of its life cycle. Dense granule protein 3 (GRA3) is a 30 kDa protein localized to the intravacuolar network and parasitophorous vacuole membrane (PVM). Like many dense granule proteins, GRA3 has no homology to proteins with described functions. However, it has been hypothesized to be involved in nutrient acquisition for the parasite due to its localization on the PVM. To begin to investigate the importance of GRA3, the locus was disrupted by homologous replacement with a chloramphenicol resistance gene in a type II strain. Two DeltaGRA3 strains were obtained after two independent electroporations with efficiency greater than 80%. No differences between wild-type and DeltaGRA3 were detected in cell culture growth rate or bradyzoite formation. Location of other parasite dense granule proteins and association with host cell organelles were also not affected in DeltaGRA3. Interestingly, at an infectious dose approximately four-fold above the lethal dose 50% for wild-type parasites, all mice infected with DeltaGRA3-2 infected mice survived acute infection. Complementation of GRA3 expression in the DeltaGRA3-2 strain restored virulence to wild-type levels, and increased the virulence of the DeltaGRA3-1, confirming that the GRA3 protein plays a role during acute infection in a type II strain.

  12. Developmental analysis of the external granular layer in the meander tail mutant mouse: do cerebellar microneurons have independent progenitors?

    Science.gov (United States)

    Napieralski, J A; Eisenman, L M

    1993-08-01

    The cerebellum of the meander tail mutant mouse (mea/mea) is characterized by an apparently normal cytoarchitecture posteriorly with an abrupt transition to an abnormal anterior region. Anteriorly, there is abnormal foliation, a drastic reduction in the granule cells (GC) population, disorganization of the Purkinje cells (PC), and a virtual absence of Bergmann glial processes. In this paper we analyze the prenatal and postnatal development of the cerebellum in the mea/mea and attempt to determine the phenotypic onset of the mutation in the anterior region. Hematoxylin and eosin stained sections reveal a morphological difference in the cerebellum of the mea/mea as early as embryonic day 16 characterized by a reduction in the external granule cell layer (EGL). The reduction in the EGL becomes increasingly apparent as development proceeds. This deficit in the EGL most probably results in the absence of GC, but it is unclear at this point whether reduced migration, proliferation, and/or increased cell death is the major factor. Interestingly, immunohistochemical staining with a monoclonal antibody against parvalbumin reveals that the basket and stellate cells, which are also thought to arise from the EGL, are present in the anterior region of the mea/mea cerebellum. These results suggest that the lack of GC in the meander tail is due to an early expressed abnormality of the EGL. However, the presence of the basket and/or stellate cells raises some interesting questions concerning the lineage of the cerebellar microneurons.

  13. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus.

    Science.gov (United States)

    Kitahara, Yosuke; Ohta, Keisuke; Hasuo, Hiroshi; Shuto, Takahide; Kuroiwa, Mahomi; Sotogaku, Naoki; Togo, Akinobu; Nakamura, Kei-ichiro; Nishi, Akinori

    2016-01-01

    A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.

  14. MID2 can substitute for MID1 and control exocytosis of lytic granules in cytotoxic T cells

    DEFF Research Database (Denmark)

    Boding, Lasse; Hansen, Ann K; Meroni, Germana;

    2015-01-01

    We have recently shown that the E3 ubiquitin ligase midline 1 (MID1) is upregulated in murine cytotoxic lymphocytes (CTL), where it controls exocytosis of lytic granules and the killing capacity. Accordingly, CTL from MID1 knock-out (MID1(-/-)) mice have a 25-30% reduction in exocytosis of lytic...... granules and cytotoxicity compared to CTL from wild-type (WT) mice. We wondered why the MID1 gene knock-out did not affect exocytosis and cytotoxicity more severely and speculated whether MID2, a close homologue of MID1, might partially compensate for the loss of MID1 in MID1(-/-) CTL. Here, we showed...

  15. Different NK cell-activating receptors preferentially recruit Rab27a or Munc13-4 to perforin-containing granules for cytotoxicity

    DEFF Research Database (Denmark)

    Wood, Stephanie M; Meeths, Marie; Chiang, Samuel C C

    2009-01-01

    of perforin-containing lytic granules induced by signals for natural and antibody-dependent cellular cytotoxicity. We demonstrate here that these signals fail to induce degranulation in resting NK cells from Rab27a-deficient patients. In resting NK cells from healthy subjects, endogenous Rab27a and Munc13...... functional antigen-1, NKG2D, or 2B4 induced colocalization of Rab27a, but not Munc13-4, with perforin. Conversely, engagement of antibody-dependent cellular cytotoxicity receptor CD16 induced colocalization of Munc13-4, but not Rab27a, with perforin. Furthermore, colocalization of Munc13-4 with perforin...

  16. Granulation of fine powder

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  17. Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Duveau, Venceslas; Madhusudan, Amrita; Caleo, Matteo; Knuesel, Irene; Fritschy, Jean-Marc

