WorldWideScience

Sample records for cerebellar dysmetria experimental

  1. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory.

    Science.gov (United States)

    Guell, Xavier; Hoche, Franziska; Schmahmann, Jeremy D

    2015-02-01

    The cerebellar cognitive affective syndrome (CCAS) includes disruption of linguistic processing such as verbal fluency, verbal working memory, grammar, and speech perception. We set out to examine linguistic capabilities in patients with cerebellar lesions to determine which domains are spared and which impaired and to evaluate the underlying cognitive structure of these deficits. Forty-four patients with cerebellar disease were compared to 40 healthy controls on the Oral Sentence Production Test (OSPT) which assesses production of sentences with correct syntactic structure and semantic quality. Twenty-five of these cerebellar patients and 25 controls received the Test of Language Competence-Expanded (TLC-E) that assesses metalinguistic ability. The OSPT failed to reveal differences between patients and controls. In contrast, all cerebellar patients were impaired on each of the four TLC-E subtests. Differences between isolated cerebellar and complex cerebrocerebellar patients were nonsignificant. These results confirm and extend prior observations of the TLC-E in patients with cerebellar lesions and suggest three separate but related language impairments following cerebellar dysfunction: (1) disruption in automatic adjustment of intact grammatical and semantic abilities to a linguistic context in sentence production, (2) disruption in automatic adjustment to a linguistic context in sentence interpretation, and (3) disruption of cognitive processes essential for linguistic skills, such as analysis and sequential logical reasoning. These findings are consistent with the unifying framework of the universal cerebellar transform and the dysmetria of thought theory and provide new insights into the nature of the cognitive impairments in patients with the CCAS.

  2. Sustained Reduction of Cerebellar Activity in Experimental Epilepsy

    Directory of Open Access Journals (Sweden)

    Kim Rijkers

    2015-01-01

    Full Text Available Clinical and experimental evidence suggests a role for the cerebellum in seizure control, while no data are available on cerebellar activity between seizures. We hypothesized that interictal regional activity of the deep cerebellar nuclei is reduced in epilepsy and tested this in an animal model by using ΔFosB and cytochrome oxidase (COX (immunohistochemistry. The expression of these two markers of neuronal activity was analysed in the dentate nucleus (DN, interpositus nucleus (IN, and fastigial nucleus (FN of the cerebellum of fully amygdala kindled rats that were sacrificed 48 hours after their last seizure. The DN and FN of kindled rats exhibited 25 to 29% less ΔFosB immunopositive cells than their respective counterpart in sham controls (P<0.05. COX expression in the DN and FN of kindled animals was reduced by 32 to 33% compared to respective control values (P<0.05. These results indicate that an epileptogenic state is characterized by decreased activity of deep cerebellar nuclei, especially the DN and FN. Possible consequences may include a decreased activation of the thalamus, contributing to further seizure spread. Restoration of FN activity by low frequency electrical stimulation is suggested as a possible treatment option in chronic epilepsy.

  3. Preliminary pilot fMRI study of neuropostural optimization with a noninvasive asymmetric radioelectric brain stimulation protocol in functional dysmetria

    Directory of Open Access Journals (Sweden)

    Mura M

    2012-04-01

    Full Text Available Marco Mura1, Alessandro Castagna2, Vania Fontani2, Salvatore Rinaldi21Institute of Radiology, University of Cagliari, 2Rinaldi Fontani Institute – Department of Neuro Psycho Physical Optimization, Florence, ItalyPurpose: This study assessed changes in functional dysmetria (FD and in brain activation observable by functional magnetic resonance imaging (fMRI during a leg flexion-extension motor task following brain stimulation with a single radioelectric asymmetric conveyer (REAC pulse, according to the precisely defined neuropostural optimization (NPO protocol.Population and methods: Ten healthy volunteers were assessed using fMRI conducted during a simple motor task before and immediately after delivery of a single REAC-NPO pulse. The motor task consisted of a flexion-extension movement of the legs with the knees bent. FD signs and brain activation patterns were compared before and after REAC-NPO.Results: A single 250-millisecond REAC-NPO treatment alleviated FD, as evidenced by patellar asymmetry during a sit-up motion, and modulated activity patterns in the brain, particularly in the cerebellum, during the performance of the motor task.Conclusion: Activity in brain areas involved in motor control and coordination, including the cerebellum, is altered by administration of a REAC-NPO treatment and this effect is accompanied by an alleviation of FD.Keywords: motor behavior, motor control, cerebellum, dysmetria, functional dysmetria, fluctuating asymmetry

  4. Cerebellar Dysfunction in a Patient with HIV.

    Science.gov (United States)

    Gonzalez-Ibarra, Fernando; Abdul, Waheed; Eivaz-Mohammadi, Sahar; Foscue, Christopher; Gongireddy, Srinivas; Syed, Amer

    2014-01-01

    A 50-year-old AIDS patient with a CD4 T-cell count of 114/mm(3) was admitted with cerebellar symptoms of left CN XI weakness, wide-based gait with left-sided dysmetria, abnormal heel-knee-shin test, and dysdiadochokinesia. MRI showed region of hyperintensity in the left inferior cerebellar hemisphere involving the cortex and underlying white matter. Serological tests for HSV1, HSV2, and syphilis were negative. Her CSF contained high protein content and a WBC of 71/mm(3), predominantly lymphocytes. The CSF was also negative for cryptococcal antigen and VDRL. CSF culture did not grow microbes. CSF PCR assay was negative for HSV1 and HSV2 but was positive for JC virus (1,276 copies). The most likely diagnosis is granule cell neuronopathy (GCN), which can only be definitively confirmed with biopsy and immunohistochemistry.

  5. Cerebellar Mutism

    OpenAIRE

    1994-01-01

    Of a series of 15 children operated for cerebellar tumor at University Hospital Rotterdam-Dijkzigt, The Netherlands, 5 developed “cerebellar mutism” and subsequent dysarthria after surgery, and 2 had mild speech problems.

  6. Cerebellar white matter inflammation and demyelination in chronic relapsing experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Wanscher, B.; Sørensen, P. S.; Juhler, M.;

    1993-01-01

    Experimental allergic encephalomyelitis, demyelination, inflammation, immunology, neuropathology......Experimental allergic encephalomyelitis, demyelination, inflammation, immunology, neuropathology...

  7. A case of cerebellar dysarthria as the presenting symptom of HIV infection.

    Science.gov (United States)

    Siddiqi, Zeba; Karoli, Ritu; Fatima, Jalees; Dey, Rahul; Kazmi, Khursheed

    2014-08-01

    A 37 year old man presented with progressive dysarthria for 2 weeks. A week later he developed ataxia and bilateral cerebellar signs including intention tremors, dysmetria and dysdiadokokinesia. During evaluation for aetiology of cerebellar dysarthria, MRI brain revealed asymmetric altered signal intensities in bilateral cerebellar hemispheres and right side of pons suggesting demyelinating lesions. ELISA for Human Immune Deficiency virus-1 was positive. We kept a presumptive diagnosis of Progressive Multifocal Leukoencephalopathy (PML) on the basis of clinico-radiological picture. PML is an under investigated and under diagnosed CNS infection seen in HIV patients with advanced disease. We present an unusual case report where isolated cerebellar involvement occurred as the first AIDS defining event in the absence of appreciable immunodeficiency in a patient with previously undiagnosed HIV infection.

  8. Acute cerebellar ataxia

    Science.gov (United States)

    Cerebellar ataxia; Ataxia - acute cerebellar; Cerebellitis; Post-varicella acute cerebellar ataxia; PVACA ... Acute cerebellar ataxia in children, especially younger than age 3, may occur several weeks after an illness caused by a virus. ...

  9. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    Directory of Open Access Journals (Sweden)

    Ann K. Shinn

    2015-03-01

    Full Text Available Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the cognitive dysmetria and dysmetria of thought models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of

  10. Cerebellar cognitive affective syndrome CCAS – a case report

    Directory of Open Access Journals (Sweden)

    Starowicz-Filip, Anna

    2013-09-01

    Full Text Available Aim. The aim of the study was to describe a case of the patient with cerebellar cognitive affective syndrome CCAS, characterize the role of cerebellum in the regulation of cognitive functions and present theprocedure of neuropsychological diagnosis useful in indicating the specific cognitive and emotional problems in patients with cerebellar damage.Case report. A 41- year old man with an ischemic cerebellar stroke of its right hemisphere manifested the neuropsychological symptoms typical for the frontal damage: euphoric mood, disorganized behavior,lack of criticism and mental plasticity, tendency to shorten the personal distance, problems with mistake correction. In neuropsychological diagnosis we used following methods: Raven Progressive Matrices Test, Mini Mental Stage Examination (MMSE, Trail Making Test, Wisconsin Card Sorting Test, Stroop Interference Test, Word Fluency Test, Auditory Verbal Learning Test by Łuria, Benton Visual Retention Test, Digit Span.Results. Analyzing the obtained results we observed the significant decrease of all executive functions: planning, abstract thinking, cognitive flexibility, adaptation to new situations as well as memory impairments and changes in emotional and behavioral state similar to frontal syndrome. The whole of impairments including the typical cerebellar symptoms (ataxia, dysarthria, dysmetria,hypotonia create the cerebellar cognitive affective syndrome CCAS with leading role of dysexecutive syndrome.Conclusions. The cerebellum takes part in the regulation of cognitive functions. The cerebellar damages can imitate the emotional- cognitive problems of patients after frontal damages what additionally stress the functional link between these two brain structures. Patient’s with cerebellar damages should have neuropsychological and neuropsychiatric diagnosis and care.

  11. Clinical and MRI findings of cerebellar agenesis in two living adult patients

    Directory of Open Access Journals (Sweden)

    Fazil Mustafa Gelal

    2016-01-01

    Full Text Available Cerebellar agenesis (CA is an extremely rare entity. We present two adult patients with CA. The 61-year-old man had ataxia, dysarthria, abnormalities in cerebellar tests, severe cognitive impairment, and moderate mental retardation. The 26-year-old woman had dysmetria, dysdiadochokinesia, and dysarthria as well as mild cognitive impairment and mild mental retardation. Magnetic resonance imaging (MRI showed complete absence of the cerebellum with small residual vermis. Brainstem was hypoplastic and structures above tentorium were normal. Supratentorial white matter bundles were unaffected in diffusion tensor tractography. Only few adult patients with CA have so far been published. These cases show that patients with CA present with a variety of developmental, clinical, and mental abnormalities; and emphasize the role of the cerebellum in normal motor, language, and mental development.

  12. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  13. Degenerative cerebellar diseases and differential diagnoses; Degenerative Kleinhirnerkrankungen und Differenzialdiagnosen

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Roumia, S.; Dietrich, P. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2016-11-15

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions. (orig.) [German] Klinisch imponieren Kleinhirnsyndrome durch Ataxie, Dysarthrie, Dysmetrie, Intentionstremor und Augenbewegungsstoerungen. Neben der Anamnese und klinischen Untersuchung ist die Bildgebung v. a. wichtig um andere Erkrankungen wie Hydrozephalus und Multiinfarktdemenz von degenerativen Kleinhirnerkrankungen zu differenzieren. Zu den degenerativen Erkrankungen mit Kleinhirnbeteiligung gehoeren der Morbus Parkinson, die Multisystematrophie sowie weitere Erkrankungen einschliesslich der spinozerebellaeren Ataxien. Neben der MRT sind auch nuklearmedizinische Untersuchungen zur Differenzierung hilfreich. Axiale Fluid-attenuated-inversion-recovery(FLAIR)- und T2-gewichtete Sequenzen koennen mitunter eine Signalsteigerung im Pons als Ausdruck einer Degeneration der pontinen Neuronen und transversalen Bahnen im Brueckenfuss zeigen. Die Bildgebung ist aber v. a. notwendig, um andere Erkrankungen wie Normaldruckhydrozephalus

  14. Sudden sensorineural hearing loss as prodromal symptom of anterior inferior cerebellar artery infarction.

    Science.gov (United States)

    Martines, Francesco; Dispenza, Francesco; Gagliardo, Cesare; Martines, Enrico; Bentivegna, Daniela

    2011-01-01

    Sudden sensorineural hearing loss is a clinical condition characterized by a sudden onset of unilateral or bilateral hearing loss. In recent years sudden deafness has been frequently described in association with anterior inferior cerebellar artery (AICA) infarction generally presenting along with other brainstem and cerebellar signs such as ataxia, dysmetria and peripheral facial palsy. The authors report a rare clinical case of a 53-year-old man who suddenly developed hearing loss and tinnitus without any brainstem or cerebellar signs. Computed tomography of his brain was normal, and the audiological results localized the lesion causing deafness to the inner ear. Surprisingly, magnetic resonance imaging showed an ischemic infarct in the right AICA territory. This case represents the fifth in the literature to date but it confirms that AICA occlusion can cause sudden deafness even without brainstem or cerebellar signs. Therefore, we recommend submitting the patient for neuroimaging, as an emergency, in order to exclude infarction of the AICA territory. By doing this, it may be possible to limit the extent of the lesion by commencing early therapy.

  15. Temporal disruption of upper-limb anticipatory postural adjustments in cerebellar ataxic patients.

    Science.gov (United States)

    Bruttini, Carlo; Esposti, Roberto; Bolzoni, Francesco; Vanotti, Alessandra; Mariotti, Caterina; Cavallari, Paolo

    2015-01-01

    Voluntary movements induce postural perturbations, which are counteracted by anticipatory postural adjustments (APAs) that preserve body equilibrium. Little is known about the neural structures generating APAs, but several studies suggested a role of sensory-motor areas, basal ganglia, supplementary motor area and thalamus. However, the role of the cerebellum still remains an open question. The aim of this present paper is to shed further light on the role of cerebellum in APAs organization. Thus, APAs that stabilize the arm when the index finger is briskly flexed were recorded in 13 ataxic subjects (seven sporadic cases, four dominant ataxia type III and two autosomal recessive), presenting a slowly progressive cerebellar syndrome with four-limb dysmetria, and compared with those obtained in 13 healthy subjects. The pattern of postural activity was similar in the two groups [excitation in triceps and inhibition in biceps and anterior deltoid (AD)], but apparent modifications in timing were observed in all ataxic subjects in which, on average, triceps brachii excitation lagged the onset of the prime mover flexor digitorum superficialis by about 27 ms and biceps and AD inhibition were almost synchronous to it. Instead, in normal subjects, triceps onset was synchronous to the prime mover and biceps and AD anticipated it by about 40 ms. The observed disruption of the intra-limb APA organization confirms that the cerebellum is involved in APA control and, considering cerebellar subjects as a model of dysmetria, also supports the view that a proper APA chain may play a crucial role in refining movement metria.

  16. Bilateral otogenic cerebellar abscesses.

    Directory of Open Access Journals (Sweden)

    Nadkarni T

    1993-01-01

    Full Text Available An unusual presentation of bilateral otogenic cerebellar abscesses observed in two of our patients is reported. Both gave a history of otorrhoea, fever, headache, vomiting and had bilateral cerebellar signs and conductive hearing loss. The abscesses were detected on computerised tomography. X-rays revealed bilateral mastoiditis. The therapy followed was excision of abscesses, mastoidectomy and antibiotic therapy.

  17. Bilateral Superior Cerebellar Artery Embolic Occlusion with a Fetal-Type Posterior Cerebral Artery Providing Collateral Circulation

    Directory of Open Access Journals (Sweden)

    Taylor J. Bergman

    2016-12-01

    Full Text Available Bilateral infarction of the superior cerebellar arteries with sparing of the rest of the posterior circulation, particularly the posterior cerebral arteries, is an uncommon finding in neurological practice. Most commonly, the deficits of the superior cerebellar arteries and posterior cerebral arteries occur together due to the close proximity of their origins at the top of the basilar artery. A patient was transferred to the neurological intensive care unit with a history of recent-onset falls from standing, profound hypertension, dizziness, and headaches. The neurological exam revealed cerebellar signs, including dysmetria of the right upper extremity and a decreased level of consciousness. Computed tomography of the head and neck revealed decreased attenuation throughout most of the cerebellar hemispheres suggestive of ischemic injury with sparing of the rest of the brain. Further investigation with a computed tomography angiogram revealed a fetal-type posterior cerebral artery on the right side that was providing collateral circulation to the posterior brain. Due to this embryological anomaly, the patient was spared significant morbidity and mortality that would have likely occurred had the circulation been more typical of an adult male.

  18. Synchrony and neural coding in cerebellar circuits

    Directory of Open Access Journals (Sweden)

    Abigail L Person

    2012-12-01

    Full Text Available The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input-output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor

  19. Landmark based shape analysis for cerebellar ataxia classification and cerebellar atrophy pattern visualization

    Science.gov (United States)

    Yang, Zhen; Abulnaga, S. Mazdak; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar dysfunction can lead to a wide range of movement disorders. Studying the cerebellar atrophy pattern associated with different cerebellar disease types can potentially help in diagnosis, prognosis, and treatment planning. In this paper, we present a landmark based shape analysis pipeline to classify healthy control and different ataxia types and to visualize the characteristic cerebellar atrophy patterns associated with different types. A highly informative feature representation of the cerebellar structure is constructed by extracting dense homologous landmarks on the boundary surfaces of cerebellar sub-structures. A diagnosis group classifier based on this representation is built using partial least square dimension reduction and regularized linear discriminant analysis. The characteristic atrophy pattern for an ataxia type is visualized by sampling along the discriminant direction between healthy controls and the ataxia type. Experimental results show that the proposed method can successfully classify healthy controls and different ataxia types. The visualized cerebellar atrophy patterns were consistent with the regional volume decreases observed in previous studies, but the proposed method provides intuitive and detailed understanding about changes of overall size and shape of the cerebellum, as well as that of individual lobules.

  20. Iatrogenic postoperative cerebellar cyst.

    Science.gov (United States)

    Sharif, Robin; Moscovici, Samuel; Wygoda, Marc; Eliahou, Ruth; Spektor, Sergey

    2016-12-01

    Cerebellar cyst is a known but uncommon entity. It is congenital in most cases, or may develop after brain parenchyma injuries or interventions. To our knowledge, de novo cerebellar cyst after extra-axial tumor excision, has not been described in the literature. We present the first reported case of a de novo cerebellar cyst developing in a 70-year-old woman following retrosigmoid craniotomy for vestibular schwannoma excision, and discuss the possible causes. Following cyst fenestration, there was no clinical or radiological evidence of a residual cyst.

  1. Infarto cerebelar: análise de 151 pacientes Cerebellar infarction: analysis of 151 patients

    Directory of Open Access Journals (Sweden)

    Jefferson Rosi Jr

    2006-06-01

    Full Text Available Este estudo apresenta o tratamento de 151 pacientes com infarto cerebelar, sendo 98 homeNs (65% e 53 mulheres (35%, com média de idade de 62,4 anos. Hidrocefalia obstrutiva foi diagnosticada em 7,9% dos pacientes associada com um infarto cerebelar extenso e em todos os 11 pacientes operados (7,2%. Quatro pacientes foram submetidos a derivação ventricular externa com 3 óbitos (75% e 7 foram submetidos a craniectomia descompressiva suboccipital com 2 óbitos (28,5%. A mortalidade no grupo clínico foi de 15 pacientes (10,7%. Vertigem, vômito, sinal de Romberg e dismetria foram os sinais e sintomas de envolvimento cerebelar mais frequentemente observados. Infarto cerebelar devido a embolismo provocado por cirurgia cardiovascular ocorreu em 57 pacientes (37,7%.Infarto cerebelar como fato isolado ocorreu em 59 pacientes (39% e infartos cerebelares associados a infartos de outras regiões ocorreram em 92 pacientes (61%. A ressonância magnética foi o melhor método para o diagnóstico das lesões, embora a tomografia pôde mostrar infarto cerebelar em 68 pacientes (78%.This report presents the treatment of 151 patients with cerebellar infarction, 98 men (65% and 53 women (35%, mean age 62.4 years old. Occlusive hydrocephalus was diagnosed in 7.9% of the patients associated with an extensive cerebellar infarction and in all 11 surgical patients (7.2%. Four patients underwent an external ventricular drainage with 3 deaths (75% and 7 underwent a decompressive suboccipital craniectomy with 2 deaths (28.5%. Mortality of the clinical group was 15 patients (10.7%. Vertigo, vomiting, Romberg sign and dysmetria were the signs and symptoms of cerebellar involvement that were more frequentely observed. Cerebellar infarction from embolism after cardiovascular surgery occurred in 57 patients (37.7%.Cerebellar infarction, as a isolated fact, occurred in 59 patients (39% and cerebellar plus infarction in other regions occurred in 92 patients (61%. Magnetic

  2. ‘YES YES HEAD TREMOR’ case developing after cerebellar infarction

    Directory of Open Access Journals (Sweden)

    Uygar Utku

    2015-12-01

    Full Text Available Movement disorders, developing after cerebellar infarctions, are rare. One of them is 'Yes / Yes tremor' head tremor. A 73-year-old female patient was brought to the emergency department of our hospital with complaints of dizziness, nausea and vomiting. There was hypertension on her past history. She was taking anti-hypertension drug. Her neurological examination was normal except for right dysmetria, disdiadikokinesia and damaged knee-heel test. Electrocardiography was atrial fibrillation with rapid ventricular response. On the right cerebellar hemisphere, brain computerized tomography revealed consistent lesions with acute ischemic stroke. The patient showed clinically significant improvement in time and discharged with coumadine. When she came for drug control after two weeks, we detected her ‘Yes / Yes’ revealed style of head tremor started three days ago. The tremor was resting-postural. Its activity increased with excitement, decreased after resting and stopped while sleeping. She was intolerant although we initiated the treatment with primidone 250 mg tablets divided into eight. After continuing the treatment with gabapentine titrated 300 mg tablets, the head tremor of patient improved remarkedly in a short period of time. The phenomenon is presented due to its rarity and remarkableness.

  3. Cerebellar anatomy as applied to cerebellar microsurgical resections

    Directory of Open Access Journals (Sweden)

    Alejandro Ramos

    2012-06-01

    Full Text Available OBJECTIVE: To define the anatomy of dentate nucleus and cerebellar peduncles, demonstrating the surgical application of anatomic landmarks in cerebellar resections. METHODS: Twenty cerebellar hemispheres were studied. RESULTS: The majority of dentate nucleus and cerebellar peduncles had demonstrated constant relationship to other cerebellar structures, which provided landmarks for surgical approaching. The lateral border is separated from the midline by 19.5 mm in both hemispheres. The posterior border of the cortex is separated 23.3 mm from the posterior segment of the dentate nucleus; the lateral one is separated 26 mm from the lateral border of the nucleus; and the posterior segment of the dentate nucleus is separated 25.4 mm from the posterolateral angle formed by the junction of lateral and posterior borders of cerebellar hemisphere. CONCLUSIONS: Microsurgical anatomy has provided important landmarks that could be applied to cerebellar surgical resections.

  4. Cerebellar Hypoplasia and Autism

    OpenAIRE

    1989-01-01

    The size of the cerebellar hemisphere and vermal lobules was measured in ten autistic and eight normal control subjects at the Neuropsychology Research Laboratory, Children’s Hospital Research Center, and the Departments of Neurosciences and Radiology, School of Medicine, University of California at San Diego, LaJolla.

  5. Genetics Home Reference: lissencephaly with cerebellar hypoplasia

    Science.gov (United States)

    ... Conditions lissencephaly with cerebellar hypoplasia lissencephaly with cerebellar hypoplasia Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Lissencephaly with cerebellar hypoplasia (LCH) affects brain development, resulting in the brain ...

  6. Falls in degenerative cerebellar ataxias

    NARCIS (Netherlands)

    van de Warrenburg, Bart P C; Steijns, Janneke A G; Munneke, Marten; Kremer, Berry P H; Bloem, Bastiaan R

    2005-01-01

    We retrospectively and prospectively assessed the frequency and characteristics of falls in patients with degenerative cerebellar ataxias. The results show that falls occur very frequently in patients with degenerative cerebellar ataxias and that these falls are serious and often lead to injuries or

  7. Sleep disorders in cerebellar ataxias

    Directory of Open Access Journals (Sweden)

    José L. Pedroso

    2011-04-01

    Full Text Available Cerebellar ataxias comprise a wide range of etiologies leading to central nervous system-related motor and non-motor symptoms. Recently, a large body of evidence has demonstrated a high frequency of non-motor manifestations in cerebellar ataxias, specially in autosomal dominant spinocerebellar ataxias (SCA. Among these non-motor dysfunctions, sleep disorders have been recognized, although still under or even misdiagnosed. In this review, we highlight the main sleep disorders related to cerebellar ataxias focusing on REM sleep behavior disorder (RBD, restless legs syndrome (RLS, periodic limb movement in sleep (PLMS, excessive daytime sleepiness (EDS, insomnia and sleep apnea.

  8. Complex partial seizures: cerebellar metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Theodore, W.H.; Fishbein, D.; Deitz, M.; Baldwin, P.

    1987-07-01

    We used positron emission tomography (PET) with (/sup 18/F)2-deoxyglucose to study cerebellar glucose metabolism (LCMRglu) and the effect of phenytoin (PHT) in 42 patients with complex partial seizures (CPS), and 12 normal controls. Mean +/- SD patient LCMRglu was 6.9 +/- 1.8 mg glucose/100 g/min (left = right), significantly lower than control values of 8.5 +/- 1.8 (left, p less than 0.006), and 8.3 +/- 1.6 (right, p less than 0.02). Only four patients had cerebellar atrophy on CT/MRI; cerebellar LCMRglu in these was 5.5 +/- 1.5 (p = 0.054 vs. total patient sample). Patients with unilateral temporal hypometabolism or EEG foci did not have lateralized cerebellar hypometabolism. Patients receiving phenytoin (PHT) at the time of scan and patients with less than 5 years total PHT exposure had lower LCMRglu, but the differences were not significant. There were weak inverse correlations between PHT level and cerebellar LCMRglu in patients receiving PHT (r = -0.36; 0.05 less than p less than 0.1), as well as between length of illness and LCMRglu (r = -0.22; 0.05 less than p less than 0.1). Patients with complex partial seizures have cerebellar hypometabolism that is bilateral and due only in part to the effect of PHT.

  9. Cognition and Emotion in Cerebellar Disorders

    Science.gov (United States)

    ... cerebral cortical “association” areas important for thought, reasoning, motivation, memory and feelings. Damage to the non-motor ... tolerance. Psychosocial interaction may be impaired, particularly in children with cerebellar damage. Dementia is uncommon in cerebellar ...

  10. Cortico-cerebellar functional connectivity and sequencing of movements in schizophrenia

    Directory of Open Access Journals (Sweden)

    Kasparek Tomas

    2012-03-01

    Full Text Available Abstract Background Abnormal execution of several movements in a sequence is a frequent finding in schizophrenia. Successful performance of such motor acts requires correct integration of cortico-subcortical processes, particularly those related to cerebellar functions. Abnormal connectivity between cortical and cerebellar regions with resulting cognitive dysmetria has been proposed as the core dysfunction behind many signs and symptoms of schizophrenia. The aim of the present study was to assess if these proposed abnormalities in connectivity are a unifying feature of schizophrenia, or, rather, reflect a specific symptom domain of a heterogeneous disease. We predicted that abnormal functional connectivity between the motor cortex and cerebellum would be linked with abnormal performance of movement sequencing. Methods We examined 24 schizophrenia patients (SCH and 24 age-, sex-, and handedness-matched healthy controls (HC using fMRI during a modified finger-tapping task. The ability to perform movement sequencing was tested using the Neurological Evaluation Scale (NES. The subjects were categorized into two groups, with (SQ+ and without (SQ- movement sequencing abnormalities, according to the NES-SQ score. The effects of diagnosis and movement sequencing abnormalities on the functional connectivity parameters between the motor cortex and cerebellum (MC-CRBL and the supplementary motor cortex and cerebellum (SMA-CRBL activated during the motor task were analyzed. Results We found no effect of diagnosis on the functional connectivity measures. There was, however, a significant effect on the SQ group: SQ + patients showed a lower level of MC-CRBL connectivity than SQ- patients and healthy controls. Moreover, the level of MC-CRBL and SMA-CRBL negatively correlated with the magnitude of NES-SQ abnormalities, but with no other NES domain. Conclusions Abnormal cortico-cerebellar functional connectivity during the execution of a motor task is linked

  11. Language Impairment in Cerebellar Ataxia

    NARCIS (Netherlands)

    van Gaalen, Judith; de Swart, Bert J. M.; Oostveen, Judith; Knuijt, Simone; van de Warrenburg, Bart P. C.; Kremer, Berry (H. ) P. H.

    2014-01-01

    Background: Several studies have suggested that language impairment can be observed in patients with cerebellar pathology. The aim of this study was to investigate language performance in patients with spinocerebellar ataxia type 6 (SCA6). Methods: We assessed speech and language in 29 SCA6 patients

  12. Cerebellar Zones: A Personal History

    NARCIS (Netherlands)

    J. Voogd (Jan)

    2011-01-01

    textabstractCerebellar zones were there, of course, before anyone noticed them. Their history is that of young people, unhindered by preconceived ideas, who followed up their observations with available or new techniques. In the 1960s of the last century, the circumstances were fortunate because thr

  13. Cerebellar arteriovenous malformations in children

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, P.D. [Sheffield Univ. (United Kingdom). Acad. Dept. of Radiol.; Blaser, S.; Armstrong, D.; Chuang, S.; Harwood-Nash, D. [Division of Neuroradiology, The Hospital for Sick Children and University of Toronto, Toronto (Canada); Humphreys, R.P. [Division of Neurosurgery, The Hospital for Sick Children and University of Toronto, Toronto (Canada)

    1998-05-01

    We review the presentation, imaging findings and outcome in 18 children with cerebellar arteriovenous malformations (AVM). This group is of particular interest because of the reported poor outcome despite modern imaging and neurosurgical techniques. All children had CT and 15 underwent catheter angiography at presentation. Several of the children in the latter part of the study had MRI. Of the 18 children, 17 presented with a ruptured AVM producing intracranial haemorrhage. The remaining child presented with temporal lobe epilepsy and was shown to have temporal, vermian and cerebellar hemisphere AVM. This child had other stigmata of Osler-Weber-Rendu syndrome. Three other children had pre-existing abnormalities of possible relevance. One had a vascular malformation of the cheek and mandible, one a documented chromosomal abnormality and another a midline cleft upper lip and palate. Six of the 17 children with a ruptured cerebellar AVM died within 7 days of the ictus. Vascular pathology other than an AVM was found in 10 of the 14 children with a ruptured cerebellar AVM who had angiography: 4 intranidal aneurysms, 5 venous aneurysms and 2 cases of venous outflow obstruction (one child having both an aneurysm and obstruction). The severity of clinical presentation was directly related to the size of the acute haematoma, which was a reasonable predictor of outcome. (orig.) With 4 figs., 4 tabs., 23 refs.

  14. Postural Ataxia in Cerebellar Downbeat Nystagmus: Its Relation to Visual, Proprioceptive and Vestibular Signals and Cerebellar Atrophy

    Science.gov (United States)

    Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas

    2017-01-01

    Background The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. Objectives The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Methods Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Results Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg’s ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg’s ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Conclusions Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia. PMID:28056109

  15. Vestibular and cerebellar contribution to gaze optimality.

    Science.gov (United States)

    Sağlam, Murat; Glasauer, Stefan; Lehnen, Nadine

    2014-04-01

    Patients with chronic bilateral vestibular loss have large gaze variability and experience disturbing oscillopsia, which impacts physical and social functioning, and quality of life. Gaze variability and oscillopsia in these patients are attributed to a deficient vestibulo-ocular reflex, i.e. impaired online feedback motor control. Here, we assessed whether the lack of vestibular input also affects feed-forward motor learning, i.e. the ability to choose optimal movement parameters that minimize variability during active movements such as combined eye-head gaze shifts. A failure to learn from practice and reshape feed-forward motor commands in response to sensory error signals to achieve appropriate movements has been proposed to explain dysmetric gaze shifts in patients with cerebellar ataxia. We, therefore, assessed the differential roles of both sensory vestibular information and the cerebellum in choosing optimal movement kinematics. We have previously shown that, in the course of several gaze shifts, healthy subjects adjust the motor command to minimize endpoint variability also when movements are experimentally altered by an increase in the head moment of inertia. Here, we increased the head inertia in five patients with chronic complete bilateral vestibular loss (aged 45.4±7.1 years, mean±standard deviation), nine patients with cerebellar ataxia (aged 56.7±12.6 years), and 10 healthy control subjects (aged 39.7±6.3 years) while they performed large (75° and 80°) horizontal gaze shifts towards briefly flashed targets in darkness and, using our previous optimal control model, compared their gaze shift parameters to the expected optimal movements with increased head inertia. Patients with chronic bilateral vestibular loss failed to update any of the gaze shift parameters to the new optimum with increased head inertia. Consequently, they displayed highly variable, suboptimal gaze shifts. Patients with cerebellar ataxia updated some movement parameters to

  16. Cerebellar ataxia and functional genomics : Identifying the routes to cerebellar neurodegeneration

    NARCIS (Netherlands)

    Smeets, C J L M; Verbeek, D S

    2014-01-01

    Cerebellar ataxias are progressive neurodegenerative disorders characterized by atrophy of the cerebellum leading to motor dysfunction, balance problems, and limb and gait ataxia. These include among others, the dominantly inherited spinocerebellar ataxias, recessive cerebellar ataxias such as Fried

  17. Nonsurgical cerebellar mutism (anarthria) in two children.

    Science.gov (United States)

    Mewasingh, Leena D; Kadhim, Hazim; Christophe, Catherine; Christiaens, Florence J; Dan, Bernard

    2003-01-01

    Cerebellar mutism (anarthria) is a well-described complication of posterior fossa tumor resection. It is accompanied by a characteristic behavior including irritability and autistic features. This syndrome is typically reversible within days to months. Underlying pathophysiology is unknown. We describe two children who presented with a similar clinical finding after nonsurgical cerebellar involvement, hemolytic-uremic syndrome in one and cerebellitis in the other. Postmortem pathologic findings in the first patient indicated cerebellar ischemic necrosis. Single-photon emission computed tomography in the second patient revealed diffuse cerebellar hypoperfusion with no supratentorial abnormalities, refuting a phenomenon of diaschisis between cerebellar and frontal connections. These findings confirm that this clinical syndrome may occur in a nonsurgical, nontraumatic context. They are consistent with recent integrative hypotheses explaining cerebellar anarthria.

  18. Crossed cerebral - cerebellar diaschisis : MRI evaluation.

    Directory of Open Access Journals (Sweden)

    Chakravarty A

    2002-07-01

    Full Text Available MRI, done later in life, in two patients with infantile hemiplegia syndrome showed significant volume loss in the cerebellar hemisphere contralateral to the side of the affected cerebrum. The cerebellar volume loss seemed to correlate with the degree of volume loss in the contralateral cerebral hemisphere. These observations provide morphological evidence of the phenomenon of crossed cerebral-cerebellar diaschisis (CCD. Functional neuroimaging studies in support of the concept of CCD has been critically reviewed.

  19. Autosomal recessive cerebellar ataxias : the current state of affairs

    NARCIS (Netherlands)

    Vermeer, S.; van de Warrenburg, B. P. C.; Willemsen, M. A. A. P.; Cluitmans, M.; Scheffer, H.; Kremer, B. P.; Knoers, N. V. A. M.

    2011-01-01

    Among the hereditary ataxias, autosomal recessive cerebellar ataxias (ARCAs) encompass a diverse group of rare neurodegenerative disorders in which a cerebellar syndrome is the key clinical feature. The clinical overlap between the different cerebellar ataxias, the occasional atypical phenotypes, an

  20. Genetics Home Reference: VLDLR-associated cerebellar hypoplasia

    Science.gov (United States)

    ... Conditions VLDLR-associated cerebellar hypoplasia VLDLR-associated cerebellar hypoplasia Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description VLDLR -associated cerebellar hypoplasia is an inherited condition that affects the development ...

  1. [Peripheral neuropathies associated with hereditary cerebellar ataxias].

    Science.gov (United States)

    Anheim, M; Tranchant, C

    2011-01-01

    Inherited cerebellar ataxias constitute a complicated and heterogeneous group of neurodegenerative disorders affecting the cerebellum and/or spinocerebellar tract, spinal cord and peripheral nerves. A peripheral neuropathy is frequently seen in inherited cerebellar ataxias although it rarely reveals the disease. Moreover, the peripheral neuropathy is helpful for the diagnostic procedure and contributes to the functional prognosis of the disease. Thus, electroneuromyography is essential in the algorithm for the diagnosis of inherited cerebellar ataxias, as well as brain MRI (looking especially for cerebellar atrophy) and the assessment of several biomarkers (alpha-foetoprotein, vitamin E, albumin, LDL cholesterol, lactic acid, phytanic acid).

  2. The clinical presentation of preterm cerebellar haemorrhage

    NARCIS (Netherlands)

    G.M. Ecury-Goossen (Ginette); J. Dudink (Jeroen); M. Leguin (Maarten); M. Feijen-Roon (Monique); S. Horsch (Sandra); P. Govaert (Paul)

    2010-01-01

    textabstractThe objective of this study was to evaluate clinical symptoms and findings on cranial ultrasound (CUS) in preterm infants with cerebellar haemorrhage through retrospective analysis of all preterm infants with a postnatal CUS or MRI diagnosis of cerebellar haemorrhage admitted in a tertia

  3. Cerebellar stroke-manifesting as mania

    Directory of Open Access Journals (Sweden)

    Venkatesan Jagadesan

    2014-01-01

    Full Text Available Secondary mania resulting from cerebral Cortex are described commonly. But secondary mania produced by cerebellar lesions are relatively uncommon. This case report describes a patient who developed cerebellar stoke and manic features simultaneously. 28 years old male developed giddiness and projectile vomiting. Then he would lie down for about an hour only to find that he could not walk. He became quarrelsome. His Psycho motor activities and speech were increased. He was euphoric and was expressing grandiose ideas. Bender Gestalt Test showed signs of organicity. Score in Young mania relating scale was 32; productivity was low in Rorschach. Neurological examination revealed left cerebellar signs like ataxia and slurring of speech. Computed tomography of brain showed left cerebellar infarct. Relationship between Psychiatric manifestations and cerebellar lesion are discussed.

  4. The bihemispheric posterior inferior cerebellar artery

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Sean P. [Brigham and Women' s Hospital and Children' s Hospital, Department of Radiology and Neurosurgery, Boston, MA (United States); Ozanne, Augustin; Alvarez, Hortensia; Lasjaunias, Pierre [Service de Neuroradiologie Diagnostic et Therapeutique, Hopital de Bicetre-Universite Paris-sud Orsay (France)

    2005-11-01

    Rarely, a solitary posterior inferior cerebellar artery (PICA) will supply both cerebellar hemispheres. We report four cases of this variant. We present a retrospective review of clinical information and imaging of patients undergoing angiography at our institution to identify patients with a bihemispheric PICA. There were four patients: three males and one female. One patient presented with a ruptured arteriovenous malformation, and one with a ruptured aneurysm. Two patients had normal angiograms. The bihemispheric PICA was an incidental finding in all cases. The bihemispheric vessel arose from the dominant left vertebral artery, and the contralateral posterior inferior cerebellar artery was absent or hypoplastic. In all cases, contralateral cerebellar supply arose from a continuation of the ipsilateral PICA distal to the choroidal point and which crossed the midline dorsal to the vermis. We conclude that the PICA may supply both cerebellar hemispheres. This rare anatomic variant should be considered when evaluating patients with posterior fossa neurovascular disease. (orig.)

  5. Altered cerebellar feedback projections in Asperger syndrome.

    Science.gov (United States)

    Catani, Marco; Jones, Derek K; Daly, Eileen; Embiricos, Nitzia; Deeley, Quinton; Pugliese, Luca; Curran, Sarah; Robertson, Dene; Murphy, Declan G M

    2008-07-15

    It has been proposed that the biological basis of autism spectrum disorder includes cerebellar 'disconnection'. However, direct in vivo evidence in support of this is lacking. Here, the microstructural integrity of cerebellar white matter in adults with Asperger syndrome was studied using diffusion tensor magnetic resonance tractography. Fifteen adults with Asperger syndrome and 16 age-IQ-gender-matched healthy controls underwent diffusion tensor magnetic resonance imaging. For each subject, tract-specific measurements of mean diffusivity and fractional anisotropy were made within the inferior, middle, superior cerebellar peduncles and short intracerebellar fibres. No group differences were observed in mean diffusivity. However, people with Asperger syndrome had significantly lower fractional anisotropy in the short intracerebellar fibres (pAsperger syndrome. The localised abnormalities in the main cerebellar outflow pathway may prevent the cerebral cortex from receiving those cerebellar feedback inputs necessary for a successful adaptive social behaviour.

  6. Cerebellar Involvement in Ataxia and Generalized Epilepsy

    NARCIS (Netherlands)

    L. Kros (Lieke)

    2015-01-01

    markdownabstract__Abstract__ The work described in this thesis was performed in order to elucidate the role of different cerebellar modules in ataxia and generalized epilepsy using various techniques including in vivo electrophysiology, optogenetics, pharmacological interventions, immunohistology a

  7. Cerebellar mutism: review of the literature

    DEFF Research Database (Denmark)

    Gudrunardottir, Thora; Sehested, Astrid; Juhler, Marianne;

    2011-01-01

    Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention.......Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention....

  8. Bilateral Cerebellar Cortical Dysplasia without Other Malformations: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Seok; Ahn Kook Jin; Kim, Jee Young; Lee, Sun Jin; Park, Jeong Mi [Catholic University Yeouido St. Mary' s Hospital, College of Medicine, Seoul (Korea, Republic of)

    2010-06-15

    Recent advances in MRI have revealed congenital brain malformations and subtle developmental abnormalities of the cerebral and cerebellar cortical architecture. Typical cerebellar cortical dysplasia as a newly categorized cerebellar malformation, has been seen in patients with Fukuyama congenital muscular dystrophy. Cerebellar cortical dysplasia occurs at the embryonic stage and is often observed in healthy newborns. It is also incidentally and initially detected in adults without symptoms. To the best of our knowledge, cerebellar dysplasia without any related disorders is very rare. We describe the MRI findings in one patient with disorganized foliation of both cerebellar hemispheres without a related disorder or syndrome

  9. Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes.

    Science.gov (United States)

    Fang, Peng; An, Jie; Tan, Xin; Zeng, Ling-Li; Shen, Hui; Qiu, Shijun; Hu, Dewen

    2017-01-11

    Currently, 422 million adults suffer from diabetes worldwide, leading to tremendous disabilities and a great burden to families and society. Functional and structural MRIs have demonstrated that patients with type 2 diabetes mellitus (T2DM) exhibit abnormalities in brain regions in the cerebral cortex. However, the changes of cerebellar anatomical connections in diabetic patients remains unclear. In the current study, diffusion tensor imaging deterministic tractography and statistical analysis were employed to investigate abnormal cerebellar anatomical connections in diabetic patients. This is the first study to investigate the altered cerebellar anatomical connectivity in T2DM patients. Decreased anatomical connections were found in the cerebellar and cerebro-cerebellar circuits of T2DM patients, providing valuable new insights into the potential neuro-pathophysiology of diabetes-related motor and cognitive deficits.

  10. Contribution of plasma membrane Ca2+ ATPase to cerebellar synapse function

    Institute of Scientific and Technical Information of China (English)

    Helena; Huang; Raghavendra; Y; Nagaraja; Molly; L; Garside; Walther; Akemann; Thomas; Knpfel; Ruth; M; Empson

    2010-01-01

    The cerebellum expresses one of the highest levels of the plasma membrane Ca2+ATPase,isoform 2 in the mammalian brain.This highly efficient plasma membrane calcium transporter protein is enriched within the main output neurons of the cerebellar cortex;i.e. the Purkinje neurons(PNs) .Here we review recent evidence,including electrophysiological and calcium imaging approaches using the plasma membrane calcium ATPase 2(PMCA2) knockout mouse,to show that PMCA2 is critical for the physiological control of calcium at cerebellar synapses and cerebellar dependent behaviour.These studies have also revealed that deletionof PMCA2 throughout cerebellar development in the PMCA2 knockout mouse leads to permanent signalling and morphological alterations in the PN dendrites. Whilst these findings highlight the importance of PMCA2 during cerebellar synapse function and development,they also reveal some limitations in the use of the PMCA2 knockout mouse and the need for additional experimental approaches including cell-specific and reversible manipulation of PMCAs.

  11. Metabolic anatomy of paraneoplastic cerebellar degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-06-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration (PCD)) were evaluated using neuropsychological tests and /sup 18/F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis.

  12. Genetics Home Reference: autosomal recessive cerebellar ataxia type 1

    Science.gov (United States)

    ... Genetics Home Health Conditions ARCA1 autosomal recessive cerebellar ataxia type 1 Enable Javascript to view the expand/ ... Open All Close All Description Autosomal recessive cerebellar ataxia type 1 ( ARCA1 ) is a condition characterized by ...

  13. A probabilistic atlas of the cerebellar white matter

    NARCIS (Netherlands)

    Baarsen, K.M. van; Kleinnijenhuis, M.; Jbabdi, S.; Sotiropoulos, S.N.; Grotenhuis, J.A.; Cappellen van Walsum, A.M. van

    2016-01-01

    Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studi

  14. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  15. 21 CFR 882.5820 - Implanted cerebellar stimulator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted cerebellar stimulator. 882.5820 Section... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5820 Implanted cerebellar stimulator. (a) Identification. An implanted cerebellar stimulator is a device used to...

  16. Paraneoplastic cerebellar dysfunction in Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Kazi Sazzad Manir

    2015-01-01

    Full Text Available Paraneoplastic cerebellar degeneration (PCD is a rare presentation of Hodgkin's Lymphoma (HL manifests as acute/sub-acute nature. We report a case of 21 yr old male presented with acute cerebellar signs along with underlying HL.MRI brain was normal. CSF study was unremarkable. Patient was treated with six cycles of chemotherapy followed by radiotherapy. Neurological manifestations remarkably improved along with complete resolution of underlying HL. Anti-cancer therapy of underlying HL is the main strategy of treating associated PCD.

  17. Probabilistic identification of cerebellar cortical neurones across species.

    Directory of Open Access Journals (Sweden)

    Gert Van Dijck

    Full Text Available Despite our fine-grain anatomical knowledge of the cerebellar cortex, electrophysiological studies of circuit information processing over the last fifty years have been hampered by the difficulty of reliably assigning signals to identified cell types. We approached this problem by assessing the spontaneous activity signatures of identified cerebellar cortical neurones. A range of statistics describing firing frequency and irregularity were then used, individually and in combination, to build Gaussian Process Classifiers (GPC leading to a probabilistic classification of each neurone type and the computation of equi-probable decision boundaries between cell classes. Firing frequency statistics were useful for separating Purkinje cells from granular layer units, whilst firing irregularity measures proved most useful for distinguishing cells within granular layer cell classes. Considered as single statistics, we achieved classification accuracies of 72.5% and 92.7% for granular layer and molecular layer units respectively. Combining statistics to form twin-variate GPC models substantially improved classification accuracies with the combination of mean spike frequency and log-interval entropy offering classification accuracies of 92.7% and 99.2% for our molecular and granular layer models, respectively. A cross-species comparison was performed, using data drawn from anaesthetised mice and decerebrate cats, where our models offered 80% and 100% classification accuracy. We then used our models to assess non-identified data from awake monkeys and rabbits in order to highlight subsets of neurones with the greatest degree of similarity to identified cell classes. In this way, our GPC-based approach for tentatively identifying neurones from their spontaneous activity signatures, in the absence of an established ground-truth, nonetheless affords the experimenter a statistically robust means of grouping cells with properties matching known cell classes. Our

  18. Non-progressive cerebellar ataxia and previous undetermined acute cerebellar injury: a mysterious clinical condition

    Directory of Open Access Journals (Sweden)

    Wladimir Bocca Vieira de Rezende Pinto

    2015-01-01

    Full Text Available Cerebellar ataxias represent a wide group of neurological diseases secondary to dysfunctions of cerebellum or its associated pathways, rarely coursing with acute-onset acquired etiologies and chronic non-progressive presentation. We evaluated patients with acquired non-progressive cerebellar ataxia that presented previous acute or subacute onset. Clinical and neuroimaging characterization of adult patients with acquired non-progressive ataxia were performed. Five patients were identified with the phenotype of acquired non-progressive ataxia. Most patients presented with a juvenile to adult-onset acute to subacute appendicular and truncal cerebellar ataxia with mild to moderate cerebellar or olivopontocerebellar atrophy. Establishing the etiology of the acute triggering events of such ataxias is complex. Non-progressive ataxia in adults must be distinguished from hereditary ataxias.

  19. Non-progressive cerebellar ataxia and previous undetermined acute cerebellar injury: a mysterious clinical condition

    Directory of Open Access Journals (Sweden)

    Wladimir Bocca Vieira de Rezende Pinto

    2015-10-01

    Full Text Available Cerebellar ataxias represent a wide group of neurological diseases secondary to dysfunctions of cerebellum or its associated pathways, rarely coursing with acute-onset acquired etiologies and chronic non-progressive presentation. We evaluated patients with acquired non-progressive cerebellar ataxia that presented previous acute or subacute onset. Clinical and neuroimaging characterization of adult patients with acquired non-progressive ataxia were performed. Five patients were identified with the phenotype of acquired non-progressive ataxia. Most patients presented with a juvenile to adult-onset acute to subacute appendicular and truncal cerebellar ataxia with mild to moderate cerebellar or olivopontocerebellar atrophy. Establishing the etiology of the acute triggering events of such ataxias is complex. Non-progressive ataxia in adults must be distinguished from hereditary ataxias.

  20. Case of subacute cerebellar degeneration associated with pleocytosis and cerebellar swelling shown in computed tomography scanning

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Hiide; Anezaki, Toshiharu; Takashima, Noriko; Inuzuka, Takashi; Miyatake, Tadashi

    1988-02-01

    A 44 year old woman was healthy until January 3, 1986, when she had headache. On January 9, she developed gait ataxia and dysarthria. Cerebellar ataxia worsened rapidly. Aftar a week she could not sit without support and her consciousness was disturbed. Corticosteroid was administrated and consciousness proved alert, but cerebellar ataxia and dysarthria remained unchanged. The patient was found carcinoma of the lung in August 1986. Characteristic features of clinical and laboratory findings of this patient are acute progression, cerebrospinal fluid pleocytosis of 1,064/3 cells (860 mononuclear cell, 204 polymorphonuclear cell), and cerebellar swelling shown in computed tomography scanning. Though the mechanism of acute cerebellar degeneration is still uncertained, inflammatory process was supported to exist in cerebellum of this case.

  1. Cerebellar Hypoplasia and Dysmorphia in Neurofibromatosis Type 1.

    Science.gov (United States)

    Toelle, Sandra P; Poretti, Andrea; Weber, Peter; Seute, Tatjana; Bromberg, Jacoline E C; Scheer, Ianina; Boltshauser, Eugen

    2015-12-01

    Unidentified bright objects (UBO) and tumors are well-known cerebellar abnormalities in neurofibromatosis type 1 (NF1). Literature reports on malformative cerebellar anomalies in neurofibromatosis type 1 (NF1), however, are scant. We retrospectively studied the clinical and neuroimaging findings of 5 patients with NF1 (4 females, age 6 to 29 years at last follow-up) and cerebellar anomalies. Cerebellar symptoms on neurological examination were mild or even not evident whereas learning disabilities were more or less pronounced in four patients. Two patients had cerebellar hypoplasia (diffusely enlarged cerebellar interfoliar spaces) and three cerebellar dysmorphias involving mainly one cerebellar hemisphere. In NF1, malformative cerebellar anomalies are rare (estimated prevalence of about 1%), but most likely underestimated and easily overlooked, because physicians tend to focus on more prevalent, obvious, and well-known findings such as optic pathway gliomas, other tumors, and UBO. This kind of cerebellar anomaly in NF1 has most likely a malformative origin, but the exact pathogenesis is unknown. The individual clinical significance is difficult to determine. We suggest that cerebellar anomalies should be systematically evaluated in neuroimaging studies of NF1 patients.

  2. Climbing fiber signaling and cerebellar gain control

    NARCIS (Netherlands)

    G. Ohtsuki (Gen); C. Piochon (Claire); C.R.W. Hansel (Christian)

    2009-01-01

    textabstractThe physiology of climbing fiber signals in cerebellar Purkinje cells has been studied since the early days of electrophysiology. Both the climbing fiber-evoked complex spike and the role of climbing fiber activity in the induction of long-term depression (LTD) at parallel fiber-Purkinje

  3. Crossed cerebellar diaschisis in ischemic stroke

    DEFF Research Database (Denmark)

    Meneghetti, G; Vorstrup, S; Mickey, B

    1984-01-01

    depression was evident in five patients with severe hemispheric low flow areas, which correlated with large, hypodense lesions on the computerized tomographic scan. In a sixth patient with a small, deep infarct, a transient crossed cerebellar low flow was observed, while the clinical symptoms persisted...... in the infarcted hemisphere, in which a period of relative hyperemia is frequently seen....

  4. Improving cerebellar segmentation with statistical fusion

    Science.gov (United States)

    Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.

    2016-03-01

    The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.

  5. Ultrasonically detectable cerebellar haemorrhage in preterm infants.

    LENUS (Irish Health Repository)

    McCarthy, Lisa Kenyon

    2011-07-01

    To determine the frequency and pattern of cerebellar haemorrhage (CBH) on routine cranial ultrasound (cUS) imaging in infants of ≤32 weeks gestation, and to investigate how extremely preterm infants with CBH differ from those with severe intraventricular haemorrhage (IVH).

  6. Cerebellar endocannabinoids: retrograde signaling from purkinje cells.

    Science.gov (United States)

    Marcaggi, Païkan

    2015-06-01

    The cerebellar cortex exhibits a strikingly high expression of type 1 cannabinoid receptor (CB1), the cannabinoid binding protein responsible for the psychoactive effects of marijuana. CB1 is primarily found in presynaptic elements in the molecular layer. While the functional importance of cerebellar CB1 is supported by the effect of gene deletion or exogenous cannabinoids on animal behavior, evidence for a role of endocannabinoids in synaptic signaling is provided by in vitro experiments on superfused acute rodent cerebellar slices. These studies have demonstrated that endocannabinoids can be transiently released by Purkinje cells and signal at synapses in a direction opposite to information transfer (retrograde). Here, following a description of the reported expression pattern of the endocannabinoid system in the cerebellum, I review the accumulated in vitro data, which have addressed the mechanism of retrograde endocannabinoid signaling and identified 2-arachidonoylglycerol as the mediator of this signaling. The mechanisms leading to endocannabinoid release, the effects of CB1 activation, and the associated synaptic plasticity mechanisms are discussed and the remaining unknowns are pointed. Notably, it is argued that the spatial specificity of this signaling and the physiological conditions required for its induction need to be determined in order to understand endocannabinoid function in the cerebellar cortex.

