WorldWideScience

Sample records for ceramics grain size

  1. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    Science.gov (United States)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  2. Grain-size effects on thermal properties of BaTiO3 ceramics

    Indian Academy of Sciences (India)

    Administrator

    decreasing grain size. Furthermore, the Curie temperature shifts to lower temperature with decreasing grain size. Keywords. Nanocrystalline ceramics; thermal properties; size effect. 1. Introduction. BaTiO3 has been widely used in the electronic industry for its high dielectric constant and low losses above room temperature ...

  3. Grain size dependence of wear in ceramics

    International Nuclear Information System (INIS)

    Wu, C.C.; Rice, R.W.; Johnson, D.; Platt, B.A.

    1985-01-01

    Pin-On-Disk (POD), microwear tests of Al 2 O 3 , MgO, MgAl 2 O 4 , and ZrO 2 , most being dense and essentially single phase, showed the reciprocal of wear following a hall-petch type relationship. However, extrapolation to infinite grain size always gave a lower intercept than most or all single-crystal values; in particular, Al 2 O 3 data projects to a negative intercept. Initial macro wear tests of some of the same Al 2 O 3 materials also indicate a hall-petch type grain-size dependence, but with a greatly reduced grain-size dependence, giving a positive hall-petch intercept. Further, the macrowear grain-size dependence appears to decrease with increased wear. It is argued that thermal expansion anisotropy (of Al 2 O 3 ) significantly affects the grain size dependence of POD wear, in particular, giving a negative intercept, while elastic anisotropy is suggested as a factor in the grain-size dependence of the cubic (MgO, MgAl 2 O 4 , and ZrO 2 ) materials. The reduced grain-size dependence in the macrowear tests is attributed to overlapping wear tracks reducing the effects of enhanced wear damage, e.g., from elastic and thermal expansion anisotropies

  4. Microstructure Control of Barium Titanate Grain-oriented Ceramics and Their Piezoelectric Properties

    International Nuclear Information System (INIS)

    Mori, Rintaro; Nakashima, Koichi; Fujii, Ichiro; Wada, Satoshi; Hayashi, Hiroshi; Nagamori, Yoshitaka; Yamamoto, Yuichi

    2011-01-01

    The Barium titanate (BaTiO 3 , BT) [110] grain-oriented ceramics along [110] direction were prepared by a templated grain growth (TGG) method. The [110] oriented BT platelike particles (t-BT) were used as template particles. The relationship between poling treatment program and piezoelectric constant was investigated. The change in the poling conditions did not greatly influence domain size and the piezoelectric constant. The relationship between piezoelectric properties and domain size in BT grain-oriented ceramics was investigated. The smaller domain size was required to increase the piezoelectric constant.

  5. Grain-size effect in BaTiO.sub.3./sub. ceramics: study by far infrared spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ostapchuk, Tetyana; Petzelt, Jan; Savinov, Maxim; Buscaglia, V.; Mitoserius, L.

    2006-01-01

    Roč. 79, 6-7 (2006), s. 361-373 ISSN 0141-1594 R&D Projects: GA ČR GP202/06/P219; GA ČR GA202/04/0993 Institutional research plan: CEZ:AV0Z10100520 Keywords : barium titanat * nanocrystalline ceramics * infrared reflectivity * permittivity * grain-size effect * soft-mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.830, year: 2006

  6. Study of grain boundary tunneling in barium-titanate ceramic films

    CERN Document Server

    Wong, H; Poon, M C

    1999-01-01

    The temperature and the electric-field dependences of the current-voltage characteristics and the low-frequency noise of barium-titanate ceramic films are studied. An abnormal field dependence is observed in the resistivity of BaTiO sub 3 materials with a small average grain size. In addition, experiments show that the low-frequency noise behaviors are governed by grain-boundary tunneling at room temperature and by trapping-detrapping of grain-boundary states at temperatures above the Curie point. Physical models for the new observations are developed. Results suggest that grain-boundary tunneling of carriers is as important as the double Schottky barrier in the current conduction in BaTiO sub 3 materials with small grain sizes.

  7. Processing, microstructure, and mechanical properties of large-grained zirconium diboride ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, Eric W.; Hilmas, Gregory E., E-mail: ghilmas@mst.edu; Fahrenholtz, William G.

    2016-07-18

    Zirconium diboride ceramics produced using commercial ZrB{sub 2} powders, and milled with zirconium diboride grinding media, were fabricated by hot-pressing at temperatures of 2100–2200 °C with hold times of 30–120 min. This ZrB{sub 2} exhibits no additional impurities typically introduced by milling with grinding media of differing composition. Microstructure analysis revealed grain sizes ranging from ~25 to ~50 µm along with ~3 vol% porosity. Flexure strength ranged from 335 to 400 MPa, elastic modulus from 490 to 510 GPa, fracture toughness from 2.7 to 3.2 MPa m{sup ½}, and hardness from 13.0 to 14.4 GPa. Strength limiting flaws were identified as surface grain pullout induced by machining. Elastic modulus and hardness were found to increase with decreasing porosity. Compared to the fine grained ceramics typically reported, large grain zirconium diboride ceramics exhibit higher than expected room temperature strengths.

  8. Enhanced ionic transport in fine-grained scandia-stabilized zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Abdala, Paula M.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CONICET-CITEFA, J.B. de La Salle 4397 (B1603ALO) Villa Martelli, Pcia. de Buenos Aires (Argentina); Custo, Graciela S. [Gerencia de Area Seguridad Nuclear y Ambiente, Gerencia Quimica, Departamento Quimica Analitica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. Constituyentes 1499 (B1650KNA) San Martin, Pcia. de Buenos Aires (Argentina)

    2010-06-01

    In this work, the transport properties of fine-grained scandia-stabilized zirconia ceramics with low Si content have been investigated. These materials were prepared from ZrO{sub 2}-6 mol% Sc{sub 2}O{sub 3} nanopowders synthesized by a nitrate-lysine gel-combustion route. High relative densities and excellent electrical properties were obtained, even for sintering temperatures as low as 1350 C. Our electrochemical impedance spectroscopy study showed that both the volume fraction of grain boundaries and the specific grain-boundary conductivity are significantly enhanced with decreasing grain size, resulting in a higher total ionic conductivity. (author)

  9. Grain boundary engineering of highly deformable ceramics

    International Nuclear Information System (INIS)

    Mecartney, M.L.

    2000-01-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature

  10. Some regularity of the grain size distribution in nuclear fuel with controllable structure

    International Nuclear Information System (INIS)

    Loktev, Igor

    2008-01-01

    It is known, the fission gas release from ceramic nuclear fuel depends from average size of grains. To increase grain size they use additives which activate sintering of pellets. However, grain size distribution influences on fission gas release also. Fuel with different structures, but with the same average size of grains has different fission gas release. Other structure elements, which influence operational behavior of fuel, are pores and inclusions. Earlier, in Kyoto, questions of distribution of grain size for fuel with 'natural' structure were discussed. Some regularity of grain size distribution of fuel with controllable structure and high average size of grains are considered in the report. Influence of inclusions and pores on an error of the automated definition of parameters of structure is shown. The criterion, which describe of behavior of fuel with specific grain size distribution, is offered

  11. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  12. Numerical study of the grain growth and the thermal properties of ceramics

    International Nuclear Information System (INIS)

    Shahtahmasebi, N.; Shariaty ghleno, A.M.; Hosaini, M.

    2000-04-01

    The physical properties of ceramics strongly depends on the grain size, which itself depends on the sintering process. In this work we propose a model for sintering based on the gross features known experimental and the preform numerical study

  13. Determination of size and shape distributions of metal and ceramic powders

    International Nuclear Information System (INIS)

    Jovanovic, DI.

    1961-01-01

    For testing the size and shape distributions of metal and ceramic uranium oxide powders the following method for analysing the grain size of powders were developed and implemented: microscopic analysis and sedimentation method. A gravimetry absorption device was constructed for determining the specific surfaces of powders

  14. Two-step sintering of ultrafine-grained barium cerate proton conducting ceramics

    International Nuclear Information System (INIS)

    Wang, Siwei; Zhang, Lei; Zhang, Lingling; Brinkman, Kyle; Chen, Fanglin

    2013-01-01

    Ultra-fine grained dense BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ (BZCYYb) ceramics have been successfully prepared via a two-step sintering method. Co-precipitation method has been adopted to prepare nano-sized BZCYYb precursors with an average particle size of 30 nm. By controlling the sintering profile, an average grain size of 184 nm was obtained for dense BZCYYb ceramics via the two-step sintering method, compared to 445 nm for the conventional sintered samples. The two-step sintered BZCYYb samples showed less impurity and an enhanced electrical conductivity compared with the conventional sintered ones. Further, the two-step sintering method was applied to fabricate anode supported solid oxide fuel cells (SOFCs) using BZCYYb as the electrolyte, resulting in dense ultrafine-grained electrolyte membranes and porous anode substrates with fine particles. Due to the reduced ohmic as well as polarization resistances, the maximum power output of the cells fabricated from the two-step sintering method reached 349 mW m −2 at 700 °C, significantly improved from 172 mW cm −2 for the conventional sintered cells, suggesting that two-step sintering method is very promising for optimizing the microstructure and thus enhancing the electrochemical performances for barium cerate based proton-conducting SOFCs.

  15. High temperature microplasticity of fine-grained ceramics

    International Nuclear Information System (INIS)

    Lakki, A.; Schaller, R.

    1996-01-01

    Several fine-grained ceramics exhibit enhanced ductility or even structural superplasticity at high temperature. Grain boundaries play a dominant role in the deformation process of these materials which usually involves diffusion-accommodated grain boundary sliding. Sliding is either lubricated by an amorphous intergranular phase or takes place by glide and climb of grain boundary dislocations. At high temperature, anelastic deformation precedes plastic deformation and stems from the short range motion of lattice defects, such as dislocations and grain boundaries. The energy loss (''mechanical loss'') associated with such motion can be measured by using the technique of mechanical spectroscopy. Moreover, at the onset of plasticity (''microplasticity''), long range irrecoverable motion of defects contributes to additional mechanical loss. Mechanical loss spectra may then give an insight into mechanisms operating at the transition between anelastic and plastic deformation. As an illustration, the spectra of three fine-grained ceramics (Si 3 N 4 , ZrO 2 , Al 2 O 3 ) are presented. In all cases, anelastic relaxation phenomena (peak and background) have been observed at high temperature (> 1200 K), bearing a close relation with creep behaviour. Their analysis permits to distinguish between different types of microstructrual elements: bulk regions of amorphous intergranular phase at triple points, grain boundaries separated by a thin glassy film and ''clean'' grain boundaries. (orig.)

  16. Grain size dependence of the critical current density in YBa2Cu3Ox superconductors

    International Nuclear Information System (INIS)

    Kuwabara, M.; Shimooka, H.

    1989-01-01

    The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials

  17. Preparation and characterization of Grain-Oriented Barium Titanate Ceramics Using Electrophoresis Deposition Method under A High Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Kita, T; Kondo, S; Takei, T; Kumada, N; Nakashima, K; Fujii, I; Wada, S [Material Science and Technology, Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510 (Japan); Suzuki, T S; Uchikoshi, T; Sakka, Y [National Institute for materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Miwa, Y; Kawada, S; Kimura, M, E-mail: swada@yamanashi.ac.jp [Murata Manufacturing Co., Ltd. 2288 Ooshinohara, Yasu, Shiga 520-2393 (Japan)

    2011-10-29

    Barium titanate (BaTiO{sub 3}) grain-oriented ceramics were prepared using electrophoresis deposition (EPD) method under high magnetic field of 12 T. First, BaTiO{sub 3} nanoparticles with high c/a ratio of 1.008 and size of 84 nm were prepared by two-step thermal decomposition method with barium titanyl oxalate nanoparticles. Using the BaTiO{sub 3} slurry, BaTiO{sub 3} nanoparticle accumulations were prepared by EPD method under high magnetic field. After binder burnout, the accumulations were sintered and BaTiO{sub 3} grain-oriented ceramics were prepared. Moreover, dielectric properties of their ceramics were investigated

  18. Processing, microstructure and properties of grain-oriented ferroelectric ceramics

    International Nuclear Information System (INIS)

    Okazaki, K.; Igarashi, H.; Nagata, K.; Yamamoto, T.; Tashiro, S.

    1986-01-01

    Grain oriented ferroelectric ceramics such as PbBi/sub 2/Nb/sub 2/O/sub 9/, bismuth compound with layer structure, (PbLa)Nb/sub 2/O/sub 6/, tungsten-bronze structure and SbSI were prepared by an uni-axial hot-pressing, a double-stage hot-pressing and tape casting methods. Microstructures of them were examined by SEM and the prefered textures of the ceramics composed of thin plate and/or needle crystallites were ascertained. Grain orientation effects on electrical, piezoelectric, optical and mechanical properties are discussed

  19. A new look at grain size and load effects in the hardness of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Krell, A. [Fraunhofer-Institut fuer Keramische Technologien und Sinterwerkstoffe (IKTS), Dresden (Germany)

    1998-05-01

    A simple model describes the load effect (size effect) in the hardness, assuming an increasing microplastic deformability, when the further extension of the plastic zone growth and multiplication of pre-existing elements of plasticity are more effective than the generation of new dislocations or twins in the virgin material around the indentation site. The model explains experiments with sintered alumina which indicate a reduced load effect in increasingly fine-grained microstructures due to a grain size effect that is more pronounced at higher testing loads (larger indents) than in the microhardness range. A large difference between the hardness of plastically deformed volumes in single crystals and in polycrystalline microstructures consisting of grains with the same size, respectively, reveals a substantial contribution of the grain boundaries to plastic deformation at the indentation site even at room temperature and even for coarser microstructures. (orig.) 18 refs.

  20. Influence of grain size distribution on dynamic shear modulus of sands

    Directory of Open Access Journals (Sweden)

    Dyka Ireneusz

    2017-11-01

    Full Text Available The paper presents the results of laboratory tests, that verify the correlation between the grain-size characteristics of non-cohesive soils and the value of the dynamic shear modulus. The problem is a continuation of the research performed at the Institute of Soil Mechanics and Rock Mechanics in Karlsruhe, by T. Wichtmann and T. Triantafyllidis, who derived the extension of the applicability of the Hardin’s equation describing the explicite dependence between the grain size distribution of sands and the values of dynamic shear modulus. For this purpose, piezo-ceramic bender elements generating elastic waves were used to investigate the mechanical properties of the specimens with artificially generated particle distribution. The obtained results confirmed the hypothesis that grain size distribution of non-cohesive soils has a significant influence on the dynamic shear modulus, but at the same time they have shown that obtaining unambiguous results from bender element tests is a difficult task in practical applications.

  1. Grain growth kinetics for B2O3-doped ZnO ceramics

    Directory of Open Access Journals (Sweden)

    Yuksel Berat

    2015-06-01

    Full Text Available Grain growth kinetics in 0.1 to 2 mol % B2O3-added ZnO ceramics was studied by using a simplified phenomenological grain growth kinetics equation Gn = K0 · t · exp(-Q/RT together with the physical properties of sintered samples. The samples, prepared by conventional ceramics processing techniques, were sintered at temperatures between 1050 to 1250 °C for 1, 2, 3, 5 and 10 hours in air. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 0.1 mol % B2O3-doped ZnO ceramics were found to be 2.8 and 332 kJ/mol, respectively. By increasing B2O3 content to 1 mol %, the grain growth exponent value (n and the activation energy decreased to 2 and 238 kJ/mol, respectively. The XRD study revealed the presence of a second phase, Zn3B2O6 formed when the B2O3 content was > 1 mol %. The formation of Zn3B2O6 phase gave rise to an increase of the grain growth kinetic exponent and the grain growth activation energy. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 2 mol % B2O3-doped ZnO ceramics were found to be 3 and 307 kJ/mol, respectively. This can be attributed to the second particle drag (pinning mechanism in the liquid phase sintering.

  2. Effects of grain size and humidity on fretting wear in fine-grained alumina, Al{sub 2}O{sub 3}/TiC, and zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Krell, A. [Fraunhofer Inst. for Ceramic Technologies and Sintered Materials, Dresden (Germany); Klaffke, D. [Federal Inst. for Materials Research and Testing, Berlin (Germany)

    1996-05-01

    Friction and wear of sintered alumina with grain sizes between 0.4 and 3 {micro}m were measured in comparison with Al{sub 2}O{sub 3}/TiC composites and with tetragonal ZrO{sub 2} (3 mol% Y{sub 2}O{sub 3}). The dependence on the grain boundary toughness and residual microstresses is investigated, and a hierarchical order of influencing parameters is observed. In air, reduced alumina grain sizes improve the micromechanical stability of the grain boundaries and the hardness, and reduced wear is governed by microplastic deformation, with few pullout events. Humidity and water slightly reduce the friction of all of the investigated ceramics. In water, this effect reduces the wear of coarser alumina microstructures. The wear of aluminas and of the Al{sub 2}O{sub 3}/TiC composite is similar; it is lower than observed in zirconia, where extended surface cracking occurs at grain sizes as small as 0.3 {micro}m.

  3. Influence of domain on grain size effects of the dielectric properties of BaTiO3 nanoceramics and nanoparticles

    International Nuclear Information System (INIS)

    Fang Chao; Chen Liangyan; Zhou Dongxiang

    2013-01-01

    The dielectric property of BaTiO 3 nanoparticles and nanoceramics has been studied on the basis of Ginsburg-Landau-Devonshire thermodynamic theory. In this paper, considering nanodomains, Landau coefficients have been written as a function of grain size, and the dielectric constant of the material has been calculated at a variety of temperatures and grain size. The results indicate that with decreasing grain size, the dielectric peak decreases. The two lower dielectric peaks of the orthorhombic-rhombohedral phase and tetragonal-orthorhombic phase move to higher temperature, while cubic-tetragonal phase dielectric peak moves to lower temperature. The dielectric constant of BaTiO 3 ceramics decreases with decreasing grain size. The dielectric constant peak at room temperature is at the grain size which is larger than the critical grain size 17-30 nm. The calculated result is consistent with the experimental data.

  4. Grain growth kinetics of textured-BaTiO3 ceramics

    Indian Academy of Sciences (India)

    Administrator

    3Department of Physics and Materials Science, City University of Hong Kong, Hong Kong ... Abstract. Textured BaTiO3 (BT) ceramics were fabricated by templated grain growth method. Effects of ... approaches to improve electrical properties of lead-free ceramics. ... modification methods to enhance the piezoelectric pro-.

  5. Design of pore size of macroporous ceramic substrates

    International Nuclear Information System (INIS)

    Szewald, O.; Kotsis, I.

    2000-01-01

    A method has been developed for the design of macro-porous ceramic substrates. Based on geometrical and regression models detailed technology was worked out for producing these 100% open porous filters, which were made using quasi homo-disperse fractions of corundum of diameters of several tens and hundreds microns and glassy binding material. Axial pressing was used as a forming process. Pore networks with size distribution that can be defined by a curve having one maximum were provided applying the above technology. Based on geometrical considerations and measurements it was proved that these maximums are at characteristic pore sizes that depend only on characteristic size of the original grain fractions and on the extent of the axial forming pressure. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  6. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).

  7. Production of defect-poor nanostructured ceramics of yttria-zirconia

    NARCIS (Netherlands)

    Sagel-Ransijn, C.D.; Sagel-Ransijn, C.D.; Winnubst, Aloysius J.A.; Kerkwijk, B.; Burggraaf, Anthonie; Burggraaf, A.J.; Verweij, H.

    1997-01-01

    For the production of nanostructured ceramics of yttria-zirconia four powders differing in agglomerate strength, agglomerate size and crystallite size are compared. An ultra-fine-grained ceramic with a final density of 98% and a grain size of 0.18 μm could be produced from a hydrothermally

  8. Grain size and boundary-related effects on the properties of nanocrystalline barium titanate ceramics

    Czech Academy of Sciences Publication Activity Database

    Buscaglia, V.; Buscaglia, M. T.; Viviani, M.; Mitoseriu, L.; Nanni, P.; Trefiletti, V.; Piaggio, P.; Gregora, Ivan; Ostapchuk, Tetyana; Pokorný, Jan; Petzelt, Jan

    2006-01-01

    Roč. 26, - (2006), s. 2889-2898 ISSN 0955-2219 R&D Projects: GA MŠk OC 525.20 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain size * grain boundaries * spectroscopy * dielectric properties * BaTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.576, year: 2006

  9. Influence of domain on grain size effects of the dielectric properties of BaTiO{sub 3} nanoceramics and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang Chao, E-mail: yyohjh@sina.com [Department of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Chen Liangyan [Department of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Zhou Dongxiang [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan City Hubei Province 430074 (China)

    2013-01-15

    The dielectric property of BaTiO{sub 3} nanoparticles and nanoceramics has been studied on the basis of Ginsburg-Landau-Devonshire thermodynamic theory. In this paper, considering nanodomains, Landau coefficients have been written as a function of grain size, and the dielectric constant of the material has been calculated at a variety of temperatures and grain size. The results indicate that with decreasing grain size, the dielectric peak decreases. The two lower dielectric peaks of the orthorhombic-rhombohedral phase and tetragonal-orthorhombic phase move to higher temperature, while cubic-tetragonal phase dielectric peak moves to lower temperature. The dielectric constant of BaTiO{sub 3} ceramics decreases with decreasing grain size. The dielectric constant peak at room temperature is at the grain size which is larger than the critical grain size 17-30 nm. The calculated result is consistent with the experimental data.

  10. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    Science.gov (United States)

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  11. Grain growth kinetics and electrical properties of lanthanum modified lead zirconate titanate (9/65/35) based ferroelectric ceramics

    International Nuclear Information System (INIS)

    Roca, R. Alvarez; Guerrero, F.; Botero, E. R.; Garcia, D.; Eiras, J. A.; Guerra, J. D. S.

    2009-01-01

    The influence of the microstructural characteristics on the dielectric and electrical properties has been investigated for Nd 3+ doped lanthanum modified lead zirconate titanate ferroelectric ceramics, obtained by the conventional solid-state reaction method, by taking into account different sintering conditions. The grain growth mechanism has been investigated and a cubic-type grain growth law was observed for samples with grain size varying from 1.00 up to 2.35 μm. The porosity and grain size dependences of the phase transition parameters, such as the maximum dielectric permittivity and its corresponding temperature (ε m and T m , respectively) were also investigated. The ac conductivity analyses followed the universal Jonscher law. The behavior of the frequency exponent (s) was analyzed through the correlated barrier hopping model. Both ac and dc conductivity results have been correlated with the observed microstructural features

  12. The Influence of Grain Refiners on the Efficiency of Ceramic Foam Filters

    Science.gov (United States)

    Towsey, Nicholas; Schneider, Wolfgang; Krug, Hans-Peter; Hardman, Angela; Keegan, Neil J.

    An extensive program of work has been carried out to evaluate the efficiency of ceramic foam filters under carefully controlled conditions. Work reported at previous TMS meetings showed that in the absence of grain refiners, ceramic foam filters have the capacity for high filtration efficiency and consistent, reliable performance. The current phase of the investigation focuses on the impact grain refiner additions have on filter performance. The high filtration efficiencies obtained using 50 or 80ppi CFF's in the absence of grain refiners diminish when Al-3%Ti-1%B grain refiners are added. This, together with the impact of incoming inclusion loading on filter performance and the level of grain refiner addition are considered in detail. The new generation Al-3%Ti-0.15%C grain refiner has also been included. At typical addition levels (1kg/tonne) the effect on filter efficiency is similar to that for TiB2based grain refiners. The work was again conducted on a production scale using AA1050 alloy. Metal quality was determined using LiMCA and PoDFA. Spent filters were also analysed.

  13. Grain-size sorting and slope failure in experimental subaqueous grain flows

    NARCIS (Netherlands)

    Kleinhans, M.G.; Asch, Th.W.J. van

    2005-01-01

    Grain-size sorting in subaqueous grain flows of a continuous range of grain sizes is studied experimentally with three mixtures. The observed pattern is a combination of stratification and gradual segregation. The stratification is caused by kinematic sieving in the grain flow. The segregation is

  14. Investigation of the thermophysical properties of oxide ceramic materials at liquid-helium temperatures

    International Nuclear Information System (INIS)

    Taranov, A. V.; Khazanov, E. N.

    2008-01-01

    The main regularities in the transport of thermal phonons in oxide ceramic materials are investigated at liquid-helium temperatures. The dependences of the thermophysical characteristics of ceramic materials on their structural parameters (such as the grain size R, the grain boundary thickness d, and the structure of grain boundaries) are analyzed. It is demonstrated that, in dense coarse-grained ceramic materials with qR>>1 (where q is the phonon wave vector), the grain boundaries and the grain size are the main factors responsible for the thermophysical characteristics of the material at liquid-helium temperatures. A comparative analysis of the thermophysical characteristics of optically transparent ceramic materials based on the Y 3 Al 5 O 12 (YAG) and Y 2 O 3 cubic oxides synthesized under different technological conditions is performed using the proposed criterion

  15. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  16. Determination of size and shape distributions of metal and ceramic powders; Odredjivanje raspodele velicina, specificne povrsine i oblika metalnih i keramickih prahova

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, DI [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    For testing the size and shape distributions of metal and ceramic uranium oxide powders the following method for analysing the grain size of powders were developed and implemented: microscopic analysis and sedimentation method. A gravimetry absorption device was constructed for determining the specific surfaces of powders.

  17. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    OpenAIRE

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)?spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulat...

  18. Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic

    Science.gov (United States)

    Holsgrove, Kristina M.; Kepaptsoglou, Demie M.; Douglas, Alan M.; Ramasse, Quentin M.; Prestat, Eric; Haigh, Sarah J.; Ward, Michael B.; Kumar, Amit; Gregg, J. Marty; Arredondo, Miryam

    2017-06-01

    Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC), is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC) behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3-PbTiO3-CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.

  19. Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic

    Directory of Open Access Journals (Sweden)

    Kristina M. Holsgrove

    2017-06-01

    Full Text Available Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC, is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3–PbTiO3–CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.

  20. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  1. Methods of assessing grain-size distribution during grain growth

    DEFF Research Database (Denmark)

    Tweed, Cherry J.; Hansen, Niels; Ralph, Brian

    1985-01-01

    This paper considers methods of obtaining grain-size distributions and ways of describing them. In order to collect statistically useful amounts of data, an automatic image analyzer is used, and the resulting data are subjected to a series of tests that evaluate the differences between two related...... distributions (before and after grain growth). The distributions are measured from two-dimensional sections, and both the data and the corresponding true three-dimensional grain-size distributions (obtained by stereological analysis) are collected. The techniques described here are illustrated by reference...

  2. Grain dissection as a grain size reducing mechanism during ice microdynamics

    Science.gov (United States)

    Steinbach, Florian; Kuiper, Ernst N.; Eichler, Jan; Bons, Paul D.; Drury, Martin R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-04-01

    Ice sheets are valuable paleo-climate archives, but can lose their integrity by ice flow. An understanding of the microdynamic mechanisms controlling the flow of ice is essential when assessing climatic and environmental developments related to ice sheets and glaciers. For instance, the development of a consistent mechanistic grain size law would support larger scale ice flow models. Recent research made significant progress in numerically modelling deformation and recrystallisation mechanisms in the polycrystalline ice and ice-air aggregate (Llorens et al., 2016a,b; Steinbach et al., 2016). The numerical setup assumed grain size reduction is achieved by the progressive transformation of subgrain boundaries into new high angle grain boundaries splitting an existing grain. This mechanism is usually termed polygonisation. Analogue experiments suggested, that strain induced grain boundary migration can cause bulges to migrate through the whole of a grain separating one region of the grain from another (Jessell, 1986; Urai, 1987). This mechanism of grain dissection could provide an alternative grain size reducing mechanism, but has not yet been observed during ice microdynamics. In this contribution, we present results using an updated numerical approach allowing for grain dissection. The approach is based on coupling the full field theory crystal visco-plasticity code (VPFFT) of Lebensohn (2001) to the multi-process modelling platform Elle (Bons et al., 2008). VPFFT predicts the mechanical fields resulting from short strain increments, dynamic recrystallisation process are implemented in Elle. The novel approach includes improvements to allow for grain dissection, which was topologically impossible during earlier simulations. The simulations are supported by microstructural observations from NEEM (North Greenland Eemian Ice Drilling) ice core. Mappings of c-axis orientations using the automatic fabric analyser and full crystallographic orientations using electron

  3. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  4. THE APPLICATION OF STEREOLOGY METHOD FOR ESTIMATING THE NUMBER OF 3D BaTiO3 – CERAMIC GRAINS CONTACT SURFACES

    Directory of Open Access Journals (Sweden)

    Vojislav V Mitić

    2011-05-01

    Full Text Available Methods of stereological study are of great importance for structural research of electronic ceramic materials including BaTiO3-ceramic materials. The broad application of ceramics, based on barium-titanate, in advanced electronics nowadays demands a constant research of its structure, that through the correlation structureproperties, a fundamental in the basic materials properties prognosis triad (technology-structure-properties, leads to further prognosis and properties design of these ceramics. Microstructure properties of BaTiO3- ceramic material, expressed in grains' boundary contact, are of basic importance for electric properties of this material, particularly the capacity. In this paper, a significant step towards establishing control under capacitive properties of BaTiO3-ceramics is being done by estimating the number of grains contact surfaces. Defining an efficient stereology method for estimating the number of BaTiO3-ceramic grains contact surfaces, we have started from a mathematical model of mutual grains distribution in the prescribed volume of BaTiO3-ceramic sample. Since the real microstructure morphology of BaTiO3-ceramics is in some way disordered, spherical shaped grains, using computer-modelling methods, are approximated by polyhedra with a great number of small convex polygons. By dividing the volume of BaTiO3-ceramic sample with the definite number of parallel planes, according to a given pace, into the intersection plane a certain number of grains contact surfaces are identified. According to quantitative estimation of 2D stereological parameters the modelled 3D internal microstructure is obtained. Experiments were made by using the scanning electronic microscopy (SEM method with the ceramic samples prepared under pressing pressures up to 150 MPa and sintering temperature up to 1370°C while the obtained microphotographs were used as a base of confirming the validity of presented stereology method. This paper, by applying

  5. Grain refinement of AZ31 by (SiC)P: Theoretical calculation and experiment

    International Nuclear Information System (INIS)

    Guenther, R.; Hartig, Ch.; Bormann, R.

    2006-01-01

    Grain refinement of gravity die-cast Mg-alloys can be achieved via two methods: in situ refinement by primary precipitated metallic or intermetallic phases, and inoculation of the melt via ceramic particles that remain stable in the melt due to their high thermodynamic stability. In order to clarify grain refinement mechanisms and optimize possible potent refiners in Mg-alloys, a simulation method for heterogeneous nucleation based on a free growth model has been developed. It allows the prediction of the grain size as a function of the particle size distribution, the volumetric content of ceramic inoculants, the cooling rate and the alloy constitution. The model assumptions were examined experimentally by a study of the grain refinement of (SiC) P in AZ31. Additions of (SiC) P result in significant grain refinement, if appropriate parameters for ceramic particles are chosen. The model makes quantitatively correct predictions for the grain size and its variation with cooling rate

  6. Grain size refinement of inconel 718 thermomechanical processing

    International Nuclear Information System (INIS)

    Okimoto, P.C.

    1988-01-01

    Inconel 718 is a Ni-Fe precipitation treated superalloy. It presents good thermal fatigue properties when the material has small grain size. The aim of this work is to study the grain size refinement by thermomechanical processing, through observations of the microstructural evolution and the influence of some of the process variables in the final grain size. The results have shown that this refinement occured by static recrystallization. The presence of precipitates have influenced the final grain size if the deformations are below 60%. For greater deformations the grain size is independent of the precipitate distribution in the matrix and tends to a limit size of 5 μm. (author)

  7. Microstructure characterization of porous microalloyed aluminium-silicate ceramics

    Directory of Open Access Journals (Sweden)

    Purenović Jelena

    2011-01-01

    Full Text Available Kaolinite and bentonite clay powders mixed with active additives, based on Mg(NO32 and Al(NO32, sintered at high temperatures produce very porous ceramics with microcrystalline and amorphous regions and highly developed metalized surfaces (mainly with magnesium surplus. Microstructure investigations have revealed non-uniform and highly porous structure with broad distribution of grain size, specifically shaped grains and high degree of agglomeration. The ceramics samples were characterized by scanning electron microscopy (SEM, energy dispersive spectrometer (EDS, X-ray diffraction analysis (XRD and IR spectroscopy analysis, prior and after treatment in “synthetic water”, i.e. in aqueous solution of arsenic-salt. Grain size distribution for untreated and treated samples was done with software SemAfore 4. It has shown great variety in size distribution of grains from clay powders to sintered samples.

  8. Interlinking backscatter, grain size and benthic community structure

    Science.gov (United States)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab samples can be explained by mean backscatter or acoustically-predicted grain size. These results show that there is significant predictive capacity for sediment characteristics from multibeam backscatter and that these acoustic classifications can have ecological validity.

  9. Fiscal 1996 report on the R and D result of industrial science and technology. R and D synergy ceramics (R and D on synergy ceramics); 1996 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu (synergy ceramics no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper summarizes the general survey mainly conducted by FCRA (Fine Ceramics Research Association) in fiscal 1996, and the joint research results with some universities, from some R and D on synergy ceramics. Silicon nitride based ceramics expressed the same high thermal conductivity as metal by seed crystal addition, grain growth control and orientation control of sheet lamination. For its practical use, study was made on control factors of material, formation and sintering. Ca2Y2Si2O9 single crystal was prepared by float-zone method to determine its crystal structure. No volume change due to high-temperature phase transition as thermal expansion was found. In carbothermal reduction- nitridation of SiO2, addition of Si3N4 seed powder increased a reaction rate and formed uniform particles with an isotropic shape. An average particle size was dependent on the size and number of fine particles in seed powder. Addition of both Si3N4 and Fe compound could change a particle shape from a spherical grain to an elongated grain. A spherical Fe-Si metal grain was found on the tip of an elongated grain. 66 refs., 73 figs., 13 tabs.

  10. Compression deformation of WC: atomistic description of hard ceramic material

    Science.gov (United States)

    Feng, Qing; Song, Xiaoyan; Liu, Xuemei; Liang, Shuhua; Wang, Haibin; Nie, Zuoren

    2017-11-01

    The deformation characteristics of WC, as a typical hard ceramic material, were studied on the nanoscale using atomistic simulations for both the single-crystal and polycrystalline forms under uniaxial compression. In particular, the effects of crystallographic orientation, grain boundary coordination and grain size on the origin of deformation were investigated. The deformation behavior of the single-crystal and polycrystalline WC both depend strongly on the orientation towards the loading direction. The grain boundaries play a significant role in the deformation coordination and the potential high fracture toughness of the nanocrystalline WC. In contrast to conventional knowledge of ceramics, maximum strength was obtained at a critical grain size corresponding to the turning point from a Hall-Petch to an inverse Hall-Petch relationship. For this the mechanism of the combined effect of dislocation motion within grains and the coordination of stress concentration at the grain boundaries were proposed. The present work has moved forward our understanding of plastic deformability and the possibility of achieving a high strength of nanocrystalline ceramic materials.

  11. Tsunami sediments and their grain size characteristics

    Science.gov (United States)

    Sulastya Putra, Purna

    2018-02-01

    Characteristics of tsunami deposits are very complex as the deposition by tsunami is very complex processes. The grain size characteristics of tsunami deposits are simply generalized no matter the local condition in which the deposition took place. The general characteristics are fining upward and landward, poor sorting, and the grain size distribution is not unimodal. Here I review the grain size characteristics of tsunami deposit in various environments: swale, coastal marsh and lagoon/lake. Review results show that although there are similar characters in some environments and cases, but in detail the characteristics in each environment can be distinguished; therefore, the tsunami deposit in each environment has its own characteristic. The local geological and geomorphological condition of the environment may greatly affect the grain size characteristics.

  12. Machinability of IPS Empress 2 framework ceramic.

    Science.gov (United States)

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.

  13. Sol-gel synthesis and characterization of fine-grained ceramics in the alumina-titania system

    Energy Technology Data Exchange (ETDEWEB)

    Otterstein, E. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany)], E-mail: otterstein@physik1.uni-rostock.de; Karapetyan, G. [Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock (Germany); Nicula, R. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany); Stir, M. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany); National Institute for Materials Physics, 105b Atomistilor Strasse, P.O.B. MG7, 077125 Bucharest-Magurele (Romania); Schick, C. [Institute of Physics, University of Rostock, Universitaetsplatz 3, 18051 Rostock (Germany); Burkel, E. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany)

    2008-02-05

    Fine-grained ceramics of the Al{sub 2}O{sub 3}-TiO{sub 2} system were synthesised by reactive sintering of sol-gel precursors (Al- and Ti-alkoxides). The thermal behaviour of the as-prepared xerogels was examined by thermal analysis and X-ray powder diffraction. Preliminary results concerning powder consolidation into bulk ceramic parts using spark plasma sintering (SPS) are discussed.

  14. Processing and properties of large-sized ceramic slabs

    Energy Technology Data Exchange (ETDEWEB)

    Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.

    2010-07-01

    Large-sized ceramic slabs with dimensions up to 360x120 cm{sup 2} and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.

  15. Processing and properties of large-sized ceramic slabs

    International Nuclear Information System (INIS)

    Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.

    2010-01-01

    Large-sized ceramic slabs with dimensions up to 360x120 cm 2 and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.

  16. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    Science.gov (United States)

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  17. Grain size measurements by ultrasonic Rayleigh surface waves

    International Nuclear Information System (INIS)

    Palanichamy, P.; Jayakumar, T.

    1996-01-01

    The use of Rayleigh surface waves to determine average grain size nondestructively in an austenitic stainless steel AISI type 316 stainless is discussed. Two commercial type 4MHz frequency surface wave transducers, one as transmitter and the other as receiver were employed for the measurement of surface wave amplitudes. Relative amplitudes of the Rayleigh surface waves were correlated with the metallographically obtained grain sizes. Results indicate that surface/sub-surface average grain sizes of AISI type 316 austenitic stainless steel can be estimated with a confidence level of more than 80% in the grain size range 30-170 μm. (author)

  18. Critical currents in polycrystalline Y Ba2Cu3O7-x: Self-field and grain size dependence

    International Nuclear Information System (INIS)

    Babic, E.; Prester, M.; Dobrac, D.; Marohnic, Z.; Nazar, P.; Stastny, P.; Matacotta, F.C.