    2011-09-01

    Cajal-Retzius cells play a crucial role during ontogeny in regulating cortical lamination via release of reelin. In adult brain, they comprise small calretinin-positive interneurons located in the marginal zone of the cerebral cortex and in the hippocampal fissure. Alterations of reelin signaling or expression have been involved in major neurological disorders, and they underlie granule cell dispersion (GCD) in mesial temporal lobe epilepsy (TLE). Here, we investigated in a mouse model of TLE the contribution of Cajal-Retzius cells to reelin production in epileptic hippocampus and the molecular mechanisms underlying GCD. Following unilateral intrahippocampal Kainic acid injection in adult mice to induce an epileptic focus, we observed that Cajal-Retzius cells gradually became strongly immunopositive for reelin, due to intracellular accumulation. This phenotype resembled the morphology of Cajal-Retzius cells in reeler Orleans (reln (orl/orl) ) mice, which express a secretion-deficient 310-kDa reelin fragment. The possibility that GCD might result from abnormal reelin processing in Cajal-Retzius cells, leading to a lack of reelin secretion, was confirmed by KA injection in reln (orl/+) mice, which induced severe GCD. Furthermore, Western blot analysis in KA-treated wildtype mice revealed increased production of ∼300-kDa reelin fragments, confirming abnormal proteolytic processing. This effect was not seen upon treatment with Botulinum neurotoxin E (BoNT/E), which prevents GCD in KA-lesioned hippocampus by chronic blockade of synaptic transmission. Furthermore, BoNT/E blocked upregulation of TrkB in Cajal-Retzius cells, suggesting that production of truncated reelin in KA-treated hippocampus is activity-dependent and regulated by BDNF. Altogether, these data reveal that GCD results from abnormal reelin processing in Cajal-Retzius cells under the control of BDNF. Our findings highlight the critical role played by Cajal-Retzius cells for hippocampal neuronal

  18. Genetics Home Reference: lissencephaly with cerebellar hypoplasia

    Science.gov (United States)

    ... Conditions lissencephaly with cerebellar hypoplasia lissencephaly with cerebellar hypoplasia Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Lissencephaly with cerebellar hypoplasia (LCH) affects brain development, resulting in the brain ...

  19. Label-free distinguishing between neurons and glial cells based on two-photon excited fluorescence signal of neuron perinuclear granules

    Science.gov (United States)

    Du, Huiping; Jiang, Liwei; Wang, Xingfu; Liu, Gaoqiang; Wang, Shu; Zheng, Liqin; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2016-08-01

    Neurons and glial cells are two critical cell types of brain tissue. Their accurate identification is important for the diagnosis of psychiatric disorders such as depression and schizophrenia. In this paper, distinguishing between neurons and glial cells by using the two-photon excited fluorescence (TPEF) signals of intracellular intrinsic sources was performed. TPEF microscopy combined with TUJ-1 and GFAP immunostaining and quantitative image analysis demonstrated that the perinuclear granules of neurons in the TPEF images of brain tissue and the primary cultured cortical cells were a unique characteristic of neurons compared to glial cells which can become a quantitative feature to distinguish neurons from glial cells. With the development of miniaturized TPEF microscope (‘two-photon fiberscopes’) imaging devices, TPEF microscopy can be developed into an effective diagnostic and monitoring tool for psychiatric disorders such as depression and schizophrenia.

  20. The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available After the discovery at the end of the 19th century (Golgi, 1883, the Golgi cell was precisely described by S.R. y Cajal (see Cajal, 1987, 1995 and functionally identified as an inhibitory interneuron 50 years later by J.C. Eccles and colleagues (Eccles e al., 1967. Then, its role has been casted by Marr (1969 within the Motor Learning Theory as a codon size regulator of granule cell activity. It was immediately clear that Golgi cells had to play a critical role, since they are the main inhibitory interneuron of the granular layer and control activity of as many as 100 millions granule cells. In vitro, Golgi cells show pacemaking, resonance, phase-reset and rebound-excitation in the theta-frequency band. These properties are likely to impact on their activity in vivo, which shows irregular spontaneous beating modulated by sensory inputs and burst responses to punctuate stimulation followed by a silent pause. Moreover, investigations have given insight into Golgi cells connectivity within the cerebellar network and on their impact on the spatio-temporal organization of activity. It turns out that Golgi cells can control both the temporal dynamics and the spatial distribution of information transmitted through the cerebellar network. Moreover, Golgi cells regulate the induction of long-term synaptic plasticity at the mossy fiber - granule cell synapse. Thus, the concept is emerging that Golgi cells are of critical importance for regulating granular layer network activity bearing important consequences for cerebellar computation as a whole.

  1. A second look at intraepithelial Langerhans cells in mycosis fungoides and related disorders. Ultrastructural study with special reference to Langerhans granules and virus-like particles.

    Science.gov (United States)

    Füllbrandt, U; Meissner, K; Löning, T; Jänner, M

    1983-01-01

    Skin biopsies of patients with small and large plaque parapsoriasis, premycotic lesions and mycosis fungoides in different stages were examined. Special attention was paid to the relationships between Langerhans cells (LC) and the neighbouring keratinocytes and lymphocytes. At the contact areas of LC and keratinocytes as well as LC and lymphocytes, particular cell membrane phenomena were observed. Aggregations of Langerhans granules and fusions of granules with LC plasma membranes were found exclusively at LC-keratinocyte interfaces. At LC-lymphocyte contact zones cell membrane appositions were seen. In all cases investigated, virus-like particles were mainly found in LC and indeterminate cells (IDC). In 3 cases lymphocytes also contained these particles. It was of particular interest that virus-like particles were observed in skin specimens of all diseases investigated. Discrimination of these particles from other cellular organelles - especially lysosomes - was difficult, however. The significance of our findings, particularly regarding to the supposed virus aetiology of cutaneous T cell lymphomas, is discussed.

  2. Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice.