  7. Cerebellar liponeurocytoma: a case-report

    Directory of Open Access Journals (Sweden)

    K.V. Sreedhar Babu

    Full Text Available Cerebellar liponeurocytoma is a rare cerebellar neoplasm of adults with advanced neuronal / neurocytic and focal lipomatous differentiation, a low proliferative potential and a favorable clinical prognosis corresponding to World Health Organization grade I or II. Only a few cases have been described in the literature (approximately 20 cases by different names. A 48-years old female, presented with history of headache and dizziness associated with neck pain; restricted neck movements, drop attacks and occasional regurgitation of food since one year. Magnetic resonance imaging disclosed a right cerebellar mass lesion. Gross total resec- tion of the tumour was accomplished through a suboccipital craniotomy. The excised tissue was diagnosed as cerebellar liponeurocytoma, a rare entity, based on histopathological examination and immunohistochemistry. The morphological appearance of this neoplasm can be confused with that of oligodendroglioma, neurocytoma, ependymoma, medulloblastoma, solid hemangioblastoma and metastatic carcinomas etc., with unpredictable prognosis, which require postoperative radiotherapy, hence the importance of accurately diagnosing this rare neoplasm. This tumour should be added to the differential diagnosis of mass lesions of the posterior fossa.

  8. Cerebellar cortical inhibition and classical eyeblink conditioning.

    Science.gov (United States)

    Bao, Shaowen; Chen, Lu; Kim, Jeansok J; Thompson, Richard F

    2002-02-01

    The cerebellum is considered a brain structure in which memories for learned motor responses (e.g., conditioned eyeblink responses) are stored. Within the cerebellum, however, the relative importance of the cortex and the deep nuclei in motor learning/memory is not entirely clear. In this study, we show that the cerebellar cortex exerts both basal and stimulus-activated inhibition to the deep nuclei. Sequential application of a gamma-aminobutyric acid type A receptor (GABA(A)R) agonist and a noncompetitive GABA(A)R antagonist allows selective blockade of stimulus-activated inhibition. By using the same sequential agonist and antagonist methods in behaving animals, we demonstrate that the conditioned response (CR) expression and timing are completely dissociable and involve different inhibitory inputs; although the basal inhibition modulates CR expression, the conditioned stimulus-activated inhibition is required for the proper timing of the CR. In addition, complete blockade of cerebellar deep nuclear GABA(A)Rs prevents CR acquisition. Together, these results suggest that different aspects of the memories for eyeblink CRs are encoded in the cerebellar cortex and the cerebellar deep nuclei.

  9. Perinatal Cerebellar Injury in Human and Animal Models

    Directory of Open Access Journals (Sweden)

    Valerie Biran

    2012-01-01

    Full Text Available Cerebellar injury is increasingly recognized through advanced neonatal brain imaging as a complication of premature birth. Survivors of preterm birth demonstrate a constellation of long-term neurodevelopmental deficits, many of which are potentially referable to cerebellar injury, including impaired motor functions such as fine motor incoordination, impaired motor sequencing and also cognitive, behavioral dysfunction among older patients. This paper reviews the morphogenesis and histogenesis of the human and rodent developing cerebellum, and its more frequent injuries in preterm. Most cerebellar lesions are cerebellar hemorrhage and infarction usually leading to cerebellar abnormalities and/or atrophy, but the exact pathogenesis of lesions of the cerebellum is unknown. The different mechanisms involved have been investigated with animal models and are primarily hypoxia, ischemia, infection, and inflammation Exposure to drugs and undernutrition can also induce cerebellar abnormalities. Different models are detailed to analyze these various disturbances of cerebellar development around birth.

  10. A probabilistic atlas of the cerebellar white matter.

    Science.gov (United States)

    van Baarsen, K M; Kleinnijenhuis, M; Jbabdi, S; Sotiropoulos, S N; Grotenhuis, J A; van Cappellen van Walsum, A M

    2016-01-01

    Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure-function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3T, 1.25mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure-function correlations in patients with cerebellar disorders.

  11. Surface-based atlases of cerebellar cortex in the human, macaque, and mouse

    Science.gov (United States)

    Van Essen, David C.

    2002-01-01

    This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).

  12. Postnatal dendritic morphogenesis of cerebellar basket and stellate cells in vitro.

    Science.gov (United States)

    Spatkowski, Gabriele; Schilling, Karl

    2003-05-01

    Inhibitory interneurons in the molecular layer of the cerebellar cortex play an essential role in cerebellar physiology by providing feed-forward inhibition to efferent Purkinje cells. Morphologic characteristics have been utilized to classify these cells as either basket cells or stellate cells. Conflicting evidence exists as to whether these cells are of distinct lineage and develop by employing discrete genetic programs, or whether their characteristic morphologic differences result from external cues that they encounter only after they have settled in their final territory in the molecular layer. We used primary dissociated cerebellar cultures established from early postnatal mice to study dendritogenesis of basket/stellate cells, identified by immunostaining for parvalbumin, under experimentally controlled conditions. We find that the radial axonal orientation of stem dendrites is non-random, suggesting a cell-intrinsic component defining this morphologic trait. In contrast, the expanse and complexity of basket/stellate cell dendrites is modulated by the granule cell derived neurotrophin, BDNF. BDNF-induced morphogenetic effects decline with ongoing development. Overall, our data do not provide evidence for a distinct lineage or genetic makeup of cerebellar molecular layer inhibitory interneurons.

  13. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    Science.gov (United States)

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  14. Delineating the cortico-striatal-cerebellar network in implicit motor sequence learning.

    Science.gov (United States)

    Tzvi, Elinor; Münte, Thomas F; Krämer, Ulrike M

    2014-07-01

    Theoretical models and experimental evidence suggest that cortico-striatal-cerebellar networks play a crucial role in mediating motor sequence learning. However, how these different regions interact in order to mediate learning is less clear. In the present fMRI study, we used dynamic causal modeling to investigate effective connectivity within the cortico-striatal-cerebellar network while subjects performed a serial reaction time task. Using Bayesian model selection and family wise inference, we show that the cortico-cerebellar loop had higher model evidence than the cortico-striatal loop during motor learning. We observed significant negative modulatory effects on the connections from M1 to cerebellum bilaterally during learning. The results suggest that M1 causes the observed decrease in activity in the cerebellum as learning progresses. The current study stresses the significant role that the cerebellum plays in motor learning as previously suggested by fMRI studies in healthy subjects as well as behavioral studies in patients with cerebellar dysfunction. These results provide important insight into the neural mechanisms underlying motor learning.

  15. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction

    Science.gov (United States)

    Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  16. Hereditary spastic paraplegia with cerebellar ataxia

    DEFF Research Database (Denmark)

    Nielsen, J E; Johnsen, B; Koefoed, P

    2004-01-01

    Complex forms of hereditary spastic paraplegia (HSP) are rare and usually transmitted in an autosomal recessive pattern. A family of four generations with autosomal dominant hereditary spastic paraplegia (AD-HSP) and a complex phenotype with variably expressed co-existing ataxia, dysarthria...... in those individuals who were clinically affected by a complex phenotype consisting of HSP and cerebellar ataxia. Other features noted in this kindred including epilepsy, cognitive impairment, depression, and migraine did not segregate with the HSP phenotype or mutation, and therefore the significance...... relatively decreased regional cerebral blood flow in most of the cerebellum. We conclude that this kindred demonstrates a considerable overlap between cerebellar ataxia and spastic paraplegia, emphasizing the marked clinical heterogeneity of HSP associated with spastin mutations....

  17. An update on Spino-cerebellar ataxias

    Directory of Open Access Journals (Sweden)

    Banashree Mondal

    2013-01-01

    Full Text Available The dominantly inherited ataxias, also known as Spino-cerebellar ataxias (SCAs, are rapidly expanding entities. New mutations are being identified at remarkable regularity. Recent awareness of molecular abnormalities in SCAs has addressed some of the long sought questions, but gaps in knowledge still exist. Three major categories of SCAs, according to molecular mechanisms, have evolved over recent few years: Polyglutamate expansion ataxia, non-coding zone repeat ataxia, and ataxia due to conventional mutation. Using the fulcrum of these mechanisms, the article provides an update of SCAs. Shared and specific clinical features, genetic abnormalities, and possible links between molecular abnormalities and cerebellar degeneration have been discussed. Emphasis has been placed on the mechanisms of polyglutamate toxicity.

  18. Hereditary spastic paraplegia with cerebellar ataxia

    DEFF Research Database (Denmark)

    Nielsen, J E; Johnsen, B; Koefoed, P

    2004-01-01

    Complex forms of hereditary spastic paraplegia (HSP) are rare and usually transmitted in an autosomal recessive pattern. A family of four generations with autosomal dominant hereditary spastic paraplegia (AD-HSP) and a complex phenotype with variably expressed co-existing ataxia, dysarthria...... relatively decreased regional cerebral blood flow in most of the cerebellum. We conclude that this kindred demonstrates a considerable overlap between cerebellar ataxia and spastic paraplegia, emphasizing the marked clinical heterogeneity of HSP associated with spastin mutations....

  19. Memory consolidation in the cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Daniel O Kellett

    Full Text Available Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABAA agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage.

  20. Computed tomography in hypertensive cerebellar hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Nose, T.; Maki, Y.; Ono, Y.; Yoshizawa, T.; Tsuboi, K. (Tsukuba Univ., Sakura, Ibaraki (Japan))

    1981-11-01

    Fourteen cases of cerebellar hemorrhage were analysed from the point of CT-scan, and the following results were obtained. 1. The number of cases of cerebellar hemorrhage forms 4.4% of that of total intracranial hemorrhage. 2. Most of the cerebellar hematomas extend upward. Downward extension is rare. 3. In acute dead cases hematomas are 5 cm or more in diameter and lie over bilateral hemispheres with the extension to third or fourth ventricles in CT-scans. 4. Slowly progressive cases are detriorated by the secondary hydrocephalus. 5. In mild cases hematomas are 3cm or less in diameter on CT-scans and the hematoma evacuation is not indicated for these cases. 6. The shunt operation alone is sufficient for the life saving of the slowly progressive cases, but the hematoma evacuation is indicated in these cases if the functional prognosis is taken into consideration. 7. Immediate hematoma evacuation together with the ventricular drainage is considered to be effective for the life saving of the acute fulminant cases.

  1. An integrator circuit in cerebellar cortex.

    Science.gov (United States)

    Maex, Reinoud; Steuber, Volker

    2013-09-01

    The brain builds dynamic models of the body and the outside world to predict the consequences of actions and stimuli. A well-known example is the oculomotor integrator, which anticipates the position-dependent elasticity forces acting on the eye ball by mathematically integrating over time oculomotor velocity commands. Many models of neural integration have been proposed, based on feedback excitation, lateral inhibition or intrinsic neuronal nonlinearities. We report here that a computational model of the cerebellar cortex, a structure thought to implement dynamic models, reveals a hitherto unrecognized integrator circuit. In this model, comprising Purkinje cells, molecular layer interneurons and parallel fibres, Purkinje cells were able to generate responses lasting more than 10 s, to which both neuronal and network mechanisms contributed. Activation of the somatic fast sodium current by subthreshold voltage fluctuations was able to maintain pulse-evoked graded persistent activity, whereas lateral inhibition among Purkinje cells via recurrent axon collaterals further prolonged the responses to step and sine wave stimulation. The responses of Purkinje cells decayed with a time-constant whose value depended on their baseline spike rate, with integration vanishing at low ( 30 per s). The model predicts that the apparently fast circuit of the cerebellar cortex may control the timing of slow processes without having to rely on sensory feedback. Thus, the cerebellar cortex may contain an adaptive temporal integrator, with the sensitivity of integration to the baseline spike rate offering a potential mechanism of plasticity of the response time-constant.

  2. The microvasculature of the human cerebellar meninges.

    Science.gov (United States)

    Nonaka, Hiroko; Akima, Michiko; Hatori, Tsutomu; Nagayama, Tadashi; Zhang, Zean; Ihara, Fumie

    2002-12-01

    The vascular architecture of the human cerebellar meninges was investigated. The surface meninges were poor in vasculature. In the sulci, the meninges were highly vascular but had few capillaries. The venous blood vessels gave long side branches at right angles to the parent vessels in a cruciform pattern, running horizontally along the cerebellar sulci. They were situated at the origin of the secondary or tertiary sulci. Anastomoses between these horizontal branches gave a crosshatched appearance. Short branches often extended to the bases of the sulci, terminating in T-shaped bifurcations with numerous tiny branches, like the roots of a tree. The arteries ran perpendicular to venous branches which were parallel to each other exclusively along the sagittal plane. These arteries bifurcated to straddle the horizontally running veins at the origin of the secondary or tertiary sulci. They gave off many small branches like teeth of a fork from each artery in the secondary or tertiary sulci after they bifurcated to straddle the venous branches and penetrated the cerebellar cortex at the bases of sulci. These fork-like ramifications in the bases of the sulci were most likely responsible for the ready development of pronounced ischemic state. They might also play an important role in the occurrence of ischemic damage at the bases of sulci in cases of severe generalized ischemia.

  3. Emotional disorders in patients with cerebellar damage – case studies

    OpenAIRE

    Siuda, Katarzyna; Chrobak, Adrian Andrzej; Starowicz-Filip, Anna; Tereszko,Anna; Dudek, Dominika

    2014-01-01

    Aim: Growing number of research shows the role of the cerebellum in the regulation of affect. Lesions of the cerebellum can lead to emotional disregulation, a significant part of the Cerebellar Cognitive Affective Syndrome. The aim of this article is to analyze the most recent studies concerning the cerebellar participation in emotional reactions and to present three cases: two female and one male who suffered from cerebellar damage and presented post-traumatic affective and personality chang...

  4. Cerebro-cerebellar circuits in autism spectrum disorder.

    Science.gov (United States)

    D'Mello, Anila M; Stoodley, Catherine J

    2015-01-01

    The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.

  5. Acute bilateral cerebellar infarction in the territory of the medial branches of posterior inferior cerebellar arteries.

    Science.gov (United States)

    Gurer, G; Sahin, G; Cekirge, S; Tan, E; Saribas, O

    2001-10-01

    The most frequent type of cerebellar infarcts involved the posterior inferior cerebellar artery (PICA) and superior cerebellar artery territories but bilateral involvement of lateral or medial branches of PICA is extremely rare. In this report, we present a 55-year-old male who admitted to hospital with vomiting, nausea and dizziness. On examination left-sided hemiparesia and ataxic gait were detected. Infarct on bilateral medial branch of PICA artery territories was found out with cranial magnetic resonance imaging (MRI) technique and 99% stenosis of the left vertebral artery was found out with digital subtraction arteriography. The patient was put on heparin treatment. After 3 weeks, his complaints and symptoms had disappeared except for mild gait ataxia.

  6. Cerebellar ataxia as the presenting manifestation of Lyme disease.

    Science.gov (United States)

    Arav-Boger, Ravit; Crawford, Thomas; Steere, Allen C; Halsey, Neal A

    2002-04-01

    A 7-year-old boy from suburban Baltimore who presented with cerebellar ataxia and headaches was found by magnetic resonance imaging to have multiple cerebellar enhancing lesions. He had no history of tick exposure. He was initially treated with steroids for presumptive postinfectious encephalitis. Lyme disease was diagnosed 10 weeks later after arthritis developed. Testing of the cerebrospinal fluid obtained at the time cerebellar ataxia was diagnosed revealed intrathecal antibody production to Borrelia burgdorferi. Treatment with intravenous antibiotics led to rapid resolution of persistent cerebellar findings.

  7. Pitch discrimination in cerebellar patients: evidence for a sensory deficit.

    Science.gov (United States)

    Parsons, Lawrence M; Petacchi, Augusto; Schmahmann, Jeremy D; Bower, James M

    2009-12-15

    In the last two decades, a growing body of research showing cerebellar involvement in an increasing number of nonmotor tasks and systems has prompted an expansion of speculations concerning the function of the cerebellum. Here, we tested the predictions of a hypothesis positing cerebellar involvement in sensory data acquisition. Specifically, we examined the effect of global cerebellar degeneration on primary auditory sensory function by means of a pitch discrimination task. The just noticeable difference in pitch between two tones was measured in 15 healthy controls and in 15 high functioning patients afflicted with varying degrees of global cerebellar degeneration caused by hereditary, idiopathic, paraneoplastic, or postinfectious pancerebellitis. Participants also performed an auditory detection task assessing sustained attention, a test of verbal auditory working memory, and an audiometric test. Patient pitch discrimination thresholds were on average five and a half times those of controls and were proportional to the degree of cerebellar ataxia assessed independently. Patients and controls showed normal hearing thresholds and similar performance in control tasks in sustained attention and verbal auditory working memory. These results suggest there is an effect of cerebellar degeneration on primary auditory function. The findings are consistent with other recent demonstrations of cerebellar-related sensory impairments, and with robust cerebellar auditorily evoked activity, confirmed by quantitative meta-analysis, across a range of functional neuroimaging studies dissociated from attention, motor, affective, and cognitive variables. The data are interpreted in the context of a sensory hypothesis of cerebellar function.

  8. Cerebellar transcranial direct current stimulation effects on saccade adaptation

    NARCIS (Netherlands)

    E. Avila (Eric); J.N. van der Geest (Jos); S. Kengne Kamga (Sandra); M.C. Verhage (M. Claire); O. Donchin (Opher); M.A. Frens (Maarten)

    2015-01-01

    textabstractSaccade adaptation is a cerebellar-mediated type of motor learning in which the oculomotor system is exposed to repetitive errors. Different types of saccade adaptations are thought to involve distinct underlying cerebellar mechanisms. Transcranial direct current stimulation (tDCS) induc

  9. Drug-induced cerebellar ataxia: a systematic review

    NARCIS (Netherlands)

    Gaalen, J. van; Kerstens, F.G.; Maas, R.P.P.W.M.; Harmark, L.; Warrenburg, B.P.C. van de

    2014-01-01

    BACKGROUND AND OBJECTIVES: Cerebellar ataxia can be induced by a large number of drugs. We here conducted a systemic review of the drugs that can lead to cerebellar ataxia as an adverse drug reaction (ADR). METHODS: We performed a systematic literature search in Pubmed (1966 to January 2014) and EMB

  10. Cerebellar pleomorphic xanthoastrocytoma in a patient with neurofibromatosis type 1

    Energy Technology Data Exchange (ETDEWEB)

    Naidich, M.J.; Walker, M.T.; Han, G. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, Illinois (United States); Northwestern Memorial Hospital, Chicago, IL (United States); Gottardi-Littell, N.R. [Northwestern Memorial Hospital, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Pathology, Chicago, Illinois (United States); Chandler, J.P. [Northwestern Memorial Hospital, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Neurological Surgery, Chicago, Illinois (United States)

    2004-10-01

    We describe a case of cerebellar pleomorphic xanthoastrocytoma (PXA) occurring in a patient with neurofibromatosis type 1 (NF1). The histomorphology of this uncommon glial (astrocytic) neoplasm is discussed. The occurrence of this tumor within the posterior fossa is extremely rare. To our knowledge, this is the first reported case of a cerebellar PXA in a patient with NF1. (orig.)

  11. Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning

    NARCIS (Netherlands)

    Gao, Zhenyu; Proietti-Onori, Martina; Lin, Zhanmin; Ten Brinke, Michiel M; Boele, Henk-Jan; Potters, Jan-Willem; Ruigrok, Tom J H; Hoebeek, Freek E; De Zeeuw, Chris I

    2016-01-01

    Closed-loop circuitries between cortical and subcortical regions can facilitate precision of output patterns, but the role of such networks in the cerebellum remains to be elucidated. Here, we characterize the role of internal feedback from the cerebellar nuclei to the cerebellar cortex in classical

  12. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  13. Molecular markers of neuronal progenitors in the embryonic cerebellar anlage.

    Science.gov (United States)

    Morales, Daniver; Hatten, Mary E

    2006-11-22

    The cerebellum, like the cerebrum, includes a nuclear structure and an overlying cortical structure. Experiments in the past decade have expanded knowledge beyond the traditional function of the cerebellum to include critical roles in motor learning and memory and sensory discrimination. The initial steps in cerebellar development depend on inductive signaling involving FGF and Wnt proteins produced at the mesencephalic/metencephalic boundary. To address the issue of how individual cerebellar cell fates within the cerebellar territory are specified, we examined the expression of transcription factors, including mammalian homologues of LIM homeodomain-containing proteins, basic helix-loop-helix proteins, and three amino acid loop-containing proteins. The results of these studies show that combinatorial codes of transcription factors define precursors of the cerebellar nuclei, and both Purkinje cells and granule neurons of the cerebellar cortex. Examination of gene expression patterns in several hundred lines of Egfp-BAC (bacterial artificial chromosome) transgenic mice in the GENSAT Project revealed numerous genes with restricted expression in cerebellar progenitor populations, including genes specific for cerebellar nuclear precursors and Purkinje cell precursors. In addition, we identified patterns of gene expression that link granule and Purkinje cells to their precerebellar nuclei. These results identify molecular pathways that offer new insights on the development of the nuclear and cortical structures of the cerebellum, as well as components of the cerebellar circuitry.

  14. Cerebellar vermis plays a causal role in visual motion discrimination.

    Science.gov (United States)

    Cattaneo, Zaira; Renzi, Chiara; Casali, Stefano; Silvanto, Juha; Vecchi, Tomaso; Papagno, Costanza; D'Angelo, Egidio

    2014-09-01

    Cerebellar patients have been found to show deficits in visual motion discrimination, suggesting that the cerebellum may play a role in visual sensory processing beyond mediating motor control. Here we show that triple-pulse online transcranial magnetic stimulation (TMS) over cerebellar vermis but not over the cerebellar hemispheres significantly impaired motion discrimination. Critically, the interference caused by vermis TMS on motion discrimination did not depend on an indirect effect of TMS over nearby visual areas, as demonstrated by a control experiment in which TMS over V1 but not over cerebellar vermis significantly impaired orientation discrimination. These findings demonstrate the causal role of the cerebellar vermis in visual motion processing in neurologically normal participants.

  15. New evidence for the cerebellar involvement in personality traits.

    Science.gov (United States)

    Picerni, Eleonora; Petrosini, Laura; Piras, Fabrizio; Laricchiuta, Daniela; Cutuli, Debora; Chiapponi, Chiara; Fagioli, Sabrina; Girardi, Paolo; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-01-01

    Following the recognition of its role in sensory-motor coordination and learning, the cerebellum has been involved in cognitive, emotional, and even personality domains. This study investigated the relationships between cerebellar macro- and micro-structural variations and temperamental traits measured by Temperament and Character Inventory (TCI). High resolution T1-weighted, and Diffusion Tensor Images of 100 healthy subjects aged 18-59 years were acquired by 3 Tesla Magnetic Resonance scanner. In multiple regression analyses, cerebellar Gray Matter (GM) or White Matter (WM) volumes, GM Mean Diffusivity (MD), and WM Fractional Anisotropy (FA) were used as dependent variables, TCI scores as regressors, gender, age, and education years as covariates. Novelty Seeking scores were associated positively with the cerebellar GM volumes and FA, and negatively with MD. No significant association between Harm Avoidance, Reward Dependence or Persistence scores and cerebellar structural measures was found. The present data put toward a cerebellar involvement in the management of novelty.

  16. Disorganized foliation of unilateral cerebellar hemisphere as cerebellar cortical dysplasia in patients with recurrent seizures: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hye Jin [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-09-15

    We present a rare case of abnormal foliation for one cerebellar hemisphere on MR imaging, showing vertically-oriented folia. Foliation of contralateral cerebellar hemisphere and other structures in the posterior fossa were normal, and the patient has no neurologic deficits. This rare and unique abnormality is considered a kind of developmental error of the cerebellum.

  17. Cerebellar ependymal cyst in a dog.

    Science.gov (United States)

    Wyss-Fluehmann, G; Konar, M; Jaggy, A; Vandevelde, M; Oevermann, A

    2008-11-01

    An 11-week-old, male, Staffordshire Bull Terrier had a history of generalized ataxia and falling since birth. The neurologic findings suggested a localization in the cerebellum. Magnetic resonance imaging of the brain was performed. In all sequences the area of the cerebellum was almost replaced by fluid isointense to cerebrospinal fluid. A complete necropsy was performed after euthanasia. Histologically, the lesion was characterized by extensive loss of cerebellar tissue in both hemispheres and vermis. Toward the surface of the cerebellar defect, the cavity was confined by ruptured and folded membranes consisting of a layer of glial fibrillary acidic (GFAP)-positive glial cells covered multifocally by epithelial cells. Some of these cells bore apical cilia and were cytokeratin and GFAP negative, supporting their ependymal origin. The histopathologic features of our case are consistent with the diagnosis of an ependymal cyst. Its glial and ependymal nature as demonstrated by histopathologic and immunohistochemical examination differs from arachnoid cysts, which have also been reported in dogs. The origin of these cysts remains controversial, but it has been suggested that they develop during embryogenesis subsequent to sequestration of developing neuroectoderm. We speculate that the cyst could have been the result of a pre- or perinatal, possibly traumatic, insult because hemorrhage, and tissue destruction had occurred. To our knowledge, this is the first description of an ependymal cyst in the veterinary literature.

  18. Remote cerebellar hemorrhage after lumbar spinal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Cevik, Belma [Baskent University Faculty of Medicine, Department of Radiology, Fevzi Cakmak Cad. 10. sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: belmac@baskent-ank.edu.tr; Kirbas, Ismail; Cakir, Banu; Akin, Kayihan; Teksam, Mehmet [Baskent University Faculty of Medicine, Department of Radiology, Fevzi Cakmak Cad. 10. sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)

    2009-04-15

    Background: Postoperative remote cerebellar hemorrhage (RCH) as a complication of lumbar spinal surgery is an increasingly recognized clinical entity. The aim of this study was to determine the incidence of RCH after lumbar spinal surgery and to describe diagnostic imaging findings of RCH. Methods: Between October 1996 and March 2007, 2444 patients who had undergone lumbar spinal surgery were included in the study. Thirty-seven of 2444 patients were scanned by CT or MRI due to neurologic symptoms within the first 7 days of postoperative period. The data of all the patients were studied with regard to the following variables: incidence of RCH after lumbar spinal surgery, gender and age, coagulation parameters, history of previous arterial hypertension, and position of lumbar spinal surgery. Results: The retrospective study led to the identification of two patients who had RCH after lumbar spinal surgery. Of 37 patients who had neurologic symptoms, 29 patients were women and 8 patients were men. CT and MRI showed subarachnoid hemorrhage in the folia of bilateral cerebellar hemispheres in both patients with RCH. The incidence of RCH was 0.08% among patients who underwent lumbar spinal surgery. Conclusion: RCH is a rare complication of lumbar spinal surgery, self-limiting phenomenon that should not be mistaken for more ominous pathologic findings such as hemorrhagic infarction. This type of bleeding is thought to occur secondary to venous infarction, but the exact pathogenetic mechanism is unknown. CT or MRI allowed immediate diagnosis of this complication and guided conservative management.

  19. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  20. Fatal remote cerebellar hemorrhage after supratentorial unruptured aneurysm surgery in patient with previous cerebellar infarction

    Science.gov (United States)

    Koh, Eun-Jeong; Park, Jung-Soo

    2017-01-01

    Abstract Rationale: Remote cerebellar hemorrhage (RCH) is a rare complication of supratentorial and spinal surgeries, seldom requiring intervention but occasionally causing significant morbidity or even mortality. Although a number of theories have been proposed, the exact pathophysiology of RCH remains incompletely understood. Patient concerns: We present a 62-year-old patient with RCH encountered following surgical clipping of an unruptured middle cerebral artery bifurcation aneurysm in a patient with previous cerebellar infarction. Lessons: It is extremely rare, but sometimes, RCH can be life-threatening. It is necessary to check the patient's general condition, underlying diseases and medical history. And controlled drainage of the CSF seems to be most important. Arachnoidplasty may be a consideration and the position of the drain string might have to be carefully determined. PMID:28121936

  1. Lissencephaly with brainstem and cerebellar hypoplasia and congenital cataracts.

    Science.gov (United States)

    Abumansour, Iman S; Wrogemann, Jens; Chudley, Albert E; Chodirker, Bernard N; Salman, Michael S

    2014-06-01

    Classical lissencephaly may be associated with cerebellar hypoplasia and when significant cerebellar abnormalities occur, defects in proteins encoded by TUBA1A, RELN, and very-low-density lipoprotein receptor (VLDLR) genes have been reported. We present a neonate with a severe neurologic phenotype associated with hypotonia, oropharyngeal incoordination that required a gastric tube for feeding, intractable epilepsy, and congenital cataracts. Her brain magnetic resonance imaging (MRI) showed classical lissencephaly, ventriculomegaly, absent corpus callosum, globular and vertical hippocampi, and severe cerebellar and brainstem hypoplasia. She died at 6 weeks of age. No specific molecular diagnosis was made. This likely represents a previously undescribed genetic lissencephaly syndrome.

  2. Occurrence of crossed cerebellar diaschisis in cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H.J.; Hartmann, A.; Friedrich, G.; Froescher, M.; Reichmann, K.; Reske, S.N.; Knopp, R.

    1984-10-01

    In 31 patients with completed stroke (n = 30) or PRIND (n = 1) a brain SPECT with /sup 123/I-labeled amphetamines was performed. In 14 (= 45%) of the respective patients - suffering from long-lasting hemiplegia - crossed cerebellar diaschisis was present. The interval between onset of the disease and time of examination varied between 1 week and 7 years. On the other hand, patients without crossed cerebellar diaschisis did not, with one exception, suffer from hemiplegia. It is likely that this phenomenon is caused by the reduction of spino-cerebellar stimuli due to the paresis of the respective extremities.

  3. Cerebral venous thrombosis presenting with cerebellar ataxia and cortical blindness.

    Science.gov (United States)

    Ben Sassi, Samia; Mizouni, Habiba; Nabli, Fatma; Kallel, Lamia; Kefi, Mounir; Hentati, Fayçal

    2010-01-01

    Venous infarction in the cerebellum has been reported only rarely, probably because of the abundant venous collateral drainage in this region. Bilateral occipital infarction is a rare cause of visual loss in cerebral venous thrombosis. We describe a 50-year-old woman with a history of ulcerative colitis who developed acute cerebellar ataxia and cortical blindness. She had bilateral cerebellar and occipital lesions related to sigmoid venous thrombosis and achieved complete recovery with anticoagulation therapy. Cerebral venous thrombosis should be considered in cases of simultaneous cerebellar and occipital vascular lesions.

  4. Hereditary Cerebellar Ataxias: A Korean Perspective

    Directory of Open Access Journals (Sweden)

    Ji Sun Kim

    2015-05-01

    Full Text Available Hereditary ataxia is a heterogeneous disorder characterized by progressive ataxia combined with/without peripheral neuropathy, extrapyramidal symptoms, pyramidal symptoms, seizure, and multiple systematic involvements. More than 35 autosomal dominant cerebellar ataxias have been designated as spinocerebellar ataxia, and there are 55 recessive ataxias that have not been named systematically. Conducting genetic sequencing to confirm a diagnosis is difficult due to the large amount of subtypes with phenotypic overlap. The prevalence of hereditary ataxia can vary among countries, and estimations of prevalence and subtype frequencies are necessary for planning a diagnostic strategy in a specific population. This review covers the various hereditary ataxias reported in the Korean population with a focus on the prevalence and subtype frequencies as the clinical characteristics of the various subtypes.

  5. Classically conditioned postural reflex in cerebellar patients.

    Science.gov (United States)

    Kolb, F P; Lachauer, S; Maschke, M; Timmann, D

    2004-09-01

    The aim of the current study was to compare postural responses to repetitive platform-evoked perturbations in cerebellar patients with those of healthy subjects using a classical conditioning paradigm. The perturbations consisted of tilting of the platform (unconditioned stimulus: US) at random time intervals, preceded by an auditory signal that represented the conditioning stimulus (CS). Physiological reactions were recorded biomechanically by measuring the vertical ground forces, yielding the center of vertical pressure (CVP), and electrophysiologically by EMG measurements of the main muscle groups of both legs. The recording session consisted of a control section with US-alone trials, a testing section with paired stimuli and a brief final section with US-alone trials. Healthy control subjects were divided into those establishing conditioned responses (CR) in all muscles tested (strategy I) and those with CR in the gastrocnemius muscles only (strategy II), suggesting an associative motor-related process is involved. Patients with a diffuse, non-localized disease were almost unable to establish CR. This was also true for a patient with a focal surgical lesion with no CR on the affected side but who, simultaneously, showed an essentially normal CR incidence on the intact side. During US-alone trials healthy controls exhibited a remarkable decay of the UR amplitude due to a non-associative motor-related process such as habituation. The decay was most prominent in the paired trials section. In contrast, patients showed no significant differences in the UR amplitude throughout the entire recording session. Analysis of the CVP supported the electrophysiological findings, showing CR in the controls only. The differences between the responses of control subjects and those of the cerebellar patients imply strongly that the cerebellum is involved critically in controlling associative and non-associative motor-related processes.

  6. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  7. Bilateral cerebellar activation in unilaterally challenged essential tremor

    Directory of Open Access Journals (Sweden)

    Marja Broersma

    2016-01-01

    Conclusions: Our results expand on previous findings of bilateral cerebellar involvement in ET. We have identified specific areas in the bilateral somatomotor regions of the cerebellum: lobules V, VI and VIII.

  8. Cerebellar infarct patterns: The SMART-Medea study

    Directory of Open Access Journals (Sweden)

    Laurens J.L. De Cocker, MD

    2015-01-01

    Conclusions: Small cerebellar infarcts proved to be much more common than larger infarcts, and preferentially involved the cortex. Small cortical infarcts predominantly involved the posterior lobes, showed sparing of subcortical white matter and occurred in characteristic topographic patterns.

  9. Anomalous cerebellar anatomy in Chinese children with dyslexia

    Directory of Open Access Journals (Sweden)

    Ying-Hui eYang

    2016-03-01

    Full Text Available The cerebellar deficit hypothesis for developmental dyslexia (DD claims that cerebellar dysfunction causes the failures in the acquisition of visuomotor skills and automatic reading and writing skills. In people with dyslexia in the alphabetic languages, the abnormal activation and structure of the right or bilateral cerebellar lobes have been identified. Using a typical implicit motor learning task, however, one neuroimaging study demonstrated the left cerebellar dysfunction in Chinese children with dyslexia. In the present study, using voxel-based morphometry, we found decreased gray matter volume in the left cerebellum in Chinese children with dyslexia relative to age-matched controls. The positive correlation between reading performance and regional gray matter volume suggests that the abnormal structure in the left cerebellum is responsible for reading disability in Chinese children with dyslexia.

  10. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M. [Dept. of Radiology, Kumamoto University School of Medicine (Japan); Okajima, T. [Dept. of Neurology, Johnan Hospital, Maihara, Johnan-mochi (Japan); Sato, H. [Dept. of Neurology, Minamata City General Hospital and Medical Centre (Japan)

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  11. Cerebellar blood flow in methylmercury poisoning (Minamata disease).

    Science.gov (United States)

    Itoh, K; Korogi, Y; Tomiguchi, S; Takahashi, M; Okajima, T; Sato, H

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part.

  12. Cerebellar transcranial direct current stimulation in neurological disease

    OpenAIRE

    Ferrucci, Roberta; Bocci, Tommaso; Cortese, Francesca; Ruggiero, Fabiana; Priori, Alberto

    2016-01-01

    Several studies have highlighted the therapeutic potential of transcranial direct current stimulation (tDCS) in patients with neurological diseases, including dementia, epilepsy, post-stroke dysfunctions, movement disorders, and other pathological conditions. Because of this technique’s ability to modify cerebellar excitability without significant side effects, cerebellar tDCS is a new, interesting, and powerful tool to induce plastic modifications in the cerebellum. In this report, we review...

  13. Oxidative Stress in Autism: Elevated Cerebellar 3-nitrotyrosine Levels

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Sajdel-Sulkowska

    2008-01-01

    Full Text Available It has been suggested that oxidative stress and/or mercury compounds play an important role in the pathophysiology of autism. This study compared for the first time the cerebellar levels of the oxidative stress marker 3-nitrotyrosine (3-NT, mercury (Hg and the antioxidant selenium (Se levels between control and autistic subjects. Tissue homogenates were prepared in the presence of protease inhibitors from the frozen cerebellar tissue of control (n=10; mean age, 15.5 years; mean PMI, 15.5 hours and autistic (n=9; mean age 12.1 years; mean PMI, 19.3 hours subjects. The concentration of cerebellar 3-NT, determined by ELISA, in controls ranged from 13.69 to 49.04 pmol g-1 of tissue; the concentration of 3-NT in autistic cases ranged from 3.91 to 333.03 pmol g-1 of tissue. Mean cerebellar 3-NT was elevated in autism by 68.9% and the increase was statistically significant (p=0.045. Cerebellar Hg, measured by atomic absorption spectrometry ranged from 0.9 to 35 pmol g-1 tissue in controls (n=10 and from 3.2 to 80.7 pmol g-1 tissue in autistic cases (n=9; the 68.2% increase in cerebellar Hg was not statistically significant. However, there was a positive correlation between cerebellar 3-NT and Hg levels (r=0.7961, p=0.0001. A small decrease in cerebellar Se levels in autism, measured by atomic absorption spectroscopy, was not statistically significant but was accompanied by a 42.9% reduction in the molar ratio of Se to Hg in the autistic cerebellum. While preliminary, the results of the present study add elevated oxidative stress markers in brain to the growing body of data reflecting greater oxidative stress in autism.

  14. Stochastic differential equation model for cerebellar granule cell excitability.

    Science.gov (United States)

    Saarinen, Antti; Linne, Marja-Leena; Yli-Harja, Olli

    2008-02-29

    Neurons in the brain express intrinsic dynamic behavior which is known to be stochastic in nature. A crucial question in building models of neuronal excitability is how to be able to mimic the dynamic behavior of the biological counterpart accurately and how to perform simulations in the fastest possible way. The well-established Hodgkin-Huxley formalism has formed to a large extent the basis for building biophysically and anatomically detailed models of neurons. However, the deterministic Hodgkin-Huxley formalism does not take into account the stochastic behavior of voltage-dependent ion channels. Ion channel stochasticity is shown to be important in adjusting the transmembrane voltage dynamics at or close to the threshold of action potential firing, at the very least in small neurons. In order to achieve a better understanding of the dynamic behavior of a neuron, a new modeling and simulation approach based on stochastic differential equations and Brownian motion is developed. The basis of the work is a deterministic one-compartmental multi-conductance model of the cerebellar granule cell. This model includes six different types of voltage-dependent conductances described by Hodgkin-Huxley formalism and simple calcium dynamics. A new model for the granule cell is developed by incorporating stochasticity inherently present in the ion channel function into the gating variables of conductances. With the new stochastic model, the irregular electrophysiological activity of an in vitro granule cell is reproduced accurately, with the same parameter values for which the membrane potential of the original deterministic model exhibits regular behavior. The irregular electrophysiological activity includes experimentally observed random subthreshold oscillations, occasional spontaneous spikes, and clusters of action potentials. As a conclusion, the new stochastic differential equation model of the cerebellar granule cell excitability is found to expand the range of dynamics

  15. Proprioceptive Localization Deficits in People With Cerebellar Damage.

    Science.gov (United States)

    Weeks, Heidi M; Therrien, Amanda S; Bastian, Amy J

    2017-04-01

    It has been hypothesized that an important function of the cerebellum is predicting the state of the body during movement. Yet, the extent of cerebellar involvement in perception of limb state (i.e., proprioception, specifically limb position sense) has yet to be determined. Here, we investigated whether patients with cerebellar damage have deficits when trying to locate their hand in space (i.e., proprioceptive localization), which is highly important for everyday movements. By comparing performance during passive robot-controlled and active self-made multi-joint movements, we were able to determine that some cerebellar patients show improved precision during active movement (i.e., active benefit), comparable to controls, whereas other patients have reduced active benefit. Importantly, the differences in patient performance are not explained by patient diagnosis or clinical ratings of impairment. Furthermore, a subsequent experiment confirmed that active deficits in proprioceptive localization occur during both single-joint and multi-joint movements. As such, it is unlikely that localization deficits can be explained by the multi-joint coordination deficits occurring after cerebellar damage. Our results suggest that cerebellar damage may cause varied impairments to different elements of proprioceptive sense. It follows that proprioceptive localization should be adequately accounted for in clinical testing and rehabilitation of people with cerebellar damage.

  16. Relationship between the cerebellar function and cerebellar atrophy in Minamata disease. Investigations using body balance analyzer and MR imaging method

    Energy Technology Data Exchange (ETDEWEB)

    Okajima, Toru [Johnan Hospital, Minami, Kumamoto (Japan); Ikeda, Osamu; Sannomiya, Kunihiro; Korogi, Yukinori; Uchino, Makoto

    1995-11-01

    Interrelations between the cerebellar function and cerebellar atrophy were studied in the cases with Minamata disease and spinocerebellar degeneration and in the healthy subjects. For evaluation of the cerebellar function, the statokinesigraph (SKG) was recorded and the shifting length (L-SKG) and moving area (A-SKG) of postural sway were obtained using body balance analyzer. Cerebellar atrophy was evaluated by the rostrocaudal and ventrodorsal diameters of whole vermis and the total area of upper and lower parts (area-UL) of vermis on the midsagittal plane of MR imaging. It was disclosed that there was significant correlation between the L-SKG and the measurement of rostrocaudal diameter as well as the area-UL of vermis through the patients with Minamata disease and the healthy subjects. When added the patients with spinocerebellar degeneration, the significant correlation was not obtainable probably because of the progressive processes of the disease. (author).

  17. Cerebellar Ataxia and Glutamic Acid Decarboxylase Antibodies

    Science.gov (United States)

    Ariño, Helena; Gresa-Arribas, Nuria; Blanco, Yolanda; Martínez-Hernández, Eugenia; Sabater, Lidia; Petit-Pedrol, Mar; Rouco, Idoia; Bataller, Luis; Dalmau, Josep O.; Saiz, Albert; Graus, Francesc

    2016-01-01

    IMPORTANCE Current clinical and immunologic knowledge on cerebellar ataxia (CA) with glutamic acid decarboxylase 65 antibodies (GAD65-Abs) is based on case reports and small series with short-term follow-up data. OBJECTIVE To report the symptoms, additional antibodies, prognostic factors, and long-term outcomes in a cohort of patients with CA and GAD65-Abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study and laboratory investigations at a center for autoimmune neurologic disorders among 34 patients with CA and GAD65-Abs, including 25 with long-term follow-up data (median, 5.4 years; interquartile range, 3.1-10.3 years). MAIN OUTCOMES AND MEASURES Analysis of clinicoimmunologic features and predictors of response to immunotherapy. Immunochemistry on rat brain, cultured neurons, and human embryonic kidney cells expressing GAD65, GAD67, α1-subunit of the glycine receptor, and a repertoire of known cell surface autoantigens were used to identify additional antibodies. Twenty-eight patients with stiff person syndrome and GAD65-Abs served as controls. RESULTS The median age of patients was 58 years (range, 33-80 years); 28 of 34 patients (82%) were women. Nine patients (26%) reported episodes of brainstem and cerebellar dysfunction or persistent vertigo several months before developing CA. The clinical presentation was subacute during a period of weeks in 13 patients (38%). Nine patients (26%) had coexisting stiff person syndrome symptoms. Systemic organ-specific autoimmunities (type 1 diabetes mellitus and others) were present in 29 patients (85%). Twenty of 25 patients with long-term follow-up data received immunotherapy (intravenous immunoglobulin in 10 and corticosteroids and intravenous immunoglobulin or other immunosuppressors in 10), and 7 of them (35%) improved. Predictors of clinical response included subacute onset of CA (odds ratio [OR], 0.50; 95% CI, 0.25-0.99; P = .047) and prompt immunotherapy (OR, 0.98; 95% CI, 0.96-0.99; P = .01). Similar

  18. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands

    Directory of Open Access Journals (Sweden)

    Giuliana eGrimaldi

    2014-01-01

    Full Text Available Cerebellar ataxias represent a very heterogeneous group of disabling disorders for which we lack effective symptomatic therapies in most cases. There is currently an intense interest in the use of non invasive transcranial DC stimulation (tDCS to modulate the activity of the cerebellum in ataxic disorders. We performed a detailed laboratory assessment of the effects of transcranial cerebello-cerebral DC stimulation (tCCDCS, including a sham procedure on upper limb tremor and dysmetria in 2 patients presenting a dominant spinocerebellar ataxia (SCA type 2, one of the most common SCAs encountered during practice. Both patients had a very similar triplet expansion size in the ATXN2 gene (respectively 39 and 40 triplets. tCCDCS reduced both postural tremor and action tremor, as confirmed by spectral analysis. Quadratical PSD (power spectral density of postural tremor dropped to 38.63 % and 41.42 % of baseline values in patient 1 and 2, respectively. The integral of the subband 4-20 Hz dropped to 46.9 % and 62.3 % of baseline values, respectively. Remarkably, tCCDCS cancelled hypermetria and reduced dramatically the onset latency of the antagonist EMG activity associated with fast goal-directed movements towards 3 aimed targets (0.2, 0.3 and 0.4 rad. Following tCCDCS, the latency dropped from 108-98 msec to 63-57 msec in patient 1, and from 74-87 msec to 41-46 msec in patient 2 (mean control values +/- SD: 36 +/- 8 to 45 +/- 11 msec, corresponding to a major drop of z scores for the 2 patients from 7.12 +/- 0.69 to 1.28 +/- 1.27 (sham procedure: 6.79 +/- 0.71. This is the first demonstration that tCCDCS improves upper limb tremor and hypermetria in SCA type 2. In particular, this is the first report of a favourable effect on the onset latency of the antagonist EMG activity, a neurophysiological marker of the defect in programming of timing of motor commands. Our results indicate that tCCDCS should be considered in the symptomatic management of upper

  19. Imaging calcium waves in cerebellar Bergmann glia.

    Science.gov (United States)

    Beierlein, Michael

    2013-01-01

    This protocol describes methods for recording synaptically evoked Ca(2+) waves from individual Bergmann glia (BG) in slices of cerebellar cortex. Unlike protoplasmic, star-shaped astrocytes, whose thin processes pose a serious challenge to stable Ca(2+) measurements, BG are large radial cells, with several main processes that run over distances of several hundred micrometers toward the pia and ensheathe thousands of parallel fiber (PF) synapses. Stimulation of PF synapses with brief bursts can trigger long-lasting Ca(2+) responses in BG processes, which can be reliably recorded using a cooled charge-coupled device (CCD) camera. This protocol was developed to enable measurements of Ca(2+) waves in individual BG loaded with a high-affinity Ca(2+) indicator such as Fura-2 for up to 2 h. Because BG recorded in slices rarely display spontaneous (i.e., tetrodotoxin [TTX]-sensitive) or intrinsic Ca(2+) transients, Ca(2+) waves can be evoked repeatedly and reliably, which permits quantitative studies using pharmacological tools. Fluorescence measurements obtained using CCD technology offer a straightforward means of characterizing the mechanisms and potential functional consequences of widespread and long-lasting, store-mediated Ca(2+) increases in astrocytes.

  20. Electrophysiological mapping of novel prefrontal - cerebellar pathways

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2009-08-01

    Full Text Available Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre; they were not attenuated by local anesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency. Single-unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  1. Sudden stopping in patients with cerebellar ataxia.

    Science.gov (United States)

    Serrao, Mariano; Conte, Carmela; Casali, Carlo; Ranavolo, Alberto; Mari, Silvia; Di Fabio, Roberto; Perrotta, Armando; Coppola, Gianluca; Padua, Luca; Monamì, Stefano; Sandrini, Giorgio; Pierelli, Francesco

    2013-10-01

    Stopping during walking, a dynamic motor task frequent in everyday life, is very challenging for ataxic patients, as it reduces their gait stability and increases the incidence of falls. This study was conducted to analyse the biomechanical characteristics of upper and lower body segments during abrupt stopping in ataxic patients in order to identify possible strategies used to counteract the instability in the sagittal and frontal plane. Twelve patients with primary degenerative cerebellar ataxia and 12 age- and sex-matched healthy subjects were studied. Time-distance parameters, dynamic stability of the centre of mass, upper body measures and lower joint kinematic and kinetic parameters were analysed. The results indicate that ataxic patients have a great difficulty in stopping abruptly during walking and adopt a multi-step stopping strategy, occasionally with feet parallel, to compensate for their inability to coordinate the upper body and to generate a well-coordinated lower limb joint flexor-extensor pattern and appropriate braking forces for progressively decelerating the progression of the body in the sagittal plane. A specific rehabilitation treatment designed to improve the ability of ataxic patients to transform unplanned stopping into planned stopping, to coordinate upper body and to execute an effective flexion-extension pattern of the hip and knee joints may be useful in these patients in order to improve their stopping performance and prevent falls.

  2. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms.

    Science.gov (United States)

    Dar, M Saeed

    2015-08-01

    The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.

  3. Abnormal cerebellar volume in acute and remitted major depression.

    Science.gov (United States)

    Depping, Malte S; Wolf, Nadine D; Vasic, Nenad; Sambataro, Fabio; Hirjak, Dusan; Thomann, Philipp A; Wolf, Robert C

    2016-11-01

    Abnormal cortical volume is well-documented in patients with major depressive disorder (MDD), but cerebellar findings have been heterogeneous. It is unclear whether abnormal cerebellar structure relates to disease state or medication. In this study, using structural MRI, we investigated cerebellar volume in clinically acute (with and without psychotropic treatment) and remitted MDD patients. High-resolution structural MRI data at 3T were obtained from acute medicated (n=29), acute unmedicated (n=14) and remitted patients (n=16). Data from 29 healthy controls were used for comparison purposes. Cerebellar volume was investigated using cerebellum-optimized voxel-based analysis methods. Patients with an acute MDD episode showed increased volume of left cerebellar area IX, and this was true for both medicated and unmedicated individuals (pvolume. In remitted, but not in acutely ill patients, area IX volume was significantly associated with measures of depression severity, as assessed by the Hamilton Depression Rating Scale (HAMD). In addition, area IX volume in remitted patients was significantly related to the duration of antidepressant treatment. In acutely ill patients, no significant relationships were established using clinical variables, such as HAMD, illness or treatment duration and number of depressive episodes. The data suggest that cerebellar area IX, a non-motor region that belongs to a large-scale brain functional network with known relevance to core depressive symptom expression, exhibits abnormal volume in patients independent of clinical severity or medication. Thus, the data imply a possible trait marker of the disorder. However, given bilaterality and an association with clinical scores at least in remitted patients, the current findings raise the possibility that cerebellar volume may be reflective of successful treatment as well.

  4. A cerebellar neuroprosthetic system: computational architecture and in vivo experiments

    Directory of Open Access Journals (Sweden)

    Ivan eHerreros Alonso

    2014-05-01

    Full Text Available Emulating the input-output functions performed by a brain structure opens the possibility for developing neuro-prosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model's inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuro-prosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step towards replacing lost functions of the central nervous system via neuro-prosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuro-prosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step towards the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term

  5. Cerebellar development in the absence of Gbx function in zebrafish.

    Science.gov (United States)

    Su, Chen-Ying; Kemp, Hilary A; Moens, Cecilia B

    2014-02-01

    The midbrain-hindbrain boundary (MHB) is a well-known organizing center during vertebrate brain development. The MHB forms at the expression boundary of Otx2 and Gbx2, mutually repressive homeodomain transcription factors expressed in the midbrain/forebrain and anterior hindbrain, respectively. The genetic hierarchy of gene expression at the MHB is complex, involving multiple positive and negative feedback loops that result in the establishment of non-overlapping domains of Wnt1 and Fgf8 on either side of the boundary and the consequent specification of the cerebellum. The cerebellum derives from the dorsal part of the anterior-most hindbrain segment, rhombomere 1 (r1), which undergoes a distinctive morphogenesis to give rise to the cerebellar primordium within which the various cerebellar neuron types are specified. Previous studies in the mouse have shown that Gbx2 is essential for cerebellar development. Using zebrafish mutants we show here that in the zebrafish gbx1 and gbx2 are required redundantly for morphogenesis of the cerebellar primordium and subsequent cerebellar differentiation, but that this requirement is alleviated by knocking down Otx. Expression of fgf8, wnt1 and the entire MHB genetic program is progressively lost in gbx1-;gbx2- double mutants but is rescued by Otx knock-down. This rescue of the MHB genetic program depends on rescued Fgf signaling, however the rescue of cerebellar primordium morphogenesis is independent of both Gbx and Fgf. Based on our findings we propose a revised model for the role of Gbx in cerebellar development.

  6. Upregulation of cortico-cerebellar functional connectivity after motor learning.

    Science.gov (United States)

    Mehrkanoon, Saeid; Boonstra, Tjeerd W; Breakspear, Michael; Hinder, Mark; Summers, Jeffery J

    2016-03-01

    Interactions between the cerebellum and primary motor cortex are crucial for the acquisition of new motor skills. Recent neuroimaging studies indicate that learning motor skills is associated with subsequent modulation of resting-state functional connectivity in the cerebellar and cerebral cortices. The neuronal processes underlying the motor-learning-induced plasticity are not well understood. Here, we investigate changes in functional connectivity in source-reconstructed electroencephalography (EEG) following the performance of a single session of a dynamic force task in twenty young adults. Source activity was reconstructed in 112 regions of interest (ROIs) and the functional connectivity between all ROIs was estimated using the imaginary part of coherence. Significant changes in resting-state connectivity were assessed using partial least squares (PLS). We found that subjects adapted their motor performance during the training session and showed improved accuracy but with slower movement times. A number of connections were significantly upregulated after motor training, principally involving connections within the cerebellum and between the cerebellum and motor cortex. Increased connectivity was confined to specific frequency ranges in the mu- and beta-bands. Post hoc analysis of the phase spectra of these cerebellar and cortico-cerebellar connections revealed an increased phase lag between motor cortical and cerebellar activity following motor practice. These findings show a reorganization of intrinsic cortico-cerebellar connectivity related to motor adaptation and demonstrate the potential of EEG connectivity analysis in source space to reveal the neuronal processes that underpin neural plasticity.

  7. Development of the cerebellar cortex in the mouse

    Institute of Scientific and Technical Information of China (English)

    Xiangshu Cheng; Jin Du; Dongming Yu; Qiying Jiang; Yanqiu Hu; Lei Wang; Mingshan Li; Jinbo Deng

    2011-01-01

    The cerebellum is a highly conserved structure in the central nervous system of vertebrates, and is involved in the coordination of voluntary motor behavior. Supporting this function, the cerebellar cortex presents a layered structure which requires precise spatial and temporal coordination of proliferation, migration, differentiation, and apoptosis events. The formation of the layered structure in the developing cerebellum remains unclear. The present study investigated the development of the cerebellar cortex. The results demonstrate that the primordium of the cerebellum comprises the ependymal, mantle, and marginal layers at embryonic day 12 (E12). Subsequently, the laminated cerebellar cortex undergoes cell proliferation, differentiation, and migration, and at about postnatal day 0 (P0), the cerebellar cortex presents an external granular layer, a molecular layer, a Purkinje layer, and an internal granular layer. The external granular layer is thickest at P6/7 and disappears at P20. From P0 to P30, the internal granular cells and the Purkinje cells gradually differentiate and develop until maturity. Apoptotic neurons are evident in the layered structure in the developing cerebellar cortex. The external granular layer disappears gradually because of cell migration and apoptosis. The cells of the other layers primarily undergo differentiation, development, and apoptosis.