    1991-10-01

    The variation of critical currents (I c ) and their distributions (CCD) with thickness (t) has been investigated for two high quality YBa 2 Cu 3 O 7-x samples with different average grain size (AG≅10 and 30 μm for samples S 1 and S 2 respectively) in the temperature range 78-90K and in the applied magnetic field H c ) for S 1 initially increased but later on leveled off on reducing the thickness, whereas for S 2 remained essentially unchanged even after three-fold reduction in thickness. Since the other parameters related to macroscopic homogeneity have not changed on reducing the thickness of the samples, the variations of J c are interpreted in terms of thickness and grain size dependent self-field effects. The same model explains well the changes of CCD curves with thickness and may also explain the variation of J c with the grain size, as reported recently for ceramic YBaCuO samples. (author). 18 refs, 7 figs, 2 tabs

  19. Electric-Loading Enhanced Kinetics in Oxide Ceramics: Pore Migration, Sintering and Grain Growth: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science & Engineering

    2018-02-02

    Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully dense ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding

  20. Monte carlo simulation of anisotropic grain growth in liquid phase sintering

    International Nuclear Information System (INIS)

    Han, Yoon Soo; Kim, Do Kyung

    2003-01-01

    One of the key techniques in modern engineering ceramic system is microstructural control of anisotropic grain growth because grain orientation and shape proved to have an influence on mechanic, dielectric and electric behavior of ceramics. But until now, computer simulation for grain growth has not sufficiently addressed to this subject. The reason is that simulation algorithm was laborious because it has to contain mass transfer through liquid phase and especially anisotropic grain growth has to be considered based on interfacial properties in real system. The goal of present study is simulation of anisotropic grain growth in liquid phase by Q-states model. To give anisotropic inherency to grains, constraint on mobility to specific boundaries was applied. For comparison, we measured grain size distribution and deduced grain growth kinetics from relation ship between average grain size and time. As a result, the grain size distribution functions become broader and the peak height decreases as the anisotropy is increased. The growth exponent 0.67 and 0.47 found by linear fitting have slightly different values in comparison with work of Grest et al. but similar is trend to the decrease of exponent with anisotropy

  1. The evolution of ferrite grain size in structural steels

    International Nuclear Information System (INIS)

    Hodgson, P.D.

    1999-01-01

    The refinement of the ferrite grain size is the main aim of modern thermomechanical processes for hot rolled steels. The ferrite grain size is determined by the composition, the state of the austenite at the point of transformation and the cooling rate through transformation. By adding microalloying additions of Ti for grain refinement and Nb to retard recrystallisation, it is possible to reduce the ferrite grain size to less than 5μm at moderate to high cooling rates. However, it is not possible under even the most extreme traditional controlled rolling and accelerated cooling conditions to produce an equiaxed ferrite grain size of less than 3μm. More recent work, though, involving rolling with high undercooling and friction conditions that lead to high shear, suggests that it is possible to produce microstructures in a single rolling pass with an average grain size less than 1μm. This appears to involve a dynamic (ie strain induced) transformation process. The current understanding of static and dynamic transformation and the resultant grain size is reviewed and areas requiring further research are highlighted

  2. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    Science.gov (United States)

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  4. Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC

    International Nuclear Information System (INIS)

    Swaminathan, N.; Kamenski, Paul J.; Morgan, Dane; Szlufarska, Izabela

    2010-01-01

    Cascade simulations in single crystal and nanocrystalline SiC have been conducted in order to determine the role of grain boundaries and grain size on defect production during primary radiation damage. Cascades are performed with 4 and 10 keV silicon as the primary knock-on atom (PKA). Total defect production is found to increase with decreasing grain size, and this effect is shown to be due to increased production in grain boundaries and changing grain boundary volume fraction. In order to consider in-grain defect production, a new mapping methodology is developed to properly normalize in-grain defect production rates for nanocrystalline materials. It is shown that the presence of grain boundaries does not affect the total normalized in-grain defect production significantly (the changes are lower than ∼20%) for the PKA energies considered. Defect production in the single grain containing the PKA is also studied and found to increase for smaller grain sizes. In particular, for smaller grain sizes the defect production decreases with increasing distance from the grain boundary while for larger grain sizes the presence of the grain boundaries has negligible effect on defect production. The results suggest that experimentally observed changes in radiation resistance of nanocrystalline materials may be due to long-term damage evolution rather than changes in defect production rates from primary damage.

  5. Size distribution of BaF2 nanocrystallites in transparent glass ceramics

    International Nuclear Information System (INIS)

    Bocker, Christian; Bhattacharyya, Somnath; Hoeche, Thomas; Ruessel, Christian

    2009-01-01

    In glasses with the composition 1.9 Na 2 O-15 K 2 O-7.5 Al 2 O 3 -69.6 SiO 2 -6 BaF 2 (in mol.%), BaF 2 nanocrystalline precipitates are formed upon heat treatment. Using dark-field and bright-field transmission electron micrographs, crystallite size distributions are obtained for samples crystallized at various temperatures. According to the 'tomato-salad problem', the size distributions are corrected and then compared to various theories of grain growth taking into account coarsening of the crystallites during heat treatment. The experimental crystallite size distributions show for smaller mean crystallite sizes a more symmetric shape in comparison to the theories of Lifshitz-Slyozov-Wagner (LSW) or Brailsford and Wynblatt (B and W). With increasing mean crystallite sizes to about 18 nm at higher heat-treatment temperatures, the full width at half maximum of the observed distributions decreases and becomes even narrower than the LSW function. These findings indicate that in the investigated nano glass ceramics no coarsening by Ostwald ripening or coalescence occurs. This is explained by the formation of a diffusion barrier around each nanocrystallite which limits the size of the crystallites and hence results in such a narrow and uniform crystallite size distribution.

  6. Grain size distributions and their effects on auto-acoustic compaction

    Science.gov (United States)

    Taylor, S.; Brodsky, E. E.

    2013-12-01

    A variety of geophysical and geomorphological processes depend on the response of granular mixtures to shear stress. For example, if shear sliding in a fault zone causes gouge to compact or dilate, this has implications on our understanding of earthquake nucleation and propagation. The behavior of granular flows has previously been found to be strongly dependent on shear rate. At relatively slow shear velocities, a granular flow will support stresses elastically through force chains in what is recognized as the 'quasi-static' regime. At relatively high shear velocities, it will support stresses by transferring momentum in higher velocity grain collisions in the 'grain-inertial' regime, which results in dilation of the flow. Recent experiments conducted using a commercial torsional rheometer found that at intermediate shear velocities, force chain collapse in angular sand samples produced sound waves capable of vibrating the shear zone enough to cause compaction. To expand on the characterization of this newly identified rheological regime, the 'auto-acoustic' regime, we used the same experimental set up to observe how volumetric and acoustic response to shear stress changes with grain size mean and range. Stepped velocity ramp experiments were conducted first on five separate grain size bins, and then on various mixtures of these grain sizes. As expected, larger grain sizes entered the mass-dependent grain-inertial regime at lower shear velocities than smaller grain sizes. Interestingly, smaller grain sizes exhibited more pronounced compaction at slower velocities resulting from the auto-acoustic regime, and the largest grain sizes showed no compaction, implying a grain size threshold for auto-acoustic compaction. In mixtures of different grain size bins, the response of the flow to intermediate shear velocities was consistent with the response of the smallest grain size bin included in the mixture, while the response of the flow to high shear velocities was most

  7. Effects of grain size distribution on the interstellar dust mass growth

    OpenAIRE

    Hirashita, Hiroyuki; Kuo, Tzu-Ming

    2011-01-01

    Grain growth by the accretion of metals in interstellar clouds (called `grain growth') could be one of the dominant processes that determine the dust content in galaxies. The importance of grain size distribution for the grain growth is demonstrated in this paper. First, we derive an analytical formula that gives the grain size distribution after the grain growth in individual clouds for any initial grain size distribution. The time-scale of the grain growth is very sensitive to grain size di...

  8. GRAIN SIZE CONSTRAINTS ON HL TAU WITH POLARIZATION SIGNATURE

    International Nuclear Information System (INIS)

    Kataoka, Akimasa; Dullemond, Cornelis P; Muto, Takayuki; Momose, Munetake; Tsukagoshi, Takashi

    2016-01-01

    The millimeter-wave polarization of the protoplanetary disk around HL Tau has been interpreted as the emission from elongated dust grains aligned with the magnetic field in the disk. However, the self-scattering of thermal dust emission may also explain the observed millimeter-wave polarization. In this paper, we report a modeling of the millimeter-wave polarization of the HL Tau disk with the self-polarization. Dust grains are assumed to be spherical and to have a power-law size distribution. We change the maximum grain size with a fixed dust composition in a fixed disk model to find the grain size to reproduce the observed signature. We find that the direction of the polarization vectors and the polarization degree can be explained with the self-scattering. Moreover, the polarization degree can be explained only if the maximum grain size is ∼150 μm. The obtained grain size from the polarization is different from that which has been previously expected from the spectral index of the dust opacity coefficient (a millimeter or larger) if the emission is optically thin. We discuss that porous dust aggregates may solve the inconsistency of the maximum grain size between the two constraints

  9. GRAIN SIZE CONSTRAINTS ON HL TAU WITH POLARIZATION SIGNATURE

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Akimasa; Dullemond, Cornelis P [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Momose, Munetake; Tsukagoshi, Takashi, E-mail: kataoka@uni-heidelberg.de [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan)

    2016-03-20

    The millimeter-wave polarization of the protoplanetary disk around HL Tau has been interpreted as the emission from elongated dust grains aligned with the magnetic field in the disk. However, the self-scattering of thermal dust emission may also explain the observed millimeter-wave polarization. In this paper, we report a modeling of the millimeter-wave polarization of the HL Tau disk with the self-polarization. Dust grains are assumed to be spherical and to have a power-law size distribution. We change the maximum grain size with a fixed dust composition in a fixed disk model to find the grain size to reproduce the observed signature. We find that the direction of the polarization vectors and the polarization degree can be explained with the self-scattering. Moreover, the polarization degree can be explained only if the maximum grain size is ∼150 μm. The obtained grain size from the polarization is different from that which has been previously expected from the spectral index of the dust opacity coefficient (a millimeter or larger) if the emission is optically thin. We discuss that porous dust aggregates may solve the inconsistency of the maximum grain size between the two constraints.

  10. Grain-to-grain variations in NbC particle size distributions in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Barlow, C.Y.; Ralph, B.; Silverman, B.; Jones, A.R.

    1979-01-01

    Quantitative information has been obtained concerning the size distributions of NbC precipitate particles in different grains in a deformed and aged austenitic stainless steel specimen. The precipitate size distributions obtained differ from one grain to another. The average disparity measured between the mean precipitate sizes was a function of the distance between the grains compared. The results obtained are considered in terms of differences in precipitation behaviour due to variations in the levels of plastic strain in constituent grains of the deformed specimen. (author)

  11. THE EFFECT OF SEDIMENT GRAIN SIZE ON HEAVY METAL CONTENT

    Directory of Open Access Journals (Sweden)

    Svetlana Maslennikova

    2012-06-01

    Full Text Available In the natural surroundings tectonical, climatological, dynamic and physico-chemical conditions of sedimentation are the crucial factors in the process of sediment composition formation. Grain size is one of the most investigated reasons of space and temporary variability in heavy metal concentration. In general, the data on grain size measurement afford to appreciate sorption capacity of sediments and arrange them. The dependence heavy metal content on grain size of sediments has been examined in the enormous amount of research works. The main conclusion is that if grain size decreases, metal content increases.We have carried out sediment grain size measurement of two lakes (Chebachje Lake, Piketnoye Lake located in the South of Western Siberia, Russia. To define grain size of these sediments the sorting of samples collected layer-by-layer has been conducted by nest of sieves (from 43 to 1000 µm. Accomplished examinations allow to state that layer-by-layer grain size measurement of sediments has significant importance in reconstruction of paleoecologic peculiarities and also influences organic and inorganic matter concentrating in the sediments in dynamics

  12. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    Science.gov (United States)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  13. Conception, definition, measuring procedure of grain size

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1976-12-01

    The conception, definition, measuring procedure of ''Grain Size'' were surveyed. A concept ''grain diameter'' was introduced after deriving a calculation formula for the grain diameter for using the Comparison (simple) and Intercept(detailed) procedure. As an example and putting into practice, the grain diameter determination was carried out by means of the Comparison procedure for a UO 2 pellet used in a densification experiment. (auth.)

  14. Effect of freeze-thaw cycling on grain size of biochar.

    Science.gov (United States)

    Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A; Wahab, Leila M; Gonnermann, Helge M; Nittrouer, Jeffrey A

    2018-01-01

    Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle.

  15. A new database sub-system for grain-size analysis

    Science.gov (United States)

    Suckow, Axel

    2013-04-01

    Detailed grain-size analyses of large depth profiles for palaeoclimate studies create large amounts of data. For instance (Novothny et al., 2011) presented a depth profile of grain-size analyses with 2 cm resolution and a total depth of more than 15 m, where each sample was measured with 5 repetitions on a Beckman Coulter LS13320 with 116 channels. This adds up to a total of more than four million numbers. Such amounts of data are not easily post-processed by spreadsheets or standard software; also MS Access databases would face serious performance problems. The poster describes a database sub-system dedicated to grain-size analyses. It expands the LabData database and laboratory management system published by Suckow and Dumke (2001). This compatibility with a very flexible database system provides ease to import the grain-size data, as well as the overall infrastructure of also storing geographic context and the ability to organize content like comprising several samples into one set or project. It also allows easy export and direct plot generation of final data in MS Excel. The sub-system allows automated import of raw data from the Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer. During post processing MS Excel is used as a data display, but no number crunching is implemented in Excel. Raw grain size spectra can be exported and controlled as Number- Surface- and Volume-fractions, while single spectra can be locked for further post-processing. From the spectra the usual statistical values (i.e. mean, median) can be computed as well as fractions larger than a grain size, smaller than a grain size, fractions between any two grain sizes or any ratio of such values. These deduced values can be easily exported into Excel for one or more depth profiles. However, such a reprocessing for large amounts of data also allows new display possibilities: normally depth profiles of grain-size data are displayed only with summarized parameters like the clay

  16. Kaolin clays from Patagonia - Argentina. Relationship between the mineralogy and ceramic properties

    International Nuclear Information System (INIS)

    Factorovich, J.C.; Badino, D.; Cravero, F.; Dominguez, E.

    1997-01-01

    The mineralogy, grain size distribution, chemical composition, S and C contents, plasticity, and cationic exchange capacity are determined in the sedimentary kaolinitic clays from the clay pits Puma Negra, Puma Gris, Tincar Super; and Chenque and Cardenal located in Santa Cruz and Chubut Provinces. Mineralogy and Particle size distribution of > 5, 5-2 and <2μ fractions are determined. Modulus of rupture, 1100 and 1250 deg C shrinkage and water absorption and whiteness are found. It is accomplished a statistics correlation between the characteristics of grain size distribution, mineralogy, and other physical properties with the main ceramic properties to understand its influence in the ceramic process. (author)

  17. Effects of impurities on PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y J; Kim, H N

    1982-01-01

    The grain growth, dielectric constants, piezoelectric properties, and resistivity of Pb(Zr/sub 0.52/ Ti/sub 0.48/)+0.008La/sub 2/O/sub 3/ (or Nb/sub 2/.O/sub 5/)+xFe/sub 2/O/sub 3/ ceramics have been investigated as a function of Fe/sub 2/O/sub 3/ content. The grain size decreases up to 0.05 (or 0.1) mole % Fe/sub 2/O/sub 3/, but increases in the further region. This can be interpreted as such that the grain growth is not retarded by those impurities when the Fe/sub 2/O/sub 3/ content approaches the La/sub 2/O/sub 3/ (or Nb/sub 2/O/sub 5/) content because of the formation of La/sup 3 +/ (or Nb/sup 5 +/)-Fe/sup 3 +/ ion pairs. The dielectric constant has a maximum at 0.2 mole % Fe/sub 2/O/sub 3/ and decreases as the Fe/sub 2/O/sub 3/ content increases from that composition. The grain size effect is dominant in the variation of dielectric constant up 0.2 mole % Fe/sub 2/O/sub 3/. The resistivity of the ceramics of which the Fe/sub 2/O/sub 3/ content is 0.8 mole % shows the same tendency as that of the pure PZT ceramics, and it can be concluded that complete compensation of the donor and the acceptor has occurred.

  18. Effects of grain size evolution on mantle dynamics

    Science.gov (United States)

    Schulz, Falko; Tosi, Nicola; Plesa, Ana-Catalina; Breuer, Doris

    2016-04-01

    The rheology of planetary mantle materials is strongly dependent on temperature, pressure, strain-rate, and grain size. In particular, the rheology of olivine, the most abundant mineral of the Earth's upper mantle, has been extensively studied in the laboratory (e.g., Karato and Wu, 1993; Hirth and Kohlstedt, 2003). Two main mechanisms control olivine's deformation: dislocation and diffusion creep. While the former implies a power-law dependence of the viscosity on the strain-rate that leads to a non-Newtonian behaviour, the latter is sensitively dependent on the grain size. The dynamics of planetary interiors is locally controlled by the deformation mechanism that delivers the lowest viscosity. Models of the dynamics and evolution of planetary mantles should thus be capable to self-consistently distinguish which of the two mechanisms dominates at given conditions of temperature, pressure, strain-rate and grain size. As the grain size can affect the viscosity associated with diffusion creep by several orders of magnitude, it can strongly influence the dominant deformation mechanism. The vast majority of numerical, global-scale models of mantle convection, however, are based on the use of a linear diffusion-creep rheology with constant grain-size. Nevertheless, in recent studies, a new equation has been proposed to properly model the time-dependent evolution of the grain size (Austin and Evens, 2007; Rozel et al., 2010). We implemented this equation in our mantle convection code Gaia (Hüttig et al., 2013). In the framework of simple models of stagnant lid convection, we compared simulations based on the fully time-dependent equation of grain-size evolution with simulations based on its steady-state version. In addition, we tested a number of different parameters in order to identify those that affects the grain size to the first order and, in turn, control the conditions at which mantle deformation is dominated by diffusion or dislocation creep. References Austin

  19. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-01-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here......, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x...... heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials....

  20. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  1. On Suspended matter grain size in Baltic sea

    Science.gov (United States)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  2. Grain fracture model and its application to strength evaluation in engineering ceramics

    Science.gov (United States)

    Hoshide, Toshihiko

    1993-02-01

    A new model of cracking process in ceramics is developed assuming the fracture of the grain just ahead of a flaw, such as a crack or a notch, during the loading process, prior to the final unstable fracture. Based on the grain fracture model, a simulation was carried out to explain the anomalous behavior of small flaws and the notch width effect, which were reported by Evans and Langdon (1976) and Hoshide et al. (1984) and by Bertolotti (1973) and Pabst et al. (1982), respectively. It is shown that the analytical relations of the new model can explain the experimental results for both situations.

  3. Hall measurements and grain-size effects in polycrystalline silicon

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Rose, A.; Maruska, H.P.; Eustace, D.J.; Feng, T.

    1980-01-01

    The effects of grain size on Hall measurements in polycrystalline silicon are analyzed and interpreted, with some modifications, using the model proposed by Bube. This modified model predicts that the measured effective Hall voltage is composed of components originating from the bulk and space-charge regions. For materials with large grain sizes, the carrier concentration is independent of the intergrain boundary barrier, whereas the mobility is dependent on it. However, for small grains, both the carrier density and mobility depend on the barrier. These predictions are consistent with experimental results of mm-size Wacker and μm-size neutron-transmutation-doped polycrystalline silicon

  4. Grain-size variations on a longitudinal dune and a barchan dune

    Science.gov (United States)

    Watson, Andrew

    1986-01-01

    The grain-size characteristics of the sand upon two dunes—a 40 m high longitudinal dune in the central Namib Desert and a 6.0 m high barchan in the Jafurah sand sea of Saudi Arabia—vary with position on the dunes. On the longitudinal dune, median grain size decreases, sorting improves and the grain-size distributions are less skewed and more normalized toward the crest. Though sand at the windward toe is distinct, elsewhere on the dune the changes in grain-size characteristics are gradual. An abrupt change in grain size and sorting near the crest—as described by Bagnold (1941, pp. 226-229)—is not well represented on this dune. Coarse grains remain as a lag on concave slope units and small particles are winnowed from the sand on the steepest windward slopes near the crest. Avalanching down slipfaces at the crest acts only as a supplementary grading mechanism. On the barchan dune median grain size also decreases near the crest, but sorting becomes poorer, though the grain-size distributions are more symmetric and more normalized. The dune profile is a Gaussian curve with a broad convex zone at the apex upon which topset beds had accreted prior to sampling. Grain size increases and sorting improves down the dune's slipface. However, this grading mechanism does not influence sand on the whole dune because variations in wind regime bring about different modes of dune accretion. On both dunes, height and morphology appear to influence significantly the grain-size characteristics.

  5. Improved dielectric properties and grain boundary response in neodymium-doped Y_2_/_3Cu_3Ti_4O_1_2 ceramics

    International Nuclear Information System (INIS)

    Liang, Pengfei; Yang, Zupei; Chao, Xiaolian

    2016-01-01

    Rare earth element neodymium was adopted to refine grain and in turn increase the volume of grain boundary of Y_2_/_3Cu_3Ti_4O_1_2 ceramics, which could strongly increase the resistance of grain boundary. Proper amount of Nd substitution in Y_2_/_3_−_xNd_xCu_3Ti_4O_1_2 ceramics could significantly depress the low-frequency dielectric loss. When the doping level is 0.06 and 0.09, the samples exhibited a relatively low dielectric loss (below 0.050 between 0.3 and 50 kHz) and high dielectric constant above 11000 over a wide frequency range from 40 Hz to 100 kHz. Based on the ε′-T plots, dielectric relaxation intensity was substantially weakened by Nd doping so that the temperature stability of dielectric constant was improved obviously. The correlations between low-frequency dielectric loss and the resistance of grain boundary were revealed. After Nd doping, the activation energies for the conduction behavior in grain boundaries were significantly enhanced, and the activation energies for the dielectric relaxation process in grain boundaries were slightly influenced. - Highlights: • Significant decrease in dielectric loss of Y_2_/_3_−_xNd_xCu_3Ti_4O_1_2 ceramics was realized. • The enhanced grain boundary density is responsible for the lowered dielectric loss. • Nd doping could improve the temperature stability of dielectric constant. • Oxygen vacancies contribute to conduction and relaxation process of grain boundaries.

  6. Grain-size distributions and grain boundaries of chalcopyrite-type thin films

    International Nuclear Information System (INIS)

    Abou-Ras, D.; Schorr, S.; Schock, H.W.

    2007-01-01

    CuInSe 2 , CuGaSe 2 , Cu(In,Ga)Se 2 and CuInS 2 thin-film solar absorbers in completed solar cells were studied in cross section by means of electronbackscatter diffraction. From the data acquired, grain-size distributions were extracted, and also the most frequent grain boundaries were determined. The grain-size distributions of all chalcopyrite-type thin films studied can be described well by lognormal distribution functions. The most frequent grainboundary types in these thin films are 60 - left angle 221 right angle tet and 71 - left angle 110 right angle tet (near) Σ3 twin boundaries. These results can be related directly to the importance of {112} tet planes during the topotactical growth of chalcopyrite-type thin films. Based on energetic considerations, it is assumed that the most frequent twin boundaries exhibit a 180 - left angle 221 right angle tet constellation. (orig.)

  7. Grain-to-Grain Variations in NbC Particle Size Distributions in an Austenitic Stainless Steel

    DEFF Research Database (Denmark)

    Barlow, Claire; Ralph, B.; Silverman, B.

    1979-01-01

    Quantitative information has been obtained concerning the size distributions of NbC precipitate particles in different grains in a deformed and aged austenitic stainless steel specimen. The precipitate size distributions obtained differ from one grain to another. The average disparity measured be...

  8. The grain-size lineup: A test of a novel eyewitness identification procedure.

    Science.gov (United States)

    Horry, Ruth; Brewer, Neil; Weber, Nathan

    2016-04-01

    When making a memorial judgment, respondents can regulate their accuracy by adjusting the precision, or grain size, of their responses. In many circumstances, coarse-grained responses are less informative, but more likely to be accurate, than fine-grained responses. This study describes a novel eyewitness identification procedure, the grain-size lineup, in which participants eliminated any number of individuals from the lineup, creating a choice set of variable size. A decision was considered to be fine-grained if no more than 1 individual was left in the choice set or coarse-grained if more than 1 individual was left in the choice set. Participants (N = 384) watched 2 high-quality or low-quality videotaped mock crimes and then completed 4 standard simultaneous lineups or 4 grain-size lineups (2 target-present and 2 target-absent). There was some evidence of strategic regulation of grain size, as the most difficult lineup was associated with a greater proportion of coarse-grained responses than the other lineups. However, the grain-size lineup did not outperform the standard simultaneous lineup. Fine-grained suspect identifications were no more diagnostic than suspect identifications from standard lineups, whereas coarse-grained suspect identifications carried little probative value. Participants were generally reluctant to provide coarse-grained responses, which may have hampered the utility of the procedure. For a grain-size approach to be useful, participants may need to be trained or instructed to use the coarse-grained option effectively. (c) 2016 APA, all rights reserved).

  9. Effect of surface roughness on grain growth and sintering of alumina

    Indian Academy of Sciences (India)

    Administrator

    Variation in surface roughness properties are also correlated with grain size. Rz ... ceramic product having accurate size and shape with per- fect flatness .... Figure 1. Variation in Ra with temperature: (a) fine, (b) intermediate and (c) coarse.

  10. Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [University of Tennessee (UT); Gao, Yanfei [ORNL; Nieh, T. G. [University of Tennessee, Knoxville (UTK)

    2018-01-01

    In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the applied stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.

  11. Standard test methods for characterizing duplex grain sizes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These test methods provide simple guidelines for deciding whether a duplex grain size exists. The test methods separate duplex grain sizes into one of two distinct classes, then into specific types within those classes, and provide systems for grain size characterization of each type. 1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns associated with its use. It is the responsibility of the user of this standard to consult appropriate safety and health practices and determine the applicability of regulatory limitations prior to its use.

  12. Physical properties and microstructures of La_{1-{x}}Pr_{{x}}PO_4 monazite-ceramics

    Science.gov (United States)

    Thust, Anja; Hirsch, Antje; Haussühl, Eiken; Schrodt, Nadine; Loison, Lise; Schott, Petra; Peters, Lars; Roth, Georg; Winkler, Björn

    2018-04-01

    Synthetic La_{1-{x}}Pr_{{x}}PO_4 monazite-type powders and ceramics with 0 ≤ x ≤ 1 were analysed by scanning electron microscopy, high-temperature powder X-ray diffraction, dilatometry, and plane wave ultrasound spectroscopy. Ceramics were synthesised in a two-step sintering process at 1273 and 1573 K. Final densities were up to 99.3% of the theoretical densities. Each sample shows a homogeneous distribution of grain sizes, which increase with increasing sintering temperature. Grain sizes also depend on composition, with intermediate compositions yielding the largest grains. In-situ high-temperature powder X-ray diffraction shows that the volumetric thermal expansion coefficients of the monazite powders decrease with increasing Pr content. This behavior is not observed in dilatometry measurements of the bulk samples (ceramics) because their thermal expansion mainly depends on their density. Elastic properties show the same dependence on the density.

  13. High temperature microplasticity of fine-grained Y-TZP zirconia studied by mechanical spectroscopy

    International Nuclear Information System (INIS)

    Donzel, L.; Schaller, R.

    1997-01-01

    Mechanical spectroscopy has been used to study the early stage of the plastic deformation, i.e. the microplasticity of Y-TZP ceramics. Measurements on samples with different grain sizes have shown that the mechanical loss is proportional to the inverse of the square root of the grain size. The existence of a threshold stress has been observed. (orig.)

  14. Effect of Grain Size on Mechanical Properties of Irradiated Mono- and Polycrystalline MgAl2O4

    International Nuclear Information System (INIS)

    Jagielski, J.; Piatkowska, A.; Wajler, A.; Boniecki, M.; Romaniec, M.; Jozwik, I.; Aubert, P.; Labdi, S.; Maciejak, O.; Thome, L.; Debelle, A.

    2011-01-01

    The influence of the size of crystalline regions on mechanical properties of irradiated oxides has been studied using a magnesium aluminate spinel MgAl 2 O 4 . The samples characterized by different dimensions of crystalline domains, varying from sintered ceramics with grains of few micrometers in size up to single crystals, were used in the experiments. The samples were irradiated at room temperature with 320 keV Ar 2+ ions up to fluences reaching 5x10 16 cm -2 . Nanomechanical properties (nanohardness and Young's modulus) were measured by using a nanoindentation technique and the resistance to crack formation by measurement of the total crack lengths made by the Vickers indenter. The results revealed several effects: correlation of nanohardness evolution with the level of accumulated damage, radiation-induced hardness increase in grain-boundary region and significant improvement of material resistance to crack formation. This last effect is especially surprising as the typical depth of cracks formed by Vickers indenter in unirradiated material exceeds several tens of micrometers, i.e. is more than hundred times larger than the thickness of the modified layer. (author)

  15. Grain size segregation in debris discs

    Science.gov (United States)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED

  16. Effect of grain size on structural and dielectric properties of barium titanate piezoceramics synthesized by high energy ball milling

    Science.gov (United States)

    Verma, Narendra Kumar; Patel, Sandeep Kumar Singh; Kumar, Dinesh; Singh, Chandra Bhal; Singh, Akhilesh Kumar

    2018-05-01

    We have investigated the effect of sintering temperature on the densification behaviour, grain size, structural and dielectric properties of BaTiO3 ceramics, prepared by high energy ball milling method. The Powder x-ray diffraction reveals the tetragonal structure with space group P4mm for all the samples. The samples were sintered at four different temperatures, (T = 900°C, 1000°C, 1100°C, 1200°C and 1300°C). Density increased with increasing sintering temperature, reaching up to 97% at 1300°C. A grain growth was observed with increasing sintering temperature. Impedance analyses of the sintered samples at various temperatures were performed. Increase in dielectric constant and Curie temperature is observed with increasing sintering temperature.

  17. The effect of secondary abnormal grain growth on the dielectric properties of La/Mn co-doped BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Živković Lj.M.

    2006-01-01

    Full Text Available La/Mn-codoped BaTiO3 systems, obtained by solid state reactions, were investigated regarding their microstructure characteristics and ferroelectric properties. Different concentrations of La2O3 were used for doping, ranging from 0.1 to 5.0 at% La, while a content of Mn was constant at 0.05 at%. For all samples sintered below the eutectic temperature (1332°C, a uniform microstructure was formed with average grain size from 1-3 μm. The appearance of secondary abnormal grains with (111 double twins grains with curved or faceted grain boundaries were observed in La/Mn BaTiO3 ceramics after sintering at temperatures above the eutectic temperature. All sintered samples exhibited a high electrical resistivity. Better dielectric performances were obtained for low doped samples (0.1 at% La sintered at 1350°C. For samples with La content above 1.0 at% a lower value in dielectric permittivity at higher sintering temperature is due to secondary abnormal grain growth, and to the presence of a non-ferroelectric phase rich in La. The Curie constant together with other dielectric parameters were also calculated.

  18. Modelling the joint variability of grain size and chemical composition in sediments

    NARCIS (Netherlands)

    Bloemsma, M.R.; Zabel, M.; Stuut, J.B.W.; Tjallingii, R.; Collins, J.A.; Weltje, G.J.

    2012-01-01

    The geochemical composition of siliciclastic sediments correlates strongly with grain size. Hence, geochemical composition may serve as a grain-size proxy. In the absence of grain-size variations, geochemical data of siliciclastic sediments may be used to characterise size-independent processes,

  19. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  20. Tailoring and patterning the grain size of nanocrystalline alloys

    International Nuclear Information System (INIS)

    Detor, Andrew J.; Schuh, Christopher A.

    2007-01-01

    Nanocrystalline alloys that exhibit grain boundary segregation can access thermodynamically stable or metastable states with the average grain size dictated by the alloying addition. Here we consider nanocrystalline Ni-W alloys and demonstrate that the W content controls the grain size over a very broad range: ∼2-140 nm as compared with ∼2-20 nm in previous work on strongly segregating systems. This trend is attributed to a relatively weak tendency for W segregation to the grain boundaries. Based upon this observation, we introduce a new synthesis technique allowing for precise composition control during the electrodeposition of Ni-W alloys, which, in turn, leads to precise control of the nanocrystalline grain size. This technique offers new possibilities for understanding the structure-property relationships of nanocrystalline solids, such as the breakdown of Hall-Petch strength scaling, and also opens the door to a new class of customizable materials incorporating patterned nanostructures

  1. Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, O.; Moreno, F.; Guirado, D.; Escobar-Cerezo, J. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Vargas-Martín, F. [Department of Electromagnetism and Electronics, University of Murcia, E-30100 Murcia (Spain); Min, M. [SRON Netherlands Institute for Space Research, Sobornnelaan 2, 3584 CA Utrecht (Netherlands); Hovenier, J. W. [Astronomical Institute “Anton Pannekoek,” University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands)

    2017-09-01

    We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (i) soft forward peaks and (ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.

  2. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice.

    Science.gov (United States)

    Huang, Ke; Wang, Dekai; Duan, Penggen; Zhang, Baolan; Xu, Ran; Li, Na; Li, Yunhai

    2017-09-01

    Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Quantitative determination of grain sizes by means of scattered ultrasound

    International Nuclear Information System (INIS)

    Goebbels, K.; Hoeller, P.

    1976-01-01

    The scattering of ultrasounds makes possible the quantitative determination of grain sizes in metallic materials. Examples of measurements on steels with grain sizes between ASTM 1 and ASTM 12 are given

  4. The NGDC Seafloor Sediment Grain Size Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGDC (now NCEI) Seafloor Sediment Grain Size Database contains particle size data for over 17,000 seafloor samples worldwide. The file was begun by NGDC in 1976...

  5. Dielectric, piezoelectric, and ferroelectric properties of grain-orientated Bi3.25La0.75Ti3O12 ceramics

    International Nuclear Information System (INIS)

    Liu Jing; Shen Zhijian; Yan Haixue; Reece, Michael J.; Kan Yanmei; Wang Peiling

    2007-01-01

    By dynamic forging during Spark Plasma Sintering (SPS), grain-orientated ferroelectric Bi 3.25 La 0.75 Ti 3 O 12 (BLT) ceramics were prepared. Their ferroelectric, piezoelectric, and dielectric properties are anisotropic. The textured ceramics parallel and perpendicular to the shear flow directions have similar thermal depoling behaviors. The d 33 piezoelectric coefficient of BLT ceramics gradually reduces up to 350 deg. C; it then drops rapidly. The broadness of the dielectric constant and loss peaks and the existence of d 33 above the permittivity peak, T m , show that the BLT ceramic has relaxor-like behavior

  6. Large-scale synthesis of Pb1-xLa xTiO3 ceramic powders by molten salt method

    International Nuclear Information System (INIS)

    Cai Zongying; Xing Xianran; Yu Ranbo; Liu Guirong; Xing Qifeng

    2006-01-01

    The ferroelectric perovskite type lanthanum doped lead titanate (PLT) ceramic powders were synthesized in one step with the starting materials of PbC 2 O 4 , La 2 O 3 and TiO 2 in NaCl-KCl molten salts in the temperature range of 700-950 deg. C. It was found that molten salt method was a large scale and easy preparation way to produce PLT powders with high dispersity. Tetragonal phase Pb 1-x La x TiO 3 ceramic powders were identified by XRD in the composition range 0 ≤ x ≤ 0.3 and mono-dispersed particles with spheric shape and less than 100 nm size were observed by SEM. The grain sizes of Pb 1-x La x TiO 3 ceramic powders increased with the increase of La content and decreased with calcination temperature. The grain growth progress and the possible reaction mechanism in molten salts and its influencing factors were discussed in this work. The grain growth process was the main influencing factor of the grain size, which depended on the solubility in the flux

  7. Synthesis and mechanical properties of silicon-doped TiAl-alloys with grain sizes in the submicron range; Herstellung und mechanische Eigenschaften silizidhaltiger TiAl-Werkstoffe mit Korngroessen im Submikronbereich

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    The objective of this study is to provide a comprehensive insight into the mechanical properties of nano- and submicron-grained intermetallics, containing ceramic particles as a second phase. The investigations are focussed on {gamma}-TiAl-based alloys with a fine dispersion of titanium silicides. The samples are prepared by high energy milling and subsequent hot isostatic pressing. The mechanical properties are mainly dominated by the grain size as the most important structural feature. At room temperature, the grain size dependence of hardness and yield strength can be described by the well-known Hall-Petch relationship. Contrary to the behavior of conventional alloys, the ductility of submicron-grained alloys drops if the grain size is further reduced. This may be attributed to the insignificance of diffusional creep at room temperature and to arising difficulties evolving for dislocation-based deformation mechanisms. In the high temperature range, the flow stress is strongly reduced. Superplastic deformation becomes feasible already at 800 C. The silicide particles impede grain growth, but they also promote cavitation during tensile straining. The mechanisms of deformation are similar to those established for coarse-grained materials at higher temperatures ({>=}1000 C). (orig.)

  8. Estimating the average grain size of metals - approved standard 1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    These methods cover procedures for estimating and rules for expressing the average grain size of all metals and consisting entirely, or principally, of a single phase. The methods may also be used for any structures having appearances similar to those of the metallic structures shown in the comparison charts. The three basic procedures for grain size estimation which are discussed are comparison procedure, intercept (or Heyn) procedure, and planimetric (or Jeffries) procedure. For specimens consisting of equiaxed grains, the method of comparing the specimen with a standard chart is most convenient and is sufficiently accurate for most commercial purposes. For high degrees of accuracy in estimating grain size, the intercept or planimetric procedures may be used

  9. Computational Investigation of Effects of Grain Size on Ballistic Performance of Copper

    Science.gov (United States)

    He, Ge; Dou, Yangqing; Guo, Xiang; Liu, Yucheng

    2018-01-01

    Numerical simulations were conducted to compare ballistic performance and penetration mechanism of copper (Cu) with four representative grain sizes. Ballistic limit velocities for coarse-grained (CG) copper (grain size ≈ 90 µm), regular copper (grain size ≈ 30 µm), fine-grained (FG) copper (grain size ≈ 890 nm), and ultrafine-grained (UG) copper (grain size ≈ 200 nm) were determined for the first time through the simulations. It was found that the copper with reduced grain size would offer higher strength and better ductility, and therefore renders improved ballistic performance than the CG and regular copper. High speed impact and penetration behavior of the FG and UG copper was also compared with the CG coppers strengthened by nanotwinned (NT) regions. The comparison results showed the impact and penetration resistance of UG copper is comparable to the CG copper strengthened by NT regions with the minimum twin spacing. Therefore, besides the NT-strengthened copper, the single phase copper with nanoscale grain size could also be a strong candidate material for better ballistic protection. A computational modeling and simulation framework was proposed for this study, in which Johnson-Cook (JC) constitutive model is used to predict the plastic deformation of Cu; the JC damage model is to capture the penetration and fragmentation behavior of Cu; Bao-Wierzbicki (B-W) failure criterion defines the material's failure mechanisms; and temperature increase during this adiabatic penetration process is given by the Taylor-Quinney method.

  10. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO_3) ceramics

    International Nuclear Information System (INIS)

    Billah, Masum; Ahmed, A.; Rahman, Md. Miftaur; Mahbub, Rubbayat; Gafur, M. A.; Bashar, M. Shahriar

    2016-01-01

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La_2O_3) doped Barium Titanate (BaTiO_3) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO_3 with 0.3, 0.5 and 0.7 mole% La_2O_3 under different sintering parameters. The raw materials used were La_2O_3 nano powder of ~80 nm grain size and 99.995% purity and BaTiO_3 nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO_3 ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La_2O_3) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La_2O_3 with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La"3"+ concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO_3 ceramics.