    Science.gov (United States)

    Schreurs, B G; Oh, M M; Alkon, D L

    1996-03-01

    1. Using a rabbit cerebellar slice preparation, we stimulated a classical conditioning procedure by stimulating parallel fiber inputs to Purkinje cells with the use of a brief, high-frequency train of eight constant-current pulses 80 ms before climbing fiber inputs to the same Purkinje cell were stimulated with the use of a brief, lower frequency train of three constant-current pulses. In all experiments, we assessed the effects of stimulation by measuring the peak amplitude of Purkinje cell excitatory postsynaptic potentials (EPSPs) to single parallel fiber test pulses. 2. Intradendritically recorded Purkinje cell EPSPs underwent a long-term (> 20 min) reduction in peak amplitude (30%) after paired stimulation of the parallel and climbing fibers but not after unpaired or parallel fiber alone stimulation. We call this phenomenon pairing-specific long-term depression (PSD). 3. Facilitation of the peak amplitude of a second EPSP elicited by a parallel fiber train occurred both before and after paired stimulation suggesting that the locus of depression was not presynaptic. Depression of the peak amplitude of a depolarizing response to focal application of glutamate following pairings of parallel and climbing fiber stimulation added support to a suggested postsynaptic locus of the PSD effect. 4. The application of aniracetam potentiated EPSP peak amplitude by 40%, but these values returned to baseline as a result of pairings. With the removal of aniracetam from the bath 20 min after pairings, normal levels of pairing-specific EPSP depression were observed, indicating that the effect did not result from direct desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptors. 5. Incubation of slices in the protein kinase inhibitor H-7 potentiated EPSP peak amplitudes slightly (9%), but peak amplitudes returned to baseline levels after pairings. The net reduction in EPSP peak amplitude of classical conditioning.

  3. Cbln1 accumulates and colocalizes with Cbln3 and GluRδ2 at parallel fiber-Purkinje cell synapses in the mouse cerebellum

    OpenAIRE

    Miura, Eriko; Matsuda, Keiko; Morgan, James I.; Yuzaki, Michisuke; Watanabe, Masahiko

    2009-01-01

    Cbln1 (a.k.a. precerebellin) is secreted from cerebellar granule cells as homohexamer or in heteromeric complexes with Cbln3. Cbln1 plays crucial roles in regulating morphological integrity of parallel fiber (PF)-Purkinje cell (PC) synapses and synaptic plasticity; Cbln1-knockout mice display severe cerebellar phenotypes that are essentially indistinguishable from those in glutamate receptor GluRδ2-null mice and include, severe reduction in the number of PF-PC synapses and loss of long-term d...

  4. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    Directory of Open Access Journals (Sweden)

    János Brunner

    2014-03-01

    Full Text Available Backpropagating action potentials (bAPs and local calcium signals that they trigger are fundamental for dendritic functions. Here we addressed the question what extent the changes of local dendritic membrane properties can contribute to the shaping of the coupling between dendritic action potentials and the local calcium responses. Using a combination of in vitro electrophysiological and confocal imaging techniques we found that activation of dendritic GIRK channels via mGlu2 or GABAB receptors enhanced the bAP¬-triggered calcium signals in the dendrites of dentate gyrus granule cells (GCs. The enhancement of calcium signals was significant only in those dendritic regions, where these receptors are predominantly expressed. Similarly to GIRK channel activation, somatic hyperpolarization by DC current injection (from -64 mV to -77 mV, significantly increased bAP-associated calcium signals in the proximal dendrites. The hyperpolarization was associated with a decrease in the input resistance due to the rectification of the membrane potential of GCs. The effect of hyperpolarization on the calcium signals was maintained when T-type calcium currents were blocked but it decreased when GIRK channels were inhibited. Simultaneous dual somato-dendritic recordings from GCs showed that somatic hyperpolarization accelerated the repolarization phase of dendritic bAP in the proximal region whereas the rising phase and peak amplitude was not affected. We hypothesize that the larger driving force for calcium ions during the faster repolarization can contribute to the increasing in calcium signals. Employment of previously recorded dendritic bAP waveforms from hyperpolarized membrane potential as voltage command evoked larger calcium currents in nucleated patches compared to bAP waveform from the same recording at depolarized membrane potential. Furthermore, addition of native, high-voltage activated, inactivating potassium conductance by somatic dynamic clamp

  5. An integrator circuit in cerebellar cortex.

    Science.gov (United States)

    Maex, Reinoud; Steuber, Volker

    2013-09-01

    The brain builds dynamic models of the body and the outside world to predict the consequences of actions and stimuli. A well-known example is the oculomotor integrator, which anticipates the position-dependent elasticity forces acting on the eye ball by mathematically integrating over time oculomotor velocity commands. Many models of neural integration have been proposed, based on feedback excitation, lateral inhibition or intrinsic neuronal nonlinearities. We report here that a computational model of the cerebellar cortex, a structure thought to implement dynamic models, reveals a hitherto unrecognized integrator circuit. In this model, comprising Purkinje cells, molecular layer interneurons and parallel fibres, Purkinje cells were able to generate responses lasting more than 10 s, to which both neuronal and network mechanisms contributed. Activation of the somatic fast sodium current by subthreshold voltage fluctuations was able to maintain pulse-evoked graded persistent activity, whereas lateral inhibition among Purkinje cells via recurrent axon collaterals further prolonged the responses to step and sine wave stimulation. The responses of Purkinje cells decayed with a time-constant whose value depended on their baseline spike rate, with integration vanishing at low ( 30 per s). The model predicts that the apparently fast circuit of the cerebellar cortex may control the timing of slow processes without having to rely on sensory feedback. Thus, the cerebellar cortex may contain an adaptive temporal integrator, with the sensitivity of integration to the baseline spike rate offering a potential mechanism of plasticity of the response time-constant.