  8. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  9. Cerebellar network plasticity: from genes to fast oscillation.

    Science.gov (United States)

    Cheron, G; Servais, L; Dan, B

    2008-04-22

    The role of the cerebellum has been increasingly recognized not only in motor control but in sensory, cognitive and emotional learning and regulation. Purkinje cells, being the sole output from the cerebellar cortex, occupy an integrative position in this network. Plasticity at this level is known to critically involve calcium signaling. In the last few years, electrophysiological study of genetically engineered mice has demonstrated the topical role of several genes encoding calcium-binding proteins (calretinin, calbindin, parvalbumin). Specific inactivation of these genes results in the emergence of a fast network oscillation (ca. 160 Hz) throughout the cerebellar cortex in alert animals, associated with ataxia. This oscillation is produced by synchronization of Purkinje cells along the parallel fiber beam. It behaves as an electrophysiological arrest rhythm, being blocked by sensorimotor stimulation. Pharmacological manipulations showed that the oscillation is blocked by GABA(A) and NMDA antagonists as well as gap junction blockers. This cerebellar network oscillation has also been documented in mouse models of human conditions with complex developmental cerebellar dysfunction, such as Angelman syndrome and fetal alcohol syndrome. Recent evidence suggests a relationship between fast oscillation and cerebellar long term depression (LTD). This may have major implications for future therapeutic targeting.

  10. Cerebellar hemorrhage after embolization of ruptured vertebral dissecting aneurysm proximal to PICA including parent artery

    Directory of Open Access Journals (Sweden)

    Akira Tamase

    2014-01-01

    Full Text Available Background: Some complications related to vertebral artery occlusion by endovascular technique have been reported. However, cerebellar hemorrhage after vertebral artery occlusion in subacute phase is rare. In this report, we describe a patient who showed cerebellar hemorrhage during hypertensive therapy for vasospasm after embolization of a vertebral dissecting aneurysm. Case Description: A 56-year-old female with a ruptured vertebral dissecting aneurysm proximal to the posterior inferior cerebellar artery developed cerebellar hemorrhage 15 days after embolization of the vertebral artery, including the dissected site. In this patient, the preserved posterior inferior cerebellar artery fed by retrograde blood flow might have been hemodynamically stressed during hypertensive and antiplatelet therapies for subarachnoid hemorrhage, resulting in cerebellar hemorrhage. Conclusion: Although cerebellar hemorrhage is not prone to occur in the nonacute stage of embolization of the vertebral artery, it should be taken into consideration that cerebellar hemorrhage may occur during hypertensive treatment.

  11. Mitotic Events in Cerebellar Granule Progenitor Cells that Expand Cerebellar Surface Area Are Critical for Normal Cerebellar Cortical Lamination in Mice

    Science.gov (United States)

    Chang, Joshua C.; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-01-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereological principles. We demonstrate that during the proliferative phase of the external granule layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding either 2 cells in the same layer to increase surface area (β-events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α-events). As the cerebellum grows, therefore, β-events lie upstream of α-events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify inter-mitotic times for β-events on a per-cell basis in post-natal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereological studies. PMID:25668568

  12. Cerebellar Development and Autism Spectrum Disorder in Tuberous Sclerosis Complex.

    Science.gov (United States)

    Sundberg, Maria; Sahin, Mustafa

    2015-12-01

    Approximately 50% of patients with the genetic disease tuberous sclerosis complex present with autism spectrum disorder. Although a number of studies have investigated the link between autism and tuberous sclerosis complex, the etiology of autism spectrum disorder in these patients remains unclear. Abnormal cerebellar function during critical phases of development could disrupt functional processes in the brain, leading to development of autistic features. Accordingly, the authors review the potential role of cerebellar dysfunction in the pathogenesis of autism spectrum disorder in tuberous sclerosis complex. The authors also introduce conditional knockout mouse models of Tsc1 and Tsc2 that link cerebellar circuitry to the development of autistic-like features. Taken together, these preclinical and clinical investigations indicate the cerebellum has a profound regulatory role during development of social communication and repetitive behaviors.

  13. An unusual cause of adult onset cerebellar ataxia with hypogonadism

    Directory of Open Access Journals (Sweden)

    Menon Ramshekhar

    2009-01-01

    Full Text Available We report an unusual case of sporadic adult onset cerebellar ataxia with hypogonadism. A 40-year-old unmarried man presented with progressive ataxia and dysarthria along with complaints of non-development of secondary sexual characteristics and erectile dysfunction. There were complaints of intermittent diarrhea. Clinical examination revealed a pan-cerebellar syndrome with features of hypoandrogenism. No eye movement abnormalities were evident. There were signs of malabsorption. Investigations confirmed the presence of auto-antibodies found in celiac disease, and a duodenal biopsy confirmed the same. Hypoandrogenism was postulated to be due to hypergonadotropic hypogonadism which has been mentioned in a few patients of celiac disease. However, the pattern seen in our patient was of a hypogonadotropic hypogonadism. This is probably secondary to an autoimmune hypophysitis seen in some patients in the absence of other clinical manifestations. Autoantibody testing should be a diagnostic necessity in any adult with a sporadic cerebellar ataxia.

  14. File list: Unc.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  15. File list: DNS.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neuron...s SRX685885,SRX685878,SRX685882,SRX685877,SRX685880,SRX685883 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  16. File list: ALL.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neuron...s SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  17. File list: ALL.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neuron...s SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  18. File list: His.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  19. File list: Oth.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  20. File list: DNS.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neuron...s SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  1. File list: DNS.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neuron...s SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  2. File list: ALL.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neuron...s SRX685885,SRX685878,SRX685882,SRX685877,SRX685880,SRX685883 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  3. File list: Pol.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  4. File list: Pol.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Cerebellar_Cortex mm9 RNA polymerase Neural Cerebellar Cortex SRX0...62942,SRX143820,SRX685286,SRX685285 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  5. File list: Unc.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Cerebellar_Cortex mm9 Unclassified Neural Cerebellar Cortex SRX112...5781,SRX1125783,SRX1125780,SRX1125782,SRX1125788,SRX1125789 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  6. File list: InP.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Cerebellar_Cortex mm9 Input control Neural Cerebellar Cortex SRX06...2943,SRX085442,SRX143824,SRX685926,SRX968954,SRX1318104,SRX1028898,SRX1318103 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  7. File list: His.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Cerebellar_Cortex mm9 Histone Neural Cerebellar Cortex SRX323780,S...8093,SRX1318090,SRX1318091,SRX062940,SRX085445,SRX1318094 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  8. File list: Pol.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Cerebellar_Cortex mm9 RNA polymerase Neural Cerebellar Cortex SRX0...62942,SRX143820,SRX685286,SRX685285 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  9. File list: ALL.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Cerebellar_Cortex mm9 All antigens Neural Cerebellar Cortex SRX323...85926 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  10. File list: ALL.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Cerebellar_Cortex mm9 All antigens Neural Cerebellar Cortex SRX323...85926 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  11. File list: Unc.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Cerebellar_Cortex mm9 Unclassified Neural Cerebellar Cortex SRX112...5781,SRX1125780,SRX1125783,SRX1125782,SRX1125789,SRX1125788 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  12. File list: Oth.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Cerebellar_Cortex mm9 TFs and others Neural Cerebellar Cortex SRX0...62939,SRX143819,SRX209672,SRX1028899,SRX968953 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  13. File list: Oth.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Cerebellar_Cortex mm9 TFs and others Neural Cerebellar Cortex SRX0...62939,SRX143819,SRX209672,SRX1028899,SRX968953 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  14. File list: His.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Cerebellar_Cortex mm9 Histone Neural Cerebellar Cortex SRX062940,S...92,SRX1318090,SRX1318091,SRX1318089,SRX1318093,SRX1318094 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  15. File list: Unc.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Cerebellar_Cortex mm9 Unclassified Neural Cerebellar Cortex SRX112...5781,SRX1125780,SRX1125783,SRX1125782,SRX1125788,SRX1125789 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  16. File list: ALL.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Cerebellar_Cortex mm9 All antigens Neural Cerebellar Cortex SRX112...18094 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  17. File list: Oth.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Cerebellar_Cortex mm9 TFs and others Neural Cerebellar Cortex SRX0...62939,SRX143819,SRX209672,SRX1028899,SRX968953 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  18. File list: InP.Neu.20.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Cerebellar_Cortex mm9 Input control Neural Cerebellar Cortex SRX06...2943,SRX1028898,SRX143824,SRX085442,SRX968954,SRX1318104,SRX1318103,SRX685926 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Cerebellar_Cortex.bed ...

  19. File list: ALL.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Cerebellar_Cortex mm9 All antigens Neural Cerebellar Cortex SRX112...18103 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  20. File list: Oth.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Cerebellar_Cortex mm9 TFs and others Neural Cerebellar Cortex SRX0...62939,SRX143819,SRX209672,SRX1028899,SRX968953 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  1. File list: NoD.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Cerebellar_Cortex mm9 No description Neural Cerebellar Cortex http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  2. File list: Pol.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Cerebellar_Cortex mm9 RNA polymerase Neural Cerebellar Cortex SRX0...62942,SRX143820,SRX685286,SRX685285 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  3. File list: His.Neu.10.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Cerebellar_Cortex mm9 Histone Neural Cerebellar Cortex SRX323779,S...45,SRX1318089,SRX1318093,SRX1318090,SRX1318091,SRX1318094 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Cerebellar_Cortex.bed ...

  4. File list: NoD.Neu.50.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Cerebellar_Cortex mm9 No description Neural Cerebellar Cortex http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Cerebellar_Cortex.bed ...

  5. File list: Pol.Neu.05.AllAg.Cerebellar_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Cerebellar_Cortex mm9 RNA polymerase Neural Cerebellar Cortex SRX0...62942,SRX143820,SRX685285,SRX685286 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Cerebellar_Cortex.bed ...

  6. File list: Unc.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  7. File list: His.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule n...eurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: His.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule n...eurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  9. File list: His.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule n...eurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  10. File list: Pol.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  11. File list: Unc.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  12. File list: Oth.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  13. File list: ALL.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar gran...ule neurons SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  14. File list: Oth.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  15. File list: Oth.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  16. File list: Pol.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  17. File list: Unc.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  18. File list: DNS.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule... neurons SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  19. Cerebellar diaschisis in pontine infractions: a report of five cases

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Yoshiyasu [Kagawa Medical School (Japan). Second Dept. of Internal Medicine; Ayada, Yoshihide [Kagawa Medical School (Japan). Second Dept. of Internal Medicine; Izumi, Yoshinari [Kagawa Medical School (Japan). Second Dept. of Internal Medicine; Ichihara, Sin-Ichiro [Kagawa Medical School (Japan). Second Dept. of Internal Medicine; Hosomi, Naohisa [Kagawa Medical School (Japan). Second Dept. of Internal Medicine; Ohkawa, Motoomi [Kagawa Medical School (Japan). Dept. of Radiology; Matsuo, Hirohide [Kagawa Medical School (Japan). Second Dept. of Internal Medicine

    1995-05-01

    We evaluate regional cerebral and cerebellar perfusion to prove the occurrence and follow the persistence of crossed cerebellar diaschisis in infratentorial pontine infarction. Six consecutive patients exhibiting mild hemiparetic symptoms or a heavy feeling in the head (mean age 65 years; four women, two men) and diagnosed as having pontine infarction by magnetic resonance imaging were sugjected to evaluation. Lesions due to infarction were located at the upper basis pontis in five partients and the upper tegmentum pontis in one, and medially at the paramedian portion in four and laterally in two. Regional cerebral and cerebellar perfusion was evaluated semiquantitatively by iodine-123 N-isopropyl-p-iodoamphetamine (IMP) single-photon emission tomography (SPET); this was done during the acute stage in five cases (mean time after onset: 0.7 months) and during the chronic stage in three (mean time after onset: 14.8 months) Significant asymmetry in cerebellar perfusion, which was reduced in the contralateral or ipsilateral cerebellar hemisphere, was demonstrated semiquantitatively in four cases during the acute stage and in one during the chronic stage, as compared with normal controls. This asymmetry continued to the chronic stage (6.5 and 33.0 months) in two cases, while no patient showed any significant asymmetries in cerebral perdusion in any region of interest in either SPET study. The pontine lesion may damage the pyramidal tract and corticocerebellar pathway, and interruption of the cerebrocerebellar pontine circuits may be regarded as the cause of the crossed cerebellar diaschisis observed in five of the six reported patients with pontine infarction. (orig.)

  20. Cerebellar substrates for error correction in motor conditioning.

    Science.gov (United States)

    Gluck, M A; Allen, M T; Myers, C E; Thompson, R F

    2001-11-01

    The authors evaluate a mapping of Rescorla and Wagner's (1972) behavioral model of classical conditioning onto the cerebellar substrates for motor reflex learning and illustrate how the limitations of the Rescorla-Wagner model are just as useful as its successes for guiding the development of new psychobiological theories of learning. They postulate that the inhibitory pathway that returns conditioned response information from the cerebellar interpositus nucleus back to the inferior olive is the neural basis for the error correction learning proposed by Rescorla and Wagner (Gluck, Myers, & Thompson, 1994; Thompson, 1986). The authors' cerebellar model expects that behavioral processes described by the Rescorla-Wagner model will be localized within the cerebellum and related brain stem structures, whereas behavioral processes beyond the scope of the Rescorla-Wagner model will depend on extracerebellar structures such as the hippocampus and related cortical regions. Simulations presented here support both implications. Several novel implications of the authors' cerebellar error-correcting model are described including a recent empirical study by Kim, Krupa, and Thompson (1998), who verified that suppressing the putative error correction pathway should interfere with the Kamin (1969) blocking effect, a behavioral manifestation of error correction learning. The authors also discuss the model's implications for understanding the limits of cerebellar contributions to associative learning and how this informs our understanding of hippocampal function in conditioning. This leads to a more integrative view of the neural substrates of conditioning in which the authors' real-time circuit-level model of the cerebellum can be viewed as a generalization of the long-term memory module of Gluck and Myers' (1993) trial-level theory of cerebellar-hippocampal interaction in motor conditioning.

  1. Emotional disorders in patients with cerebellar damage – case studies

    Directory of Open Access Journals (Sweden)

    Siuda, Katarzyna

    2014-04-01

    Full Text Available Aim: Growing number of research shows the role of the cerebellum in the regulation of affect. Lesions of the cerebellum can lead to emotional disregulation, a significant part of the Cerebellar Cognitive Affective Syndrome. The aim of this article is to analyze the most recent studies concerning the cerebellar participation in emotional reactions and to present three cases: two female and one male who suffered from cerebellar damage and presented post-traumatic affective and personality change. Method: The patients’ neuropsychological examination was performed with Raven’s Progressive Matrices Test – standard version, Trial Making Test, Wisconsin Card Sorting Test, Auditory Verbal Learning Test by Łuria, Benton Visual Retention Test, Verbal Fluency Test, Stroop Interference Test, Attention and Perceptivity Test (Test Uwagi i Spostrzegawczości TUS, Frontal Behavioral Inventory (FBI. Results: The review of the literature suggest cerebellar participation, especially teh vermis and paravermial regions, in the detection, integration and filtration of emotional information and in regulation of autonomic emotional responses. In the described patients we observed: oversensitivity, irritability, impulsivity and self-neglect. The man and the woman with right-sided lesions presented similar symptoms: rigidity of thought, stubbornness, lack of criticism, jocular and inappropriate behavior. The woman with left-sided cerebellar lesion was adynamic, apathic and passive, she presented emotional blunting, social isolation, lack of interests and motivation, general cognitive slowdown. Conclusions: Both the analyzed research and the described cases indicate the connection between the cerebellum and emotion regulation. The symptoms presented by the described patients were most probably a consequence of damaged cerebellar projections to subcortical structures (the limbic system and frontal areas. The diversification of symptoms depending on the localization

  2. Choline Uptake by Glomerular Synapses Isolated from Bovine Cerebellar Vermis.

    Science.gov (United States)

    1986-01-01

    28 034 UNCLASSIFIED -7t. holing uptake by glomerular aynapaea isolated from bovine cerebellar venni - . 1) N1 IrRRIAN.E L NfISINndwr EtIIOMAS86 .t...w. -%FAt~Jr~a~etn 0,oAAM TX78215-5301 IL’SAJ) A-xpid ( kaolin 22nd. 19W5) hh.lhoac-anln uplake -ainalnnn 177 DIOMIDICAL DmIVIIN,~ F-5’. . Brain...Research. 366 (1986) 401-404 401 Elsevier BRE 21387 Choline uptake by glomerular synapses isolated from bovine cerebellar vermis D.M. TERRIAN, E.L

  3. The cerebellar nodulus/uvula integrates otolith signals for the translational vestibulo-ocular reflex.

    Directory of Open Access Journals (Sweden)

    Mark F Walker

    Full Text Available BACKGROUND: The otolith-driven translational vestibulo-ocular reflex (tVOR generates compensatory eye movements to linear head accelerations. Studies in humans indicate that the cerebellum plays a critical role in the neural control of the tVOR, but little is known about mechanisms of this control or the functions of specific cerebellar structures. Here, we chose to investigate the contribution of the nodulus and uvula, which have been shown by prior studies to be involved in the processing of otolith signals in other contexts. METHODOLOGY/PRINCIPAL FINDINGS: We recorded eye movements in two rhesus monkeys during steps of linear motion along the interaural axis before and after surgical lesions of the cerebellar uvula and nodulus. The lesions strikingly reduced eye velocity during constant-velocity motion but had only a small effect on the response to initial head acceleration. We fit eye velocity to a linear combination of head acceleration and velocity and to a dynamic mathematical model of the tVOR that incorporated a specific integrator of head acceleration. Based on parameter optimization, the lesion decreased the gain of the pathway containing this new integrator by 62%. The component of eye velocity that depended directly on head acceleration changed little (gain decrease of 13%. In a final set of simulations, we compared our data to the predictions of previous models of the tVOR, none of which could account for our experimental findings. CONCLUSIONS/ SIGNIFICANCE: Our results provide new and important information regarding the neural control of the tVOR. Specifically, they point to a key role for the cerebellar nodulus and uvula in the mathematical integration of afferent linear head acceleration signals. This function is likely to be critical not only for the tVOR but also for the otolith-mediated reflexes that control posture and balance.

  4. Cerebellar and Motor Cortical Transcranial Stimulation Decrease Levodopa-Induced Dyskinesias in Parkinson's Disease.

    Science.gov (United States)

    Ferrucci, Roberta; Cortese, Francesca; Bianchi, Marta; Pittera, Dario; Turrone, Rosanna; Bocci, Tommaso; Borroni, Barbara; Vergari, Maurizio; Cogiamanian, Filippo; Ardolino, Gianluca; Di Fonzo, Alessio; Padovani, Alessandro; Priori, Alberto

    2016-02-01

    Transcranial direct current stimulation (tDCS) is a non-invasive technique for inducing prolonged functional changes in the human cerebral cortex. This simple and safe neurostimulation technique for modulating motor functions in Parkinson's disease could extend treatment option for patients with movement disorders. We assessed whether tDCS applied daily over the cerebellum (cerebellar tDCS) and motor cortex (M1-tDCS) improves motor and cognitive symptoms and levodopa-induced dyskinesias in patients with Parkinson's disease (PD). Nine patients (aged 60-85 years; four women; Hoehn & Yahr scale score 2-3) diagnosed as having idiopathic PD were recruited. To evaluate how tDCS (cerebellar tDCS or M1-tDCS) affects motor and cognitive function in PD, we delivered bilateral anodal (2 mA, 20 min, five consecutive days) and sham tDCS, in random order, in three separate experimental sessions held at least 1 month apart. In each session, as outcome variables, patients underwent the Unified Parkinson's Disease Rating Scale (UPDRS III and IV) and cognitive testing before treatment (baseline), when treatment ended on day 5 (T1), 1 week later (T2), and then 4 weeks later (T3), at the same time each day. After patients received anodal cerebellar tDCS and M1-tDCS for five days, the UPDRS IV (dyskinesias section) improved (p  0.05). Despite the small sample size, our preliminary results show that anodal tDCS applied for five consecutive days over the motor cortical areas and cerebellum improves parkinsonian patients' levodopa-induced dyskinesias.

  5. Inside the Thompson laboratory during the "cerebellar years" and the continuing cerebellar story.

    Science.gov (United States)

    Lavond, D G; Wikgren, J; Nokia, M S

    2011-02-01

    This paper is based on the talk by one of the authors (DL) given at the symposium for the retirement of RF Thompson (RF Thompson: A bridge between 20th and 21st century neuroscience). We first make some informal observations of the historical times and research conditions in the Thompson laboratory when the cerebellum was found to play a critical role in eye lid classical conditioning, the "cerebellar years". These conditions influenced our collaborative international program on the phenomenon known as "transfer of training" or "savings". Our research shows that the appearance of "savings" is an artifact of the order of testing, and depends upon the functioning of the contralateral interpositus nucleus (IPN) in a way that is complementary to the role of the IPN in normal eyelid classical conditioning.

  6. Silent synapses, LTP, and the indirect parallel-fibre pathway: computational consequences of optimal cerebellar noise-processing.

    Directory of Open Access Journals (Sweden)

    John Porrill

    2008-05-01

    Full Text Available Computational analysis of neural systems is at its most useful when it uncovers principles that provide a unified account of phenomena across multiple scales and levels of description. Here we analyse a widely used model of the cerebellar contribution to sensori-motor learning to demonstrate both that its response to intrinsic and sensor noise is optimal, and that the unexpected synaptic and behavioural consequences of this optimality can explain a wide range of experimental data. The response of the Marr-Albus adaptive-filter model of the cerebellar microcircuit to noise was examined in the context of vestibulo-ocular reflex calibration. We found that, when appropriately connected, an adaptive-filter model using the covariance learning rule to adjust the weights of synapses between parallel fibres and Purkinje cells learns weight values that are optimal given the relative amount of signal and noise carried by each parallel fibre. This optimality principle is consistent with data on the cerebellar role in smooth pursuit eye movements, and predicts that many synaptic weights must be very small, providing an explanation for the experimentally observed preponderance of silent synapses. Such a preponderance has in its turn two further consequences. First, an additional inhibitory pathway from parallel fibre to Purkinje cell is required if Purkinje cell activity is to be altered in either direction from a starting point of silent synapses. Second, cerebellar learning tasks must often proceed via LTP, rather than LTD as is widely assumed. Taken together, these considerations have profound behavioural consequences, including the optimal combination of sensori-motor information, and asymmetry and hysteresis of sensori-motor learning rates.

  7. Dyslexic Children Show Atypical Cerebellar Activation and Cerebro-Cerebellar Functional Connectivity in Orthographic and Phonological Processing.

    Science.gov (United States)

    Feng, Xiaoxia; Li, Le; Zhang, Manli; Yang, Xiujie; Tian, Mengyu; Xie, Weiyi; Lu, Yao; Liu, Li; Bélanger, Nathalie N; Meng, Xiangzhi; Ding, Guosheng

    2017-04-01

    Previous neuroimaging studies have found atypical cerebellar activation in individuals with dyslexia in either motor-related tasks or language tasks. However, studies investigating atypical cerebellar activation in individuals with dyslexia have mostly used tasks tapping phonological processing. A question that is yet unanswered is whether the cerebellum in individuals with dyslexia functions properly during orthographic processing of words, as growing evidence shows that the cerebellum is also involved in visual and spatial processing. Here, we investigated cerebellar activation and cerebro-cerebellar functional connectivity during word processing in dyslexic readers and typically developing readers using tasks that tap orthographic and phonological codes. In children with dyslexia, we observed an abnormally higher engagement of the bilateral cerebellum for the orthographic task, which was negatively correlated with literacy measures. The greater the reading impairment was for young dyslexic readers, the stronger the cerebellar activation was. This suggests a compensatory role of the cerebellum in reading for children with dyslexia. In addition, a tendency for higher cerebellar activation in dyslexic readers was found in the phonological task. Moreover, the functional connectivity was stronger for dyslexic readers relative to typically developing readers between the lobule VI of the right cerebellum and the left fusiform gyrus during the orthographic task and between the lobule VI of the left cerebellum and the left supramarginal gyrus during the phonological task. This pattern of results suggests that the cerebellum compensates for reading impairment through the connections with specific brain regions responsible for the ongoing reading task. These findings enhance our understanding of the cerebellum's involvement in reading and reading impairment.

  8. Preserved Glucose Metabolism of Deep Cerebellar Nuclei in a Case of Multiple System Atrophy with Predominant Cerebellar Ataxia: F-18 Fluorodeoxyglucose Positron Emission Tomography Study

    Directory of Open Access Journals (Sweden)

    Oh Dae Kwon

    2010-10-01

    Full Text Available The cerebellar glucose metabolism of multiple system atrophy with predominant cerebellar ataxia (MSA-C is known to be decreased but is not defined among areas of cerebellum. We encountered a 54-year-old man who developed dizziness and progressive ataxia followed by urinary incontinence and orthostatic hypotension, all of those symptoms progressed relentlessly and the symptoms responded poorly to levodopa therapy. Visual analysis and statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography showed hypometabolism of both cerebellar hemisphere, severe at cortical area, and pons. There was clear sparing of deep cerebellar nuclei. Our report, as we know, shows the first case of preserved glucose metabolism of deep cerebellar nuclei relative to cerebellar cortex in an MSA-C patient.

  9. Role of Calcium in Cerebellar Learning and Function

    NARCIS (Netherlands)

    Z. Gao (Zhenyu)

    2011-01-01

    textabstractThe cerebellum, which means little brain in Latin, occupies most of the posterior cranial fossa and connects with the dorsal brainstem (Kandel et al., 2000). The cerebellar cortex is one of the most foliated brain structures, which accounts for 10% of the total volume and over half of th

  10. Reevaluating the Role of LTD in Cerebellar Motor Learning

    NARCIS (Netherlands)

    M. Schonewille (Martijn); Z. Gao (Zhenyu); H.J. Boele (Henk-Jan); M.F. Vinueza Veloz (Maria); W.E. Amerika; A. Šimek (Antonia); M.T.G. Jeu (Marcel); J. Steinberg (Jordan); K. Takamiya (Kogo); F.E. Hoebeek (Freek); D. Linden (David); R. Huganir (Richard); C.I. de Zeeuw (Chris)

    2011-01-01

    textabstractLong-term depression at parallel fiber-Purkinje cell synapses (PF-PC LTD) has been proposed to be required for cerebellar motor learning. To date, tests of this hypothesis have sought to interfere with receptors (mGluR1) and enzymes (PKC, PKG, or αCamKII) necessary for induction of PF-PC

  11. Cerebellar Control of Locomotion in Health and Disease

    NARCIS (Netherlands)

    M.F. Vinueza Veloz (Maria)

    2015-01-01

    markdownabstract__Abstract__ Modern neuroscience is paving the way for new insight into cerebellar functions including the control of cognitive, autonomic and emotional processes. Yet, how the cerebellum contributes to complex motor behaviors, such as locomotion, is still only partially understood.

  12. Is a Cerebellar Deficit the Underlying Cause of Reading Disabilities?

    Science.gov (United States)

    Irannejad, Shahrzad; Savage, Robert

    2012-01-01

    This study investigated whether children with dyslexia differed in their performance on reading, phonological, rapid naming, motor, and cerebellar-related tasks and automaticity measures compared to reading age (RA)-matched and chronological age (CA)-matched control groups. Participants were 51 children attending mainstream English elementary…

  13. Very Preterm Birth, Cerebellar Development and Neuropsychological Outcome in Adolescence

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-06-01

    Full Text Available Cerebellar volumes were measured on structural MRI at adolescence and adulthood in 65 preterm individuals (born before 33 weeks’ gestation, and a term-born comparison group, in a study at King’s College, Great Ormond Street Hospital, and University College, London; and Seoul National University College of Medicine, Korea.

  14. Early Cerebellar Network Shifting in Spinocerebellar Ataxia Type 6.

    Science.gov (United States)

    Falcon, M I; Gomez, C M; Chen, E E; Shereen, A; Solodkin, A

    2016-07-01

    Spinocerebellar ataxia 6 (SCA6), an autosomal dominant degenerative disease, is characterized by diplopia, gait ataxia, and incoordination due to severe progressive degeneration of Purkinje cells in the vestibulo- and spinocerebellum. Ocular motor deficits are common, including difficulty fixating on moving objects, nystagmus and disruption of smooth pursuit movements. In presymptomatic SCA6, there are alterations in saccades and smooth-pursuit movements. We sought to assess functional and structural changes in cerebellar connectivity associated with a visual task, hypothesizing that gradual changes would parallel disease progression. We acquired functional magnetic resonance imaging and diffusion tensor imaging data during a passive smooth-pursuit task in 14 SCA6 patients, representing a range of disease duration and severity, and performed a cross-sectional comparison of cerebellar networks compared with healthy controls. We identified a shift in activation from vermis in presymptomatic individuals to lateral cerebellum in moderate-to-severe cases. Concomitantly, effective connectivity between regions of cerebral cortex and cerebellum was at its highest in moderate cases, and disappeared in severe cases. Finally, we noted structural differences in the cerebral and cerebellar peduncles. These unique results, spanning both functional and structural domains, highlight widespread changes in SCA6 and compensatory mechanisms associated with cerebellar physiology that could be utilized in developing new therapies.

  15. Long-Term Sequelae after Cerebellar Astrocytoma Surgery

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-05-01

    Full Text Available The long-term effects on neurologic, neuropsychological, and behavioral functioning in a consecutive series of 23 children treated surgically for cerebellar pilocytic astrocytoma without additional radio- and chemotherapy are determined in a study at Sophia Children’s Hospital, Rotterdam, The Netherlands, and other medical centers.

  16. [Autosomal dominant cerebellar ataxias in the Netherlands: a national inventory

    NARCIS (Netherlands)

    Warrenburg, B.P.C. van de

    2001-01-01

    OBJECTIVE: To provide a comprehensive estimate of the number of Dutch autosomal dominant cerebellar ataxias (ADCA) families and patients and thus estimate the minimal prevalence of ADCA in the Netherlands. Furthermore, to observe the relative frequency of SCA mutations and to study genotype-phenotyp

  17. Mapping the development of cerebellar Purkinje cells in zebrafish.

    Science.gov (United States)

    Hamling, Kyla R; Tobias, Zachary J C; Weissman, Tamily A

    2015-11-01

    The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene function, thus a quantitative metric of normal zebrafish cerebellar development is key for understanding how gene mutations affect the cerebellum. To begin to quantitatively measure cerebellar development in zebrafish, we have characterized the spatial and temporal patterning of Purkinje cells during the first 2 weeks of development. Differentiated Purkinje cells first emerged by 2.8 days post fertilization and were spatially patterned into separate dorsomedial and ventrolateral clusters that merged at around 4 days. Quantification of the Purkinje cell layer revealed that there was a logarithmic increase in both Purkinje cell number as well as overall volume during the first 2 weeks, while the entire region curved forward in an anterior, then ventral direction. Purkinje cell dendrites were positioned next to parallel fibers as early as 3.3 days, and Purkinje cell diameter decreased significantly from 3.3 to 14 days, possibly due to cytoplasmic reappropriation into maturing dendritic arbors. A nearest neighbor analysis showed that Purkinje cells moved slightly apart from each other from 3 to 14 days, perhaps spreading as the organized monolayer forms. This study establishes a quantitative spatiotemporal map of Purkinje cell development in zebrafish that provides an important metric for studies of cerebellar development and disease.

  18. Cerebellar Damage Produces Selective Deficits in Verbal Working Memory

    Science.gov (United States)

    Ravizza, Susan M.; Mccormick, Cristin A.; Schlerf, John E.; Justus, Timothy; Ivry, Richard B.; Fiez, Julie A.

    2006-01-01

    The cerebellum is often active in imaging studies of verbal working memory, consistent with a putative role in articulatory rehearsal. While patients with cerebellar damage occasionally exhibit a mild impairment on standard neuropsychological tests of working memory, these tests are not diagnostic for exploring these processes in detail. The…

  19. Cerebellar rTMS disrupts predictive language processing

    Science.gov (United States)

    Lesage, Elise; Morgan, Blaire E.; Olson, Andrew C.; Meyer, Antje S.; Miall, R. Chris

    2012-01-01

    Summary The human cerebellum plays an important role in language, amongst other cognitive and motor functions [1], but a unifying theoretical framework about cerebellar language function is lacking. In an established model of motor control, the cerebellum is seen as a predictive machine, making short-term estimations about the outcome of motor commands. This allows for flexible control, on-line correction, and coordination of movements [2]. The homogeneous cytoarchitecture of the cerebellar cortex suggests that similar computations occur throughout the structure, operating on different input signals and with different output targets [3]. Several authors have therefore argued that this ‘motor’ model may extend to cerebellar nonmotor functions [3–5], and that the cerebellum may support prediction in language processing [6]. However, this hypothesis has never been directly tested. Here, we used the ‘Visual World’ paradigm [7], where on-line processing of spoken sentence content can be assessed by recording the latencies of listeners' eye movements towards objects mentioned. Repetitive transcranial magnetic stimulation (rTMS) was used to disrupt function in the right cerebellum, a region implicated in language [8]. After cerebellar rTMS, listeners showed delayed eye fixations to target objects predicted by sentence content, while there was no effect on eye fixations in sentences without predictable content. The prediction deficit was absent in two control groups. Our findings support the hypothesis that computational operations performed by the cerebellum may support prediction during both motor control and language processing. PMID:23017990

  20. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia.

    NARCIS (Netherlands)

    Teo, J.T.; Warrenburg, B.P.C. van de; Schneider, S.A.; Rothwell, J.C.; Bhatia, K.P.

    2009-01-01

    Recent studies have suggested that there may be functional and structural changes in the cerebellum of patients with adult onset primary focal dystonia. The aim of this study was to establish whether there is any neurophysiological indicator of abnormal cerebellar function, using the classic eyeblin

  1. Cerebro-cerebellar interactions underlying temporal information processing.

    Science.gov (United States)

    Aso, Kenji; Hanakawa, Takashi; Aso, Toshihiko; Fukuyama, Hidenao

    2010-12-01

    The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.

  2. Anterior and posterior inferior cerebellar artery infarction with sudden deafness and vertigo.

    Science.gov (United States)

    Murakami, Takenobu; Nakayasu, Hiroyuki; Doi, Mitsuru; Fukada, Yasuyo; Hayashi, Miwa; Suzuki, Takeo; Takeuchi, Yuichi; Nakashima, Kenji

    2006-12-01

    We report a patient with anterior and posterior inferior cerebellar artery infarction, which manifested as profound deafness, transient vertigo, and minimal cerebellar signs. We suspect that ischaemia of the left internal auditory artery, which originates from the anterior inferior cerebellar artery, caused the deafness and transient vertigo. A small lesion in the middle cerebellar peduncle in the anterior inferior cerebellar artery territory and no lesion in the dentate nucleus in the posterior inferior cerebellar artery territory are thought to explain the minimal cerebellar signs despite the relatively large size of the infarction. Thus a relatively large infarction of the vertebral-basilar territory can manifest as sudden deafness with vertigo. Neuroimaging, including magnetic resonance imaging, is strongly recommended for patients with sudden deafness and vertigo to exclude infarction of the vertebral-basilar artery territory.

  3. Post-Plasmodium vivax malaria cerebellar ataxia and optic neuritis: A new form of delayed cerebellar ataxia or cerebellar variant of acute disseminated encephalomyelitis?

    Directory of Open Access Journals (Sweden)

    Gaurav M Kasundra

    2015-01-01

    Full Text Available Acute disseminated encephalomyelitis (ADEM is commonly seen after viral and bacterial infections, immunization, and Plasmodium falciparum (PF malaria. Plasmodium vivax (PV rarely causes ADEM. We report a 14-year-old female patient who presented with acute onset bilateral cerebellar ataxia and optic neuritis, 2 weeks after recovery from PV. Magnetic resonance imaging showed bilateral cerebellar hyperintensities suggestive of ADEM. No specific viral etiology was found on cerebrospinal fluid examination. Patient responded well to treatment without any sequelae. Thus, PV too is an important cause of ADEM along with PF. Two of the previously reported cases had co-infection with falciparum malaria. The only other two reported cases, as also this patient, are from Asia. A geographical or racial predisposition needs to be evaluated. Also, a possibility of post-PV delayed cerebellar ataxia, which is classically described post-PF infection, may be considered as it may be clinically, radiologically, and prognostically indistinguishable from a milder presentation of ADEM.

  4. Early maternal deprivation in rats induces gender-dependent effects on developing hippocampal and cerebellar cells.

    Science.gov (United States)

    Llorente, Ricardo; Gallardo, Meritxell López; Berzal, Alvaro Llorente; Prada, Carmen; Garcia-Segura, Luis Miguel; Viveros, María-Paz

    2009-05-01

    Adult animals submitted to a single prolonged episode of maternal deprivation [24h, postnatal day 9-10] show behavioral alterations that resemble specific symptoms of schizophrenia. According to the neurodevelopmental theory, these behavioral deficits might be mediated by detrimental neurodevelopmental processes that might be associated, at least partially, with stress-induced corticosterone responses. In order to address this hypothesis, we have focused on the hippocampus and cerebellar cortex, two brain regions that show high density of glucocorticoid receptors, and analyzed possible neuronal and glial alterations by immunohistochemical techniques. To evaluate the presence of degenerated neurons we used Fluoro-Jade-C (FJ-C) staining and for the study of astrocytes we employed glial fibrillary acidic protein (GFAP). Within control animals, females showed significantly more GFAP positive cells than males and a trend towards more FJ-C positive cells. Maternal deprivation induced neuronal degeneration and astroglial changes in the hippocampus and cerebellar cortex of neonatal rats that, in general, were more marked in males. This differential effect may be attributable to a greater vulnerability of males to this kind of early environmental insult and/or to sex-dependent differences in the onset and/or progression of the effects. The present experimental procedure may be instrumental in elucidating sex-dependent mechanisms of neurodevelopmental psychiatric disorders with a basis in early environmental insults.

  5. Diffusion Tensor Imaging of Human Cerebellar Pathways and their Interplay with Cerebral Macrostructure

    Directory of Open Access Journals (Sweden)

    Zafer eKeser

    2015-04-01

    Full Text Available Cerebellar white matter connections to the central nervous system are classified functionally into the spinocerebellar, vestibulocerebellar, and cerebrocerebellar subdivisions. The Spinocerebellar (SC pathways project from spinal cord to cerebellum, whereas the vestibulocerebellar (VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI. Ten right-handed healthy subjects (7 males and 3 females, age range 20-51 years were studied. DT-MRI data were acquired with a voxel size = 2mm x 2mm x 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC, parieto-ponto-cerebellar (PPC, temporo-ponto-cerebellar (TPC and occipito-ponto-cerebellar (OPC. The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM, cerebral white matter (WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~ 3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~ 25.8 ± 7.3 mL, or a percentage of 1.52 ± 0.43 of the total intracranial volume.

  6. Cerebellar motor learning: when is cortical plasticity not enough?

    Directory of Open Access Journals (Sweden)

    John Porrill

    2007-10-01

    Full Text Available Classical Marr-Albus theories of cerebellar learning employ only cortical sites of plasticity. However, tests of these theories using adaptive calibration of the vestibulo-ocular reflex (VOR have indicated plasticity in both cerebellar cortex and the brainstem. To resolve this long-standing conflict, we attempted to identify the computational role of the brainstem site, by using an adaptive filter version of the cerebellar microcircuit to model VOR calibration for changes in the oculomotor plant. With only cortical plasticity, introducing a realistic delay in the retinal-slip error signal of 100 ms prevented learning at frequencies higher than 2.5 Hz, although the VOR itself is accurate up to at least 25 Hz. However, the introduction of an additional brainstem site of plasticity, driven by the correlation between cerebellar and vestibular inputs, overcame the 2.5 Hz limitation and allowed learning of accurate high-frequency gains. This "cortex-first" learning mechanism is consistent with a wide variety of evidence concerning the role of the flocculus in VOR calibration, and complements rather than replaces the previously proposed "brainstem-first" mechanism that operates when ocular tracking mechanisms are effective. These results (i describe a process whereby information originally learnt in one area of the brain (cerebellar cortex can be transferred and expressed in another (brainstem, and (ii indicate for the first time why a brainstem site of plasticity is actually required by Marr-Albus type models when high-frequency gains must be learned in the presence of error delay.

  7. Cerebellar and pontine tegmental hypermetabolism in miller-fisher syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyrong; Kim, Ji Soo; Lee, Won Woo; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Miller Fisher syndrome (MFS) has been considered as a variant of Guillain-Barre syndrome (GBS), a type of acute immune neuropathies involving peripheral nerve system. Unlike GBS, presence of cerebellar type ataxia and supranuclear ophthalmioplesia in MFS suggests additional involvement of the central nervous system. To determine involvement of the central nervous system in MFS, we investigated the cerebral metabolic abnormalities in patients with MFS using FDG PET. Nine patients who were diagnosed as MFS based on acute ophthalmoplegia, ataxia, and areflexia without other identifiable causes participated in this study. In six patients, serum antibodies possibly related with symptom of MFS (anti- GQ1b or anti-GM1) were detected at the time of the study. With the interval of 25 26 days (range: 3-83 days) from the symptom on set, brain FDG PET were underwent in patients and compared with those from healthy controls. In group analysis comparing with healthy controls, FDG PET of patients revealed increased metabolism in the bilateral cerebellar hemispheres and vermis, and the thalamus. In contrast, the occipital cortex showed decreased metabolism. Individual analyses disclosed hypermetabolism in the cerebellar vermis or hemispheres in 5, and in the pontine tegmentum in 2 of the 9 patients. We also found that the cerebellar vermian hypermetabolism was inversely correlated with the interval between from the symptom on set to PET study. Moreover, follow-up PET of a patient demonstrated that cerebellar hypermetabolism decreased markedly with an improvement of the ophthalmoplegia and ataxia. These findings indicate an involvement of the central nervous system in MFS and suggest an antibody-associated acute inflammatory process as a mechanism of this disorder.

  8. GDNF-induced cerebellar toxicity: A brief review.

    Science.gov (United States)

    Luz, Matthias; Mohr, Erich; Fibiger, H Christian

    2016-01-01

    Recombinant-methionyl human glial cell line-derived neurotrophic factor (GDNF) is known for its neurorestorative and neuroprotective effects in rodent and primate models of Parkinson's disease (PD). When administered locally into the putamen of Parkinsonian subjects, early clinical studies showed its potential promise as a disease-modifying agent. However, the development of GDNF for the treatment of PD has been significantly clouded by findings of cerebellar toxicity after continuous intraputamenal high-dose administration in a 6-month treatment/3-month recovery toxicology study in rhesus monkeys. Specifically, multifocal cerebellar Purkinje cell loss affecting 1-21% of the cerebellar cortex was observed in 4 of 15 (26.7%; 95% confidence interval [CI]: 10.5-52.4%) animals treated at the highest dose level tested (3000μg/month). No cerebellar toxicity was observed at lower doses (450 and 900μg/month) in the same study, or at similar or higher doses (up to 10,000μg/month) in subchronic or chronic toxicology studies testing intermittent intracerebroventricular administration. While seemingly associated with the use of GDNF, the pathogenesis of the cerebellar lesions has not been fully understood to date. This review integrates available information to evaluate potential pathogenic mechanisms and provide a consolidated assessment of the findings. While other explanations are considered, the existing evidence is most consistent with the hypothesis that leakage of GDNF into cerebrospinal fluid during chronic infusions into the putamen down-regulates GDNF receptors on Purkinje cells, and that subsequent acute withdrawal of GDNF generates the observed lesions. The implications of these findings for clinical studies with GDNF are discussed.

  9. Long lasting cerebellar alterations after perinatal asphyxia in rats.

    Science.gov (United States)

    Campanille, Verónica; Saraceno, G Ezequiel; Rivière, Stéphanie; Logica, Tamara; Kölliker, Rodolfo; Capani, Francisco; Castilla, Rocío

    2015-07-01

    The developing brain may be particularly vulnerable to injury before, at and after birth. Among possible insults, hypoxia suffered as a consequence of perinatal asphyxia (PA) exhibits the highest incidence levels and the cerebellar circuitry appears to be particularly susceptible, as the cellular makeup and the quantity of inputs change quickly during days and weeks following birth. In this work, we have used a murine model to induce severe global PA in rats at the time of birth. Short-term cerebellar alterations within this PA model have been previously reported but whether such alterations remain in adulthood has not been conclusively determined yet. For this reason, and given the crucial cerebellar role in determining connectivity patterns in the brain, the aim of our work is to unveil long-term cerebellum histomorphology following a PA insult. Morphological and cytological neuronal changes and glial reaction in the cerebellar cortex were analyzed at postnatal 120 (P120) following injury performed at birth. As compared to control, PA animals exhibited: (1) an increase in molecular and granular thickness, both presenting lower cellular density; (2) a disarrayed Purkinje cell layer presenting a higher number of anomalous calbindin-stained cells. (3) focal swelling and marked fragmentation of microtubule-associated protein 2 (MAP-2) in Purkinje cell dendrites and, (4) an increase in glial fibrillary acidic protein (GFAP) expression in Bergmann cells and the granular layer. In conclusion, we demonstrate that PA produces long-term damage in cellular histomorphology in rat cerebellar cortex which could be involved in the pathogenesis of cognitive deficits observed in both animals and humans.

  10. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  11. Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease.

    Science.gov (United States)

    Grimaldi, Giuliana; Argyropoulos, Georgios P; Bastian, Amy; Cortes, Mar; Davis, Nicholas J; Edwards, Dylan J; Ferrucci, Roberta; Fregni, Felipe; Galea, Joseph M; Hamada, Masahi; Manto, Mario; Miall, R Chris; Morales-Quezada, Leon; Pope, Paul A; Priori, Alberto; Rothwell, John; Tomlinson, S Paul; Celnik, Pablo

    2016-02-01

    The cerebellum is critical for both motor and cognitive control. Dysfunction of the cerebellum is a component of multiple neurological disorders. In recent years, interventions have been developed that aim to excite or inhibit the activity and function of the human cerebellum. Transcranial direct current stimulation of the cerebellum (ctDCS) promises to be a powerful tool for the modulation of cerebellar excitability. This technique has gained popularity in recent years as it can be used to investigate human cerebellar function, is easily delivered, is well tolerated, and has not shown serious adverse effects. Importantly, the ability of ctDCS to modify behavior makes it an interesting approach with a potential therapeutic role for neurological patients. Through both electrical and non-electrical effects (vascular, metabolic) ctDCS is thought to modify the activity of the cerebellum and alter the output from cerebellar nuclei. Physiological studies have shown a polarity-specific effect on the modulation of cerebellar-motor cortex connectivity, likely via cerebellar-thalamocortical pathways. Modeling studies that have assessed commonly used electrode montages have shown that the ctDCS-generated electric field reaches the human cerebellum with little diffusion to neighboring structures. The posterior and inferior parts of the cerebellum (i.e., lobules VI-VIII) seem particularly susceptible to modulation by ctDCS. Numerous studies have shown to date that ctDCS can modulate motor learning, and affect cognitive and emotional processes. Importantly, this intervention has a good safety profile; similar to when applied over cerebral areas. Thus, investigations have begun exploring ctDCS as a viable intervention for patients with neurological conditions.

  12. Abnormality in cerebellar blood flow in solo vertigo patients

    Energy Technology Data Exchange (ETDEWEB)

    Nagahori, Takeshi [Shakaihoken Takaoka Hospital, Toyama (Japan); Nishijima, Michiharu; Endo, Shunro; Takaku, Akira

    1997-03-01

    Little is known about the blood flow of the vertebrobasilar system as a cause of vertigo and dizziness. We used Xe-CT to study cerebellar blood flow in 53 patients who ranged in age from 35 to 85 years. The patients were divided into two groups. One of them was the vertigo group that comprised 28 patients with rotatory sensation, and the other, the non-vertigo group of 25 patients with a sensation other than rotation. At the stage of severe symptoms, there was decreased cerebellar blood flow in all patients of both, the vertigo and the non-vertigo groups, and a decrease in the bilateral cerebellar hemisphere was observed in five patients and in a unilateral hemisphere in three patients of the vertigo group. By comparison, in the non-vertigo group, unilateral decrease of cerebellar blood flow was observed in only one patient, and a bilateral decrease in five. At the stage of severe symptoms, the mean regional cerebellar blood flow was 40.5{+-}8.0 ml/100 g/min (n=16 sides) in the vertigo group and 45.3{+-}9.5 ml/100 g/min (n=12 sides) in the non-vertigo group. At the stage of moderate symptoms, blood flow image was normal in four of 14 vertigo patients and in seven of 12 non-vertigo patients. The mean regional blood flow was 47.8{+-}8.6 ml/100 g/min (n=28 sides) in the vertigo group and 47.1{+-}5.1 ml/100 g/min (n=24 sides) in the non-vertigo group. At the asymptomatic stage, a high proportion of normal blood flow images (nine of 16 vertigo patients and 10 of 10 non-vertigo patients) was observed. The mean regional cerebellar blood flow was 51.6{+-}10.7 ml/100 g/min (n=32 sides) in the vertigo group and 52.8{+-}8.5 ml/100 g/min (n=20 sides) in the non-vertigo group. This study demonstrates that a unilateral or bilateral decrease in blood flow of the vertebrobasilar system may cause vertigo and dizziness. It also shows that Xe-CT of the cerebellum may be a valuable examination modality for the diagnosis and treatment of vertigo and dizziness. (author)

  13. A Study Of Sporadic Adult Onset Degenerative Cerebellar Ataxias

    Directory of Open Access Journals (Sweden)

    Sinha K K

    1999-01-01

    Full Text Available Twenty-four cases of sporadic olivo-ponto-cerebellar atrophy (OPCA of adult onset were studied over a period of two years. Results suggest that this disorder has its usual onset in the 5th and 6th decade of life with a male: female ratio of 2:1. It manifests clinically with gait ataxia in all, dysarthria, other cerebellar signs and autonomic involvement in vast majority. There were features of basal ganglia involvement in some. No known identifiable environmental cause was found and genetically they are quite distinct from the known autosomal dominant spinocerebellar ataxias though sporadic occurrence in recessive inheritance or a de novo mutation could not be ruled out completely, but it is unlikely.

  14. Palatoglossal fusion with cleft palate and hypoplasia of cerebellar vermis

    Directory of Open Access Journals (Sweden)

    Shailesh Solanki

    2016-01-01

    Full Text Available A new-born male presented within 12 h of birth with respiratory distress. On examination and workup, he had palatoglossal fusion, cleft palate and hypoplasia of the cerebellar vermis. A 2.5 Fr endotracheal tube was inserted into the pharynx through nostril as a nasopharyngeal stent, following which his respiratory distress improved. Once child was optimised, then feeding was started by nasogastric tube and feeds were tolerated well. Elective tracheostomy and gastrostomy were done, followed by release of adhesions between the tongue and palate at a later stage. Review of literature suggests that palatoglossal fusion is uncommon and presents as an emergency. Mostly, these oral synechiae are associated with digital and/or cardiac anomaly. Other disorders associated with intra-oral synechiae include congenital alveolar synechiae, van der Woude syndrome, popliteal pterygium syndrome and oromandibular limb hypogenesis syndrome. The authors report a hitherto undescribed association of palatoglossal fusion with cleft palate and hypoplasia of the cerebellar vermis.

  15. Cerebellar deficits and hyperactivity in mice lacking Smad4.

    Science.gov (United States)

    Zhou, Yong-Xing; Zhao, Mingrui; Li, Dan; Shimazu, Kazuhiro; Sakata, Kazuko; Deng, Chu-Xia; Lu, Bai

    2003-10-24

    Smad4 is a central mediator of TGF-beta signals, which are known to play essential roles in many biological processes. Using a Cre-loxP approach to overcome early embryonic lethality, we have studied functions of TGF-beta/Smad4 signals in the central nervous system (CNS). No obvious deficits were detected in mice carrying the targeted disruption of Smad4 in the CNS. The overall morphology of the hippocampus appeared normal. There was no change in the proliferation of neuronal precursor cells, nor in several forms of synaptic plasticity. In contrast, deletion of Smad4 resulted in a marked decrease in the number of cerebellar Purkinje cells and parvalbumin-positive interneurons. Accompanied by the abnormality in the cerebellum, mutant mice also exhibited significantly increased vertical activity. Thus, our study reveals an unexpected role for Smad4 in cerebellar development and in the control of motor function.

  16. Crossed cerebellar diaschisis demonstrated by SPECT in hemiplegic children

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, Shin-ichiro; Nara, Takahiro; Nozaki, Hidetsugu; Fukushima, Kiyomi (Saitama Children' s Medical Center, Iwatsuki (Japan)); Imai, Masayuki; Kumagai, Koumei; Maekawa, Kihei

    1991-01-01

    Crossed cerebellar diaschisis (CCD) in twenty five children with hemiplegia were studied using single photon emission computed tomography (SPECT) with N-isopropyl-p-I-123-iodoamphetamine. Seven of twenty-five patients had cerebral palsy, and the others were impaired by acquired brain injury between ten months and fourteen years of age. CCD was demonstrated in five patients (20%), who were impaired by acquired brain injury after seven years of age. CCD could never be detected in patients with cerebral palsy. Ipsilateral cerebellar diaschisis was also demonstrated in two patients with cerebral palsy and three with early acquired brain injury before three years of age. It is suggested that diaschisis presents itself as a different form in a contralateral and ipsilateral cerebellum before three years of age from a form which presents after seven years of age. (author).

  17. Abnormal ocular motility with brainstem and cerebellar disorders.

    Science.gov (United States)

    Carlow, T J; Bicknell, J M

    1978-01-01

    The disorders of ocular motility seen in association with brainstem or cerebellar disorders may point to rather specific anatomical or pathological correlations. Pontine gaze palsy reflects involvement of the pontine paramedian reticular formation. Internuclear ophthalmoplegia signifies a lesion in the medial longitudinal fasciculus. Skew deviation may result from a lesion anywhere in the posterior fossa. Ocular bobbing typically results from a pontine lesion. The Sylvian aqueduct syndrome is characteristic of involvement in the upper midbrain-pretectal region, usually a pinealoma. Cerebellar lesions may be manifested by gaze paresis, skew deviation, disturbances of saccadic or smooth pursuit movements, ocular myoclonus, or several characteristic forms of nystagmus. Familiarity with these disorders may be of great help to the physician dealing with a patient with a possible posterior fossa lesion.