  11. Grain Oriented Perovskite Layer Structure Ceramics for High-Temperature Piezoelectric Applications

    Science.gov (United States)

    Fuierer, Paul Anton

    The perovskite layer structure (PLS) compounds have the general formula (A^{2+}) _2(B^{5+})_2 O_7, or (A^ {3+})_2(B^{4+ })_2O_7, and crystallize in a very anisotropic layered structure consisting of parallel slabs made up of perovskite units. Several of these compounds possess the highest Curie temperatures (T_{rm c} ) of any known ferroelectrics. Two examples are Sr_2Nb_2O _7 with T_{rm c} of 1342^circC, and La_2Ti_2O _7 with T_{rm c} of 1500^circC. This thesis is an investigation of PLS ceramics and their feasibility as a high temperature transducer material. Piezoelectricity in single crystals has been measured, but the containerless float zone apparatus necessary to grow high quality crystals of these refractory compounds is expensive and limited to a small number of research groups. Previous attempts to pole polycrystalline Sr_2Nb _2O_7 have failed, and to this point piezoelectricity has been absent. The initiative taken in this research was to investigate PLS ceramics by way of composition and processing schemes such that polycrystalline bodies could be electrically poled. The ultimate objective then was to demonstrate piezoelectricity in PLS ceramics, especially at high temperatures. Donor-doping of both La_2Ti _2O_7 and Sr_2Nb_2O _7 was found to increase volume resistivities at elevated temperatures, an important parameter to consider during the poling process. Sr_2Ta _2O_7 (T _{rm c} = -107 ^circC) was used to make solid solution compositions with moderately high Curie temperatures, of about 850^circC, and lower coercive fields. A hot-forging technique was employed to produce ceramics with high density (>99% of theoretical) and high degree of grain orientation (>90%). Texturing was characterized by x-ray diffraction and microscopy. Considerable anisotropy was observed in physical and electrical properties, including thermal expansion, resistivity, dielectric constant, and polarization. The direction perpendicular to the forging axis proved to be the

  12. Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

    International Nuclear Information System (INIS)

    Gutierrez-Gonzalez, C.F.; Agouram, S.; Torrecillas, R.; Moya, J.S.; Lopez-Esteban, S.

    2012-01-01

    Highlights: ► A cryogenic route has been used to obtain ceramic/metal nanostructured powders. ► The powders present good homogeneity and dispersion of metal. ► The metal nanoparticle size distributions are centred in 17–35 nm. ► Both phases, ceramic and metal, present a high degree of crystallinity. ► Good metal/ceramic interfaces due to epitaxial growth, studied by HRTEM. -- Abstract: This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.

  13. Using the ''Epiquant'' automatic analyzer for quantitative estimation of grain size

    Energy Technology Data Exchange (ETDEWEB)

    Tsivirko, E I; Ulitenko, A N; Stetsenko, I A; Burova, N M [Zaporozhskij Mashinostroitel' nyj Inst. (Ukrainian SSR)

    1979-01-01

    Application possibility of the ''Epiquant'' automatic analyzer to estimate qualitatively austenite grain in the 18Kh2N4VA steel has been investigated. Austenite grain has been clarified using the methods of cementation, oxidation and etching of the grain boundaries. Average linear size of grain at the length of 15 mm has been determined according to the total length of grain intersection line and the number of intersections at the boundaries. It is shown that the ''Epiquant'' analyzer ensures quantitative estimation of austenite grain size with relative error of 2-4 %.

  14. Effect of CASP glass doping on sintering and dielectric properties of SBN ceramics

    International Nuclear Information System (INIS)

    Chen Guohua; Qi Bing

    2009-01-01

    16CaO-29Al 2 O 3 -34SiO 2 -13PbO-4B 2 O 3 -2ZnO-2P 2 O 5 (CASP) glass doped-Sr 0.5 Ba 0.5 Nb 2 O 6 (SBN50) ceramics have been synthesized by solid-state ceramic route. The effects of CASP glass on the firing, microstructure and dielectric characterization of SBN50 ceramics are investigated. The densities of the ceramic samples firstly increase and then slightly decrease with increasing CASP glass content. The appropriate amount of doping glass is 2%. The SBN50 ceramics doped with CASP glass can be sintered at a relatively low temperature, 1200 deg. C. X-ray diffraction analysis shows the single phase (tetragonal tungsten bronze type structure) is preserved for all the samples. The diffuse character of the ceramic system increases and the dielectric constant at phase transition temperature (T c ) markedly decreases as CASP glass content increases. Interestingly, the CASP glass addition drastically alters the microstructure of the sintered ceramics. The isotropic grains in the pure SBN50 ceramics transform to rod like grains after the addition of CASP glass. The grain size of SBN phase is found to obviously increase with increase in CASP glass doping level

  15. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    Science.gov (United States)

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  16. Grain boundary defect compensation in Ti-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaojun; Deng, Jianming; Liu, Saisai; Yan, Tianxiang; Fang, Liang; Liu, Laijun [Guilin University of Technology, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, College of Materials Science and Engineering, Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, Guilin (China); Peng, Biaolin [Guangxi University, School of Physical Science and Technology and Guangxi Key Laboratory for Relativistic Astrophysics, Nanning (China); Jia, Wenhao [Shanghai Getong Enterprise Co., Ltd., Shanghai (China); Mei, Zaoming [Henan LiHeng Building Materials Co., Ltd., Zhengzhou (China); Su, Hongbo [Henan Province Product Quality Supervision and Inspection Center, Zhengzhou (China)

    2016-09-15

    Giant dielectric ceramics Ba(Nb{sub 0.5}Fe{sub 0.5-x}Ti{sub x})O{sub 3} (BNFT) have been fabricated by a conventional solid-state reaction. According to X-ray diffraction analysis, the crystal structure of these ceramics can be described by the cubic centrosymmetric with Pm-3m space group. The real part (ε') of dielectric permittivity and dielectric loss (tan δ) of the BNFT ceramics was measured in a frequency range from 40 Hz to 100 MHz at room temperature. The (ε') of all these samples displays a high value (∝6500) and a small frequency-dependence from 1 kHz to 1 MHz. We have established a link between conductivity activation energy and defect compensation at grain boundaries. The Ti{sup 4+}-doped Ba(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} as a donor makes a great influence on the grain boundary behavior, which restricts the migration of oxygen vacancy and depresses dielectric loss factor for Ba(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} ceramics. (orig.)

  17. Superplasticity in Fine-Grained Ceramics

    Science.gov (United States)

    1994-01-31

    Stabilized, Tetragonal Zirconia," Acta Metall. Mater., 39(12), (1991), pp. 3227-3236. 10. B. Kellett, P. Carry, and A. Mocellin , "Extrusion of Tet-ZrO2...F. Wakai, S. Sakaguchi, and H. Kato, J. Ceram. Soc. Jap., 94, 72 (1986). 8. B. Kellett, P. Carry, and A. Mocellin , J. Amer. Ceram. Soc., 74, 1922

  18. Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction

    Science.gov (United States)

    Turner, A. J.; Katz, R. F.; Behn, M. D.

    2014-12-01

    The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099

  19. Austenite Grain Size Estimtion from Chord Lengths of Logarithmic-Normal Distribution

    Directory of Open Access Journals (Sweden)

    Adrian H.

    2017-12-01

    Full Text Available Linear section of grains in polyhedral material microstructure is a system of chords. The mean length of chords is the linear grain size of the microstructure. For the prior austenite grains of low alloy structural steels, the chord length is a random variable of gamma- or logarithmic-normal distribution. The statistical grain size estimation belongs to the quantitative metallographic problems. The so-called point estimation is a well known procedure. The interval estimation (grain size confidence interval for the gamma distribution was given elsewhere, but for the logarithmic-normal distribution is the subject of the present contribution. The statistical analysis is analogous to the one for the gamma distribution.

  20. Molecular dynamics study on microstructure of near grain boundary distortion region in small grain size nano- NiAl alloy

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wang, X.W.; Rifkin, J.; Li, D.X.

    2001-12-01

    Using the molecular dynamics simulation method, the microstructure of distortion region near curved amorphous-like grain boundary in nano-NiAl alloy is studied. The results showed that due to the internal elastic force of high energy grain boundary, distortion layer exists between grain and grain boundary. The lattice expansion and structure factor decreasing are observed in this region. Stacking fault in sample with grain size 3.8nm is clearly observed across the distortion region at the site very close to grain. The influences of different grain sizes on average distortion degree and volume fractions of distortion region, grain and grain boundary are also discussed. (author)

  1. Grain-size effect on the electrical properties of nanocrystalline indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hoon [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); Kim, Young Heon, E-mail: young.h.kim@kriss.re.kr [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Ahn, Sang Jung [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Ha, Tae Hwan [University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Kim, Hong Seung [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-Ro, Busan 606-791 (Korea, Republic of)

    2015-09-15

    Highlights: • Nanometer-sized small grains were observed in the ITO thin films. • The grain size increased as the post-thermal annealing temperature increased. • The mobility of ITO thin films increased with increasing grain size. • The ITO film annealed at 300 °C was an amorphous phase, while the others were polycrystalline structure. - Abstract: In this paper, we demonstrate the electrical properties, depending on grain size, of nanocrystalline indium tin oxide (ITO) thin films prepared with a solution process. The size distributions of nanometer-sized ITO film grains increased as the post-annealing temperature increased after deposition; the grain sizes were comparable with the calculated electron mean free path. The mobility of ITO thin films increased with increasing grain size; this phenomenon was explained by adopting the charge-trapping model for grain boundary scattering. These findings suggest that it is possible to improve mobility by reducing the number of trapping sites at the grain boundary.

  2. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Alikin, Denis O.; Turygin, Anton P.; Walker, Julian; Bencan, Andreja; Malic, Barbara; Rojac, Tadej; Shur, Vladimir Ya.; Kholkin, Andrei L.

    2017-01-01

    Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi_0_._8_8Sm_0_._1_2FeO_3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics.

  3. Studies of ZrO2-Y2O3 ceramics properties sintered in conventional and microwave oven

    International Nuclear Information System (INIS)

    Gelfuso, M.V.; Capistrano, D.; Thomazini, D.; Grzebielucka, E.C.; Chinelatto, A.L.; Chinelatto, A.S.A.

    2009-01-01

    The ceramic materials processing with nano grain size has developed materials with new properties or improves some of its existing properties. To obtain ceramics with nano grain size, besides that to obtaining nanometric powders, a major goal is to keep the grains size after sintering. Contributing in this line of research, this study aimed to sinter zirconia-Yttria powders through two processes: conventional and microwave sintering. Zirconia stabilized with Yttria powders were obtained by chemical route based on Pechini method. Cylindrical samples were sintered between 1300 to 1500 deg C between 10 and 40 minutes. The samples were characterized by Xray diffraction, Scanning Electron Microscopy and apparent density. It was observed that the final microstructure is influenced by both methods of sintering as the curve of firing used. (author)

  4. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors.

    Science.gov (United States)

    Jin, Le; Ong, Say Leong; Ng, How Yong

    2010-12-01

    Membrane fouling, the key disadvantage that inevitably occurs continuously in the membrane bioreactor (MBR), baffles the wide-scale application of MBR. Ceramic membrane, which possesses high chemical and thermal resistance, has seldom been used in MBR to treat municipal wastewater. Four ceramic membranes with the same materials but different pore sizes, ranging from 80 to 300 nm, were studied in parallel using four lab-scale submerged MBRs (i.e., one type of ceramic membrane in one MBR). Total COD and ammonia nitrogen removal efficiencies were observed to be consistently above 94.5 and 98%, respectively, in all submerged ceramic membrane bioreactors. The experimental results showed that fouling was mainly affected by membrane's microstructure, surface roughness and pore sizes. Ceramic membrane with the roughest surface and biggest pore size (300 nm) had the highest fouling potential with respect to the TMP profile. The 80 nm membrane with a smoother surface and relatively uniform smaller pore openings experienced least membrane fouling with respect to TMP increase. The effects of the molecular weight distribution, particle size distribution and other biomass characteristics such as extracellular polymeric substances, zeta potential and capillary suction time, were also investigated in this study. Results showed that no significant differences of these attributes were observed. These observations indicate that the membrane surface properties are the dominant factors leading to different fouling potential in this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Abstract. Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, ...

  6. Scratch-induced deformation in fine- and ultrafine-grained bulk alumina

    International Nuclear Information System (INIS)

    Huang, Lin; Zhang, Zhihui; Zhao, Yonghao; Yao, Wenlong; Mukherjee, Amiya K.; Schoenung, Julie M.

    2010-01-01

    The nanoscratch behavior of two bulk α-alumina samples with 1.3 μm and 290 nm average grain sizes, respectively, was investigated using a nanoindenter in scratch mode, in combination with atomic force and scanning electron microscopy. A ductile to brittle transition was observed in the fine-grained sample, while the ultrafine-grained sample exhibited predominantly ductile deformation with a fish-bone feature indicative of a stick-slip mechanism. These findings suggest that grain refinement can increase the potential for plastic deformation in ceramics.

  7. Microstructure evolution during pressureless sintering of bulk oxide ceramics

    Directory of Open Access Journals (Sweden)

    Karel Maca

    2009-06-01

    Full Text Available The author’s experience concerning the infl uence of the choice of different pressureless heating schedules on the fi nal microstructure of oxide ceramic materials is summarized in the paper. Alumina, ceria, strontium titanate, as well as tetragonal (3 mol% Y2O3 and cubic (8 mol% Y2O3 zirconia were cold isostatically pressed or injection moulded and pressureless sintered with different heating schedules – namely with Constant-Rate of Heating with different dwell temperatures (CRH, with Rate-Controlled Sintering (RCS and with Two-Step Sintering (TSS. It was examined whether some of these three sintering schedules, with the same fi nal density achieved, can lead to a decrease of the grain size of sintered ceramics. The results showed that only TSS (and only for selected materials brought significant decrease of the grain size.

  8. Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China); Guo, J.W.; Wang, X.S; Zhang, S.F. [State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi’an 710032 (China); He, L., E-mail: helin@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China)

    2016-07-04

    Crystal size of lithium disilicate (LD) phase in a LD glass-ceramic was changed by thermally controlled crystallization of a precursory LD glass at different temperatures. Effects of the crystal size on the mechanical properties of the glass-ceramic were investigated. It was found that the flexural strength presented a hump-like variation trend with increasing the crystal size, the hardness monotonously decreased at the same time. It was further confirmed that micro residual compressive stresses existed inside the LD crystals due to the thermal expansion mismatch between the glass matrix and the crystalline phase. The levels of the residual stresses increased with increasing the crystal size. The crystal size performed dual effects on the flexural strength of the glass-ceramic: an “interlocking effect” caused by larger-sized LD crystals and a “micro residual stress effect” related to the balancing tensile stresses in the glass matrix. Higher residual tensile stresses in the glass matrix induced by larger-sized LD crystals would counteract the “interlocking effect” of the crystals, causing the strength degradation. The hardness of the glass-ceramic was mainly controlled by the “micro residual stress effect”.

  9. The Relevance of Grain Dissection for Grain Size Reduction in Polar Ice: Insights from Numerical Models and Ice Core Microstructure Analysis

    Directory of Open Access Journals (Sweden)

    Florian Steinbach

    2017-09-01

    Full Text Available The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modeling and analyzed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD have been used together with c-axis orientations using an optical technique (Fabric Analyser. Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighboring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modeling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be

  10. The relevance of grain dissection for grain size reduction in polar ice: insights from numerical models and ice core microstructure analysis

    Science.gov (United States)

    Steinbach, Florian; Kuiper, Ernst-Jan N.; Eichler, Jan; Bons, Paul D.; Drury, Martyn R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-09-01

    The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modelling and analysed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM) project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD) have been used together with c-axis orientations using an optical technique (Fabric Analyser). Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighbouring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modelling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be used to

  11. NON-COHESIVE SOILS’ COMPRESSIBILITY AND UNEVEN GRAIN-SIZE DISTRIBUTION RELATION

    Directory of Open Access Journals (Sweden)

    Anatoliy Mirnyy

    2016-03-01

    Full Text Available This paper presents the results of laboratory investigation of soil compression phases with consideration of various granulometric composition. Materials and Methods Experimental soil box with microscale video recording for compression phases studies is described. Photo and video materials showing the differences of microscale particle movements were obtained for non-cohesive soils with different grain-size distribution. Results The analysis of the compression tests results and elastic and plastic deformations separation allows identifying each compression phase. It is shown, that soil density is correlating with deformability parameters only for the same grain-size distribution. Basing on the test results the authors suggest that compaction ratio is not sufficient for deformability estimating without grain-size distribution taken into account. Discussion and Conclusions Considering grain-size distribution allows refining technological requirements for artificial soil structures, backfills, and sand beds. Further studies could be used for developing standard documents, SP45.13330.2012 in particular.

  12. Importance and role of grain size in free surface cracking prediction of heavy forgings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenhua [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Ministry of Education of China, Qinhuangdao 066004 (China); Sun, Shuhua; Wang, Bo [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Shi, Zhongping [Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Ministry of Education of China, Qinhuangdao 066004 (China); Fu, Wantang, E-mail: wtfu@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-02-11

    The importance and role of grain size in predicting surface cracking of heavy forgings were investigated. 18Mn18Cr0.5N steel specimens with four different grain sizes were tensioned between 900 and 1100 °C at a strain rate of 0.1 s{sup −1}. The nucleation sites and crack morphology were analyzed through electron backscatter diffraction analysis, and the fracture morphology was examined using scanning electron microscopy. The nucleation sites were independent of the grain size, and cracks primarily formed at grain boundaries and triple junctions between grains with high Taylor factors. Grains with lower Taylor factors inhibited crack propagation. Strain was found to mainly concentrate near the grain boundaries; thus, a material with a larger grain size cracks more easily because there are fewer grain boundaries. Fine grains can be easily rotated to a lower Taylor factor to further inhibit cracking. The fracture morphology transformed from a brittle to ductile type with a lowering of grain size. At lower temperature, small dimples on the fracture surfaces of specimens with smaller grain sizes were left by single parent grains and the dimple edge was the grain edge. At higher temperature, dimples formed through void coalescence and the dimple edge was the tearing edge. Finally, the relationship between the reduction in area, grain size, and deformation temperature was obtained.

  13. Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods

    Science.gov (United States)

    Palmero, Paola

    2015-01-01

    Ceramic nanocomposites are attracting growing interest, thanks to new processing methods enabling these materials to go from the research laboratory scale to the commercial level. Today, many different types of nanocomposite structures are proposed in the literature; however, to fully exploit their exceptional properties, a deep understanding of the materials’ behavior across length scales is necessary. In fact, knowing how the nanoscale structure influences the bulk properties enables the design of increasingly performing composite materials. A further key point is the ability of tailoring the desired nanostructured features in the sintered composites, a challenging issue requiring a careful control of all stages of manufacturing, from powder synthesis to sintering. This review is divided into four parts. In the first, classification and general issues of nanostructured ceramics are reported. The second provides basic structure–property relations, highlighting the grain-size dependence of the materials properties. The third describes the role of nanocrystalline second-phases on the mechanical properties of ordinary grain sized ceramics. Finally, the fourth part revises the mainly used synthesis routes to produce nanocomposite ceramic powders, underlining when possible the critical role of the synthesis method on the control of microstructure and properties of the sintered ceramics. PMID:28347029

  14. Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size

    Science.gov (United States)

    Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.

    2014-01-01

    We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.

  15. Crystallization and properties of a spodumene-willemite glass ceramic

    International Nuclear Information System (INIS)

    Hu, A.M.; Li, M.; Dali, D.L. Mao; Liang, K.M.

    2005-01-01

    Spodumene-willemite glass ceramics were produced by replacement of Al 2 O 3 in lithium aluminium silicate by ZnO. With replacement of Al 2 O 3 by ZnO, the batch melting temperature, glass transition temperature (T g ) and crystallization temperature (T p ) all decreased. The main crystalline phases precipitated were eucriptite, β-spodumene and willemite (Zn 2 SiO 4 ). All compositions of glass ceramics showed bulk crystallization. As ZnO content increased, the grain sizes and thermal expansion coefficients increased, while the flexural strength and fracture toughness of the glass-ceramics increased first, and then decreased. The mechanical properties were correlated with crystallization and morphology of glass ceramics

  16. Grain-size dependent accommodation due to intragranular distributions of dislocation loops

    International Nuclear Information System (INIS)

    Richeton, T.; Berbenni, S.; Berveiller, M.

    2009-01-01

    A grain-size dependent accommodation law for polycrystals is deduced from an inclusion/matrix problem (i.e., each grain is seen as embedded in a homogeneous equivalent medium) where plastic strain inside the inclusion is given as a discrete distribution of circular coaxial glide dislocation loops. The loops are assumed constrained at spherical grain boundaries. From thermodynamic considerations specific to a process of identical plastification in all the loops (considered as 'super-dislocations'), an average back-stress over the grain is derived. In order to compute the very early stages of plastic deformation in a face-centred cubic polycrystal, this back-stress is incorporated into a diluted model in terms of concentration of plastic grains. Contrary to conventional mean-field approaches, a grain-size effect is obtained for the initial overall strain-hardening behaviour. This size effect results from an intrinsic contribution of intragranular slip heterogeneities on the kinematical hardening

  17. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Distribution Species Composition And Size Of Flying Fish Exocoetidae In The Ceram Sea

    Directory of Open Access Journals (Sweden)

    Friesland Tuapetel

    2015-03-01

    Full Text Available Abstract Ceram Sea is new resources area of catching flying fish. The purpose of study is to determine the species composition size and distribution of flying fish caught by drifting baits. Flying fish data collection was conducted in June until October 2013 in three locations i.e Kaimana East Ceram and Fak-Fak. There are three flying fish species collected namely Hirundichthys oxycephalus Torani Cypselurus poecilopterus Banggulung and Chellopogon abeia yellow wing. The results was showed that in Fak-Fak and Kaimana there are two types of fly fishing that H. oxycephalus andC. poecilopterus whereas in East Ceram found three types including H. oxycephalus C. poecilopterus and C. abeia. The dominant type of flying fish in three locations is H. oxycephalus. Flying fish has a variety size range of body size from 195.6 to 243.6 mm in Kaimana East Ceram range from 206.3 to 284.3 mm while Fak-Fak range from 187.1 to 243.1 mm. The result is expected to be a reference literature as basic data for the management and sustainable utilization of flyling fish in Ceram sea.

  19. The use of thermally stimulated depolarization currents to study grain growth in ceramic thorium dioxide

    International Nuclear Information System (INIS)

    Muccillo, R.; Campos, L.L.

    1979-01-01

    Depolarization Current Spectra resulting from the destruction of the thermoelectret state in polycrystalline ThO 2 samples have been detected in the temperature range 100K-350K. The induced polarization is found to be due to migration of charge carriers over microscopic distances in the bulk of the specimens with trapping at grain boundaries. Moreover the density of charge carriers released from trapping sites, upon heating the cooled previously dc biased specimen decreases for increasing sintering temperature, suggesting the use of the technique to the study of grain growth in the bulk of ceramic oxides. (Author) [pt

  20. Relative effect(s) of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel

    International Nuclear Information System (INIS)

    PremKumar, R.; Samajdar, I.; Viswanathan, N.N.; Singal, V.; Seshadri, V.

    2003-01-01

    Hot rolled low Si (silicon) non-grain oriented electrical steel was cold rolled to different reductions. Cold rolled material was subsequently recrystallized, 650 deg. C and 2 h, and then temper rolled (to 7% reduction) for the final grain growth annealing and decarburization treatment at 850 deg. C for 2-24 h. The development of texture, grain size and magnetic properties were characterized at different stages of processing. Effect of texture on magnetic properties (watt loss and permeability) was observed to be best represented by the ratio of volume fractions of (1 1 1) /(0 0 1) fibers, as estimated by convoluting X-ray ODFs (orientation distribution functions) with respective model functions. Such a ratio was termed as generalized texture factor (tf) for the non-grain oriented electrical steel. An effort was made to delink effects of grain size and texture, as represented by respective tf, on watt loss and permeability by careful analysis of experimental data. In general, low tf and/or high grain size were responsible for low watt loss and high permeability. However, individual effect of grain size or tf on magnetic properties was less significant at low tf or large grain size, respectively. An attempt was made to fit regression equations, namely--linear, exponential and power, relating magnetic properties with tf and grain size, limiting the fitting parameters to 3. Least standard deviations, between experimental and predicted values, were obtained by power regression equations for both magnetic properties

  1. Influence of grain size in the near-micrometre regime on the deformation microstructure in aluminium

    International Nuclear Information System (INIS)

    Le, G.M.; Godfrey, A.; Hansen, N.; Liu, W.; Winther, G.; Huang, X.

    2013-01-01

    The effect of grain size on deformation microstructure formation in the near-micrometre grain size regime has been studied using samples of aluminium prepared using a spark plasma sintering technique. Samples in a fully recrystallized grain condition with average grain sizes ranging from 5.2 to 0.8 μm have been prepared using this technique. Examination in the transmission electron microscope of these samples after compression at room temperature to approximately 20% reduction reveals that grains larger than 7 μm are subdivided by cell block boundaries similar to those observed in coarse-grained samples, with a similar dependency on the crystallographic orientation of the grains. With decreasing grain size down to approx. 1 μm there is a gradual transition from cell block structures to cell structures. At even smaller grain sizes of down to approx. 0.5 μm the dominant features are dislocation bundles and random dislocations, although at a larger compressive strain of 30% dislocation rotation boundaries may also be found in the interior of grains of this size. A standard 〈1 1 0〉 fibre texture is found for all grain sizes, with a decreasing sharpness with decreasing grain size. The structural transitions with decreasing grain size are discussed based on the general principles of grain subdivision by deformation-induced dislocation boundaries and of low-energy dislocation structures as applied to the not hitherto explored near-micrometre grain size regime

  2. Towards modeling intergranular stress corrosion cracks on grain size scales

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2012-01-01

    Highlights: ► Simulating the onset and propagation of intergranular cracking. ► Model based on the as-measured geometry and crystallographic orientations. ► Feasibility, performance of the proposed computational approach demonstrated. - Abstract: Development of advanced models at the grain size scales has so far been mostly limited to simulated geometry structures such as for example 3D Voronoi tessellations. The difficulty came from a lack of non-destructive techniques for measuring the microstructures. In this work a novel grain-size scale approach for modelling intergranular stress corrosion cracking based on as-measured 3D grain structure of a 400 μm stainless steel wire is presented. Grain topologies and crystallographic orientations are obtained using a diffraction contrast tomography, reconstructed within a detailed finite element model and coupled with advanced constitutive models for grains and grain boundaries. The wire is composed of 362 grains and over 1600 grain boundaries. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. The feasibility of the approach is explored.

  3. Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu

    International Nuclear Information System (INIS)

    Zhong Yong; Ping Dehai; Song Xiaoyan; Yin Fuxing

    2009-01-01

    In this work, a serial of pure copper sample with different grain sizes from nano- to micro-scale were prepared by sparkle plasma sintering (SPS) and following anneal treatment at 873 K and 1073 K, respectively. The grain size distributions of these samples were determined by both X-ray diffraction (XRD) profile analysis and transmission electronic microscope (TEM) micrograph counting. Although these two methods give similar distributions of grain size in the case of as-SPS sample with nano-scale grain size (around 10 nm), there are apparent discrepancies between the grain size distributions of the annealed samples obtained from XRD and TEM, especially for the sample annealed at 1073 K after SPS with micro-scale grain size (around 2 μm), which TEM counting provides much higher values of grain sizes than XRD analysis does. It indicates that for large grain-sized material, XRD analysis lost its validity for determination of grain size. It might be due to some small sized substructures possibly existed in even annealed (large grain-sized) samples, whereas there is no substructures in as-SPS (nanocrystalline) sample. Moreover, it has been found that the effective outer cut-off radius R e derived from XRD analysis coincides with the grain sizes given by TEM counting. The potential relationship between grain size and R e was discussed in the present work. These results might provide some new hints for deeper understanding of the physical meaning of XRD analysis and the parameters derived.

  4. Resintering - a novel approach for preparing massive YBa2Cu3O7-δ-ceramics

    International Nuclear Information System (INIS)

    Vuong, N.V.; Raspopina, E.V.

    1996-01-01

    The resintering procedure of YBa 2 Cu 3 O 7-δ -ceramics in 3BaCuO 2 + 2CuO eutectic melt for preparing massive samples is presented. The resintered ceramics is of the single orthorhombic phase YBa 2 Cu 3 O 7-δ and has the volume fraction of the intergrain region reduced from 50 to 5%. The average grain size is twofold increased, the connection between grains is appreciably strengthened. (author). 12 refs., 10 figs., 1 tab

  5. Microcracking in ceramics and acoustic emission

    International Nuclear Information System (INIS)

    Subbarao, E.C.

    1991-01-01

    One of the limitations in the use of ceramics in critical applications is due to the presence of microcracks, which may arise from differential thermal expansion and phase changes, among others. Acoustic emission signals occur when there are abrupt microdeformations in a material and thus offer a convenient means of non-destructive detection of microcracking. Examples of a study of acoustic emission from microcracking due to anisotropic thermal expansion in low thermal expansion single phase ceramics such as niobia and sodium zirconium phosphate ceramics and due to phase changes in zirconia and superconducting YBa 2 Cu 3 Osub(7-x) ceramics are presented, together with the case of lead titanate ceramics, which exhibits both a phase change (paraelectric to ferroelectric) and an anisotropic thermal expansion. The role of grain size on the extent of microcracking is illustrated in the case of niobia ceramics. Some indirect evidence of healing of microcracks on heating niobia and lead titanate ceramics is presented from the acoustic emission results. (author). 69 refs., 9 figs

  6. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd [Department of Materials & Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Mahbub, Rubbayat, E-mail: rubayyatm@gce.buet.ac.bd [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Gafur, M. A., E-mail: d-r-magafur@bcsir.gov.bd [Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205 (Bangladesh); Bashar, M. Shahriar, E-mail: bashar@agni.com [Institute of Fuel Research & Development, Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205 (Bangladesh)

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.

  7. [Research on the aging of all-ceramics restoration materials].

    Science.gov (United States)

    Zhang, Dongjiao; Chen, Xinmin

    2011-10-01

    All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.

  8. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation.

    Science.gov (United States)

    Zhang, Fei; Vanmeensel, Kim; Batuk, Maria; Hadermann, Joke; Inokoshi, Masanao; Van Meerbeek, Bart; Naert, Ignace; Vleugels, Jef

    2015-04-01

    Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr(4+), exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.1-0.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. The role of grain size in He bubble formation: Implications for swelling resistance

    Science.gov (United States)

    El-Atwani, O.; Nathaniel, J. E.; Leff, A. C.; Muntifering, B. R.; Baldwin, J. K.; Hattar, K.; Taheri, M. L.

    2017-02-01

    Nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas ranging from 3000 to 7500 nm2 show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm2 possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.

  10. The role of grain size in He bubble formation: Implications for swelling resistance

    Energy Technology Data Exchange (ETDEWEB)

    El-Atwani, O., E-mail: oelatwan25@gmail.com [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States); Nathaniel, J.E.; Leff, A.C. [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States); Muntifering, B.R. [Department of Radiation Solid Interactions, Sandia National Laboratories, NM (United States); Baldwin, J.K. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM (United States); Hattar, K. [Department of Radiation Solid Interactions, Sandia National Laboratories, NM (United States); Taheri, M.L. [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States)

    2017-02-15

    Nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas ranging from 3000 to 7500 nm{sup 2} show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm{sup 2} possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.

  11. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  12. Mapping soil degradation by topsoil grain size using MODIS data

    OpenAIRE

    XIAO, Jieying; SHEN, Yanjun; TATEISHI, Ryutaro

    2005-01-01

    [ABSTRACT] MODIS BRDF reflectance data at the end of April 2004 was selected to make a desertification map base on topsoil grain size by using Gain Size Index at arid and semiarid Asia. After data processing, GSI was applied into desertification mapping, and we find that high GSI area distributed at the desert and its’ marginal area, degraded grassland, desert steppe. The desertification map was output according to the correlation between GSI and grain size distribution, the classification of...

  13. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  14. High-temperature grain size stabilization of nanocrystalline Fe–Cr alloys with Hf additions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu, E-mail: lli18@ncsu.edu; Saber, Mostafa; Xu, Weizong; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2014-09-08

    The influence of 1–4 at% Hf additions on the thermal stability of mechanically alloyed nanocrystalline Fe–14Cr alloys was studied in this work. XRD-calculated grain size and microhardness results were reported versus isochronal annealing treatments up to 1100 °C. Microstructural evolution was investigated using channeling contrast FIB imaging and TEM. Grain size of samples with 4 at% Hf was found to be maintained in the nanoscale range at temperatures up to 1000 °C. Zener pinning was considered as a major source of high temperature grain size stabilization. By comparing the Orowan strengthening contribution to the total hardness, the deviation of grain size predictions from the actual grain size in Fe–14Cr–4Hf suggests the presence of thermodynamic stabilization by the solute segregation to grain boundaries (GBs). A predictive thermodynamic model indicates that the thermodynamic stabilization can be expected.

  15. Influence of Fe(Cr) miscibility on thin film grain size and stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuyang; Kaub, Tyler; Martens, Richard L.; Thompson, Gregory B., E-mail: gthompson@eng.ua.edu

    2016-08-01

    During the post coalescence portion of thin film deposition, thin film stress is related to the grain size and adatom mobility of the depositing material. Using a Fe(Cr) alloy thin film, the manipulation of the tensile stress for thick films was studied as a function of Cr solute content up to 8 at.%. Solute concentrations up to 4 at.% resulted in an approximate 50% increase in grain size that resulted in a reduction of the tensile stress to be lower than either elemental film. Upon increasing the Cr content, the grain size refined and the tensile stress of the films increased. Atom probe characterization of the grain boundaries confirmed Cr chemical partitioning which refined the grain size and altered the film's texture, both of which contributed to the change in film stress. The use of intrinsic segregation, rather than deposition processing parameters, appears to be another viable option for regulating film stress. - Highlights: • Solute segregation to regulate grain size in controlling film stress • Quantification of Cr interfacial excess as a function of alloy content • Quantification of texture fiber alignment as a function of Cr content.

  16. THE EFFECTS OF GRAIN SIZE AND TEMPERATURE DISTRIBUTIONS ON THE FORMATION OF INTERSTELLAR ICE MANTLES

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Tyler; Garrod, Robin T., E-mail: tap74@cornell.edu [Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853-6801 (United States)

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface–gas interactions.

  17. The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles

    Science.gov (United States)

    Pauly, Tyler; Garrod, Robin T.

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface-gas interactions.

  18. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    Science.gov (United States)

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  19. Application of carbon extraction replicas in grain-size measurements of high-strength steels using TEM

    International Nuclear Information System (INIS)

    Poorhaydari, Kioumars; Ivey, Douglas G.

    2007-01-01

    In this paper, the application of carbon extraction replicas in grain-size measurements is introduced and discussed. Modern high-strength microalloyed steels, used as structural or pipeline materials, have very small grains with substructures. Replicas used in transmission electron microscopes can resolve the grain boundaries and can be used for systematic measurement of grain size in cases where the small size of the grains pushes the resolution of conventional optical microscopes. The grain-size variations obtained from replicas are compared with those obtained from optical and scanning electron microscopy. An emphasis is placed on the importance of using the correct technique for imaging and the optimal magnification. Grain-size measurements are used for estimation of grain-boundary strengthening contribution to yield strength. The variation in grain size is also correlated with hardness in the base metal of several microalloyed steels, as well as the fine-grained heat-affected zone of a weld structure with several heat inputs

  20. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).

    Science.gov (United States)

    Jin, Le; Ng, How Yong; Ong, Say Leong

    2009-01-01

    The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.

  1. Metal-assisted chemical etching of CIGS thin films for grain size analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chaowei [Research and Development Centre, Hanergy Thin Film Power Group Limited, Chengdu (China); Loi, Huu-Ha; Duong, Anh; Parker, Magdalena [Failure Analysis Department, MiaSole Hi-Tech Corp., Santa Clara, CA (United States)

    2016-09-15

    Grain size of the CIGS absorber is an important monitoring factor in the CIGS solar cell manufacturing. Electron backscatter diffraction (EBSD) analysis is commonly used to perform CIGS grain size analysis in the scanning electron microscope (SEM). Although direct quantification on SEM image using the average grain intercept (AGI) method is faster and simpler than EBSD, it is hardly applicable on CIGS thin films. The challenge is that, not like polycrystalline silicon, to define grain boundaries by selective chemical etching is not easily realizable for the multi-component CIGS alloy. In this Letter, we present direct quantification of CIGS thin film grain size using the AGI method by developing metal-assisted wet chemical etching process to define CIGS grain boundaries. The calculated value is similar to EBSD result. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Forecasting grain size distribution of coal cut by a shearer loader

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Chodura, J; Siwiec, J

    1983-02-01

    Analyzed are effects of shearer loader design on grain size distribution of coal, particularly on proportion of the finest size group and proportion of largest coal grains. The method developed by the IGD im. A.A. Skochinski Institute in Moscow is used. Effects of cutting tool design and mechanical coal properties are analyzed. Of the evaluated factors, two are of decisive importance: thickness of the coal chip cut by a cutting tool and coefficient of coal disintegration which characterizes coal behavior during cutting. Grain size distribution is also influenced by cutting tool geometry. Two elements of cutting tool design are of major importance: dimensions of the cutting edge and angle of attack. Effects of cutting tool design and coal mechanical properties on grain size distribution are shown in 12 diagrams. Using the forecasting method developed by the IGD im. A.A. Skochinski Institute in Moscow grain size distribution of coal cut by three shearer loaders is calculated: the KWB-3RDU with a drum 1600 mm in diameter, the KWB-6W with a drum 2500 mm in diameter, and a shearer loader being developed with a 1550 mm drum. The results of comparative evaluations are shown in two tables. 5 references.

  3. Colour characteristics of winter wheat grits of different grain size

    Directory of Open Access Journals (Sweden)

    Horváth Zs. H.

    2015-01-01

    Full Text Available Nowadays, wheat has spread all over the world due to its extensive usability. The colour of wheat grits is very important for the milling and baking industry because it determines the colour of the products made from it. The instrumental colour measuring is used, first of all, for durum wheat. We investigated the relationship between colour characteristics and grain size in the case of different hard aestivum wheats. We determined the colour using the CIE (Commission Internationale de l’Eclairage 1976 L*, a*, b* colour system measured by MINOLTA CR-300 tristimulus colorimeter. After screening the colour of the wheat fractions of different grain size, grits was measured wet and dry. We determined the L*, a*, b* colour co-ordinates and the whiteness index, too. To evaluate the values we had obtained, we used analysis of variance and regression analysis. We pointed out that the colour of wheat grits of different grain size is dependent on the hardness index of wheat. The lightness co-ordinate (L* of grits of the harder wheat is smaller, while a* and b* co-ordinates are higher. We also found that while grain size rises, the L* co-ordinate decreases and a*, b* values increase in the case of every type of wheat. The colour of grits is determined by the colour of fractions of 250-400 μm in size, independently from the average grain size. The whiteness index and the L* colour co-ordinate have a linear relation (R2 = 0.9151; so, the determination of whiteness index is not necessary. The L* value right characterizes the whiteness of grits.

  4. Investigations of grain size dependent sediment transport phenomena on multiple scales

    Science.gov (United States)

    Thaxton, Christopher S.

    Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for

  5. The effects of particle size distribution and induced unpinning during grain growth

    International Nuclear Information System (INIS)

    Thompson, G.S.; Rickman, J.M.; Harmer, M.P.; Holm, E.A.