  6. Role of the Ink4a/Arf tumor suppressors in cerebellar development, stem cells and cancer

    NARCIS (Netherlands)

    Valk-Lingbeek, Merel Esmée

    2005-01-01

    In order to take proper cell fate decisions, cells have to guide their biochemical machinery through the appropriate decisions in both differentiation and proliferation. Especially for stem cells such decisions are critical as they have the capacity to self-renew, i.e. give rise to new daughter stem

  7. Falls in degenerative cerebellar ataxias

    NARCIS (Netherlands)

    van de Warrenburg, Bart P C; Steijns, Janneke A G; Munneke, Marten; Kremer, Berry P H; Bloem, Bastiaan R

    2005-01-01

    We retrospectively and prospectively assessed the frequency and characteristics of falls in patients with degenerative cerebellar ataxias. The results show that falls occur very frequently in patients with degenerative cerebellar ataxias and that these falls are serious and often lead to injuries or

  8. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Science.gov (United States)

    Perez de los Cobos Pallares, Fernando; Loebel, Alex; Lukas, Michael

    2016-01-01

    During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm”) can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse. PMID:27747107

  9. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Directory of Open Access Journals (Sweden)

    Mahua Chatterjee

    2016-01-01

    Full Text Available During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs, occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm” can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.

  10. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  11. Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus.

    Science.gov (United States)

    Tejada, Julian; Garcia-Cairasco, Norberto; Roque, Antonio C

    2014-05-01

    Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO) model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.

  12. Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Julian Tejada

    2014-05-01

    Full Text Available Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.

  13. Importance of genetics in fetal alcohol effects: null mutation of the nNOS gene worsens alcohol-induced cerebellar neuronal losses and behavioral deficits.

    Science.gov (United States)

    Bonthius, Daniel J; Winters, Zachary; Karacay, Bahri; Bousquet, Samantha Larimer; Bonthius, Daniel J

    2015-01-01

    The cerebellum is a major target of alcohol-induced damage in the developing brain. However, the cerebella of some children are much more seriously affected than others by prenatal alcohol exposure. As a consequence of in utero alcohol exposure, some children have substantial reductions in cerebellar volume and corresponding neurodevelopmental problems, including microencephaly, ataxia, and balance deficits, while other children who were exposed to similar alcohol quantities are spared. One factor that likely plays a key role in determining the impact of alcohol on the fetal cerebellum is genetics. However, no specific gene variant has yet been identified that worsens cerebellar function as a consequence of developmental alcohol exposure. Previous studies have revealed that mice carrying a homozygous mutation of the gene for neuronal nitric oxide synthase (nNOS-/- mice) have more severe acute alcohol-induced neuronal losses from the cerebellum than wild type mice. Therefore, the goals of this study were to determine whether alcohol induces more severe cerebellum-based behavioral deficits in nNOS-/- mice than in wild type mice and to determine whether these worsened behavior deficits are associated with worsened cerebellar neuronal losses. nNOS-/- mice and their wild type controls received alcohol (0.0, 2.2, or 4.4mg/g) daily over postnatal days 4-9. In adulthood, the mice underwent behavioral testing, followed by neuronal quantification. Alcohol caused dose-related deficits in rotarod and balance beam performance in both nNOS-/- and wild type mice. However, the alcohol-induced behavioral deficits were substantially worse in the nNOS-/- mice than in wild type. Likewise, alcohol exposure led to losses of Purkinje cells and cerebellar granule cells in mice of both genotypes, but the cell losses were more severe in the nNOS-/- mice than in wild type. Behavioral performances were correlated with neuronal number in the nNOS-/- mice, but not in wild type. Thus, homozygous

  14. Altered dendritic development of cerebellar Purkinje cells in slice cultures from protein kinase C gamma-deficient mice

    NARCIS (Netherlands)

    Schrenk, K; Kapfhammer, JP; Metzger, F

    2002-01-01

    Protein kinase C (PKC) is a key molecule for the expression of long-term depression at the parallel fiber-Purkinje cell synapse in the cerebellum, a well known model for synaptic plasticity, We have recently shown that activity of PKC also profoundly affects the dendritic morphology of Purkinje cell

  15. The type 3 adenylyl cyclase is required for the survival and maturation of newly generated granule cells in the olfactory bulb.

    Science.gov (United States)

    Luo, Jie; Chen, Xuanmao; Pan, Yung-Wei; Lu, Song; Xia, Zhengui; Storm, Daniel R

    2015-01-01

    The type 3 adenylyl cyclase (AC3) is localized to olfactory cilia in the main olfactory epithelium (MOE) and primary cilia in the adult mouse brain. Although AC3 has been strongly implicated in odor perception and olfactory sensory neuron (OSN) targeting, its role in granule cells (GCs), the most abundant interneurons in the main olfactory bulb (MOB), remains largely unknown. Here, we report that the deletion of AC3 leads to a significant reduction in the size of the MOB as well as the level of adult neurogenesis. The cell proliferation and cell cycle in the subventricular zone (SVZ), however, are not suppressed in AC3-/- mice. Furthermore, AC3 deletion elevates the apoptosis of GCs and disrupts the maturation of newly formed GCs. Collectively, our results identify a fundamental role for AC3 in the development of adult-born GCs in the MOB.

  16. The type 3 adenylyl cyclase is required for the survival and maturation of newly generated granule cells in the olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Jie Luo

    Full Text Available The type 3 adenylyl cyclase (AC3 is localized to olfactory cilia in the main olfactory epithelium (MOE and primary cilia in the adult mouse brain. Although AC3 has been strongly implicated in odor perception and olfactory sensory neuron (OSN targeting, its role in granule cells (GCs, the most abundant interneurons in the main olfactory bulb (MOB, remains largely unknown. Here, we report that the deletion of AC3 leads to a significant reduction in the size of the MOB as well as the level of adult neurogenesis. The cell proliferation and cell cycle in the subventricular zone (SVZ, however, are not suppressed in AC3-/- mice. Furthermore, AC3 deletion elevates the apoptosis of GCs and disrupts the maturation of newly formed GCs. Collectively, our results identify a fundamental role for AC3 in the development of adult-born GCs in the MOB.