  18. Correlation between vestibular habituation and postural recovery in cerebellar patients.

    Science.gov (United States)

    Suarez, H; Caffa, C; Macadar, O

    1992-01-01

    Vestibular habituation was studied in normal subjects and in patients with cerebellar disease using a stimulation paradigm proposed in this paper. Six caloric stimuli were repeated daily in the same ear during six days and electronystagmographic responses at the beginning and the end of that period were compared. The normal behaviour was a clear reduction of the response across time. Two groups of cerebellar patients were identified by their ability to recover from positional imbalance after treatment. Compensated patients responded to repeated caloric stimulation in the same way as normal subjects. Conversely, uncompensated patients increased their response after the stimulation paradigm. The role played by the cerebellum in vestibular plasticity is discussed together with the observed correlation between vestibular habituation and the ability for postural recovery to occur.

  19. Cerebellar damage impairs internal predictions for sensory and motor function

    OpenAIRE

    Therrien, Amanda S.; Bastian, Amy J.

    2015-01-01

    The cerebellum is connected to cerebral areas that subserve a range of sensory and motor functions. In this review, we summarize new literature demonstrating deficits in visual perception, proprioception, motor control, and motor learning performance following cerebellar damage. In particular, we highlight novel results that together suggest a general role of the cerebellum in estimating and predicting movement dynamics of the body and environmental stimuli. These findings agree with the hypo...

  20. Hereditary lissencephaly and cerebellar hypoplasia in Churra lambs

    OpenAIRE

    Pérez Pérez, Valentín; Suárez-Vega, Aroa; Fuertes, M.; Benavides, Julio; Delgado, L.; Ferreras, Mª del Carmen; Arranz, Juan José

    2013-01-01

    Abstract Background Lissencephaly is a rare developmental brain disorder in veterinary and human medicine associated with defects in neuronal migration leading to a characteristic marked reduction or absence of the convolutional pattern of the cerebral hemispheres. In many human cases the disease has a genetic basis. In sheep, brain malformations, mainly cerebellar hypoplasia and forms of hydrocephalus, are frequently due to in utero viral infections. Although breed-related malformations of t...

  1. Acute cerebellar ataxia: A neurological manifestation in malaria

    Directory of Open Access Journals (Sweden)

    Peddametla Shravan Kumar

    2014-01-01

    Full Text Available Malaria is a vector-borne disease transmitted by the bite of an infected female anopheles mosquito presents with varied clinical manifestations. Neurological manifestations include headaches, confusion, convulsions, hemiplegia, ataxia, cerebral palsy, cortical blindness, and Guillain-Barre syndrome (GBS. We are presenting a case report of acute cerebellar ataxia in a 20-year-old male patient who presented with fever and positive for Plasmodium vivax and Plasmodium falciparum malaria antibodies.

  2. Phenytoin-induced cerebellar atrophy in an epileptic boy

    Directory of Open Access Journals (Sweden)

    Nithin Kumar

    2013-01-01

    Full Text Available Epilepsy is an important health problem due to its high prevalence and potential for causing long-term morbidity. It is commonly treated in children with phenytoin sodium. It has wide pharmacokinetic variability and a narrow therapeutic range that leads to toxicity. Here, we report a case of phenytoin-induced cerebellar atrophy in a 16-year-old epileptic boy who presented to the hospital with a viral infection.

  3. Successful treatment of isolated cerebellar cysticercosis with albendazole

    Institute of Scientific and Technical Information of China (English)

    朱利平; 石尧忠; 潘孝彰; 莫凌; 翁心华

    2003-01-01

    Neurocysticercosis (NCC) is a parasitic disease of the central nervous system (CNS) found world-wide.1 NCC is the most common cause of parasitic infection of CNS in China. Patients with NCC are treated successfully with chemotherapy. However, isolated cystic lesions sited in the cerebellum are usually treated by direct surgical excision as a primary therapeutic modality.2 We present here a case of isolated cerebellar vermis cysticercosis successfully treated with albendazole.

  4. Patterns of regional cerebellar atrophy in genetic frontotemporal dementia

    Directory of Open Access Journals (Sweden)

    Martina Bocchetta

    2016-01-01

    Conclusion: There appears to be a differential pattern of cerebellar atrophy in the major genetic forms of FTD, being relatively spared in GRN, localized to the lobule VIIa-Crus I in the superior-posterior region of the cerebellum in C9orf72, the area connected via the thalamus to the prefrontal cortex and involved in cognitive function, and localized to the vermis in MAPT, the ‘limbic cerebellum’ involved in emotional processing.

  5. Cerebellar Herniation after Lumbar Puncture in Galactosemic Newborn

    Directory of Open Access Journals (Sweden)

    Salih Kalay

    2011-09-01

    Full Text Available Cerebral edema resulting in elevated intracranial pressure is a well-known complication of galactosemia. Lumbar puncture was performed for the diagnosis of clinically suspected bacterial meningitis. Herniation of cerebral tissue through the foramen magnum is not a common problem in neonatal intensive care units because of the open fontanelle in infants. We present the case of a 3-week-old infant with galactosemia who presented with signs of cerebellar herniation after lumbar puncture.

  6. [Aneurysm of the anterior inferior cerebellar artery: case report].

    Science.gov (United States)

    Adorno, Juan Oscar Alarcón; de Andrade, Guilherme Cabral

    2002-12-01

    The intracranial aneurysms of the posterior circulation have been reported between 5 and 10% of all cerebral aneurysms and the aneurysms of the anterior inferior cerebellar artery (AICA) are considered rare, can cause cerebello pontine angle (CPA) syndrome with or without subarachnoid hemorrhage. Since 1948 few cases were described in the literature. We report on a 33 year-old female patient with subarachnoid hemorrhage due to sacular aneurysm of the left AICA. She was submitted to clipage of the aneurysm without complications.

  7. Distal posterior inferior cerebellar artery aneurysm in a child

    Directory of Open Access Journals (Sweden)

    J. Francisco Salomão

    1992-06-01

    Full Text Available The case of a 7-year-old boy presenting with recurrent episodes of subarachnoid hemorrhage due to a distal posterior inferior cerebellar artery aneurysm (PICA, successfully operated, is reported.' The low incidence of intracranial aneurysms in the first decade of life and the rare occurrence of distal PICA aneurysms are unusual features of this case. The theories regarding the origin of intracranial berry aneurysms are discussed.

  8. Patient adaptable cerebellar retractor system: Use in posterior fossa surgery

    Directory of Open Access Journals (Sweden)

    Hamid Borghei-Razavi

    2015-06-01

    Full Text Available A new patient adaptable dual use soft tissue spreader and cerebellar retractor system designed for use during surgery of the posterior fossa is described. We found that this new retractor design allowed for excellent exposure, plus greater freedom and dexterity during the posterior fossa surgery. This novel instrument is an improvement over the existing instrument, because it provided more force/power transmission from pins/connectors to the brain spatula via the shorter flexible arm.

  9. Successfull management of a life threatening cerebellar haemorrhage following spine surgery - a case report -.

    Science.gov (United States)

    Pallud, Johan; Belaïd, Hayat; Aldea, Sorin

    2009-06-01

    Cerebellar haemorrhages are rare life-threatening complications following spine surgery that present challenges for their diagnostic and their therapeutic management. Their patho-physiology remains unclear.We report a case of a life-threatening cerebellar haemorrhage secondary to an occult dural tear following a planned L5-S1 laminectomy. The patient was treated with emergent external ventriculostomy following by a posterior fossa decompressive craniectomy. Cerebellar haemorrhages have to be suspected systematically when unexpected neurological signs occur after spine surgery since their rapid management lead to favourable outcomes. The present imaging findings allow us proposing that cerebellar haemorrhages result primarily from superior cerebellar venous stretching and tearing, and that cerebellar infarction and swelling occur secondarily.

  10. Magnetic resonance imaging in the diagnosis of cerebellar ataxias

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hiroyuki; Takase, Sadao; Mochizuki, Hiroshi; Kogure, Kyuya; Yamada, Kenji; Hishinuma, Takashi; Matsuzawa, Taiju.

    1987-11-01

    Radiological evaluation in order to quantitatively analyse the size of structures in the posterior fossa using magnetic resonance imaging (MRI) was performed in the patients with spinocerebellar degeneration (SCD). The subjects consisted of 17 patients including 11 OPCA (olivopontocerebellar atrophy)-type and 6 LCCA (late cortical cerebellar atrophy)-type SCD patients, and their disease was in the initial phase. Using a mid-line sagittal view, quantitative measurements of the cerebellum, pons and the medulla oblongata were performed. In the OPCA-type SCD patients, the area, and the longitudinal and anteroposterior diameters of the cerebellar vermis, the area and the anteroposterior diameter of the pons, the height of the fourth ventricle, and the anteroposterior diameter of the medulla oblongata were significantly smaller than those of normal subjects. In the LCCA-type SCD patients, only the area and the anteroposterior diameter of the cerebellar vermis were smaller than those of the normal. As a result, MRI is useful in the diagnosis of SCD, and in the differential diagnosis between the OPCA-type and the LCCA-type SCDs.

  11. Behavior modification after inactivation of cerebellar dentate nuclei.

    Science.gov (United States)

    Peterson, Todd C; Villatoro, Lee; Arneson, Tom; Ahuja, Brittany; Voss, Stephanie; Swain, Rodney A

    2012-08-01

    Effort-based decision making occurs when subjects are given a choice between a reward available at a high response cost and a reward available at a low response cost and is altered in individuals with disorders such as autism or particular patterns of brain injury. The current study explored the relationship between effort-based decision making and reinforcement characteristics in the T maze. This was done using both normal animals and animals with bilateral inactivation of the cerebellar dentate nuclei. Rats chose between alternatives in which one arm contained high-density reinforcement (HR) and the other arm contained low-density reinforcement (LR). During training, the HR arm was obstructed and the point at which the animal no longer worked for reinforcement (breaking point) was determined. The cerebellar dentate nuclei were then transiently inactivated and once again breaking points were assessed. The results indicated that inactivation of the dentate nucleus disrupted effort-based decision making. Additionally, altering both the palatability and the magnitude of the reinforcement were assessed in an attempt to reestablish the original preinactivation breaking point. It was hypothesized that an increase in the strength or magnitude of the reinforcement would promote an increase in the breaking point of the animal even when the cerebellum was inactivated. The results indicated that with both strategies animals effectively reestablished original breaking points. The results of this study will inform the current literature regarding the modification of behavior after brain injury and further the understanding of the behavioral deficits associated with cerebellar dysfunction.

  12. β-Catenin is critical for cerebellar foliation and lamination.

    Directory of Open Access Journals (Sweden)

    Jing Wen

    Full Text Available The cerebellum has a conserved foliation pattern and a well-organized layered structure. The process of foliation and lamination begins around birth. β-catenin is a downstream molecule of Wnt signaling pathway, which plays a critical role in tissue organization. Lack of β-catenin at early embryonic stages leads to either prenatal or neonatal death, therefore it has been difficult to resolve its role in cerebellar foliation and lamination. Here we used GFAP-Cre to ablate β-catenin in neuronal cells of the cerebellum after embryonic day 12.5, and found an unexpected role of β-catenin in determination of the foliation pattern. In the mutant mice, the positions of fissure formation were changed, and the meninges were improperly incorporated into fissures. At later stages, some lobules were formed by Purkinje cells remaining in deep regions of the cerebellum and the laminar structure was dramatically altered. Our results suggest that β-catenin is critical for cerebellar foliation and lamination. We also found a non cell-autonomous role of β-catenin in some developmental properties of major cerebellar cell types during specific stages.

  13. Cerebellar vermis H₂ receptors mediate fear memory consolidation in mice.

    Science.gov (United States)

    Gianlorenço, A C L; Riboldi, A M; Silva-Marques, B; Mattioli, R

    2015-02-01

    Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have a high density in the vermis and flocullus. Evidence supports that the cerebellar histaminergic system is involved in memory consolidation. Our recent study showed that histamine injections facilitate the retention of an inhibitory avoidance task, which was abolished by pretreatment with an H2 receptor antagonist. In the present study, we investigated the effects of intracerebellar post training injections of H1 and H2 receptor antagonists as well as the selective H2 receptor agonist on fear memory consolidation. The cerebellar vermi of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of the following histaminergic drugs: experiment 1, saline or chlorpheniramine (0.016, 0.052 or 0.16 nmol); experiment 2, saline or ranitidine (0.57, 2.85 or 5.07 nmol); and experiment 3, saline or dimaprit (1, 2 or 4 nmol). Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. Animals microinjected with chlorpheniramine did not show any behavioral effects at the doses that we used. Intra-cerebellar injection of the H2 receptor antagonist ranitidine inhibited, while the selective H2 receptor agonist dimaprit facilitated, memory consolidation, suggesting that H2 receptors mediate memory consolidation in the inhibitory avoidance task in mice.

  14. Paraneoplastic cerebellar degeneration with anti-Yo antibodies - a review.

    Science.gov (United States)

    Venkatraman, Anand; Opal, Puneet

    2016-08-01

    The ataxic syndrome associated with Anti-Yo antibody, or Purkinje cell cytoplasmic antibody type 1 (PCA1), is the most common variant of paraneoplastic cerebellar degeneration (PCD). The typical presentation involves the subacute development of pancerebellar deficits with a clinical plateau within 6 months. The vast majority of cases have been reported in women with pelvic or breast tumors. Magnetic resonance imaging of the brain is often normal in the early stages, with cerebellar atrophy seen later. The underlying mechanism is believed to be an immunological reaction to cerebellar degeneration-related protein 2 (CDR2), a protein usually found in the cerebellum that is ectopically produced by tumor cells. Although both B- and T-cell abnormalities are seen, there is debate about the relative importance of the autoantibodies and cytotoxic T lymphocytes in the neuronal loss. Cerebrospinal fluid abnormalities, primarily elevated protein, lymphocytic pleocytosis, and oligoclonal bands, are common in the early stages. The low prevalence of this condition has not allowed for large-scale randomized controlled trials. Immunotherapies, such as steroids, intravenous immune globulins, and plasma exchange, have been extensively used in managing this condition, with limited success. Although some reports indicate benefit from antitumor therapies like surgery and chemotherapy, this has not been consistently observed. The prognosis for anti-Yo PCD is almost uniformly poor, with most patients left bedridden. Further studies are required to clarify the pathophysiology and provide evidence-based treatment options.

  15. The Changeable Nervous System: Studies On Neuroplasticity In Cerebellar Cultures

    Science.gov (United States)

    Seil, Fredrick J.

    2014-01-01

    Circuit reorganization after injury was studied in a cerebellar culture model. When cerebellar cultures derived from newborn mice were exposed at explantation to a preparation of cytosine arabinoside that destroyed granule cells and oligodendrocytes and compromised astrocytes, Purkinje cells surviving in greater than usual numbers were unensheathed by astrocytic processes and received twice the control number of inhibitory axosomatic synapses. Purkinje cell axon collaterals sprouted and many of their terminals formed heterotypical synapses with other Purkinje cell dendritic spines. The resulting circuit reorganization preserved inhibition in the cerebellar cortex. Following this reorganization, replacement of the missing granule cells and glia was followed by a restitution of the normal circuitry. Most of these developmental and reconstructive changes were not dependent on neuronal activity, the major exception being inhibitory synaptogenesis. The full complement of inhibitory synapses did not develop in the absence of neuronal activity, which could be mitigated by application of exogenous TrkB receptor ligands. Inhibitory synaptogenesis could also be promoted by activity-induced release of endogenous TrkB receptor ligands or by antibody activation of the TrkB receptor. PMID:24933693

  16. Inpatient Rehabilitation Performance of Patients with Paraneoplastic Cerebellar Degeneration

    Science.gov (United States)

    Fu, Jack B.; Raj, Vishwa S.; Asher, Arash; Lee, Jay; Guo, Ying; Konzen, Benedict S.; Bruera, Eduardo

    2014-01-01

    Objective To evaluate the functional improvement of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Design Retrospective Review Setting Three tertiary referral based hospitals. Interventions Medical records were retrospectively analyzed for demographic, laboratory, medical and functional data. Main Outcome Measure Functional Independence Measure (FIM) Participants Cancer rehabilitation inpatients admitted to three different cancer centers with a diagnosis of paraneoplastic cerebellar degeneration (n=7). Results All 7 patients were white females. Median age was 62. Primary cancers included ovarian carcinoma (2), small cell lung cancer (2), uterine carcinoma (2), and invasive ductal breast carcinoma. Mean admission total FIM score was 61.0 (SD=23.97). Mean discharge total FIM score was 73.6 (SD=29.35). The mean change in total FIM score was 12.6 (p=.0018). The mean length of rehabilitation stay was 17.1 days. The mean total FIM efficiency was 0.73. 5/7 (71%) patients were discharged home. 1/7 (14%) was discharged to a nursing home. 1/7 (14%) transferred to the primary acute care service. Conclusions This is the first study to demonstrate the functional performance of a group of rehabilitation inpatients with paraneoplastic cerebellar degeneration. Despite the poor neurologic prognosis associated with this syndrome, these patients made significant functional improvements on inpatient rehabilitation. When appropriate, inpatient rehabilitation should be considered. Further studies with larger sample sizes are needed. PMID:25051460

  17. Morphology and biomechanical properties of cerebellar arteries in adults

    Directory of Open Access Journals (Sweden)

    Olga A. Fomkina

    2016-06-01

    Full Text Available The goal was to analyze the variability of a number of morphometric and biomechanical parameters of cerebellar arteries in adults aged 20-74 years. Material and Methods ― 179 samples of cerebellar arteries, obtained by autopsy of adults without acute cerebrovascular pathology have been studied; 24 preparations of arterial complexes «arterial circle – cerebral arteries» from scientific collection of Human Anatomy Department of Saratov State Medical University (Saratov, Russia have been also investigated. Research methods were: preparation, microscopy, experiments on uniaxial longitudinal stretching at a tensile testing machine Tira Test 28005 (TIRA GmbH, Germany. We studied outer diameter, angle of divergence, overall strength and maximal relative deformation of superior (SCA, anterior inferior (AICA and posterior inferior cerebellar arteries (PICA. Results and Conclusion ― It was revealed that SCA was characterized by the largest diameter and angle of divergence, the most strength and extensibility. AICA and PICA had no significant differences of the studied parameters. It was noted that AICA originated in the lower third part of basilar artery 1.5 times more likely than in the middle third part of this artery.

  18. Congenital Cerebellar Mixed Germ Cell Tumor Presenting with Hemorrhage in a Newborn

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Mok; Kim, Ji Hye; Yoo, So Young; Park, Won Soon; Jang, Yun Sil; Shin, Hyung Jin; Suh, Yeon Lim [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2008-07-15

    We report here on a neonate with congenital cerebellar mixed germ cell tumor, and this initially presented as cerebellar hemorrhage. Postnatal cranial ultrasonography revealed an echogenic cerebellar mass that exhibited the signal characteristics of hemorrhage rather than tumor on MR images. The short-term follow-up images also suggested a resolving cerebellar hemorrhage. One month later, the neonate developed vomiting. A second set of MR images demonstrated an enlarged mass that exhibited changed signal intensity at the same site, which suggested a neoplasm. Histological examination after the surgical resection revealed a mixed germ cell tumor.

  19. Medical management of cerebellar abscess: a case report and review of the literature.

    Science.gov (United States)

    Turner, Ryan C; Dodson, Sean C; Rosen, Charles L

    2011-01-01

    A large abscess of the posterior fossa often warrants surgical intervention. We report a case of a 50-year-old male presenting with a cerebellar abscess measuring 2.8 cm x 1.6 cm located in the left cerebellar hemisphere at the level of the middle cerebellar peduncle that was treated conservatively and successfully with antibiotics. Therapeutic management options are discussed in regards to this case specifically as well as a review of the literature. This case illustrates the successful medical management of a cerebellar abscess of otogenic origin in an adult, a unique result in terms of abscess size and age of the patient.

  20. Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia

    NARCIS (Netherlands)

    Schelhaas, H J; Ippel, P F; Hageman, G; Sinke, R J; van der Laan, E N; Beemer, F A

    2001-01-01

    The autosomal dominant cerebellar ataxias (ADCAs) are a heterogeneous group of neurodegenerative disorders characterised by progressive cerebellar dysfunction in combination with a variety of other associative features. Since 1993 ADCAs have been increasingly characterised in terms of their genetic

  1. Tumour type and size are high risk factors for the syndrome of "cerebellar" mutism and subsequent dysarthria

    OpenAIRE

    1999-01-01

    textabstractOBJECTIVE: "Cerebellar mutis" and subsequent dysarthria (MSD) is a documented complication of posterior fossa surgery in children. In this prospective study the following risk factors for MSD were assessed: type, size and site of the tumour; hydrocephalus at presentation and after surgery, cerebellar incision site, postoperative infection, and cerebellar swelling. METHODS: In a consecutive series of 42 children with a cerebellar tumour, speech and neuroradiological studies (CT and...

  2. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons

    Directory of Open Access Journals (Sweden)

    Pontus eGeborek

    2014-10-01

    Full Text Available We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT and the dorsal spinocerebellar tract (DSCT, respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF and the ipsilateral LF (iLF at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e. that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.

  3. A distinctive pattern of cortical excitability in patients with the syndrome of dystonia and cerebellar ataxia

    NARCIS (Netherlands)

    Talelli, P.; Hoffland, B.S.; Schneider, S.A.; Edwards, M.; Bhatia, K.P.; Warrenburg, B.P.C. van de; Rothwell, J.C.

    2011-01-01

    OBJECTIVE: The syndrome of dystonia and cerebellar ataxia (DYTCA) is a recently described condition where cervical dystonia and mild cerebellar ataxia are the major clinical features. Here we attempted to explore the pathophysiology of this condition by comparing measurements of cortical excitabilit

  4. Early onset cerebellar ataxia with retained tendon reflexes : foot deformity in a first grade family member

    NARCIS (Netherlands)

    Schelhaas, HJ; Van der Hulst, M; Ippel, E; Prevo, RL; Hageman, G

    1999-01-01

    Early onset cerebellar ataxia with retained tendon reflexes (EOCA) is a clinical syndrome characterised by progressive cerebellar ataxia with an onset before the age of 25 years and a wide spectrum of associated features. It is distinguished from Friedreich's ataxia (FA) mainly by the preservation o

  5. Parvovirus associated cerebellar hypoplasia and hydrocephalus in day-old broiler chickens

    Science.gov (United States)

    Cerebellar hypoplasia and hydrocephalus were detected in day-old broiler chickens. Brains of chickens evaluated at necropsy appeared to be abnormal; some were disfigured and cerebellae appeared to be smaller than normal. Histopathologic examination of brains revealed cerebellar folia that were sho...

  6. Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene

    NARCIS (Netherlands)

    C. Sevin; S. Ferdinandusse; H.R. Waterham; R.J. Wanders; P. Aubourg

    2011-01-01

    ABSTRACT: OBJECTIVE: To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA). Case report: Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of bl

  7. Socioeconomic status and the cerebellar grey matter volume. Data from a well-characterised population sample.

    Science.gov (United States)

    Cavanagh, Jonathan; Krishnadas, Rajeev; Batty, G David; Burns, Harry; Deans, Kevin A; Ford, Ian; McConnachie, Alex; McGinty, Agnes; McLean, Jennifer S; Millar, Keith; Sattar, Naveed; Shiels, Paul G; Tannahill, Carol; Velupillai, Yoga N; Packard, Chris J; McLean, John

    2013-12-01

    The cerebellum is highly sensitive to adverse environmental factors throughout the life span. Socioeconomic deprivation has been associated with greater inflammatory and cardiometabolic risk, and poor neurocognitive function. Given the increasing awareness of the association between early-life adversities on cerebellar structure, we aimed to explore the relationship between early life (ESES) and current socioeconomic status (CSES) and cerebellar volume. T1-weighted MRI was used to create models of cerebellar grey matter volumes in 42 adult neurologically healthy males selected from the Psychological, Social and Biological Determinants of Ill Health study. The relationship between potential risk factors, including ESES, CSES and cerebellar grey matter volumes were examined using multiple regression techniques. We also examined if greater multisystem physiological risk index-derived from inflammatory and cardiometabolic risk markers-mediated the relationship between socioeconomic status (SES) and cerebellar grey matter volume. Both ESES and CSES explained the greatest variance in cerebellar grey matter volume, with age and alcohol use as a covariate in the model. Low CSES explained additional significant variance to low ESES on grey matter decrease. The multisystem physiological risk index mediated the relationship between both early life and current SES and grey matter volume in cerebellum. In a randomly selected sample of neurologically healthy males, poorer socioeconomic status was associated with a smaller cerebellar volume. Early and current socioeconomic status and the multisystem physiological risk index also apparently influence cerebellar volume. These findings provide data on the relationship between socioeconomic deprivation and a brain region highly sensitive to environmental factors.

  8. Incidence of Dysarthria in Children with Cerebellar Tumors: A Prospective Study

    Science.gov (United States)

    Richter, S.; Schoch, B.; Ozimek, A.; Gorissen, B.; Hein-Kropp, C.; Kaiser, O.; Hovel, M.; Wieland, R.; Gizewski, E.; Timmann, D.

    2005-01-01

    The present study investigated dysarthric symptoms in children with cerebellar tumors. Ten children with cerebellar tumors and 10 orthopedic control children were tested prior and one week after surgery. Clinical dysarthric symptoms were quantified in spontaneous speech. Syllable durations were analyzed in syllable repetition and sentence…

  9. Cerebellar motor learning deficits in medicated and medication-free men with recent-onset schizophrenia

    NARCIS (Netherlands)

    M.P.H. Coesmans (Michiel); C. Röder (Constantin); A.E. Smit (Albertine Eline); S.K.E. Koekkoek (Bas); C.I. de Zeeuw (Chris); M.A. Frens (Maarten); J.N. van der Geest (Jos)

    2014-01-01

    textabstractBackground: The notion that cerebellar deficits may underlie clinical symptoms in people with schizophrenia is tested by evaluating 2 forms of cerebellar learning in patients with recent-onset schizophrenia. A potential medication effect is evaluated by including patients with or without

  10. Cerebellar motor learning deficits in medicated and medication-free men with recent-onset schizophrenia

    NARCIS (Netherlands)

    Coesmans, Michael; Röder, Christian H; Smit, Albertine E; Koekkoek, Sebastiaan K E; De Zeeuw, Chris I; Frens, Maarten A; van der Geest, Josef N

    2014-01-01

    BACKGROUND: The notion that cerebellar deficits may underlie clinical symptoms in people with schizophrenia is tested by evaluating 2 forms of cerebellar learning in patients with recent-onset schizophrenia. A potential medication effect is evaluated by including patients with or without antipsychot

  11. Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions.

    Science.gov (United States)

    Tsubota, Tadashi; Ohashi, Yohei; Tamura, Keita

    2013-10-15

    The cerebellum consists of the cerebellar cortex and the cerebellar nuclei. Although the basic neuronal circuitry of the cerebellar cortex is uniform everywhere, anatomical data demonstrate that the input and output relationships of the cortex are spatially segregated between different cortical areas, which suggests that there are functional distinctions between these different areas. Perturbation of cerebellar cortical functions in a spatially restricted fashion is thus essential for investigating the distinctions among different cortical areas. In the cerebellar cortex, Purkinje cells are the sole output neurons that send information to downstream cerebellar and vestibular nuclei. Therefore, selective manipulation of Purkinje cell activities, without disturbing other neuronal types and passing fibers within the cortex, is a direct approach to spatially restrict the effects of perturbations. Although this type of approach has for many years been technically difficult, recent advances in optogenetics now enable selective activation or inhibition of Purkinje cell activities, with high temporal resolution. Here we discuss the effectiveness of using Purkinje cell-specific optogenetic approaches to elucidate the functions of local cerebellar cortex regions. We also discuss what improvements to current methods are necessary for future investigations of cerebellar functions to provide further advances.

  12. Cerebellar arteries originating from the internal carotid artery: angiographic evaluation and embryologic explanations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Han, Moon Hee; Yu, In Gyu; Chang, Ki Hyun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of); Kim, Eui Jong [Kyunghee Univ. College of Medicine, Seoul (Korea, Republic of); Kim, Dae Ho [Soonchunhyang Univ. College of Medicine, Asan(Korea, Republic of)

    1997-06-01

    To find and describe the cerebellar arteries arising from the internal carotid artery, explain them embryologically, and evaluate their clinical implication. To determine the point in the internal carotid artery from which the cereballar artery arose anomalously, consecutive angiographic studies performed in the last three years were reviewed. The distribution of such anomalous cerebellar arteries, the point in the internal carotid artery from which the anomalous vessels originated, and associated findings were analyzed. Five anomalous origins of cerebellar arteries arising arising directly from the internal carotid artery were found in five patients. Three anterior inferior cerebellar arteries (AICA) and one common trunk of an AICA and a posterior inferior cerebellar artery (PICA) were found to originate from the internal carotid artery at a point close to the origin of the primitive trigeminal artery. A PICA arose from an artery presenting a course similar to the proatlantal intersegmental artery. Intracranial aneurysms in two patients, Moyamoya disease in one, and facial arteriovenous malformation in one. In our series, AICAs supplied from the arteries considered to be persistent trigeminal artery variants were the most common type. A correlation between type of anomalous cerebellar artery and type of carotid-vertebrobasilar anastomosis may exist. Cerebellar arteries originating anomalously from the internal carotid artery seem to occur as a result of the persistence of carotid-vertebrobasilar anastomoses associated with incomplete fusion of the longitudinal neural arteries. An understanding of these anomalous cerebellar arteries may help prevent accidents during therapeutic embolization and surgical treatment, as well as misinterpretation.

  13. Cerebellar clear cell ependymoma in a 10 year old girl

    Energy Technology Data Exchange (ETDEWEB)

    Thinzar Aye Nyein; Moon, Ah Rim; Hwang, Sun Chul; Hong, Hyun Sook; Lee, A Leum; Chang, Kee Hyun; Kim, Hee Kyung; Chin, Su Sie [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Park, Ji Sang [Soonchunhyang University Gumi Hospital, Gumi (Korea, Republic of)

    2016-01-15

    Clear cell ependymoma (CCE) is a histological rare variant (1–5%) of ependymoma, which is distinguished from other histological subtypes by the presence of fusiform cells arrayed radially around small blood vessels. These alleged perivascular pseudorosettes are significant characteristic features of ependymomas. About 95% of infratentorial ependymomas are found in the fourth ventricle and the remainder occurs as cerebellopontine angle lesions. In previous reports, the cerebellum is found to be a rare location for ependymoma. In this study we report one case of CCE originating from the cerebellar hemisphere, showing unusual morphology on 3T MRI.

  14. Infantile intracranial aneurysm of the superior cerebellar artery.

    Science.gov (United States)

    Del Santo, Molly Ann; Cordina, Steve Mario

    2016-02-29

    Intracranial aneurysms in the pediatric population are rare. We report a case of a 3-month-old infant who presented with inconsolable crying, vomiting, and sunset eye sign. CT revealed a subarachnoid hemorrhage, with CT angiogram revealing a superior cerebellar artery aneurysm. An external ventricular drain was placed for acute management of hydrocephalus, with definitive treatment by endovascular technique with a total of six microcoils to embolize the aneurysm. Serial transcranial Dopplers revealed no subsequent vasospasm. Although aneurysms in the pediatric population are rare, once the diagnosis is established, early treatment results in better outcomes.

  15. Endoscopic evacuation of cerebellar hematoma in a term newborn.

    Science.gov (United States)

    Tanriverdi, Sema Rala; Turhan, Tuncer; Uygur, Ozgun; Koroglu, Ozge Altun; Yalaz, Mehmet; Kultursay, Nilgun

    2013-10-01

    Intracerebellar hemorrhage is very rare in term infants and only severe cases with massive intracranial hemorrhage, posthemorrhagic hydrocephalus and clinical deterioration due to increased intracranial pressure require neurosurgical evacuation. In recent adult studies endoscopic hematoma evacuation has been shown as a rapid, effective, and safe technique. A term newborn hospitalized for meconium aspiration syndrome showed hypertonia, jitteriness and abnormal amplitude integrated electroencephalogram findings. He was diagnosed with cerebellar hematoma which caused hydrocephalus by cranial magnetic resonance imaging (MRI). The hematoma was successfully evacuated neuroendoscopically as the first case in literature to our knowledge. Neurologic, a-EEG and MRI findings resolved.

  16. Dysarthria in children with cerebellar or brainstem tumors.

    Science.gov (United States)

    van Mourik, M; Catsman-Berrevoets, C E; Yousef-Bak, E; Paquier, P F; van Dongen, H R

    1998-05-01

    Speech features were perceptually analyzed in two groups of children. The first group (n = 6) had undergone cerebellar tumor resection, and the second group (n = 6) included children with brainstem tumors. Children belonging to the first group became dysarthric after a postoperative mute phase. Slow speech rate was a specific feature, but scanning speech and irregular articulatory breakdown (i.e., prominent characteristics in adult ataxic dysarthria) were not observed. In the second group, hypernasality was a prominent characteristic and resembled flaccid dysarthria in adults. These findings suggest that acquired childhood dysarthria needs a proper classification.

  17. File list: InP.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  18. File list: NoD.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  19. File list: NoD.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  20. File list: InP.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neuron...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  1. Changes in a cerebellar peduncle lesion in a patient with Dandy-Walker malformation A diffusion tensor imaging study

    Institute of Scientific and Technical Information of China (English)

    Ah Young Lee; Sung Ho Jang; Sang Seok Yeo; Ensil Lee; Yun Woo Cho; Su Min Son

    2013-01-01

    We report a patient with severe ataxia due to Dandy-Walker malformation, who showed functional recovery over 10 months corresponding to a change in a cerebellar peduncle lesion. A 20-month-old female patient who was diagnosed with Dandy-Walker syndrome and six age- and sex-matched healthy control subjects were enrolled. The superior cerebellar peduncle, the middle cerebellar peduncle, and the inferior cerebellar peduncle were evaluated using fractional anisotropy and the apparent diffusion coefficient. The patients' functional ambulation category was 0 at the initial visit, but improved to 2 at the follow-up evaluation, and Berg's balance scale score also improved from 0 to 7. Initial diffusion tensor tractography revealed that the inferior cerebellar peduncle was not detected, that the fractional anisotropy of the superior cerebellar peduncle and middle cerebellar peduncle decreased by two standard deviations below, and that the apparent diffusion coefficient increased by two standard deviations over normal control values. However, on follow-up diffusion tensor tractography, both inferior cerebellar peduncles could be detected, and the fractional anisotropy of superior cerebellar peduncle increased to within two standard deviations of normal controls. The functional improvement in this patient appeared to correspond to changes in these cerebellar peduncles. We believe that evaluating cerebellar peduncles using diffusion tensor imaging is useful in cases when a cerebellar peduncle lesion is suspected.

  2. File list: InP.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  3. File list: InP.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  4. File list: NoD.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar gran...ule neurons http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  5. Babinski's contributions to cerebellar symptomatology: building the basis of the neurological examination

    Directory of Open Access Journals (Sweden)

    Jose Luiz Pedroso

    2013-12-01

    Full Text Available Several assumptions about the function of the cerebellum and semiotic signs have been described over the centuries. Among the long list of famous researchers who have provided a strong contribution and who have left their names on the highway of cerebellar research, Joseph Babinski appears as a prominent name. The description of various forms of cerebellar symptomatology was a major part of Babinski's work, and clinical terms that he introduced, namely hypermetry , diadochokinesia , and asynergy , remain part of contemporary clinical vocabulary. Babinski studied cerebellar signs in many patients and was able to conduct longitudinal studies that permitted him to understand the evolution of cerebellar dysfunction. Babinski contributions to cerebellar symptomatology continue to influence the most modern theories, including functional and neuropathological studies.

  6. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke

    Directory of Open Access Journals (Sweden)

    Catherine J. Stoodley

    2016-01-01

    Full Text Available Cerebellar lesions can cause motor deficits and/or the cerebellar cognitive affective syndrome (CCAS; Schmahmann's syndrome. We used voxel-based lesion-symptom mapping to test the hypothesis that the cerebellar motor syndrome results from anterior lobe damage whereas lesions in the posterolateral cerebellum produce the CCAS. Eighteen patients with isolated cerebellar stroke (13 males, 5 females; 20–66 years old were evaluated using measures of ataxia and neurocognitive ability. Patients showed a wide range of motor and cognitive performance, from normal to severely impaired; individual deficits varied according to lesion location within the cerebellum. Patients with damage to cerebellar lobules III–VI had worse ataxia scores: as predicted, the cerebellar motor syndrome resulted from lesions involving the anterior cerebellum. Poorer performance on fine motor tasks was associated primarily with strokes affecting the anterior lobe extending into lobule VI, with right-handed finger tapping and peg-placement associated with damage to the right cerebellum, and left-handed finger tapping associated with left cerebellar damage. Patients with the CCAS in the absence of cerebellar motor syndrome had damage to posterior lobe regions, with lesions leading to significantly poorer scores on language (e.g. right Crus I and II extending through IX, spatial (bilateral Crus I, Crus II, and right lobule VIII, and executive function measures (lobules VII–VIII. These data reveal clinically significant functional regions underpinning movement and cognition in the cerebellum, with a broad anterior-posterior distinction. Motor and cognitive outcomes following cerebellar damage appear to reflect the disruption of different cerebro-cerebellar motor and cognitive loops.

  7. Cerebellar gray matter and lobular volumes correlate with core autism symptoms

    Directory of Open Access Journals (Sweden)

    Anila M. D'Mello

    2015-01-01

    Full Text Available Neuroanatomical differences in the cerebellum are among the most consistent findings in autism spectrum disorder (ASD, but little is known about the relationship between cerebellar dysfunction and core ASD symptoms. The newly-emerging existence of cerebellar sensorimotor and cognitive subregions provides a new framework for interpreting the functional significance of cerebellar findings in ASD. Here we use two complementary analyses — whole-brain voxel-based morphometry (VBM and the SUIT cerebellar atlas — to investigate cerebellar regional gray matter (GM and volumetric lobular measurements in 35 children with ASD and 35 typically-developing (TD children (mean age 10.4 ± 1.6 years; range 8–13 years. To examine the relationships between cerebellar structure and core ASD symptoms, correlations were calculated between scores on the Autism Diagnostic Observation Schedule (ADOS and Autism Diagnostic Interview (ADI and the VBM and volumetric data. Both VBM and the SUIT analyses revealed reduced GM in ASD children in cerebellar lobule VII (Crus I/II. The degree of regional and lobular gray matter reductions in different cerebellar subregions correlated with the severity of symptoms in social interaction, communication, and repetitive behaviors. Structural differences and behavioral correlations converged on right cerebellar Crus I/II, a region which shows structural and functional connectivity with fronto-parietal and default mode networks. These results emphasize the importance of the location within the cerebellum to the potential functional impact of structural differences in ASD, and suggest that GM differences in cerebellar right Crus I/II are associated with the core ASD profile.

  8. Spinal level of myelomeningocele lesion as a contributing factor in posterior fossa volume, intracranial cerebellar volume, and cerebellar ectopia.

    LENUS (Irish Health Repository)

    Sweeney, Kieron J

    2013-02-01

    McLone and Knepper\\'s unified theory of Chiari malformation Type II (CM-II) describes how the loss of CSF via the open posterior neuropore fails to create adequate distending pressure for the developing rhomboencephalic vesicle. The authors of the present article describe the relationship between the posterior fossa volume and intracranial cerebellar volume as being related to the distance from the obex of the fourth ventricle to the myelomeningocele lesion using a common mathematical model, the Hagen-Poiseuille law.

  9. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo.

    Directory of Open Access Journals (Sweden)

    Cristina Granziera

    Full Text Available BACKGROUND: The cerebellum is a complex structure that can be affected by several congenital and acquired diseases leading to alteration of its function and neuronal circuits. Identifying the structural bases of cerebellar neuronal networks in humans in vivo may provide biomarkers for diagnosis and management of cerebellar diseases. OBJECTIVES: To define the anatomy of intrinsic and extrinsic cerebellar circuits using high-angular resolution diffusion spectrum imaging (DSI. METHODS: We acquired high-resolution structural MRI and DSI of the cerebellum in four healthy female subjects at 3T. DSI tractography based on a streamline algorithm was performed to identify the circuits connecting the cerebellar cortex with the deep cerebellar nuclei, selected brainstem nuclei, and the thalamus. RESULTS: Using in-vivo DSI in humans we were able to demonstrate the structure of the following cerebellar neuronal circuits: (1 connections of the inferior olivary nucleus with the cerebellar cortex, and with the deep cerebellar nuclei (2 connections between the cerebellar cortex and the deep cerebellar nuclei, (3 connections of the deep cerebellar nuclei conveyed in the superior (SCP, middle (MCP and inferior (ICP cerebellar peduncles, (4 complex intersections of fibers in the SCP, MCP and ICP, and (5 connections between the deep cerebellar nuclei and the red nucleus and the thalamus. CONCLUSION: For the first time, we show that DSI tractography in humans in vivo is capable of revealing the structural bases of complex cerebellar networks. DSI thus appears to be a promising imaging method for characterizing anatomical disruptions that occur in cerebellar diseases, and for monitoring response to therapeutic interventions.

  10. Progressive cerebellar atrophy: hereditary ataxias and disorders with spinocerebellar degeneration.

    Science.gov (United States)

    Wolf, Nicole I; Koenig, Michel

    2013-01-01

    The hereditary ataxias with onset in childhood are a group of heterogeneous disorders, usually with autosomal recessive inheritance. In many of them, magnetic resonance imaging (MRI) shows cerebellar atrophy. The most prominent exception to this is Friedreich's ataxia, where MRI shows normal cerebellar volume, but sometimes spinal cord atrophy. In several of the hereditary ataxias, the causative gene plays an important role in DNA repair: ataxia telangiectasia and ataxia telangiectasia-like disorder, and ataxia with oculomotor apraxia type I and II. Mitochondrial metabolism is impaired in another group of inherited ataxias including the emergent group of defects in coenzyme Q10 synthesis. Few of these disorders are amenable to effective treatment, the most important of these being vitamin E-responsive ataxia. The autosomal dominant spinocerebellar ataxias are rare in childhood. Some of them, especially SCA7 and SCA2, may begin in childhood or even infancy, family history being positive in these cases. Additional clinical clues such as presence or absence of neuropathy or oculomotor apraxia still help in making a definitive diagnosis albeit there are still many unsolved cases. In pontocerebellar hypoplasia, a neurodegenerative disease with prenatal onset, the genetic basis of the different subtypes has recently been elucidated and involves genes with different functions.

  11. Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation.

    Directory of Open Access Journals (Sweden)

    Megumi Kaneko

    Full Text Available Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.

  12. Congenital disorders of glycosylation with emphasis on cerebellar involvement.

    Science.gov (United States)

    Barone, Rita; Fiumara, Agata; Jaeken, Jaak

    2014-07-01

    Congenital disorders of glycosylation (CDG) are genetic diseases due to defective glycosylation of proteins and lipids. The authors present an update on these disorders affecting the central nervous system with a focus on cerebellar involvement. The rate of identification of novel CDG shows an exponential increase. Some 76 CDG are actually known, not taking into account the defects in glycan-modifying proteins. Neurologic involvement is present in the large majority of CDG. Screening methods are limited to serum transferrin isoelectrofocusing (for N-glycosylation disorders with sialic acid deficiency), and serum apolipoprotein C-III isoelectrofocusing (for core 1 mucin-type O-glycosylation disorders). Whole exome/genome sequencing is increasingly used in the diagnostic workup of patients with CDG-X. Treatment is greatly lagging behind because only one CDG is efficiently treatable (MPI-CDG). Cerebellar involvement is an important feature of PMM2-CDG, the congenital muscular dystrophies due to dystroglycanopathy, and SRD5A3-CDG. It has also been reported in some patients with ALG1-CDG, ALG3-CDG, ALG9-CDG, ALG6-CDG, ALG8-CDG, PIGA-CDG, DPM1-CDG, DPM2-CDG, B4GALT1-CDG, SLC35A2-CDG, COG1-CDG, COG5-CDG, COG7-CDG, and COG8-CDG.

  13. Pilomyxoid astrocytoma of the cerebellar vermis in an elderly patient

    Directory of Open Access Journals (Sweden)

    Branko Skovrlj

    2014-01-01

    Full Text Available Background: Pilomyxoid astrocytoma (PMA has recently been accepted as an aggressive variant of pilocytic astrocytoma with distinct histopathological features. PMAs have been frequently described in the pediatric population with a predilection for the hypothalamic/chiasmatic region. Case Description: A 72-year-old African American male presented with 6 months of memory loss, difficulty expressing himself, and a progressively worsening gait. Magnetic resonance imaging of the brain demonstrated a heterogeneously enhancing cystic mass centered within the cerebellar vermis with mass effect on the fourth ventricle and ventriculomegaly. The patient underwent placement of a ventriculoperitoneal shunt followed by a surgical resection of the lesion, which after immunohistopathologic evaluation, was diagnosed as a World Health Organization grade II PMA. The patient refused further treatment of the lesion and expired 11 months after initial symptom presentation and 4 months after surgery. Conclusion: To our knowledge, this is the first report of PMA of the cerebellar vermis in a previously unreported age group. This case report describes the natural history of this type of tumor in a patient who refused adjuvant therapy following surgical resection.

  14. Mechanisms of ethanol-induced death of cerebellar granule cells.

    Science.gov (United States)

    Luo, Jia

    2012-03-01

    Maternal ethanol exposure during pregnancy may cause fetal alcohol spectrum disorders (FASD). FASD is the leading cause of mental retardation. The most deleterious effect of fetal alcohol exposure is inducing neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. The cerebellum is one of the brain areas that are most susceptible to ethanol during development. Ethanol exposure causes a loss of both cerebellar Purkinje cells and granule cells. This review focuses on the toxic effect of ethanol on cerebellar granule cells (CGC) and the underlying mechanisms. Both in vitro and in vivo studies indicate that ethanol induces apoptotic death of CGC. The vulnerability of CGC to ethanol-induced death diminishes over time as neurons mature. Several mechanisms for ethanol-induced apoptosis of CGC have been suggested. These include inhibition of N-methyl-D-aspartate receptors, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, disturbance of potassium channel currents, thiamine deficiency, and disruption of translational regulation. Cultures of CGC provide an excellent system to investigate cellular/molecular mechanisms of ethanol-induced neurodegeneration and to evaluate interventional strategies. This review will also discuss the approaches leading to neuroprotection against ethanol-induced neuroapoptosis.

  15. Primary cerebellar extramedullary myeloid cell tumor mimicking oligodendroglioma.

    Science.gov (United States)

    Ho, D M; Wong, T T; Guo, W Y; Chang, K P; Yen, S H

    1997-10-01

    Extramedullary myeloid cell tumors (EMCTs) are tumors consisting of immature cells of the myeloid series that occur outside the bone marrow. Most of them are associated with acute myelogenous leukemia or other myeloproliferative disorders, and a small number occur as primary lesions, i.e., are not associated with hematological disorders. Occurrence inside the cranium is rare, and there has been only one case of primary EMCT involving the cerebellum reported in the literature. The case we report here is a blastic EMCT occurring in the cerebellum of a 3-year-old boy who had no signs of leukemia or any hematological disorder throughout the entire course. The cerebellar tumor was at first misdiagnosed as an "oligodendroglioma" because of the uniformity and "fried egg" artifact of the tumor cells. The tumor disappeared during chemotherapy consisting of 12 treatments. However, it recurred and metastasized to the cerebrospinal fluid (CSF) shortly after the therapy was completed. A diagnosis of EMCT was suspected because of the presence of immature myeloid cells in the CSF, and was confirmed by anti-myeloperoxidase and anti-lysozyme immunoreactivity of the cerebellar tumor. The patient succumbed 1 year and 3 months after the first presentation of the disease.

  16. Coordinated scaling of cortical and cerebellar numbers of neurons

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    2010-03-01

    Full Text Available While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of 4 different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora, Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.

  17. Regional cerebellar volume and cognitive function from adolescence to late middle age.

    Science.gov (United States)

    Bernard, Jessica A; Leopold, Daniel R; Calhoun, Vince D; Mittal, Vijay A

    2015-03-01

    Cerebellar morphology and function have been implicated in a variety of developmental disorders, and in healthy aging. Although recent work has sought to characterize the relationships between volume and age in this structure during adolescence, young, and older adulthood, there have been no investigations of regional cerebellar volume from adolescence through late middle age. Middle age in particular has been largely understudied, and investigating this period of the lifespan may be especially important for our understanding of senescence. Understanding regional patterns of cerebellar volume with respect to age during this portion of the lifespan may provide important insight into healthy aging and cognitive function as well as pathology from adolescence into later life. We investigated regional cerebellar volume using a highly novel lobular segmentation approach in conjunction with a battery of cognitive tasks in a cross-sectional sample of 123 individuals from 12 to 65 years old. Our results indicated that regional cerebellar volumes show different patterns with respect to age. In particular, the more posterior aspect of the neocerebellum follows a quadratic "inverse-U" pattern while the vermis and anterior cerebellum follow logarithmic patterns. In addition, we quantified the relationships between age and a variety of cognitive assessments and found relationships between regional cerebellar volumes and performance. Finally, exploratory analyses of sex differences in the relationships between regional cerebellar volume, age, and cognition were investigated. Taken together, these results provide key insights into the development and aging of the human cerebellum, and its role in cognitive function across the lifespan.

  18. Self-Organization of Polarized Cerebellar Tissue in 3D Culture of Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Keiko Muguruma

    2015-02-01

    Full Text Available During cerebellar development, the main portion of the cerebellar plate neuroepithelium gives birth to Purkinje cells and interneurons, whereas the rhombic lip, the germinal zone at its dorsal edge, generates granule cells and cerebellar nuclei neurons. However, it remains elusive how these components cooperate to form the intricate cerebellar structure. Here, we found that a polarized cerebellar structure self-organizes in 3D human embryonic stem cell (ESC culture. The self-organized neuroepithelium differentiates into electrophysiologically functional Purkinje cells. The addition of fibroblast growth factor 19 (FGF19 promotes spontaneous generation of dorsoventrally polarized neural-tube-like structures at the level of the cerebellum. Furthermore, addition of SDF1 and FGF19 promotes the generation of a continuous cerebellar plate neuroepithelium with rhombic-lip-like structure at one end and a three-layer cytoarchitecture similar to the embryonic cerebellum. Thus, human-ESC-derived cerebellar progenitors exhibit substantial self-organizing potential for generating a polarized structure reminiscent of the early human cerebellum at the first trimester.

  19. Direct and indirect spino-cerebellar pathways: shared ideas but different functions in motor control

    Directory of Open Access Journals (Sweden)

    Juan eJiang

    2015-07-01

    Full Text Available The impressive precision of mammalian limb movements relies on internal feedback pathways that convey information about ongoing motor output to cerebellar circuits. The spino-cerebellar tracts (SCT in the cervical, thoracic and lumbar spinal cord have long been considered canonical neural substrates for the conveyance of internal feedback signals. Here we consider the distinct features of an indirect spino-cerebellar route, via the brainstem lateral reticular nucleus (LRN, and the implications of this pre-cerebellar ‘detour’ for the execution and evolution of limb motor control. Both direct and indirect spino-cerebellar pathways signal spinal interneuronal activity to the cerebellum during movements, but evidence suggests that direct SCT neurons are mainly modulated by rhythmic activity, whereas the LRN also receives information from systems active during postural adjustment, reaching and grasping. Thus, while direct and indirect spino-cerebellar circuits can both be regarded as internal copy pathways, it seems likely that the direct system is principally dedicated to rhythmic motor acts like locomotion, while the indirect system also provides a means of pre-cerebellar integration relevant to the execution and coordination of de

  20. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    Science.gov (United States)

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies.

  1. Restoring cognitive functions using non-invasive brain stimulation techniques in patients with cerebellar disorders

    Directory of Open Access Journals (Sweden)

    Paul A Pope

    2014-04-01

    Full Text Available Numerous studies have highlighted the possibility of modulating the excitability of cerebro-cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral-lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato-rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro-cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided towards neuro-enhancement in certain patient populations, using what is commonly termed 'non-invasive brain stimulation' as a cognitive rehabilitation tool to modulate cerebro-cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo

  2. Qualitative and quantitative aspects of the microanatomy of the African elephant cerebellar cortex.

    Science.gov (United States)

    Maseko, Busisiwe C; Jacobs, Bob; Spocter, Muhammad A; Sherwood, Chet C; Hof, Patrick R; Manger, Paul R

    2013-01-01

    The current study provides a number of novel observations on the organization and structure of the cerebellar cortex of the African elephant by using a combination of basic neuroanatomical and immunohistochemical stains with Golgi and stereologic analysis. While the majority of our observations indicate that the cerebellar cortex of the African elephant is comparable to other mammalian species, several features were unique to the elephant. The three-layered organization of the cerebellar cortex, the neuronal types and some aspects of the expression of calcium-binding proteins were common to a broad range of mammalian species. The Lugaro neurons observed in the elephant were greatly enlarged in comparison to those of other large-brained mammals, suggesting a possible alteration in the processing of neural information in the elephant cerebellar cortex. Analysis of Golgi impregnations indicated that the dendritic complexity of the different interneuron types was higher in elephants than other mammals. Expression of parvalbumin in the parallel fibers and calbindin expressed in the stellate and basket cells also suggested changes in the elephant cerebellar neuronal circuitry. The stereologic analysis confirmed and extended previous observations by demonstrating that neuronal density is low in the elephant cerebellar cortex, providing for a larger volume fraction of the neuropil. With previous results indicating that the elephants have the largest relative cerebellar size amongst mammals, and one of the absolutely largest mammalian cerebella, the current observations suggest that the elephants have a greater volume of a potentially more complexly organized cerebellar cortex compared to other mammals. This quantitatively larger and more complex cerebellar cortex likely represents part of the neural machinery required to control the complex motor patterns involved in movement of the trunk and the production of infrasonic vocalizations.

  3. Restoring cognitive functions using non-invasive brain stimulation techniques in patients with cerebellar disorders.

    Science.gov (United States)

    Pope, Paul A; Miall, R Chris

    2014-01-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebro-cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral-lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato-rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro-cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided toward neuro-enhancement in certain patient populations, using what is commonly termed "non-invasive brain stimulation" as a cognitive rehabilitation tool to modulate cerebro-cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo-cortical disturbances.