    1996-01-01

    The effect of a second-phase particle size distribution on grain boundary pinning was studied using a Monte Carlo simulation technique. Simulations were run using a constant number density of both whisker and rhombohedral particles, and the effect of size distribution was studied by varying the standard deviation of the distribution around a constant mean particle size. The results of present simulations indicate that, in accordance with the stereological assumption of the topological pinning model, changes in distribution width had no effect on the pinned grain size. The effect of induced unpinning of particles on microstructure was also studied. In contrast to predictions of the topological pinning model, a power law dependence of pinned grain size on particle size was observed at T=0.0. Based on this, a systematic deviation to the stereological predictions of the topological pinning model is observed. The results of simulations at higher temperatures indicate an increasing power law dependence of pinned grain size on particle size, with the slopes of the power law dependencies fitting an Arrhenius relation. The effect of induced unpinning of particles was also studied in order to obtain a correlation between particle/boundary concentration and equilibrium grain size. The results of simulations containing a constant number density of monosized rhombohedral particles suggest a strong power law correlation between the two parameters. copyright 1996 Materials Research Society

  6. Species distribution model transferability and model grain size - finer may not always be better.

    Science.gov (United States)

    Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin

    2018-05-08

    Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

  7. Effect of coal stress on grain size of the gotten

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Tront, A

    1988-09-01

    Presents investigation results on the effect of seam stress and strain state on winning as measured by the grain size of the gotten. The investigations were carried out at the Institute of Mining Mechanization of the Silesian Politechnical where the relations between parameters of seams and cutters and their effect on coal grain size and energy consumption have been studied for several years. The effect was examined on coal samples taken from 4 mines in the Upper Silesian coal basin using a model of the system: seam - cutter. Cubic samples (400x400x400 mm) were tested on the CMG KOMAG test stand equipped with the POS-1 cutting apparatus. Two types of coal were distinguished: that particularly sensitive to increased pressure on seam and that only negligibly susceptible. Corresponding graphs of coal grain size versus vertical pressure are shown. A function has been developed that characterizes this sensitivity depending on a material parameter that can be determined by workability tests. The relationship between coal strength and grain size yield greater than 10 mm in the gotten depending on dynamic crushability of coal is shown in graphs. 6 refs.

  8. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  9. Structural and electrical properties of Sm{sup 3+} substituted PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, S.K. [Solid State Physics Laboratory, Timarpur, Delhi 110 054 (India)], E-mail: 628@ssplnet.org; Thakur, O.P.; Bhattacharya, D.K. [Solid State Physics Laboratory, Timarpur, Delhi 110 054 (India); Prakash, Chandra [DRDO Bhawan, DHQ, New Delhi 110 011 (India); Chatterjee, Ratnamala [Department of Physics, Indian Institute of Technology, New Delhi 110 016 (India)

    2009-01-22

    Samarium modified lead zirconate titanate (PSZT: Pb{sub 1-x}Sm{sub x}(Zr{sub 0.65}Ti{sub 0.35})O{sub 3}: x = 0, 0.02, 0.04, 0.06) ceramics were synthesized by solid state ceramic route. XRD shows single-phase formation with rhombohedral structure up to x = 0.04. With Sm-substitution, the grain size first increases up to x = 0.02 and then decreases. A metal/ferroelectric/metal (MFM) structure was made by depositing gold electrode on the flat surfaces for electrical measurements. All samples show normal ferroelectric behaviour, however, a squareness of P-E loop (polarization vs. electric field) was observed to increase with Sm content. Higher electromechanical coupling coefficients (K{sub p} and K{sub t}) have been achieved for the PZT with 6 mol% Sm substitution and having fine grain size.

  10. Impact of grain size and rock composition on simulated rock weathering

    Science.gov (United States)

    Israeli, Yoni; Emmanuel, Simon

    2018-05-01

    Both chemical and mechanical processes act together to control the weathering rate of rocks. In rocks with micrometer size grains, enhanced dissolution at grain boundaries has been observed to cause the mechanical detachment of particles. However, it remains unclear how important this effect is in rocks with larger grains, and how the overall weathering rate is influenced by the proportion of high- and low-reactivity mineral phases. Here, we use a numerical model to assess the effect of grain size on chemical weathering and chemo-mechanical grain detachment. Our model shows that as grain size increases, the weathering rate initially decreases; however, beyond a critical size no significant decrease in the rate is observed. This transition occurs when the density of reactive boundaries is less than ˜ 20 % of the entire domain. In addition, we examined the weathering rates of rocks containing different proportions of high- and low-reactivity minerals. We found that as the proportion of low-reactivity minerals increases, the weathering rate decreases nonlinearly. These simulations indicate that for all compositions, grain detachment contributes more than 36 % to the overall weathering rate, with a maximum of ˜ 50 % when high- and low-reactivity minerals are equally abundant in the rock. This occurs because selective dissolution of the high-reactivity minerals creates large clusters of low-reactivity minerals, which then become detached. Our results demonstrate that the balance between chemical and mechanical processes can create complex and nonlinear relationships between the weathering rate and lithology.

  11. Pyroelectricity versus conductivity in soft lead zirconate titanate (PZT) ceramics

    NARCIS (Netherlands)

    Kamel, T.M.; With, de G.

    2007-01-01

    The electrical behavior of modified soft lead zirconate titanate (PZT) ceramics has been studied as a function of temperature at different direct current (dc) electric fields and grain sizes. As ferroelectrics, such as PZT, are highly polarizable materials, poling, depolarization, and electric

  12. Inhomogeneity of the grain size of aircraft engine turbine polycrystalline blades

    Directory of Open Access Journals (Sweden)

    J. Chmiela

    2011-10-01

    Full Text Available The determination of the behaviour of inhomogeneous materials with a complex microstructure requires taking into account the inhomogeneity of the grain size, as it is the basis for the process of designing and modelling effective behaviours. Therefore, the functional description of the inhomogeneity is becoming an important issue. The paper presents an analytical approach to the grain size inhomogeneity, based on the derivative of a logarithmic-logistic function. The solution applied enabled an effective evaluation of the inhomogeneity of two macrostructures of aircraft engine turbine blades, characterized by a high degree of diversity in the grain size. For the investigated single-modal and bimodal grain size distributions on a perpendicular projection and for grains with a non-planar surface, we identified the parameters that describe the degree of inhomogeneity of the constituents of weight distributions and we also derived a formula describing the overall degree of inhomogeneity of bimodal distributions. The solution presented in the paper is of a general nature and it can be used to describe the degree of inhomogeneity of multi-modal distributions. All the calculations were performed using the Mathematica® package.

  13. Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties

    Directory of Open Access Journals (Sweden)

    Wenming TIAN

    2017-10-01

    Full Text Available The bimodal grain size metals show improved strength and ductility compared to traditional metals; however, their corrosion properties are unknown. In order to evaluate the corrosion properties of these metals, the bimodal grain size 7075 aviation aluminum alloys containing different ratios of coarse (100 μm in diameter and fine (10 μm in diameter grains were prepared by spark plasma sintering (SPS. The effects of grain size as well as the mixture degree of coarse and fine grains on general corrosion were estimated by immersion tests, electrochemical measurements and complementary techniques such as scanning electron microscope (SEM and transmission electron microscope-energy disperse spectroscopy (TEM-EDS. The results show that, compared to fine grains, the coarse grains have a faster dissolution rate in acidic NaCl solution due to the bigger size, higher alloying elements content and larger area fraction of second phases in them. In coarse grains, the hydrogen ions have a faster reduction rate on cathodic second phases, therefore promoting the corrosion propagation. The mixture of coarse and fine grains also increases the electrochemical heterogeneity of alloys in micro-scale, and thus the increased mixture degree of these grains in metal matrix accelerates the corrosion rate of alloys in acidic NaCl solution.

  14. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    Science.gov (United States)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  15. On the room temperature microstrain of vanadium of different grain size

    International Nuclear Information System (INIS)

    Timm, J.; Guttmann, V.

    1977-01-01

    The present work deals with the plastic behaviour of polycrystalline vanadium from the onset of plastic deformation to the upper yield point. The stress-strain relation was found to be omega approximately epsilonsub(p)sup(1/2). The influence of the grain size on stress followed a omega approximately d -1 relationship. The initial yield stress was independent of grain size. By means of optical and electron microscopy it was found, that the first dislocation movement starts at grain boundaries. (orig.) [de

  16. Grain size dependent electrical studies on nanocrystalline SnO2

    International Nuclear Information System (INIS)

    Bose, A. Chandra; Thangadurai, P.; Ramasamy, S.

    2006-01-01

    Nanocrystalline tin oxide (n-SnO 2 ) with different grain sizes were synthesized by chemical precipitation method. Size variation was achieved by changing the hydrolysis processing time. Structural phases of the nanocrystalline SnO 2 were identified by X-ray diffraction (XRD). The grain sizes of the prepared n-SnO 2 were found to be in the range 5-20 nm which were estimated using the Scherrer formula and they were confirmed by transmission electron microscopy (TEM) measurements. The electrical properties of nanocrystalline SnO 2 were studied using impedance spectroscopy. The impedance spectroscopy results showed that, in the temperature range between 25 and 650 deg. C, the conductivity has contributions from two different mechanisms, which are attributed to different conduction mechanisms in the grain and the grain boundary regions. This is because of the different relaxation times available for the conduction species in those regions. However, for the temperatures above 300 deg. C, there is no much difference between these two different relaxation times. The Arrhenius plots gave the activation energies for the conduction process in all the samples

  17. Effect of grain size on the high temperature mechanical properties of type 316LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Lee, Y. S.; Ryu, W. S.; Jang, J. S.; Kim, S. H.; Kim, W. G.; Cho, H. D.; Han, C. H

    2001-02-01

    Nitrogen increases the high temeprature mechanical properties and decreases grain size. The effect of nitrogen on the high temperature mechanical properties was investigated in the viewpoint of grain size. Tensile strength increases with the decrease of grain size and agrees with the Hall-Petch relationship. Effect of grain size on the low cycle fatigue life properties were investigated as measuring the fatigue life from the results which had been obtained by the constant strain rate and various strain range. There was no effect on the low cycle fatigue properties by the grain size. The time to rupture decreased with the increase of grain size. The steady state creep rate decreased to a minimum and then increased as the grain size increased. This result agrees with the result predicted from Garofalo equation. The rupture elongation at the intermediate grain size showed a minimum due to the cavity formed easily by carbide precipitates in the grain boundaries.

  18. Evaluation of Case Size 0603 BME Ceramic Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2015-01-01

    High volumetric efficiency of commercial base metal electrode (BME) ceramic capacitors allows for a substantial reduction of weight and sizes of the parts compared to currently used military grade precious metal electrode (PME) capacitors. Insertion of BME capacitors in space applications requires a thorough analysis of their performance and reliability. In this work, six types of cases size 0603 BME capacitors from three vendors have been evaluated. Three types of multilayer ceramic capacitors (MLCCs) were designed for automotive industry and three types for general purposes. Leakage currents in the capacitors have been measured in a wide range of voltages and temperatures, and measurements of breakdown voltages (VBR) have been used to assess the proportion and severity of defects in the parts. The effect of soldering-related thermal shock stresses was evaluated by analysis of distributions of VBR for parts in 'as is' condition and after terminal solder dip testing at 350 C. Highly Accelerated Life Testing (HALT) at different temperatures was used to assess the activation energy of degradation of leakage currents and predict behavior of the parts at life test and normal operating conditions. To address issues related to rework and manual soldering, capacitors were soldered onto different substrates at different soldering conditions. The results show that contrary to a common assumption that large-size capacitors are mostly vulnerable to soldering stresses, cracking in small size capacitors does happen unless special measures are taken during assembly processes.

  19. Rapid heating effects on grain-size, texture and magnetic properties ...

    Indian Academy of Sciences (India)

    Administrator

    oriented electrical steels (Kumar et ... through changes in recovery and recrystallization beha- viour during the final annealing treatment (Duan et .... recovery, recrystallization and grain coarsening (Doherty et al 1988). The size of recrystallized grain is ...

  20. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels

    International Nuclear Information System (INIS)

    El Wahabi, M.; Gavard, L.; Montheillet, F.; Cabrera, J.M.; Prado, J.M.

    2005-01-01

    The influence of initial microstructure on discontinuous dynamic recrystallization (DDRX) has been investigated by using high purity and ultra high purity austenitic stainless steels with various initial grain sizes. After uniaxial compression tests at constant strain rates and various temperatures, the steady state microstructure or the state corresponding to the maximum strain (ε = 1) attained in the test was analyzed by scanning electron microscopy aided with automated electron back scattering diffraction. Recrystallized grain size d rec and twin boundary fraction f TB measurements were carried out. The mechanical behavior was also investigated by comparing experimental stress-strain curves with various initial grain sizes. DDRX kinetics was described by the classical Avrami equation. It was concluded that larger initial grain sizes promoted a delay in the DDRX onset in the two alloys. It was also observed that the softening process progressed faster for smaller initial grain sizes. The effect of initial grain size is larger in the HP material and becomes more pronounced at low temperature

  1. Effect of Bi2O3 and Nb2O5 addition on the electrical properties of grain boundaries of SnO2 ceramics

    International Nuclear Information System (INIS)

    Gouvea, D.; Kobori, M.H.; Las, W.C.; Santilli, C.V.; Varela, J.A.

    1990-01-01

    Grain boundary phenomena in SnO 2 ceramics are widely explored in gas sensor fabrication. On the other hand, the high electronic mobility in the conduction band and the energy gap width of 3,5 eV are characteristics which can lead to the formation of an intergranular potential barrier similar to those encountered in ceramic varistors. In this work, the Nb 2 O 5 and Bi 2 O 3 influence on the electrical transport mechanisms through grain boundaries in SnO 2 ceramics was investigated. The samples were characterized by measuring the electrical conductivity as a function of electric field for temperatures from 25 0 C to 200 0 C. The results were analyzed by models which are based on phenomena that occur at interfaces between semiconducting materials. (author) [pt

  2. The effect of grain size and cement content on index properties of weakly solidified artificial sandstones

    Science.gov (United States)

    Atapour, Hadi; Mortazavi, Ali

    2018-04-01

    The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.

  3. Study of new CaO-SiO/sub 2/-P/sub 2/O/sub 5/CaF/sub 2/ bioactive ceramic

    International Nuclear Information System (INIS)

    Shamim, A.; Arif, I.; Siddiqi, S.A.; Shah, W.A.

    1997-01-01

    A new bioactive glass ceramic having, composition 48CaO-32SiO/sub 2/-16P/sub 2/O/sub 5/-4CaF/sub 2/ has been developed and studied for its physical and biological properties. Like the natural bone in which spastic particles are reinforced by collagen, in the present glass-ceramic, fine grained ceramic particles embedded in a glass matrix. X-ray diffraction analysis reveals wollastonite and oxyfluorapatite as the crystalline part of the glass-ceramic. Scanning electron microscopy of the samples has been carried out to see the grain size and grain distribution. Bending and compressive strength of the glass ceramic have been carried out to measured and found to be 208.60 m.Pa and 788.61 M.Pa respectively. Growth of apatite layer, which is responsible for bonding the broken part of a natural bone, on a bioactive glass-ceramic in a simulated body fluid has been studied. A small rectangular piece of this glass-ceramic has also been implanted successfully in a dog's tibia. (author)

  4. Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study

    Science.gov (United States)

    Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel

    2015-04-01

    A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most

  5. Ho2O3 additive effects on BaTiO3 ceramics microstructure and dielectric properties

    Directory of Open Access Journals (Sweden)

    Paunović Vesna

    2012-01-01

    Full Text Available Doped BaTiO3-ceramics is very interesting for their application as PTCR resistors, multilayer ceramic capacitors, thermal sensors etc. Ho doped BaTiO3 ceramics, with different Ho2O3 content, ranging from 0.01 to 1.0 wt% Ho, were investigated regarding their microstructural and dielectric characteristics. The samples were prepared by the conventional solid state reaction and sintered at 1320° and 1380°C in an air atmosphere for 4 hours. The grain size and microstructure characteristics for various samples and their phase composition was carried out using a scanning electron microscope (SEM equipped with EDS system. SEM analysis of Ho/BaTiO3 doped ceramics showed that in samples doped with a rare-earth ions low level, the grain size ranged from 20-30μm, while with the higher dopant concentration the abnormal grain growth is inhibited and the grain size ranged between 2- 10μm. Dielectric measurements were carried out as a function of temperature up to 180°C. The low doped samples sintered at 1380°C, display the high value of dielectric permittivity at room temperature, 2400 for 0.01Ho/BaTiO3. A nearly flat permittivity-response was obtained in specimens with higher additive content. Using a Curie-Weiss low and modified Curie-Weiss low the Curie constant (C, Curie temperature (Tc and a critical exponent of nonlinearity (γ were calculated. The obtained value of γ pointed out that the specimens have almost sharp phase transition. [Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials

  6. On the role of the grain size in the magnetic behavior of sintered permanent magnets

    Science.gov (United States)

    Efthimiadis, K. G.; Ntallis, N.

    2018-02-01

    In this work the finite elements method is used to simulate, by micromagnetic modeling, the magnetic behavior of sintered anisotropic magnets. Hysteresis loops were simulated for different grain sizes in an oriented multigrain sample. By keeping out other parameters that contribute to the magnetic microstructure, such as the sample size, the grain morphology and the grain boundaries mismatch, it has been found that the grain size affects the magnetic properties only if the grains are exchange-decoupled. In this case, as the grain size decreases, a decrease in the nucleation field of a reverse magnetic domain is observed and an increase in the coercive field due to the pinning of the magnetic domain walls at the grain boundaries.

  7. Neutron depolarisation study of the austenite grain size in TRIP steels

    International Nuclear Information System (INIS)

    Dijk, N.H. van; Zhao, L.; Rekveldt, M.Th.; Fredrikze, H.; Tegus, O.; Brueck, E.; Sietsma, J.; Zwaag, S. van der

    2004-01-01

    We have performed combined neutron depolarisation and magnetisation measurements in order to obtain an in situ determination of the average grain size and volume fraction of the retained austenite phase in TRIP steels. The average grain size of the retained austenite was found to decrease for an increase in austenite volume fraction at two different annealing temperatures

  8. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data.

  9. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    International Nuclear Information System (INIS)

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data

  10. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    Science.gov (United States)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  11. Radon emanation rate as a function of monazite grain size

    International Nuclear Information System (INIS)

    Yogesan, S.; Stanley, J.D.; Rosli Mahat; Yusof Md Amin

    1995-01-01

    In this study, a sample of monazite from local mining area was divided to 7 parts according to size (μm) and each sample was analysed using silicon surface barrier detector and multichannel analyser. From this study it has found that small grain monazite produced more radon that big grain monazite and radium is distributed on or near the surface of the monazite grain

  12. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau

    Science.gov (United States)

    Liu, Xingxing; Sun, Youbin; Vandenberghe, Jef; Li, Ying; An, Zhisheng

    2018-06-01

    Sedimentary sequences that developed on river terraces have been widely investigated to reconstruct high-resolution palaeoclimatic changes since the last deglaciation. However, frequent changes in sedimentary facies make palaeoenvironmental interpretation of grain-size variations relatively complicated. In this paper, we employed multiple grain-size parameters to discriminate the sedimentary characteristics of aeolian and fluvial facies in the Dadiwan (DDW) section on the western Chinese Loess Plateau. We found that wind and fluvial dynamics have quite different impacts on the grain-size compositions, with distinctive imprints on the distribution pattern. By using a lognormal distribution fitting approach, two major grain-size components sensitive to aeolian and fluvial processes, respectively, were distinguished from the grain-size compositions of the DDW terrace deposits. The fine grain-size component (GSC2) represents mixing of long-distance aeolian and short-distance fluvial inputs, whilst the coarse grain-size component (GSC3) is mainly transported by wind from short-distance sources. Thus GSC3 can be used to infer the wind intensity. Grain-size variations reveal that the wind intensity experienced a stepwise shift from large-amplitude variations during the last deglaciation to small-amplitude oscillations in the Holocene, corresponding well to climate changes from regional to global context.

  13. Sediment grain size and hydrodynamics in Mediterranean coastal ...

    Indian Academy of Sciences (India)

    Integrated classification maps were produced by combining sediment grain-size and hydrological data .... Integrated classification of abiotic parameters in lagoons. 1099. Figure 1. ...... spline with tension: I. Theory and implementation; Math.

  14. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Yurev, Ivan, E-mail: yiywork@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  15. Fabrication of Nd:YAG transparent ceramics with both TEOS and MgO additives

    International Nuclear Information System (INIS)

    Yang Hao; Qin Xianpeng; Zhang Jian; Wang Shiwei; Ma Jan; Wang Lixi; Zhang Qitu

    2011-01-01

    Research highlights: → It is well known that the use of TEOS as sintering aid is required to reach fully dense and transparent Nd:YAG ceramics. However, it is difficult to produce high quality transparent Nd:YAG ceramics only using TEOS as sintering aid. In this present work, high quality transparent Nd:YAG ceramic was fabricated using both TEOS and MgO as sintering aids. There have been few reports that both TEOS and MgO were co-added as sintering aids in YAG or Nd:YAG transparent ceramics to date. The transmittance of Nd:YAG ceramic is 83.8% at 1064 nm. The effect of MgO on the optical properties of transparent ceramics was also studied. - Abstract: Neodymium doped YAG transparent ceramics were fabricated by vacuum reactive sintering method using commercial α-Al 2 O 3 , Y 2 O 3 and Nd 2 O 3 powders as the starting materials with both tetraethyl orthosilicate (TEOS) and MgO as sintering aids. The morphologies and microstructure of the powders and Nd:YAG transparent ceramics were investigated. Fully dense Nd:YAG ceramics with average grain size of ∼10 μm were obtained by vacuum sintering at 1780 deg. C for 8 h. No pores and grain-boundary phases were observed. The in-line transmittance of the ceramic was 83.8% at 1064 nm.

  16. The magnetized sheath of a dusty plasma with grains size distribution

    International Nuclear Information System (INIS)

    Ou, Jing; Gan, Chunyun; Lin, Binbin; Yang, Jinhong

    2015-01-01

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected value of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance

  17. Notes on representing grain size distributions obtained by electron backscatter diffraction

    International Nuclear Information System (INIS)

    Toth, Laszlo S.; Biswas, Somjeet; Gu, Chengfan; Beausir, Benoit

    2013-01-01

    Grain size distributions measured by electron backscatter diffraction are commonly represented by histograms using either number or area fraction definitions. It is shown here that they should be presented in forms of density distribution functions for direct quantitative comparisons between different measurements. Here we make an interpretation of the frequently seen parabolic tales of the area distributions of bimodal grain structures and a transformation formula between the two distributions are given in this paper. - Highlights: • Grain size distributions are represented by density functions. • The parabolic tales corresponds to equal number of grains in a bin of the histogram. • A simple transformation formula is given to number and area weighed distributions. • The particularities of uniform and lognormal distributions are examined

  18. Impact of grain sizes on the quantitative concrete analysis using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Gottlieb, C.; Günther, T.; Wilsch, G.

    2018-04-01

    In civil engineering concrete is the most used building material for making infrastructures like bridges and parking decks worldwide. It is as a porous and multiphase material made of aggregates with a defined grain size distribution, cement and water as well as different additives and admixtures depending on the application. Different grain sizes are important to ensure the needed density and compressive strength. The resulting porous cement matrix contains a mixture of flour grains (aggregates with a grain size below 125 μm) and cement particles (particle size ≈ 50μm). Harmful species like chlorides may penetrate together with water through the capillary pore space and may trigger different damage processes. The damage assessment of concrete structures in Germany is estimated due to the quantification of harmful elements regarding to the cement content only. In the evaluation of concrete using LIBS a two-dimensional scanning is necessary to consider the heterogeneity caused by the aggregates. Therefore, a LIBS system operating with a low energy NdCr:YAG laser, a pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns and a repetition rate of 100 Hz has been used. Different Czerny-Turner spectrometers with CCD detectors in the UV and NIR range have been used for the detection. Large aggregates (macro-heterogeneity) can be excluded from the evaluation, whereas small aggregates in the range of the laser spot size (flour grains) cannot be spatially resolved. In this work the micro heterogeneity caused by flour grains and their impact on the quantification with LIBS will be discussed. To analyze the effect of changing grain sizes and ratios, the ablation behavior has been determined and compared. Samples with defined grain sizes were made and analyzed using LIBS. The grain size distributions were analyzed with laser diffraction (LDA).

  19. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  20. Dielectric, ferroelectric and piezoelectric properties of Nb{sup 5+} doped BCZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Parjansri, Piewpan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand); Intatha, Uraiwan [School of Science, Mae Fah Luang University, 57100 Chiang Rai (Thailand); Eitssayeam, Sukum, E-mail: sukum99@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand)

    2015-05-15

    Highlights: • Average grain size of BCZT ceramic decreased with the increasing Nb{sup 5+} doping. • Dielectric constant value is enhanced with Nb{sup 5+} doping. • Dielectric loss of BCZT − x Nb{sup 5+} ceramics was less than 0.03 at room temperature (1 kHz). • Piezoelectric coefficient decreased with the increasing Nb{sup 5+} doping. • The relaxation behavior is enhanced with the doping of Nb{sup 5+}. - Abstract: This work investigated the electrical properties of Nb{sup 5+} (0.0–1.0 mol%) doped with Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} while adding 1 mol% of Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} seeds. The mixed powder was ball milled for 24 h, calcined and sintered at 1200 °C for 2 h and 1450 °C for 4 h, respectively. The XRD patterns of the ceramic samples were investigated by X-ray diffraction. The electrical properties of ceramics were measured and the results indicated that all samples show a pure perovskite phase with no secondary phase. Density and average grain size values were in the range of 5.60–5.71 g/cm{sup 3} and 12.62–1.86 μm, respectively. The highest dielectric constant, ϵ{sub r} at room temperature (1 kHz) was 4636 found at 1.0 mol% Nb. The dielectric loss, tan δ was less than 0.03 for all samples at room temperature (1 kHz). Other electrical properties, P{sub r}, d{sub 33} and k{sub p} values were decreased with Nb doped relates to the decreasing grain size in BCZT ceramics. Moreover, the degrees of phase transition diffuseness and relaxation behavior were observed in the higher Nb doping.

  1. Effect of the bur grit size on the flexural strength of a glass-ceramic

    Directory of Open Access Journals (Sweden)

    P. P. Kist

    Full Text Available Abstract The purpose of the present study was to determine the biaxial flexural strength (BFS of a CAD/CAM leucite reinforced glass-ceramic ground by diamond burs of different grit sizes and the influence of surface roughness on the BFS. For this, 104 plates were obtained from CAD/CAM ceramic blocks and divided into 4 groups (n = 26, according to bur grit size: extra-fine, fine, medium and coarse. Roughness parameters (Ra, RyMax were measured, and plates were kept dry for 7 days. The flexural test was carried out and BFS was calculated. Ra, RyMax and BFS data were subjected to analysis of variance and post-hoc test. Weibull analysis was used to compare characteristic strength and Weibull modulus. Regression analysis was performed for BFS vs. Ra and RyMax. When burs with coarse grit were used, higher surface roughness values were found, causing a negative effect on the ceramic BFS (117 MPa for extra-fine, and 83 MPa for coarse. Correlation (r between surface roughness and BFS was 0.78 for RyMax and 0.73 for Ra. Increases in diamond grit size have a significant negative effect on the BFS of leucite-reinforced glass-ceramics, suggesting that grinding of sintered glass-ceramic should be performed using burs with the finest grit possible in order to minimize internal surface flaws and maximize flexural strength.

  2. Giant dielectric response in (Sr, Sb) codoped CaCu3Ti4O12 ceramics: A novel approach

    Science.gov (United States)

    Pradhan, M. K.; Rao, T. Lakshmana; Karna, Lipsarani; Dash, S.

    2018-04-01

    The CaCu3Ti4O12 (CCTO) remains as the best material for practical applications due to its high dielectric constant. To improve further the dielectric properties of CCTO to several orders in magnitude, a novel approach is adopted by codoping of Sr, Sb ions. The ceramic samples were fabricated by the conventional solid state route. The structure, morphology and detail dielectric properties were investigated systematically. All the samples crystalizes in a cubic symmetry with Im-3 space group. Sr substituted in Ca site can effectively suppress the grain growth, achieving a fine grained ceramic structure; however the grain size decreased slightly as Sb concentration increased further; whereas the dielectric permittivity of the ceramics increased drastically. The giant dielectric response was considered to be closely related with a reduction in the potential barrier height at grain boundaries (GBs) supported by the reduction in the activation energy for the conduction process.

  3. ON ESTIMATION AND HYPOTHESIS TESTING OF THE GRAIN SIZE DISTRIBUTION BY THE SALTYKOV METHOD

    Directory of Open Access Journals (Sweden)

    Yuri Gulbin

    2011-05-01

    Full Text Available The paper considers the problem of validity of unfolding the grain size distribution with the back-substitution method. Due to the ill-conditioned nature of unfolding matrices, it is necessary to evaluate the accuracy and precision of parameter estimation and to verify the possibility of expected grain size distribution testing on the basis of intersection size histogram data. In order to review these questions, the computer modeling was used to compare size distributions obtained stereologically with those possessed by three-dimensional model aggregates of grains with a specified shape and random size. Results of simulations are reported and ways of improving the conventional stereological techniques are suggested. It is shown that new improvements in estimating and testing procedures enable grain size distributions to be unfolded more efficiently.

  4. Effects of grain size on high temperature creep of fine grained, solution and dispersion hardened V-1.6Y-8W-0.8TiC

    Energy Technology Data Exchange (ETDEWEB)

    Furuno, T. [Ehime Univerisity, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan); Kurishita, H., E-mail: kurishi@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nagasaka, T.; Nishimura, A.; Muroga, T. [Fusion Engineering Research Center, National Institute for Fusion Science (NIFS), Oroshi-cho 322-6, Tok, Gifu 292 (Japan); Sakamoto, T.; Kobayashi, S.; Nakai, K. [Department of Materials Science and Biotechnology, Ehime Univerisity, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan); Matsuo, S.; Arakawa, H. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2011-10-01

    Creep resistance is the major concern of vanadium and its alloys for fusion reactor structural applications. In order to elucidate the effects of grain size on the creep behavior of solution and dispersion strengthened vanadium alloys, V-1.6Y-8W-0.8TiC specimens with fine grain sizes from 0.58 to 1.45 {mu}m were prepared by mechanical alloying and HIP without any plastic working and tested at 1073 K and 250 MPa in vacuum. It is shown that the creep resistance of V-1.6Y-8W-0.8TiC depends strongly on grain size and increases with increasing grain size: The creep life for the grain size of 1.45 {mu}m is almost one order longer than that of 0.58 {mu}m, and about two orders longer than that of V-4Cr-4Ti (NIFS-Heat 2) although the grain size of V-4Cr-4Ti is as large as 17.8 {mu}m. The observed creep behavior is discussed in terms of grain size effects on dislocation glide and grain boundary sliding.

  5. Numerical and Experimental Investigation of the Influence of Growth Restriction on Grain Size in Binary Cu Alloys

    Directory of Open Access Journals (Sweden)

    Andreas Cziegler

    2017-09-01

    Full Text Available Grain refinement by elemental addition has been extensively investigated within the last decades in Al or Mg alloys. In contrast, in the Cu system, the role of solute on grain size is less investigated. In this study, the grain refinement potency of several alloying elements of the Cu system was examined. To predict grain size depending on the growth restriction factor Q, grain size modelling was performed. The results obtained by the grain size model were compared to variations in the grain size of binary Cu alloys with increasing solute content under defined cooling conditions of the TP-1 grain refiner test of the Aluminium Association©. It was found that the experimental results differed significantly from the predicted grain size values for several alloying elements. A decreasing grain size with increasing alloy concentration was observed independently of the growth restriction potency of the alloying elements. Furthermore, excessive grain coarsening was found for several solutes beyond a transition point. It is assumed that contradictory variations in grain size result from a change in the nucleating particle density of the melt. Significant decreases in grain size are supposed to be due to the in-situ formation of potent nucleation sites. Excessive grain coarsening with increasing solute content may occur due to the removal of nucleating particles. The model shows that the difference in the actual number of particles before and beyond the transition point must be in the range of several orders of magnitude.

  6. Optimization of the injection molding process for development of high performance calcium oxide -based ceramic cores

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    The binder composition used for ceramic injection molding plays a crucial role on the final properties of sintered ceramic and to avoid defects on green parts. In this study, the effects of binder compositions on the rheological, microstructures and the mechanical properties of CaO based ceramic cores were investigated. It was found that the optimized formulation for dispersant, solid loading was 1.5 wt% and 84 wt%, respectively. The microstructures, such as porosity, pore size distribution and grain boundary density were closely related to the plasticizer contents. The decrease of plasticizer contents can enhance the strength of the ceramic cores but with decreased shrinkage. Meanwhile, the creep resistance of ceramic cores was enhanced by decreasing of plasticizer contents. The flexural strength of the core was found to decrease with the increase of the porosity, the improvement of creep resistance is closely related to the decrease of porosity and grain boundary density.

  7. Grain-size data from four cores from Walker Lake, Nevada

    International Nuclear Information System (INIS)

    Yount, J.C.; Quimby, M.F.

    1990-01-01

    A number of cores, taken from within and near Walker Lake, Nevada are being studied by various investigators in order to evaluate the late-Pleistocene paleoclimate of the west-central Great Basin. In particular, the cores provide records that can be interpreted in terms of past climate and compared to proposed numerical models of the region's climate. All of these studies are being carried out as part of an evaluation of the regional paleoclimatic setting of a proposed high-level nuclear waste storage facility at Yucca Mountain, Nevada. Changes in past climate often manifest themselves in changes in sedimentary processes or in changes in the volume of sediment transported by those processes. One fundamental sediment property that can be related to depositional processes is grain size. Grain size effects other physical properties of sediment such as porosity and permeability which, in turn, affect the movement and chemistry of fluids. The purposes of this report are: (1) to document procedures of sample preparation and analysis, and (2) to summarize grain-size statistics for 659 samples from Walker Lake cores 84-4, 84-5, 84-8 and 85-2. Plots of mean particle diameter, percent sand, and the ratio of silt to clay are illustrated for various depth intervals within each core. Summary plots of mean grain size, sorting, and skewness parameters allow comparison of textural data between each core. 15 refs., 8 figs., 3 tabs

  8. Fiscal 1997 report of the R and D result of industrial science and technology. R and D on synergy ceramics (development of rational energy use technology); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu (energy shiyo gorika gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For rational use of energy resources, the process technology which allows harmonization and multiplication of conflicting characteristics was developed for development of new ceramic system materials. This paper summarizes the result in fiscal 1997. On a structural reaction process among creation technologies of ultra-reliable structure, study was made on structure control and hot-working technology through atmosphere control in ceramics synthesis. On basic technology for analysis and evaluation, study was made on the effect of particle bridging on strengthening and toughening of ceramic materials. Study was also made on a toughness expression mechanism, FEM model analysis of particle bridging, and crack growth resistance of ceramics. On control of solid solution precipitation, new alumina ceramics with high strength, hardness and wear resistance was obtained by transgranularly precipitating nano-size particles from a fine-grain high-density matrix through an improved particle formation process. Its toughness was considerably improved by controlling grain shape and grain boundary structure. A precipitation mechanism was also discussed. 89 refs., 107 figs., 14 tabs.

  9. Grain Size of Recall Practice for Lengthy Text Material: Fragile and Mysterious Effects on Memory

    Science.gov (United States)

    Wissman, Kathryn T.; Rawson, Katherine A.

    2015-01-01

    The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The "grain size hypothesis" states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for…

  10. A study of interaction effect theoretical with combination size grain on magnetics in of permanent magnet

    International Nuclear Information System (INIS)

    Tarihoran, Doansi; Manaf, Azwar

    2002-01-01

    Stoner-Wohlfarth theory, SW shows a deviation around 30-40% to the measurement result of a permanent magnetic material with nanometer-sized grains. This is caused by this theory neglecting the interacting grain factor. This research modifies SW theory by calculating the grain interacting effect. The modification is made by assuming the interacting energy of a mono-domain grain has ellipsoidal shaped focused at the edge of the grain. SW grain in this calculation model is a box-shaped in a grain with edges of the box placed in the skin's grain. The result shows that interacting effect make remanent polarization increasing drastically and coercive field value decreasing when grain's size reaches 20% of size of the first mono-domain grain. For material with ND 2 Fe 14 B phase, the optimum coercive field value and remanent polarization that producing maximum product energy, (BH) m ax obtained in a material with 5 nanometer-size grains. Qualitatively there is as appropriate result between the calculation and measurement

  11. [Study of relationship between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite powder].

    Science.gov (United States)

    Chai, Feng; Xu, Ling; Liao, Yun-mao; Chao, Yong-lie

    2003-07-01

    The fabrication of all-ceramic dental restorations is challenged by ceramics' relatively low flexural strength and intrinsic poor resistance to fracture. This paper aimed at investigating the relationships between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite (Al(2)O(3)-nZrO(2)). Al(2)O(3)-nZrO(2) ceramics powder (W) was processed by combination methods of chemical co-precipitation and ball milling with addition of different powder-sized ZrO(2). Field-emission scanning electron microscopy was used to determine the particle size distribution and characterize the particle morphology of powders. The matrix compacts were made by slip-casting technique and sintered to 1,450 degrees C and flexural strength and the fracture toughness of them were measured. 1. The particle distribution of Al(2)O(3)-nZrO(2) ceramics powder ranges from 0.02 - 3.5 micro m and among them the superfine particles almost accounted for 20%. 2. The ceramic matrix samples with addition of nZrO(2) (W) showed much higher flexural strength (115.434 +/- 5.319) MPa and fracture toughness (2.04 +/- 0.10) MPa m(1/2) than those of pure Al(2)O(3) ceramics (62.763 +/- 7.220 MPa; 1.16 +/- 0.02 MPa m(1/2)). The particle size of additive ZrO(2) may impose influences on mechanical properties of Al(2)O(3)-nZrO(2) ceramics matrix. Good homogeneity and reasonable powder-size gradation of ceramic powder can improve the mechanical properties of material.

  12. Mechanical Behavior of Nanostructured and Ultrafine Grained Materials under Shock Wave Loadings. Experimental Data and Results of Computer Simulation.

    Science.gov (United States)

    Skripnyak, Vladimir

    2011-06-01

    Features of mechanical behavior of nanostructured (NS) and ultrafine grained (UFG) metal and ceramic materials under quasistatic and shock wave loadings are discussed in this report. Multilevel models developed within the approach of computational mechanics of materials were used for simulation mechanical behavior of UFG and NS metals and ceramics. Comparisons of simulation results with experimental data are presented. Models of mechanical behavior of nanostructured metal alloys takes into account a several structural factors influencing on the mechanical behavior of materials (type of a crystal lattice, density of dislocations, a size of dislocation substructures, concentration and size of phase precipitation, and distribution of grains sizes). Results show the strain rate sensitivity of the yield stress of UFG and polycrystalline alloys is various in a range from 103 up to 106 1/s. But the difference of the Hugoniot elastic limits of a UFG and coarse-grained alloys may be not considerable. The spall strength, the yield stress of UFG and NS alloys are depend not only on grains size, but a number of factors such as a distribution of grains sizes, a concentration and sizes of voids and cracks, a concentration and sizes of phase precipitation. Some titanium alloys with grain sizes from 300 to 500 nm have the quasi-static yield strength and the tensile strength twice higher than that of coarse grained counterparts. But the spall strength of the UFG titanium alloys is only 10 percents above than that of coarse grained alloys. At the same time it was found the spall strength of the bulk UFG aluminium and magnesium alloys with precipitation strengthening is essentially higher in comparison of coarse-grained counterparts. The considerable decreasing of the strain before failure of UFG alloys was predicted at high strain rates. The Hugoniot elastic limits of oxide nanoceramics depend not only on the porosity, but also on sizes and volume distribution of voids.