  17. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies.

    Science.gov (United States)

    Fujitani, Hirotsugu; Kumagai, Asami; Ushiki, Norisuke; Momiuchi, Kengo; Tsuneda, Satoshi

    2015-01-01

    Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB) or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representatives of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member's ecophysiology in a variety of habitats.

  18. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies

    Directory of Open Access Journals (Sweden)

    Hirotsugu eFujitani

    2015-10-01

    Full Text Available Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representative of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member’s ecophysiology in a variety of habitats.

  19. Development of the cerebellar cortex in the mouse

    Institute of Scientific and Technical Information of China (English)

    Xiangshu Cheng; Jin Du; Dongming Yu; Qiying Jiang; Yanqiu Hu; Lei Wang; Mingshan Li; Jinbo Deng

    2011-01-01

    The cerebellum is a highly conserved structure in the central nervous system of vertebrates, and is involved in the coordination of voluntary motor behavior. Supporting this function, the cerebellar cortex presents a layered structure which requires precise spatial and temporal coordination of proliferation, migration, differentiation, and apoptosis events. The formation of the layered structure in the developing cerebellum remains unclear. The present study investigated the development of the cerebellar cortex. The results demonstrate that the primordium of the cerebellum comprises the ependymal, mantle, and marginal layers at embryonic day 12 (E12). Subsequently, the laminated cerebellar cortex undergoes cell proliferation, differentiation, and migration, and at about postnatal day 0 (P0), the cerebellar cortex presents an external granular layer, a molecular layer, a Purkinje layer, and an internal granular layer. The external granular layer is thickest at P6/7 and disappears at P20. From P0 to P30, the internal granular cells and the Purkinje cells gradually differentiate and develop until maturity. Apoptotic neurons are evident in the layered structure in the developing cerebellar cortex. The external granular layer disappears gradually because of cell migration and apoptosis. The cells of the other layers primarily undergo differentiation, development, and apoptosis.

  20. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization.

    Science.gov (United States)

    Pérez-Quintero, Luis-Alberto; Roncagalli, Romain; Guo, Huaijian; Latour, Sylvain; Davidson, Dominique; Veillette, André

    2014-04-07

    Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.

  1. Time-lapse imaging reveals symmetric neurogenic cell division of GFAP-expressing progenitors for expansion of postnatal dentate granule neurons.

    Directory of Open Access Journals (Sweden)

    Takashi Namba

    Full Text Available Granule cells in the hippocampus, a region critical for memory and learning, are generated mainly during the early postnatal period but neurogenesis continues in adulthood. Postnatal neuronal production is carried out by primary progenitors that express glial fibrillary acidic protein (GFAP and they are assumed to function as stem cells. A central question regarding postnatal dentate neurogenesis is how astrocyte-like progenitors produce neurons. To reveal cell division patterns and the process of neuronal differentiation of astrocyte-like neural progenitors, we performed time-lapse imaging in cultured hippocampal slices from early postnatal transgenic mice with mouse GFAP promoter-controlled enhanced green fluorescent protein (mGFAP-eGFP Tg mice in combination with a retrovirus carrying a red fluorescent protein gene. Our results showed that the majority of GFAP-eGFP+ progenitor cells that express GFAP, Sox2 and nestin divided symmetrically to produce pairs of GFAP+ cells (45% or pairs of neuron-committed cells (45%, whereas a minority divided asymmetrically to generate GFAP+ cells and neuron-committed cells (10%. The present results suggest that a substantial number of GFAP-expressing progenitors functions as transient amplifying progenitors, at least in an early postnatal dentate gyrus, although a small population appears to be stem cell-like progenitors. From the present data, we discuss possible cell division patterns of adult GFAP+ progenitors.

  2. Time-lapse imaging reveals symmetric neurogenic cell division of GFAP-expressing progenitors for expansion of postnatal dentate granule neurons.

    Science.gov (United States)

    Namba, Takashi; Mochizuki, Hideki; Suzuki, Ryusuke; Onodera, Masafumi; Yamaguchi, Masahiro; Namiki, Hideo; Shioda, Seiji; Seki, Tatsunori

    2011-01-01

    Granule cells in the hippocampus, a region critical for memory and learning, are generated mainly during the early postnatal period but neurogenesis continues in adulthood. Postnatal neuronal production is carried out by primary progenitors that express glial fibrillary acidic protein (GFAP) and they are assumed to function as stem cells. A central question regarding postnatal dentate neurogenesis is how astrocyte-like progenitors produce neurons. To reveal cell division patterns and the process of neuronal differentiation of astrocyte-like neural progenitors, we performed time-lapse imaging in cultured hippocampal slices from early postnatal transgenic mice with mouse GFAP promoter-controlled enhanced green fluorescent protein (mGFAP-eGFP Tg mice) in combination with a retrovirus carrying a red fluorescent protein gene. Our results showed that the majority of GFAP-eGFP+ progenitor cells that express GFAP, Sox2 and nestin divided symmetrically to produce pairs of GFAP+ cells (45%) or pairs of neuron-committed cells (45%), whereas a minority divided asymmetrically to generate GFAP+ cells and neuron-committed cells (10%). The present results suggest that a substantial number of GFAP-expressing progenitors functions as transient amplifying progenitors, at least in an early postnatal dentate gyrus, although a small population appears to be stem cell-like progenitors. From the present data, we discuss possible cell division patterns of adult GFAP+ progenitors.