  4. Tract Profiles of the Cerebellar White Matter Pathways in Children and Adolescents.

    Science.gov (United States)

    Leitner, Yael; Travis, Katherine E; Ben-Shachar, Michal; Yeom, Kristen W; Feldman, Heidi M

    2015-12-01

    Intact development of cerebellar connectivity is essential for healthy neuromotor and neurocognitive development. To date, limited knowledge about the microstructural properties of the cerebellar peduncles, the major white matter tracts of the cerebellum, is available for children and adolescents. Such information would be useful as a comparison for studies of normal development, clinical conditions, or associations of cerebellar structures with cognitive and motor functions. The goal of the present study was to evaluate the variability in diffusion measures of the cerebellar peduncles within individuals and within a normative sample of healthy children. Participants were 19 healthy children and adolescents, aged 9-17 years, mean age 13.0 ± 2.3. We analyzed diffusion magnetic resonance imaging (dMRI) data with deterministic tractography. We generated tract profiles for each of the cerebellar peduncles by extracting four diffusion properties (fractional anisotropy (FA) and mean, radial, and axial diffusivity) at 30 equidistant points along each tract. We were able to identify the middle cerebellar peduncle and the bilateral inferior and superior cerebellar peduncles in all participants. The results showed that within each of the peduncles, the diffusion properties varied along the trajectory of the tracts. However, the tracts showed consistent patterns of variation across individuals; the coefficient of variation for FA across individual profiles was low (≤20%) for each tract. We observed no systematic variation of the diffusion properties with age. These cerebellar tract profiles of the cerebellar peduncles can serve as a reference for future studies of children across the age range and for children and adolescents with clinical conditions that affect the cerebellum.

  5. Oral administration of PF-01247324, a subtype-selective Nav1.8 blocker, reverses cerebellar deficits in a mouse model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Shannon D Shields

    Full Text Available Cerebellar symptoms significantly diminish quality of life in patients with multiple sclerosis (MS. We previously showed that sodium channel Nav1.8, although normally restricted to peripheral somatosensory neurons, is upregulated in the cerebellum in MS, and that Nav1.8 expression is linked to ataxia and MS-like symptoms in mice. Furthermore, intracerebroventricular administration of the Nav1.8 blocker A-803467 temporarily reversed electrophysiological and behavioral manifestations of disease in a mouse MS model; unfortunately A-803467 is not orally bioavailable, diminishing the potential for translation to human patients. In the present study, we assessed the effect of per os (p.o. dosing of a new orally bioavailable Nav1.8-selective blocker, PF-01247324, in transgenic mice expressing Nav1.8 in Purkinje neurons, and in wildtype mice in the experimental autoimmune encephalomyelitis (EAE model. PF-01247324 was administered by oral gavage at 1000 mg/kg; control groups received an equal volume of vehicle. Behavioral assays of motor coordination, grip strength, and ataxia were performed. We observed significant improvements in motor coordination and cerebellar-like symptoms in mice that received PF-01247324 compared to control littermates that received vehicle. These preclinical proof-of-concept data suggest that PF-01247324, its derivatives, or other Nav1.8-selective blockers merit further study for providing symptomatic therapy for cerebellar dysfunction in MS and related disorders.

  6. Differences in saccade dynamics between spinocerebellar ataxia 2 and late-onset cerebellar ataxias.

    Science.gov (United States)

    Federighi, Pamela; Cevenini, Gabriele; Dotti, Maria T; Rosini, Francesca; Pretegiani, Elena; Federico, Antonio; Rufa, Alessandra

    2011-03-01

    The cerebellum is implicated in maintaining the saccadic subsystem efficient for vision by minimizing movement inaccuracy and by learning from endpoint errors. This ability is often disrupted in degenerative cerebellar diseases, as demonstrated by saccade kinetic abnormalities. The study of saccades in these patients may therefore provide insights into the neural substrate underlying saccadic motor control. We investigated the different extent of saccade dynamic abnormalities in spinocerebellar ataxia type 2 and late-onset cerebellar ataxias, genetically undefined and with prevalent cerebellar atrophy. Reflexive and voluntary saccades of different amplitude (10°-18°) were studied in seven patients with spinocerebellar ataxia 2, eight patients with late-onset cerebellar ataxia and 25 healthy controls. Quantitative analysis of saccade parameters and measures of saccade accuracy were performed. Detailed neurological, neurophysiological and magnetic resonance imaging assessment was obtained for each patient. Genetic and laboratory screening for spinocerebellar ataxias and other forms of late-onset cerebellar ataxias were also performed. A lower peak saccade velocity and longer duration was observed in patients with spinocerebellar ataxia 2 with respect to those with late-onset cerebellar ataxia and controls. Unlike subjects with spinocerebellar ataxia 2, patients with late-onset cerebellar ataxia showed main sequence relationships to similar saccades made by normal subjects. Saccades were significantly more inaccurate, namely hypometric, in late-onset cerebellar ataxia than in spinocerebellar ataxia 2 and inaccuracy increased with saccade amplitude. The percentage of hypometric primary saccades and of larger secondary corrective saccades were consistently higher in late-onset cerebellar ataxia than in spinocerebellar ataxia 2 and controls. No other significant differences were found between groups. Two different mechanisms were adopted to redirect the fovea as fast

  7. Pediatric cerebellar stroke associated with elevated titer of antibodies to β2-glycoprotein.

    Science.gov (United States)

    Spalice, Alberto; Del Balzo, Francesca; Perla, Francesco Massimo; Papetti, Laura; Nicita, Francesco; Ursitti, Fabiana; Properzi, Enrico

    2011-06-01

    Antibodies to 2-glycoprotein I (anti-2GPI) have been associated with recurrent thrombosis and pregnancy morbidity. However, the prevalence of anti-2GPI in children suffering from cerebral and cerebellar infarction is unknown. We report on a 10-month-old boy who had an ischemic cerebellar stroke, secondary to antiphospholipid syndrome with high titers of immunoglobulin G anti-2GPI (first titer: 132U) anticardiolipin antibodies and lupus anticoagulant tests were negative. All other causes of infarction were excluded. To our knowledge, this is the first reported case of childhood cerebellar ischemic stroke with only anti-2GPI but no antibodies detectable in standard antiphospholipid assays.

  8. A Case of Multiple System Atrophy-Cerebellar Type Preceded by Dementia

    Directory of Open Access Journals (Sweden)

    Eun Hye Jang

    2012-10-01

    Full Text Available Multiple system atrophy (MSA is a sporadic, adult-onset disease characterized by progressive degeneration of nervous systems including cerebellar, pyramidal, extrapyramidal, and autonomic system. Although a few recent studies reported that cognitive impairments could occur in patients with MSA, prominent dementia with progressive decline is not a typical clinical manifestation of MSA. In particular, dementia with MSA-cerebellar type is very rare. We have experienced a patient with 2-year history of severe cognitive impairment, who was finally diagnosed as MSA-cerebellar type.

  9. Cerebellar abnormalities typical of methylmercury poisoning in a fledged saltmarsh sparrow, Ammodramus caudacutus.

    Science.gov (United States)

    Scoville, Sheila A; Lane, Oksana P

    2013-05-01

    A fledged, 12-15 day-old saltmarsh sparrow, Ammodramus caudacutus, was collected from an accidental kill on Cinder Island, Long Island, NY, USA. The sparrow was assessed for feather mercury levels and the brain analyzed for cerebellar abnormalities by microscopic examination. In humans, fetal Minamata disease is caused by maternal ingestion of mercury. It is characterized by disrupted and disordered cerebellar neuronal migration in the fetus or infant. Results from this sparrow show cerebellar abnormalities typical of Minamata disease. It is the first known avian or mammalian specimen taken from the wild to show the abnormalities typical of the human fetal syndrome.

  10. Cerebellar and basal ganglion involvement in Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, I.; Baskan, O.; Haliloglu, M.; Aydingoz, U. [Department of Radiology, Hacettepe University Hospital, Sihhiye 06100, Ankara (Turkey)

    1999-06-01

    Langerhans cell histiocytosis (LCH) is a disease of unknown cause characterised by proliferation of histiocytic granulomas in tissues; the primary cerebral manifestation is diabetes insipidus caused by hypothalamic infiltration. We present a patient in whom, except for the absence of high signal on T 1 weighting in the posterior pituitary, consistent with central diabetes insipidus, MRI showed no evidence of hypothalamic involvement by histiocytosis, despite the long duration of the disease. However, there was bilateral, symmetrical involvement of the cerebellum and globus pallidus in addition to a calvarial lesion. High signal in the cerebellar white matter on T 2-weighted images may represent demyelination, gliosis and cell loss, as previously reported on pathologic examination. (orig.) With 5 figs., 22 refs.

  11. [Cerebellar abscesses secondary to infection of an occipital dermal sinus].

    Science.gov (United States)

    García Galera, A; Martínez León, M I; Pérez da Rosa, S; Ros López, B

    2013-09-01

    A dermal sinus is a congenital defect arising from a closure failure of the neural tube that results in different degrees of communication between the skin and the central nervous system. A dermal sinus can occur anywhere from the root of the nose to the conus medullaris, and the occipital location is the second most common. Dermal sinuses are often found in association with dermoid or epidermoid cysts and less frequently with teratomas. Patients with an occipital dermoid cyst associated with a dermal sinus can develop meningitis and/or abscesses as the first clinical manifestation of the disease due to the dermoid cyst itself becoming abscessed or to the formation of secondary abscesses; few cases of the formation of secondary abscesses have been reported. We present a case of a dermoid cyst associated with an infected dermal sinus and posterior development of cerebellar abscesses and hydrocephalus.

  12. Middle cerebellar peduncles:Magnetic resonance imaging and pathophysiologic correlate

    Institute of Scientific and Technical Information of China (English)

    Humberto Morales; Thomas Tomsick

    2015-01-01

    We describe common and less common diseases that can cause magnetic resonance signal abnormalities of middle cerebellar peduncles(MCP), offering a systematicapproach correlating imaging findings with clinical clues and pathologic mechanisms. Myelin abnormalities, different types of edema or neurodegenerative processes, can cause areas of abnormal T2 signal, variable enhancement, and patterns of diffusivity of MCP. Pathologies such as demyelinating disorders or certain neurodegenerative entities(e.g., multiple system atrophy or fragile X-associated tremor-ataxia syndrome) appear to have predilection for MCP. Careful evaluation of concomitant imaging findings in the brain or brainstem; and focused correlation with key clinical findings such as immunosuppression for progressive multifocal leukoencephalopahty; hypertension, post-transplant status or high dose chemotherapy for posterior reversible encephalopathy; electrolyte disorders for myelinolysis or suspected toxic-drug related encephalopathy; would yield an appropriate and accurate differential diagnosis in the majority of cases.

  13. Adult cerebellar medulloblastoma: CT and MRI findings in eight cases

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho Neto, Arnolfo de; Bertoldi, Guilherme A. [Parana Univ., Curitiba, PR (Brazil). Radiologia Diagnostica]. E-mail: arnolfo.carvalho@avalon.sul.com.br; Gasparetto, Emerson L. [Parana Univ., Curitiba, PR (Brazil). Hospital das Clinicas. Secao de Radiologia Diagnostica; Ono, Sergio E. [Parana Univ., Curitiba, PR (Brazil). Faculdade de Medicina; Gomes, Andre F. [Diagnostico Avancado Por Imagem (DAPI), Curitiba, PR (Brazil)

    2003-06-01

    Medulloblastoma is a brain tumor of neuro epithelial origin, which represents 15 to 30% of all pediatric brain tumors, and less than 1% of CNS adult neoplasms. We report the imaging findings of 8 adult patients with medulloblastoma. The mean age was 35 years, ranging from 20 to 65 years, and the male:female rate was 3:5. The tumors were predominantly lateral (63%), hyperdense on CT scans (83%), and on the MRI, hypointense on T1 (100%) and hyperintense on T2 (80%) weighted images. It was seen intratumoral necrosis and cysts in six cases and calcifications in three. Hydrocephalus was observed in 5 cases and brain stem invasion in four. The imaging findings of medulloblastomas in adults are different of those in child, and also nonspecific. Although these tumors are uncommon in adults, they must be considered in the differential diagnosis of cerebellar masses in the posterior fossa of this age group. (author)

  14. Consensus paper on post-operative pediatric cerebellar mutism syndrome

    DEFF Research Database (Denmark)

    Gudrunardottir, Thora; Morgan, Angela T; Lux, Andrew L

    2016-01-01

    INTRODUCTION: Confusion has surrounded the description of post-operative mutism and associated morbidity in pediatric patients with cerebellar tumors for years. The heterogeneity of definitions and diagnostic features has hampered research progress within the field, and to date, no international...... guidelines exist on diagnosis, prevention, treatment, or follow-up of this debilitating condition. An international group of clinicians and researchers from multiple relevant disciplines recently formed a cohesive panel to formulate a new working definition and agree upon standardized methods for diagnosis...... and follow-up. METHODS: Consensus was obtained using the modified nominal group technique, involving four rounds of online Delphi questionnaires interspersed with a structured consensus conference with lectures, group work, and open discussion sessions. RESULTS: A new, proposed definition of "post-operative...

  15. Cerebellar infarct with neurogenic pulmonary edema following viper bite

    Directory of Open Access Journals (Sweden)

    Salil Gupta

    2012-01-01

    Full Text Available Russell′s viper (Daboia russelli bites are well known to cause bleeding complications. However, thrombotic complications are rare. We present the case details of a female who was bitten by a Russell′s viper (Daboia russelli in her village. She then developed features of envenomation in the form of hemorrhagic episodes. She received 27 vials of polyvalent anti-snake venom to which the hemorrhagic complications responded. After about 48 h of the bite she developed features of cerebellar infarct along with pulmonary edema which was in all probability neurogenic in origin. She was managed with mechanical ventilation and extra ventricular drainage with good recovery. We discuss the likely pathogenesis of the infarct and pulmonary edema occurring in a patient with viper bite and other features of envenomation.

  16. Nerve growth factor enhances DNA synthesis in cultured cerebellar neuroblasts.

    Science.gov (United States)

    Confort, C; Charrasse, S; Clos, J

    1991-10-01

    The cerebellar neuroblasts in primary cultures from five-day-old rats bore NGF receptor immunoreactivity, suggesting a potential responsive to NGF. At low plating density, NGF was found to enhance DNA synthesis in these cells in a dose-dependent manner. As these cells synthesize NGF, one possibility to account for the lack of response of neuroblasts plated at high density is that the amount of endogenous trophic agent produced in this culture condition is sufficient to ensure an optimal effect. The results demonstrate that premitotic neuroblasts in the CNS, as well postmitotic neurons, are responsive to NGF. At the early stage of its development, the cerebellum therefore appears to be a very good autocrine model of NGF action.

  17. Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells.

    Science.gov (United States)

    Watanabe, Masahiko

    2008-03-01

    Cerebellar Purkinje cells (PCs) play a principal role in motor coordination and motor learning. To fulfill these functions, PCs receive and integrate two types of excitatory inputs, climbing fiber (CF) and parallel fiber (PF). CFs are projection axons from the inferior olive, and convey error signals to PCs. On the other hand, PFs are T-shaped axons of cerebellar granule cells, and convey sensory and motor information carried through the pontocerebellar and spinocerebellar mossy fiber pathways. The most remarkable feature of PC circuits is the highly territorial innervation by these two excitatory afferents. A single climbing CF powerfully and exclusively innervates proximal PC dendrites, whereas hundreds of thousands of PFs innervate distal PC dendrites. Recent studies using gene-manipulated mice have been elucidating that the PC circuitry is formed and maintained by molecular mechanisms that fuel homosynaptic competition among CFs and heterosynaptic competition between CFs and PFs. GluRdelta2 (a PC-specific glutamate receptor) and precerebellin or Cbln1 (a granule cell-derived secretory protein) cooperatively work for selective strengthening of PF-PC synapses, and prevent excessive distal extension of CFs that eventually causes multiple innervation at distal dendrites. In contrast, P/Q-type Ca2+ channels, which mediate Ca2+ influx upon CF activity, selectively strengthen the innervation by a single main CF, and expel PFs and other CFs from proximal dendrites that it innervates. Therefore, we now understand that owing to these mechanisms, territorial innervation by CFs and PFs is properly structured and mono-innervation by CFs is established. Several key issues for future study are also discussed.

  18. Cerebellar stimulation for cerebral palsy--double blind study.

    Science.gov (United States)

    Davis, R; Schulman, J; Delehanty, A

    1987-01-01

    Twenty spastic cerebral palsy (CP) patients undergoing chronic cerebellar stimulation (CCS) for reduction of spasticity and improvement in function have participated in a double-blind study. Seven US centers involving 9 neurosurgeons (1984-6) have replaced the depleted Neurolith 601 fully implantable pulse generator (Pacesetter Systems Incorp.-Neurodyne Corp., Sylmar, CA) with new units in 19 CP patients, 1 patient entered the study following his initial implant. A magnetically controllable switch was placed in line between the Neurolith stimulator and the cerebellar lead, so allowing switching sequences for the study. Physical therapists, living in the vicinity of the patient's home, carried out two quantitative evaluations: 1. Joint angle motion measurements (passive and active). 2. Motor performance testing was done when possible and included: reaction time, hand dynamonetry, grooved peg board placement, hand/foot tapping, and rotary pursuit testing. Testing was done presurgery, at 2 weeks postimplant, then the switch was activated either "on" or "off" to a schedule, with testing and reswitching at 1, 2 and 4 months, then the switch was left turned "on". Of the 20 patients, 16 finished the tests, 2 patients failed to finish and 2 had switch problems and were deleted from the study. Two of the 16 patients were "off" through the entire testing. Of the 14 that had periods of the stimulator being "on", 10 patients (72%) had quantitative improvements of over 20%, (1 pt: 50+% improvements; 4 pts: 30-50%, 5 pts: 20-30%); while 1 patient (7%) had improvements in the 10-20% level, whereas 3 patients (21%) showed no improvement.

  19. Cerebellar Development and Plasticity: Perspectives for Motor Coordination Strategies, for Motor Skills, and for Therapy

    Directory of Open Access Journals (Sweden)

    J. D. Swinny

    2005-01-01

    Full Text Available The role of the mammalian cerebellum ranges from motor coordination, sensory-motor integration, motor learning, and timing to nonmotor functions such as cognition. In terms of motor function, the development of the cerebellum is of particular interest because animal studies show that the development of the cerebellar cortical circuitry closely parallels motor coordination. Ultrastructural analysis of the morphological development of the cerebellar circuitry, coupled with the temporal and spatial identification of the neurochemical substrates expressed during development, will help to elucidate their roles in the establishment of the cerebellar circuitry and hence motor activity. Furthermore, the convenience of a number of naturally occurring mouse mutations has allowed a functional dissection of the various cellular elements that make up the cerebellar circuitry. This understanding will also help in the approach to possible therapies of pathologies arising during development because tile cerebellum is especially prone to such perturbation because of its late development.

  20. Effects of drotaverine hydrochloride on viability of rat cultured cerebellar granulocytes.

    Science.gov (United States)

    Demushkin, V P; Zhavoronkova, E V; Khaspekov, L G

    2012-02-01

    The neurocytotoxic effect of drotaverine hydrochloride was studied in culture of rat cerebellar granulocytes. Incubation of cells with 100 and 250 μM drotaverine reduced neuronal survival to 60 and 4%, respectively.

  1. Uneven distribution of NG2 cells in the rat cerebellar vermis and changes in aging

    Directory of Open Access Journals (Sweden)

    S. Lomoio

    2012-06-01

    Full Text Available We describe by NG2 (neuron-glia chondroitin sulphate proteoglycan 2 immunocytochemistry an uneven distribution of NG2 glial cells in the rat cerebellum, being them more represented in the central lobules of the cerebellar vermis, belonging to the cerebrocerebellum. The cerebellar distribution of NG2 cells changes in aging rats, in which the area where the cells appear to be densely scattered throughout all cerebellar layers involves also more rostral and caudal lobules. In addition, in aging rats, in the most rostral and caudal lobules belonging to the spinocerebellum, punctate reaction product is present at the apical pole of Purkinje cells, i.e. in the area where the majority of synapses between olivary climbing fibers and Purkinje cells occur. Data suggest that the different distribution of NG2 cells is correlated to differences in physiology among cerebellar areas and reflects changes during aging.

  2. Post-traumatic cerebellar infarction due to vertebral artery foramina fracture: case report

    Directory of Open Access Journals (Sweden)

    Moscote-Salazar Luis Rafael

    2016-03-01

    Full Text Available Posttraumatic cerebral infarction is an uncommon cause of morbidity and mortality and many studies have highlighted that trauma needs to considered as causative factor for cerebellar infarction. We present a case of cerebellar infarction in a 35 year old young patient secondary to vertebral fracture involving the vertebral foramen and vertebral artery injury. CT scan cervical spine showed C2-3 fracture on left side with fracture extending into the left vertebral foramen. A CT scan angiogram could not be performed because of poor neurological status. Possibly the infarction was due to left vertebral artery injury. Without surgical intervention prognosis of these patients remain poor. Prognosis of patients with traumatic cerebellar infarction depends on the neurological status of the patient, intrinsic parenchymal damage and more importantly extrinsic compression of the brainstem by the edematous cerebellar hemispheres.

  3. Evolving Models of Pavlovian Conditioning : Cerebellar Cortical Dynamics in Awake Behaving Mice

    NARCIS (Netherlands)

    Ten Brinke, Michiel M; Boele, Henk-Jan; Spanke, Jochen K; Potters, Jan-Willem; Kornysheva, Katja; Wulff, Peer; IJpelaar, Anna C H G; Koekkoek, Sebastiaan K E; De Zeeuw, Chris I

    2015-01-01

    Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs).

  4. Uneven distribution of NG2 cells in the rat cerebellar vermis and changes in aging

    Science.gov (United States)

    Lomoio, S.; Necchi, D.; Scherini, E.

    2012-01-01

    We describe by NG2 (neuron-glia chondroitin sulphate proteoglycan 2) immunocytochemistry an uneven distribution of NG2 glial cells in the rat cerebellum, being them more represented in the central lobules of the cerebellar vermis, belonging to the cerebrocerebellum. The cerebellar distribution of NG2 cells changes in aging rats, in which the area where the cells appear to be densely scattered throughout all cerebellar layers involves also more rostral and caudal lobules. In addition, in aging rats, in the most rostral and caudal lobules belonging to the spinocerebellum, punctate reaction product is present at the apical pole of Purkinje cells, i.e. in the area where the majority of synapses between olivary climbing fibers and Purkinje cells occur. Data suggest that the different distribution of NG2 cells is correlated to differences in physiology among cerebellar areas and reflects changes during aging. PMID:23027343

  5. A PET study of cerebellar metabolism in normal and abnormal states

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, M.; Alavi, A.; Chawluk, J.; Silver, F.; Dann, R.; Rosen, M.; Reivich, M.

    1985-05-01

    The authors studied cerebellar metabolism under varying conditions of sensory stimulation. Cerebellar glucose consumption was measured by positron emission scanning and 18F-fluorodeoxyglucose in 64 subjects. Cerebellar metabolism relative to the whole brain (CM), and the asymmetry of metabolism between the cerebellar hemispheres (CA) was determined. The lowest CM occurred with maximal sensory deprivation, eyes and ears closed, (CM=96%, n=6). CM increased nonsignificantly with visual stimulation (CM=99%,n=17) and was highest for auditory stimulation (CM=104%,n=10,p<.05). CA was unaffected by sensory input. Under ambient conditions the CM values were 101%, 113% and 135% respectively for young controls (n=9, age=22), old controls (n=8, age=61) and Alzheimer patients (SDAT, n=14, age=69). This difference was significant for SDAT vs young and old controls and was nearly significant for young vs old controls.

  6. Changes in cerebro-cerebellar interaction during response inhibition after performance improvement.

    Science.gov (United States)

    Hirose, Satoshi; Jimura, Koji; Kunimatsu, Akira; Abe, Osamu; Ohtomo, Kuni; Miyashita, Yasushi; Konishi, Seiki

    2014-10-01

    It has been demonstrated that motor learning is supported by the cerebellum and the cerebro-cerebellar interaction. Response inhibition involves motor responses and the higher-order inhibition that controls the motor responses. In this functional MRI study, we measured the cerebro-cerebellar interaction during response inhibition in two separate days of task performance, and detected the changes in the interaction following performance improvement. Behaviorally, performance improved in the second day, compared to the first day. The psycho-physiological interaction (PPI) analysis revealed the interaction decrease from the right inferior frontal cortex (rIFC) to the cerebellum (lobule VII or VI). It was also revealed that the interaction increased from the same cerebellar region to the primary motor area. These results suggest the involvement of the cerebellum in response inhibition, and raise the possibility that the performance improvement was supported by the changes in the cerebro-cerebellar interaction.

  7. A case report of patient with cerebellar variant of stiff person syndrome.

    Science.gov (United States)

    Maludzińska, Ewa; Rudzińska, Monika; Stępień, Artur; Szczudlik, Andrzej

    2016-01-01

    Stiff person syndrome (SPS) is a rare autoimmune neurological disorder with antibodies against antigens involved in neurotransmission of gamma-aminobutyric acid (GABA). About 10% of patients with SPS may develop ataxia. This cerebellar variant is a distinct subset of SPS with more severe and complex clinical phenotype. We report the clinical, neuropsychological and neuroradiological findings in a 39-year-old female with cerebellar variant of SPS.

  8. Cerebellar Lesions of Uremic Encephalopathy on MRI in Hemodialyzed Diabetic Patient: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Min Chul; Lee, Seung Young; Cha, Sang Hoon; Cho, Bum Sang; Kang, Min Ho [Dept. of Radiology, Chungbuk National Universty Hospital, Cheongju (Korea, Republic of)

    2012-01-15

    Uremic encephalopathy (UE) is a well-known complication of uremia, but its pathophysiology remains unknown. It is widely reported that in UE, the bilateral basal ganglia (BG) shows hyperintensities on T2/fluid attenuated inversion recovery magnetic resonance imaging (MRI), but cerebellar lesions are extremely rare, with to the best of our knowledge, only one case reported to date. We describe the findings from computed tomography and MRI for typical BG and cerebellar vermis lesions.

  9. Encephalitis due to antibodies to voltage gated potassium channel (VGKC with cerebellar involvement in a teenager

    Directory of Open Access Journals (Sweden)

    Megan M Langille

    2015-01-01

    Full Text Available Encephalitis due to antibodies to voltage gated potassium channel (VGKC typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  10. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager.

    Science.gov (United States)

    Langille, Megan M; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  11. A Turkish newborn infant with cerebellar agenesis/neonatal diabetes mellitus and PTF1A mutation.

    Science.gov (United States)

    Tutak, E; Satar, M; Yapicioğlu, H; Altintaş, A; Narli, N; Hergüner, O; Bayram, Y

    2009-01-01

    Classical neonatal diabetes mellitus is defined as hyperglycemia that occurs within the first month of life in term infants. It can be either permanent or transient. Cerebellar agenesis and permanent neonatal diabetes has been previously reported as a new autosomal recessive disorder. Pancreas Transcription Factor 1 Alpha (PTF1A) mutations have been related with this constellation of abnormalities. Here we report a new case of cerebellar agenesis and neonatal diabetes mellitus whose parents are PTF1A mutation carriers.

  12. Cerebellar involvement that occurred during treatment of Legionella pneumonia: A case report

    Directory of Open Access Journals (Sweden)

    Ozlem Alici

    2013-06-01

    Full Text Available Legionnaires’ disease can appear with different levels of severity. A case of a previously healthy lady with communityacquiredpneumonia who progressed to severe acute respiratory distress syndrome and developed cerebellar dysfunctionis reported. In patients presenting with neurological symptoms after an episode of pneumonia, Legionella infectionshould be considered. J Microbiol Infect Dis 2013; 3(2: 83-85Key words: Legionella, cerebellar dysfunction, dysarthria, ataxia

  13. Post-traumatic cerebellar infarction due to vertebral artery foramina fracture: case report

    OpenAIRE

    Moscote-Salazar Luis Rafael; Rubiano Andres M.; Calderon-Miranda Willem Guillermo; Agrawal Amit

    2016-01-01

    Posttraumatic cerebral infarction is an uncommon cause of morbidity and mortality and many studies have highlighted that trauma needs to considered as causative factor for cerebellar infarction. We present a case of cerebellar infarction in a 35 year old young patient secondary to vertebral fracture involving the vertebral foramen and vertebral artery injury. CT scan cervical spine showed C2-3 fracture on left side with fracture extending into the left vertebral foramen. A CT scan angiogram c...

  14. Cerebellar Development and Plasticity: Perspectives for Motor Coordination Strategies, for Motor Skills, and for Therapy

    OpenAIRE

    Swinny, J. D; van der Want, J.J.L.; Gramsbergen, A.

    2005-01-01

    The role of the mammalian cerebellum ranges from motor coordination, sensory-motor integration, motor learning, and timing to nonmotor functions such as cognition. In terms of motor function, the development of the cerebellum is of particular interest because animal studies show that the development of the cerebellar cortical circuitry closely parallels motor coordination. Ultrastructural analysis of the morphological development of the cerebellar circuitry, coupled with the temporal and spat...

  15. A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2016-01-01

    Full Text Available The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN. To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs and intuitionistic fuzzy cross-entropy (IFCE with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.

  16. A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification.

    Science.gov (United States)

    Zhao, Jing; Lin, Lo-Yi; Lin, Chih-Min

    2016-01-01

    The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN). To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs) and intuitionistic fuzzy cross-entropy (IFCE) with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.

  17. Intra-cerebellar infusion of the protein kinase Mzeta (PKMζ) inhibitor ZIP disrupts eyeblink classical conditioning

    Science.gov (United States)

    Chihabi, Kutibh; Morielli, Anthony D.; Green, John T.

    2016-01-01

    PKM-ζ, a constitutively active N-terminal truncated form of PKC-ζ, has long been implicated in a cellular correlate of learning, long-term potentiation (LTP). Inhibition of PKM-ζ with Zeta-inhibitory peptide (ZIP) has been shown in many brain structures to disrupt maintenance of AMPA receptors, irreversibly disrupting numerous forms of learning and memory that have been maintained for weeks. Delay eyeblink conditioning (EBC) is an established model for the assessment of cerebellar learning; here, we show that PKC-ζ and PKM-ζ are highly expressed in the cerebellar cortex, with highest expression found in Purkinje cell (PC) nuclei. Despite being highly expressed in the cerebellar cortex, no studies have examined how regulation of cerebellar PKM-ζ may affect cerebellar-dependent learning and memory. Given its disruption of learning in other brain structures, we hypothesized that ZIP would also disrupt delay EBC. We have shown that infusion of ZIP into the lobulus simplex of the rat cerebellar cortex can indeed significantly disrupt delay EBC. PMID:26949968

  18. Adaptive control of 2-wheeled balancing robot by cerebellar neuronal network model.

    Science.gov (United States)

    Tanaka, Yoshiyuki; Ohata, Yohei; Kawamoto, Tomohiro; Hirata, Yutaka

    2010-01-01

    A new adaptive motor controller was constructed, and tested on the control of a 2-wheeled balancing robot in simulation and real world. The controller consists of a feedback (PD) controller and a cerebellar neuronal network model. The structure of the cerebellar model was configured based upon known anatomical neuronal connection in the cerebellar cortex. Namely it consists of 120 granular (Gr) cells, 1 Golgi cell, 6 basket/stellate cells, and 1 Purkinje (Pk) cell. Each cell is described by a typical artificial neuron model that outputs a weighted sum of inputs after a sigmoidal nonlinear transformation. The 2 components of the proposed controller work in parallel, in a way that the cerebellar model adaptively modifies the synaptic weights between Gr and Pk as in the real cerebellum to minimize the output of the PD controller. We demonstrate that the proposed controller successfully controls a 2-wheeled balancing robot, and the cerebellar model rapidly takes over the PD controller in simulation. We also show that an abrupt load change on the robot, which the PD controller alone cannot compensate for, can be adaptively compensated by the cerebellar model. We further confirmed that the proposed controller can be applied to the control of the robot in real world.

  19. TERRA INCOGNITA - CEREBELLAR CONTRIBUTIONS TO NEUROPSYCHIATRIC AND COGNITIVE DYSFUNCTION IN BEHAVIOURAL VARIANT FRONTOTEMPORAL DEMENTIA

    Directory of Open Access Journals (Sweden)

    Rachel H Tan

    2015-07-01

    Full Text Available Although converging evidence has positioned the human cerebellum as an important relay for intact cognitive and neuropsychiatric processing, changes in this large structure remain mostly overlooked in behavioural variant frontotemporal dementia (bvFTD, a disease which is characterized by cognitive and neuropsychiatric deficits. The present study assessed whether degeneration in specific cerebellar subregions associate with indices of cognition and neuropsychiatric performance in bvFTD. Our results demonstrate a relationship between cognitive and neuropsychiatric decline across various domains of memory, language, emotion, executive, visuospatial function and motivation and the degree of grey matter degeneration in cerebellar lobules V-VII. Most notably, bilateral cerebellar lobule VII and the posterior vermis emerged as distinct for memory processes, the right cerebellar hemisphere underpinned emotion, and the posterior vermis was highlighted in language dysfunction in bvFTD. Based on cortico-cerebellar connectivity maps, these findings in the cerebellum are consistent with the neural connections with the cortices involved in these domains in patients with bvFTD. Overall, the present study underscores the significance of cortical-cerebellar networks associated with cognition and neuropsychiatric dysfunction in bvFTD.

  20. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  1. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities.

    Science.gov (United States)

    Farley, M M; Swulius, M T; Waxham, M N

    2015-09-24

    Electron tomography and immunogold labeling were used to analyze similarities and differences in the morphology and protein composition of postsynaptic densities (PSDs) isolated from adult rat cerebella, hippocampi, and cortices. There were similarities in physical dimensions and gross morphology between cortical, hippocampal and most cerebellar PSDs, although the morphology among cerebellar PSDs could be categorized into three distinct groups. The majority of cerebellar PSDs were composed of dense regions of protein, similar to cortical and hippocampal PSDs, while others were either composed of granular or lattice-like protein regions. Significant differences were found in protein composition and organization across PSDs from the different brain regions. The signaling protein, βCaMKII, was found to be a major component of each PSD type and was more abundant than αCaMKII in both hippocampal and cerebellar PSDs. The scaffold molecule PSD-95, a major component of cortical PSDs, was found absent in a fraction of cerebellar PSDs and when present was clustered in its distribution. In contrast, immunogold labeling for the proteasome was significantly more abundant in cerebellar and hippocampal PSDs than cortical PSDs. Together, these results indicate that PSDs exhibit remarkable diversity in their composition and morphology, presumably as a reflection of the unique functional demands placed on different synapses.

  2. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  3. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia.

    Science.gov (United States)

    Boczonadi, Veronika; Müller, Juliane S; Pyle, Angela; Munkley, Jennifer; Dor, Talya; Quartararo, Jade; Ferrero, Ileana; Karcagi, Veronika; Giunta, Michele; Polvikoski, Tuomo; Birchall, Daniel; Princzinger, Agota; Cinnamon, Yuval; Lützkendorf, Susanne; Piko, Henriett; Reza, Mojgan; Florez, Laura; Santibanez-Koref, Mauro; Griffin, Helen; Schuelke, Markus; Elpeleg, Orly; Kalaydjieva, Luba; Lochmüller, Hanns; Elliott, David J; Chinnery, Patrick F; Edvardson, Shimon; Horvath, Rita

    2014-07-03

    The exosome is a multi-protein complex, required for the degradation of AU-rich element (ARE) containing messenger RNAs (mRNAs). EXOSC8 is an essential protein of the exosome core, as its depletion causes a severe growth defect in yeast. Here we show that homozygous missense mutations in EXOSC8 cause progressive and lethal neurological disease in 22 infants from three independent pedigrees. Affected individuals have cerebellar and corpus callosum hypoplasia, abnormal myelination of the central nervous system or spinal motor neuron disease. Experimental downregulation of EXOSC8 in human oligodendroglia cells and in zebrafish induce a specific increase in ARE mRNAs encoding myelin proteins, showing that the imbalanced supply of myelin proteins causes the disruption of myelin, and explaining the clinical presentation. These findings show the central role of the exosomal pathway in neurodegenerative disease.

  4. Segmental identity and cerebellar granule cell induction in rhombomere 1

    Directory of Open Access Journals (Sweden)

    Bell Esther

    2004-06-01

    Full Text Available Abstract Background Cerebellar granule cell precursors are specifically generated within the hindbrain segment, rhombomere 1, which is bounded rostrally by the midbrain/hindbrain isthmus and caudally by the boundary of the Hoxa2 expression domain. While graded signals from the isthmus have a demonstrable patterning role within this region, the significance of segmental identity for neuronal specification within rhombomere 1 is unexplored. We examined the response of granule cell precursors to the overexpression of Hoxa2, which normally determines patterns of development specific to the hindbrain. How much does the development of the cerebellum, a midbrain/hindbrain structure, reflect its neuromeric origin as a hindbrain segment? Results We show that a Gbx2-positive, Otx2-/Hoxa2-negative territory corresponding to rhombomere 1 forms prior to an identifiable isthmic organiser. Early global overexpression of Hoxa2 at embryonic day 0 has no effect on the expression of isthmic signalling molecules or the allocation of rhombomere 1 territory, but selectively results in the loss of granule cell markers at embryonic day 6 and the depletion of cell bodies from the external granule cell layer. By comparison the trochlear nucleus and locus coeruleus form normally in ventral rhombomere 1 under these conditions. Microsurgery, coupled with electroporation, to target Hoxa2 overexpression to rhombic lip precursors, reveals a profound, autonomous respecification of migration. Rhombic lip derivatives, normally destined to occupy the external granule cell layer, violate the cerebellar boundary to form a ventrolateral nucleus in a position comparable to that occupied by rhombic lip derived neurons in rhombomere 2. Conclusions Different overexpression strategies reveal that the recognition of migration cues by granule cell precursors is dependent on their identity as rhombomere 1 derivatives. Segmental patterning cues operate autonomously within the rhombic lip

  5. Prion pathogenesis is faithfully reproduced in cerebellar organotypic slice cultures.

    Directory of Open Access Journals (Sweden)

    Jeppe Falsig

    Full Text Available Prions cause neurodegeneration in vivo, yet prion-infected cultured cells do not show cytotoxicity. This has hampered mechanistic studies of prion-induced neurodegeneration. Here we report that prion-infected cultured organotypic cerebellar slices (COCS experienced progressive spongiform neurodegeneration closely reproducing prion disease, with three different prion strains giving rise to three distinct patterns of prion protein deposition. Neurodegeneration did not occur when PrP was genetically removed from neurons, and a comprehensive pharmacological screen indicated that neurodegeneration was abrogated by compounds known to antagonize prion replication. Prion infection of COCS and mice led to enhanced fodrin cleavage, suggesting the involvement of calpains or caspases in pathogenesis. Accordingly, neurotoxicity and fodrin cleavage were prevented by calpain inhibitors but not by caspase inhibitors, whereas prion replication proceeded unimpeded. Hence calpain inhibition can uncouple prion replication from its neurotoxic sequelae. These data validate COCS as a powerful model system that faithfully reproduces most morphological hallmarks of prion infections. The exquisite accessibility of COCS to pharmacological manipulations was instrumental in recognizing the role of calpains in neurotoxicity, and significantly extends the collection of tools necessary for rigorously dissecting prion pathogenesis.

  6. Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering.

    Science.gov (United States)

    Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi

    2016-01-01

    The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children.

  7. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Avner Meoded

    2015-01-01

    Full Text Available Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS, a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.

  8. Increased cerebellar gray matter volume in head chefs

    Science.gov (United States)

    Sarica, Alessia; Martino, Iolanda; Fabbricatore, Carmelo; Tomaiuolo, Francesco; Rocca, Federico; Caracciolo, Manuela; Quattrone, Aldo

    2017-01-01

    Objective Chefs exert expert motor and cognitive performances on a daily basis. Neuroimaging has clearly shown that that long-term skill learning (i.e., athletes, musicians, chess player or sommeliers) induces plastic changes in the brain thus enabling tasks to be performed faster and more accurately. How a chef's expertise is embodied in a specific neural network has never been investigated. Methods Eleven Italian head chefs with long-term brigade management expertise and 11 demographically-/ psychologically- matched non-experts underwent morphological evaluations. Results Voxel-based analysis performed with SUIT, as well as, automated volumetric measurement assessed with Freesurfer, revealed increased gray matter volume in the cerebellum in chefs compared to non-experts. The most significant changes were detected in the anterior vermis and the posterior cerebellar lobule. The magnitude of the brigade staff and the higher performance in the Tower of London test correlated with these specific gray matter increases, respectively. Conclusions We found that chefs are characterized by an anatomical variability involving the cerebellum. This confirms the role of this region in the development of similar expert brains characterized by learning dexterous skills, such as pianists, rock climbers and basketball players. However, the nature of the cellular events underlying the detected morphological differences remains an open question. PMID:28182712

  9. Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering

    Directory of Open Access Journals (Sweden)

    Changqing eWang

    2016-05-01

    Full Text Available The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI. For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC. SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organisation in children.

  10. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis.

    Science.gov (United States)

    Meoded, Avner; Morrissette, Arthur E; Katipally, Rohan; Schanz, Olivia; Gotts, Stephen J; Floeter, Mary Kay

    2015-01-01

    Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.

  11. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function.

    Science.gov (United States)

    Naro, Antonino; Bramanti, Alessia; Leo, Antonino; Manuli, Alfredo; Sciarrone, Francesca; Russo, Margherita; Bramanti, Placido; Calabrò, Rocco Salvatore

    2017-01-07

    The cerebellum regulates several motor functions through two main mechanisms, the cerebellum-brain inhibition (CBI) and the motor surround inhibition (MSI). Although the exact cerebellar structures and functions involved in such processes are partially known, Purkinje cells (PC) and their surrounding interneuronal networks may play a pivotal role concerning CBI and MSI. Cerebellar transcranial alternating current stimulation (tACS) has been proven to shape specific cerebellar components in a feasible, safe, effective, and non-invasive manner. The aim of our study was to characterize the cerebellar structures and functions subtending CBI and MSI using a tACS approach. Fifteen healthy individuals underwent a cerebellar tACS protocol at 10, 50, and 300 Hz, or a sham-tACS over the right cerebellar hemisphere. We measured the tACS aftereffects on motor-evoked potential (MEP) amplitude, CBI induced by tACS (tiCBI) at different frequencies, MSI, and hand motor task performance. None of the participants had any side effect related to tACS. After 50-Hz tACS, we observed a clear tiCBI-50Hz weakening (about +30%, p  0.6). Our preliminary data suggest that PC may represent the last mediator of tiCBI and that the surrounding interneuronal network may have an important role in updating MSI, tiCBI, and M1 excitability during tonic muscle contraction, by acting onto the PC. The knowledge of these neurophysiological issues offers new cues to design innovative, non-invasive neuromodulation protocols to shape cerebellar-cerebral functions.

  12. Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates

    Directory of Open Access Journals (Sweden)

    Bob eJacobs

    2014-04-01

    Full Text Available Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee, carnivores (Siberian tiger, clouded leopard, cetartiodactyls (humpback whale, giraffe and primates (human, common chimpanzee. Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317 of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967 and rodents (Palay and Chan-Palay, 1974, although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures.

  13. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  14. A magnetic resonance imaging study of cerebellar volume in tuberous sclerosis complex.

    Science.gov (United States)

    Weisenfeld, Neil I; Peters, Jurriaan M; Tsai, Peter T; Prabhu, Sanjay P; Dies, Kira A; Sahin, Mustafa; Warfield, Simon K

    2013-02-01

    The cerebellum plays an important role in motor learning and cognition, and structural cerebellar abnormalities have been associated with cognitive impairment. In tuberous sclerosis complex, neurologic outcome is highly variable, and no consistent imaging or pathologic determinant of cognition has been firmly established. The cerebellum calls for specific attention because mouse models of tuberous sclerosis complex have demonstrated a loss of cerebellar Purkinje cells, and cases of human histologic data have demonstrated a similar loss in patients. We hypothesized that there might be a common cerebellar finding in tuberous sclerosis complex that could be measured as morphometric changes with magnetic resonance imaging. Using a robust, automated image analysis procedure, we studied 36 patients with tuberous sclerosis complex and age-matched control subjects and observed significant volume loss among patients in the cerebellar cortices and vermis. Furthermore, this effect was strongest in a subgroup of 19 patients with a known, pathogenic mutation of the tuberous sclerosis 2 gene and impacted all cerebellar structures. We conclude that patients with tuberous sclerosis complex exhibit volume loss in the cerebellum, and this loss is larger and more widespread in patients with a tuberous sclerosis 2 mutation.

  15. Cerebellar Hemorrhage due to a Direct Carotid–Cavernous Fistula after Surgery for Maxillary Cancer

    Science.gov (United States)

    Kamio, Yoshinobu; Hiramatsu, Hisaya; Kamiya, Mika; Yamashita, Shuhei; Namba, Hiroki

    2017-01-01

    Infratentorial cerebral hemorrhage due to a direct carotid–cavernous fistula (CCF) is very rare. To our knowledge, only four such cases have been reported. Cerebellar hemorrhage due to a direct CCF has not been reported. We describe a 63-year-old female who presented with reduced consciousness 3 days after undergoing a maxillectomy for maxillary cancer. Computed tomography showed a cerebellar hemorrhage. Magnetic resonance angiography showed a left-sided direct CCF draining into the left petrosal and cerebellar veins through the left superior petrosal sinus (SPS). Her previous surgery had sacrificed the pterygoid plexus and facial vein. Increased blood flow and reduced drainage could have led to increased venous pressure in infratentorial veins, including the petrosal and cerebellar veins. The cavernous sinus has several drainage routes, but the SPS is one of the most important routes for infratentorial venous drainage. Stenosis or absence of the posterior segment of the SPS can also result in increased pressure in the cerebellar and pontine veins. We emphasize that a direct CCF with cortical venous reflux should be precisely evaluated to determine the hemodynamic status and venous drainage from the cavernous sinus. PMID:28061497

  16. The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression

    Science.gov (United States)

    Whittaker, Danielle E.; Riegman, Kimberley L.H.; Kasah, Sahrunizam; Mohan, Conor; Yu, Tian; Sala, Blanca Pijuan; Hebaishi, Husam; Caruso, Angela; Marques, Ana Claudia; Michetti, Caterina; Smachetti, María Eugenia Sanz; Shah, Apar; Sabbioni, Mara; Kulhanci, Omer; Tee, Wee-Wei; Reinberg, Danny; Scattoni, Maria Luisa; McGonnell, Imelda; Wardle, Fiona C.; Fernandes, Cathy

    2017-01-01

    The mechanisms underlying the neurodevelopmental deficits associated with CHARGE syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems, and autistic features, have not been identified. CHARGE syndrome has been associated with mutations in the gene encoding the ATP-dependent chromatin remodeler CHD7. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown. Here we have shown that deletion of Chd7 from cerebellar granule cell progenitors (GCps) results in reduced GCp proliferation, cerebellar hypoplasia, developmental delay, and motor deficits in mice. Genome-wide expression profiling revealed downregulated expression of the gene encoding the glycoprotein reelin (Reln) in Chd7-deficient GCps. Recessive RELN mutations have been associated with severe cerebellar hypoplasia in humans. We found molecular and genetic evidence that reductions in Reln expression contribute to GCp proliferative defects and cerebellar hypoplasia in GCp-specific Chd7 mouse mutants. Finally, we showed that CHD7 is necessary for maintaining an open, accessible chromatin state at the Reln locus. Taken together, this study shows that Reln gene expression is regulated by chromatin remodeling, identifies CHD7 as a previously unrecognized upstream regulator of Reln, and provides direct in vivo evidence that a mammalian CHD protein can control brain development by modulating chromatin accessibility in neuronal progenitors. PMID:28165338

  17. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise.

    Science.gov (United States)

    Therrien, Amanda S; Wolpert, Daniel M; Bastian, Amy J

    2016-01-01

    Reinforcement and error-based processes are essential for motor learning, with the cerebellum thought to be required only for the error-based mechanism. Here we examined learning and retention of a reaching skill under both processes. Control subjects learned similarly from reinforcement and error-based feedback, but showed much better retention under reinforcement. To apply reinforcement to cerebellar patients, we developed a closed-loop reinforcement schedule in which task difficulty was controlled based on recent performance. This schedule produced substantial learning in cerebellar patients and controls. Cerebellar patients varied in their learning under reinforcement but fully retained what was learned. In contrast, they showed complete lack of retention in error-based learning. We developed a mechanistic model of the reinforcement task and found that learning depended on a balance between exploration variability and motor noise. While the cerebellar and control groups had similar exploration variability, the patients had greater motor noise and hence learned less. Our results suggest that cerebellar damage indirectly impairs reinforcement learning by increasing motor noise, but does not interfere with the reinforcement mechanism itself. Therefore, reinforcement can be used to learn and retain novel skills, but optimal reinforcement learning requires a balance between exploration variability and motor noise.

  18. Protective Effect of PPARγ Agonists on Cerebellar Tissues Oxidative Damage in Hypothyroid Rats

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2016-01-01

    Full Text Available The aim of the current study was to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARγ agonists on cerebellar tissues oxidative damage in hypothyroid rats. The animals included seven groups: group I (control, the animals received drinking water; group II, the animals received 0.05% propylthiouracil (PTU in drinking water; besides PTU, the animals in groups III, IV, V, VI, and VII, were injected with 20 mg/kg vitamin E (Vit E, 10 or 20 mg/kg pioglitazone, and 2 or 4 mg/kg rosiglitazone, respectively. The animals were deeply anesthetized and the cerebellar tissues were removed for biochemical measurements. PTU administration reduced thiol content, superoxide dismutase (SOD, and catalase (CAT activities in the cerebellar tissues while increasing malondialdehyde (MDA and nitric oxide (NO metabolites. Vit E, pioglitazone, and rosiglitazone increased thiol, SOD, and CAT in the cerebellar tissues while reducing MDA and NO metabolites. The results of present study showed that, similar to Vit E, both rosiglitazone and pioglitazone as PPARγ agonists exerted protective effects against cerebellar tissues oxidative damage in hypothyroid rats.

  19. Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Matthew P. Kirschen

    2010-01-01

    Full Text Available Verbal working memory (VWM engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters and modality (auditory and visual dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44, insular, cingulate (BA 32, and bilateral inferior parietal/supramarginal (BA 40 regions, as well as in bilateral superior (HVI and right inferior (HVIII cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI cerebellum, bilateral occipital (BA19 and left parietal (BA7/40 cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22. In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.

  20. Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study.

    Science.gov (United States)

    Kirschen, Matthew P; Chen, S H Annabel; Desmond, John E

    2010-01-01

    Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominantly in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.

  1. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish.

    Science.gov (United States)

    Takeuchi, Miki; Yamaguchi, Shingo; Yonemura, Shigenobu; Kakiguchi, Kisa; Sato, Yoshikatsu; Higashiyama, Tetsuya; Shimizu, Takashi; Hibi, Masahiko

    2015-10-01

    Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.

  2. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Miki Takeuchi

    2015-10-01

    Full Text Available Granule cells (GCs are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs. Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.

  3. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.

    Science.gov (United States)

    Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C

    2017-01-09

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role

  4. Effect of methotrexate on cerebellar development in infant rats.

    Science.gov (United States)

    Sugiyama, Akihiko; Sun, Jing; Ueda, Kota; Furukawa, Satoshi; Takeuchi, Takashi

    2015-07-01

    Six-day-old rats were treated intraperitoneal injections with methotrexate 1 mg/kg, and the cerebellum was examined. Both the length and width of the vermis decreased in the methotrexate-treated group instead of the control from 4 day after treatment (DAT) onward. A significant reduction in the width of the external granular layer was detected on 2 and 3 DAT in the methotrexate group. By 4 DAT, the width of the external granular layer of the methotrexate group was indistinguishable from the control, and by 8 DAT, it was greater than that of the control. The molecular layer of methotrexate group on 8 and 15 DAT was thinner than that of the control. On 1 DAT, in the methotrexate group, there were many TUNEL and cleaved caspase-3-positive granular cells throughout the external granular layer, and they decreased time-dependently. On 1 DAT, in the methotrexate group, phospho-histone H3-positive cells in the external granular layer were fewer than in the control and tended to increase on 2-4 DAT. The p21-positive-rate of the external granule cells in the MTX group was higher than in the control on 1-4 DAT. These results suggested that methotrexate exposure on postnatal day 6 induces a delay, slowing in the migration of external granular cells to the inner granular layer, attributed to decrease or inhibition in the production of external granular cells that had arisen from apoptosis and the decrease in cell proliferative activity, resulting in cerebellar hypoplasia.

  5. Gravity-dependent nystagmus and inner-ear dysfunction suggest anterior and posterior inferior cerebellar artery infarct.

    Science.gov (United States)

    Shaikh, Aasef G; Miller, Benjamin R; Sundararajan, Sophia; Katirji, Bashar

    2014-04-01

    Cerebellar lesions may present with gravity-dependent nystagmus, where the direction and velocity of the drifts change with alterations in head position. Two patients had acute onset of hearing loss, vertigo, oscillopsia, nausea, and vomiting. Examination revealed gravity-dependent nystagmus, unilateral hypoactive vestibulo-ocular reflex (VOR), and hearing loss ipsilateral to the VOR hypofunction. Traditionally, the hypoactive VOR and hearing loss suggest inner-ear dysfunction. Vertigo, nausea, vomiting, and nystagmus may suggest peripheral or central vestibulopathy. The gravity-dependent modulation of nystagmus, however, localizes to the posterior cerebellar vermis. Magnetic resonance imaging in our patients revealed acute cerebellar infarct affecting posterior cerebellar vermis, in the vascular distribution of the posterior inferior cerebellar artery (PICA). This lesion explains the gravity-dependent nystagmus, nausea, and vomiting. Acute onset of unilateral hearing loss and VOR hypofunction could be the manifestation of inner-ear ischemic injury secondary to the anterior inferior cerebellar artery (AICA) compromise. In cases of combined AICA and PICA infarction, the symptoms of peripheral vestibulopathy might masquerade the central vestibular syndrome and harbor a cerebellar stroke. However, the gravity-dependent nystagmus allows prompt identification of acute cerebellar infarct.

  6. Neural correlates of cerebellar-mediated timing during finger tapping in children with fetal alcohol spectrum disorders

    Directory of Open Access Journals (Sweden)

    Lindie du Plessis

    2015-01-01

    Conclusions: The four cerebellar areas activated by the controls more during rhythmic than non-rhythmic tapping have been implicated in the production of timed responses in several previous studies. These data provide evidence linking binge-like drinking during pregnancy to poorer function in cerebellar regions involved in timing and somatosensory processing needed for complex tasks requiring precise timing.

  7. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, G H; Hösli, E; Belhage, B;

    1991-01-01

    GABAA-receptors were localized in explant cultures of rat cerebellum and in dissociated primary cultures of rat cerebellar granule cells and rat cerebellar astrocytes using the monoclonal antibody bd-17 directed against the beta-subunit of the GABAA/benzodiazepine/chloride channel complex. At the...