  13. grain size and heavy mineral analyses of two boreholes in recent

    African Journals Online (AJOL)

    user

    mineral composition and the grain sizes of the aquifer in the study areas. ... analysis of both wells show that mean, inclusive standard deviation, ..... colourless grains with rectangular outline. .... Nigeria; A Case Study of Onisha and Environ.

  14. Fabrication and characterization of nanostructured Ba-doped BiFeO3 porous ceramics

    Directory of Open Access Journals (Sweden)

    Mostafavi E.

    2016-03-01

    Full Text Available Nanostructured barium doped bismuth ferrite, Bi₀.₈Ba₀.₂FeO₃ porous ceramics with a relatively high magnetic coercivity was fabricated via sacrificial pore former method. X-ray diffraction results showed that 20 wt.% Ba doping induces a structural phase transition from rhombohedral to distorted pseudo-cubic structure in the final porous samples. Moreover, utilizing Bi₀.₈Ba₀.₂FeO₃ as the starting powder reduces the destructive interactions between the matrix phase and pore former, leading to an increase in stability of bismuth ferrite phase in the final porous ceramics. Urea-derived Bi₀.₈Ba₀.₂FeO₃ porous ceramic exhibits density of 4.74 g/cm³ and porosity of 45 % owing the uniform distribution of interconnected pores with a mean pore size of 7.5 μm. Well defined nanostructured cell walls with a mean grain size of 90 nm were observed in the above sample, which is in a good accordance with the grain size obtained from BET measurements. Saturation magnetization decreased from 2.31 in the Bi₀.₈Ba₀.₂FeO₃ compact sample to 1.85 A m²/kg in urea-derived Bi₀.₈Ba₀.₂FeO₃ porous sample; moreover, coercivity increased from 284 to 380 kA/m.

  15. Determining the effect of grain size and maximum induction upon coercive field of electrical steels

    Science.gov (United States)

    Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel

    2011-10-01

    Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.

  16. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Directory of Open Access Journals (Sweden)

    T. Petrut

    2018-01-01

    Full Text Available Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  17. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Science.gov (United States)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  18. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    Science.gov (United States)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  19. grain size analysis of beach sediment along the barrier bar lagoon

    African Journals Online (AJOL)

    PROF EKWUEME

    sediment are medium grain and deposited in a moderate energy condition hence more stable to ... The grain size and amount of sand on a beach depends on wave energy and geological ..... Recent and Pleistocene history of Southeast.

  20. Microstructural evolution during the synthesis of bulk components from nanocrystalline ceramic powder, part II: microstructure and properties

    International Nuclear Information System (INIS)

    Ajaal, T. T.; Metak, A. M.

    2004-01-01

    Part I of this review, published in 5 /4th of Al-Nawah magazine, was devoted to the synthetic techniques used in the production processes of a bulk components of nanocrystalline materials. In this part, the microstructural evolution and its effect on the materials properties will be detailed. Minimizing grain growth and maximizing densification during the sintering stage of the ultrafine particles as well as the homogeneous densification in pressureless sintering, grain growth and rapid rate pressureless sintering will be discussed. Ceramics are well known for their high strength at elevated temperatures, as well as the extreme brittleness that prevents their application in many critical components. However, researchers have found that brittleness can be overcome by reducing particle sizes to nanometer levels. These fine grain structures are believed to provide improved ductility the individual grains can slide over one another without causing cracks. In addition, nanophase ceramics are more easily formed than their conventional counterparts, and easier to machine without cracking or breaking. Shrinkage during sintering is also greatly reduced in nanophase ceramics, and they can be sintered at lower temperatures than conventional ceramics. As a result, nanophase ceramics have the potential to deliver an ideal combination of ductility and high-temperature strength, allowing increased efficiency in applications ranging from automobile engines to jet aircraft. This part of the review covers the microstructural evolution during the synthetic process of nanocrystalline ceramic materials and its effects on the materials properties.(author)

  1. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification

    Science.gov (United States)

    Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang

    2015-09-01

    The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.

  2. THE STUDY OF HIGH DIELECTRIC CONSTANT MECHANISM OF La-DOPED Ba0.67Sr0.33TiO3 CERAMICS

    Science.gov (United States)

    Xu, Jing; He, Bo; Liu, Han Xing

    It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. In this paper, it is important to analyze the cause of the high dielectric constant behavior of La-doped BST ceramics. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, and also improve the temperature stability, evidently. According to the current-voltage (J-V) characteristics, the proper La-doped BST ceramics may reach the better semiconductivity, with the decrease and increase in La doping, the ceramics are insulators. By using the Schottky barrier model and electric microstructure model to find the surface or grain boundary potential barrier height, the width of the depletion layer and grain size do play an important role in impacting the dielectric constant.

  3. Grain-size dependence of the deterioration of oxygen transport for pure and 3 mol% Zr-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ induced by thermal annealing

    NARCIS (Netherlands)

    Saher, S.; Meffert, M.; Störmer, H.; Gerthsen, D.; Bouwmeester, Henricus J.M.

    2017-01-01

    In this study, the influence of long-term annealing at intermediate temperatures on oxygen transport of Ba0.5Sr0.5Co0.8Fe0.2O3 d (BSCF) and 3 mol% Zr-doped BSCF (BSCF-Z3) ceramics with different grain sizes was studied by means of in situ electrical conductivity relaxation (ECR) measurements.

  4. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Eldrup, Morten Mostgaard; Zinkle, S.J.

    2002-01-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms. The phenomenon had already been investigated in the 1970s and it was demonstrated that the grain......-size-dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under...

  5. Effects of surrounding powder in sintering process on the properties of Sb and Mn- doped barium-strontium titanate PTCR ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2006-05-01

    Full Text Available In this research, the effects of surrounding powder used during sintering of Sb and Mn doped bariumstrontium titanate (BST ceramics were studied. The ceramic samples were prepared by a conventional mixed-oxide method and placed on different powders during sintering. Phase formation, microstructure and PTCR behavior of the samples were then observed. Microstructures and PTCR behavior varied with the type of surrounding powder, whereas the crystal structure did not change. The surrounding powder has more effects on the shape of the grain than on the size. The grain size of samples was in the range of 5-20 μm. The most uniform grain size and the highest increase of the ratio of ρmax/ρRT were found to be about 106 for samples which had been sintered on Sb-doped BST powder. This value was an order of magnitude greater than for samples sintered on a powder of the equivalent composition to that of the sample pellet.

  6. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H 2 Operovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H 2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Grain size of fine-grained windblown sediment: a powerful proxy for process identification

    NARCIS (Netherlands)

    Vandenberghe, J.

    2013-01-01

    Dust transport by the wind is not a uniform process but may occur in different modes according to source area conditions and transport height and distance. Subsequently, these differences are expressed in terms of grain-size and fluxes of the aeolian deposits. Transport distances may vary from

  8. Microstructural changes in NiFe_2O_4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    International Nuclear Information System (INIS)

    Chauhan, Lalita; Sreenivas, K.; Bokolia, Renuka

    2016-01-01

    Structural properties of Nickel ferrite (NiFe_2O_4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe_2O_4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe_2O_4 ceramics with a uniform microstructure and a large grain size.

  9. Microstructural changes in NiFe2O4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Science.gov (United States)

    Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.

    2016-05-01

    Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.

  10. Kaolin clays from Patagonia - Argentina. Relationship between the mineralogy and ceramic properties; Arcillas caolinicas de la Patagonia argentina. Relacion entre la mineralogia y las propiedades ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Factorovich, J.C.; Badino, D. [Piedra Grande S.A., Buenos Aires (Argentina); Cravero, F.; Dominguez, E. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Dept. de Geologia

    1997-12-31

    The mineralogy, grain size distribution, chemical composition, S and C contents, plasticity, and cationic exchange capacity are determined in the sedimentary kaolinitic clays from the clay pits Puma Negra, Puma Gris, Tincar Super; and Chenque and Cardenal located in Santa Cruz and Chubut Provinces. Mineralogy and Particle size distribution of > 5, 5-2 and <2{mu} fractions are determined. Modulus of rupture, 1100 and 1250 deg C shrinkage and water absorption and whiteness are found. It is accomplished a statistics correlation between the characteristics of grain size distribution, mineralogy, and other physical properties with the main ceramic properties to understand its influence in the ceramic process. (author) 5 refs., 2 tabs.

  11. GS6, a member of the GRAS gene family, negatively regulates grain size in rice.

    Science.gov (United States)

    Sun, Lianjun; Li, Xiaojiao; Fu, Yongcai; Zhu, Zuofeng; Tan, Lubin; Liu, Fengxia; Sun, Xianyou; Sun, Xuewen; Sun, Chuanqing

    2013-10-01

    Grain size is an important yield-related trait in rice. Intensive artificial selection for grain size during domestication is evidenced by the larger grains of most of today's cultivars compared with their wild relatives. However, the molecular genetic control of rice grain size is still not well characterized. Here, we report the identification and cloning of Grain Size 6 (GS6), which plays an important role in reducing grain size in rice. A premature stop at the +348 position in the coding sequence (CDS) of GS6 increased grain width and weight significantly. Alignment of the CDS regions of GS6 in 90 rice materials revealed three GS6 alleles. Most japonica varieties (95%) harbor the Type I haplotype, and 62.9% of indica varieties harbor the Type II haplotype. Association analysis revealed that the Type I haplotype tends to increase the width and weight of grains more than either of the Type II or Type III haplotypes. Further investigation of genetic diversity and the evolutionary mechanisms of GS6 showed that the GS6 gene was strongly selected in japonica cultivars. In addition, a "ggc" repeat region identified in the region that encodes the GRAS domain of GS6 played an important historic role in the domestication of grain size in rice. Knowledge of the function of GS6 might aid efforts to elucidate the molecular mechanisms that control grain development and evolution in rice plants, and could facilitate the genetic improvement of rice yield. © 2013 Institute of Botany, Chinese Academy of Sciences.

  12. Influence of temperature and grain size on the tensile ductility of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Mannan, S.L.; Samuel, K.G.; Rodriguez, P.

    1985-01-01

    The influence of tmeperature and grain size on the tensile ductility of AISI 316 stainless steel has been examined in the temperature range 300-1223 K for specimens with grain sizes varying from 0.025 to 0.650 mm at a nominal strain rate of 3 X 10 -4 s -1 . The percentage total elongation and reduction in area at fracture show minimum ductility at an intermediate temperature, and the temperature corresponding to this ductility minimum has been found to increase with increase in grain size. The total elongation is found to decrease with increase in grain size at high temperatures where failures are essentially intergranular in nature. At 300 K, both uniform and total elongation increase with increase in grain size and then show a small decrease for a very coarse grain size. The high ductility observed at low temperatures (300 K) is consistent with the observation of characteristic dimples associated with transgranular ductile fracture. The ductility minimum with respect to temperature is associated with the occurrence of intergranular fracture, as evidenced by optical and scanning electron microscopy. The present results support the suggestion that the ductility minimum coincides with the maximum amount of grain boundary sliding; at temperatures beyond the ductility minimum, grain boundary separation by cavitation is retarded by the occurrence of grain boundary migration, as evidenced by the grain boundary cusps. In tests conducted at various strain rates in the range 10 -3 -10 -6 s -1 at 873 K the ductility was found to decrease with decreasing strain rate, emphasizing the increased importance of grain boundary sliding at lower strain rates. (Auth.)

  13. Effect of grain size on corrosion of nanocrystalline copper in NaOH solution

    International Nuclear Information System (INIS)

    Luo Wei; Xu Yimin; Wang Qiming; Shi Peizhen; Yan Mi

    2010-01-01

    Research highlights: → Coppers display an active-passive-transpassive behaviour with duplex passive film. → Grain size variation has little effect on the overall corrosion behaviour of Cu. → Little effect on corrosion may be due to duplex passivation in NaOH solution. → Bulk nanocrystalline Cu show bamboo-like flake corrosion structure. - Abstract: Effect of grain size on corrosion of bulk nanocrystalline copper was investigated using potentiodynamic polarization measurements in 0.1 M NaOH solution. Bulk nanocrystalline copper was prepared by inert gas condensation and in situ warm compress (IGCWC) method. The grain sizes of all bulk nanocrystalline samples were determined to be 48, 68 and 92 nm using X-ray diffraction (XRD). Results showed that bulk coppers displayed an active-passive-transpassive behaviour with duplex passive films. From polycrystalline to nanocrystalline, grain size variation showed little effect on the overall corrosion resistance of copper samples.

  14. Effect of the bur grit size on the flexural strength of a glass-ceramic

    OpenAIRE

    Kist, P. P.; Aurélio, I. L.; Amaral, M.; May, L. G.

    2016-01-01

    Abstract The purpose of the present study was to determine the biaxial flexural strength (BFS) of a CAD/CAM leucite reinforced glass-ceramic ground by diamond burs of different grit sizes and the influence of surface roughness on the BFS. For this, 104 plates were obtained from CAD/CAM ceramic blocks and divided into 4 groups (n = 26), according to bur grit size: extra-fine, fine, medium and coarse. Roughness parameters (Ra, RyMax) were measured, and plates were kept dry for 7 days. The flexu...

  15. Fracture toughness of WWER Uranium dioxide fuel pellets with various grain size

    International Nuclear Information System (INIS)

    Sivov, R.; Novikov, V.; Mikheev, E.; Fedotov, A.

    2015-01-01

    Uranium dioxide fuel pellets with grain sizes 13, 26, and 33 μm for WWER were investigated in the present work in order to determine crack formation and the fracture toughness.The investigation of crack formation in uranium oxide fuel pellets of the WWER-types showed that Young’s modulus and the microhardness of polycrystalline samples increase with increasing grain size, while the fracture toughness decreases. Characteristically, radial Palmqvist cracks form on the surface of uranium dioxide pellets for loads up to 1 kg. Transgranular propagation of cracks over distances several-fold larger than the length of the imprint diagonal is observed in pellets with large grains and small intragrain pores. Intergranular propagation of cracks along grain boundaries with branching occurs in pellets with small grains and low pore concentration on the grain boundaries. Blunting on large pores and at breaks in direction does not permit the cracks to reach a significant length

  16. Size distribution of dust grains: A problem of self-similarity

    International Nuclear Information System (INIS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all

  17. Grain Size Distribution in Mudstones: A Question of Nature vs. Nurture

    Science.gov (United States)

    Schieber, J.

    2011-12-01

    Grain size distribution in mudstones is affected by the composition of the source material, the processes of transport and deposition, and post-depositional diagenetic modification. With regard to source, it does make a difference whether for example a slate belt is eroded vs a stable craton. The former setting tends to provide a broad range of detrital quartz in the sub 62 micron size range in addition to clays and greenschist grade rock fragments, whereas the latter may be biased towards coarser quartz silt (30-60 microns), in addition to clays and mica flakes. In flume experiments, when fine grained materials are transported in turbulent flows at velocities that allow floccules to transfer to bedload, a systematic shift of grain size distribution towards an increasingly finer grained suspended load is observed as velocity is lowered. This implies that the bedload floccules are initially constructed of only the coarsest clay particles at high velocities, and that finer clay particles become incorporated into floccules as velocity is lowered. Implications for the rock record are that clay beds deposited from decelerating flows should show subtle internal grading of coarser clay particles; and that clay beds deposited from continuous fast flows should show a uniform distribution of coarse clays. Still water settled clays should show a well developed lower (coarser) and upper (finer) subdivision. A final complication arises when diagenetic processes, such as the dissolution of biogenic silica, give rise to diagenetic quartz grains in the silt to sand size range. This diagenetic silica precipitates in fossil cavities and pore spaces of uncompacted muds, and on casual inspection can be mistaken for detrital quartz. In distal mudstone successions close to 100 % of "apparent" quartz silt can be of that origin, and reworking by bottom currents can further enhance a detrital perception by producing rippled and laminated silt beds. Although understanding how size

  18. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    Science.gov (United States)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  19. Fission gas release during post irradiation annealing of large grain size fuels from Hinkley point B

    International Nuclear Information System (INIS)

    Killeen, J.C.

    1997-01-01

    A series of post-irradiation anneals has been carried out on fuel taken from an experimental stringer from Hinkley Point B AGR. The stringer was part of an experimental programme in the reactor to study the effect of large grain size fuel. Three differing fuel types were present in separate pins in the stringer. One variant of large grain size fuel had been prepared by using an MgO dopant during fuel manufactured, a second by high temperature sintering of standard fuel and the third was a reference, 12μm grain size fuel. Both large grain size variants had similar grain sizes around 35μm. The present experiments took fuel samples from highly rated pins from the stringer with local burn-up in excess of 25GWd/tU and annealed these to temperature of up to 1535 deg. C under reducing conditions to allow a comparison of fission gas behaviour at high release levels. The results demonstrate the beneficial effect of large grain size on release rate of 85 Kr following interlinkage. At low temperatures and release rates there was no difference between the fuel types, but at temperatures in excess of 1400 deg. C the release rate was found to be inversely dependent on the fuel grain size. The experiments showed some differences between the doped and undoped large grains size fuel in that the former became interlinked at a lower temperature, releasing fission gas at an increased rate at this temperature. At higher temperatures the grain size effect was dominant. The temperature dependence for fission gas release was determined over a narrow range of temperature and found to be similar for all three types and for both pre-interlinkage and post-interlinkage releases, the difference between the release rates is then seen to be controlled by grain size. (author). 4 refs, 7 figs, 3 tabs

  20. Fission gas release during post irradiation annealing of large grain size fuels from Hinkley point B

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, J C [Nuclear Electric plc, Barnwood (United Kingdom)

    1997-08-01

    A series of post-irradiation anneals has been carried out on fuel taken from an experimental stringer from Hinkley Point B AGR. The stringer was part of an experimental programme in the reactor to study the effect of large grain size fuel. Three differing fuel types were present in separate pins in the stringer. One variant of large grain size fuel had been prepared by using an MgO dopant during fuel manufactured, a second by high temperature sintering of standard fuel and the third was a reference, 12{mu}m grain size fuel. Both large grain size variants had similar grain sizes around 35{mu}m. The present experiments took fuel samples from highly rated pins from the stringer with local burn-up in excess of 25GWd/tU and annealed these to temperature of up to 1535 deg. C under reducing conditions to allow a comparison of fission gas behaviour at high release levels. The results demonstrate the beneficial effect of large grain size on release rate of {sup 85}Kr following interlinkage. At low temperatures and release rates there was no difference between the fuel types, but at temperatures in excess of 1400 deg. C the release rate was found to be inversely dependent on the fuel grain size. The experiments showed some differences between the doped and undoped large grains size fuel in that the former became interlinked at a lower temperature, releasing fission gas at an increased rate at this temperature. At higher temperatures the grain size effect was dominant. The temperature dependence for fission gas release was determined over a narrow range of temperature and found to be similar for all three types and for both pre-interlinkage and post-interlinkage releases, the difference between the release rates is then seen to be controlled by grain size. (author). 4 refs, 7 figs, 3 tabs.

  1. Effect of grain size on tensile stress and ductility in Al99.99

    International Nuclear Information System (INIS)

    Kovacs-Csetenyi, E.; Horvath, M.; Chinh, N.Q.; Kovacs, I.

    1998-01-01

    The effect of recrystallized grain size on the tensile stress and ductility of 99.99% purity aluminium was investigated at room temperature. It was proved that the grain size dependence of flow stress follows a modified Hall-Petch equation with coefficients depending linearly on ε 1/2 up to the stability limit. The uniform strain can also be described by a linear dependence on d -1/2 according to which the uniform elongation increases with increasing grain size. The post-uniform elongation changes inversely to that of the uniform one accompanied by the decrease of the strain rate sensitivity. (orig.)

  2. A pretreatment method for grain size analysis of red mudstones

    Science.gov (United States)

    Jiang, Zaixing; Liu, Li'an

    2011-11-01

    Traditional sediment disaggregation methods work well for loose mud sediments, but not for tightly cemented mudstones by ferric oxide minerals. In this paper, a new pretreatment method for analyzing the grain size of red mudstones is presented. The experimental samples are Eocene red mudstones from the Dongying Depression, Bohai Bay Basin. The red mudstones are composed mainly of clay minerals, clastic sediments and ferric oxides that make the mudstones red and tightly compacted. The procedure of the method is as follows. Firstly, samples of the red mudstones were crushed into fragments with a diameter of 0.6-0.8 mm in size; secondly, the CBD (citrate-bicarbonate-dithionite) treatment was used to remove ferric oxides so that the cementation of intra-aggregates and inter-aggregates became weakened, and then 5% dilute hydrochloric acid was added to further remove the cements; thirdly, the fragments were further ground with a rubber pestle; lastly, an ultrasonicator was used to disaggregate the samples. After the treatment, the samples could then be used for grain size analysis or for other geological analyses of sedimentary grains. Compared with other pretreatment methods for size analysis of mudstones, this proposed method is more effective and has higher repeatability.

  3. Effect of grain size on the hardness and reactivity of plasma-sintered beryllium

    International Nuclear Information System (INIS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2014-01-01

    Beryllium and its intermetallic compounds have attracted great attention as promising neutron multipliers in fusion reactors. In this study, mechanical and chemical properties of fabricated plasma-sintered beryllium (PS-Be) with different grain-sizes are investigated. Density and hardness analysis results of the fabricated PS-Be samples infer that a smaller grain size in the sintered Be indicates higher porosity and hardness. Sintered Be with a large grain size exhibits better resistance toward oxidation at 1273 K in dry air and at 1073 K in Ar/1% H 2 O, since oxidation at the grain boundaries of the determines the rate. In contrast, at 1273 K in Ar/1% H 2 O, a catastrophic oxidation is indicated by the increase of weight of the samples and the generation of H 2 from the bulk Be

  4. Numerical modelling of intergranular fracture in polycrystalline materials and grain size effects

    Directory of Open Access Journals (Sweden)

    P. Wriggers

    2011-07-01

    Full Text Available In this paper, the phenomenon of intergranular fracture in polycrystalline materials is investigated using a nonlinear fracture mechanics approach. The nonlocal cohesive zone model (CZM for finite thickness interfaces recently proposed by the present authors is used to describe the phenomenon of grain boundary separation. From the modelling point of view, considering the dependency of the grain boundary thickness on the grain size observed in polycrystals, a distribution of interface thicknesses is obtained. Since the shape and the parameters of the nonlocal CZM depend on the interface thickness, a distribution of interface fracture energies is obtained as a consequence of the randomness of the material microstructure. Using these data, fracture mechanics simulations are performed and the homogenized stress-strain curves of 2D representative volume elements (RVEs are computed. Failure is the result of a diffuse microcrack pattern leading to a main macroscopic crack after coalescence, in good agreement with the experimental observation. Finally, testing microstructures characterized by different average grain sizes, the computed peak stresses are found to be dependent on the grain size, in agreement with the trend expected according to the Hall-Petch law.

  5. Processing and properties of large-sized ceramic slabs

    Directory of Open Access Journals (Sweden)

    Fossa, L.

    2010-10-01

    Full Text Available Large-sized ceramic slabs – with dimensions up to 360x120 cm2 and thickness down to 2 mm – are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites. Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD and microstructural (SEM viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated façades, tunnel coverings, insulating panelling, indoor furnitures (table tops, doors, support for photovoltaic ceramic panels.

    Se han fabricado piezas de gran formato, con dimensiones de hasta 360x120 cm, y menos de 2 mm, de espesor, empleando métodos innovadores de fabricación, partiendo de composiciones de gres porcelánico y utilizando, molienda con bolas por vía húmeda, atomización, prensado a baja velocidad sin boquilla de extrusión, secado y cocción rápido en una sola etapa, y un acabado que incluye la adhesión de fibra de vidrio al soporte cerámico y el rectificado de la pieza final. Se han

  6. The production of grain oriented lanthanum titanate (La2Ti2O7) ceramics by uniaxial hot-forging process for improved fracture toughness

    International Nuclear Information System (INIS)

    Ceylan, Ali

    2008-01-01

    The layered-structural ceramics, such as lanthanum titanate (La 2 Ti 2 O 7 ), have been known for their good electrical and optical properties at high frequencies and temperatures. However, few studies have been conducted on the mechanical properties of these ceramics. The interest in ceramic hot-forging (HF) has been greatly increased recently due to the enhancement in fracture toughness via bridging effect of oriented grains. In this study, grain oriented lanthanum titanate was produced by the hot-forging process. The characterizations of the samples were achieved by density measurement, scanning electron microscopy (SEM), optical microscopy, X-ray diffraction (XRD), Vickers indentation and three-point bending test. According to X-ray diffraction patterns, the orientation factor (f) was found to be 0.73 for certain hot-forging conditions resulting an improved fracture toughness. The improved fracture toughness of La 2 Ti 2 O 7 (3.2 MPa m 1/2 ) reached to the value of monolithic alumina (Al 2 O 3 ) between 3 and 4 MPa m 1/2

  7. Cohesion of Mm- to Cm-Sized Asteroid Simulant Grains: An Experimental Study

    Science.gov (United States)

    Brisset, Julie; Colwell, Joshua E.; Dove, Adrienne; Jarmak, Stephanie; Anderson, Seamus

    2017-10-01

    The regolith covering the surfaces of asteroids and planetary satellites is very different from terrestrial soil particles and subject to environmental conditions very different from what is found on Earth. The loose, unconsolidated granular material has angular-shaped grains and a broad size distribution. On small and airless bodies (Earth surface gravity, the cohesion behavior of the regolith grains will dictate the asteroid’s surface morphology and its response to impact or spacecraft contact.Previous laboratory experiments on low-velocity impacts into regolith simulant with grain sizes landing missions to small bodies such as asteroids or Martian moons.

  8. [Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang Estuary].

    Science.gov (United States)

    Pang, Chong-guang; Yu, Wei; Yang, Yang

    2010-03-01

    In July of 2008, under the natural condition of sea water, the Laser in-situ scattering and transmissometry (LISST-100X Type C) was used to measure grain size distribution spectrum and volume concentration of total suspended matter in the sea water, including flocs at different layers of 24 sampling stations at Changjiang Estuary and its adjacent sea. The characteristics and its forming mechanism on grain size distribution of total suspended matter were analyzed based on the observation data of LISST-100X Type C, and combining with the temperature, salinity and turbidity of sea water, simultaneously observed by Alec AAQ1183. The observation data showed that the average median grain size of total suspended matter was about 4.69 phi in the whole measured sea area, and the characteristics of grain size distribution was relatively poor sorted, wide kurtosis, and basically symmetrical. The conclusion could be drawn that vertically average volume concentration decreased with the distance from the coastline, while median grain size had an increase trend with the distance, for example, at 31.0 degrees N section, the depth-average median grain size had been increased from 11 microm up to 60 microm. With the increasing of distance from the coast, the concentration of fine suspended sediment reduced distinctly, nevertheless some relatively big organic matter or big flocs appeared in quantity, so its grain size would rise. The observation data indicated that the effective density was ranged from 246 kg/m3 to 1334 kg/m, with average was 613 kg/m3. When the concentration of total suspended matter was relatively high, median grain size of total suspended matter increased with the water depth, while effective density decreased with the depth, because of the faster settling velocity and less effective density of large flocs that of small flocs. As for station 37 and 44, their correlation coefficients between effective density and median grain size were larger than 0.9.

  9. Evaluation of Pure Aluminium Inoculated with Varying Grain Sizes of an Agro-waste based Inoculant

    Directory of Open Access Journals (Sweden)

    Adeyemi I. Olabisi

    2017-04-01

    Full Text Available Pure Aluminium and its alloy are widely utilized in Engineering and Industrial applications due to certain significant properties such as softness, ductility, corrosion resistance, and high electrical conductivity which it possesses. Addition of an agro-waste based grain refiner to the melt can alter the characteristics positively or negatively. Therefore, the aim of this paper is to investigate the inoculating capability of an agro-waste based inoculant and the effect of adding varying sizes of its grains on some of the properties of pure aluminium after solidification. The beneficial outcome of this investigation would enhance the economic value of the selected agro-waste and also broaden the applications of aluminium in Engineering. The assessed properties include; microstructure, micro hardness, ductility, and tensile strength. The agro-waste used as the grain refiner is pulverised cocoa bean shells (CBS. Three sets of test samples were produced using dry sand moulding process, with each melt having a specified grain size of the inoculant added to it (150, 225 and 300microns respectively. Ladle inoculation method was adopted. The cast samples after solidification were machined to obtain various shapes/sizes for the different analysis. The microstructural examination showed that the mechanical properties are dependent on the matrix as the aluminium grains became more refined with increasing grain size of the inoculant. I.e. Due to increasing grain size of the inoculant, the micro hardness increased (56, 61, 72HB as the aluminium crystal size became finer. Meanwhile, the tensile strength (284, 251, 223N/mm2 and ductility (1.82, 0.91, 0.45%E decreased as grain size of the inoculant increased. The overall results showed that the used agro-waste based inoculant has the capability of refining the crystal size of pure aluminium as its grain size increases. This will make the resulting aluminium alloy applicable in areas where hardness is of

  10. Processing and characterizations of BNT-KNN ceramics for actuator applications

    Directory of Open Access Journals (Sweden)

    Mallam Chandrasekhar

    2016-06-01

    Full Text Available BNT-KNN powder (with composition 0.93Bi0.5Na0.5TiO3–0.07K0.5Na0.5NbO3 was synthesized as a single perovskite phase by conventional solid state reaction route and dense ceramics were obtained by sintering of powder compacts at 1100 °C for 4 h. Dielectric study confirmed relaxor behaviour, whereas the microstructure study showed sharp cornered cubic like grains with an average grain size ∼1.15 µm. The saturated polarization vs. electric field (P-E hysteresis loops confirmed the ferroelectric (FE nature while the butterfly shaped strain vs. electric field (S-E loops suggested the piezoelectric nature of the BNT-KNN ceramic samples. Maximum electric field induced strain of ∼0.62% suggested the usefulness of this system for actuator applications.

  11. A universal approximation to grain size from images of non-cohesive sediment

    Science.gov (United States)

    Buscombe, D.; Rubin, D.M.; Warrick, J.A.

    2010-01-01

    The two-dimensional spectral decomposition of an image of sediment provides a direct statistical estimate, grid-by-number style, of the mean of all intermediate axes of all single particles within the image. We develop and test this new method which, unlike existing techniques, requires neither image processing algorithms for detection and measurement of individual grains, nor calibration. The only information required of the operator is the spatial resolution of the image. The method is tested with images of bed sediment from nine different sedimentary environments (five beaches, three rivers, and one continental shelf), across the range 0.1 mm to 150 mm, taken in air and underwater. Each population was photographed using a different camera and lighting conditions. We term it a “universal approximation” because it has produced accurate estimates for all populations we have tested it with, without calibration. We use three approaches (theory, computational experiments, and physical experiments) to both understand and explore the sensitivities and limits of this new method. Based on 443 samples, the root-mean-squared (RMS) error between size estimates from the new method and known mean grain size (obtained from point counts on the image) was found to be ±≈16%, with a 95% probability of estimates within ±31% of the true mean grain size (measured in a linear scale). The RMS error reduces to ≈11%, with a 95% probability of estimates within ±20% of the true mean grain size if point counts from a few images are used to correct bias for a specific population of sediment images. It thus appears it is transferable between sedimentary populations with different grain size, but factors such as particle shape and packing may introduce bias which may need to be calibrated for. For the first time, an attempt has been made to mathematically relate the spatial distribution of pixel intensity within the image of sediment to the grain size.

  12. Structural, dielectric and magnetic properties of cobalt ferrite prepared using auto combustion and ceramic route

    International Nuclear Information System (INIS)

    Murugesan, C.; Perumal, M.; Chandrasekaran, G.

    2014-01-01

    Cobalt ferrite is synthesized by using low temperature auto combustion and high temperature ceramic methods. The prepared samples have values of lattice constant equal to 8.40 Å and 8.38 Å for auto combustion and ceramic methods respectively. The FTIR spectrum of samples of the auto combustion method shows a high frequency vibrational band at 580 cm −1 assigned to tetrahedral site and a low frequency vibrational band at 409 cm −1 assigned to octahedral site which are shifted to 590 cm −1 and 412 cm −1 for the ceramic method sample. SEM micrographs of samples show a substantial difference in surface morphology and size of the grains between the two methods. The frequency dependent dielectric constant and ac conductivity of the samples measured from 1 Hz to 2 MHz at room temperature are reported. The room temperature magnetic hysteresis parameters of the samples are measured using VSM. The measured values of saturation magnetization, coercivity and remanent magnetization are 42 emu/g, 1553 Oe, 18.5 emu/g for the auto combustion method, 66.7 emu/g, 379.6 Oe, and 17.3 emu/g for the ceramic method, respectively. The difference in preparation methods and size of the grains causes interesting changes in electrical and magnetic properties

  13. Dependency of annealing behaviour on grain size in Al–TiC ...

    Indian Academy of Sciences (India)

    This work investigates the effect of grain size on annealing behaviour in both coarse-grained and ultrafinegrained Al–TiC composite processed by accumulative roll bonding (ARB). Microstructural analysis indicates that annealingbehaviour of the specimens are essentially determined by the level of strain accumulation or ...

  14. Size Distribution and Rate of Dust Generated During Grain Elevator Handling

    Science.gov (United States)

    Dust generated during grain handling is an air pollutant that produces safety and health hazards. This study was conducted to characterize the particle size distribution (PSD) of dust generated during handling of wheat and shelled corn in the research elevator of the USDA Grain Marketing and Product...

  15. Microstructural changes in NiFe{sub 2}O{sub 4} ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalita, E-mail: chauhan.lalita5@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India); Bokolia, Renuka

    2016-05-23

    Structural properties of Nickel ferrite (NiFe{sub 2}O{sub 4}) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe{sub 2}O{sub 4} powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe{sub 2}O{sub 4} ceramics with a uniform microstructure and a large grain size.

  16. Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy

    Science.gov (United States)

    Berisford, Daniel F.; Molotch, Noah P.; Painter, Thomas

    2012-01-01

    An ultimate goal of the climate change, snow science, and hydrology communities is to measure snow water equivalent (SWE) from satellite measurements. Seasonal SWE is highly sensitive to climate change and provides fresh water for much of the world population. Snowmelt from mountainous regions represents the dominant water source for 60 million people in the United States and over one billion people globally. Determination of snow grain sizes comprising mountain snowpack is critical for predicting snow meltwater runoff, understanding physical properties and radiation balance, and providing necessary input for interpreting satellite measurements. Both microwave emission and radar backscatter from the snow are dominated by the snow grain size stratigraphy. As a result, retrieval algorithms for measuring snow water equivalents from orbiting satellites is largely hindered by inadequate knowledge of grain size.

  17. Grain-size effects on PIXE and INAA analysis of IAEA-336 lichen reference material

    Science.gov (United States)

    Marques, A. P.; Freitas, M. C.; Wolterbeek, H. Th.; Verburg, T. G.; De Goeij, J. J. M.

    2007-02-01

    IAEA-336 lichen certified reference material was used to compare outcomes from INAA and PIXE elemental analyses, in relationship with grain size. The IAEA material (grain size lichen reference material's particle size distribution follows a bimodal distribution, which is turning more and more monomodal after further fine sieving. Replicates of each fraction were analysed by INAA and PIXE. Results for Cl, K, Mn, Fe and Zn by both techniques were compared by application of z-values tested against the criterion ∣ z∣ limited amount of lichen material as "seen" in the PIXE analysis and the grain size distribution in the lichen material were no causes of measurable differences between the results of both techniques. However, fractionation into smaller grain sizes showed to be associated with lower element content, for Na, Cl, K, Mn and Sr even up to a factor of 2. The observed increases of the proportion of algae in the smaller grain-size fractions and the possible accumulation capacity for certain elements in the fungal part of the lichen may explain the observed phenomenon. The sieving process and consequently the discarding of part of the material have lead to a change of the properties of the original sample, namely algae/fungus percentage and elemental contents.

  18. Influence of austenite grain size on recrystallisation-precipitation interaction in a V-microalloyed steel

    International Nuclear Information System (INIS)

    Quispe, A.; Medina, S.F.; Gomez, M.; Chaves, J.I.

    2007-01-01

    By means of torsion tests using small specimens, the influence of austenite grain size on strain induced precipitation kinetics has been determined in a vanadium microalloyed steel. Determination of recrystallisation-precipitation-time-temperature (RPTT) diagrams for two austenite grain sizes allows values of the aforementioned magnitudes to be determined. An ample discussion is made of the quantitative influence found and its relation with nucleation and growth mechanisms of precipitates. The results are compared with the quantitative influence exerted by the other variables, reaching the conclusion that the austenite grain size has a notable influence on strain induced precipitation kinetics which should not be underestimated. Finally, the influence of austenite grain size is included in a strain induced precipitation model constructed by the authors of this work and which also takes into account the other aforementioned variables

  19. Voltage effect in PTCR ceramics: Calculation by the method of tilted energy band

    International Nuclear Information System (INIS)

    Fang Chao; Zhou Dongxiang; Gong Shuping

    2010-01-01

    A numerical model for the calculation of the electrical characteristics of donor-doped BaTiO 3 semiconducting ceramics is suggested. This paper established a differential equation about electron level on the base of Poisson equation, and solved the equation with Runge-Kutta method. Under extra electric field, electrical characteristics have been calculated by the method of tilted energy band. We have quantitatively computed the positive temperature coefficient of resistivity (PTCR) behavior of donor-doped BaTiO 3 semiconducting ceramics and its voltage effect, and further obtained non-linear current-voltage characteristics with different grain sizes at different temperature. The results pointed out that the resistance jumping is reduced with increasing electric field applied; current and voltage relation follows Ohm's law below Curie temperature, and exhibits strong non-linear above Curie temperature; the non-linear coefficient shows a maximum value at temperature the resistivity reaches maximum and with grain size closed to depletion region width. The results are compared with experimental data.

  20. Translucence in dental prosthesis based on zirconia ceramics: effect of the sintering parameters

    International Nuclear Information System (INIS)

    Santos, C.

    2011-01-01

    In this work the translucence of Zirconia dental ceramics was evaluated as function of sintering conditions (temperature and isothermal holding time). Samples with 15x15x1mm, were sintered at 1450 to 1600 deg C, with holding of 2h or 4h. Sintered samples were characterized by relative density, crystalline phases and microstructural aspects. Full density was obtained in samples sintered at 1530 and 1600 deg C, which presented higher grain sizes. Na increasing of translucence was observed in samples sintered at 1530 and 1600, correlating these properties with increasing of density and grain size of the samples. (author)

  1. Preliminary study of determination of UO2 grain size using X-ray diffraction method

    International Nuclear Information System (INIS)

    Mulyana, T.; Sambodo, G. D.; Juanda, D.; Fatchatul, B.