  3. Sleep disorders in cerebellar ataxias

    Directory of Open Access Journals (Sweden)

    José L. Pedroso

    2011-04-01

    Full Text Available Cerebellar ataxias comprise a wide range of etiologies leading to central nervous system-related motor and non-motor symptoms. Recently, a large body of evidence has demonstrated a high frequency of non-motor manifestations in cerebellar ataxias, specially in autosomal dominant spinocerebellar ataxias (SCA. Among these non-motor dysfunctions, sleep disorders have been recognized, although still under or even misdiagnosed. In this review, we highlight the main sleep disorders related to cerebellar ataxias focusing on REM sleep behavior disorder (RBD, restless legs syndrome (RLS, periodic limb movement in sleep (PLMS, excessive daytime sleepiness (EDS, insomnia and sleep apnea.

  4. MEMBRANE-COATING GRANULES OF KERATINIZING EPITHELIA.

    Science.gov (United States)

    MATOLTSY, A G; PARAKKAL, P F

    1965-02-01

    The purpose of this study has been to obtain information on the development of the envelop of horny cells that resists the action of keratinolytic agents. Toward this end the epidermis, oral mucosa, and tongue epithelium of various vertebrates, as well as the isolated envelopes of horny cells, were examined by electron microscopy. It was found that small cytoplasmic granules (1,000 to 5,000 A) that develop within differentiating epithelial cells move toward the cell periphery, and after fusion with the plasma membrane, empty their contents into the intercellular spaces. The content of the granules spreads over the cell surfaces, and subsequently a thickened and coated cell envelope is formed that resists the action of keratinolytic agent. The membrane-coating granule is regarded as a specific differentiation product of the keratinizing epithelium. It contains numerous inner membranes and is assumed to engage in synthetic activities such as, perhaps, the formation of polysaccharides.

  5. Activated changes of platelet ultra microstructure and plasma granule membrane protein 140 in patients with non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Yi; ZHOU Jian-ying; YANG Guang-die; ZU De-ling; XU Xiao-liang; TIAN Ming-qing; LU Guo-hua

    2009-01-01

    Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Platelet activation may play an important role in pathologic progress in lung cancer. In this study, we aimed to clarify the influence of activated platelets on lung cancer generation and growth, and the relationship among these functional and ultrastructural changes of platelets and the severity of pathogenetic condition in these patients with NSCLC.Methods One hundred and thirty-six cases of patients with pathologically confirmed NSCLC were included in this study. Fifty-four healthy people were enrolled as controls. The change of ultra microstructure and activity of blood platelets were observed under the transmission and scanning electron microscope. Simultaneous determination of plasma granule membrane protein 140 (GMP-140) was made.Results Transmission electron microscopy showed remarkable changes of ultra microstructure of platelets in patients with NSCLC, including swelling, increase of o-granules, vesicles, and glycogenosome. Scanning electron microscopy showed many more surface processes and wrinkles on platelets in patients with NSCLC. The reference plasma levels of GMP-140 of healthy controls were (18.2±2.7) μg/L. The plasma levels of GMP-140 in patients with NSCLC were (47.8±12.3) μg/L, which were much higher than those of the controls. There was a medium positive correlation between plasma levels of GMP-140 and amount of o-granules (r=0.514, P<0.01) and a high positive correlation between plasma levels of GMP-140 and area of platelet (r=0.84, P<0.01) in patients with NSCLC. The Kaplan-Meier survival curve analysis showed significant shift to the left in patients with NSCLC whose α-granules per platelet were 19 or more compared to those 18 or less (Log rank statistic, X2=17.38, P <0.01).Conclusions There are significant activated changes of ultra microstructure and increased activity of blood platelets in patients with NSCLC. These activated platelets

  6. A new mouse allele of glutamate receptor delta 2 with cerebellar atrophy and progressive ataxia.

    Science.gov (United States)

    Miyoshi, Yuka; Yoshioka, Yoshichika; Suzuki, Kinuko; Miyazaki, Taisuke; Koura, Minako; Saigoh, Kazumasa; Kajimura, Naoko; Monobe, Yoko; Kusunoki, Susumu; Matsuda, Junichiro; Watanabe, Masahiko; Hayasaka, Naoto

    2014-01-01

    Spinocerebellar degenerations (SCDs) are a large class of sporadic or hereditary neurodegenerative disorders characterized by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line. The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced granule cells (GC) and abnormal morphology of cerebellar Purkinje cells (PC). Study by ultra-high voltage electron microscopy (UHVEM) further indicated aberrant morphology of PC dendrites and their spines, suggesting both morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects in parallel fiber (PF)-PC synapse formation and abnormal distal extension of climbing fibers (CF). Based on the phenotypic similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that expression levels of two genes and their products, glutamate receptor delta2 (grid2) and its ligand, cerebellin1 (Cbln1), are significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar but different phenotypes as compared to other grid2 mutants.

  7. A new mouse allele of glutamate receptor delta 2 with cerebellar atrophy and progressive ataxia.

    Directory of Open Access Journals (Sweden)

    Yuka Miyoshi

    Full Text Available Spinocerebellar degenerations (SCDs are a large class of sporadic or hereditary neurodegenerative disorders characterized by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line. The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced granule cells (GC and abnormal morphology of cerebellar Purkinje cells (PC. Study by ultra-high voltage electron microscopy (UHVEM further indicated aberrant morphology of PC dendrites and their spines, suggesting both morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects in parallel fiber (PF-PC synapse formation and abnormal distal extension of climbing fibers (CF. Based on the phenotypic similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that expression levels of two genes and their products, glutamate receptor delta2 (grid2 and its ligand, cerebellin1 (Cbln1, are significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar but different phenotypes as compared to other grid2

  8. Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development

    Directory of Open Access Journals (Sweden)