  8. Late onset autosomal dominant cerebellar ataxia a family description and linkage analysis with the hla system

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1991-09-01

    Full Text Available A family suffering an autosomal dominant form of late onset hereditary cerebellar ataxia is described. Eight affected family members were personally studied, and data from another four were obtained through anamnesis. The mean age of onset was 37.1±5.4 years (27-47 years. The clinical picture consisted basically of a pure ataxic cerebellar syndrome. CT-scan disclosed diffuse cerebellar atrophy with relative sparing of the brainstem (and no involvement of supratentorial structures. Neurophysiological studies (nerve conduction, VEP and BAEP were normal. Twenty-six individuals were typed for HLA histocompatibility antigens. Lod scores were calculated with the computer program LINKMAP. Close linkage of the ataxia gene with the HLA system in this family could be excluded - 0==0,02, z=(-2,17 - and the overall analysis of the lod scores suggest another chromossomal location than chromosome 6.

  9. Functional Cortical and Cerebellar Reorganization in a Case of Moyamoya Disease

    Science.gov (United States)

    Calabrò, Rocco S.; Bramanti, Placido; Baglieri, Annalisa; Corallo, Francesco; De Luca, Rosaria; De Salvo, Simona

    2015-01-01

    Background: Functional studies have been previous reported in stroke patients, but no studies of functional magnetic resonance imaging have been performed in Moyamoya disease. Objective: To assess the cortical and cerebellar reorganization in a moyamoya patient. Methods: We reported a case of a patient suffering from moyamoya disease, undergoing a neuropsychological assessment, a neurocognitive rehabilitative treatment, an electroencephalogram evaluation, and a functional magnetic resonance imaging examination. Results: The subject showed a cognitive impairment, a slow electroencephalogram activity, and the ipsi- and controlateral motor cortex and cerebellar functional magnetic resonance imaging activation. Conclusions: This is the first functional magnetic resonance imaging case study reported in moyamoya disease. We showed a cortical reorganization, which could play an important role in clinical evaluation and motor recovery. The cerebellar activation, showed after cognitive and motor rehabilitation, could support the idea that the cerebellum contains several cognitive-related subregions involved in different functional networks in moyamoya disease. PMID:25852976

  10. Nutritional cerebellar degeneration, with comments on its relationship to Wernicke disease and alcoholism.

    Science.gov (United States)

    Laureno, Robert

    2012-01-01

    Nutritional cerebellar degeneration occurs in alcoholism and other states that predispose to malnutrition, such as gastric bypass surgery. Gait ataxia is the principal clinical manifestation. Ataxia of the lower limbs is not uncommon, but upper extremity ataxia and nystagmus are rare. Atrophy of the anterior superior vermis is the primary pathological manifestation in established disease. Typically, the onset is subacute. This cerebellar disease is part of the spectrum of the Wernicke-Korsakoff syndrome, i.e. the cerebellar manifestation of Wernicke disease. It may occur with other lesions of Wernicke disease or in isolation. Rarely, with florid disease, lesions may be hemorrhagic. Active disease should be treated with thiamine in the same way that one treats Wernicke disease. Clinicopathologic correlation in this disease has provided the best evidence that the anterior superior vermis is important in coordinating bipedal locomotion.

  11. Neurological signs in 23 dogs with suspected rostral cerebellar ischaemic stroke

    DEFF Research Database (Denmark)

    Thomsen, Barbara Blicher; Garosi, Laurent; Skerritt, Geoff

    2016-01-01

    Background: In dogs with ischaemic stroke, a very common site of infarction is the cerebellum. The aim of this study was to characterise neurological signs in relation to infarct topography in dogs with suspected cerebellar ischaemic stroke and to report short-term outcome confined...... to the hospitalisation period. A retrospective multicentre study of dogs with suspected cerebellar ischaemic stroke examined from 2010–2015 at five veterinary referral hospitals was performed. Findings from clinical, neurological, and paraclinical investigations including magnetic resonance imaging were assessed....... Results: Twenty-three dogs, 13 females and 10 males with a median age of 8 years and 8 months, were included in the study. The Cavalier King Charles Spaniel (n = 9) was a commonly represented breed. All ischaemic strokes were located to the vascular territory of the rostral cerebellar artery including...

  12. Nitric oxide promotes survival of cerebellar granule neurons cultured in vitro through the Akt pathway

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Mei Li; Lihua Zhou

    2011-01-01

    In this study, cerebellar granule neurons were used to examine the role of nitric oxide on cell survival. The N-methyl-D-aspartic acid receptor antagonist, MK-801, and the soluble guanylate cyclase antagonist, 1H-[1, 2, 4]oxadiazolo-[4, 3-a] quinoxalin-1-one, decreased cell viability, induced caspase-3, and decreased phosphorylated-Akt levels, suggesting that blockade of nitric oxide production promotes apoptosis of differentiating cerebellar granule neurons. After administration of sodium nitroprusside, an endogenous nitric oxide donor, cell viability recovered,caspase-3 expression was decreased, and phosphorylated-Akt levels increased. This study provides direct evidence that nitric oxide can sustain the survival of developing cerebellar granule neurons in vitro through the nitric oxide-Akt pathway. Moreover, endogenous nitric oxide exerts these effects in a cyclic guanosine monophosphate-dependent manner while exogenous nitric oxide does so in a cyclic guanosine monophosphate-independent manner.

  13. Automated segmentation of the cerebellar lobules using boundary specific classification and evolution.

    Science.gov (United States)

    Bogovic, John A; Bazin, Pierre-Louis; Ying, Sarah H; Prince, Jerry L

    2013-01-01

    The cerebellum is instrumental in coordinating many vital functions ranging from speech and balance to eye movement. The effect of cerebellar pathology on these functions is frequently examined using volumetric studies that depend on consistent and accurate delineation, however, no existing automated methods adequately delineate the cerebellar lobules. In this work, we describe a method we call the Automatic Classification of Cerebellar Lobules Algorithm using Implicit Multi-boundary evolution (ACCLAIM). A multiple object geometric deformable model (MGDM) enables each boundary surface of each individual lobule to be evolved under different level set speeds. An important innovation described in this work is that the speed for each lobule boundary is derived from a classifier trained specifically to identify that boundary. We compared our method to segmentations obtained using the atlas-based and multi-atlas fusion techniques, and demonstrate ACCLAIM's superior performance.

  14. First report of cerebellar abiotrophy in an Arabian foal from Argentina

    Directory of Open Access Journals (Sweden)

    S.A. Sadaba

    2016-12-01

    Full Text Available Evidence of cerebellar abiotrophy (CA was found in a six-month-old Arabian filly with signs of incoordination, head tremor, wobbling, loss of balance and falling over, consistent with a cerebellar lesion. Normal hematology profile blood test and cerebrospinal fluid analysis excluded infectious encephalitis, and serological testing for Sarcocystis neurona was negative. The filly was euthanized. Postmortem X-ray radiography of the cervical cephalic region identified not abnormalities, discounting spinal trauma. The histopathological analysis of serial transverse cerebellar sections by electron microscopy revealed morphological characteristics of apoptotic cells with pyknotic nuclei and degenerate mitochondria, cytoplasmic condensation and areas with absence of Purkinje cells, matching with CA histopathological characteristics. The indirect DNA test for CA was positive in the filly, and DNA test confirmed the CA carrier state in the parents and the recessive inheritance of the disease. To our knowledge this is the first report of a CA case in Argentina.

  15. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine

    2013-01-01

    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  16. First report of cerebellar abiotrophy in an Arabian foal from Argentina

    Science.gov (United States)

    Sadaba, S.A.; Madariaga, G.J.; Botto, C.M. Corbi; Carino, M.H.; Zappa, M.E.; García, P. Peral; Olguín, S.A.; Massone, A.; Díaz, S.

    2016-01-01

    Evidence of cerebellar abiotrophy (CA) was found in a six-month-old Arabian filly with signs of incoordination, head tremor, wobbling, loss of balance and falling over, consistent with a cerebellar lesion. Normal hematology profile blood test and cerebrospinal fluid analysis excluded infectious encephalitis, and serological testing for Sarcocystis neurona was negative. The filly was euthanized. Postmortem X-ray radiography of the cervical cephalic region identified not abnormalities, discounting spinal trauma. The histopathological analysis of serial transverse cerebellar sections by electron microscopy revealed morphological characteristics of apoptotic cells with pyknotic nuclei and degenerate mitochondria, cytoplasmic condensation and areas with absence of Purkinje cells, matching with CA histopathological characteristics. The indirect DNA test for CA was positive in the filly, and DNA test confirmed the CA carrier state in the parents and the recessive inheritance of the disease. To our knowledge this is the first report of a CA case in Argentina. PMID:28116251

  17. Aberrant high-frequency desynchronization of cerebellar cortices in early-onset psychosis.

    Science.gov (United States)

    Wilson, Tony W; Slason, Erin; Hernandez, Olivia O; Asherin, Ryan; Reite, Martin L; Teale, Peter D; Rojas, Donald C

    2009-10-30

    Sensorimotor integration deficits are routinely observed in both schizophreniform and mood-disordered psychoses. Neurobiological theories of schizophrenia and related psychoses have proposed that aberrations in large-scale cortico-thalamic-cerebellar-thalamic-cortical loops may underlie integration abnormalities, and that such dysfunctional connectivity may be central to the pathophysiology. In this study, we utilized a basic mechanoreception task to probe cortical-cerebellar circuitry in early-onset psychosis. Ten adolescents with psychosis and 10 controls completed unilateral tactile stimulation of the right and left index finger, as whole-head magnetoencephalography (MEG) data were acquired. MEG data were imaged in the frequency domain, using spatial filtering, and the resulting event-related synchronizations and desynchronizations (ERS/ERD) were subjected to voxel-wise analyses of group and task effects using statistical parametric mapping. Our results indicated bilateral ERD activation of cerebellar regions and postcentral gyri in both groups during stimulation of either hand. Interestingly, during left finger stimulations, adolescents with psychosis exhibited greater alpha and gamma ERD activity in right cerebellar cortices relative to controls. Subjects with psychosis also showed greater ERD in bilateral cerebellum and the right postcentral gyrus during right finger stimulation, and these differences were statistically stronger for higher frequency bins. Lastly, controls exhibited greater alpha ERS of the right postcentral gyrus during right finger stimulation. These findings provide new data on the neurodevelopmental trajectory of basic mechanoreception in adolescents, and also indicate aberrant cerebellar functioning in early-onset psychoses, especially in the right cerebellum, which may be the crucial dysfunctional node in cortico-thalamic-cerebellar-thalamic-cortical circuits.

  18. Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning

    Science.gov (United States)

    Green, John T.; Steinmetz, Joseph E.

    2005-01-01

    The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus. Rabbits were trained in an interstimulus interval discrimination procedure in which one tone signaled a 250-msec conditioned stimulus-unconditioned stimulus (CS-US) interval and a second tone signaled a 750-msec CS-US interval. All rabbits showed conditioned responses to each CS with mean onset and peak latencies that coincided with the CS-US interval. Many anterior lobe Purkinje cells showed significant learning-related activity after eyeblink conditioning to one or both of the CSs. More Purkinje cells responded with inhibition than with excitation to CS presentation. In addition, when the firing patterns of all conditioning-related Purkinje cells were pooled, it appeared that the population showed a pattern of excitation followed by inhibition during the CS-US interval. Using cholera toxin-conjugated horseradish peroxidase, Purkinje cells in recording areas were found to project to the interpositus nucleus. These data support previous studies that have suggested a role for the anterior cerebellar cortex in eyeblink conditioning as well as models of cerebellar-mediated CR timing that postulate that Purkinje cell activity inhibits conditioned response (CR) generation during the early portion of a trial by inhibiting the deep cerebellar nuclei and permits CR generation during the later portion of a trial through disinhibition of the cerebellar nuclei. PMID:15897252

  19. Excitatory effect of histamine on neuronal activity of rat cerebellar fastigial nucleus in vitro

    Institute of Scientific and Technical Information of China (English)

    TANG Biao; ZHANG Jun; LI HongZhao; ZHU JingNing; WANG JianJun

    2007-01-01

    The cerebellar fastigial nucleus (FN) holds an important role in motor control and body balance. Previous studies have revealed that the nucleus is innervated by direct hypothalamocerebellar histaminergic fibers. However, the functional role of histaminergic projection in cerebellar FN has never been established. In this study, we investigated the effect of histamine on neuronal firing of cerebellar FN by using slice preparations. Sixty-five FN cells were recorded from 47 cerebellar slices, and a vast majority of the cells responded to histamine stimulation with an excitatory response (58/65, 89.2%). Perfusing slices with low-Ca2+/high-Mg2+ medium did not block the histamine-induced excitation (n=10), supporting a direct postsynaptic action of histamine on the cells. Furthermore, the excitatory effect of histamine on FN neurons was not blocked by selective histamine H1 receptor antagonist triprolidine (n=15) or chlorpheniramine (n=10), but was effectively suppressed by ranitidine (n=15), a highly selective histamine H2 receptor antagonist. On the other hand, highly selective histamine H2 receptor agonist dimaprit (n=20) instead of histamine H1 receptor agonist 2-pyridylethylamine (n=16) mimicked the excitatory effect of histamine on FN neurons. The dimaprit-induced FN neuronal excitation was effectively antagonized by selective histamine H2 receptor antagonist ranitidine (n=13) but not influenced by selective histamine H1 receptor antagonist triprolidine (n=15). These results demonstrate that histamine excites cerebellar FN cells via the histamine H2 receptor mechanism and suggest that the hypothalamocerebellar histaminergic fibers may modulate cerebellar FN-mediated sensorimotor integration through their excitatory innervations on FN neurons.

  20. Diffusion tensor imaging parameters' changes of cerebellar hemispheres in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Mormina, Enricomaria; Arrigo, Alessandro; Granata, Francesca; Anastasi, Giuseppe P.; Gaeta, Michele [University of Messina, Department of Biomedical Science and Morphological and Functional Images, Messina (Italy); Calamuneri, Alessandro; Quartarone, Angelo [University of Messina, Department of Neurosciences, Messina (Italy); Ghilardi, Maria F.; Inglese, Matilde; Di Rocco, Alessandro [Mount Sinai Hospital, New York, NY (United States); Milardi, Demetrio [University of Messina, Department of Biomedical Science and Morphological and Functional Images, Messina (Italy); IRCCS Centro Neurolesi Bonino Pulejo, Messina (Italy)

    2015-03-01

    Studies with diffusion tensor imaging (DTI) analysis have produced conflicting information about the involvement of the cerebellar hemispheres in Parkinson's disease (PD). We, thus, used a new approach for the analysis of DTI parameters in order to ascertain the involvement of the cerebellum in PD. We performed a fiber tract-based analysis of cerebellar peduncles and cerebellar hemispheres in 16 healthy subjects and in 16 PD patients with more than 5 years duration of disease, using a 3T MRI scanner and a constrained spherical deconvolution (CSD) approach for tractographic reconstructions. In addition, we performed statistical analysis of DTI parameters and fractional anisotropy (FA) XYZ direction samplings. We found a statistically significant decrement of FA values in PD patients compared to controls (p < 0.05). In addition, extrapolating and analyzing FA XYZ direction samplings for each patient and each control, we found that this result was due to a stronger decrement of FA values along the Y axis (antero-posterior direction) (p < 0.01); FA changes along X and Z axes were not statistically significant (p > 0.05). We confirmed also no statistically significant differences of FA and apparent diffusion coefficient (ADC) for cerebellar peduncles in PD patients compared to healthy controls. The DTI-based cerebellar abnormalities in PD could constitute an advance in the knowledge of this disease. We demonstrated a statistically significant reduction of FA in cerebellar hemispheres of PD patients compared to healthy controls. Our work also demonstrated that the use of more sophisticated approaches in the DTI parameter analysis could potentially have a clinical relevance. (orig.)

  1. Similar cation channels mediate protection from cerebellar exitotoxicity by exercise and inheritance.

    Science.gov (United States)

    Ben-Ari, Shani; Ofek, Keren; Barbash, Shahar; Meiri, Hanoch; Kovalev, Eugenia; Greenberg, David Samuel; Soreq, Hermona; Shoham, Shai

    2012-03-01

    Exercise and inherited factors both affect recovery from stroke and head injury, but the underlying mechanisms and interconnections between them are yet unknown. Here, we report that similar cation channels mediate the protective effect of exercise and specific genetic background in a kainate injection model of cerebellar stroke. Microinjection to the cerebellum of the glutamatergic agonist, kainate, creates glutamatergic excito\\xE2\\x80\\x90toxicity characteristic of focal stroke, head injury or alcoholism. Inherited protection and prior exercise were both accompanied by higher cerebellar expression levels of the Kir6.1 ATP-dependent potassium channel in adjacent Bergmann glia, and voltage-gated KVbeta2 and cyclic nucleotide-gated cation HCN1 channels in basket cells. Sedentary FVB/N and exercised C57BL/6 mice both expressed higher levels of these cation channels compared to sedentary C57BL/6 mice, and were both found to be less sensitive to glutamate toxicity. Moreover, blocking ATP-dependent potassium channels with Glibenclamide enhanced kainate-induced cell death in cerebellar slices from the resilient sedentary FVB/N mice. Furthermore, exercise increased the number of acetylcholinesterase-positive fibres in the molecular layer, reduced cerebellar cytokine levels and suppressed serum acetylcholinesterase activity, suggesting anti-inflammatory protection by enhanced cholinergic signalling. Our findings demonstrate for the first time that routine exercise and specific genetic backgrounds confer protection from cerebellar glutamatergic damages by similar molecular mechanisms, including elevated expression of cation channels. In addition, our findings highlight the involvement of the cholinergic anti-inflammatory pathway in insult-inducible cerebellar processes. These mechanisms are likely to play similar roles in other brain regions and injuries as well, opening new venues for targeted research efforts.

  2. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy

    DEFF Research Database (Denmark)

    Winkelmann, Juliane; Lin, Ling; Schormair, Barbara

    2012-01-01

    Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is characterized by late onset (30-40 years old) cerebellar ataxia, sensory neuronal deafness, narcolepsy-cataplexy and dementia. We performed exome sequencing in five individuals from three ADCA-DN kindreds and identified DNMT.......GLY605Ala mutation was subsequently identified. Narcolepsy and deafness were the first symptoms to appear in all pedigrees, followed by ataxia. DNMT1 is a widely expressed DNA methyltransferase maintaining methylation patterns in development, and mediating transcriptional repression by direct binding...

  3. Alterations in cerebellar glutamic acid decarboxylase (GAD) activity in a genetic model of torsion dystonia (rat).

    Science.gov (United States)

    Oltmans, G A; Beales, M; Lorden, J F; Gordon, J H

    1984-07-01

    Glutamic acid decarboxylase (GAD) activity was studied in specific brain regions of a newly identified genetic (rat) model of human torsion dystonia. GAD activity was found to be significantly increased in the deep cerebellar nuclei of dystonic rats at 16, 20, and 24 days of age. GAD activity in the other regions examined (vermis, cerebellar hemispheres, caudate nucleus, and globus pallidus) did not differ from that of age-matched normal littermate controls. Diazepam treatment significantly reduced the frequency of dystonic movements in the mutant.

  4. Development of motor coordination and cerebellar structure in male and female rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Ladd, B.; Baxter, M. G.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that the developing rat cerebellum is affected by exposure to hypergravity. In the present study, we explored the hypothesis that the changes in cerebellar structure in hypergravity-exposed rat neonates may affect their motor coordination. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravitational loading. To test this hypothesis, we compared motor behavior, cerebellar structure, and protein expression in rat neonates exposed to 1.5 1.75G on a 24-ft centrifuge daily for 22.5 h starting on gestational day (G) 10, through birth on G22/G23 and through postnatal day (P) 21. Exposure to hypergravity impacted the neurodevelopmental process as indicated by: (1) impaired righting response on P3, more than doubling the righting time at 1.75G, and (2) delayed onset of the startle response by one day, from P9 in controls to P10 in hypergravity-exposed pups. Hypergravity exposure resulted in impaired motor functions as evidenced by performance on a rotarod on P21; the duration of the stay on the rotarod recorded for 1.75G pups of both sexes was one tenth that of the stationary control (SC) pups. These changes in motor behavior were associated with cerebellar changes: (1) cerebellar mass on P6 was decreased by 7.5% in 1.5G-exposed male pups, 27.5% in 1.75G-exposed male pups, 17.5% in 1.5G-exposed female pups, and 22.5% in 1.75G female pups and (2) changes in the expression of glial and neuronal proteins. The results of this study suggest that perinatal exposure to hypergravity affects cerebellar development as evidenced by decreased cerebellar mass and altered cerebellar protein expression; cerebellar changes observed in hypergravity-exposed rat neonates are associated with impaired motor behavior. Furthermore, the response to hypergravity appears to be different in male and female neonates. If one accepts that the hypergravity paradigm is a useful animal model with which to predict those biological processes

  5. Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols

    Science.gov (United States)

    Beyer, Linda; Batsikadze, Giorgi; Timmann, Dagmar; Gerwig, Marcus

    2017-01-01

    There is good evidence that the human cerebellum is involved in the acquisition and timing of classically conditioned eyeblink responses (CRs). Animal studies suggest that the cerebellum is also important in CR extinction and savings. Cerebellar transcranial direct current stimulation (tDCS) was reported to modulate CR acquisition and timing in a polarity dependent manner. To extent previous findings three experiments were conducted using standard delay eyeblink conditioning. In a between-group design, effects of tDCS were assessed with stimulation over the right cerebellar hemisphere ipsilaterally to the unconditioned stimulus (US). An extracephalic reference electrode was used in Experiment 1 and a cephalic reference in Experiment 2. In both parts the influence on unconditioned eyeblink responses (UR) was investigated by starting stimulation in the second half of the pseudoconditioning phase lasting throughout the first half of paired trials. In a third experiment, effects of cerebellar tDCS during 40 extinction trials were assessed on extinction and reacquisition on the next day. In each experiment, 30 subjects received anodal, cathodal or sham stimulation in a double-blinded fashion. Using the extracephalic reference electrode, no significant effects on CR incidences comparing stimulation groups were observed. Using the cephalic reference anodal as well as cathodal cerebellar tDCS increased CR acquisition compared to sham only on a trend level. Analysis of timing parameters did not reveal significant effects on CR onset and peaktime latencies nor on UR timing. In the third experiment, cerebellar tDCS during extinction trials had no significant effect on extinction and savings on the next day. The present study did not reveal clear polarity dependent effects of cerebellar tDCS on CR acquisition and timing as previously described. Weaker effects may be explained by start of tDCS before the learning phase i.e., offline, individual thresholds and current flow based

  6. The role of Kv3-type potassium channels in cerebellar physiology and behavior.

    Science.gov (United States)

    Joho, Rolf H; Hurlock, Edward C

    2009-09-01

    Different subunits of the Kv3 subfamily of voltage-gated potassium (Kv) channels (Kv3.1-Kv3.4) are expressed in distinct neuronal subpopulations in the cerebellum. Behavioral phenotypes in Kv3-null mutant mice such as ataxia with prominent hypermetria and heightened alcohol sensitivity are characteristic of cerebellar dysfunction. Here, we review how the unique biophysical properties of Kv3-type potassium channels, fast activation and fast deactivation that enable cerebellar neurons to generate brief action potentials at high frequencies, affect firing patterns and influence cerebellum-mediated behavior.

  7. Neuropsychological evaluation in an adolescent with cerebellar hypoplasia diagnosed with Asperger's Syndrome.

    Science.gov (United States)

    Moss, Robert A

    2013-01-01

    There is a growing body of literature describing cases of cognitive impairment associated with both acquired and developmental damage to the cerebellum. The current case study describes such a case involving a 17-year-old male with cerebellar hypoplasia, having incomplete formation of the vermis and atrophy of the interior cerebellar hemispheres. He had previously been diagnosed as having Asperger's Syndrome. A full neuropsychological evaluation was performed, including effort testing. This is followed by a comparison of the current results to previously reported cases, with a discussion of the heterogeneity of deficits associated with developmental cerebellum malformation.

  8. Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols.

    Science.gov (United States)

    Beyer, Linda; Batsikadze, Giorgi; Timmann, Dagmar; Gerwig, Marcus

    2017-01-01

    There is good evidence that the human cerebellum is involved in the acquisition and timing of classically conditioned eyeblink responses (CRs). Animal studies suggest that the cerebellum is also important in CR extinction and savings. Cerebellar transcranial direct current stimulation (tDCS) was reported to modulate CR acquisition and timing in a polarity dependent manner. To extent previous findings three experiments were conducted using standard delay eyeblink conditioning. In a between-group design, effects of tDCS were assessed with stimulation over the right cerebellar hemisphere ipsilaterally to the unconditioned stimulus (US). An extracephalic reference electrode was used in Experiment 1 and a cephalic reference in Experiment 2. In both parts the influence on unconditioned eyeblink responses (UR) was investigated by starting stimulation in the second half of the pseudoconditioning phase lasting throughout the first half of paired trials. In a third experiment, effects of cerebellar tDCS during 40 extinction trials were assessed on extinction and reacquisition on the next day. In each experiment, 30 subjects received anodal, cathodal or sham stimulation in a double-blinded fashion. Using the extracephalic reference electrode, no significant effects on CR incidences comparing stimulation groups were observed. Using the cephalic reference anodal as well as cathodal cerebellar tDCS increased CR acquisition compared to sham only on a trend level. Analysis of timing parameters did not reveal significant effects on CR onset and peaktime latencies nor on UR timing. In the third experiment, cerebellar tDCS during extinction trials had no significant effect on extinction and savings on the next day. The present study did not reveal clear polarity dependent effects of cerebellar tDCS on CR acquisition and timing as previously described. Weaker effects may be explained by start of tDCS before the learning phase i.e., offline, individual thresholds and current flow based

  9. Cerebellar Hemangioblastoma: Four Case Reports and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sevgi Bakaris

    2015-03-01

    Full Text Available Hemangioblastoma (HB is a benign, slow-growing, highly vascular tumour of not well defined histological origin. These tumors make up about 1 to 2 percent of all intracranial neoplasms and occur primarily in the posterior fossa. Hemangioblastomas can occur sporadically but in about 20% to 30% cases, it is associated with von Hippel-Lindau (VHL disease. Four cases of cerebellar haemangioblastoma, not associated with von Hippel-Lindau disease (sporadic haemangioblastomas, were presented and reviewed the relevant literature.Four hemangioblastomas of the central nervous system were examined with haematoxylin and eosin (H and E, reticulin stain and with a panel of antibodies including CD34, vimentin, NSE, S-100, CD99, CD56, GFAP, cytoceratin, epithelial membrane antigen (EMA, CD10. Of the 4 patients in this study 1 was male and 3 were female. Their ages ranged from 46 years to 60 years with a mean age of 54.75 years. All of them were as cystic nodules about 2-3 cm in diameter. In the histopathological examination, the tumors sections showed large and vacuolated stromal cells and numerous arborizing capillary-size blood vessels. Some tumors showed atypical nuclei. Vimentin was strongly positive both stromal cells and blood veessels in all tumors. In 4 cases of HB, some stromal cells were positive for NSE and CD99. Three tumors were positive for S-100 and CD56, two tumors were focally positive for glial fibrillary acidic protein (GFAP. CD34 immunostaining highlighted the arborizing and complex vascular network, whereas the tumor stromal cells were negative. The stromal cells were negative for epithelial markers such as cytokeratin, EMA and CD10. Ki-67 index was less than 1% of the tumor cells. Hemangioblastoma, a rare, benign tumors of uncertain histogenesis, is characterized histologically by the presence of vacuolated, lipid containing cells and a well developed, fine capillary network. The main histological differential diagnosis of HB is metastatic

  10. Surgical treatment for ruptured anterior inferior cerebellar artery aneurysms

    Directory of Open Access Journals (Sweden)

    TONG Xiao-guang

    2013-03-01

    Full Text Available Background Anterior inferior cerebellar artery (AICA aneurysm is an extremely raretumor, which can cause severe results after ruptured. This article retrospectively analyzed the clinical symptoms, imaging manifestations, surgical approaches, endovascular therapy and postoperative outcomes of 12 cases with AICA aneurysms, so as to provide reference for clinical practice. Methods Clinical data of patients with AICA aneurysms, who were treated in our hospital between June 2004 and June 2012, were carefully collected and studied. Glasgow Outcome Scale (GOS scores were used to evaluate the patients' living status. Results There were 12 patients (the average age was 54 years old with 13 ruptured aneurysms, accounting for 0.19% of all aneurysms (6467 cases treated in the same period. CT showed simple subarachnoid hemorrhage (SAH in 6 patients, simple ventricular hemorrhage in 1 patient and SAH complicated with ventricular hemorrhage in 5 patients. According to Hunt-Hess Grade, 2 patients were classified as Grade Ⅰ; 7 were Grade Ⅱ; 3 were Grade Ⅲ. Digital subtraction angiography (DSA showed there were 10 saccular aneurysms and 3 fusiform aneurysms. Three aneurysms were located in the proximal segment of AICA (the junction of AICA and basilar artery, 3 premeatal segment (first bifurcation of AICA, 3 meatal and 4 postmeatal. The mean diameter was 3.90 mm. Three patients with 4 aneurysms were treated with microsurgery, of which clipping was carried out in 2 patients with 3 aneurysms and trapping in 1 case. Other 9 patients were treated with endovascular therapy, of which 2 cases underwent coil embolization, 3 stent-assisted coil, and 4 parent artery occlusion (PAO. Postoperative complications included facial paralysis (1 case, dysphagia and coughing when drinking (1 case and contralateral hemianopia in both eyes (1 case. Follow-up was available in all of these cases for a mean of 36.41 months, with GOS scores 3 in 1 case, 4 in 2 cases and 5 in 9

  11. The Effect of Salvia Rhytidea Extract on the Number of Cells of Different Layers of Cerebellar Cortex Following Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    M Farahmand

    2016-09-01

    Full Text Available Background & aim: Salvia has anti-oxidant oxygen free radicals which are generated during the interruption and reestablishment of ischemia reperfusion.  The aim of study was to investigate the effect of Salvia Rhytidea extract on the number of cells of different layers of cerebellar cortex following ischemia reperfusion in rats. Methods: In the present experimental study, 35 adult male rats were randomly divided into 7 groups of 5: Group 1 (control-: Sampling without ischemia. Group 2 (control +: Cerebellar ischemia with administration of normal saline. Group 3(sham: Manipulation without ischemia with normal saline administration. Group 4   received (3.2 mg/kg aqueous and alcoholic Salvia extract 2 hours after ischemia. Group 5 received 50 mg/kg silymarin drug, 2 hours after ischemia. Group 6 received 3.2 mg/kg aqueous and alcoholic Salvia extract 72, 48, 24 and 0 h before ischemia and group 7 received silymarin drug (50 mg/kg, 0, 24, 48, and 72, hrs. before ischemia. 24 hrs. following reperfusion, the rats were euthanized and samples of the cerebellum were obtained. By using routine histological technique, the sections were stained by H&E. The measurement of cell count in cerebellar cortex were accomplished. Data were evaluated with One-Way ANOVA and Tukey diagnostic tests. Results: A significant decrease was observed in the number of neural cells in granular layer in the non-treated ischemia group and in the groups which received Salvia extract and silymarin, two hours after the ischemia (p< 0.05. No significant decrease was observed in the number of cells of this layer in the groups which received salvia extract before ischemia. But regarding the cell number of molecular and purkinje layers in above groups, no significant difference was observed compared to the control group (P˃0.05. However, no significant differences was seen in the number of cells layers compared to the control group (P˃0.05. Conclusion: Finally, administration of

  12. Dynamic distribution and stem cell characteristics of Sox1-expressing cells in the cerebellar cortex

    Institute of Scientific and Technical Information of China (English)

    Joelle Alcock; Virginie Sottile

    2009-01-01

    Bergmann glia cells are a discrete radial glia population surrounding Purkinje cells in the cerebellar cortex. Al-though Bergmann glia are essential for the development and correct arborization of Purkinje cells, little is known about the regulation of this cell population after the developmental phase. In an effort to characterize this population at the molecular level, we have analyzed marker expression and established that adult Bergmann glia express Soxl, Sox2 and Sox9, a feature otherwise associated with neural stem cells (NSCs). In the present study, we have further analyzed the developmental pattern of Soxl-expressing cells in the developing cerebellum. We report that before be-coming restricted to the Purkinje cell layer, Soxl-positive cells are present throughout the immature tissue, and that these cells show characteristics of Bergmann glia progenitors. Our study shows that these progenitors express Soxl, Sox2 and Sox9, a signature maintained throughout cerebellar maturation into adulthood. When isolated in culture, the Soxl-expressing cerebellar population exhibited neurosphere-forming ability, NSC-marker characteristics, and demonstrated multipotency at the clonal level. Our results show that the Bergmann glia population expresses Soxl during cerebellar development, and that these cells can be isolated and show stem cell characteristics in vitro, sug-gesting that they could hold a broader potential than previously thought.

  13. Tractography demonstrates dentate-rubro-thalamic tract disruption in an adult with cerebellar mutism

    NARCIS (Netherlands)

    Baarsen, van K.; Kleinnijenhuis, M.; Konert, T.; Cappellen van Walsum, A.; Grotenhuis, A.

    2013-01-01

    A 55-year-old female is presented with transient cerebellar mutism caused by a well-circumscribed left pontine infarction due to postoperative basilar perforator occlusion. Although conventional T2 imaging shows a well-demarcated lesion confined to the pontine region, diffusion tensor imaging shows

  14. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    Changzheng Zhang; Tianmiao Hua; Zaiman Zhu; Xun Luo

    2006-03-01

    We studied the structures of the cerebellar cortex of young adult and old cats for age-related changes, which were statistically analysed. Nissl staining was used to visualize the cortical neurons. The immunohistochemical method was used to display glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytes and neurofilament-immunoreactive (NF-IR) neurons. Under the microscope, the thickness of the cerebellar cortex was measured; and the density of neurons in all the layers as well as that of GFAP-IR cells in the granular layer was analysed. Compared with young adult cats, the thickness of the molecular layer and total cerebellar cortex was significantly decreased in old cats, and that of the granular layer increased. The density of neurons in each layer was significantly lower in old cats than in young adult ones. Astrocytes in old cats were significantly denser than in young adult ones, and accompanied by evident hypertrophy of the cell bodies and enhanced immunoreaction of GFAP substance. Purkinje cells (PCs) in old cats showed much fewer NF-IR dendrites than those in young adults. The above findings indicate a loss of neurons and decrease in the number of dendrites of the PCs in the aged cerebellar cortex, which might underlie the functional decline of afferent efficacy and information integration in the senescent cerebellum. An age-dependent enhancement of activity of the astrocytes may exert a protective effect on neurons in the aged cerebellum.

  15. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Jørgensen, Ole Steen; Hack, N

    1988-01-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in t...

  16. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N;

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  17. Cerebellar Ataxia with Bilateral Vestibulopathy: Description of a Syndrome and Its Characteristic Clinical Sign

    Science.gov (United States)

    Migliaccio, Americo A.; Halmagyi, G. Michael; McGarvie, Leigh A.; Cremer, Phillip D.

    2004-01-01

    We report four patients with the syndrome of cerebellar ataxia with bilateral vestibulopathy (CABV) and, using search coil oculography, we validate its characteristic clinical sign, namely impairment of the visually enhanced vestibulo-ocular reflex (VVOR) or doll's head reflex. In our four patients, CABV began in the sixth decade of life; they are…

  18. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks

    Directory of Open Access Journals (Sweden)

    Claudia eCasellato

    2015-02-01

    Full Text Available The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.

  19. Neuropsychological Evaluation and Follow-Up of Children with Cerebellar Cortical Dysplasia

    Science.gov (United States)

    Jissendi-Tchofo, Patrice; Pandit, Florence; Soto-Ares, Gustavo; Vallee, Louis

    2011-01-01

    Aim: To describe neuropsychological disturbances and the developmental course associated with cerebellar cortical dysplasia (CCD). Method: The neuroimaging findings from 10 children (five males, five females; aged 3-10y) with CCD were reviewed and classified. These children all underwent clinical neurological examination and neuropsychological…

  20. Neurological signs in 23 dogs with suspected rostral cerebellar ischaemic stroke

    DEFF Research Database (Denmark)

    Thomsen, Barbara; Garosi, Laurent; Skerritt, Geoff;

    2016-01-01

    Background: In dogs with ischaemic stroke, a very common site of infarction is the cerebellum. The aim of this study was to characterise neurological signs in relation to infarct topography in dogs with suspected cerebellar ischaemic stroke and to report short-term outcome confined to the hospita...

  1. Compensatory striatal–cerebellar connectivity in mild–moderate Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Alison C. Simioni

    2016-01-01

    Full Text Available Dopamine depletion in the putamen is associated with altered motor network functional connectivity in people with Parkinson's disease (PD, but the functional significance of these changes remains unclear, attributed to either pathological or compensatory mechanisms in different studies. Here, we examined the effects of PD on dorsal caudal putamen functional connectivity, off and on dopamine replacement therapy (DRT, using resting state fMRI. Motor performance was assessed with the Purdue pegboard task. Twenty-one patients with mild–moderate Parkinson's disease were studied twice, once after an overnight DRT washout and once after the administration of a standard dose of levodopa (Sinemet, and compared to 20 demographically-matched healthy control participants. PD patients off DRT showed increased putamen functional connectivity with both the cerebellum (lobule V and primary motor cortex (M1, relative to healthy controls. Greater putamen–cerebellar functional connectivity was significantly correlated with better motor performance, whereas greater putamen–M1 functional connectivity was predictive of poorer motor performance. The administration of levodopa improved motor performance in the PD group, as expected, and reduced putamen–cerebellar connectivity to levels comparable to the healthy control group. The strength of putamen–cerebellar functional connectivity continued to predict motor performance in the PD group while on levodopa. These findings argue that increased putamen–M1 functional connectivity reflects a pathological change, deleterious to motor performance. In contrast, increased putamen–cerebellar connectivity reflects a compensatory mechanism.

  2. Visuospatial and visuomotor deficits in preterm children : The involvement of cerebellar dysfunctioning

    NARCIS (Netherlands)

    Van Braeckel, Koenraad N. J. A.; Taylor, H. Gerry

    2013-01-01

    One of the more consistent findings in follow-up studies of preterm children is a deficit in visuospatial and visuomotor skills. Impairment of the dorsal visual stream and basal ganglia damage have been hypothesized to underlie this deficit. However, given recent findings of impaired cerebellar deve

  3. Role of astrocytes in depolarization-coupled release of glutamate in cerebellar cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2004-01-01

    Release of preloaded D-[3H]aspartate in response to depolarization induced by high potassium, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or the endogenous agonist glutamate was studied using cultured glutamatergic cerebellar granule neurons, cerebell...

  4. Cerebellar tDCS: A Novel Approach to Augment Language Treatment Post-stroke.

    Science.gov (United States)

    Sebastian, Rajani; Saxena, Sadhvi; Tsapkini, Kyrana; Faria, Andreia V; Long, Charltien; Wright, Amy; Davis, Cameron; Tippett, Donna C; Mourdoukoutas, Antonios P; Bikson, Marom; Celnik, Pablo; Hillis, Argye E

    2016-01-01

    People with post-stroke aphasia may have some degree of chronic deficit for which current rehabilitative treatments are variably effective. Accumulating evidence suggests that transcranial direct current stimulation (tDCS) may be useful for enhancing the effects of behavioral aphasia treatment. However, it remains unclear which brain regions should be stimulated to optimize effects on language recovery. Here, we report on the therapeutic potential of right cerebellar tDCS in augmenting language recovery in SMY, who sustained bilateral MCA infarct resulting in aphasia and anarthria. We investigated the effects of 15 sessions of anodal cerebellar tDCS coupled with spelling therapy using a randomized, double-blind, sham controlled within-subject crossover trial. We also investigated changes in functional connectivity using resting state functional magnetic resonance imaging before and 2 months post-treatment. Both anodal and sham treatments resulted in improved spelling to dictation for trained and untrained words immediately after and 2 months post-treatment. However, there was greater improvement with tDCS than with sham, especially for untrained words. Further, generalization to written picture naming was only noted during tDCS but not with sham. The resting state functional connectivity data indicate that improvement in spelling was accompanied by an increase in cerebro-cerebellar network connectivity. These results highlight the therapeutic potential of right cerebellar tDCS to augment spelling therapy in an individual with large bilateral chronic strokes.

  5. [Clinical Study on Cerebellar Contusion:A Report on 9 Cases and Literature Review].

    Science.gov (United States)

    Nashimoto, Takeo; Sasaki, Osamu; Nozawa, Takanori; Ando, Kazuhiro; Kikuchi, Bunpei; Watanabe, Masatoshi

    2015-10-01

    We report 9 cases of cerebellar contusion from April 2011 to September 2014 at our department. Frequency, clinicoradiological findings, mechanism of injury, treatments, and outcomes were retrospectively analyzed. Of 239 head injury cases admitted to our department during the same period, 9(3.8%)were diagnosed as cerebellar contusion. Among these 9 cases, 7 were men, and 2 were women. The patient age ranged from 12 to 83 years with a mean age of 64.7 years. The mechanism of injury was traffic accident in one patient, and fall in 8. All cases were associated with direct head trauma to the occiput, and radiographic studies showed occipital bone fracture in 8 cases. Six cases were managed conservatively. Three cases underwent suboccipital craniectomies and clot evacuations. Glasgow Outcome Scale(GOS)score at discharge were Good Recovery(GR)in 2, Moderate Disability(MD)in 2, Severe Disability(SD)in 3, Vegetative State(VS)in 1, and Dead(D)in 1. GOS scores in surgically treated cases were GR in 1, SD in 1, and VS in 1. Supratentorial severe traumatic lesions were concomitant with poor prognosis. Coup injury was a significant cause of cerebellar contusion. External decompression and clot evacuation were useful in patients who suffered severe cerebellar contusion;however, concomitant supratentorial lesions influenced the prognosis.

  6. WDR73 missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in a consanguineous family.

    Science.gov (United States)

    Jiang, Chen; Gai, Nan; Zou, Yongyi; Zheng, Yu; Ma, Ruiyu; Wei, Xianda; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Galloway-Mowat syndrome (GMS) is a very rare autosomal-recessive disorder characterized by nephrotic syndrome associated with microcephaly, and various central nervous system abnormalities, mostly cerebral hypoplasia or cerebellar atrophy, intellectual disability and neural-migration defects. WDR73 is the only gene known to cause GMS, and has never been implicated in other disease. Here we present a Chinese consanguineous family with infantile onset intellectual disability and cerebellar hypoplasia but no microcephaly. Whole exome sequencing identified a WDR73 p.W371G missense mutation. The mutation is confirmed to be segregated in this family by Sanger sequencing according to a recessive inheritance pattern. It is predicted to be deleterious by multiple algorithms and affect highly conserved site. Structural modeling revealed conformational differences between the wild type protein and the p.W371G protein. Real-time PCR and Western blotting revealed altered mRNA and protein levels in mutated samples. Our study indicates the novel WDR73 p.W371G missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in recessive mode of inheritance. Our findings imply that microcephaly is a variable phenotype in WDR73-related disease, suggest WDR73 to be a candidate gene of severe intellectual disability and cerebellar hypoplasia, and expand the molecular spectrum of WDR73-related disease.

  7. Role of synchronous activation of cerebellar purkinje cell ensembles in multi-joint movement control

    NARCIS (Netherlands)

    T.M. Hoogland (Tycho); J.R. de Gruijl (Jornt); L. Witter (Laurens); M.I. Canto (Marcia Irene); C.I. de Zeeuw (Chris)

    2015-01-01

    textabstractIt is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated

  8. Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control

    NARCIS (Netherlands)

    Hoogland, Tycho M; De Gruijl, Jornt R; Witter, Laurens; Canto, Cathrin B; De Zeeuw, Chris I

    2015-01-01

    It is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated to what ext

  9. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  10. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse

    NARCIS (Netherlands)

    A. Belmeguenai (Amor); P. Botta (Paolo); J.T. Weber (John); M. Carta (Mario); M.M. de Ruiter (Martijn); C.I. de Zeeuw (Chris); C.F. Valenzuela (Fernando); C.R.W. Hansel (Christian)

    2008-01-01

    textabstractAcute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cere

  11. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease

    DEFF Research Database (Denmark)

    Fennema-Notestine, C; Archibald, S.L.; Jacobsen, M.W.;

    2004-01-01

    OBJECTIVE: To investigate the regional pattern of white matter and cerebellar changes, as well as subcortical and cortical changes, in Huntington disease (HD) using morphometric analyses of structural MRI. METHODS: Fifteen individuals with HD and 22 controls were studied; groups were similar in a...

  12. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    NARCIS (Netherlands)

    M. tenBrinke (MichielM.); H.J. Boele (Henk-Jan); J.K. Spanke (Jochen); J.W. Potters (Jan Willem); K. Kornysheva (Katja); P. Wulff (Peer); A.C.H.G. IJpelaar (Anna C.H.G.); S.K.E. Koekkoek (Bas); C.I. DeZeeuw (Chris)

    2015-01-01

    textabstractThree decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink respo

  13. GAD Antibody-Associated Late-Onset Cerebellar Ataxia in Two Female Siblings

    Directory of Open Access Journals (Sweden)

    Joseph Kuchling

    2014-11-01

    Full Text Available Background: Anti-glutamic acid decarboxylase antibody (GAD-ab-associated cerebellar ataxia is a rare neurological disorder characterized by cerebellar symptoms concomitant with high GAD-ab levels in serum and cerebrospinal fluid (CSF. Case Report: We report on 2 female siblings (aged 74 and 76 years presenting with gradual progression of rotational vertigo, gait ataxia and vertical diplopia, continuously progressing for 6 months and 6 years, respectively. Autoimmune laboratory examinations showed remarkably increased serum and CSF GAD-ab levels. Their medical histories revealed late-onset type 1 diabetes mellitus (T1DM and other concomitant autoimmune disorders (Grave's disease, Hashimoto's thyroiditis. Cerebral MRI and laboratory examinations were unremarkable. The diagnosis of GAD-ab-associated cerebellar ataxia with particular brainstem involvement was established in both women. After the exclusion of an underlying malignancy, immunosuppressive therapy has been initiated in both patients, which resulted in stabilization in one and in clinical improvement in the other patient. Discussion: The unique association of autoantibody-mediated cerebellar ataxia and late-onset T1DM in 2 siblings with similar clinical and paraclinical phenotypes strengthens the concept that hereditary factors might play a relevant role also in autoimmune diseases so far considered to be sporadic. Moreover, the occurrence of continuous vertical diplopia broadens the clinical spectrum of GAD-ab-associated neurological syndromes.

  14. Persistent superior oblique paresis as a manifestation of familial periodic cerebellar ataxia.

    OpenAIRE

    Bain, P.G.; Larkin, G. B.; Calver, D M; O'Brien, M D

    1991-01-01

    A brother and sister complained of persistent diplopia due to superior oblique palsies. The cause of their symptoms became apparent when they were diagnosed as having familial periodic cerebellar ataxia (FPCA), a rare autosomal dominant condition. Oral acetazolamide (250 mg twice daily) not only prevented all the periodic symptoms but also relieved their diplopia, which had been present between attacks.

  15. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui, E-mail: fuyh@fudan.edu.cn

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  16. Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue

    Science.gov (United States)

    D’Angelo, Egidio; Antonietti, Alberto; Casali, Stefano; Casellato, Claudia; Garrido, Jesus A.; Luque, Niceto Rafael; Mapelli, Lisa; Masoli, Stefano; Pedrocchi, Alessandra; Prestori, Francesca; Rizza, Martina Francesca; Ros, Eduardo

    2016-01-01

    The cerebellar microcircuit has been the work bench for theoretical and computational modeling since the beginning of neuroscientific research. The regular neural architecture of the cerebellum inspired different solutions to the long-standing issue of how its circuitry could control motor learning and coordination. Originally, the cerebellar network was modeled using a statistical-topological approach that was later extended by considering the geometrical organization of local microcircuits. However, with the advancement in anatomical and physiological investigations, new discoveries have revealed an unexpected richness of connections, neuronal dynamics and plasticity, calling for a change in modeling strategies, so as to include the multitude of elementary aspects of the network into an integrated and easily updatable computational framework. Recently, biophysically accurate “realistic” models using a bottom-up strategy accounted for both detailed connectivity and neuronal non-linear membrane dynamics. In this perspective review, we will consider the state of the art and discuss how these initial efforts could be further improved. Moreover, we will consider how embodied neurorobotic models including spiking cerebellar networks could help explaining the role and interplay of distributed forms of plasticity. We envisage that realistic modeling, combined with closed-loop simulations, will help to capture the essence of cerebellar computations and could eventually be applied to neurological diseases and neurorobotic control systems. PMID:27458345

  17. Compensatory striatal-cerebellar connectivity in mild-moderate Parkinson's disease.

    Science.gov (United States)

    Simioni, Alison C; Dagher, Alain; Fellows, Lesley K

    2016-01-01

    Dopamine depletion in the putamen is associated with altered motor network functional connectivity in people with Parkinson's disease (PD), but the functional significance of these changes remains unclear, attributed to either pathological or compensatory mechanisms in different studies. Here, we examined the effects of PD on dorsal caudal putamen functional connectivity, off and on dopamine replacement therapy (DRT), using resting state fMRI. Motor performance was assessed with the Purdue pegboard task. Twenty-one patients with mild-moderate Parkinson's disease were studied twice, once after an overnight DRT washout and once after the administration of a standard dose of levodopa (Sinemet), and compared to 20 demographically-matched healthy control participants. PD patients off DRT showed increased putamen functional connectivity with both the cerebellum (lobule V) and primary motor cortex (M1), relative to healthy controls. Greater putamen-cerebellar functional connectivity was significantly correlated with better motor performance, whereas greater putamen-M1 functional connectivity was predictive of poorer motor performance. The administration of levodopa improved motor performance in the PD group, as expected, and reduced putamen-cerebellar connectivity to levels comparable to the healthy control group. The strength of putamen-cerebellar functional connectivity continued to predict motor performance in the PD group while on levodopa. These findings argue that increased putamen-M1 functional connectivity reflects a pathological change, deleterious to motor performance. In contrast, increased putamen-cerebellar connectivity reflects a compensatory mechanism.

  18. Cerebellar contributions to motor control and language comprehension: searching for common computational principles.

    Science.gov (United States)

    Moberget, Torgeir; Ivry, Richard B

    2016-04-01

    The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive domains including attention, memory, and language. Drawing on evidence from neuroanatomy, physiology, neuropsychology, and computational work, sophisticated models have been developed to describe cerebellar function in sensorimotor control and learning. In contrast, mechanistic accounts of how the cerebellum contributes to cognition have remained elusive. Inspired by the homogeneous cerebellar microanatomy and a desire for parsimony, many researchers have sought to extend mechanistic ideas from motor control to cognition. One influential hypothesis centers on the idea that the cerebellum implements internal models, representations of the context-specific dynamics of an agent's interactions with the environment, enabling predictive control. We briefly review cerebellar anatomy and physiology, to review the internal model hypothesis as applied in the motor domain, before turning to extensions of these ideas in the linguistic domain, focusing on speech perception and semantic processing. While recent findings are consistent with this computational generalization, they also raise challenging questions regarding the nature of cerebellar learning, and may thus inspire revisions of our views on the role of the cerebellum in sensorimotor control.

  19. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease

    DEFF Research Database (Denmark)

    Fennema-Notestine, C; Archibald, S.L.; Jacobsen, M.W.;

    2004-01-01

    OBJECTIVE: To investigate the regional pattern of white matter and cerebellar changes, as well as subcortical and cortical changes, in Huntington disease (HD) using morphometric analyses of structural MRI. METHODS: Fifteen individuals with HD and 22 controls were studied; groups were similar in age...

  20. Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis

    NARCIS (Netherlands)

    Sepulveda-Falla, Diego; Barrera-Ocampo, Alvaro; Hagel, Christian; Korwitz, Anne; Vinueza-Veloz, Maria Fernanda; Zhou, Kuikui; Schonewille, Martijn; Zhou, Haibo; Velazquez-Perez, Luis; Rodriguez-Labrada, Roberto; Villegas, Andres; Ferrer, Isidro; Lopera, Francisco; Langer, Thomas; De Zeeuw, Chris I; Glatzel, Markus

    2014-01-01

    Familial Alzheimer's disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia w

  1. Automated cerebellar segmentation: Validation and application to detect smaller volumes in children prenatally exposed to alcohol

    Directory of Open Access Journals (Sweden)

    Valerie A. Cardenas

    2014-01-01

    Discussion: These results demonstrate excellent reliability and validity of automated cerebellar volume and mid-sagittal area measurements, compared to manual measurements. These data also illustrate that this new technology for automatically delineating the cerebellum leads to conclusions regarding the effects of prenatal alcohol exposure on the cerebellum consistent with prior studies that used labor intensive manual delineation, even with a very small sample.

  2. Cerebellar atrophy is frequently associated with non-paraneoplastic sensory neuronopathy

    Directory of Open Access Journals (Sweden)

    Alfredo Damasceno

    2011-08-01

    Full Text Available Sensory neuronopathies (SN are peripheral nervous system disorders associated with degeneration of dorsal root ganglion neurons. Despite the evidence of a defective proprioceptive sensory input in SN,the prominent gait and truncal ataxia raises the question of a concomitant involvement of the cerebellum. OBJECTIVE: To evaluate cerebellar atrophy in SN. METHOD: We analyzed MRI-based volumetry of anterior lobe (paleocerebellum and total cerebellum in patients with non-paraneoplastic chronic SN and compared to age- and gender-matched controls. RESULTS: Cerebellum and anterior lobe MRI volumetry were performed in 20 patients and nine controls. Mean anterior lobe and cerebellar volume were not statistically different. Three patients (15%, however, had an abnormal anterior lobe and cerebellar volume index (values outside 2.5 standard deviations. One of them also had a specific atrophy of the anterior lobe. All these patients had infectious or dysimmune associated SN. CONCLUSION: Cerebellar atrophy is infrequently associated with SN, but can be found in some patients with SN related to infectious or immune mediated conditions. It can be more prominent in the anterior lobe and may contribute to the ataxia seen in these patients.

  3. Axonal abnormalities in cerebellar Purkinje cells of the Ts65Dn mouse.

    Science.gov (United States)

    Necchi, Daniela; Lomoio, Selene; Scherini, Elda

    2008-10-31

    Ts65Dn mice are a genetic model for Down syndrome. Among others, these mice have cerebellar pathology features which parallel those seen in Down syndrome patients. Both individuals with Down syndrome and Ts65Dn mice have reduced cerebellar volume and numbers of granule and Purkinje cells. In this report, we describe morphological abnormalities of axons of Purkinje cells in the cerebellum of Ts65Dn mice, by using anti-calbindin immunocytochemistry. A consistent number of Purkinje cells shows axons bearing giant varicosities along their transit through the granular layer. The cerebellar arbor vitae made by fasciculated Purkinje cell axons has a patchy appearance, some tracks being devoid of calbindin staining. The infraganglionic plexus, formed by recurrent collaterals of Purkinje cell axons, has enormously increased density, which is evidence for a compensatory reaction to degeneration of distal segments of axons. These alterations are accompanied by strong glial reaction as evidenced by GFAP immunocytochemistry. Moreover, the alterations are more consistent in the anterior lobules of the vermis and intermediate cortex. The axonal pathology of Purkinje cells may explain the impairment in cerebellar functions observed in Ts65Dn mice at the adulthood.