    1998-01-01

    The determination of UO 2 grain size has accomplished using x-ray diffraction method. The UO 2 powder is obtained from sol-gel process. A copper target as radiation source in the x-ray diffractometer was used in this experiment with CμKα characteristic wavelength 1.54433 Angstrom. The result indicate that the UO 2 mean grain size on presintered (temperature 800 o C) has the value 456.8500 Angstrom and the UO 2 mean grain size on sintered (temperature 1700 o C) has value 651.4934 Angstrom

  2. Interactive contribution of grain size and grain orientation to coercivity of melt spun ribbons

    International Nuclear Information System (INIS)

    Wang, N.; Li, G.; Yao, W.J.; Wen, X.X.

    2010-01-01

    During melt spinning process, the improvement of certain grain orientation and the refinement of grain size with surface velocity have interactive and contradictory effects on the magnetic properties. The contributions of these effects have seldom been taken into account and they were discussed in this paper via Fe-2, 4, 6.5 wt% Si alloys. Heat treatment at 1173 K for 1 h was performed to show the annealing impact. The X-ray diffraction patterns show that the high surface velocity and heat treatment increase the intensity ratio of line (2 0 0) to (1 1 0) of A2 phase. The (2 0 0) line corresponds to (2 0 0) plane in direction, easy magnetization direction of α-Fe phase in Fe-Si alloy. The improvement of this grain orientation with the surface velocity decreases the coercivity, which should increase due to the grain refinement. It is revealed that the texture promoted by the anisotropic heat release during melt spinning process is one factor to improve the magnetic properties and should be considered when preparing soft magnetic materials.

  3. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    Science.gov (United States)

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  4. Correlation Between Grain Size Distribution and Silicon and Oxygen Contents at Wadi Arar Sediments, Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M. A. M. Alghamdi

    2017-08-01

    Full Text Available Quartz is the major mineral of Wadi Arar sediments. The top two elements contents are oxygen with 63.96 wt%, followed by silicon with 16.35 wt%. There is a positive, weak to medium correlation between grain size and silicon and oxygen contents. The correlation between oxygen and grain size is four times higher than that of silicon. At grain size ranges between 0.8 and 1.0 mm, both oxygen and silicon show the maximum correlation, which decrease gradually with finer and coarser grain sizes. For each element, the correlation between the element content and grain size is a fourth degree polynomial in the grain size. Theoretically, the best two math models that represent the relation between the grain size distribution and each of individual oxygen and silicon content are y=8.84∙ln(x+39.5 and y=2.26∙ln(x+10.1 respectively, where y represents the element content percentage and x represents the corresponding grain size in mm.

  5. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Manso, B.; Pablos, A. de; Belmonte, M.; Osendi, M. I.; Miranzo, P.

    2014-04-01

    Concentrated ceramic inks based on (SiC) powders, with different amounts of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densification of the as-produced 3D structures, previously heat treated in air at 600 degree centigrade for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS) furnace. The effects of the amount of sintering additives (7 - 20 wt. %) and the size of the SiC powders (50 nm and 0.5 {mu}m) on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized (SiC) powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink), involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics. (Author)

  6. The effect of the Tom Thumb dwarfing gene on grain size and grain number of wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Gale, M.D.; Flintham, J.E.

    1984-01-01

    The Tom Thumb dwarfing gene, Rht3, like the related genes Rht1 and Rht2 from Norin 10, has pleiotropic effects on individual ear yields, and grain protein concentrations. An experiment was conducted in which tiller number per plant and grain number per spike were restricted to ascertain whether reduced grain size and protein content are primary or secondary competitive effects in near-isogenic lines. The potential for grain growth was shown to be identical in Rht3 and rht genotypes when grain set was restricted, indicating that the primary effect of the gene is to increase spikelet fertility. Nitrogen accumulation within the grain was also affected by inter-grain competition but decreased nitrogen yields per plant indicated that reduced protein levels are, in part, a primary effect of the gene. Analysis of individual grain yields within Rht3 and rht spikes showed that the gene affected developmental 'dominance' relationships within the spike. (author)

  7. Incision and Landsliding Lead to Coupled Increase in Sediment Flux and Grain Size Export

    Science.gov (United States)

    Roda-Boluda, D. C.; Brooke, S.; D'Arcy, M. K.; Whittaker, A. C.; Armitage, J. J.

    2017-12-01

    The rates and grain sizes of sediment fluxes modulate the dynamics and timing of landscape response to tectonics, and dictate the depositional patterns of sediment in basins. Over the last decades, we have gained a good quantitative understanding on how sediment flux and grain size may affect incision and basin stratigraphy. However, we comparably still have limited knowledge on how these variables change with varying tectonic rates. To address this question, we have studied 152 catchments along 8 normal fault-bounded ranges in southern Italy, which are affected by varying fault slip rates and experiencing a transient response to tectonics. Using a data set of 38 new and published 10Be erosion rates, we calibrate a sediment flux predictive equation (BQART), in order to estimate catchment sediment fluxes. We demonstrate that long-term sediment flux is governed by fault slip rates and the tectonically-controlled transient incision, and that sediment flux estimates from the BQART, steady-state assumptions, and incised volumes are highly correlated. This is supported by our 10Be erosion rates, which are controlled by fault slip and incision rates, and the associated landsliding. Based on a new landslide inventory, we show that erosion rate differences are likely due to differences in incision-related landslide activity across these catchments, and that landslides are a major component of sediment fluxes. From a data set of >13000 grain size counts on hillslope grain size supply and fluvial sediment at catchment outlets, we observe that landslides deliver material 20-200% coarser than other sediment sources, and that this coarse supply has an impact on the grain size distributions being exported from the catchments. Combining our sediment flux and grain size data sets, we are able to show that for our catchments, and potentially also for any areas that respond to changes in climate or tectonics via enhanced landsliding, sediment flux and grain size export increase

  8. The effects of surface finish and grain size on the strength of sintered silicon carbide

    Science.gov (United States)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  9. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy

    Directory of Open Access Journals (Sweden)

    Guoai He

    2017-02-01

    Full Text Available Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs to high angle grain boundaries (HAGBs and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary.

  10. On grain size dependent void swelling in pure copper irradiated with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Zinkle, S.J.

    2001-03-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms (SIAs). The phenomenon was investigated already in the 1970s and it was demonstrated that the grain size dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under cascade damage conditions was radically different and could not be explained in terms of the SRT. In an effort to understand the source of this significant difference, the effect of grain size on void swelling under cascade damage conditions has been investigated both experimentally and theoretically in pure copper irradiated with fission neutrons at 623K to a dose level of ∼0.3 dpa (displacement per atom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling was calculated within the framework of the production bias model (PBM) and the SRT. The grain size dependent void swelling measured experimentally is in good accord with the theoretical results obtained using PMB. Implications of these results on modeling of void swelling under cascade damage conditions are discussed. (au)

  11. Grain size effect of monolayer MoS2 transistors characterized by second harmonic generation mapping

    KAUST Repository

    Lin, Chih-Pin

    2015-08-27

    We investigated different CVD-synthesized MoS2 films, aiming to correlate the device characteristics with the grain size. The grain size of MoS2 can be precisely characterized through nondestructive second harmonic generation mapping based on the degree of inversion symmetry. The devices with larger grains at the channel region show improved on/off current ratio, which can be explained by the less carrier scattering caused by the grain boundaries.

  12. The MAFLA (Mississippi, Alabama, Florida) Study, Grain Size Analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The MAFLA (Mississippi, Alabama, Florida) Study was funded by NOAA as part of the Outer Continental Shelf Program. Dr. L.J. Doyle produced grain size analyses in the...

  13. Plasma etching a ceramic composite. [evaluating microstructure

    Science.gov (United States)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  14. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-01-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed

  15. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-03-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed.

  16. Effects of the application of different particle sizes of mill scale (residue) in mass red ceramic

    International Nuclear Information System (INIS)

    Arnt, A.B.C.; Rocha, M.R.; Meller, J.G.

    2012-01-01

    This study aims to evaluate the influence of particle size of mill scale, residue, when added to a mass ceramic. This residue rich in iron oxide may be used as pigment in the ceramics industry. The use of pigments in ceramic products is related to the characteristics of non-toxicity, chemical stability and determination of tone. The tendency to solubilize the pigment depends on the specific surface area. The residue study was initially subjected to physical and chemical characterization and added in a proportion of 5% at a commercial ceramic white burning, with different particle sizes. Both formulations were sintered at a temperature of 950 ° C and evaluated for: loss on ignition, firing linear shrinkage, water absorption, flexural strength and difference of tone. Samples with finer particles of mill scale 0.038 μ showed higher mechanical strength values in the order of 18 MPa. (author)

  17. Effect of grain size on the melting point of confined thin aluminum films

    Energy Technology Data Exchange (ETDEWEB)

    Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof; Kurzydlowski, Krzysztof J. [Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2014-10-28

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4 nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grain boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4 nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933 K) only when the grain size is reduced to 6 nm.

  18. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  19. Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire

    Directory of Open Access Journals (Sweden)

    T. Omori

    2013-09-01

    Full Text Available Effects of grain size on superelastic properties in Fe-34Mn-15Al-7.5Ni alloy wires with a ⟨110⟩ fiber-texture were investigated by cyclic tensile tests. It was confirmed that the critical stress for induced martensitic transformation and the superelastic strain are functions of relative grain size d/D (d: mean grain diameter, D: wire diameter, and that the critical stress is proportional to (1–d/D2 as well as in Cu-based shape memory alloys. A large superelastic strain of about 5% was obtained in the specimen with a large relative grain size over d/D = 1.

  20. Effect of MnO2, Bi2O3, and ZnO additions on the electrical properties of lead zirconate titanate piezo ceramics

    International Nuclear Information System (INIS)

    Klimov, V.V.; Selikova, N.I.; Bronnikov, A.N.

    2006-01-01

    The effect of manganese dioxide additions on the electrical properties of lead zirconate titanate (PZT) piezo ceramics has been investigated. The results demonstrate that, taken alone, manganese dioxide does not ensure the formation of hard PZT. The valence state of manganese in the piezo ceramics is shown to be 4+ if no other dopants are present and 3+ if manganese is introduced in combination with Bi and Zn. Microstructural examination indicates that the grain size of the singly doped ceramics is 5-15 μm, while that of the codoped ceramics is 1-3 μm. The polarization current curves of the piezo ceramics containing manganese, bismuth, and zinc oxides have extra maxima, which points to significant internal fields. The manganese is shown to reside at grain boundaries. The conclusion is made that it is the composition of Mn-containing intergranular phases, rather than the presence of manganese ions, that plays a key role in the formation of hard piezo ceramics [ru

  1. Procedure for the conversion of a metal oxide powder to a fine grained ceramic material

    International Nuclear Information System (INIS)

    Ferrell, L.J.

    1978-01-01

    A procedure for sintering metal oxides is described which gives a product with significantly smaller grain size and better grain size distribution than previous processes. The procedure is presented as applied to aluminium oxide, but it is also stated to be applicable to uranium dioxide. A pellet density of within 1/2 percent of the theoretical maximum can be obtained. No grinding or surface treatment of the pellets is necessary. (JIW)

  2. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    Science.gov (United States)

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.

  3. Study of variation grain size in desulfurization process of calcined petroleum coke

    Science.gov (United States)

    Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza

    2018-04-01

    Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.

  4. Rapid Grain Size Reduction in the Upper Mantle at a Plate Boundary

    Science.gov (United States)

    Kidder, S. B.; Scott, J.; Prior, D. J.; Lubicich, E. J.

    2017-12-01

    A few spinel peridotite xenoliths found near the Alpine Fault, New Zealand, exhibit a mylonitic texture and, locally, an extremely fine 30 micron grain size. The harzburgite xenoliths were emplaced in a 200 km-long elongate dike zone interpreted as a gigantic tension fracture or Reidel shear associated with Alpine Fault initiation 25 Ma. The presence of thin ( 1 mm) ultramylonite zones with px-ol phase mixing and fine grain sizes, minimal crustal-scale strain associated with the dike swarm, and the absence of mylonites at four of the five xenolith localities associated with the dike swarm indicate that upper mantle deformation was highly localized. Strings of small, recrystallized grains (planes in 3D) are found in the interiors of olivine porphyroclasts. In some cases, bands 1-2 grains thick are traced from the edges of olivine grains and terminate in their interiors. Thicker zones of recrystallized grains are also observed crossing olivine porphyroclasts without apparent offset of the unrecrystallized remnants of the porphyroclasts. We suggest a brittle-plastic origin for these features since the traditional recrystallization mechanisms associated with dislocation creep require much more strain than occurred within these porphyroclasts. Analogous microstructures in quartz and feldspar in mid-crust deformation zones are attributed to brittle-plastic processes. We hypothesize that such fine-grained zones were the precursors of the observed, higher-strain ultramylonite zones. Given the size of the new grains preserved in the porphyroclasts ( 100 micron) and a moho temperature > 650°C, grain growth calculations indicate that the observed brittle-plastic deformation occurred <10,000 yrs. prior to eruption. It is likely then that either brittle-plastic deformation was coeval with the ductile shearing occurring in the ultramylonite bands, or possibly, if deformation can be separated into brittle-plastic (early) and ductile (later) phases, that the entire localization

  5. [Spatial change of the grain-size of aeolian sediments in Qira oasis-desert ecotone, Northwest China].

    Science.gov (United States)

    Lin, Yong Chong; Xu, Li Shuai

    2017-04-18

    In order to understand the environmental influence of oasis-desert ecotone to oasis ecological system, we comparatively analyzed the grain size characteristics of various aeolian sediments, including the sediments in oasis-desert ecotone, shelterbelt and the inside oasis and in Qira River valley. The results showed that the grain size characteristics (including grain-size distribution curve, grain size parameters, and content of different size classes) of sediments in the oasis-desert ecotone were consistent along the prevailing wind direction with a grain-size range of 0.3-200 μm and modal size of 67 μm. All of the sediments were good sorting and mainly composed of suspension components and saltation components, but not denatured saltation and creeping components (>200 μm). They were typically aeolian deposits being short-range transported. The grain sizes of sediments in oasis-desert ecotone were smaller than that in the material sources of Qira River valley and desert (0.3-800 μm), but very similar to those of the modern aeolian deposits in oasis-desert ecotone, shelterbelt and the inside oasis. The denatured saltation and creep components (>200 μm) were suppressed to transport into oasis-desert ecotone because of the high vegetation cover in oasis-desert ecotone. Therefore, like the shelterbelts, the oasis-desert ecotone could also block the invasion of desert. They safeguarded the oasis ecological environment together.

  6. Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel

    Science.gov (United States)

    Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2014-05-01

    Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.

  7. Grain-Size Analysis of Debris Flow Alluvial Fans in Panxi Area along Jinsha River, China

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2015-11-01

    Full Text Available The basic geometric parameters of 236 debris flow catchments were determined by interpreting SPOT5 remote sensing images with a resolution of 2.5 m in a 209 km section along the Jinsha River in the Panxi area, China. A total of 27 large-scale debris flow catchments were selected for detailed in situ investigation. Samples were taken from two profiles in the deposition zone for each debris flow catchment. The φ value gradation method of the grain size was used to obtain 54 histograms with abscissa in a logarithmic scale. Five types of debris flows were summarized from the outline of the histogram. Four grain size parameters were calculated: mean grain size, standard deviation, coefficient of skewness, and coefficient of kurtosis. These four values were used to evaluate the features of the histogram. The grain index that reflects the transport (kinetic energy information of debris flows was defined to describe the characteristics of the debris-flow materials. Furthermore, a normalized grain index based on the catchment area was proposed to allow evaluation of the debris flow mobility. The characteristics of the debris-flow materials were well-described by the histogram of grain-size distribution and the normalized grain index.

  8. Elaboration of austenitic stainless steel samples with bimodal grain size distributions and investigation of their mechanical behavior

    Science.gov (United States)

    Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.

    2017-10-01

    Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.

  9. The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature

    DEFF Research Database (Denmark)

    Hansen, Niels

    1977-01-01

    stress-grain size relationship was analyzed in terms of matrix strengthening and grain boundary strengthening according to the dislocation concept of Ashby. At intermediate strains this approach gives a good description of the effect of strain, grain size and purity on the flow stress.......Tensile-stress-strain data over a strain range from 0.2 to 30% were obtained at room temperature for 99.999 and 99.5% aluminium as a function of grain size. The yield stress-grain size relationship can be expressed by a Petch-Hall relation with approximately the same slope for the two materials....... The flow stress-grain size relationship can adequately be expressed by a modified Petch-Hall relation; for 99.999% aluminium material the slope increases with strain through a maximum around 15–20%, whereas for 99.5% aluminium the slope decreases with the strain to zero at strains about 10%. The flow...

  10. influence of delta ferrite on the flow stress grain size relationship

    African Journals Online (AJOL)

    user

    SIZE RELATIONSHIP OF AN AUSTENITIC STAINLESS STEEL by ... The effect of delta ferrite on the flow stress-grain size relation is investigated. ... some of these deviations, new models have .... J. N. Petch, J of Iron and Steel Inst., 174 25,.

  11. Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin

    Directory of Open Access Journals (Sweden)

    H. S. Negi

    2011-03-01

    Full Text Available In the present paper, spectral reflectance measurements of Himalayan seasonal snow were carried out and analysed to retrieve the snow albedo and effective grain size. The asymptotic radiative transfer (ART theory was applied to retrieve the plane and spherical albedo. The retrieved plane albedo was compared with the measured spectral albedo and a good agreement was observed with ±10% differences. Retrieved integrated albedo was found within ±6% difference with ground observed broadband albedo. The retrieved snow grain sizes using different models based on the ART theory were compared for various snow types and it was observed that the grain size model using two channel method (one in visible and another in NIR region can work well for the Himalayan seasonal snow and it was found consistent with temporal changes in grain size. This method can work very well for clean, dry snow as in the upper Himalaya, but sometimes, due to the low reflectances (<20% using wavelength 1.24 μm, the ART theory cannot be applied, which is common in lower and middle Himalayan old snow. This study is important for monitoring the Himalayan cryosphere using air-borne or space-borne sensors.

  12. Effect of grain size on high temperature low-cycle fatigue properties of inconel 617

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1982-01-01

    The effect of grain size on the high temperature low-cycle fatigue behavior and other material strength properties of Inconel 617 was studied at 1 273 K in air. The strain controlled low-cycle fatigue tests were conducted with a symmetrical (FF type) and an asymmetrical (SF type) strain wave forms. The latter wave form was used for the evaluation of creep-fatigue interaction. The main results obtained in this study are as follows: 1) The tensile strength slightly increased with the increase of the grain diameter. On the other hand, the tensile ductility remarkabley decreased with the increase of the grain diameter. 2) The creep rupture life remarkabley increased with the increase of the grain diameter, especially at the lower stress levels. The effect of grain size on creep ductility has not detailed. 3) The low-cycle fatigue life remarkably decreased with the increase of the grain diameter, especially at the lower strain ranges. 4) The creep-fatigue life was less sensitive to the grain diameter than the fatigue life, because the grain size effects on creep and on fatigue were contrary. It is seemed that the creep-fatigue life is determined by the proportion of the creep and fatigue contribution. 5) The fatigue and creep-fatigue test results have good relations with the tensile and creep ductilities at the test temperature. (author)

  13. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    Science.gov (United States)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  14. A triple-scale crystal plasticity modeling and simulation on size effect due to fine-graining

    International Nuclear Information System (INIS)

    Kurosawa, Eisuke; Aoyagi, Yoshiteru; Tadano, Yuichi; Shizawa, Kazuyuki

    2010-01-01

    In this paper, a triple-scale crystal plasticity model bridging three hierarchical material structures, i.e., dislocation structure, grain aggregate and practical macroscopic structure is developed. Geometrically necessary (GN) dislocation density and GN incompatibility are employed so as to describe isolated dislocations and dislocation pairs in a grain, respectively. Then the homogenization method is introduced into the GN dislocation-crystal plasticity model for derivation of the governing equation of macroscopic structure with the mathematical and physical consistencies. Using the present model, a triple-scale FE simulation bridging the above three hierarchical structures is carried out for f.c.c. polycrystals with different mean grain size. It is shown that the present model can qualitatively reproduce size effects of macroscopic specimen with ultrafine-grain, i.e., the increase of initial yield stress, the decrease of hardening ratio after reaching tensile strength and the reduction of tensile ductility with decrease of its grain size. Moreover, the relationship between macroscopic yielding of specimen and microscopic grain yielding is discussed and the mechanism of the poor tensile ductility due to fine-graining is clarified. (author)

  15. Grain Size and Phase Purity Characterization of U3Si2 Pellet Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hoggan, Rita E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, Kevin R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cappia, Fabiola [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wagner, Adrian R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-05-01

    Characterization of U3Si2 fresh fuel pellets is important for quality assurance and validation of the finished product. Grain size measurement methods, phase identification methods using scanning electron microscopes equipped with energy dispersive spectroscopy and x-ray diffraction, and phase quantification methods via image analysis have been developed and implemented on U3Si2 pellet samples. A wide variety of samples have been characterized including representative pellets from an initial irradiation experiment, and samples produced using optimized methods to enhance phase purity from an extended fabrication effort. The average grain size for initial pellets was between 16 and 18 µm. The typical average grain size for pellets from the extended fabrication was between 20 and 30 µm with some samples exhibiting irregular grain growth. Pellets from the latter half of extended fabrication had a bimodal grain size distribution consisting of coarsened grains (>80 µm) surrounded by the typical (20-30 µm) grain structure around the surface. Phases identified in initial uranium silicide pellets included: U3Si2 as the main phase composing about 80 vol. %, Si rich phases (USi and U5Si4) composing about 13 vol. %, and UO2 composing about 5 vol. %. Initial batches from the extended U3Si2 pellet fabrication had similar phases and phase quantities. The latter half of the extended fabrication pellet batches did not contain Si rich phases, and had between 1-5% UO2: achieving U3Si2 phase purity between 95 vol. % and 98 vol. % U3Si2. The amount of UO2 in sintered U3Si2 pellets is correlated to the length of time between U3Si2 powder fabrication and pellet formation. These measurements provide information necessary to optimize fabrication efforts and a baseline for future work on this fuel compound.

  16. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths.

    Science.gov (United States)

    Wang, Zhaojie; Alaniz, Joseph E; Jang, Wanyoung; Garay, Javier E; Dames, Chris

    2011-06-08

    The thermal conductivity reduction due to grain boundary scattering is widely interpreted using a scattering length assumed equal to the grain size and independent of the phonon frequency (gray). To assess these assumptions and decouple the contributions of porosity and grain size, five samples of undoped nanocrystalline silicon have been measured with average grain sizes ranging from 550 to 64 nm and porosities from 17% to less than 1%, at temperatures from 310 to 16 K. The samples were prepared using current activated, pressure assisted densification (CAPAD). At low temperature the thermal conductivities of all samples show a T(2) dependence which cannot be explained by any traditional gray model. The measurements are explained over the entire temperature range by a new frequency-dependent model in which the mean free path for grain boundary scattering is inversely proportional to the phonon frequency, which is shown to be consistent with asymptotic analysis of atomistic simulations from the literature. In all cases the recommended boundary scattering length is smaller than the average grain size. These results should prove useful for the integration of nanocrystalline materials in devices such as advanced thermoelectrics.

  17. Structure and grain coarsening during the processing of engineering ceramics

    International Nuclear Information System (INIS)

    Shaw, N.J.

    1987-11-01

    Studies have been made of three ceramic systems (Al 2 O 3 , Y 2 O 3 /MgO, and SiC/C/B), both to explore a surface area/density diagram approach to examining the coarsening processes during sintering and to explore an alternative coarsening parameter, i.e., the grain boundary surface area (raising it at a given value of the density) and not the pore surface area; therefore, pinning of the grain boundaries by solid-solution drag is the only function evidenced by these results. The importance of such pinning even at densities as low as 75% of theoretical is linked to the existence of microstructural inhomogeneities. The early stages of sintering of Y 2 O 3 powder have been examined using two techniques, BET surface area analysis and transmission electron microscopy. Each has given some insight into the process occurring and, used together, have provided some indication of the effect of MgO on coarsening during sintering. Attempts to further elucidate effects of MgO on the coarsening behavior of Y 2 O 3 by the surface area/density diagram approach were unsuccessful due to masking effects of contaminating reactions during sintering and/or thermal etching. The behavior of the undoped SiC which only coarsens can be clearly distinguished by the surface area/density diagram from that of SiC/C/B which also concurrently densifies. Little additional information was obtainable by this method due to unfavorable sample etching characteristics. The advantages, disadvantages, and difficulties of application of these techniques to the study of coarsening during sintering are discussed

  18. Effect of noise-induced nucleation on grain size distribution studied via the phase-field crystal method

    International Nuclear Information System (INIS)

    Hubert, J; Cheng, M; Emmerich, H

    2009-01-01

    We contribute to the more detailed understanding of the phase-field crystal model recently developed by Elder et al (2002 Phys. Rev. Lett. 88 245701), by focusing on its noise term and examining its impact on the nucleation rate in a homogeneously solidifying system as well as on successively developing grain size distributions. In this context we show that principally the grain size decreases with increasing noise amplitude, resulting in both a smaller average grain size and a decreased maximum grain size. Despite this general tendency, which we interpret based on Panfilis and Filiponi (2000 J. Appl. Phys. 88 562), we can identify two different regimes in which nucleation and successive initial growth are governed by quite different mechanisms.

  19. Volatile and non-volatile elements in grain-size separated samples of Apollo 17 lunar soils

    International Nuclear Information System (INIS)

    Giovanoli, R.; Gunten, H.R. von; Kraehenbuehl, U.; Meyer, G.; Wegmueller, F.; Gruetter, A.; Wyttenbach, A.

    1977-01-01

    Three samples of Apollo 17 lunar soils (75081, 72501 and 72461) were separated into 9 grain-size fractions between 540 and 1 μm mean diameter. In order to detect mineral fractionations caused during the separation procedures major elements were determined by instrumental neutron activation analyses performed on small aliquots of the separated samples. Twenty elements were measured in each size fraction using instrumental and radiochemical neutron activation techniques. The concentration of the main elements in sample 75081 does not change with the grain-size. Exceptions are Fe and Ti which decrease slightly and Al which increases slightly with the decrease in the grain-size. These changes in the composition in main elements suggest a decrease in Ilmenite and an increase in Anorthite with decreasing grain-size. However, it can be concluded that the mineral composition of the fractions changes less than a factor of 2. Samples 72501 and 72461 are not yet analyzed for the main elements. (Auth.)

  20. Effects of Pb concentration on phase, microstructure and electrical properties of Bi3.25La0.75Ti3O12 ceramics

    International Nuclear Information System (INIS)

    Lawita, P.; Siriprapa, P.; Watcharapasorn, A.; Jiansirisomboon, S.

    2012-01-01

    In this work, effects of Pb-doping concentration on phase, microstructure and electrical properties of bismuth lead lanthanum titanate (Bi 1−x Pb x ) 3.25 La 0.75 Ti 3 O 12 or BPLT ceramics when x = 0, 0.01, 0.03, 0.05, 0.07, 0.09 and 0.1 were investigated. Phase analysis by X-ray diffraction indicated the existence of orthorhombic phase for all BPLT powders and ceramics. Microstructural investigation using scanning electron microscope showed that all ceramics composed mainly of plate-like grains. An increase in PbO doping content reduced not only diameter and thickness of the grains but also density of the ceramics. Electrical conductivity was found to decrease while dielectric constant increased with Pb-doping concentration. Small reduction of remanent polarization and coercive field was observed in Pb-doped samples. - Highlights: ► We prepared bismuth lead lanthanum titanate ceramics by a solid state mixed-oxide method. ► The optimum sintering temperature was found to be 1150 °C. ► BPLT ceramic was identified by X-ray diffraction method to possess an orthorhombic structure. ► All samples shows plate-like morphology with varying grain size and orientation. ► Increasing Pb-doping content tended to decrease electrical conductivity values.

  1. Grain size and burnup dependence of spent fuel oxidation: Geological repository impact

    International Nuclear Information System (INIS)

    Kansa, E.J.; Hanson, B.D.; Stout, R.B.

    1999-01-01

    Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate and an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent-fuel samples oxidized in thermogravimetric analysis (TGA) or oven dry-bath (ODB) experiments. The experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U 4 O 9 r↓U 3 O 8 . Model results predict that U 3 O 8 formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficiently low

  2. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    Science.gov (United States)

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  3. Diffusion of transmutation isotope in YBaCuO ceramics

    International Nuclear Information System (INIS)

    Malkovich, R.Sh.

    2005-01-01

    The diffusion of a transmutation isotope generated in YBaCuO ceramics irradiated by high-energy charged particles is mathematically analyzed. The model is based on the assumption that copper isotope atoms created in subsurface layers of ceramic grains segregate at the grain boundaries in the course of subsequent annealing and then rapidly diffuse via intergranular regions in depth of the material and penetrate into the bulk of grains [ru

  4. Size effect in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Pedersen, Martin Bo Uhre; Clorius, Christian Odin; Damkilde, Lars

    1999-01-01

    The strength in tension perpendicular to the grain is known to decrease with an increase in the stressed volume. Usually this size effect is explained on a stochastic basis, that is an explanation relying on an increased probability of encountering a strength reducing flaw when the volume...... of the material under stress is increased. This paper presents a small experimental investigation on specimens with well defined structural orientation of the material. The experiments exhibit a larger size effect than expected and furthermore the data and the nature of the failures encountered suggest...... that the size effect can be explained on a deterministic basis. Arguments for such a simple deterministic explanation of size effect is found in finite element modelling using the orthotropic stiffness characteristics in the transverse plane of wood....

  5. On Techniques to Characterize and Correlate Grain Size, Grain Boundary Orientation and the Strength of the SiC Layer of TRISO Coated Particles: A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    I.J.van Rooyen; J.L. Dunzik Gougar; T. Trowbridge; Philip M van Rooyen

    2012-10-01

    The mechanical properties of the silicon carbide (SiC) layer of the TRi-ISOtropic (TRISO) coated particle (CP) for high temperature gas reactors (HTGR) are performance parameters that have not yet been standardized by the international HTR community. Presented in this paper are the results of characterizing coated particles to reveal the effect of annealing temperature (1000 to 2100°C) on the strength and grain size of unirradiated coated particles. This work was further expanded to include possible relationships between the grain size and strength values. The comparative results of two strength measurement techniques and grain size measured by the Lineal intercept method are included. Preliminary grain boundary characterization results determined by electron backscatter diffraction (EBSD) are included. These results are also important for future fission product transport studies, as grain boundary diffusion is identified as a possible mechanism by which 110mAg, one of the fission activation products, might be released through intact SiC layers. Temperature is a parameter known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. Recommendations and future work will also be briefly discussed.

  6. Influence of phosphorous and sulphur as well as grain size on creep in pure copper

    International Nuclear Information System (INIS)

    Andersson, Henrik; Seitisleam, Facredin; Sandstroem, Rolf

    1999-12-01

    Uniaxial creep tests have been performed at 175 deg C for extruded oxygen-free copper. The effect of different contents of phosphorous and sulphur as well as different grain sizes have been studied. The copper with < 1 ppm phosphorous and with a 6 ppm sulphur content showed significantly lower creep life and ductility than batches with higher P content. An increase of the P content to 29 ppm increased the creep life and ductility, but a further increase did not affect the properties further. A similar drop in the creep properties was found in the material with a grain size of about 2000 μm. A reduction of the mean grain size to 800 μm had a beneficial effect on the creep ductility. A further reduction of the grain size did not give any further improvements. All tests except those with a phosphorous content of less than 1 ppm P and those with a mean grain size of about 2000 μm failed at an elongation greater than 20%, most of them at 30-40%. The variation in sulphur content from 6 to 12 ppm did not affect the creep properties. The main creep rupture mechanisms were found to be cavitation and microcracking at the grain boundaries. Master curves for extrapolation are provided for creep rupture as well as for 5% and 10% creep strain

  7. Effects of laser power density and initial grain size in laser shock punching of pure copper foil

    Science.gov (United States)

    Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin

    2018-06-01

    The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.

  8. Wavelength-Dependent Extinction and Grain Sizes in "Dippers"

    Science.gov (United States)

    Sitko, Michael; Russell, Ray W.; Long, Zachary; Bayyari, Ammar; Assani, Korash; Grady, Carol; Lisse, Carey Michael; Marengo, Massimo; Wisniewski, John

    2018-01-01

    We have examined inter-night variability of K2-discovered "Dippers" that are not close to being viewed edge-on (as determined from previously-reported ALMA images) using the SpeX spectrograph on NASA's Infrared Telescope facility (IRTF). The three objects observed were EPIC 203850058, EPIC 205151387, and EPIC 204638512 ( = 2MASS J16042165-2130284). Using the ratio of the fluxes from 0.7-2.4 microns between two successive nights, we find that in at least two cases, the extinction increased toward shorter wavelengths. In the case of EPIC 204638512, we find that the properties of the dust differ from that seen in the diffuse interstellar medium and denser molecular clouds. However, the grain properties needed to explain the extinction does resemble those used to model the disks of many young stellar objects. The best fit to the data on EPIC 204638512 includes grains at least 500 microns in size, but lacks grains smaller than 0.25 microns. Since EPIC 204638512 is seen nearly face-on, it is possible the grains are entrained in an accretion flow that preferentially destroys the smallest grains. However, we have no indication of significant gas accretion onto the star in the form of emission lines observed in young low-mass stars. But the He I line at 1.083 microns was seen to change from night to night, and showed a P Cygni profile on one night, suggesting the gas might be outflowing from regions near the star.

  9. Hydroxyapatite additive influenced the bioactivity of bioactive nano-titania ceramics and new bone-forming capacity

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhensheng [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Yang Xiaozhan [Chongqing University of Technology, School of Optoelectronic Information (China); Guo Hongfeng [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China); Yang Xiaochao; Sun Lili [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Dong Shiwu, E-mail: shiwudong@gmail.com [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China)

    2012-09-15

    Bioceramics plays an important role in bone-substitutes. In this study, titania porous ceramics with excellent bioactivity were prepared using hydroxyapatite (HA, 10 vol.% contents) as a grain growth inhibitor. The pure TiO{sub 2} porous ceramics were also prepared as a control. After sintered at 1,000 Degree-Sign C with a pressureless sintering method, the particle size of the pure TiO{sub 2} and TiO{sub 2}/HA (10 vol.%) porous ceramics were 450 and 310 nm, respectively. Each of the porous ceramics presented numerous pores, which were cross-connected. The size of the pores ranged from 100 to 300 {mu}m. There were also profuse micropores inside the pore wall and between the particles. A SBF soaking experiment demonstrated that the HA additive played an important role in promoting apatite formation. The cell proliferation demonstrated that osteoblasts on the TiO{sub 2}/HA (10 vol.%) porous ceramics proliferated faster than that on the pure TiO{sub 2} ceramics. The histological sections and EDX assay results of the two porous ceramics also illustrated that TiO{sub 2}/HA (10 vol.%) composite ceramics combined with Ca and P elements induced much better apatite formation than that of the pure TiO{sub 2} ceramics. These results indicated that titania ceramics combined with HA holds great promise for bone-substitutes.

  10. Application of Silicon Nitride (Si3N4 Ceramics in Ball Bearing

    Directory of Open Access Journals (Sweden)

    Wijianto Wijianto

    2016-08-01

    operation up to 1000°C, greater thermal shock resistance, lower density and low thermal expansion. This properties gives some benefit for ball bearing material such as higher running speed, reduce vibration of the shaft, will improve the life time and maintenance cost, lower heat generated, less energy consumption, lower wear rate, reducing noise level and reduce of using lubricant. The sintering methods are used to produce ball bearing from silicon nitride. Some techniques can be applied to increase ceramics strength which are reduce porosity, reduce grain size, reduce surface flaw and proof stressing. The surface finishing of the ceramic bearing is very important because silicon nitride as a brittle material, its strength is limited to the flaw sizes especially the flaw at the surface.

  11. Grain size control method for the nozzles of AP1000 primary coolant pipes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenglong [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Sun, Yanhui [Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Yang, Bin, E-mail: byang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Zhang, Mingxian [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China)

    2017-04-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  12. Grain size control method for the nozzles of AP1000 primary coolant pipes

    International Nuclear Information System (INIS)

    Wang, Shenglong; Sun, Yanhui; Yang, Bin; Zhang, Mingxian

    2017-01-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  13. Recycling ceramic industry wastes in sound absorbing materials

    Directory of Open Access Journals (Sweden)

    C. Arenas

    2016-10-01

    Full Text Available The scope of this investigation is to develop a material mainly composed (80% w/w of ceramic wastes that can be applied in the manufacture of road traffic noise reducing devices. The characterization of the product has been carried out attending to its acoustic, physical and mechanical properties, by measuring the sound absorption coefficient at normal incidence, the open void ratio, density and compressive strength. Since the sound absorbing behavior of a porous material is related to the size of the pores and the thickness of the specimen tested, the influence of the particle grain size of the ceramic waste and the thickness of the samples tested on the properties of the final product has been analyzed. The results obtained have been compared to a porous concrete made of crushed granite aggregate as a reference commercial material traditionally used in similar applications. Compositions with coarse particles showed greater sound absorption properties than compositions made with finer particles, besides presenting better sound absorption behavior than the reference porous concrete. Therefore, a ceramic waste-based porous concrete can be potentially recycled in the highway noise barriers field.

  14. Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses

    International Nuclear Information System (INIS)

    Adibi, Sara; Branicio, Paulo S.; Zhang, Yong-Wei; Joshi, Shailendra P.

    2014-01-01

    Nanoglasses (NGs), metallic glasses (MGs) with a nanoscale grain structure, have the potential to considerably increase the ductility of traditional MGs while retaining their outstanding mechanical properties. We investigated the effects of composition on the structural and mechanical properties of CuZr NG films with grain sizes between 3 to 15 nm using molecular dynamics simulations. Results indicate a transition from localized shear banding to homogeneous superplastic flow with decreasing grain size, although the critical average grain size depends on composition: 5 nm for Cu 36 Zr 64 and 3 nm for Cu 64 Zr 36 . The flow stress of the superplastic NG at different compositions follows the trend of the yield stress of the parent MG, i.e., Cu 36 Zr 64 yield/flow stress: 2.54 GPa/1.29 GPa and Cu 64 Zr 36 yield/flow stress: 3.57 GPa /1.58 GPa. Structural analysis indicates that the differences in mechanical behavior as a function of composition are rooted at the distinct statistics of prominent atomic Voronoi polyhedra. The mechanical behavior of NGs is also affected by the grain boundary thickness and the fraction of atoms at interfaces for a given average grain size. The results suggest that the composition dependence of the mechanical behavior of NGs follows that of their parent MGs, e.g., a stronger MG will generate a stronger NG, while the intrinsic tendency for homogeneous deformation occurring at small grain size is not affected by composition.