    Vitalis Tania

    2009-03-01

    Full Text Available Abstract Background Down syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21. The mechanisms by which this aneuploidy produces the complex and variable phenotype observed in people with Down syndrome are still under discussion. Recent studies have demonstrated an increased transcript level of the three-copy genes with some dosage compensation or amplification for a subset of them. The impact of this gene dosage effect on the whole transcriptome is still debated and longitudinal studies assessing the variability among samples, tissues and developmental stages are needed. Results We thus designed a large scale gene expression study in mice (the Ts1Cje Down syndrome mouse model in which we could measure the effects of trisomy 21 on a large number of samples (74 in total in a tissue that is affected in Down syndrome (the cerebellum and where we could quantify the defect during postnatal development in order to correlate gene expression changes to the phenotype observed. Statistical analysis of microarray data revealed a major gene dosage effect: for the three-copy genes as well as for a 2 Mb segment from mouse chromosome 12 that we show for the first time as being deleted in the Ts1Cje mice. This gene dosage effect impacts moderately on the expression of euploid genes (2.4 to 7.5% differentially expressed. Only 13 genes were significantly dysregulated in Ts1Cje mice at all four postnatal development stages studied from birth to 10 days after birth, and among them are 6 three-copy genes. The decrease in granule cell proliferation demonstrated in newborn Ts1Cje cerebellum was correlated with a major gene dosage effect on the transcriptome in dissected cerebellar external granule cell layer. Conclusion High throughput gene expression analysis in the cerebellum of a large number of samples of Ts1Cje and euploid mice has revealed a prevailing gene dosage effect on triplicated genes. Moreover using an enriched cell

  9. Non-cerebellar primitive neuroectodermal tumors (PNET): summary of the Milan consensus and state of the art workshop on marrow ablative chemotherapy with hematopoietic cell rescue for malignant brain tumors of childhood and adolescents.

    Science.gov (United States)

    Fangusaro, Jason; Massimino, Maura; Rutkowski, Stefan; Gururangan, Sridharan

    2010-04-01

    CNS non-cerebellar primitive neuroectodermal tumors (PNET) represent <5% of all childhood brain tumors. Despite similar therapies, these patients have had significantly worse outcomes compared to patients with medulloblastoma. Although these tumors have historically been considered analogous to medulloblastoma, there is growing evidence that they are biologically distinct. Since these tumors are relatively rare, there are few large series in the literature. Here we present the international experience treating these patients with a variety of therapies, including marrow ablative chemotherapy followed by autologous hematopoietic cell rescue.

  10. The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis

    Directory of Open Access Journals (Sweden)

    Mario F Wullimann

    2011-04-01

    Full Text Available This review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made. The current picture suggests that rhombic lip and cerebellar development in jawed vertebrates (gnathostomes share many characteristics. Regarding cerebellar development, these include a ptf1a expressing ventral cerebellar proliferation (VCP giving rise to Purkinje cells and other inhibitory cerebellar cell types, and an atoh1 expressing upper rhombic lip giving rise to an external granular layer (EGL, i.e., excitatory granule cells and an early ventral migration into the anterior rhombencephalon (cholinergic nuclei. As for the lower rhombic lip (LRL, gnathostome commonalities likely include the formation of precerebellar nuclei (mossy fiber origins and partially primary auditory nuclei (likely convergently evolved from the atoh1 expressing dorsal zone. The fate of the ptf1a expressing ventral LRL zone which gives rise to (excitatory cells of the inferior olive (climbing fiber origin and (inhibitory cells of cochlear nuclei in amniotes, has not been determined in anamniotes. Special for the zebrafish in comparison to amniotes is the predominant origin of anamniote excitatory deep cerebellar nuclei homologues (i.e., eurydendroid cells from ptf1a expressing VCP cells, the sequential activity of various atoh1 paralogues and the incomplete coverage of the subpial cerebellar plate with proliferative EGL cells. Nevertheless, the conclusion that a rhombic lip and its major derivatives evolved with gnathostome vertebrates only and are thus not an ancestral craniate character complex is supported by the absence of a cerebellum (and likely absence of its afferent and efferent nuclei in jawless

  11. Effect of Yangxue Antai Granule (养血安胎冲剂) in Prevention and Treatment of Abortion and Short Life T-Suppressor Cell

    Institute of Scientific and Technical Information of China (English)

    李恩棠; 李玛建; 高爱平; 沙文萱; 金有慧; 涂序珉; 封江彬; 周藕良

    2002-01-01

    Objective: To study the influence of T-suppressor cell activity on habitual abortion (HA) and to observe the regulatory effect of Yangxue Antai Granule (YXATG) on T-suppressor cell and its effect on fetus preservation. Methods: T-suppressor cell activities of 56 pregnant women with H A history were tested with method of short life T-suppressor cell activity (MTT method) during early pregnancy, and were followed-up in middle and late pregna ncy in 20 cases of them. All the 56 patients YXATG treatment. Groups of normal early pregnant, normal non-pregnant women and those non-pregnant but with history of habitual abortion were involv ed in this study as control. Results: T-suppressor cell activity in early pregnancy was lowe r than that of middle and late pregnancy (P<0.01, P<0.001) and also low er than that of the control groups (P<0.01, P<0.001). The successful rate of fetus preservation of YXATG was 98.2%, and 98.0% of the cases got normal delivery. Conclusion: Low T-suppressor cell activity might be the immunologic etiology of HA. The fetus preservative effect of YXATG might be due to its regulatory effect on T-suppressor cell activity.

  12. Complex partial seizures: cerebellar metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Theodore, W.H.; Fishbein, D.; Deitz, M.; Baldwin, P.