  4. Cerebellar cysticercosis caused by larval Taenia crassiceps tapeworm in immunocompetent woman, Germany.

    Science.gov (United States)

    Ntoukas, Vasileios; Tappe, Dennis; Pfütze, Daniel; Simon, Michaela; Holzmann, Thomas

    2013-12-01

    Human cysticercosis caused by Taenia crassiceps tapeworm larvae involves the muscles and subcutis mostly in immunocompromised patients and the eye in immunocompetent persons. We report a successfully treated cerebellar infection in an immunocompetent woman. We developed serologic tests, and the parasite was identified by histologic examination and 12s rDNA PCR and sequencing.

  5. Clinical, neuroradiological and molecular characterization of cerebellar dysplasia with cysts (Poretti-Boltshauser syndrome)

    Science.gov (United States)

    Romani, Marta; Ginevrino, Monia; Mazza, Tommaso; Aiello, Chiara; Zanni, Ginevra; Baumgartner, Bastian; Borgatti, Renato; Brockmann, Knut; Camacho, Ana; Cantalupo, Gaetano; Haeusler, Martin; Hikel, Christiane; Klein, Andrea; Mandrile, Giorgia; Mercuri, Eugenio; Rating, Dietz; Romaniello, Romina; Santorelli, Filippo Maria; Schimmel, Mareike; Spaccini, Luigina; Teber, Serap; von Moers, Arpad; Wente, Sarah; Ziegler, Andreas; Zonta, Andrea; Bertini, Enrico; Boltshauser, Eugen; Valente, Enza Maria

    2016-01-01

    Cerebellar dysplasia with cysts and abnormal shape of the fourth ventricle, in the absence of significant supratentorial anomalies and of muscular involvement, defines recessively inherited Poretti-Boltshauser syndrome (PBS). Clinical features comprise non-progressive cerebellar ataxia, intellectual disability of variable degree, language impairment, ocular motor apraxia and frequent occurrence of myopia or retinopathy. Recently, loss-of-function variants in the LAMA1 gene were identified in six probands with PBS. Here we report the detailed clinical, neuroimaging and genetic characterization of 18 PBS patients from 15 unrelated families. Biallelic LAMA1 variants were identified in 14 families (93%). The only non-mutated proband presented atypical clinical and neuroimaging features, challenging the diagnosis of PBS. Sixteen distinct variants were identified, which were all novel. In particular, the frameshift variant c.[2935delA] recurred in six unrelated families on a shared haplotype, suggesting a founder effect. No LAMA1 variants could be detected in 27 probands with different cerebellar dysplasias or non-progressive cerebellar ataxia, confirming the strong correlate between LAMA1 variants and PBS. PMID:26932191

  6. Physiotherapy in degenerative cerebellar ataxias: utilisation, patient satisfaction, and professional expertise

    NARCIS (Netherlands)

    Fonteyn, E.M.R.; Keus, S.H.J.; Verstappen, C.C.P.; Warrenburg, B.P.C. van de

    2013-01-01

    Physiotherapy plays an important role in the management of patients with degenerative cerebellar ataxias. However, our insight in the quantity and quality of physiotherapy prescription in this group of patients is incomplete. The purposes of this study were to investigate the utilization of physioth

  7. Voltage-gated sodium channels in cerebellar Purkinje cells of mormyrid fish

    NARCIS (Netherlands)

    M.M. de Ruiter (Martijn); C.I. de Zeeuw (Chris); C.R.W. Hansel (Christian)

    2006-01-01

    textabstractCerebellar Purkinje cells of mormyrid fish differ in some morphological as well as physiological parameters from their counterparts in mammals. Morphologically, Purkinje cells of mormyrids have larger dendrites that are characterized by a lower degree of branching in the molecular layer.

  8. [Mathematical simulation of induction of long-term depression in cerebellar Purkinje cells].

    Science.gov (United States)

    Murzina, G B

    2003-01-01

    Mechanisms of associative and homosynaptic long-term depression (LTD) in cerebellar Purkinje cells are discussed. The possibility of LTD induction related to a decrease in efficacy of AMPA receptors through either their dephosphorylation or phosphorylation is investigated by mathematical simulation.

  9. Mathematical simulation of the induction of long-term depression in cerebellar Purkinje cells.

    Science.gov (United States)

    Murzina, G B

    2004-02-01

    The question of the mechanisms underlying the induction of associative and homosynaptic long-term depression in cerebellar Purkinje cells is addressed. Mathematical simulation was used to investigate the possibility that long-term depression, which is associated with a decrease in the efficiency of AMPA receptors, could be induced both by phosphorylation and dephosphorylation of these receptors.

  10. Interference of left and right cerebellar rTMS with procedural learning.

    Science.gov (United States)

    Torriero, Sara; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura

    2004-11-01

    Increasing evidence suggests cerebellar involvement in procedural learning. To further analyze its role and to assess whether it has a lateralized influence, in the present study we used a repetitive transcranial magnetic stimulation interference approach in a group of normal subjects performing a serial reaction time task. We studied 36 normal volunteers: 13 subjects underwent repetitive transcranial magnetic stimulation on the left cerebellum and performed the task with the right (6 subjects) or left (7 subjects) hand; 10 subjects underwent repetitive transcranial magnetic stimulation on the right cerebellum and performed the task with the hand ipsilateral (5 subjects) or contralateral (5 subjects) to the stimulation; another 13 subjects served as controls and were not submitted to repetitive transcranial magnetic stimulation; 7 of them performed the task with the right hand and 6 with the left hand. The main results show that interference with the activity of the lateral cerebellum induces a significant decrease of procedural learning: Interference with the right cerebellar hemisphere activity induces a significant decrease in procedural learning regardless of the hand used to perform the serial reaction time task, whereas left cerebellar hemisphere activity seems more linked with procedural learning through the ipsilateral hand. In conclusion, the present study shows for the first time that a transient interference with the functions of the cerebellar cortex results in an impairment of procedural learning in normal subjects and it provides new evidences for interhemispheric differences in the lateral cerebellum.

  11. Cerebellar Nicotinic Cholinergic Receptors are Intrinsic to the Cerebellum: Implications for Diverse Functional Roles

    Science.gov (United States)

    Turner, Jill R.; Ortinski, Pavel I.; Sherrard, Rachel M.

    2016-01-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum. PMID:21562921

  12. Low in situ expression of antioxidative enzymes in rat cerebellar granular cells susceptible to methylmercury.

    Science.gov (United States)

    Fujimura, M; Usuki, F

    2014-01-01

    Methylmercury (MeHg), an environmental neurotoxicant, induces site-specific toxicity in the brain. Although oxidative stress has been demonstrated with MeHg toxicity, the site-specific toxicity is not completely understood. Among the cerebellar neurons, cerebellar granule cells (CGCs) appear vulnerable to MeHg, whereas Purkinje cells and molecular layer neurons are resistant. Here, we use a MeHg-intoxicated rat model to investigate these cerebellar neurons for the different causes of susceptibility to MeHg. Rats were exposed to 20 ppm MeHg for 4 weeks and subsequently exhibited neuropathological changes in the cerebellum that were similar to those observed in humans. We first isolated the three cerebellar neuron types using a microdissection system and then performed real-time PCR analyses for antioxidative enzymes. We observed that expression of manganese-superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1), and thioredoxin reductase 1 (TRxR1) was significantly higher in Purkinje cells and molecular layer neurons than in CGCs. Finally, we performed immunohistochemical analyses on the cerebellum. Immunohistochemistry showed increased expression of Mn-SOD, GPx1, and TRxR1 in Purkinje cells and molecular layer neurons, which was coincident with the mRNA expression patterns. Considering Mn-SOD, GPx1, and TRxR1 are critical for protecting cells against MeHg intoxication, the results indicate that low expression of these antioxidative enzymes increases CGCs vulnerability to MeHg toxicity.

  13. Association of Chiari I malformation and cerebellar ectopia with sensorineural hearing loss.

    Science.gov (United States)

    Haktanir, Alpay; Yücedağ, Fatih; Kaçar, Emre; Ulu, Sahin; Gültekin, Mehmet Ali; Ünlü, Ebru; Bucak, Abdülkadir; Ayçiçek, Abdullah

    2013-07-01

    We aimed to examine the prevalence of cerebellar tonsil ectopia and Chiari 1 malformation in sensorineural hearing loss (SHL) that has, to the best of our knowledge, not been studied previously. Magnetic resonance imaging records of 166 subjects with SHL and 50 controls without known otologic disturbances were included in the study. A tonsils descent more than 2 mm was assumed as cerebellar ectopia, and a descent equal to or more than 5 mm was assumed as Chiari 1 malformation. A tonsil descent group was also formed by summation of both groups. Transverse diameters of bilateral intracranial vertebral arteries and transverse sinuses were also measured, and all parameters were analyzed using appropriate statistics. A significant difference of frequencies of Chiari 1, ectopia, and tonsil descent was detected between patients and controls. In comparison of cerebellar ectopia and Chiari 1 groups, SHL did not show any significant difference. The left lateral sinus diameter showed positive correlation with tonsil descent. There was no significant correlation for the diameters of other vessels. A powerful correlation was detected between SHL and age. In addition, right and vertebral artery diameters showed positive correlations with age. Chiari 1 malformation and cerebellar ectopia showed an association with SHL. These patients should also be evaluated for otologic disturbances. Further high-resolution magnetic resonance imaging studies to explain the exact cause of this currently unknown association seems required.

  14. Prediction and set-dependent scaling of early postural responses in cerebellar patients.

    Science.gov (United States)

    Timmann, D; Horak, F B

    1997-02-01

    We reported previously that patients with cerebellar deficits were unable to scale the magnitude of their early automatic postural responses to the predicted amplitudes of surface translations based on central set from prior experience. The present study investigated whether this deficit in set-dependent amplitude scaling was based predominantly on the cerebellar patient's disability (i) to predict perturbation amplitudes on the basis of prior experience, (ii) to scale the gain or magnitude of upcoming postural responses or (iii) to habituate postural responses. The increase in size of the early postural response when a larger than actual platform amplitude was expected and decrease when a smaller one was expected was defined as a measure of set-dependent amplitude prediction. The suppression of the postural response when the same platform velocity was repeated was used as a measure of habituation. The correlation between the size of early postural responses and platform amplitudes when presented serially, but not randomly, tested the ability to scale the gain of postural responses based on prior experience. Results show that although cerebellar patients could predict perturbation amplitudes based on prior experience, they could not use this prediction to modify precisely the gain of responses. The ability to habituate the magnitude of postural responses was not affected by cerebellar lesions. Thus, the cerebellum might not be critical for predicting upcoming events or for habituating to repeated postural stimuli, although it is important for accurate tuning of response gain based on prediction.

  15. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  16. CSF biomarker profiles do not differentiate between the cerebellar and parkinsonian phenotypes of multiple system atrophy

    NARCIS (Netherlands)

    Abdo, W F; van de Warrenburg, B P C; Kremer, H P H; Bloem, B R; Verbeek, M M

    2007-01-01

    BACKGROUND: Multiple system atrophy (MSA) can clinically be divided into the cerebellar (MSA-C) and the parkinsonian (MSA-P) variants. It is unknown whether the variation in clinical expression is also reflected by a different underlying neurochemical profile. METHODS: We analyzed brain specific pro

  17. Magnetic resonance imaging findings in patients presenting with (sub)acute cerebellar ataxia

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Tanja [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg (Germany); The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Neuroradiology, Baltimore, MD (United States); Thomalla, Goetz [University Medical Center Hamburg-Eppendorf, Department of Neurology, Hamburg (Germany); Goebell, Einar [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg (Germany); Piotrowski, Anna [The Johns Hopkins University School of Medicine, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD (United States); Yousem, David Mark [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Neuroradiology, Baltimore, MD (United States)

    2015-02-17

    Acute or subacute cerebellar inflammation is mainly caused by postinfectious, toxic, neoplastic, vascular, or idiopathic processes and can result in cerebellar ataxia. Previous magnetic resonance (MR) studies in single patients who developed acute or subacute ataxia showed varying imaging features. Eighteen patients presenting with acute and subacute onset of ataxia were included in this study. Cases of chronic-progressive/hereditary and noncerebellar causes (ischemia, multiple sclerosis lesions, metastasis, bleedings) were excluded. MR imaging findings were then matched with the clinical history of the patient. An underlying etiology for ataxic symptoms were found in 14/18 patients (postinfectious/infectious, paraneoplastic, autoimmune, drug-induced). In two of five patients without MR imaging findings and three of eight patients with minimal imaging features (cerebellar atrophy, slight signal alterations, and small areas of restricted diffusion), adverse clinical outcomes were documented. Of the five patients with prominent MR findings (cerebellar swelling, contrast enhancement, or broad signal abnormalities), two were lost to follow-up and two showed long-term sequelae. No correlation was found between the presence of initial MRI findings in subacute or acute ataxia patients and their long-term clinical outcome. MR imaging was more flagrantly positive in cases due to encephalitis. (orig.)

  18. Cerebellar toxoplasmosis in HIV/AIDS infant: case report and review of the literature.

    Science.gov (United States)

    Ibebuike, Kaunda; Mantanga, Leo; Emereole, Obioma; Ndolo, Patrice; Kajee, Afsana; Gopal, Rasik; Pather, Sugeshnee

    2012-12-01

    Cerebellar mass lesion is an uncommon presentation of toxoplasmosis. The authors report one rare case in an 11-month-old HIV/AIDS female infant who presented with deterioration in her developmental milestones. CT scan revealed a ring-enhancing mass lesion in the right cerebellar hemisphere with secondary obstructive hydrocephalus. A ventriculoperitoneal shunt was inserted prior to posterior fossa decompression and biopsy of the lesion. The specimens obtained were divided into two. One specimen was sent for histological diagnosis immediately after surgery while the second specimen was preserved until the release of the histology report. The initial histopathology report indicated a neoplastic process. Immunohistochemical stains were attempted but interpreted with difficulty due to severe tissue necrosis. After waiting for close to 6 weeks without a definite histological diagnosis, the preserved second specimen was sent for histological analysis as a fresh specimen, and reported a diagnosis of toxoplasmosis. This case presented diagnostic challenges to the authors whose radiological impressions of either a neoplastic lesion or a tuberculoma (based on our local neuroepidemiology) were reinforced by intraoperative findings highly suggestive of tuberculoma but which contrasted with the histological report, first as a neoplastic lesion and later toxoplasmosis. Although cerebellar toxoplasmosis is a rare complication of HIV/AIDS, this case report shows that toxoplasmosis should not be overlooked as a differential diagnosis of ring-enhancing cerebellar masses in HIV/AIDS patients irrespective of the patient's age and the absence of constitutional symptoms of toxoplasmosis.

  19. Cerebellar tDCS: A Novel Approach to Augment Language Treatment Post-stroke

    Science.gov (United States)

    Sebastian, Rajani; Saxena, Sadhvi; Tsapkini, Kyrana; Faria, Andreia V.; Long, Charltien; Wright, Amy; Davis, Cameron; Tippett, Donna C.; Mourdoukoutas, Antonios P.; Bikson, Marom; Celnik, Pablo; Hillis, Argye E.

    2017-01-01

    People with post-stroke aphasia may have some degree of chronic deficit for which current rehabilitative treatments are variably effective. Accumulating evidence suggests that transcranial direct current stimulation (tDCS) may be useful for enhancing the effects of behavioral aphasia treatment. However, it remains unclear which brain regions should be stimulated to optimize effects on language recovery. Here, we report on the therapeutic potential of right cerebellar tDCS in augmenting language recovery in SMY, who sustained bilateral MCA infarct resulting in aphasia and anarthria. We investigated the effects of 15 sessions of anodal cerebellar tDCS coupled with spelling therapy using a randomized, double-blind, sham controlled within-subject crossover trial. We also investigated changes in functional connectivity using resting state functional magnetic resonance imaging before and 2 months post-treatment. Both anodal and sham treatments resulted in improved spelling to dictation for trained and untrained words immediately after and 2 months post-treatment. However, there was greater improvement with tDCS than with sham, especially for untrained words. Further, generalization to written picture naming was only noted during tDCS but not with sham. The resting state functional connectivity data indicate that improvement in spelling was accompanied by an increase in cerebro-cerebellar network connectivity. These results highlight the therapeutic potential of right cerebellar tDCS to augment spelling therapy in an individual with large bilateral chronic strokes. PMID:28127284

  20. Expression of classical cadherins in the cerebellar anlage: quantitative and functional aspects.

    Science.gov (United States)

    Gliem, Michael; Weisheit, Gunnar; Mertz, Kirsten D; Endl, Elmar; Oberdick, John; Schilling, Karl

    2006-12-01

    During central nervous system (CNS) development, cell migration precedes and is key to the integration of diverse sets of cells. Mechanistically, CNS histogenesis is realized through a balanced interplay of cell-cell and cell-matrix adhesion molecules. Here, we summarize experiments that probe the developmental expression and potential significance of a set of cadherins, including M-, N- and R-cadherin, for patterning of the cerebellar cortex. We established a transgenic marker that allows cerebellar granule cells to be followed from the neuroblast stage to their final, postmitotic settlement. In conjunction with flow cytometry, this allowed us to derive a quantitative view of cadherin expression in differentiating granule cells and relate it to the expression of the same cadherins in cerebellar inhibitory interneuronal precursors. In vitro reaggregation analysis supports a role for cadherins in cell sorting and migration within the nascent cerebellar cortex that may be rationalized within the context of the differential adhesion hypothesis (Foty, R.A. and Steinberg, M.S., 2005. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255-263.).

  1. Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat

    NARCIS (Netherlands)

    L. Suzuki (Lucia); P. Coulon (Patrice); E. Goedknegt; T.J.H. Ruigrok (Tom)

    2012-01-01

    textabstractThe cerebrocerebellar connection makes use of two of the largest fiber tracts in the mammalian brain, i.e., the cerebral and medial cerebellar peduncles. Neuroanatomical approaches aimed to elucidate the organization of this important connection have been hindered by its multisynaptic na

  2. Moyamoya disease associated with an anterior inferior cerebellar artery arising from a persistent trigeminal artery

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Sawada, A.; Takase, Y.; Kudo, S. [Department of Radiology, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501 (Japan); Koizumi, T. [Department of Neurosurgery, Saga Medical School, 5-1-1, Nabeshima, Saga, 849-8501 (Japan)

    2002-07-01

    The authors present a case of moyamoya disease associated with a persistent trigeminal artery from which the anterior inferior cerebellar artery arose. We reviewed previously reported cases of moyamoya disease associated with persistent carotid-basilar arterial anastomosis and investigated the embryology of this rare arterial variation. (orig.)

  3. Impaired tooth root development after treatment of a cerebellar astrocytoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Eckles, T.A.; Kalkwarf, K.L.

    1989-10-01

    A young man, previously treated by surgical resection of a grade III cerebellar astrocytoma in combination with irradiation and chemotherapy, was found to display severe generalized root agenesis. This patient also exhibited secondary hypothyroidism and decreased levels of growth hormone. These factors are discussed in relation to their possible role in impaired root development.

  4. Orexins excite neurons of the rat cerebellar nucleus interpositus via orexin 2 receptors in vitro.

    Science.gov (United States)

    Yu, Lei; Zhang, Xiao-Yang; Zhang, Jun; Zhu, Jing-Ning; Wang, Jian-Jun

    2010-03-01

    Orexins are newfound hypothalamic neuropeptides implicated in the regulation of feeding behavior, sleep-wakefulness cycle, nociception, addiction, emotions, as well as narcolepsy. However, little is known about roles of orexins in motor control. Therefore, the present study was designed to investigate the effect of orexins on neuronal activity in the cerebellum, an important subcortical center for motor control. In this study, perfusing slices with orexin A (100 nM-1 microM) or orexin B (100 nM-1 microM) both produced neurons in the rat cerebellar interpositus nucleus (IN) a concentration-dependent excitatory response (96/143, 67.1%). Furthermore, both of the excitations induced by orexin A and B were not blocked by the low-Ca(2+)/high-Mg(2+) medium (n = 8), supporting a direct postsynaptic action of the peptides. Highly selective orexin 1 receptor antagonist SB-334867 did not block the excitatory response of cerebellar IN neurons to orexins (n = 22), but [Ala(11), D-Leu(15)] orexin B, a highly selective orexin 2 receptor (OX(2)R) agonist, mimicked the excitatory effect of orexins on the cerebellar neurons (n = 18). These results demonstrate that orexins excite the cerebellar IN neurons through OX(2)R and suggest that the central orexinergic nervous system may actively participate in motor control through its modulation on one of the final outputs of the spinocerebellum.

  5. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    Directory of Open Access Journals (Sweden)

    Shun-Yuan Wang

    2015-03-01

    Full Text Available This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC in the speed sensorless vector control of an induction motor (IM drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  6. Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: evidence from diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Takashi; Morimoto, Masafumi; Hasegawa, Tatsuji; Morioka, Shigemi; Kidowaki, Satoshi; Moroto, Masaharu; Yamashita, Satoshi; Maeda, Hiroshi; Chiyonobu, Tomohiro; Tokuda, Sachiko; Hosoi, Hajime [Kyoto Prefectural University of Medicine, Department of Pediatrics, Graduate School of Medical Science, Kyoto (Japan); Yamada, Kei [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto (Japan)

    2015-05-01

    Recent diffusion tensor imaging (DTI) studies have demonstrated that leakage of hemosiderin into cerebrospinal fluid (CSF), which is caused by high-grade intraventricular hemorrhage (IVH), can affect cerebellar development in preterm born infants. However, a direct effect of low-grade IVH on cerebellar development is unknown. Thus, we evaluated the cerebellar and cerebral white matter (WM) of preterm infants with low-grade IVH. Using DTI tractography performed at term-equivalent age, we analyzed 42 infants who were born less than 30 weeks gestational age (GA) at birth (22 with low-grade IVH, 20 without). These infants were divided into two birth groups depending on GA, and we then compared the presence and absence of IVH which was diagnosed by cerebral ultrasound (CUS) within 10 days after birth or conventional magnetic resonance imaging (MRI) at term-equivalent age in each group. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) at the superior cerebellar peduncle (SCP), middle cerebellar peduncle (MCP), motor tract, and sensory tract were measured. In the SCP, preterm born infants with IVH had lower FA values compared with infants without IVH. In particular, younger preterm birth with IVH had lower FA values in the SCP and motor tract and higher ADC values in the MCP. Low-grade IVH impaired cerebellar and cerebral WM, especially in the SCP. Moreover, younger preterm infants exhibited greater disruptions to cerebellar WM and the motor tract than infants of older preterm birth. (orig.)

  7. Different subregional metabolism patterns in patients with cerebellar ataxia by 18F-fluorodeoxyglucose positron emission tomography

    Science.gov (United States)

    Kim, Jae Seung; Oh, Jungsu S.; Lee, Chong Sik; Chung, Sun Ju

    2017-01-01

    We evaluated cerebellar subregional metabolic alterations in patients with cerebellar ataxia, a representative disease involving the spinocerebellum. We retrospectively analyzed 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) images in 44 patients with multiple system atrophy of the cerebellar type (MSA-C), 9 patients with spinocerebellar ataxia (SCA) type 2, and 14 patients with SCA type 6 and compared with 15 patients with crossed cerebellar diaschisis (CCD) and 89 normal controls. Cerebellar subregional metabolism was assessed using 13 cerebellar subregions (bilateral anterior lobes [ANT], superior/mid/inferior posterior lobes [SUPP/MIDP/INFP], dentate nucleus [DN], anterior vermis [ANTV], and superior/inferior posterior vermis [SUPV/INFV]) to determine FDG uptake ratios. MSA-C and SCA type 2 showed severely decreased metabolic ratios in all cerebellar subregions compared to normal controls (ANT, 0.58 ± 0.08 and 0.50 ± 0.06 vs. 0.82 ± 0.07, respectively, p MSA-C. Asymmetric indices were higher in CCD and MSA-C than in normal controls (p MSA-C exhibited more asymmetric hypometabolism in the posterior lobe. PMID:28319124

  8. Continuous theta burst stimulation (cTBS on left cerebellar hemisphere affects mental rotation tasks during music listening.

    Directory of Open Access Journals (Sweden)

    Silvia Picazio

    Full Text Available Converging evidence suggests an association between spatial and music domains. A cerebellar role in music-related information processing as well as in spatial-temporal tasks has been documented. Here, we investigated the cerebellar role in the association between spatial and musical domains, by testing performances in embodied (EMR or abstract (AMR mental rotation tasks of subjects listening Mozart Sonata K.448, which is reported to improve spatial-temporal reasoning, in the presence or in the absence of continuous theta burst stimulation (cTBS of the left cerebellar hemisphere. In the absence of cerebellar cTBS, music listening did not influence either MR task, thus not revealing a "Mozart Effect". Cerebellar cTBS applied before musical listening made subjects faster (P = 0.005 and less accurate (P = 0.005 in performing the EMR but not the AMR task. Thus, cerebellar inhibition by TBS unmasked the effect of musical listening on motor imagery. These data support a coupling between music listening and sensory-motor integration in cerebellar networks for embodied representations.

  9. Continuous theta burst stimulation (cTBS) on left cerebellar hemisphere affects mental rotation tasks during music listening.

    Science.gov (United States)

    Picazio, Silvia; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura

    2013-01-01

    Converging evidence suggests an association between spatial and music domains. A cerebellar role in music-related information processing as well as in spatial-temporal tasks has been documented. Here, we investigated the cerebellar role in the association between spatial and musical domains, by testing performances in embodied (EMR) or abstract (AMR) mental rotation tasks of subjects listening Mozart Sonata K.448, which is reported to improve spatial-temporal reasoning, in the presence or in the absence of continuous theta burst stimulation (cTBS) of the left cerebellar hemisphere. In the absence of cerebellar cTBS, music listening did not influence either MR task, thus not revealing a "Mozart Effect". Cerebellar cTBS applied before musical listening made subjects faster (P = 0.005) and less accurate (P = 0.005) in performing the EMR but not the AMR task. Thus, cerebellar inhibition by TBS unmasked the effect of musical listening on motor imagery. These data support a coupling between music listening and sensory-motor integration in cerebellar networks for embodied representations.

  10. Differences between spinocerebellar ataxias and multiple system atrophy-cerebellar type on proton magnetic resonance spectroscopy.

    Directory of Open Access Journals (Sweden)

    Jiing-Feng Lirng

    Full Text Available PURPOSE: A broad spectrum of diseases can manifest cerebellar ataxia. In this study, we investigated whether proton magnetic resonance spectroscopy (MRS may help differentiate spinocerebellar ataxias (SCA from multiple systemic atrophy- cerebellar type (MSA-C. MATERIAL AND METHODS: This prospective study recruited 156 patients with ataxia, including spinocerebellar ataxia (SCA types 1, 2, 3, 6 and 17 (N = 94 and MSA-C (N = 62, and 44 healthy controls. Single voxel proton MRS in the cerebellar hemispheres and vermis were measured. The differences were evaluated using nonparametric statistic tests. RESULTS: When compared with healthy controls, the cerebellar and vermis NAA/Cr and NAA/Cho were lower in all patients(p<0.002. The Cho/Cr was lower in SCA2 and MSA-C (p<0.0005. The NAA/Cr and Cho/Cr were lower in MSA-C or SCA2 comparing with SCA3 or SCA6. The MRS features of SCA1 were in between (p<0.018. The cerebellar NAA/Cho was lower in SCA2 than SCA1, SCA3 or SCA6 (p<0.04. The cerebellar NAA/Cho in MSA-C was lower than SCA3 (p<0.0005. In the early stages of diseases (SARA score<10, significant lower NAA/Cr and NAA/Cho in SCA2, SCA3, SCA6 or MSA-C were observed comparing with healthy controls (p<0.017. The Cho/Cr was lower in MSA-C or SCA2 (p<0.0005. Patients with MSA-C and SCA2 had lower NAA/Cr and Cho/Cr than SCA3 or SCA6 (p<0.016. CONCLUSION: By using MRS, significantly lower NAA/Cr, Cho/Cr and NAA/Cho in the cerebellar hemispheres and vermis were found in patients with ataxia (SCAs and MSA-C. Rapid neuronal degeneration and impairment of membrane activities were observed more often in patients with MSA-C than those with SCA, even in early stages. MRS could also help distinguish between SCA2 and other subtypes of SCAs. MRS ratios may be of use as biomarkers in early stages of disease and should be further assessed in a longitudinal study.

  11. Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation.

    Science.gov (United States)

    Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; D'Angelo, Egidio; Ros, Eduardo

    2014-01-01

    The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior olive (IO), can only account for limited aspects of learning. Recently, the role of additional forms of plasticity in the granular layer, molecular layer and deep cerebellar nuclei (DCN) has been considered. In particular, learning at DCN synapses allows for generalization, but convergence to a stable state requires hundreds of repetitions. In this paper we have explored the putative role of the IO-DCN connection by endowing it with adaptable weights and exploring its implications in a closed-loop robotic manipulation task. Our results show that IO-DCN plasticity accelerates convergence of learning by up to two orders of magnitude without conflicting with the generalization properties conferred by DCN plasticity. Thus, this model suggests that multiple distributed learning mechanisms provide a key for explaining the complex properties of procedural learning and open up new experimental questions for synaptic plasticity in the cerebellar network.

  12. Anticonvulsive Activity in Audiogenic DBA/2 Mice of 1,4-Benzodiazepines and 1,5-Benzodiazepines with Different Activities at Cerebellar Granule Cell GABAA Receptors.

    Science.gov (United States)

    Gatta, Elena; Cupello, Aroldo; Di Braccio, Mario; Grossi, Giancarlo; Robello, Mauro; Scicchitano, Francesca; Russo, Emilio; De Sarro, Giovambattista

    2016-12-01

    Herein, we tested in a model of generalized reflex epilepsy in mice different 1,4-benzodiazepines and 1,5-benzodiazepines with agonistic activity at the GABAA receptor population contributing to the peak component of the chloride current elicited by GABA in cerebellar granule cells (CGCs) in culture. The substances have all higher lipophilia than clobazam, an antiepileptic drug well known and used in human therapy. This ensures that they all can pass relatively easily the blood-brain barrier (BBB). The benzodiazepines were administered intraperitoneally (i.p.) and tested for their activity against sound-induced tonic and clonic seizures in a genetic model of experimental epilepsy, the DBA/2 mouse. Our data demonstrates an interesting inverse correlation between the ED50s and the efficacy (E %) of the drugs in increasing the peak chloride current elicited by GABA in cerebellar granule cells in culture. There is indication of the existence of a threshold of E % above which the increase of ED50 with increasing E % becomes linear. This is statistically significant for the clonic phase, whereas it is at the limit of significance for the tonic one. A possible interpretation of these results is that in this epilepsy model, projections from the cerebellum exert a convulsion prevention activity.

  13. Principal component analysis of cerebellar shape on MRI separates SCA types 2 and 6 into two archetypal modes of degeneration.

    Science.gov (United States)

    Jung, Brian C; Choi, Soo I; Du, Annie X; Cuzzocreo, Jennifer L; Geng, Zhuo Z; Ying, Howard S; Perlman, Susan L; Toga, Arthur W; Prince, Jerry L; Ying, Sarah H

    2012-12-01

    Although "cerebellar ataxia" is often used in reference to a disease process, presumably there are different underlying pathogenetic mechanisms for different subtypes. Indeed, spinocerebellar ataxia (SCA) types 2 and 6 demonstrate complementary phenotypes, thus predicting a different anatomic pattern of degeneration. Here, we show that an unsupervised classification method, based on principal component analysis (PCA) of cerebellar shape characteristics, can be used to separate SCA2 and SCA6 into two classes, which may represent disease-specific archetypes. Patients with SCA2 (n=11) and SCA6 (n=7) were compared against controls (n=15) using PCA to classify cerebellar anatomic shape characteristics. Within the first three principal components, SCA2 and SCA6 differed from controls and from each other. In a secondary analysis, we studied five additional subjects and found that these patients were consistent with the previously defined archetypal clusters of clinical and anatomical characteristics. Secondary analysis of five subjects with related diagnoses showed that disease groups that were clinically and pathophysiologically similar also shared similar anatomic characteristics. Specifically, Archetype #1 consisted of SCA3 (n=1) and SCA2, suggesting that cerebellar syndromes accompanied by atrophy of the pons may be associated with a characteristic pattern of cerebellar neurodegeneration. In comparison, Archetype #2 was comprised of disease groups with pure cerebellar atrophy (episodic ataxia type 2 (n=1), idiopathic late-onset cerebellar ataxias (n=3), and SCA6). This suggests that cerebellar shape analysis could aid in discriminating between different pathologies. Our findings further suggest that magnetic resonance imaging is a promising imaging biomarker that could aid in the diagnosis and therapeutic management in patients with cerebellar syndromes.

  14. Magnetic resonance imaging of cerebellar Schistosomiasis mansoni; Ressonancia magnetica na esquistossomose mansoni cerebelar

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Bruno Perocco; Costa Junior, Leodante Batista da [Hospital da Baleia, Belo Horizonte, MG (BRazil). Servico de Neurocirurgia; Lambertucci, Jose Roberto [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Faculdade de Medicina. Servico de Doencas Infecciosas e Parasitarias

    2003-10-01

    A 15-year-old boy was admitted to hospital with a history of headache, dizziness, vomiting and double vision that started two weeks before. His parents denied any previous disease. During clinical examination he presented diplopia on lateral gaze to the left and horizontal nystagmus. No major neurological dysfunction was detected. He was well built, mentally responsive and perceptive. Laboratory findings revealed a leukocyte count of 10,000/mL, a normal red blood cell count and no eosinophilia. The magnetic resonance images (MRI) of the brain showed a left cerebellar lesion with mass effect compressing the surrounding tissues. Contrast-enhanced images showed a mass like structure and punctate nodules (Figures A and B: axial and coronal contrast-enhanced T1-weighted MR images showed the nodular - yellow arrows - enhancement pattern of a left cerebellar intraxial lesion). The lesion extended to the vermis and brachium pons and compressed the medulla. There was no hydrocephalus. He was taken to the operating room with the presumptive diagnosis of a neuroglial tumor, and submitted to a lateral suboccipital craniectomy. A brown, brittle tumoral mass without a clearly defined margin with the cerebellar tissue was removed. Microscopic examination revealed schistosomal granulomas in the productive phase in the cerebellum (Figure C). After surgery, treatment with praziquantel (50 mg/kg/dia, single dose) and prednisone (1 mg/kg/day) was offered and the patient improved quickly. Thirty days later he was seen again at the outpatient clinic: he was asymptomatic and with no neurological impairment. This is the eighth case of cerebellar involvement in schistosomiasis mansoni and the second report of a tumoral form of cerebellar schistosomiasis documented by magnetic resonance images. (author)

  15. Eph receptors are involved in the activity-dependent synaptic wiring in the mouse cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Roberta Cesa

    Full Text Available Eph receptor tyrosine kinases are involved in many cellular processes. In the developing brain, they act as migratory and cell adhesive cues while in the adult brain they regulate dendritic spine plasticity. Here we show a new role for Eph receptor signalling in the cerebellar cortex. Cerebellar Purkinje cells are innervated by two different excitatory inputs. The climbing fibres contact the proximal dendritic domain of Purkinje cells, where synapse and spine density is low; the parallel fibres contact the distal dendritic domain, where synapse and spine density is high. Interestingly, Purkinje cells have the intrinsic ability to generate a high number of spines over their entire dendritic arborisations, which can be innervated by the parallel fibres. However, the climbing fibre input continuously exerts an activity-dependent repression on parallel fibre synapses, thus confining them to the distal Purkinje cell dendritic domain. Such repression persists after Eph receptor activation, but is overridden by Eph receptor inhibition with EphA4/Fc in neonatal cultured cerebellar slices as well as mature acute cerebellar slices, following in vivo infusion of the EphA4/Fc inhibitor and in EphB receptor-deficient mice. When electrical activity is blocked in vivo by tetrodotoxin leading to a high spine density in Purkinje cell proximal dendrites, stimulation of Eph receptor activation recapitulates the spine repressive effects of climbing fibres. These results suggest that Eph receptor signalling mediates the repression of spine proliferation induced by climbing fibre activity in Purkinje cell proximal dendrites. Such repression is necessary to maintain the correct architecture of the cerebellar cortex.

  16. Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation.

    Science.gov (United States)

    Panyakaew, Pattamon; Cho, Hyun Joo; Srivanitchapoom, Prachaya; Popa, Traian; Wu, Tianxia; Hallett, Mark

    2016-04-01

    Motor surround inhibition is the neural mechanism that selectively favours the contraction of target muscles and inhibits nearby muscles to prevent unwanted movements. This inhibition was previously reported at the onset of a movement, but not during a tonic contraction. Cerebellar brain inhibition (CBI) is reduced in active muscles during tonic activation; however, it has not been studied in the surround muscles. CBI was evaluated in the first dorsal interosseus (FDI) muscle as the target muscle, and the abductor digiti minimi, flexor carpi radialis and extensor carpi radialis muscles as surround muscles, during rest and tonic activation of the FDI muscle in 21 subjects. Cerebellar stimulation was performed under magnetic resonance imaging-guided neuronavigation targeting lobule VIII of the cerebellar hemisphere. Stimulus intensities for cerebellar stimulation were based on the resting motor cortex threshold (RMT) and adjusted for the depth difference between the cerebellar and motor cortices. We used 90-120% of the adjusted RMT as the conditioning stimulus intensity during rest. The intensity that generated the best CBI at rest in the FDI muscle was selected for use during tonic activation. During selective tonic activation of the FDI muscle, CBI was significantly reduced only for the FDI muscle, and not for the surround muscles. Unconditioned motor evoked potential sizes were increased in all muscles during FDI muscle tonic activation as compared with rest, despite background electromyography activity increasing only for the FDI muscle. Our study suggests that the cerebellum may play an important role in selective tonic finger movement by reducing its inhibition in the motor cortex only for the relevant agonist muscle.

  17. An agonist–antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning

    Directory of Open Access Journals (Sweden)

    Raudel eSánchez-Campusano

    2012-03-01

    Full Text Available The presence of two antagonistic groups of deep cerebellar nuclei neurons has been reported as necessary for a proper dynamic control of learned motor responses. Most models of cerebellar function seem to ignore the biomechanical need for a double activation–deactivation system controlling eyelid kinematics, since most of them accept that, for closing the eyelid, only the activation of the orbicularis oculi muscle (via the red nucleus to the facial motor nucleus is necessary, without a simultaneous deactivation of levator palpebrae motoneurons (via unknown pathways projecting to the perioculomotor area. We have analyzed the kinetic neural commands of two antagonistic types of cerebellar posterior interpositus neuron (types A and B, the electromyographic activity of the orbicularis oculi muscle, and eyelid kinematic variables in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. We addressed the hypothesis that the interpositus nucleus can be considered an agonist–antagonist system controlling eyelid kinematics during motor learning. To carry out a comparative study of the kinetic–kinematic relationships, we applied timing and dispersion pattern analyses. We concluded that, in accordance with a dominant role of cerebellar circuits for the facilitation of flexor responses, type A neurons fire during active eyelid downward displacements ─ i.e., during the active contraction of the orbicularis oculi muscle. In contrast, type B neurons present a high tonic rate when the eyelids are wide open, and stop firing during any active downward displacement of the upper eyelid. From a functional point of view, it could be suggested that type B neurons play a facilitative role for the antagonistic action of the levator palpebrae muscle. From an anatomical point of view, the possibility that cerebellar nuclear type B neurons project to the perioculomotor area ─ i.e., more or less directly onto levator palpebrae

  18. The p53 inhibitor MDM2 facilitates Sonic Hedgehog-mediated tumorigenesis and influences cerebellar foliation.

    Directory of Open Access Journals (Sweden)

    Reem Malek

    Full Text Available Disruption of cerebellar granular neuronal precursor (GNP maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro, which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/- mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis.

  19. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    Science.gov (United States)

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  20. Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics

    Directory of Open Access Journals (Sweden)

    Rose John W

    2009-10-01

    Full Text Available Abstract Background Immunoglobulin G (IgG antibodies reactive with intracellular neuronal proteins have been described in paraneoplastic and other autoimmune disorders. Because neurons have been thought impermeable to immunoglobulins, however, such antibodies have been considered unable to enter neurons and bind to their specific antigens during life. Cerebellar Purkinje cells - an important target in paraneoplastic and other autoimmune diseases - have been shown in experimental animals to incorporate a number of molecules from cerebrospinal fluid. IgG has also been detected in Purkinje cells studied post mortem. Despite the possible significance of these findings for human disease, immunoglobulin uptake by Purkinje cells has not been demonstrated in living tissue or studied systematically. Methods To assess Purkinje cell uptake of immunoglobulins, organotypic cultures of rat cerebellum incubated with rat IgGs, human IgG, fluorescein-conjugated IgG, and rat IgM were studied by confocal microscopy in real time and following fixation. An IgG-daunorubicin immunotoxin was used to determine whether conjugation of pharmacological agents to IgG could be used to achieve Purkinje cell-specific drug delivery. Results IgG uptake was detected in Purkinje cell processes after 4 hours of incubation and in Purkinje cell cytoplasm and nuclei by 24-48 hours. Uptake could be followed in real time using IgG-fluorochrome conjugates. Purkinje cells also incorporated IgM. Intracellular immunoglobulin did not affect Purkinje cell viability, and Purkinje cells cleared intracellular IgG or IgM within 24-48 hours after transfer to media lacking immunoglobulins. The IgG-daunomycin immunotoxin was also rapidly incorporated into Purkinje cells and caused extensive, cell-specific death within 8 hours. Purkinje cell death was not produced by unconjugated daunorubicin or control IgG. Conclusion Purkinje cells in rat organotypic cultures incorporate and clear host (rat and non

  1. Tumour type and size are high risk factors for the syndrome of "cerebellar" mutism and subsequent dysarthria

    NARCIS (Netherlands)

    C.E. Catsman-Berrevoets (Coriene); H.R. van Dongen (Hugo); D. Paz y Geuze; P.F. Paquier; M.H. Lequin (Maarten); P.G.H. Mulder (Paul)

    1999-01-01

    textabstractOBJECTIVE: "Cerebellar mutis" and subsequent dysarthria (MSD) is a documented complication of posterior fossa surgery in children. In this prospective study the following risk factors for MSD were assessed: type, size and site of the tumour; hydrocephalus at

  2. Auditory-perceptual speech analysis in children with cerebellar tumours: a long-term follow-up study.

    Science.gov (United States)

    De Smet, Hyo Jung; Catsman-Berrevoets, Coriene; Aarsen, Femke; Verhoeven, Jo; Mariën, Peter; Paquier, Philippe F

    2012-09-01

    Mutism and Subsequent Dysarthria (MSD) and the Posterior Fossa Syndrome (PFS) have become well-recognized clinical entities which may develop after resection of cerebellar tumours. However, speech characteristics following a period of mutism have not been documented in much detail. This study carried out a perceptual speech analysis in 24 children and adolescents (of whom 12 became mute in the immediate postoperative phase) 1-12.2 years after cerebellar tumour resection. The most prominent speech deficits in this study were distorted vowels, slow rate, voice tremor, and monopitch. Factors influencing long-term speech disturbances are presence or absence of postoperative PFS, the localisation of the surgical lesion and the type of adjuvant treatment. Long-term speech deficits may be present up to 12 years post-surgery. The speech deficits found in children and adolescents with cerebellar lesions following cerebellar tumour surgery do not necessarily resemble adult speech characteristics of ataxic dysarthria.

  3. Imbalance of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1 may contribute to hemorrhage in cerebellar arteriovenous malformations

    Institute of Scientific and Technical Information of China (English)

    Fei Di; Tongyan Chen; Hongli Li; Jizong Zhao; Shuo Wang; Yuanli Zhao; Dong Zhang

    2012-01-01

    In this study,we determined the expression levels of matrix metalloproteinase-2 and -9 and matrix metalloproteinase tissue inhibitor-1 and -2 in brain tissues and blood plasma of patients undergoing surgery for cerebellar arteriovenous malformations or primary epilepsy (control group).Immunohistochemistry and enzyme-linked immunosorbent assay revealed that the expression of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1 was significantly higher in patients with cerebellar arteriovenous malformations than in patients with primary epilepsy.The ratio of matrix metalloproteinase-9 to matrix metalloproteinase tissue inhibitor-1 was significantly higher in patients with hemorrhagic cerebellar arteriovenous malformations compared with those with non-hemorrhagic malformations.Matrix metalloproteinase-2 and matrix metalloproteinase tissue inhibitor-2 levels were not significantly changed.These findings indicate that an imbalance of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1,resulting in a relative overabundance of matrix metalloproteinase-9,might be the underlying mechanism of hemorrhage of cerebellar arteriovenous malformations.

  4. An electrophysiological link between the cerebellum, cognition and emotion: Frontal theta EEG activity to single-pulse cerebellar TMS

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Honk, E.J. van

    2006-01-01

    Early intracranial electrical stimulation studies in animals demonstrated cerebellar connectivity to brain structures involved in cognitive and emotive functions. Human electrophysiological data to support cerebellum involvement in the latter functions are however lacking. In the present study, elec

  5. Quantifying cerebellar atrophy in multiple system atrophy of the cerebellar type (MSA-C) using three-dimensional gyrification index analysis.

    Science.gov (United States)

    Wu, Yu-Te; Shyu, Kuo-Kai; Jao, Chii-Wen; Liao, Yuan-Lin; Wang, Tzu-Yun; Wu, Hsiu-Mei; Wang, Po-Shan; Soong, Bing-Wen

    2012-05-15

    Multiple system atrophy of the cerebellar type (MSA-C) is a degenerative neurological disease of the central nervous system. This study employed a method named, "surface-based three-dimensional gyrification index" (3D-GI) to quantify morphological changes in normal cerebellum (including brainstem) and atrophied cerebellum, in patients with MSA-C. We assessed whether 3D-GI can exclude gender and age differences to quantify cerebellum and brainstem atrophy more accurately. Sixteen healthy subjects and 16 MSA-C patients participated in this study. We compared 3D-GI values and volumes in the cerebellum, based on T1-weighted MR images. We also compared the images of reconstructed 3D cerebellum gray matter (3D-CBGM) and cerebellum white matter (3D-CBWM) to detect the atrophied cerebellar region in MSA-C patients. The 3D-GI values were in a stable range with small variances, exhibiting no gender effect and no age-related shrinkage. Significantly lower 3D-GI values were exhibited in both CBGM and CBWM of the MSA-C patients compared with healthy subjects, even in the early phases of the disease. Decreases in 3D-GI values indicated the degeneration of the cerebellar folding structure, exactly reflecting the morphological changes in cerebellum. The 3D-GI method based on CBGM resulted in superior discriminative accuracy compared with the CBGM volumetric method. Using the two-dimensional 3D-GI values, the K-means classifier can evidently discriminate the MSA-C patients from healthy subjects.

  6. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex.

    Science.gov (United States)

    Caligiore, Daniele; Pezzulo, Giovanni; Baldassarre, Gianluca; Bostan, Andreea C; Strick, Peter L; Doya, Kenji; Helmich, Rick C; Dirkx, Michiel; Houk, James; Jörntell, Henrik; Lago-Rodriguez, Angel; Galea, Joseph M; Miall, R Chris; Popa, Traian; Kishore, Asha; Verschure, Paul F M J; Zucca, Riccardo; Herreros, Ivan

    2017-02-01

    Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.

  7. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons.

    Science.gov (United States)

    Bak, Lasse K; Johansen, Maja L; Schousboe, Arne; Waagepetersen, Helle S

    2012-09-01

    Synthesis of neuronal glutamate from α-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino group nitrogen donors for synthesis of vesicular neurotransmitter glutamate was investigated in cultured mouse cerebellar (primarily glutamatergic) neurons. The cultures were superfused in the presence of (15) N-labeled BCAAs, and synaptic activity was induced by pulses of N-methyl-D-aspartate (300 μM), which results in release of vesicular glutamate. At the end of the superfusion experiment, the vesicular pool of glutamate was released by treatment with α-latrotoxin (3 nM, 5 min). This experimental paradigm allows a separate analysis of the cytoplasmic and vesicular pools of glutamate. Amount and extent of (15) N labeling of intracellular amino acids plus vesicular glutamate were analyzed employing HPLC and LC-MS analysis. Only when [(15) N]valine served as precursor did the labeling of both cytoplasmic and vesicular glutamate increase after synaptic activity. In addition, only [(15) N]valine was able to maintain the amount of vesicular glutamate during synaptic activity. This indicates that, among the BCAAs, only valine supports the increased need for synthesis of vesicular glutamate.

  8. Talpid3-binding centrosomal protein Cep120 is required for centriole duplication and proliferation of cerebellar granule neuron progenitors.

    Directory of Open Access Journals (Sweden)

    Chuanqing Wu

    Full Text Available Granule neuron progenitors (GNPs are the most abundant neuronal type in the cerebellum. GNP proliferation and thus cerebellar development require Sonic hedgehog (Shh secreted from Purkinje cells. Shh signaling occurs in primary cilia originating from the mother centriole. Centrioles replicate only once during a typical cell cycle and are responsible for mitotic spindle assembly and organization. Recent studies have linked cilia function to cerebellar morphogenesis, but the role of centriole duplication in cerebellar development is not known. Here we show that centrosomal protein Cep120 is asymmetrically localized to the daughter centriole through its interaction with Talpid3 (Ta3, another centrosomal protein. Cep120 null mutant mice die in early gestation with abnormal heart looping. Inactivation of Cep120 in the central nervous system leads to both hydrocephalus, due to the loss of cilia on ependymal cells, and severe cerebellar hypoplasia, due to the failed proliferation of GNPs. The mutant GNPs lack Hedgehog pathway activity. Cell biological studies show that the loss of Cep120 results in failed centriole duplication and consequently ciliogenesis, which together underlie Cep120 mutant cerebellar hypoplasia. Thus, our study for the first time links a centrosomal protein necessary for centriole duplication to cerebellar morphogenesis.

  9. A rare case of infantile cerebellar pilocytic astrocytoma and thrombocytopenia presenting with intratumoral hemorrhage

    Directory of Open Access Journals (Sweden)

    Shashank R Ramdurg

    2016-01-01

    Full Text Available Incidence of gliomas presenting with hemorrhage is around 3.7–7.2%. Low-grade gliomas account for <1% tumor with hemorrhage. Infants presenting with cerebellar pilocytic astrocytomas (PAs and hemorrhage with thrombocytopenia have not been reported. We report an interesting case of a 9-month-old infant who presented to the emergency department in a drowsy state with recurrent vomiting. Laboratory investigations showed anemia, thrombocytopenia, and coagulopathy. Radiological evaluation showed a large PA with bleed. The patient was treated with retromastoid suboccipital craniotomy and tumor excision and improved postoperatively. Cerebellar PA with bleed and coagulopathy in infants has not been reported in literature till date. Their presentation seems to be acute in nature, and high index of suspicion is required for the diagnosis of these posterior fossa tumors, which can deteriorate rapidly in infants.

  10. Plasticity within non-cerebellar pathways rapidly shapes motor performance in vivo

    Science.gov (United States)

    Mitchell, Diana E.; Della Santina, Charles C.; Cullen, Kathleen E.

    2016-01-01

    Although cerebellar mechanisms are vital to maintain accuracy during complex movements and to calibrate simple reflexes, recent in vitro studies have called into question the widely held view that synaptic changes within cerebellar pathways exclusively guide alterations in motor performance. Here we investigate the vestibulo-ocular reflex (VOR) circuitry by applying temporally precise activation of vestibular afferents in awake-behaving monkeys to link plasticity at different neural sites with changes in motor performance. Behaviourally relevant activation patterns produce rapid attenuation of direct pathway VOR neurons, but not their nerve input. Changes in the strength of this pathway are sufficient to induce a lasting decrease in the evoked VOR. In addition, indirect brainstem pathways display complementary nearly instantaneous changes, contributing to compensating for the reduced sensitivity of primary VOR neurons. Taken together, our data provide evidence that multiple sites of plasticity within VOR pathways can rapidly shape motor performance in vivo. PMID:27157829

  11. Spontaneous cerebellar primitive neuroectodermal tumor in a juvenile cynomolgus monkey (Macaca fascicularis).

    Science.gov (United States)

    Mukaratirwa, Sydney; Rogerson, Petrina; Blanco, Ana L; Naylor, Stuart W; Bradley, Alys

    2012-08-01

    A neoplastic mass compressing the left cerebellar hemisphere and hindbrain was observed at trimming in a 3½-year-old male cynomolgus monkey from a control dose group. Microscopically, the neoplastic mass was nonencapsulated, invasive, and showed two morphological patterns. The predominant area consisted of densely packed undifferentiated, polygonal to spindle cells arranged in vague sheets supported by a scant fibrovascular stroma. The other area was less cellular and composed of round neoplastic cells separated by eosinophilic fibrillar material. Immunohistochemical staining for vimentin, synaptophysin, glial fibrillary acidic protein, neuron-specific enolase, neurofilament, and S-100 confirmed the presence of primitive undifferentiated neuroectodermal cells and some cells with neuronal or glial differentiation. On the basis of histopathology and immunohistochemical findings, a diagnosis of cerebellar primitive neuroectodermal tumor with neuronal and glial differentiation was made. Primitive neuroectodermal tumors are rare in animals including nonhuman primates; this is the first published report in this species.

  12. Cerebellar mutism caused by primary varicella infection in an immunocompetent child.

    Science.gov (United States)

    Erol, Ilknur; Özkale, Yasemin; Saygi, Semra; Alehan, Füsun

    2014-06-01

    Varicella (chickenpox) is a common childhood infection caused by the varicella-zoster virus, which is often self-limiting and usually benign. Although uncommon, neurologic complications of varicella have been documented that include postinfectious cerebellar ataxia, meningoencephalitis, Reye syndrome, myelitis, optic neuritis, stroke, Guillain-Barré syndrome, seventh cranial nerve palsy, and Ramsay-Hunt syndrome. In this case study, the authors describe a 7-year-old girl who presented with varicella skin rash with unsteady gait and anarthria on day 2, and her condition was attributed to cerebellar mutism. To date, this complication has never been reported in a child with primary varicella infection. Therefore, this case study documents a rare but serious complication of childhood chickenpox.

  13. [Non-edematous spontaneously resolving cerebellar softening. Diagnostic possibilities and value (author's transl)].

    Science.gov (United States)

    Samson, M; Parain, D; Mihout, B

    1980-01-01

    Non edematous cerebellar softenings are usually unrecognized even though their relatively high frequency of occurrence is proved by systematic anatomical studies. They should be suspected when an acute late-onset vestibular syndrome is noted, in which there is a particular type of homolateral disequilibrium and nystagmus, good vestibular reactivity, and possible association with a cerebellar syndrome. Softening can usually be confirmed after several days by the complementary examinations presently available: computer tomography of the posterior fossa and scintigraphy with labelled bleomycin. Non-edematous forms are spontaneously resolving disorders but surveillance during the first few days is necessary together with anti-edematous therapy as early signs are common to those of edematous softening, responsible for rapid involvement of the brain stem and blocking of fluid pathways.