  15. Grain-size effects on PIXE and INAA analysis of IAEA-336 lichen reference material

    International Nuclear Information System (INIS)

    Marques, A.P.; Freitas, M.C.; Wolterbeek, H.Th.; Verburg, T.G.; Goeij, J.J.M. de

    2007-01-01

    IAEA-336 lichen certified reference material was used to compare outcomes from INAA and PIXE elemental analyses, in relationship with grain size. The IAEA material (grain size <125 μm) was ground and sieved through nylon nets with 64 μm, 41 μm and 20 μm pores. Particle sizes were determined by Laser Light Scattering technique: the data indicate that, after sieving, the IAEA-336 lichen reference material's particle size distribution follows a bimodal distribution, which is turning more and more monomodal after further fine sieving. Replicates of each fraction were analysed by INAA and PIXE. Results for Cl, K, Mn, Fe and Zn by both techniques were compared by application of z-values tested against the criterion vertical bar z vertical bar < 3 for approval of results at the 99.7% confidence level. Under the conditions of this study, the limited amount of lichen material as 'seen' in the PIXE analysis and the grain size distribution in the lichen material were no causes of measurable differences between the results of both techniques. However, fractionation into smaller grain sizes showed to be associated with lower element content, for Na, Cl, K, Mn and Sr even up to a factor of 2. The observed increases of the proportion of algae in the smaller grain-size fractions and the possible accumulation capacity for certain elements in the fungal part of the lichen may explain the observed phenomenon. The sieving process and consequently the discarding of part of the material have lead to a change of the properties of the original sample, namely algae/fungus percentage and elemental contents

  16. Grain size determination in zirconium alloys. Final report of a co-ordinated research programme, 1989-1992

    International Nuclear Information System (INIS)

    1995-04-01

    A research programme was planned as an exercise to establish procedures and evaluate the success of technology transfer. The first programme under this scheme was proposed by the IAEA on the research topic: grain size determination in zirconium alloys. The host laboratory was Siemens AG Erlangen, in Germany. The programme was supervised by experts selected from participating countries. This report contains the results of the work carried out under this programme. The grain size of Zircaloy, the measurement methods, distribution of grain size in the matrix and dependence of grain size on temperature time of annealing are discussed in this report. The report also includes some information on the organizational arrangements and discusses possibilities for future collaboration. 38 figs, 11 tabs

  17. Dense cermets containing fine grained ceramics and their manufacture

    International Nuclear Information System (INIS)

    King, H.L.

    1986-01-01

    This patent describes a method of producing a ceramic-metal composite (cermet) containing boride-oxide ceramic having components of a first metal boride and a second metal oxide, which ceramic is in mixture in the cermet with elemental metal of the second metal, wherein the cermet is produced by sintering a reaction mixture of the first metal oxide, boron oxide and the elemental second metal. The improvement consists of: combining for the reaction mixture; A. (a) first metal oxide; (b) boron oxide; (c) ceramic component in very finely divided form; and (d) elemental second metal in very finely divided form and in an amount of at least a 100 percent molar excess beyond that amount stoichiometrically required to produce the second metal oxide during sintering; and B. sintering the reaction mixture in inert gas atmosphere

  18. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  19. Yb:Y2O3 transparent ceramics processed with hot isostatic pressing

    Science.gov (United States)

    Wang, Jun; Ma, Jie; Zhang, Jian; Liu, Peng; Luo, Dewei; Yin, Danlei; Tang, Dingyuan; Kong, Ling Bing

    2017-09-01

    Highly transparent 5 at.% Yb:Y2O3 ceramics were fabricated by using a combination method of vacuum sintering and hot isostatic pressing (HIP). Co-precipitated Yb:Y2O3 powders, with 1 at.% ZrO2 as the sintering aid, were used as the starting material. The Yb:Y2O3 ceramics, vacuum sintered at 1700 °C for 2 h and HIPed at 1775 °C for 4 h, exhibited small grain size of 1.9 μm and highly dense microstructure. In-line optical transmittance of the ceramics reached 83.4% and 78.9% at 2000 and 600 nm, respectively. As the ceramic slab was pumped by a fiber-coupled laser diode at about 940 nm, a maximum output power of 0.77 W at 1076 nm was achieved, with a corresponding slope efficiency of 10.6%.

  20. Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, Soheil; Rashtchi, Hamed; Eslami, Abdoulmajid; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Raeissi, Keyvan; Imani, Reihane Faghih [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Materials Engineering; Ngan, Alfonso Hing Wan [The Univ. of Hong Kong (China). Dept. of Mechanical Engineering

    2017-07-15

    The corrosion resistance of austenitic stainless steels is known to be hampered by the loss of chromium available for passive surface layer formation as a result of chromium carbide precipitation at austenite grain boundaries during annealing treatments. Although high-temperature annealing can promote carbide dissolution leading to better corrosion resistance, grain coarsening also results, which would lead to poorer mechanical properties. Processing methods to achieve both good corrosion resistance and mechanical properties are thus highly desirable for austenitic stainless steels. In the present study, we show that the corrosion resistance of AISI 304L stainless steel can be improved by grain refinement into the ultrafine-grained regime. Specifically, samples with different austenite grain sizes in the range of 0.65-12 μm were studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in a 3.5 wt.% NaCl solution. All samples showed a typical passive behavior with similar corrosion potential, but the corrosion current density decreased significantly with decreasing grain size. The results show that the sample with the finest grain size had the best corrosion resistance due to a higher resistance of the passive layer to pitting attacks. This study indicates that grain refinement which improves mechanical properties can also significantly improve the corrosion resistance of AISI 304L stainless steel.

  1. Enhanced ductility of surface nano-crystallized materials by modulating grain size gradient

    International Nuclear Information System (INIS)

    Li, Jianjun; Soh, A K

    2012-01-01

    Surface nano-crystallized (SNC) materials with a graded grain size distribution on their surfaces have been attracting increasing scientific interest over the past few decades due to their good synergy of high strength and high ductility. However, to date most of the existing studies have focused on the individual contribution of three different aspects, i.e. grain size gradient (GSG), work-hardened region and surface compressive residual stresses, which were induced by surface severe plastic deformation processes, to the improved strength of SNC materials as compared with that of their coarse grained (CG) counterparts. And the ductility of these materials has hardly been studied. In this study, a combination of theoretical analysis and finite element simulations was used to investigate the role of GSG in tuning the ductility of SNC materials. It was found that the ductility of an SNC material can be comparable to that of its CG counterpart, while it simultaneously possessed a much higher strength than its CG core if the optimal GSG thickness and grain size of the topmost phase were adopted. A design map that can be used as a guideline for fabrication of SNC materials was also plotted. Our predictions were also compared with the corresponding experimental results. (paper)

  2. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    Science.gov (United States)

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Agriproteomics of Bread Wheat: Comparative Proteomics and Network Analyses of Grain Size Variation.

    Science.gov (United States)

    Dawkar, Vishal V; Dholakia, Bhushan B; Gupta, Vidya S

    2015-07-01

    Agriproteomics signifies the merging of agriculture research and proteomics systems science and is impacting plant research and societal development. Wheat is a frequently consumed foodstuff, has highly variable grain size that in effect contributes to wheat grain yield and the end-product quality. Very limited information is available on molecular basis of grain size due to complex multifactorial nature of this trait. Here, using liquid chromatography-mass spectrometry, we investigated the proteomics profiles from grains of wheat genotypes, Rye selection 111 (RS111) and Chinese spring (CS), which differ in their size. Significant differences in protein expression were found, including 33 proteins uniquely present in RS111 and 32 only in CS, while 54 proteins were expressed from both genotypes. Among differentially expressed proteins, 22 were upregulated, while 21 proteins were downregulated in RS111 compared to CS. Functional classification revealed their role in energy metabolism, seed storage, stress tolerance and transcription. Further, protein interactive network analysis was performed to predict the targets of identified proteins. Significantly different interactions patterns were observed between these genotypes with detection of proteins such as Cyp450, Sus2, and WRKY that could potentially affect seed size. The present study illustrates the potentials of agriproteomics as a veritable new frontier of plant omics research.

  4. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  5. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang; Zhu, Xinhua; Al-Kassab, Talaat

    2014-01-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric constants of

  6. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution

    International Nuclear Information System (INIS)

    Wang Liping; Zhang Junyan; Gao Yan; Xue Qunji; Hu Litian; Xu Tao

    2006-01-01

    Effects of grain size reduction on the electrochemical corrosion behavior of nanocrystalline Ni produced by pulse electrodeposition were characterized using potentiodynamic polarization testing and electrochemical impedance spectroscopy; X-ray photoelectron spectroscopy were used to confirm the electrochemical measurements and the suggested mechanisms. The corrosion resistance of Ni coatings in alkaline solutions considerably increased as the grain size decreased from microcrystalline to nanocrystalline. The higher corrosion resistance of NC Ni may be due to the more rapid formation of continuous Ni(OH) 2 passive films compared with coarse-grained Ni coatings

  7. Diffusion mechanisms in grain boundaries in solids

    International Nuclear Information System (INIS)

    Peterson, N.L.

    1982-01-01

    A critical review is given of our current knowledge of grain-boundary diffusion in solids. A pipe mechanism of diffusion based on the well-established dislocation model seems most appropriate for small-angle boundaries. Open channels, which have atomic configurations somewhat like dislocation cores, probably play a major role in large-angle grain-boundary diffusion. Dissociated dislocations and stacking faults are not efficient paths for grain-boundary diffusion. The diffusion and computer modeling experiments are consistent with a vacancy mechanism of diffusion by a rather well-localized vacancy. The effective width of a boundary for grain-boundary diffusion is about two atomic planes. These general features of grain-boundary diffusion, deduced primarily from experiments on metals, are thought to be equally applicable for pure ceramic solids. The ionic character of many ceramic oxides may cause some differences in grain-boundary structure from that observed in metals, resulting in changes in grain-boundary diffusion behavior. 72 references, 5 figures

  8. A statistical mixture model for estimating the proportion of unreduced pollen grains in perennial ryegrass (Lolium perenne L.) via the size of pollen grains

    NARCIS (Netherlands)

    Jansen, R.C.; Nijs, A.P.M. den

    1993-01-01

    The size of pollen grains is commonly used to indicate the ploidy level of pollen grains. In this paper observations of the diameter of pollen grains are evaluated from one diploid accession of perennial ryegrass (Lolium perenne L.), which was expected to produce diploid (unreduced) pollen grains in

  9. Rheological properties of ceramic nanopowders in aqueous and nonaqueous suspensions

    International Nuclear Information System (INIS)

    Tomaszewski, H.; Loiko, E.M.

    2003-01-01

    The potential for ceramic nanocomposites to offer significantly enhanced mechanical properties is generally known since the first work of Niihara published in 1991. However achieving these properties needs carefully done colloidal processing, because ceramic nanopowders are naturally prone to agglomeration. The work presented here is concerned with the processing of zirconia/alumina nanocomposites via aqueous and alumina silicon carbide nanocomposites via nonaqueous colloidal route. The effect of pH of aqueous alumina and zirconia suspensions on properties of suspension and centrifuged green bodies was studied. A correlation between surface electric charge of grains (zeta potential)and agglomerate size, viscosity of suspension and porosity of green compacts was found. In the case of nonaqueous route alumina and silicon carbide suspensions in iso-propanol were investigated. Electrostatic surface charge of grains was changed by addition of chloroacetic acid and determined indirectly by the mass of powder deposited on electrode during electrophoresis. Different behaviour of SiC nanopowder than of alumina was observed and mechanism of charge creation is proposed on the base of DLVO theory. The effect of grain charge on preventing agglomeration on the silicon carbide powder is presented on micrographs of sintered nanocomposites. (author)

  10. Correlation vs. Causation: The Effects of Ultrasonic Melt Treatment on Cast Metal Grain Size

    Directory of Open Access Journals (Sweden)

    J. B. Ferguson

    2014-10-01

    Full Text Available Interest in ultrasonic treatment of liquid metal has waxed and waned for nearly 80 years. A review of several experiments representative of ultrasonic cavitation treatment of Al and Mg alloys shows that the theoretical mechanisms thought to be responsible for grain refinement are (1 cavitation-induced increase in melting temperature predicted by the Clausius-Clapeyron equation and (2 cavitation-induced wetting of otherwise unwetted insoluble particles. Neither of these theoretical mechanisms can be directly confirmed by experiment, and though they remain speculative, the available literature generally assumes that one or the other or both mechanisms are active. However, grain size is known to depend on temperature of the liquid, temperature of the mold, and cooling rate of the entire system. From the reviewed experiments, it is difficult to isolate temperature and cooling rate effects on grain size from the theoretical effects. Ultrasonic treatments of Al-A356 were carried out to isolate such effects, and though it was found that ultrasound produced significant grain refinement, the treatments also significantly chilled the liquid and thereby reduced the pouring temperature. The grain sizes attained closely correlated with pouring temperature suggesting that ultrasonic grain refinement is predominantly a result of heat removal by the horn and ultrasonic stirring.

  11. Grain size controls on sediment supply from debris-mantled dryland hillslopes

    Science.gov (United States)

    Michaelides, K.

    2011-12-01

    Debris-mantled hillslopes are common in arid and semiarid environments where low rates of chemical weathering give rise to thin, non-cohesive soils mantled with a layer of coarse rock fragments derived from weathered bedrock that can reach boulder size. The grain size distributions (GSDs) on the surface of these hillslopes interact with different magnitudes and frequencies of runoff-producing rainfall events that selectively transport grain sizes of different classes depending on flow, grain position on the slope, and hillslope attributes. Sediment transport over many runoff events determines sediment delivery to the slope base, which ultimately modifies the GSD of valley floors. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the topographic evolution of drainage basins over >104 y timescales, but the specific responses of sediment flux across the hillslope and the corresponding changes in GSDs to individual storm events are poorly understood. Sheetwash erosion of coarse fragments presents a particular set of conditions for sediment transport that is poorly resolved in current models. A particle-based model for sheetwash sediment transport on debris-mantled hillslopes was developed within a rainfall-runoff model. The rainfall-runoff model produces spatial values of flow depth and velocity which are used to drive a particle-by-particle force-balance model derived from first principles for grain sizes > 1 mm. Particles on the hillslope surface are represented explicitly and can be composed of mixed grain sizes of any distribution or of uniform sizes of any diameter. The model resolves all the forces on each particle at each time and space step based on the flow hydraulics acting on them, so no assumptions are made about incipient motion using Shield's criterion. This research examines how the interplay between hillslope GSD, hillslope attributes (gradient and length) and runoff

  12. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    Science.gov (United States)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  13. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    Science.gov (United States)

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  14. Trends in Solidification Grain Size and Morphology for Additive Manufacturing of Ti-6Al-4V

    Science.gov (United States)

    Gockel, Joy; Sheridan, Luke; Narra, Sneha P.; Klingbeil, Nathan W.; Beuth, Jack

    2017-12-01

    Metal additive manufacturing (AM) is used for both prototyping and production of final parts. Therefore, there is a need to predict and control the microstructural size and morphology. Process mapping is an approach that represents AM process outcomes in terms of input variables. In this work, analytical, numerical, and experimental approaches are combined to provide a holistic view of trends in the solidification grain structure of Ti-6Al-4V across a wide range of AM process input variables. The thermal gradient is shown to vary significantly through the depth of the melt pool, which precludes development of fully equiaxed microstructure throughout the depth of the deposit within any practical range of AM process variables. A strategy for grain size control is demonstrated based on the relationship between melt pool size and grain size across multiple deposit geometries, and additional factors affecting grain size are discussed.

  15. An Experimental Study on Mechanical Modeling of Ceramics Based on Microstructure

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhang

    2015-11-01

    Full Text Available The actual grinding result of ceramics has not been well predicted by the present mechanical models. No allowance is made for direct effects of materials microstructure and almost all the mechanical models were obtained based on crystalline ceramics. In order to improve the mechanical models of ceramics, surface grinding experiments on crystalline ceramics and non-crystalline ceramics were conducted in this research. The normal and tangential grinding forces were measured to calculate single grit force and specific grinding energy. Grinding surfaces were observed. For crystalline alumina ceramics, the predictive modeling of normal force per grit fits well with the experimental result, when the maximum undeformed chip thickness is less than a critical depth, which turns out to be close to the grain size of alumina. Meanwhile, there is a negative correlation between the specific grinding energy and the maximum undeformed chip thickness. With the decreasing maximum undeformed chip thickness, the proportions of ductile removal and transgranular fracture increase. However, the grinding force models are not applicable for non-crystalline ceramic fused silica and the specific grinding energy fluctuates irregularly as a function of maximum undeformed chip thickness seen from the experiment.

  16. The effect of grain size and phosphorous-doping of polycrystalline 3C–SiC on infrared reflectance spectra

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Engelbrecht, J.A.A.; Henry, A.; Janzén, E.; Neethling, J.H.; Rooyen, P.M. van

    2012-01-01

    Highlights: ► IR is investigated as a technique to measure grain size and P-doping of polycrystalline SiC. ► Infrared plasma minima can be used to determine doping levels in 3C–SiC for doping levels greater than 5 × 10 17 cm −3 . ► A linear relationship is found between FWHM and the inverse of grain size of 3C–SiC irrespective of P-doping level. ► It is further found that ω p is not influenced by the grain size. ► P-doping level has no significant effect on the linear relationship between grain size and surface roughness. - Abstract: The effect of P-doping and grain size of polycrystalline 3C–SiC on the infrared reflectance spectra is reported. The relationship between grain size and full width at half maximum (FWHM) suggest that the behavior of the 3C–SiC with the highest phosphorous doping level (of 1.2 × 10 19 at. cm −3 ) is different from those with lower doping levels ( 18 at. cm −3 ). It is also further demonstrated that the plasma resonance frequency (ω p ) is not influenced by the grain size.

  17. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  18. Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk

    Science.gov (United States)

    Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.

    2010-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.

  19. Energy saving cement production by grain size optimisation of the raw meal

    Directory of Open Access Journals (Sweden)

    B. Simons

    Full Text Available The production of cement clinker is an energy consuming process. At about 50% of the energy is associated with grinding and milling of the raw meal, that normally is in the range 100% <200 μm with 90% <90 μm. Question: is it possible to use coarser components of the raw meal without reducing the clinker quality. With synthetic raw meals of various grain sizes the clinker formation was studied at static (1100 - 1450°C and dynamic conditions (heating microscope. A routine to adjust the grain size of the components for industrial raw meals is developed. The fine fraction <90 μm should mainly contain the siliceous and argileous components, whereas the calcitic component can be milled separately to a grain size between 200-500 μm, resulting in lower energy consumption for milling. Considering the technical and economical realizability the relation fine/coarse should be roughly 1:1. The energy for milling can be reduced significantly, that in addition leads to the preservation of natural energy resources.

  20. Nd:YAG transparent ceramics fabricated by direct cold isostatic pressing and vacuum sintering

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Zhou, Zhiwei; Liu, Binglong; Xie, Tengfei; Liu, Jing; Kou, Huamin; Shi, Yun; Pan, Yubai; Guo, Jingkun

    2015-12-01

    The sintering behavior of neodymium doped yttrium aluminum garnet (Nd:YAG) ceramics was investigated on the basis of densification trajectory, microstructure evolution and transmittance. Nd:YAG ceramics with in-line transmittance of 83.9% at 1064 nm and 82.5% at 400 nm were obtained by direct cold isostatic pressing (CIP) at 250 MPa and solid-state reactive sintering at 1790 °C for 30 h under vacuum. Compared with the porosity and the average pore diameter of the sample from uniaxial dry-pressing followed by CIP, those from direct CIP are much smaller. The samples pressed at 250 MPa were sintered from 1500 °C to 1750 °C for 0.5-20 h to study their sintering behavior. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. The relative density and the grain size increase with the increase of sintering time and temperature, and the sintering behavior is more sensitive to temperature than holding time. The mechanism controlling densification and grain growth at sintering temperature of 1550 °C is grain boundary diffusion.

  1. Texturing of sodium bismuth titanate-barium titanate ceramics by templated grain growth

    Science.gov (United States)

    Yilmaz, Huseyin

    2002-01-01

    Sodium bismuth titanate modified with barium titanate, (Na1/2Bi 1/2)TiO3-BaTiO3 (NBT-BT), is a candidate lead-free piezoelectric material which has been shown to have comparatively high piezoelectric response. In this work, textured (Na1/2Bi1/2)TiO 3-BaTiO3 (5.5mol% BaTiO3) ceramics with pc (where pc denotes the pseudocubic perovskite cell) orientation were fabricated by Templated Grain Growth (TGG) or Reactive Templated Grain Growth (RTGG) using anisotropically shaped template particles. In the case of TGG, molten salt synthesized SrTiO3 platelets were tape cast with a (Na1/2Bi1/2)TiO3-5.5mol%BaTiO3 powder and sintered at 1200°C for up to 12 hours. For the RTGG approach, Bi4Ti3O12 (BiT) platelets were tape cast with a Na2CO3, Bi2O3, TiO 2, and BaCO3 powder mixture and reactively sintered. The TGG approach using SrTiO3 templates gave stronger texture along [001] compared to the RTGG approach using BiT templates. The textured ceramics were characterized by X-ray and electron backscatter diffraction for the quality of texture. The texture function was quantified by the Lotgering factor, rocking curve, pole figures, inverse pole figures, and orientation imaging microscopy. Electrical and electromechanical property characterization of randomly oriented and pc textured (Na1/2Bi1/2)TiO 3-5.5 mol% BaTiO3 rhombohedral ceramics showed 0.26% strain at 70 kV/cm, d33 coefficients over 500 pC/N have been obtained for highly textured samples (f ˜ 90%). The piezoelectric coefficient from Berlincourt was d33 ˜ 200 pC/N. The materials show considerable hysteresis. The presence of hysteresis in the unipolar-electric field curve is probably linked to the ferroelastic phase transition seen in the (Na 1/2Bi1/2)TiO3 system on cooling from high temperature at ˜520°C. The macroscopic physical properties (remanent polarization, dielectric constant, and piezoelectric coefficient) of random and textured ([001] pc) rhombohedral perovskites were estimated by linear averaging of single

  2. Mechanical properties of porous PNZT polycrystalline ceramics

    International Nuclear Information System (INIS)

    Biswas, D.R.; Fulrath, R.M.

    1977-08-01

    Niobium-doped lead zirconate-titanate (PNZT) was used to investigate the effect of porosity on the mechanical properties of a polycrystalline ceramic. Spherical pores (110 to 150 μm diameter) were introduced by using organic materials in the initial specimen fabrication. The matrix grain size (2 to 5 μm) was kept constant. Small pores (2 to 3 μm diameter) of the order of the grain size were formed by varying the sintering conditions. The effect of porosity on strength was predicted quite well by Weibull's probabilistic approach. The Young's modulus showed a linear relationship with increase in porosity. A decrease in fracture toughness with increase in porosity was also observed. It was found that at equivalent porosities, small pore specimens gave higher strength, Young's modulus and fracture toughness compared to specimens containing large pores. Fracture surface analysis, by scanning electron microscopy, showed fracture originated either at the tensile surface or at the edge of the specimen

  3. Influence of grain size on the tensile and creep properties of a type 316 stainless steel

    International Nuclear Information System (INIS)

    Mannan, S.L.; Samuel, K.G.; Rodriguez, P.

    The influence of grain size, on the tensile deformation behaviour in the temperature range 300-1223 K and on the creep rate at 873 and 973 K over a wide range of applied stresses, in a type 316 stainless steel has been investigated. For the tensile results, the Hall-Petch relation was found to be valid up to 1023 K. The variations of flow stress and work hardening rate with temperature and grain size have been found to be influenced by dynamic strain aging which occurs in the temperature range 523-923 K. The creep experiments revealed that grain boundaries contribute to strengthening at high stresses (180-260 MPa) at 873 K but this strengthening does not correlate with the available models which attempt to incorporate the Hall-Petch strengthening effect into creep rate equations. At 973 K the creep rate was generally constant but increased at small grain sizes and at lower stresses due to increased contribution from grain boundary sliding. The difference in the grain size effects on creep at the two temperatures is attributed to the difference in the substructures developed during creep. (author)

  4. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  5. Interpreting Hydraulic Conditions from Morphology, Sedimentology, and Grain Size of Sand Bars in the Colorado River in Grand Canyon

    Science.gov (United States)

    Rubin, D. M.; Topping, D. J.; Schmidt, J. C.; Grams, P. E.; Buscombe, D.; East, A. E.; Wright, S. A.

    2015-12-01

    During three decades of research on sand bars and sediment transport in the Colorado River in Grand Canyon, we have collected unprecedented quantities of data on bar morphology, sedimentary structures, grain size of sand on the riverbed (~40,000 measurements), grain size of sand in flood deposits (dozens of vertical grain-size profiles), and time series of suspended sediment concentration and grain size (more than 3 million measurements using acoustic and laser-diffraction instruments sampling every 15 minutes at several locations). These data, which include measurements of flow and suspended sediment as well as sediment within the deposits, show that grain size within flood deposits generally coarsens or fines proportionally to the grain size of sediment that was in suspension when the beds were deposited. The inverse problem of calculating changing flow conditions from a vertical profile of grain size within a deposit is difficult because at least two processes can cause similar changes. For example, upward coarsening in a deposit can result from either an increase in discharge of the flow (causing coarser sand to be transported to the depositional site), or from winnowing of the upstream supply of sand (causing suspended sand to coarsen because a greater proportion of the bed that is supplying sediment is covered with coarse grains). These two processes can be easy to distinguish where suspended-sediment observations are available: flow-regulated changes cause concentration and grain size of sand in suspension to be positively correlated, whereas changes in supply can cause concentration and grain size of sand in suspension to be negatively correlated. The latter case (supply regulation) is more typical of flood deposits in Grand Canyon.

  6. Nanometer, submicron and micron sized aluminum powder prepared by semi-solid mechanical stirring method with addition of ceramic particles

    International Nuclear Information System (INIS)

    Qin, X.H.; Jiang, D.L.; Dong, S.M.

    2004-01-01

    Composite powder, which is a mixture of Al/Al 2 O 3 composite particles and nanometer, submicron and micron sized aluminum powder, was prepared by semi-solid mechanical stirring method with addition of Al 2 O 3 ceramic particles. The ceramic particles have an average diameter of 80 μm and a volume fraction of 15% in the slurry. The methods used to measure the size distribution of particles greater than 50 μm and less than 50 μm were sieve analysis and photosedimentation, respectively. The surface morphology and transverse sections of the composite powder of different sizes were examined by scanning electron microscope (SEM), optical microscope and auger electron spectroscopy (AES). The results indicate that the composite powder prepared in present work have a wide size distribution ranging from less than 50-900 μm, and the aluminum particles and Al/Al 2 O 3 composite particles are separated and isolated. The particles greater than 200 μm and less than 50 μm are almost pure aluminum powder. The rate of conversion of ingot aluminum into particles less than 1 μm containing nanometer and submicron sizes is 1.777 wt.% in this work. The aluminum powder of different sizes has different shape and surface morphology, quasi-spherical in shape with rough surface for aluminum particles of micron scale, irregular in shape for aluminum particles of submicron scale, and quite close to a globular or an excellent globular in shape for aluminum particles of nanometer size. On the other hand, the surface of ceramic particle was coated by aluminum particles with maximum thickness less than 10 μm containing nanometer and submicron sizes as a single layer. It is suggested that the surface of ceramic particles can provide more nucleation sites for solidification of liquid aluminum and the nucleation of liquid aluminum can take place readily, grow and adhere on the surface of ceramic particles, although it is poorly wetted by the liquid aluminum and the semi-solid slurry can

  7. Parameters governing tritium extraction rates from lithiated ceramics. The case of lithium aluminate

    International Nuclear Information System (INIS)

    Roth, E.; Botter, F.; Briec, M.; Rasneur, B.; Roux, N.

    1986-10-01

    Significant discrepancies between results of authors comparing tritium extraction rates from different lithiated ceramics are found in the literature. Recent results obtained at C.E.A., principally on lithium aluminates, show that, for a given ceramic, parameters other than textural (grain size, porosity, etc...) may play a predominant role. Enhancements of extraction rates have been induced by adding MgO to the solid or H 2 and CO to the sweep gas, but other factors, probably related to the surface condition of samples, may produce even greater effects. Results of investigations of the influence of exposure to air at given partial pressures of water vapor or of CO 2 show that strict preirradiation procedures must be adopted for preparation, storage and handling of ceramic tritium breeders

  8. The effect of grain size and phosphorous-doping of polycrystalline 3C-SiC on infrared reflectance spectra

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: Isabella.vanRooyen@inl.gov [Fuel Performance and Design Department, Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Engelbrecht, J.A.A. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Henry, A.; Janzen, E. [Department of Physics, Chemistry and Biology, Semiconductor Materials, Linkoeping University, Linkoeping 58183 (Sweden); Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Rooyen, P.M. van [Philip M van Rooyen Network Consultants, Midlands Estates (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer IR is investigated as a technique to measure grain size and P-doping of polycrystalline SiC. Black-Right-Pointing-Pointer Infrared plasma minima can be used to determine doping levels in 3C-SiC for doping levels greater than 5 Multiplication-Sign 10{sup 17} cm{sup -3}. Black-Right-Pointing-Pointer A linear relationship is found between FWHM and the inverse of grain size of 3C-SiC irrespective of P-doping level. Black-Right-Pointing-Pointer It is further found that {omega}{sub p} is not influenced by the grain size. Black-Right-Pointing-Pointer P-doping level has no significant effect on the linear relationship between grain size and surface roughness. - Abstract: The effect of P-doping and grain size of polycrystalline 3C-SiC on the infrared reflectance spectra is reported. The relationship between grain size and full width at half maximum (FWHM) suggest that the behavior of the 3C-SiC with the highest phosphorous doping level (of 1.2 Multiplication-Sign 10{sup 19} at. cm{sup -3}) is different from those with lower doping levels (<6.6 Multiplication-Sign 10{sup 18} at. cm{sup -3}). It is also further demonstrated that the plasma resonance frequency ({omega}{sub p}) is not influenced by the grain size.

  9. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    Science.gov (United States)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  10. Nanocrystalline, superhard, ductile ceramic coatings for roller-cone bit bearings

    Energy Technology Data Exchange (ETDEWEB)

    Namavar, F.; Colter, P.; Karimy, H. [Spire Corp., Bedford, MA (United States)] [and others

    1997-12-31

    The established method for construction of roller bits utilizes carburized steel, frequently with inserted metal bearing surfaces. This construction provides the necessary surface hardness while maintaining other desirable properties in the core. Protective coatings are a logical development where enhanced hardness, wear resistance, corrosion resistance, and surface properties are required. The wear properties of geothermal roller-cone bit bearings could be further improved by application of protective ceramic hard coatings consisting of nanometer-sized crystallites. Nanocrystalline protective coatings provide the required combination of hardness and toughness which has not been available thus far using traditional ceramics having larger grains. Increased durability of roller-cone bit bearings will ultimately reduce the cost of drilling geothermal wells through increased durability.

  11. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  12. Enhancement of coercivity with reduced grain size in CoCrPt film grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Liang, Q.; Hu, X.F.; Li, H.Q.; He, X.X.; Wang, Xiaoru; Zhang, W.

    2006-01-01

    We report a pulsed laser deposition (PLD) growth of VMn/CoCrPt bilayer with a magnetic coercivity (H c ) of 2.2 kOe and a grain size of 12 nm. The effects of VMn underlayer on magnetic properties of CoCrPt layer were studied. The coercivity, H c , and squareness, S, of VMn/CoCrPt bilayer, is dependent on the thickness of VMn. The grain size of the CoCrPt film can also be modified by laser parameters. High laser fluence used for CoCrPt deposition produces a smaller grain size. Enhanced H c and reduced grain size in VMn/CoCrPt is explained by more pronounced surface phase segregation during deposition at high laser fluence

  13. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klym, H; Shpotyuk, O; Hadzaman, I [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Ingram, A [Opole University of Technology, 75 Ozimska str., Opole, 45370 (Poland); Filipecki, J, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Institute of Physics of Jan Dlugosz University, 13/15 Armii Krajowei, 42201, Czestochowa (Poland)

    2011-04-01

    The new transition-metal manganite Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  14. Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Klym, H; Shpotyuk, O; Hadzaman, I; Ingram, A; Filipecki, J

    2011-01-01

    The new transition-metal manganite Cu 0.1 Ni 0.8 Co 0.2 Mn 1.9 O 4 ceramics for temperature sensors with improved functional reliability are first proposed. It is established that the amount of additional NiO phase in these ceramics extracted during sintering play a decisive role. This effect is well revealed only in ceramics having a character fine-grain microstructure, while the monolithization of ceramics caused by great amount of transferred thermal energy reveals an opposite influence. The process of monolitization from the position of evolution of grain-pore structure was studied in these ceramics using positron annihilation lifetime spectroscopy.

  15. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    Science.gov (United States)

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  16. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    Science.gov (United States)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  17. Producing laminated NiAl with bimodal distribution of grain size by solid–liquid reaction treatment

    DEFF Research Database (Denmark)

    Fan, G.H.; Wang, Q.W.; Du, Y.

    2014-01-01

    The prospect of combining laminated structure design and grain size tailoring to toughen brittle materials is examined. Laminated NiAl consisting of coarse-grained layers and fine-grained layers was fabricated by solid–liquid reaction treatment of stacking Ni and Al foils. The fracture toughness...

  18. Transitional grain-size-sensitive flow of milky quartz aggregates

    Science.gov (United States)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2014-12-01

    Fine-grained (~15 μm) milky quartz aggregates exhibit reversible flow strengths in triaxial compression experiments conducted at T = 800-900oC, Pc = 1.5 GPa when strain rates are sequentially decreased (typically from 10-3.5 to 10-4.5 and 10-5.5 s-1), and then returned to the original rate (10-3.5 s-1), while samples that experience grain growth at 1000oC (to 35 μm) over the same sequence of strain rates exhibit an irreversible increase in strength. Polycrystalline quartz aggregates have been synthesized from natural milky quartz powders (ground to 5 μm) by HIP methods at T = 1000oC, Pc = 1.5 GPa and t = 24 hours, resulting in dense, fine-grained aggregates of uniform water content of ~4000 ppm (H/106Si), as indicated by a broad OH absorption band at 3400 cm-1. In experiments performed at 800o and 900oC, grain sizes of the samples are essentially constant over the duration of each experiment, though grain shapes change significantly, and undulatory extinction and deformation lamellae indicate that much of the sample shortening (to 50%) is accomplished, over the four strain-rate steps, by dislocation creep. Differential stresses measured at T = 800oC decrease from 160 to 30 MPa as strain rate is reduced from 10-4.6 to 10-5.5 s-1, and a stress of 140 MPa is measured when strain rate is returned to 10-4.5 s-1. Samples deformed at 1000o and 1100oC experience normal grain growth, with grain boundary energy-driven grain-coarsening textures superposed by undulatory extinction and deformation lamellae. Differential stresses measured at 1000oC and strain rates of 10-3.6, 10-4.6, and 10-5.5 s-1 are 185, 80, and 80 MPa, respectively, while an increased flow stress of 260 MPa is measured (following ~28 hours of prior high temperature deformation and grain growth) when strain rate is returned to 10-3.6 s-1. While all samples exhibit lattice preferred orientations, the stress exponent n inferred for the fine-grained 800oC sample is 1.5 and the stress exponent of the coarse-grained

  19. Holocene marine transgression as interpreted from bathymetry and sand grain size parameters off Gopalpur

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.M.; Rajamanickam, G.V.; Rao, T.C.S.

    Grain size statistical parameters of the surface sediment samples collected from the innershelf off Gopalpur were calculated using graphic and moment methods. Fine-grained sand present up to 15 m water depth shows symmetrical skewness and good...

  20. Hardening by ion implantation of VT1-0 alloy having different grain size

    Energy Technology Data Exchange (ETDEWEB)

    Nikonenko, Alisa, E-mail: aliska-nik@mail.ru; Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation); Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk Russia (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk Russia (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the structural and phase state of commercially pure titanium implanted by aluminum ions. TEM study has been carried out for two types of grains, namely coarse (0.4 µm) and small (0.5 µm). This paper presents details of the yield stress calculations and the analysis of strength components for the both grain types in two areas of the modified layer: at a distance of 0-150 nm (surface area I) and ∼300 nm (central area II) from the irradiated surface. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress in areas I and II. Thus, near the ion-alloyed layer, the yield stress decreases with the increase of the grain size, whilst area II demonstrates its increase. Moreover, the contribution to the general hardening of the alloy made by certain hardening mechanisms differs from contributions made by each of these mechanisms in each certain case.

  1. Gd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Fu, Peng; Xu, Zhijun; Chu, Ruiqing; Li, Wei; Wang, Wei; Liu, Yong

    2012-01-01

    Highlights: ► Gd 2 O 3 doped BNKT18 piezoelectric ceramics were designed and prepared. ► The electrical properties of the BNKT18 ceramics are improved with the addition of Gd 2 O 3 . ► The BNKT18 ceramics doped with 0.4 wt.% Gd 2 O 3 has better electrical properties. -- Abstract: Gd 2 O 3 (0–0.8 wt.%)-doped 0.82Bi 0.5 Na 0.5 TiO 3 –0.18Bi 0.5 K 0.5 TiO 3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state process. The effects of Gd 2 O 3 on the microstructure, the dielectric, ferroelectric and piezoelectric properties were investigated. X-ray diffraction (XRD) data shows that Gd 2 O 3 in an amount of 0.2–0.8 wt.% can diffuse into the lattice of BNKT18 ceramics and form a pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain size of BNKT18 ceramics decreases with the increase of Gd 2 O 3 content; in addition, all the modified ceramics have a clear grain boundary and a uniformly distributed grain size. At room temperature, the ferroelectric and piezoelectric properties of the BNKT18 ceramics have been improved with the addition of Gd 2 O 3 , and the BNKT18 ceramics doped with 0.4 wt.% Gd 2 O 3 have the highest piezoelectric constant (d 33 = 137 pC/N), highest relative dielectric constant (ε r = 1023) and lower dissipation factor (tan δ = 0.044) at a frequency of 10 kHz. The BNKT18 ceramics doped with 0.2 wt.% Gd 2 O 3 have the highest planar coupling factor (k p = 0.2463).

  2. Method of producing granulated ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1976-01-01

    For the production of granulated ceramic nuclear fuels with a grain size spectrum as narrow as possible it is proposed to suspend the nuclear fuel powder in a non-aqueous solvent with small content of hydrogen (e.g. chloridized hydrocarbons) while adding a binding agent and then dry it by means of rays. As binding agent polybutyl methane acrylate in dibutyl phthalate is proposed. The method is described by the example of UO 2 -powder in trichloroethylene. The dry granulated material is produced in one working step. (UWI) [de

  3. GRAIN-SIZE MEASUREMENTS OF FLUVIAL GRAVEL BARS USING OBJECT-BASED IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Pedro Castro

    2018-01-01

    Full Text Available Traditional techniques for classifying the average grain size in gravel bars require manual measurements of each grain diameter. Aiming productivity, more efficient methods have been developed by applying remote sensing techniques and digital image processing. This research proposes an Object-Based Image Analysis methodology to classify gravel bars in fluvial channels. First, the study evaluates the performance of multiresolution segmentation algorithm (available at the software eCognition Developer in performing shape recognition. The linear regression model was applied to assess the correlation between the gravels’ reference delineation and the gravels recognized by the segmentation algorithm. Furthermore, the supervised classification was validated by comparing the results with field data using the t-statistic test and the kappa index. Afterwards, the grain size distribution in gravel bars along the upper Bananeiras River, Brazil was mapped. The multiresolution segmentation results did not prove to be consistent with all the samples. Nonetheless, the P01 sample showed an R2 =0.82 for the diameter estimation and R2=0.45 the recognition of the eliptical ft. The t-statistic showed no significant difference in the efficiencies of the grain size classifications by the field survey data and the Object-based supervised classification (t = 2.133 for a significance level of 0.05. However, the kappa index was 0.54. The analysis of the both segmentation and classification results did not prove to be replicable.