    1987-07-01

    We used positron emission tomography (PET) with (/sup 18/F)2-deoxyglucose to study cerebellar glucose metabolism (LCMRglu) and the effect of phenytoin (PHT) in 42 patients with complex partial seizures (CPS), and 12 normal controls. Mean +/- SD patient LCMRglu was 6.9 +/- 1.8 mg glucose/100 g/min (left = right), significantly lower than control values of 8.5 +/- 1.8 (left, p less than 0.006), and 8.3 +/- 1.6 (right, p less than 0.02). Only four patients had cerebellar atrophy on CT/MRI; cerebellar LCMRglu in these was 5.5 +/- 1.5 (p = 0.054 vs. total patient sample). Patients with unilateral temporal hypometabolism or EEG foci did not have lateralized cerebellar hypometabolism. Patients receiving phenytoin (PHT) at the time of scan and patients with less than 5 years total PHT exposure had lower LCMRglu, but the differences were not significant. There were weak inverse correlations between PHT level and cerebellar LCMRglu in patients receiving PHT (r = -0.36; 0.05 less than p less than 0.1), as well as between length of illness and LCMRglu (r = -0.22; 0.05 less than p less than 0.1). Patients with complex partial seizures have cerebellar hypometabolism that is bilateral and due only in part to the effect of PHT.

  13. [Olivo-ponto-cerebellar atrophy with personality changes and slight disturbance of intelligence].

    Science.gov (United States)

    Deshimaru, M; Miyakawa, T; Suzuki, T

    1976-12-01

    H. I., a housewife aged 55 years, began feeling a gait disturbance at 48 years old. After this she had incoordination of arms, dysarthria and tremor of hands. Aged 54 years, she could not stand up by herself. In addition to these neurological signs she had a change of character, such as losing control of herself, unreservedness and unceremoniousness, and slight disturbance of intelligence. She died at the age of 55 years about seven years after the onset. Histopathologically, noticeable changes were observed on the medulla oblongata, pons and cerebellum; the severe neuronal loss of the pontine nuclei and the olivary nuclei with demyelination and gliosis of the cerebellopetal fibers. Especially a great deal of lipofuscin granules in the nerve cells of the frontal and temporal lobe were observed. In the substantia nigra some pigmented cells were deleted. This case was diagnosed as olivo-ponto-cerebellar atrophy clinico-histopathologically. We discussed conserning the etiology of the changes of personality and slight disturbance of intelligence in relation to histopathological changes. It is speculated that the mental disorders are due to the degeneration of the nerve cells in the frontal and temporal lobes.

  14. Mining the granule proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Goetze, Jens P; Johnsen, Anders H

    2015-01-01

    Proteomics of secretory granules is an emerging strategy for identifying secreted proteins, including potentially novel candidate biomarkers and peptide hormones. In addition, proteomics can provide information about the abundance, localization and structure (post-translational modification) of g...

  15. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation

    Directory of Open Access Journals (Sweden)

    Dobkin Carl

    2011-05-01

    Full Text Available Abstract Background Although the cellular mechanisms responsible for the pathogenesis of autism are not understood, a growing number of studies have suggested that localized inflammation of the central nervous system (CNS may contribute to the development of autism. Recent evidence shows that IL-6 has a crucial role in the development and plasticity of CNS. Methods Immunohistochemistry studies were employed to detect the IL-6 expression in the cerebellum of study subjects. In vitro adenoviral gene delivery approach was used to over-express IL-6 in cultured cerebellar granule cells. Cell adhesion and migration assays, DiI labeling, TO-PRO-3 staining and immunofluorescence were used to examine cell adhesion and migration, dendritic spine morphology, cell apoptosis and synaptic protein expression respectively. Results In this study, we found that IL-6 was significantly increased in the cerebellum of autistic subjects. We investigated how IL-6 affects neural cell development and function by transfecting cultured mouse cerebellar granule cells with an IL-6 viral expression vector. We demonstrated that IL-6 over-expression in granule cells caused impairments in granule cell adhesion and migration but had little effect on the formation of dendritic spines or granule cell apoptosis. However, IL-6 over-expression stimulated the formation of granule cell excitatory synapses, without affecting inhibitory synapses. Conclusions Our results provide further evidence that aberrant IL-6 may be associated with autism. In addition, our results suggest that the elevated IL-6 in the autistic brain could alter neural cell adhesion, migration and also cause an imbalance of excitatory and inhibitory circuits. Thus, increased IL-6 expression may be partially responsible for the pathogenesis of autism.

  16. Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components.

    Science.gov (United States)

    Toyooka, K; Okamoto, T; Minamikawa, T

    2001-09-01

    alpha-Amylase is expressed in cotyledons of germinated Vigna mungo seeds and is responsible for the degradation of starch that is stored in the starch granule (SG). Immunocytochemical analysis of the cotyledon cells with anti-alpha-amylase antibody showed that alpha-amylase is transported to protein storage vacuole (PSV) and lytic vacuole (LV), which is converted from PSV by hydrolysis of storage proteins. To observe the insertion/degradation processes of SG into/in the inside of vacuoles, ultrastructural analyses of the cotyledon cells were conducted. The results revealed that SG is inserted into LV through autophagic function of LV and subsequently degraded by vacuolar alpha-amylase. The autophagy for SG was structurally similar to micropexophagy detected in yeast cells. In addition to the autophagic process for SG, autophagosome-mediated autophagy for cytoplasm and mitochondria was detected in the cotyledon cells. When the embryo axes were removed from seeds and the detached cotyledons were incubated, the autophagosome-mediated autophagy was observed, but the autophagic process for the degradation of SG was not detected, suggesting that these two autophagic processes were mediated by different cellular mechanisms. The two distinct autophagic processes were thought to be involved in the breakdown of SG and cell components in the cells of germinated cotyledon.