  14. Assessment of postural stability in patients with cerebellar disease using gyroscope data.

    Science.gov (United States)

    Kutílek, Patrik; Socha, Vladimír; Čakrt, Ondřej; Svoboda, Zdeněk

    2015-07-01

    This study examines a relatively new method of studying and quantifying human postural stability in patients with degenerative cerebellar disease. Trunk sway and feet sway were measured during quiet stance. To test the method, ten patients and eleven healthy subjects performed two different stance tasks: standing with eyes open on a firm surface and standing with eyes closed on a foam support surface. Data were recorded using three body-worn gyroscopes (Xsens Technologies B.V.) to measure roll and pitch angular movements of the lower trunk, and left and right foot. The pitch versus roll plots of the trunk and feet were created, and the areas of the convex hull shapes were calculated. It was found that the area of the convex hull of the pitch versus roll plots is suitable for the identification of postural instability disorders caused by degenerative cerebellar disease.

  15. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    Directory of Open Access Journals (Sweden)

    Michiel M. ten Brinke

    2015-12-01

    Full Text Available Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs. However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS-related complex spike responses, and molecular layer interneuron (MLI activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval.

  16. Concurrence of Crossed Cerebellar Diaschisis and Parakinesia Brachialis Oscitans in a Patient with Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Yung-Tsan Wu

    2013-01-01

    Full Text Available Crossed cerebellar diaschisis (CCD is defined as a reduction in blood flow in the cerebellar hemisphere contralateral to the supratentorial focal lesion. The phenomenon termed parakinesia brachialis oscitans (PBO in which stroke patients experience involuntary stretching of the hemiplegic arm during yawning is rarely reported. The concurrence of CCD and PBO has never been described. A 52-year-old man had putaminal hemorrhage and demonstrated no significant recovery in his left hemiplegia after intensive rehabilitation, but his gait improved gradually. Two months after the stroke, the single photon emission computed tomography (SPECT showed CCD. Four months after the stroke, the patient noticed PBO. The follow-up SPECT showed persistent CCD and the patient’s arm was still plegic. The frequency and intensity of PBO have increased with time since the stroke. We speculate that the two phenomena CCD and PBO might share similar neuroanatomical pathways and be valuable for predicting clinical recovery after stroke.

  17. Concurrent cerebellar and cervical intramedullary tuberculoma: Paradoxical response on antitubercular chemotherapy and need for surgery

    Science.gov (United States)

    Das, Kuntal Kanti; Jaiswal, Sushila; Shukla, Mukesh; Srivastava, Arun Kumar; Behari, Sanjay; Kumar, Raj

    2014-01-01

    Spinal intramedullary tuberculoma (SIT) is a rare manifestation of neurotuberculosis. Concurrent SIT and intracranial tuberculoma are further unusual. Most of these tuberculomas respond completely to medical therapy, and surgical excision is seldom required. In this report, we describe a 17-year-old boy who developed cervical intramedullary tuberculoma at C3-C6 level with a concurrent lesion involving the right cerebellar hemisphere while on treatment for tubercular meningitis. This patient had paradoxical increase in size of the cervical lesion even though the cerebellar lesion showed regression in size. In this article, we discuss the paradoxical response to anti-tubercular therapy in central nervous system tuberculosis, possible causes of nonresolution of tuberculoma on medical therapy and evaluate the role of surgery in these cases. PMID:25250077

  18. Giant partially thrombosed 4 th ventricular posterior inferior cerebellar artery aneurysm; microsurgical management

    Directory of Open Access Journals (Sweden)

    Forhad Hossain Chowdhury

    2014-01-01

    Full Text Available A 42-year-old woman presented with a 3-month history of progressive occipital headache, vomiting, walking difficulty, and repeated fall. She had no history of sudden and severe headache. She had positive cerebellar signs, predominantly on the right side. Computerized tomography (CT scan, CT angiogram, and magnetic resonance image (MRI of the brain showed suspected partially thrombosed giant 4 th ventricular posterior inferior cerebellar artery aneurysm. Patient developed severe hypersensitivity reaction during both CT scan and MRI after contrast injection. Though needed, digital subtraction angiogram (DSA of cerebral vessels was not done. The aneurysm was managed by microsurgical clipping of the aneurysm neck and partial excision of thrombosed aneurysm. Here, we report the details of management of these difficult giant aneurysm without DSA.

  19. Otogenic brain abscess: A rising trend of cerebellar abscess an institutional study

    Directory of Open Access Journals (Sweden)

    Rupam Borgohain

    2015-01-01

    Full Text Available Chronic inflammation of the middle ear is the most frequent cause of otogenic complications. Meningitis is the most frequent intracranial complications, followed by otogenic brain abscess in neglected otitis media. Although temporal lobe abscesses are more common than cerebellar abscesses, the converse was found to be true in our series of 17 cases. 16 cases of cerebellar abscess and 1 case of temporal lobe abscess were reported as a complication of chronic otitis media (COM. In our group of patients, otogenic brain abscesses were more frequent in male patients of age group 5–20 years with mean age of 14 years. Diagnostic procedure included history, clinical, otorhinolaryngological examination, audiological, microbiological, neurological, ophthalmological, and radiological examinations. The treatment included primary neurosurgical approach (abscess drainage followed by radical otosurgical treatment.

  20. Electrophysiological evidence for glial-subtype glutamate transporter functional expression in rat cerebellar granule neurons

    Directory of Open Access Journals (Sweden)

    Mafra R.A.

    2003-01-01

    Full Text Available A glutamate-sensitive inward current (Iglu is described in rat cerebellar granule neurons and related to a glutamate transport mechanism. We examined the features of Iglu using the patch-clamp technique. In steady-state conditions the Iglu measured 8.14 ± 1.9 pA. Iglu was identified as a voltage-dependent inward current showing a strong rectification at positive potentials. L-Glutamate activated the inward current in a dose-dependent manner, with a half-maximal effect at about 18 µM and a maximum increase of 51.2 ± 4.4%. The inward current was blocked by the presence of dihydrokainate (0.5 mM, shown by others to readily block the GLT1 isoform. We thus speculate that Iglu could be attributed to the presence of a native glutamate transporter in cerebellar granule neurons.

  1. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.

    Science.gov (United States)

    Bao, S; Chen, L; Qiao, X; Knusel, B; Thompson, R F

    1998-01-01

    In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expression of brain-derived neurotrophic factor (BDNF) was selectively absent in the cerebellar granule cells. The cytoarchitecture of the waggler cerebellum appeared to be normal at the light microscope level. The mutant mice exhibited no sensory deficits to auditory stimuli or heat-induced pain. However, they were massively impaired in classic eye-blink conditioning. These results suggest that BDNF may have a role in normal cerebellar neuronal function, which, in turn, is essential for classic eye-blink conditioning.

  2. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  3. The contributions of cerebro-cerebellar circuitry to executive verbal working memory.

    Science.gov (United States)

    Marvel, Cherie L; Desmond, John E

    2010-01-01

    Contributions of cerebro-cerebellar function to executive verbal working memory were examined using event-related functional magnetic resonance imaging (fMRI) while 16 subjects completed two versions of the Sternberg task. In both versions subjects were presented with two or six target letters during the encoding phase, which were held in memory during the maintenance phase. A single probe letter was presented during the retrieval phase. In the "match condition", subjects decided whether the probe matched the target letters. In the "executive condition", subjects created a new probe by counting two alphabetical letters forward (e.g., f-->h) and decided whether the new probe matched the target letters. Neural activity during the match and executive conditions was compared during each phase of the task. There were four main findings. First, cerebro-cerebellar activity increased as a function of executive load. Second, the dorsal cerebellar dentate co-activated with the supplementary motor area (SMA) during encoding. This likely represented the formation of an articulatory (motor) trajectory. Third, the ventral cerebellar dentate co-activated with anterior prefrontal regions Brodmann Area (BA) 9/46 and the pre-SMA during retrieval. This likely represented the manipulation of information and formation of a response. A functional dissociation between the dorsal "motor" dentate and "cognitive" ventral dentate agrees with neuroanatomical tract tracing studies that have demonstrated separate neural pathways involving each region of the dentate: the dorsal dentate projects to frontal motor areas (including the SMA), and the ventral dentate projects to frontal cognitive areas (including BA 9/46 and the pre-SMA). Finally, activity during the maintenance phase in BA 9, anterior insula, pre-SMA and ventral dentate predicted subsequent accuracy of response to the probe during the retrieval phase. This finding underscored the significant contribution of the pre

  4. Electrophysiological Monitoring of Injury ProgressionIn the Rat Cerebellar Cortex

    Directory of Open Access Journals (Sweden)

    Gokhan eOrdek

    2014-10-01

    Full Text Available The changes of excitability in affected neural networks can be used as a marker to study the temporal course of traumatic brain injury (TBI. The cerebellum is an ideal platform to study brain injury mechanisms at the network level using the electrophysiological methods. Within its crystalline morphology, the cerebellar cortex contains highly organized topographical subunits that are defined by two main inputs, the climbing and mossy fibers. Here we demonstrate the use of cerebellar evoked potentials (EPs mediated through these afferent systems for monitoring the injury progression in a rat model of fluid percussion injury (FPI. A mechanical tap on the dorsal hand was used as a stimulus, and EPs were recorded from the paramedian lobule (PML of the posterior cerebellum via multi-electrode arrays (MEA. Post-injury evoked response amplitudes (EPAs were analyzed on a daily basis for one week and compared with pre-injury values. We found a trend of consistently decreasing EPAs in all nine animals, losing as much as 72±4% of baseline amplitudes measured before the injury. Notably, our results highlighted two particular time windows; the first 24 hours of injury in the acute period and day-3 to day-7 in the delayed period where the largest drops (~50% and 24% were observed in the EPAs. In addition, cross-correlations of spontaneous signals between electrode pairs declined (from 0.47±0.1 to 0.35±0.04, p<0.001 along with the EPAs throughout the week of injury. In support of the electrophysiological findings, immunohistochemical analysis at day-7 post-injury showed detectable Purkinje cell loss at low FPI pressures and more with the largest pressures used. Our results suggest that sensory evoked potentials recorded from the cerebellar surface can be a useful technique to monitor the course of cerebellar injury and identify the phases of injury progression even at mild levels.

  5. A new Purkinje cell antibody (anti-Ca associated with subacute cerebellar ataxia: immunological characterization

    Directory of Open Access Journals (Sweden)

    Horn Sigrun

    2010-03-01

    Full Text Available Abstract We report on a newly discovered serum and cerebrospinal fluid (CSF reactivity to Purkinje cells (PCs associated with subacute inflammatory cerebellar ataxia. The patient, a previously healthy 33-year-old lady, presented with severe limb and gait ataxia, dysarthria, and diplopia two weeks after she had recovered from a common cold. Immunohistochemical studies on mouse, rat, and monkey brain sections revealed binding of a high-titer (up to 1:10,000 IgG antibody to the cerebellar molecular layer, Purkinje cell (PC layer, and white matter. The antibody is highly specific for PCs and binds to the cytoplasm as well as to the inner side of the membrane of PC somata, dendrites and axons. It is produced by B cell clones within the CNS, belongs to the IgG1 subclass, and activates complement in vitro. Western blotting of primate cerebellum extract revealed binding of CSF and serum IgG to an 80-97 kDa protein. Extensive control studies were performed to rule out a broad panel of previously described paraneoplastic and non-paraneoplastic antibodies known to be associated with cerebellar ataxia. Screening of >9000 human full length proteins by means of a protein array and additional confirmatory experiments revealed Rho GTPase activating protein 26 (ARHGAP26, GRAF, oligophrenin-1-like protein as the target antigen. Preadsorption of the patient's serum with human ARHGAP26 but not preadsorption with other proteins resulted in complete loss of PC staining. Our findings suggest a role of autoimmunity against ARHGAP26 in the pathogenesis of subacute inflammatory cerebellar ataxia, and extend the panel of diagnostic markers for this devastating disease.

  6. Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models

    OpenAIRE

    Haith, Adrian; Vijayakumar, Sethu

    2009-01-01

    The exact role of the cerebellum in motor control and learning is not yet fully understood. The structure, connectivity and plasticity within cerebellar cortex has been extensively studied, but the patterns of connectivity and interaction with other brain structures, and the computational significance of these patterns, is less well known and a matter of debate. Two contrasting models of the role of the cerebellum in motor adaptation have previously been proposed. Most commonly, the cerebellu...

  7. Developmental α₂-adrenergic regulation of noradrenergic synaptic facilitation at cerebellar GABAergic synapses.

    Science.gov (United States)

    Hirono, M; Nagao, S; Obata, K

    2014-01-03

    In the central nervous system, the normal development of neuronal circuits requires adequate temporal activation of receptors for individual neurotransmitters. Previous studies have demonstrated that α₂-adrenoceptor (α₂-AR) activation eliminates spontaneous action potentials of interneurons in the cerebellar molecular layer (MLIs) and subsequently reduces the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in Purkinje cells (PCs) after the second postnatal week. The magnitude of the α₂-adrenergic reduction in sIPSC frequency is enhanced during the third postnatal week because of an increase in firing-derived sIPSCs. However, little is known about the effects of α₂-AR activation by noradrenaline (NA) on cerebellar GABAergic synaptic transmission that is accompanied by the activation of other AR subtypes, α₁- and β-ARs. Here, we developmentally examined the roles of α₂-AR activation in the noradrenergic facilitation of sIPSCs in cerebellar PCs. Until the second postnatal week, when substantial inhibitory effects of α₂-ARs are absent, NA potentiated sIPSCs and maintained the increased sIPSC frequency, suggesting that NA causes long-lasting facilitation of GABAergic synaptic transmission through α₁- and β-AR activation. After the second postnatal week, NA transiently increased the sIPSC frequency, whereas blocking α₂-ARs sustained the noradrenergic sIPSC facilitation and increase in the firing rate of MLIs, suggesting that α₂-AR activation suppresses the noradrenergic facilitation of GABAergic synaptic transmission. The simultaneous activation of α₁- and β-ARs by their specific agonists mimicked the persistent facilitation of sIPSC frequency, which required extracellular signal-regulated kinase 1/2 activation. These findings indicate that NA acts as a neurotrophic factor that strengthens GABAergic synaptic transmission in the developing cerebellar cortex and that α₂-ARs temporally restrain the noradrenergic

  8. Tigroid pattern of the white matter: a previously unrecognized MR finding in lissencephaly with cerebellar hypoplasia

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Tatsuo [Dokkyo University, Department of Radiology, Mibu, Shimotsuga, Tochigi (Japan); Moriyama, Nobuko [Ibaraki Children' s Hospital, Department of Paediatrics, Mito, Ibaraki (Japan); Tanaka, Ryuta [University of Tsukuba, Department of Paediatrics, Tsukubu, Ibaraki (Japan); Iwasaki, Nobuaki [Ibaraki Prefectural University of Health Sciences, Department of Paediatrics, Ami, Ibaraki (Japan); Arai, Jun-ichi [Ibaraki Children' s Hospital, Department of Neonatology, Mito, Ibaraki (Japan)

    2008-10-15

    Brain MR images of a 14-month-old boy with lissencephaly and cerebellar hypoplasia showed numerous radiating linear structures in the white matter. This finding was identical to the tigroid or leopard-skin pattern that is seen in Pelizaeus-Merzbacher disease or metachromatic leukodystrophy and represents the perivascular white matter spared from demyelination. We speculate that mutations of the reelin gene, expressed both in the cortex and in the white matter, may play an important role in its development. (orig.)

  9. Concurrent cerebellar and cervical intramedullary tuberculoma: Paradoxical response on antitubercular chemotherapy and need for surgery

    OpenAIRE

    Das, Kuntal Kanti; Jaiswal, Sushila; Shukla, Mukesh; Srivastava, Arun Kumar; Behari, Sanjay; Kumar,Raj

    2014-01-01

    Spinal intramedullary tuberculoma (SIT) is a rare manifestation of neurotuberculosis. Concurrent SIT and intracranial tuberculoma are further unusual. Most of these tuberculomas respond completely to medical therapy, and surgical excision is seldom required. In this report, we describe a 17-year-old boy who developed cervical intramedullary tuberculoma at C3-C6 level with a concurrent lesion involving the right cerebellar hemisphere while on treatment for tubercular meningitis. This patient h...

  10. Superior cerebellar aneurysm causing subarachnoid haemorrhage in a 17-year-old with alagille syndrome.

    LENUS (Irish Health Repository)

    O'Connell, David

    2012-04-01

    Alagille syndrome is a rare autosomal dominant condition characterised by mutation in Jagged1 gene. Intracranial aneurysms may be seen in this condition and may present as subarachnoid hemorrhage. We describe the first case of superior cerebellar aneurysm rupture causing WFNS grade 1 subarachnoid haemorrhage in a 17-year-old girl. The clinical condition and management of this rare occurrence is discussed with a review of literature.

  11. Ataxia, intellectual disability, and ocular apraxia with cerebellar cysts: a new disease?

    Science.gov (United States)

    Poretti, Andrea; Häusler, Martin; von Moers, Arpad; Baumgartner, Bastian; Zerres, Klaus; Klein, Andrea; Aiello, Chiara; Moro, Francesca; Zanni, Ginevra; Santorelli, Filippo M; Huisman, Thierry A G M; Weis, Joachim; Valente, Enza Maria; Bertini, Enrico; Boltshauser, Eugen

    2014-02-01

    Cerebellar cysts are rare findings in pediatric neuroimaging and rather characteristic for dystroglycanopathies and GPR56-related encephalopathy. We aim to report on seven children with cerebellar cysts showing absence of weakness and ruling out mutations within eight dystroglycanopathy genes and GPR56. Data about neurological and ophthalmological features, outcome, and creatine kinase values were collected from clinical histories and follow-up examinations. All MR images were qualitatively evaluated for infra- and supratentorial abnormalities. A SNP 6.0-Array was performed in three children. The POMT1, POMT2, POMGnT1, FKRP, FKTN, LARGE, ISPD, B3GALNT2, and GPR56 genes were screened in all patients by Sanger sequencing. Seven children from five families were studied. Ataxia, intellectual disability, and language impairment were found in all patients, ocular motor apraxia in five, and severe myopia in three. None of the patients had weakness, only three a minimally increased creatine kinase value. Qualitative neuroimaging evaluation showed cerebellar cysts and dysplasia in the cerebellar hemispheres and vermis in all children. Additional findings were an enlarged fourth ventricle in all children, vermian hypoplasia and brain stem morphological abnormalities in five. The SNP array showed no pathogenetic imbalances in all children evaluated. In all patients, no mutations were found in POMT1, POMT2, POMGnT1, FKRP, FKTN, LARGE, ISPD, B3GALNT2, and GPR56. The peculiar combination of the same clinical and neuroimaging findings in our patients highly suggests that this phenotype may represent a novel entity, possibly falling within the spectrum of dystroglycanopathies.

  12. Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells

    OpenAIRE

    Hull, Court; Chu, YunXiang; Thanawala, Monica; Regehr, Wade G.

    2013-01-01

    Golgi cells (GoCs) are inhibitory interneurons that influence the cerebellar cortical response to sensory input by regulating the excitability of the granule cell layer. While GoC inhibition is essential for normal motor coordination, little is known about the circuit dynamics that govern the activity of these cells. In particular, while GoC spontaneous spiking influences the extent of inhibition and gain throughout the granule cell layer, it is not known whether this spontaneous activity can...

  13. The cellular state determines the effect of melatonin on the survival of mixed cerebellar cell culture.

    Directory of Open Access Journals (Sweden)

    Daiane Gil Franco

    Full Text Available The constitutive activation of nuclear factor-κB (NF-κB, a key transcription factor involved in neuroinflammation, is essential for the survival of neurons in situ and of cerebellar granule cells in culture. Melatonin is known to inhibit the activation of NF-κB and has a cytoprotective function. In this study, we evaluated whether the cytoprotective effect of melatonin depends on the state of activation of a mixed cerebellar culture that is composed predominantly of granule cells; we tested the effect of melatonin on cultured rat cerebellar cells stimulated or not with lipopolysaccharide (LPS. The addition of melatonin (0.1 nM-1 µM reduced the survival of naïve cells while inhibiting LPS-induced cell death. Melatonin (100 nM transiently (15 min inhibited the nuclear translocation of both NF-κB dimers (p50/p50, p50/RelA and, after 60 min, increased the activation of p50/RelA. Melatonin-induced p50/RelA activity in naïve cells resulted in the transcription of inducible nitric oxide synthase (iNOS and the production of NO. Otherwise, in cultures treated with LPS, melatonin blocked the LPS-induced activation of p50/RelA and the reduction in p50/p50 levels and inhibited iNOS expression and NO synthesis. Therefore, melatonin in vehicle-treated cells induces cell death, while it protects against LPS-induced cytotoxicity. In summary, we confirmed that melatonin is a neuroprotective drug when cerebellar cells are challenged; however, melatonin can also lead to cell death when the normal balance of the NF-κB pathway is disturbed. Our data provide a mechanistic basis for understanding the influence of cell context on the final output response of melatonin.

  14. Brain stem and cerebellar atrophy in chronic progressive neuro-Behçet's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kanoto, Masafumi, E-mail: mkanoto@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Hosoya, Takaaki, E-mail: thosoya@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Toyoguchi, Yuuki, E-mail: c-elegans_0201g@mail.goo.ne.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Oda, Atsuko, E-mail: a.oda@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan)

    2013-01-15

    Purpose: Chronic progressive neuro-Behçet's disease (CPNBD) resembles multiple sclerosis (MS) on patient background and image findings, and therefore is difficult to diagnose. The purpose is to identify the characteristic magnetic resonance imaging (MRI) findings of CPNBD and to clarify the differences between the MRI findings of CPNBD and those of MS. Materials and methods: The subjects consist of a CPNBD group (n = 4; 1 male and 3 females; mean age, 51 y.o.), a MS group (n = 19; 3 males and 16 females; mean age, 45 y.o.) and a normal control group (n = 23; 10 males and 13 females; mean age, 45 y.o.). Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were retrospectively evaluated in each subjects. In middle sagittal brain MR images, the prepontine distance was measured as an indirect index of brain stem and cerebellar atrophy and the pontine and mesencephalic distance was measured as a direct index of brain stem atrophy. These indexes were statistically analyzed. Results: Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were seen in all CPNBD cases. Prepontine distance was significantly different between the CPNBD group and the MS group (p < 0.05), and between the CPNBD group and the normal control group (p < 0.001). Pontine and mesencephalic distance were significantly different between the CPNBD group and the MS group (p < 0.001, p < 0.01 respectively), and between the CPNBD group and the normal control group (p < 0.001). Conclusions: Chronic progressive neuro-Behçet's disease should be considered in patients with brain stem and cerebellar atrophy in addition to leukoencephalopathy similar to that seen in multiple sclerosis.

  15. Hind brain agenesis a rare imaging findings in cerebro cerebellar lissencephalic syndrome.

    Science.gov (United States)

    Mundaganur, Praveen M; Solwalkar, Pradeep; Nimbal, Vishal

    2014-01-01

    A case report of cerebro cerebellar lissencephaly shows complete agenesis of cerebellum and brainstem which is rare imaging finding of group lissencephaly (type I lissencephaly). Though agenesis of cerebellum and brainstem were included in literature, in most of the cases we saw a hypoplasia or atrophy of cerebellum in lissencephaly syndrome. The CT scan findings of this patient shows features of lissencephaly with complete agenesis of brain stem and cerebellum associated with multiple congenital abnormalities.

  16. Recovery of motor and cognitive function after cerebellar lesions in a songbird - Role of estrogens

    OpenAIRE

    Spence, RD; Zhen, Y.; White, S; Schlinger, BA; Day, LB

    2009-01-01

    In addition to its key role in complex motor function, the cerebellum is increasingly recognized to have a role in cognition. Songbirds are particularly good models for the investigation of motor and cognitive processes but little is known about the role of the songbird cerebellum in these processes. To explore cerebellar function in a songbird, we lesioned the cerebellum of adult female zebra finches and examined the effects on a spatial working memory task and on motor function during this ...

  17. Multiple types of cerebellar target neurons and their circuitry in the vestibulo-ocular reflex.

    Science.gov (United States)

    Shin, Minyoung; Moghadam, Setareh H; Sekirnjak, Chris; Bagnall, Martha W; Kolkman, Kristine E; Jacobs, Richard; Faulstich, Michael; du Lac, Sascha

    2011-07-27

    The cerebellum influences behavior and cognition exclusively via Purkinje cell synapses onto neurons in the deep cerebellar and vestibular nuclei. In contrast with the rich information available about the organization of the cerebellar cortex and its synaptic inputs, relatively little is known about microcircuitry postsynaptic to Purkinje cells. Here we examined the cell types and microcircuits through which Purkinje cells influence an oculomotor behavior controlled by the cerebellum, the horizontal vestibulo-ocular reflex, which involves only two eye muscles. Using a combination of anatomical tracing and electrophysiological recordings in transgenic mouse lines, we identified several classes of neurons in the medial vestibular nucleus that receive Purkinje cell synapses from the cerebellar flocculus. Glycinergic and glutamatergic flocculus target neurons (FTNs) with somata densely surrounded by Purkinje cell terminals projected axons to the ipsilateral abducens and oculomotor nuclei, respectively. Of three additional types of FTNs that were sparsely innervated by Purkinje cells, glutamatergic and glycinergic neurons projected to the contralateral and ipsilateral abducens, respectively, and GABAergic neurons projected to contralateral vestibular nuclei. Densely innervated FTNs had high spontaneous firing rates and pronounced postinhibitory rebound firing, and were physiologically homogeneous, whereas the intrinsic excitability of sparsely innervated FTNs varied widely. Heterogeneity in the molecular expression, physiological properties, and postsynaptic targets of FTNs implies that Purkinje cell activity influences the neural control of eye movements in several distinct ways. These results indicate that the cerebellum regulates a simple reflex behavior via at least five different cell types that are postsynaptic to Purkinje cells.

  18. Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle

    Science.gov (United States)

    Assaf, Tareq; Rossiter, Jonathan M.; Porrill, John

    2016-01-01

    Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. PMID:27655667

  19. Cerebellar Structure and Function in Male Wistar-Kyoto Hyperactive Rats

    Science.gov (United States)

    Thanellou, Alexandra; Green, John T.

    2014-01-01

    Previous research has suggested that the Wistar-Kyoto Hyperactive (WKHA) rat strain may model some of the behavioral features associated with attention-deficit/hyperactivity disorder (ADHD). We have shown that, in cerebellar-dependent eyeblink conditioning, WKHA emit eyeblink CRs with shortened onset latencies. To further characterize the shortened CR onset latencies seen in WKHA rats, we examined 750-ms delay conditioning with either a tone CS or a light CS, we extended acquisition training, and we included Wistar rats as an additional, outbred control strain. Our results indicated that WKHAs learned more quickly and showed a shortened CR onset latency to a tone CS compared to both Wistar-Kyoto Hypertensive (WKHT) and Wistars. WKHAs and Wistars show a lengthening of CR onset latency over conditioning with a tone CS and an increasing confinement of CRs to the later part of the tone CS (inhibition of delay). WKHAs learned more quickly to a light CS only in comparison to WKHTs and showed a shortened CR onset latency only in comparison to Wistars. Wistars showed an increasing confinement of CRs to the late part of the light CS over conditioning. We used unbiased stereology to estimate the number of Purkinje and granule cells in the cerebellar cortex of the three strains. Our results indicated that WKHAs have more granule cells than Wistars and WKHTs and more Purkinje cells than Wistars. Results are discussed in terms of CS processing and cerebellar cortical contributions to EBC. PMID:23398437

  20. Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy.

    Science.gov (United States)

    Oz, Gülin; Iltis, Isabelle; Hutter, Diane; Thomas, William; Bushara, Khalaf O; Gomez, Christopher M

    2011-06-01

    Hereditary and sporadic neurodegenerative ataxias are movement disorders that affect the cerebellum. Robust and objective biomarkers are critical for treatment trials of ataxias. In addition, such biomarkers may help discriminate between ataxia subtypes because these diseases display substantial overlap in clinical presentation and conventional MRI. Profiles of 10-13 neurochemical concentrations obtained in vivo by high field proton magnetic resonance spectroscopy ((1)H MRS) can potentially provide ataxia-type specific biomarkers. We compared cerebellar and brainstem neurochemical profiles measured at 4 T from 26 patients with spinocerebellar ataxias (SCA1, N = 9; SCA2, N = 7; SCA6, N = 5) or cerebellar multiple system atrophy (MSA-C, N = 5) and 15 age-matched healthy controls. The Scale for the Assessment and Rating of Ataxia (SARA) was used to assess disease severity. The patterns of neurochemical alterations relative to controls differed between ataxia types. Myo-inositol levels in the vermis, myo-inositol, total N-acetylaspartate, total creatine, glutamate, glutamine in the cerebellar hemispheres and myo-inositol, total N-acetylaspartate, glutamate in the pons were significantly different between patient groups (Bonferroni corrected p ataxia types. Studies with higher numbers of patients and other ataxias are warranted to further investigate the clinical utility of neurochemical levels as measured by high-field MRS as ataxia biomarkers.

  1. Glucocorticoid Induced Cerebellar Toxicity in the Developing Neonate: Implications for Glucocorticoid Therapy during Bronchopulmonary Dysplasia

    Directory of Open Access Journals (Sweden)

    Kevin K. Noguchi

    2014-01-01

    Full Text Available Prematurely born infants commonly suffer respiratory dysfunction due to the immature state of their lungs. As a result, clinicians often administer glucocorticoid (GC therapy to accelerate lung maturation and reduce inflammation. Unfortunately, several studies have found GC therapy can also produce neuromotor/cognitive deficits and selectively stunt the cerebellum. However, despite its continued use, relatively little is known about how exposure to this hormone might produce neurodevelopmental deficits. In this review, we use rodent and human research to provide evidence that GC therapy may disrupt cerebellar development through the rapid induction of apoptosis in the cerebellar external granule layer (EGL. The EGL is a transient proliferative region responsible for the production of over 90% of the neurons in the cerebellum. During normal development, endogenous GC stimulation is thought to selectively signal the elimination of the EGL once production of new neurons is complete. As a result, GC therapy may precociously eliminate the EGL before it can produce enough neurons for normal cerebellar function. It is hoped that this review may provide information for future clinical research in addition to translational guidance for the safer use of GC therapy.

  2. Relationship between cerebellar impairments and lexicon retrieval in schizophrenia – preliminary study

    Directory of Open Access Journals (Sweden)

    Chrobak, Adrian Andrzej

    2013-09-01

    Full Text Available Aim of the study. Investigation of relationship between cerebellar motor dysfunctions and language impairments connected with cerebellum during phonological and semantic fluency tasks and verb generationtask in schizophrenic patients and healthy control group. Subject or material and methods. 14 schizophrenic patients on olanzapine, clozapine or quetiapine treatment and 13 healthy volunteers were examined. Motor signs were assessed by using the International Co-operative Ataxia Rating Scale (ICARS. Phonological and semantic fluency tasks were performed. All of the words were recorded and counted.Results. Patients with schizophrenia revealed significantly higher ICARS mean score (12.21 than control group (3.92, and lower number of proper generated words in semantic fluency and verb generation tasks. Strong negative correlation (rs(13 = -0.71, p<0.01 was found between ICARS total score and number of proper answers in verb generation task.Discussion. Higher number of total ICARS score in schizophrenia patients in comparison to control group may suggest cerebellar impairments. There is disproportion between semantic and phonological fluency. Significant correlation between verb generation and cerebellar signs supports a hypothesis of cerebellum dysfunction during this task in schizophrenia patients.Conclusions. Schizophrenic patients reveal impairments which may be connected with the cerebellum.

  3. Adenosine modulation of [Ca2+]i in cerebellar granular cells: multiple adenosine receptors involved.

    Science.gov (United States)

    Vacas, Javier; Fernández, Mercedes; Ros, Manuel; Blanco, Pablo

    2003-12-01

    Elimination of adenosine by addition of adenosine deaminase (ADA) to the media leads to alterations in intracellular free calcium concentration ([Ca(2+)](i)) in cerebellar granular cells. Adenosine deaminase brings about increases or decreases in [Ca(2+)](i) depending on the previous activation state of the cell. These effects are dependent on the catalytic activity of adenosine deaminase, since its previous catalytic inactivation with Hg(2+) prevents the above-mentioned changes in intracellular calcium. Extracellular calcium is required for the increase in [Ca(2+)](i) promoted by ADA. This rise is insensitive to thapsigargin, but sensitive to micromolar concentrations of Ni(2+). Toxins specific for L, N and P/Q calcium channels do not overtly reduce this effect. N(6)-Cyclopentyl adenosine (CPA), an A(1) receptor agonist, produces a partial reversion of ADA effects, while CGS21680, A(2A)/A(2B) receptor agonist, slightly enhances them. Expression of A(1), A(2A), A(2B) and A(3) adenosine receptor mRNAs was detected in cerebellar granular cell cultures. These results suggest that adenosine modulate [Ca(2+)](i) in cerebellar granule cells through different adenosine receptor subtypes which, at least in part, seem to act through R-type calcium channels.

  4. Spontaneous cerebellar hemorrhage--experience with 57 surgically treated patients and review of the literature.

    Science.gov (United States)

    Dammann, Philipp; Asgari, Siamak; Bassiouni, Hischam; Gasser, Thomas; Panagiotopoulos, Vassilis; Gizewski, Elke R; Stolke, Dietmar; Sure, Ulrich; Sandalcioglu, I Erol

    2011-01-01

    The treatment of spontaneous cerebellar hemorrhage is still discussed controversially. We analyzed a series of 57 patients who underwent surgical evacuation of a cerebellar hematoma at our department. Preoperative clinical and radiological parameters were assessed and correlated with the clinical outcome in order to identify factors with impact on outcome. The overall clinical outcome according to the Glasgow Outcome Scale at the last follow-up was good (GOS 4-5) in 27 patients (47%) and poor (GOS 2-3) in 16 patients (28%). Fourteen patients (25%) died. The initial neurological condition and the level of consciousness proved to be significant factors determining clinical outcome (p = 0.0032 and p = 0.0001, respectively). Among radiological parameters, brain stem compression and a tight posterior fossa solely showed to be predictive for clinical outcome (p = 0.0113 and p = 0.0167, respectively). Overall, our results emphasize the predictive impact of the initial neurological condition on clinical outcome confirming the grave outcome of patients in initially poor state as reported in previous studies. The hematoma size solely, in contrast to previous observations, showed not to be predictive for clinical outcome. Especially for the still disputed treatment of patients in good initial neurological condition, a suggestion can be derived from the present study. Based on the excellent outcome of patients with good initial clinical condition undergoing surgery due to secondary deterioration, we do not recommend preventive evacuation of a cerebellar hematoma in these patients.

  5. Patterns of spontaneous and head-shaking nystagmus in cerebellar infarction: imaging correlations.

    Science.gov (United States)

    Huh, Young Eun; Kim, Ji Soo

    2011-12-01

    Horizontal head-shaking may induce nystagmus in peripheral as well as central vestibular lesions. While the patterns and mechanism of head-shaking nystagmus are well established in peripheral vestibulopathy, they require further exploration in central vestibular disorders. To define the characteristics and mechanism of head-shaking nystagmus in central vestibulopathies, we investigated spontaneous nystagmus and head-shaking nystagmus in 72 patients with isolated cerebellar infarction. Spontaneous nystagmus was observed in 28 (39%) patients, and was mostly ipsilesional when observed in unilateral infarction (15/18, 83%). Head-shaking nystagmus developed in 37 (51%) patients, and the horizontal component of head-shaking nystagmus was uniformly ipsilesional when induced in patients with unilateral infarction. Perverted head-shaking nystagmus occurred in 23 (23/37, 62%) patients and was mostly downbeat (22/23, 96%). Lesion subtraction analyses revealed that damage to the uvula, nodulus and inferior tonsil was mostly responsible for generation of head-shaking nystagmus in patients with unilateral posterior inferior cerebellar artery infarction. Ipsilesional head-shaking nystagmus in patients with unilateral cerebellar infarction may be explained by unilateral disruption of uvulonodular inhibition over the velocity storage. Perverted (downbeat) head-shaking nystagmus may be ascribed to impaired control over the spatial orientation of the angular vestibulo-ocular reflex due to uvulonodular lesions or a build-up of vertical vestibular asymmetry favouring upward bias due to lesions involving the inferior tonsil.

  6. Neuropathological features in a female fetus with OPHN1 deletion and cerebellar hypoplasia.

    Science.gov (United States)

    Rocas, Delphine; Alix, Eudeline; Michel, Jessica; Cordier, Marie-Pierre; Labalme, Audrey; Guilbert, Hélène; Till, Marianne; Schluth-Bolard, Caroline; de Haas, Pascale; Massardier, Jérôme; Portes, Vincent des; Edery, Patrick; Touraine, Renaud; Guibaud, Laurent; Vasiljevic, Alexandre; Sanlaville, Damien

    2013-05-01

    We report the case of a 33-year-old pregnant woman. The third-trimester ultrasound scan during pregnancy revealed fetal bilateral ventricular dilatation, macrosomia and a transverse diameter of the cerebellum at the 30th centile. A brain MRI scan at 31 weeks of gestation led to a diagnosis of hypoplasia of the cerebellar vermis without hemisphere abnormalities and a non compressive expansion of the cisterna magna. The fetal karyotype was 46,XX. The pregnancy was terminated and array-CGH analysis of the fetus identified a 238 kb de novo deletion on chromosome Xp12, encompassing part of OPHN1 gene. Further studies revealed a completely skewed pattern of X inactivation. OPHN1 is involved in X-linked mental retardation (XLMR) with cerebellar hypoplasia and encodes a Rho-GTPase-activating protein called oligophrenin-1, which is produced throughout the developing mouse brain and in the hippocampus and Purkinje cells of the cerebellum in adult mice. Neuropathological examination of the female fetus revealed cerebellar hypoplasia and the heterotopia of Purkinje cells at multiple sites in the white matter of the cerebellum. This condition mostly affects male fetuses in humans. We report here the first case of a de novo partial deletion of OPHN1, with radiological and neuropathological examination, in a female fetus.

  7. Cortico-Cerebellar Connectivity in Autism Spectrum Disorder: What Do We Know So Far?

    Science.gov (United States)

    Crippa, Alessandro; Del Vecchio, Giuseppe; Busti Ceccarelli, Silvia; Nobile, Maria; Arrigoni, Filippo; Brambilla, Paolo

    2016-01-01

    Although the Autism Spectrum Disorder (ASD) is renowned to be a connectivity disorder and a condition characterized by cerebellar involvement, the connectivity between the cerebellum and other cortical brain regions is particularly underexamined. Indeed, converging evidence has recently suggested that the cerebellum could play a key role in the etiopathogenesis of ASD, since cerebellar anomalies have been consistently reported in ASD from the molecular to the behavioral level, and damage to the cerebellum early in development has been linked with signs of autistic features. In addition, current data have shown that the cerebellum is a key structure not only for sensory-motor control, but also for "higher functions," such as social cognition and emotion, through its extensive connections with cortical areas. The disruption of these circuits could be implicated in the wide range of autistic symptoms that the term "spectrum" connotes. In this review, we present and discuss the recent findings from imaging studies that investigated cortico-cerebellar connectivity in people with ASD. The literature is still too limited to allow for definitive conclusions; however, this brief review reveals substantial areas for future studies, underlining currently unmet research perspectives.

  8. Is Cerebellar Architecture Shaped by Sensory Ecology in the New Zealand Kiwi (Apteryx mantelli).

    Science.gov (United States)

    Corfield, Jeremy R; Kolominsky, Jeffrey; Craciun, Iulia; Mulvany-Robbins, Bridget E; Wylie, Douglas R

    2016-01-01

    Among some mammals and birds, the cerebellar architecture appears to be adapted to the animal's ecological niche, particularly their sensory ecology and behavior. This relationship is, however, not well understood. To explore this, we examined the expression of zebrin II (ZII) in the cerebellum of the kiwi (Apteryx mantelli), a fully nocturnal bird with auditory, tactile, and olfactory specializations and a reduced visual system. We predicted that the cerebellar architecture, particularly those regions receiving visual inputs and those that receive trigeminal afferents from their beak, would be modified in accordance with their unique way of life. The general stripe-and-transverse region architecture characteristic of birds is present in kiwi, with some differences. Folium IXcd was characterized by large ZII-positive stripes and all Purkinje cells in the flocculus were ZII positive, features that resemble those of small mammals and suggest a visual ecology unlike that of other birds. The central region in kiwi appeared reduced or modified, with folium IV containing ZII+/- stripes, unlike that of most birds, but similar to that of Chilean tinamous. It is possible that a reduced visual system has contributed to a small central region, although increased trigeminal input and flightlessness have undoubtedly played a role in shaping its architecture. Overall, like in mammals, the cerebellar architecture in kiwi and other birds may be substantially modified to serve a particular ecological niche, although we still require a larger comparative data set to fully understand this relationship.

  9. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry.

    Science.gov (United States)

    Takeuchi, Miki; Matsuda, Koji; Yamaguchi, Shingo; Asakawa, Kazuhide; Miyasaka, Nobuhiko; Lal, Pradeep; Yoshihara, Yoshihiro; Koga, Akihiko; Kawakami, Koichi; Shimizu, Takashi; Hibi, Masahiko

    2015-01-01

    The cerebellum is involved in some forms of motor coordination and motor learning. Here we isolated transgenic (Tg) zebrafish lines that express a modified version of Gal4-VP16 (GFF) in the cerebellar neural circuits: granule, Purkinje, or eurydendroid cells, Bergmann glia, or the neurons in the inferior olive nuclei (IO) which send climbing fibers to Purkinje cells, with the transposon Tol2 system. By combining GFF lines with Tg lines carrying a reporter gene located downstream of Gal4 binding sequences (upstream activating sequence: UAS), we investigated the anatomy and developmental processes of the cerebellar neural circuitry. Combining an IO-specific Gal4 line with a UAS reporter line expressing the photoconvertible fluorescent protein Kaede demonstrated the contralateral projections of climbing fibers. Combining a granule cell-specific Gal4 line with a UAS reporter line expressing wheat germ agglutinin (WGA) confirmed direct and/or indirect connections of granule cells with Purkinje cells, eurydendroid cells, and IO neurons in zebrafish. Time-lapse analysis of a granule cell-specific Gal4 line revealed initial random movements and ventral migration of granule cell nuclei. Transgenesis of a reporter gene with another transposon Tol1 system visualized neuronal structure at a single cell resolution. Our findings indicate the usefulness of these zebrafish Gal4 Tg lines for studying the development and function of cerebellar neural circuits.

  10. Associative Plasticity in the Medial Auditory Thalamus and Cerebellar Interpositus Nucleus During Eyeblink Conditioning

    Science.gov (United States)

    Halverson, Hunter E.; Lee, Inah; Freeman, John H.

    2010-01-01

    Eyeblink conditioning, a type of associative motor learning, requires the cerebellum. The medial auditory thalamus is a necessary source of stimulus input to the cerebellum during auditory eyeblink conditioning. Nothing is currently known about interactions between the thalamus and cerebellum during associative learning. In the current study, neuronal activity was recorded in the cerebellar interpositus nucleus and medial auditory thalamus simultaneously from multiple tetrodes during auditory eyeblink conditioning to examine the relative timing of learning-related plasticity within these interconnected areas. Learning-related changes in neuronal activity correlated with the eyeblink conditioned response were evident in the cerebellum before the medial auditory thalamus over the course of training and within conditioning trials, suggesting that thalamic plasticity may be driven by cerebellar feedback. Short-latency plasticity developed in the thalamus during the first conditioning session and may reflect attention to the conditioned stimulus. Extinction training resulted in a decrease in learning-related activity in both structures and an increase in inhibition within the cerebellum. A feedback projection from the cerebellar nuclei to the medial auditory thalamus was identified, which may play a role in learning by facilitating stimulus input to the cerebellum via the thalamo-pontine projection. PMID:20592200

  11. POSITION OF CEREBELLAR TONSILS IN REFERENCE TO FORAMEN MAGNUM: AN MRI STUDY

    Directory of Open Access Journals (Sweden)

    Lakshmi

    2015-11-01

    Full Text Available Normal position of the cerebellar tonsils is described to be at or above the foramen magnum. Western studies have shown the cerebellar tonsils to be below the foramen magnum. Position of tonsils is of great importance in assessing the hind brain deformity–Chiari malformation. There are no Indian studies to corroborate the findings. Hence, we proposed a basic study to find out the existence of tonsillar ectopia (Position of tonsils below the foramen magnum in normal population. Our study was conducted for a period of 8 months at the Radiology Department of SCTIMST, Trivandrum, Kerala; 515 patients with normal brain, spinal cord and normal craniovertebral junction (CVJ were selected from a group of patients who underwent MRI investigation of brain and cervical spine for various vague complaints. They ranged from 2 months to 80 years and of both sexes. Patients with raised intracranial tension and established CVJ anomalies were excluded. The study was done on the MR images obtained on the MR monitor directly during the scan. Foramen magnum and the inferior extent of cerebellar tonsils were marked. The position of the tonsils was noted in reference to foramen magnum and the data analysed. Tonsillar ectopia was noticed in 21% of the population. A downward descent in the position was observed in the fifth decade of life. In infancy and old age, higher positions were noted. The study indicates that the position of the tonsils below the foramen magnum is a normal occurrence.

  12. Metabolites of cerebellar neurons and hippocampal neurons play opposite roles in pathogenesis of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jing Du

    Full Text Available Metabolites of neural cells, is known to have a significant effect on the normal physiology and function of neurons in brain. However, whether they play a role in pathogenesis of neurodegenerative diseases is unknown. Here, we show that metabolites of neurons play essential role in the pathogenesis of Alzheimer's disease (AD. Firstly, in vivo and in vitro metabolites of cerebellar neurons both significantly induced the expression of Abeta-degrading enzymes in the hippocampus and cerebral cortex and promoted Abeta clearance. Moreover, metabolites of cerebellar neurons significantly reduced brain Abeta levels and reversed cognitive impairments and other AD-like phenotypes of APP/PS1 transgenic mice, in both early and late stages of AD pathology. On the other hand, metabolites of hippocampal neurons reduced the expression of Abeta-degrading enzymes in the cerebellum and caused cerebellar neurodegeneration in APP/PS1 transgenic mice. Thus, we report, for the first time, that metabolites of neurons not only are required for maintaining the normal physiology of neurons but also play essential role in the pathogenesis of AD and may be responsible for the regional-specificity of Abeta deposition and AD pathology.

  13. Thyroid hormone promotes transient nerve growth factor synthesis in rat cerebellar neuroblasts.

    Science.gov (United States)

    Charrasse, S; Jehan, F; Confort, C; Brachet, P; Clos, J

    1992-01-01

    Primary cultures of cerebellum from 5-day-old rats indicated that proliferating neuroblasts synthesize and release nerve growth factor (NGF). Since NGF promotes DNA synthesis in these cells, our findings demonstrate that the early developing cerebellum is a suitable physiological model for studying the autocrine mitogenic action of NGF. Thyroid deficiency led to a greater reduction in the NGF content of the cerebellum than of the olfactory bulbs or hippocampus. Cerebellar NGF mRNA was also very sensitive to hormone deprivation. Physiological amounts of thyroid hormone stimulated both the mitotic activity and NGF production of cultured cerebellar neuroblasts. A lack of thyroid hormone is known to markedly alter cell formation in the cerebellum where postnatal neurogenesis is highly significant, in contrast to the olfactory bulbs and hippocampus. Taken together, these results suggest that the hormonal control of cell formation in the cerebellum is, at least partly, mediated by the autocrine mitogenic action of NGF. The thyroid hormone could temporally regulate the transient NGF synthesis by cerebellar neuroblasts directly and/or through its ontogenetic action, and hence all the NGF-dependent trophic effects.

  14. Cerebellar, Pancreatic, and Paraspinal Metastases in Soft Tissue Sarcomas: Unusual Sites or Changing Patterns?

    Directory of Open Access Journals (Sweden)

    Girish Bedre

    2007-07-01

    Full Text Available Context Soft tissue sarcomas generally first metastasize to the lungs followed by the involvement of other sites such as lymph nodes and bones as part of the disseminated disease. Cerebellar and pancreatic metastases from tumors of mesenchymal origin such as soft tissue sarcomas are exceptional, more so in the absence of pulmonary metastases. Case report A previously treated case of chest wall sarcoma presented with the sudden onset of neurological symptoms. An MRI brain scan was suggestive of a solitary cerebellar metastasis. A CT scan of the thorax and abdomen showed no evidence of disease. A metastasectomy of the solitary brain lesion confirmed a deposit from a previously treated sarcoma. Within two months he presented with central abdominal pain and low backache radiating down both lower limbs. FDG-PET and CT scans revealed a large pancreatic and left paraspinal mass with intense tracer uptake suggestive of metastatic involvement. There was no evidence of pulmonary metastases. A CT-guided biopsy was suggestive of high-grade sarcoma. He was treated with palliative radiotherapy with good symptomatic relief. Conclusion Cerebellar, pancreatic, and paraspinal metastases from soft tissue sarcomas are rare, especially in the absence of pulmonary metastases. A high index of suspicion is necessary, and appropriate imaging should be considered for symptomatic patients.

  15. The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK.

    Science.gov (United States)

    Lippiello, Pellegrino; Hoxha, Eriola; Speranza, Luisa; Volpicelli, Floriana; Ferraro, Angela; Leopoldo, Marcello; Lacivita, Enza; Perrone-Capano, Carla; Tempia, Filippo; Miniaci, Maria Concetta

    2016-02-01

    The 5-HT7 receptor (5-HT7R) mediates important physiological effects of serotonin, such as memory and emotion, and is emerging as a therapeutic target for the treatment of cognitive disorders and depression. Although previous studies have revealed an expression of 5-HT7R in cerebellum, particularly at Purkinje cells, its functional role and signaling mechanisms have never been described. Using patch-clamp recordings in cerebellar slices of adult mice, we investigated the effects of a selective 5-HT7R agonist, LP-211, on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that 5-HT7R activation induces long-term depression of parallel fiber-Purkinje cell synapse via a postsynaptic mechanism that involves the PKC-MAPK signaling pathway. Moreover, a 5-HT7R antagonist abolished the expression of PF-LTD, produced by pairing parallel fiber stimulation with Purkinje cell depolarization; whereas, application of a 5-HT7R agonist impaired LTP induced by 1 Hz parallel fiber stimulation. Our results indicate for the first time that 5-HT7R exerts a fine regulation of cerebellar bidirectional synaptic plasticity that might be involved in cognitive processes and neuropsychiatric disorders involving the cerebellum.

  16. From Cerebellar Activation and Connectivity to Cognition: A Review of the Quadrato Motor Training

    Directory of Open Access Journals (Sweden)

    Tal Dotan Ben-Soussan

    2015-01-01

    Full Text Available The importance of the cerebellum is increasingly recognized, not only in motor control but also in cognitive learning and function. Nevertheless, the relationship between training-induced cerebellar activation and electrophysiological and structural changes in humans has yet to be established. In the current paper, we suggest a general model tying cerebellar function to cognitive improvement, via neuronal synchronization, as well as biochemical and anatomical changes. We then suggest that sensorimotor training provides an optimal paradigm to test the proposed model and review supporting evidence of Quadrato Motor Training (QMT, a sensorimotor training aimed at increasing attention and coordination. Subsequently, we discuss the possible mechanisms through which QMT may exert its beneficial effects on cognition (e.g., increased creativity, reflectivity, and reading, focusing on cerebellar alpha activity as a possible mediating mechanism allowing cognitive improvement, molecular and anatomical changes. Using the example of QMT research, this paper emphasizes the importance of investigating whole-body sensorimotor training paradigms utilizing a multidisciplinary approach and its implications to healthy brain development.

  17. Evidence for cerebellar dysfunction in Chinese children with developmental dyslexia: an fMRI study.

    Science.gov (United States)

    Yang, Yang; Bi, Hong-Yan; Long, Zhi-Ying; Tao, Sha

    2013-05-01

    Numerous studies reported that developmental dyslexia in alphabetic languages was associated with a wide range of sensorimotor deficits, including balance, motor skill and time estimation, explained by skill automatization deficit hypothesis. Neural correlates of skill automatization deficit point to cerebellar dysfunction. Recently, a behavioral study revealed an implicit motor learning deficit in Chinese children with developmental dyslexia in their left hands, indicating left cerebellar dysfunction. Using functional magnetic resonance imaging (fMRI), our study examined the brain activation during implicit motor learning in 9 Chinese dyslexic and 12 age-matched children. Dyslexic children showed abnormal activations in the left cerebellum, left middle/medial temporal lobe and right thalamus compared with age-matched children during implicit motor learning. These findings provide evidence of cerebellar abnormality in Chinese dyslexic people. Furthermore, dysfunction of the left cerebellum in Chinese dyslexia is inconsistent with the right cerebellum abnormalities that were reported by studies on alphabetic-language dyslexia, suggesting that neurobiological abnormalities of impaired reading are probably language specific.

  18. Discordance between cerebellar metabolism and perfusion: Explanation for SPECT vs. PET differences in the cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Beltran, M.; Moore, M. [Univ. TN PET Center, Knoxville, TN (United States)] [and others

    1994-05-01

    The cerebellum normally has a level of HMPAO uptake that is equal to or greater than nearby frontal cortices on transaxial SPECT sections, whereas FDG PET studies shows the reverse. Since cerebral blood flow is generally coupled to metabolism in normal individuals, this study was performed to test the hypothesis that this difference represents a true discordance between cerebral perfusion and glucose metabolism of the cerebellar cortex. Thirty eight subjects underwent PET imaging after an intravenous bolus of N-13 ammonia (370 MBq) to image cerebral perfusion, later followed by an intravenous bolus of F-18 FDG (3 70 MBq) after the N-13 had disappeared by decay. All studies were acquired with a Siemens 931 ECAT camera with an initial 20 minute transmission scan of the head acquired to apply measured attenuation correction. PET imaging of N-13 ammonia was performed over the first 15 minutes after injection, and FDG imaging was performed between 40 and 55 minutes after injection. Regions of interest for both tracers in each of 38 patients were drawn over the cerebellar cortex from transaxial sections taken at the level of the dentate nuclei, and from the orbitofrontal cortex. Frontal to cerebellar cortex ratios are shown below for perfusion (open square) and metabolism (closed) for each of the 38 patients studied.

  19. Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    Science.gov (United States)

    Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; de Zeeuw, Chris I.

    2016-11-01

    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity.

  20. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    Energy Technology Data Exchange (ETDEWEB)

    Schousboe, A.; Frandsen, A.; Drejer, J. (Univ. of Copenhagen (Denmark))

    1989-09-01

    Evoked release of ({sup 3}H)-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and (3H)-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.