  4. The 1845 Hekla eruption: Grain-size characteristics of a tephra layer

    Science.gov (United States)

    Gudnason, Jonas; Thordarson, Thor; Houghton, Bruce F.; Larsen, Gudrun

    2018-01-01

    The 1845 eruption is commonly viewed as a typical Hekla eruption. It is a key event in the eruptive history of the volcano, as it is one of the best documented Hekla eruptions, in terms of contemporary accounts and observations. The eruption started on 2 September 1845 with an intense, hour long explosive Plinian phase that passed into effusive activity, ending on the 16 March 1846. The amount of tephra produced in the opening phase was 0.13 km3/7.5 × 1010 kg. The total grain-size distribution of the deposit is bimodal with a dominant coarse mode at - 2.5 φ (5.6 mm) and a broad finer mode at 3 to 4.5 φ (0.125 to 0.045 mm). At individual sites, the grain-size distribution of the tephra from the Plinian opening phase is also commonly (not always) bimodal. Deconvolved grain-size distributions exhibit distinctly different sedimentation patterns of the coarse and fine subpopulations. The lapilli-dominated subpopulation fines rapidly with transport, while the ash-dominated subpopulation shows less changes with distance, indicating premature sedimentation of fines by aggregation from the 1845 volcanic plume. Tephra deposition was to the ESE of the volcano from a 19 km (a.s.l.) high eruption plume. The plume front travelled at speeds of 16-19 m s- 1. Reports of ash deposition onto ships near the Faroe and Shetland Islands, 700 to 1100 km away from Hekla, demonstrate that even moderate-sized Hekla eruptions can affect very large parts of European air-space.

  5. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  6. Nanostructural Free-Volume Effects in Humidity-Sensitive MgO-Al2O3 Ceramics for Sensor Applications

    Science.gov (United States)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Hadzaman, I.; Hotra, O.; Kostiv, Yu.

    2016-03-01

    Technologically modified spinel MgO-Al2O3 ceramics were prepared from Al2O3 and 4MgCO3·Mg(OH)2·5H2O powders at sintering temperatures of 1200, 1300, and 1400 °C. Free-volume structural effects in MgO-Al2O3 ceramics and their electrophysical properties were studied using combined x-ray diffraction, scanning electron microscopy, Hg-porosimetry, and positron annihilation lifetime spectroscopy. It is shown that increasing of sintering temperature from 1200 to 1400 °C results in the transformation of pore size distribution in ceramics from tri- to bi-modal including open macro- and meso(micro)pores with sizes from ten to hundreds nm and nanopores with sizes up to a few nm. Microstructure of these ceramics is improved with the increase of sintering temperature, which results in decreased amount of additional phases located near grain boundaries. These phase extractions serve as specific trapping centers for positrons penetrating the ceramics. The positron trapping and ortho-positronium decaying components are considered in the mathematical treatment of the measured spectra. Classic Tao-Eldrup model is used to draw the correlation between the ortho-positronium lifetime and the size of nanopores, which is complementary to porosimetry data. The studied ceramics with optimal nanoporous structure are highly sensitive to humidity changes in the region of 31-96% with minimal hysteresis in adsorption-desorption cycles.

  7. Influence of grain size on lithium storage performance of germanium oxide films

    International Nuclear Information System (INIS)

    Feng, J.K.; Lai, M.O.; Lu, L.

    2012-01-01

    Highlights: ► We deposited GeO 2 thin films at different temperatures to form different grain sizes. ► Li storage of GeO 2 as anode was studied, which shows that the GeO 2 with grain size of about 10 nm reveals high capacity retention. ► Nanograined GeO 2 also shows better rate capability and cyclability. - Abstract: Germanium oxide (GeO 2 ) films with two different grain sizes of 10 nm (GeO 2 (10 nm)) and 100 nm (GeO 2 (100 nm)) were grown via reactive radio frequency sputtering at different temperatures. Electrochemical measurements of the GeO 2 (10 nm) thin film used as an anode in Li ion rechargeable batteries show superior capacity retention and rate capability compared to those of GeO 2 (100 nm). The GeO 2 (10 nm) thin film possesses an initial capacity of 930 mAh g −1 with 89% capacity retention after 100 cycles, compared with 455 mAh g −1 with 53% of GeO 2 (100 nm) and 225 mAh g −1 , 30% (10 cycles) of common macro-size GeO 2 . Microstructural studies reveal that the GeO 2 (10 nm) thin film can better accommodate volume changes during Li–Ge alloying and de-alloying processes.

  8. Grain size effect on the mechanical properties of neutron irradiated niobium

    International Nuclear Information System (INIS)

    Gusev, M. N.; Maksimkin, O.P.

    2000-01-01

    Samples for mechanical tests were prepared from niobium of technical purity and have form of plates (10·3.5 ·0.3mm) with grain size from 2 to 100 mcm. Neutron irradiation was carried out at the reactor WWR-K to the fluence of 2·10 22 n/m 2 ( Angstroem >0.1 MeV). Tests on uniaxial tension at 293K were performed at the facility, evolving Calvet's microcalorimeter and miniature rapture machine. The developed technique enabled to record heat effects just during the deformation process. As experimental results the characteristics of strength and ductility were defined, as well as values of the latent energy E s , accumulated in material in the process of its deformation up to the moment of destruction. It was found that irradiation of niobium with large-grain structure by neutrons leads to increasing of strength characteristics (yield strength σ 0 .2 changes from 130 to 210 MPa, time-resistance σ b from 200 to 230 MPa) and decreasing of ductility from 36 to 28%. As this takes place the capability of the material to accumulate and dissipate energy of plastic deformation suffers substantial change. There were revealed some additional effects, for instance, the radiation annealing hardening (RAH) (i.e. additional change of properties of irradiated material at annealing), whose maximum takes place at 473K. Its temperature and kinetic parameters were determined in this work. Decreasing of grain size usually leads to decreasing of strengthening under irradiation and to decreasing of RAH effect intensity at subsequent annealing. At the same time decreasing of radiation embrittlement is observed. Consequently, creation of fine-grain structure for some cases can favored the stability of material's properties under irradiation. The obtained results are discussed in context of views on grain boundaries as a defect sink. The relation 'grain boundary volume - grain matrix volume', its influence on RAH-effect and value of latent energy are considered

  9. Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy

    Science.gov (United States)

    Xia, Minglu; Sun, Qingping

    2017-10-01

    Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.

  10. Algorithm for repairing the damaged images of grain structures obtained from the cellular automata and measurement of grain size

    Science.gov (United States)

    Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.

    2012-10-01

    Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.

  11. Studies of ZrO{sub 2}-Y{sub 2}O{sub 3} ceramics properties sintered in conventional and microwave oven; Estudos das propriedades de ceramicas de ZrO{sub 2}-Y{sub 2}O{sub 3} sinterizadas em forno convencional de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Gelfuso, M V; Capistrano, D; Thomazini, D [Universidade de Fortaleza (UNIFOR), CE (Brazil); Grzebielucka, E C; Chinelatto, A L; Chinelatto, A S.A. [Universidade Estadual de Ponta Grossa (DEMa/UFPG), PR (Brazil). Dept. de Engenharia de Materiais

    2009-07-01

    The ceramic materials processing with nano grain size has developed materials with new properties or improves some of its existing properties. To obtain ceramics with nano grain size, besides that to obtaining nanometric powders, a major goal is to keep the grains size after sintering. Contributing in this line of research, this study aimed to sinter zirconia-Yttria powders through two processes: conventional and microwave sintering. Zirconia stabilized with Yttria powders were obtained by chemical route based on Pechini method. Cylindrical samples were sintered between 1300 to 1500 deg C between 10 and 40 minutes. The samples were characterized by Xray diffraction, Scanning Electron Microscopy and apparent density. It was observed that the final microstructure is influenced by both methods of sintering as the curve of firing used. (author)

  12. The influences of impurity content, tensile strength, and grain size on in-service temper embrittlement of CrMoV steels

    International Nuclear Information System (INIS)

    Cheruvu, N.S.; Seth, B.B.

    1989-01-01

    The influences of impurity levels, grain size, and tensile strength on in-service temper embrittlement of CrMoV steels have been investigated. The samples for this study were taken from steam turbine CrMoV rotors which had operated for 15 to 26 years. The effects of grain size and tensile strength on embrittlement susceptibility were separated by evaluating the embrittlement behavior of two rotor forgings made from the same ingot after an extended step-cooling treatment. Among the residual elements in the steels, only P produces a significant embrittlement. The variation of P and tensile strength has no effect on in-service temper embrittlement susceptibility, as measured by the shift in fracture appearance transition temperature (FATT). However, the prior austenite grain size plays a major role in service embrittlement. The fine grain steels with a grain size of ASTM No. 9 or higher are virtually immune to in-service embrittlement. In steels having duplex grain sizes, embrittlement susceptibility is controlled by the size of coarser grains. For a given steel chemistry, the coarse grain steel is more susceptible to in-service embrittlement, and a decrease in ASTM grain size number from 4 to 0/1 increases the shift in FATT by 61 degrees C (10/10 degrees F). It is demonstrated that long-term service embrittlement can be simulated, except in very coarse grain steels, by using the extended step-cooling treatment. The results of step-cooling studies show that the coarse grain rotor steels take longer time during service to reach a fully embrittled state than the fine grain rotor steels

  13. THE EFFECT OF GRAIN SIZE ANALYSIS FOR POSTFLOTATION SEDIMENTS ON ASSESSMENT OF THEIR APPLICABILITY IN EARTH STRUCTURE CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Magdalena Walczak

    2016-02-01

    Full Text Available This paper presents the comparison of the results of laboratory tests of postflotation sediments grain size distributions, originating from the copper ore flotation process. The paper also presents the results of statistical analysis conducted on grain size parameters. Statistically significant differences were shown in the assessment of grain size distribution, which result from the selection of the research procedure. A comparison of results recorded for wet and dry sieving methods was conducted within a group of the same samples of postflotation deposits. The selection of an appropriate research method and procedure should also be preceded by a thorough analysis and preliminary determination of the soil medium. A correctly determined grain size distribution is essential for its further classification and then, through grain size criteria, for the assessment of suitability of the analysed material in earth structure construction. This problem is of even greater importance in the case of anthropogenic soils, which are used to construct dams or seal hydroengineering structures. In practical terms knowledge on the limitations resulting from the application of a given method prevents erroneous conclusions on research results. This problem may be perfectly illustrated based on the selection of a method assessing parameters and soil grain size distributions.

  14. Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics for capacitor applications

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2018-03-01

    Full Text Available Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics, prepared by solid state method, were investigated with non-stoichiometric level and various La2O3 content, using XRD, SEM and LCR measuring system. With an increase of non-stoichiometric level, the unit cell volumes of perovskite lattices for the single phase Ti-rich barium strontium titanate ceramics increased due to the decreasing A site vacancy concentration V″A. The unit cell volume increased and then decreased slightly with the increasing La2O3 content. Relatively high non-stoichiometric level and high La2O3 content in Ti-rich barium strontium titanate ceramics contributed to the decreased average grain size as well as fine grain size distribution, which correspondingly improved the temperature stability of the relative dielectric constant. The relative dielectric constant єrRT, dielectric loss tanδRT and the maximum relative dielectric constant єrmax decreased and then increased with the increasing non-stoichiometric level. With the increase of La2O3 doping content, the relative dielectric constant єrRT increased initially and then decreased. The maximum relative dielectric constant єrmax can be increased by applying low doping content of La2O3 in Ti-rich barium strontium titanate ceramics due to the increased spontaneous polarization.

  15. Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition

    Science.gov (United States)

    Sun, Shi-Kuan; Stennett, Martin C.; Corkhill, Claire L.; Hyatt, Neil C.

    2018-03-01

    Near single phase zirconolite ceramics, prototypically CaZrTi2O7, were fabricated by reactive spark plasma sintering (RSPS), from commercially available CaTiO3, ZrO2 and TiO2 reagents, after processing at 1200 °C for only 1 h. Ceramics were of theoretical density and formed with a controlled mean grain size of 1.9 ± 0.6 μm. The reducing conditions of RSPS afforded the presence of paramagnetic Ti3+, as demonstrated by EPR spectroscopy. Overall, this study demonstrates the potential for RSPS to be a disruptive technology for disposition of surplus separated plutonium stockpiles in ceramic wasteforms, given its inherent advantage of near net shape products and rapid throughput.

  16. Plastic strain and grain size effects in the surface roughening of a model aluminum alloy

    Science.gov (United States)

    Moore, Eric Joseph

    To address issues surrounding improved automotive fuel economy, an experiment was designed to study the effect of uniaxial plastic tensile deformation on surface roughness and on slip and grain rotation. Electron backscatter diffraction (EBSD) and scanning laser confocal microscopy (SLCM) were used to track grain size, crystallographic texture, and surface topography as a function of incremental true strain for a coarse-grained binary alloy that is a model for AA5xxx series aluminum alloys. One-millimeter thick sheets were heat treated at 425°C to remove previous rolling texture and to grow grains to sizes in the range ˜10-8000 mum. At five different strain levels, 13 sample regions, containing 43 grains, were identified in both EBSD and SLCM micrographs, and crystallographic texture and surface roughness were measured. After heat treatment, a strong cube texture matrix emerged, with bands of generally non-cube grains embedded parallel to the rolling direction (RD). To characterize roughness, height profiles from SLCM micrographs were extracted and a filtered Fourier transform approach was used to separate the profiles into intergranular (long wavelength) and intragranular (short wavelength) signatures. The commonly-used rms roughness parameter (Rq) characterized intragranular results. Two important parameters assess intergranular results in two grain size regimes: surface tilt angle (Deltatheta) and surface height discontinuity (DeltazH) between neighboring grains at a boundary. In general, the magnitude of Rq and Deltatheta increase monotonically with strain and indicate that intergranular roughness is the major contributor to overall surface roughness for true strains up to epsilon = 0.12. Surface height discontinuity DeltazH is defined due to exceptions in surface tilt angle analyses. The range of observed Deltatheta= 1-10° are consistent with the observed 3-12° rotation of individual grains as measured with EBSD. For some grain boundaries with Deltatheta

  17. Grain size effect on Sr and Nd isotopic compositions in eolian dust. Implications for tracing dust provenance and Nd model age

    International Nuclear Information System (INIS)

    Feng Jinliang; Zhu Liping; Zhen Xiaolin; Hu Zhaoguo

    2009-01-01

    Strontium (Sr) and neodymium (Nd) isotopic compositions enable identification of dust sources and reconstruction of atmospheric dispersal pathways. The Sr and Nd isotopic compositions in eolian dust change systematically with grain size in ways not yet fully understood. This study demonstrates the grain size effect on the Sr and Nd isotopic compositions in loess and 2006 dust fall, based on analyses of seven separated grain size fractions. The analytical results indicate that Sr isotopic ratios strongly depend on the grain size fractions in samples from all types of eolian dust. In contrast, the Nd isotopic ratios exhibit little variation in loess, although they vary significantly with grain size in samples from a 2006 dust fall. Furthermore, Nd model ages tend to increase with increasing grain size in samples from all types of eolian dust. Comparatively, Sr isotopic compositions exhibit high sensitively to wind sorting, while Nd isotopic compositions show greater sensitively to dust origin. The principal cause for the different patterns of Sr and Nd isotopic composition variability with grain size appears related to the different geochemical behaviors between rubidium (Rb) and Sr, and the similar geochemical behaviors between samarium (Sm) and Nd. The Nd isotope data indicate that the various grain size fractions in loess have similar origins for each sample. In contrast, various provenance components may separate into different grain size fractions for the studied 2006 dust fall. The Sr and Nd isotope compositions further confirm that the 2006 dust fall and Pleistocene loess in Beijing have different sources. The loess deposits found in Beijing and those found on the Chinese Loess Plateau also derive from different sources. Variations between Sr and Nd isotopic compositions and Nd model ages with grain size need to be considered when directly comparing analyses of eolian dust of different grain size. (author)

  18. Estimation of mean grain size of seafloor sediments using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    De, C.; Chakraborty, B.

    The feasibility of an artificial neural network based approach is investigated to estimate the values of mean grain size of seafloor sediments using four dominant echo features, extracted from acoustic backscatter data. The acoustic backscatter data...

  19. Influence of the grain size on deleterious phase precipitation in superduplex stainless steel UNS S32750

    International Nuclear Information System (INIS)

    Pardal, J.M.; Tavares, S.S.M.; Fonseca, M. Cindra; Souza, J.A. de; Corte, R.R.A.; Abreu, H.F.G. de

    2009-01-01

    In the present work, the effect of grain size on deleterious phase precipitation in a superduplex stainless steel was investigated. The materials studied were heat treated isothermally at 800 deg. C, 850 deg. C and 900 deg. C for times up to 120 min. Hardness tests, light optical microscopy, scanning electron microscopy and X-ray diffraction were carried out to detect sigma and other harmful precipitate phases. The ferritic and austenitic grain sizes in the solution treated condition of the two steels analyzed were measured by electron backscattered diffraction (EBSD). Cyclic polarization corrosion tests were performed to evaluate the effect of grain size on the corrosion resistance. The results presented show that the precipitation of deleterious phases such as χ, σ and γ 2 , which can occur during welding and forming operations, is retarded by grain growth

  20. Effect of texture and grain size on the residual stress of nanocrystalline thin films

    Science.gov (United States)

    Cao, Lei; Sengupta, Arkaprabha; Pantuso, Daniel; Koslowski, Marisol

    2017-10-01

    Residual stresses develop in thin film interconnects mainly as a result of deposition conditions and multiple thermal loading cycles during the manufacturing flow. Understanding the relation between the distribution of residual stress and the interconnect microstructure is of key importance to manage the nucleation and growth of defects that can lead to failure under reliability testing and use conditions. Dislocation dynamics simulations are performed in nanocrystalline copper subjected to cyclic loading to quantify the distribution of residual stresses as a function of grain misorientation and grain size distribution. The outcomes of this work help to evaluate the effect of microstructure in thin films failure by identifying potential voiding sites. Furthermore, the simulations show how dislocation structures are influenced by texture and grain size distribution that affect the residual stress. For example, when dislocation loops reach the opposite grain boundary during loading, these dislocations remain locked during unloading.

  1. The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates

    Science.gov (United States)

    Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.

    2017-12-01

    The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.

  2. Effect of grain size upon the fatigue-crack propagation behavior of alloy 718 under hold-time cycling at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    James, L A

    1986-01-01

    Fatigue-crack propagation tests were conducted in air at 538/sup 0/C on several specimens of Alloy 718 representing several different producers, melt practices and product forms. This variety resulted in a range of grain sizes from ASTM Size 5 to 11.5. Tests at low cyclic frequency employing a tensile hold-time revealed a relationship between crack growth rates and grain size: higher growth rates were associated with fine-grain material and lower rates with larger-grain material. The lowest crack growth rates were associated with a necklace microstructure, whereby large grains are associated with necklaces of very small grains.

  3. Effect of hot band grain size on development of textures and magnetic properties in 2.0% Si non-oriented electrical steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.M. [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Huh, M.Y., E-mail: myhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Lee, H.J.; Park, J.T.; Kim, J.S. [Electrical Steel Sheet Research Group, Technical Research Laboratories, POSCO, Goedong-dong, Pohang (Korea, Republic of); Shin, E.J. [Korea Atomic Energy Research Institute, Neutron Science Division, Daejeon 305-353 (Korea, Republic of); Engler, O. [Hydro Aluminium Rolled Products GmbH, Research and Development Bonn, P.O. Box 2468, D-53014 Bonn (Germany)

    2015-12-15

    The effect of hot band grain size on the development of crystallographic texture and magnetic properties in non-oriented electrical steel sheet was studied. After cold rolling the samples with different initial grain sizes displayed different microstructures and micro-textures but nearly identical macro-textures. The homogeneous recrystallized microstructure and micro-texture in the sample having small grains caused normal continuous grain growth. The quite irregular microstructure and micro-texture in the recrystallized sample with large initial grain size provided a preferential growth of grains in 〈001〉//ND and 〈113〉//ND which were beneficial for developing superior magnetic properties. - Highlights: • We produced hot bands of electrical steel with different grain size but same texture. • Hot band grain size strongly affected cold rolling and subsequent annealing textures. • Homogeneous recrystallized microstructure caused normal continuous grain growth. • Irregular recrystallized microstructure led to selective growth of <001>//ND grains. • Hot band with large grains was beneficial for superior magnetic properties.

  4. Study on the Effect of Diamond Grain Size on Wear of Polycrystalline Diamond Compact Cutter

    Science.gov (United States)

    Abdul-Rani, A. M.; Che Sidid, Adib Akmal Bin; Adzis, Azri Hamim Ab

    2018-03-01

    Drilling operation is one of the most crucial step in oil and gas industry as it proves the availability of oil and gas under the ground. Polycrystalline Diamond Compact (PDC) bit is a type of bit which is gaining popularity due to its high Rate of Penetration (ROP). However, PDC bit can easily wear off especially when drilling hard rock. The purpose of this study is to identify the relationship between the grain sizes of the diamond and wear rate of the PDC cutter using simulation-based study with FEA software (ABAQUS). The wear rates of a PDC cutter with a different diamond grain sizes were calculated from simulated cuttings of cutters against granite. The result of this study shows that the smaller the diamond grain size, the higher the wear resistivity of PDC cutter.

  5. Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods

    Science.gov (United States)

    Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.

    2007-01-01

    This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than

  6. Model for evolution of grain size in the rim region of high burnup UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hongxing, E-mail: xiaohongxing2003@163.com; Long, Chongsheng; Chen, Hongsheng

    2016-04-01

    The restructuring process of the high burnup structure (HBS) formation in UO{sub 2} fuel results in sub-micron size grains that accelerate the fission gas swelling, which will raise some concern over the safety of extended the nuclear fuel operation life in the reactor. A mechanistic and engineering model for evolution of grain size in the rim region of high burnup UO{sub 2} fuel based on the experimental observations of the HBS in the literature is presented. The model takes into account dislocations evolution under irradiation and the grain subdivision occur successively at increasing local burnup. It is assumed that the original driving force for subdivision of grain in the HBS of UO{sub 2} fuel is the production and accumulation of dislocation loops during irradiation. The dislocation loops can also be annealed through thermal diffusion when the temperature is high enough. The capability of this model is validated by the comparison with the experimental data of temperature threshold of subdivision, dislocation density and sub-grain size as a function of local burnup. It is shown that the calculated results of the dislocation density and subdivided grain size as a function of local burnup are in good agreement with the experimental results. - Highlights: • A model for evolution of dislocation density and grain size in HBS is proposed. • The dislocation can also be annealed when the temperature is high enough. • Original driving force for subdivision is mostly accumulation of dislocation loops. • The temperature threshold of the subdivision is predicted at 1300–1400 K.

  7. The Grain-size Patchiness of Braided Gravel-Bed Streams - example of the Urumqi River (northeast Tian Shan, China)

    Science.gov (United States)

    Guerit, L.; Barrier, L.; Narteau, C.; Métivier, F.; Liu, Y.; Lajeunesse, E.; Gayer, E.; Meunier, P.; Malverti, L.; Ye, B.

    2014-02-01

    In gravel-bed rivers, sediments are often sorted into patches of different grain-sizes, but in braided streams, the link between this sorting and the channel morpho-sedimentary elements is still unclear. In this study, the size of the bed sediment in the shallow braided gravel-bed Urumqi River is characterized by surface-count and volumetric sampling methods. Three morpho-sedimentary elements are identified in the active threads of the river: chutes at flow constrictions, which pass downstream to anabranches and bars at flow expansions. The surface and surface-layer grain-size distributions of these three elements show that they correspond to only two kinds of grain-size patches: (1) coarse-grained chutes, coarser than the bulk river bed, and (2) finer-grained anabranches and bars, consistent with the bulk river bed. In cross-section, the chute patches are composed of one coarse-grained top layer, which can be interpreted as a local armour layer overlying finer deposits. In contrast, the grain size of the bar-anabranch patches is finer and much more homogeneous in depth than the chute patches. Those patches, which are features of lateral and vertical sorting associated to the transport dynamics that build braided patterns, may be typical of active threads in shallow gravel-bed rivers and should be considered in future works on sorting processes and their geomorphologic and stratigraphic results.

  8. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Science.gov (United States)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  9. Radon diffusion through sandy construction materials: effect of temperature and grain size

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.; Chakarvarti, S.K.

    2013-01-01

    Radon appears mainly by diffusion process from the point of origin, say, under ground soil and building materials used in construction of house following alpha decay of radium. The radon diffusion through different building construction materials can be compared by calculating radon diffusion coefficient for them. In the present work, we studied the effect of temperature and grain size on radon diffusion of coarse sand as construction material. The coarse sand was collected from Yamuna river bed, originated from Himalayas. For this study, a steel pipe of diameter 10 cm and length 30 cm., divided into four sectors of equal size, was filled in different sectors with different grain sized (800, 600 and 425 μm) sand as building construction material. A number LR-115 type-II particle track detectors were placed with inter-detector distance of 10 cm in the sectorial compartments. The bottom end of steel pipe assembly was fixed with a radon chamber containing radon source with upper end sealed with a cap. The whole arrangement was then placed into a sand-clay pipe wrapped around by a controlled heating filament, resulting into temperature variations from 25℃ to 60℃. After 100 days interval, the detectors were retrieved processed, and the α - tracks counted for the calculation of radon concentration. It is observed that the radon diffusion coefficient increases with the increase in temperature and decreases with decrease in grain size of the coarse sand. (author)

  10. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O3 lead-free ceramics

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Ruan, Xuezheng; Zhao, Kunyun; He, Xueqing; Zeng, Jiangtao; Li, Yongsheng; Zheng, Liaoying; Park, Chul Hong; Li, Guorong

    2015-01-01

    Highlights: • Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d 33 (512 pC/N) and a planar electromechanical coupling factor k p (0.49), which have the characteristics of soft Pb(Zr,Ti)O 3 (PZT) piezoceramic, on the other hand, the mechanical quality factor Q m is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature

  11. Structure and properties of hot-pressed boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chenko, M S; Tkachenko, IU G; Koval' chuk, V V; Iurchenko, D Z; Satanin, S V [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1990-07-01

    The microstructure and strength of B4C-TiB2-TiO{sub 2} ceramics samples, hot-compacted from a mixture of two types of B4C-TiO2-C powder, are examined. The two types are obtained by combining boric acid with either sucrose or carbon black. The grain-sizes of the two powders are found to be distinctly different from one another both before and after the grinding procedure and the degree of dispersion is not high. The strength tests show 600 MPa, the Vicker's hardness is 34.5 GPa, and the crack resistance coefficient of ceramics containing 15 percent TiB2 by mass is 5 MPa m exp 1/2. The use of soluble boron carbide powder helps achieve higher levels of strength and crack resistance. 5 refs.

  12. Simulation of the measure of the microparticle size distribution in two dimensions

    International Nuclear Information System (INIS)

    Lameiras, F.S.; Silva Neto, P.P. da

    1987-01-01

    For the nuclear ceramic industry, the determination of the porous size distribution is very important to predict the dimensional thermal stability of uranium dioxide sintered pellets. The determination of the grain size distribution is still very important to predict the operation behavior of these pellets, as well as to control the fabrication process. The Saltykov method is commonly used to determine the microparticles size distribution. A simulation for two-dimensions, using this method and the size distribution of cords to calculate the area distribution [pt

  13. Grain size analysis of beach sediment along the barrier bar lagoon ...

    African Journals Online (AJOL)

    Grain size analysis of beach sediment along the barrier bar lagoon coastal system, Lagos, Nigeria; its implication on coastal erosion. R Abdulkarim, EA Akinnigbagbe, DO Imo, MT Imhansoloeva, VO Aniebone, MP Ibitola, BR Faleye, O Shonde, YJ Appia ...

  14. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    International Nuclear Information System (INIS)

    Du, Qiang; Li, Yanjun

    2015-01-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework. (paper)

  15. Cohesive zone model for intergranular slow crack growth in ceramics: influence of the process and the microstructure

    International Nuclear Information System (INIS)

    Romero de la Osa, M; Olagnon, C; Chevalier, J; Estevez, R; Tallaron, C

    2011-01-01

    Ceramic polycrystals are prone to slow crack growth (SCG) which is stress and environmentally assisted, similarly to observations reported for silica glasses. The kinetics of fracture are known to be dependent on the load level, the temperature and the relative humidity. In addition, evidence is available on the influence of the microstructure on the SCG rate with an increase in the crack velocity with decreasing the grain size. Crack propagation takes place beyond a load threshold, which is grain size dependent. We present a cohesive zone model for the intergranular failure process. The methodology accounts for an intrinsic opening that governs the length of the cohesive zone and allows the investigation of grain size effects. A rate and temperature-dependent cohesive model is proposed (Romero de la Osa M, Estevez R et al 2009 J. Mech. Adv. Mater. Struct. 16 623–31) to mimic the reaction–rupture mechanism. The formulation is inspired by Michalske and Freiman's picture (Michalske and Freiman 1983 J. Am. Ceram. Soc. 66 284–8) together with a recent study by Zhu et al (2005 J. Mech. Phys. Solids 53 1597–623) of the reaction–rupture mechanism. The present investigation extends a previous work (Romero de la Osa et al 2009 Int. J. Fracture 158 157–67) in which the problem is formulated. Here, we explore the influence of the microstructure in terms of grain size, their elastic properties and residual thermal stresses originating from the cooling from the sintering temperature down to ambient conditions. Their influence on SCG for static loadings is reported and the predictions compared with experimental trends. We show that the initial stress state is responsible for the grain size dependence reported experimentally for SCG. Furthermore, the account for the initial stresses enables the prediction of a load threshold below which no crack growth is observed: a crack arrest takes place when the crack path meets a region in compression

  16. High temperature structural ceramic materials manufactured by the CNTD process

    International Nuclear Information System (INIS)

    Stiglich, J.J. Jr.; Bhat, D.G.; Holzl, R.A.

    1980-01-01

    Controlled Nucleation Thermochemical Deposition (CNTD) has emerged from classical chemical deposition (CVD) technology. This paper describes the techniques of thermochemical grain refinement. The effects of such refinement on mechanical properties of materials at room temperature and at elevated temperatures are outlined. Emphasis is given to high temperature structural ceramic materials such as SiC, Si 3 N 4 , AlN, and TiB 2 and ZrB 2 . An example of grain refinement accompanied by improvements in mechanical properties is SiC. Grain sizes of 500 to 1000 A have been observed in CNTD SiC with room temperature MOR of 1380 to 2070 MPa (4 pt bending) and MOR of 3450 to 4140 MPa (4 pt bending) at 1350 0 C. Various applications of these materials to the solution of high temperature structural problems are described. (author)

  17. The effect of surface albedo and grain size distribution on ...

    African Journals Online (AJOL)

    Sand dams are very useful in arid and semi arid lands (ASALs) as facilities for water storage and conservation. Soils in ASALs are mainly sandy and major water loss is by evaporation and infiltration. This study investigated the effect of sand media characteristics, specifically surface albedo, grain size and stratification on ...

  18. Tribological Characteristics of Tungsten Carbide Reinforced Arc Sprayed Coatings using Different Carbide Grain Size Fractions

    Directory of Open Access Journals (Sweden)

    W. Tillmann

    2017-06-01

    Full Text Available Tungsten carbide reinforced coatings play an important role in the field of surface engineering to protect stressed surfaces against wear. For thermally sprayed coatings, it is already shown that the tribological properties get mainly determined by the carbide grain size fraction. Within the scope of this study, the tribological characteristics of iron based WC-W2C reinforced arc sprayed coatings deposited using cored wires consisting of different carbide grain size fractions were examined. Microstructural characteristics of the produced coatings were scrutinized using electron microscopy and x-ray diffraction analyses. Ball-on-disk test as well as Taber Abraser and dry sand rubber wheel test were employed to analyze both the dry sliding and the abrasive wear behavior. It was shown that a reduced carbide grain size fraction as filling leads to an enhanced wear resistance against sliding. In terms of the Taber Abraser test, it is also demonstrated that a fine carbide grain size fraction results in an improved wear resistant against abrasion. As opposed to that, a poorer wear resistance was found within the dry sand rubber wheel tests. The findings show that the operating mechanisms for both abrasion tests affect the stressed surface in a different way, leading either to microcutting or microploughing.

  19. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  20. Rapid preparation of ceramic moulds for medium-sized superalloy castings with magnesia-phosphate-bonded bauxite-mullite investments

    Directory of Open Access Journals (Sweden)

    Li Tingzhong

    2010-11-01

    Full Text Available Phosphate-bonded investments have already been widely utilized in dental restoration and micro-casting of artistic products for its outstanding rapid setting and high strength. However, the rapid setting rate of investment slurry has up to now been a barrier to extend the use of such slurry in preparation of medium-sized ceramic moulds. This paper proposes a new process of rapid fabrication of magnesia-phosphate-bonded investment ceramic moulds for medium-sized superalloy castings utilizing bauxite and mullite as refractory aggregates. In order to determine the properties of magnesia-phosphate-bonded bauxite-mullite investments (MPBBMI, a series of experiments were conducted, including modification of the workable time of slurry by liquid(mL/powder(g(L/P ratio and addition of boric acid as retard agent and sodium tri-polyphosphate (STP as strengthening agent, and adjustment of bauxite (g/mullite(g(B/M ratio for mechanical strength. Mechanical vibration was applied to improve initial setting time and fluidity when pouring investment slurry; then an intermediate size ceramic mould for superalloy castings was manufactured by means of this rapid preparing process with MPBBMI material. The results showed that the MPBBMI slurry exhibits proper initial setting time and excellent fluidity when the L/P ratio is 0.64 and the boric acid content is 0.88wt.%. The fired specimens made from the MPBBMI material demonstrated adequate compression strength to withstand impact force of molten metal when the B/M ratio is 0.89 and the STP content is 0.92wt.%. The experimental results confirmed the feasibility of the proposed rapid fabricating process for medium-sized ceramic moulds with MPBBMI material by appropriate measures.

  1. Precision diamond grinding of ceramics and glass

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  2. Grain Size and Parameter Recovery with TIMSS and the General Diagnostic Model

    Science.gov (United States)

    Skaggs, Gary; Wilkins, Jesse L. M.; Hein, Serge F.

    2016-01-01

    The purpose of this study was to explore the degree of grain size of the attributes and the sample sizes that can support accurate parameter recovery with the General Diagnostic Model (GDM) for a large-scale international assessment. In this resampling study, bootstrap samples were obtained from the 2003 Grade 8 TIMSS in Mathematics at varying…

  3. Method of production of granulates of ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1975-01-01

    To obtain a classified granulate of ceramic nuclear fuels with narrow grain size spectrum, the nuclear fuel powder is made into a slurry in a non-aqueous solvent with a water content as low as possible (e.g. chlorated hydrocarbon), a binder added to it, and spray-dried. The dry granulate desired is already obtained by this working stage. Polybutyl methacrylate in dibutylphthalate is proposed as binder. An example in which uranium dioxide powder is slurried in trichloro-ethylene is described in detail. (UWI/LH) [de

  4. Development Support Environment of Business ApplicationsBased on a Multi-Grain-Size Repository

    Science.gov (United States)

    Terai, Koichi; Izumi, Noriaki; Yamaguchi, Takahira

    In order to build the Web-based application as a shopping site on the Web, various ideas from the different viewpoints are required, such as enterprise modeling, workflow modeling, software development, and so on. From the above standpoint, this paper proposes an integrated environment to support the whole development process of analysis, design and implementation of business application. In order to reuse know-hows of various ideas in the business application development, we device a multi-grain-size repository, which consists of coarse-, middle-, and fine-grain-size repositories that correspond to the enterprise models, workflow models, and software models, respectively. We also provide a methodology that rebuilds heterogeneous information resources required for the business applications development into a multi-grain-size repository based on ontologies. The contents of the repositories are modeled by the is-a, has-a, and E-R relations, and described by the XML language. We have implemented Java-based prototype environment with the tools dealing with the multi-layered repository and confirmed that it supports us in various phases of business application development including business model manifestation, detailed business model definition and an implementation of business software applications.

  5. Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2017-06-01

    Full Text Available SiBCN ceramics were introduced into porous Si3N4 ceramics via a low-pressure chemical vapor deposition and infiltration (LPCVD/CVI technique, and then the composite ceramics were heat-treated from 1400 °C to 1700 °C in a N2 atmosphere. The effects of annealing temperatures on microstructure, phase evolution, dielectric properties of SiBCN ceramics were investigated. The results revealed that α-Si3N4 and free carbon were separated below 1700 °C, and then SiC grains formed in the SiBCN ceramic matrix after annealing at 1700 °C through a phase-reaction between free carbon and α-Si3N4. The average dielectric loss of composites increased from 0 to 0.03 due to the formation of dispersive SiC grains and the increase of grain boundaries.

  6. Grain size effects in multiphase steels assisted by transformation-induced plasticity

    NARCIS (Netherlands)

    Turteltaub, S.R.; Suiker, A.S.J.

    2006-01-01

    The influence of the austenitic grain size on the overall stress-strain behavior in a multiphase carbon steel is analyzed through three-dimensional finite element simulations. A recently developed multiscale martensitic transformation model is combined with a plasticity model to simulate the

  7. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  8. Determination of hydraulic conductivity from grain-size distribution for different depositional environments

    KAUST Repository

    Rosas, Jorge

    2013-06-06

    Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman-Kozeny) commonly used to estimate hydraulic conductivity from grain-size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1m/day for the beach subgroups, 3.4 to 7.1m/day for dune subgroups, and 2.2 to 11m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23m/day. © 2013, National Ground Water Association.

  9. Determination of hydraulic conductivity from grain-size distribution for different depositional environments

    KAUST Repository

    Rosas, Jorge; Lopez Valencia, Oliver Miguel; Missimer, Thomas M.; Coulibaly, Kapo M.; Dehwah, Abdullah; Sesler, Kathryn; Rodri­ guez, Luis R. Lujan; Mantilla, David

    2013-01-01

    Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman-Kozeny) commonly used to estimate hydraulic conductivity from grain-size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1m/day for the beach subgroups, 3.4 to 7.1m/day for dune subgroups, and 2.2 to 11m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23m/day. © 2013, National Ground Water Association.

  10. Fiscal 1998 intellectual infrastructure project utilizing civil sector functions. Research and development project on prompt-effect type intellectual infrastructure creation (Research and development concerning relations between sintered body textural structure and material characteristics in fine ceramics); 1998 nendo minkan no kino wo katsuyoshita chiteki kiban jigyo seika hokokusho. Sokkogata chiteki kiban sosei kenkyu kaihatsu jigyo (fine ceramics no shoketsutai soshiki kozo to zairyo tokusei tono kankei ni kansuru kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development was carried out involving fine ceramic sintered body textural structure evaluation methods for the development of process technologies for achieving higher quality and lower cost. Studies centered about a method for evaluating coarse pores and coarse grains in sintered bodies, relations between sintered body fracture strength and textural structure, and the standardization of evaluation methods. As the result, an evaluation method for observing pore structures in a sintered body flake specimen under an optical microscope and another for observing coarse grains under a polarization microscope were proposed. As for the effect of coarse defects on the fracture strength of ceramics, it was demonstrated experimentally and theoretically that coarse defects several tens of micrometers in size greatly affected the fracture strength. In the study of methods for sintered body grain size evaluation, findings were obtained about the processing of the specimen surface. (NEDO)

  11. Synthesis and electrical characterization of BaZr0.9Ho0.1O3-δ electrolyte ceramic for IT - SOFCs

    Science.gov (United States)

    Saini, Deepash S.; Singh, Lalit K.; Bhattacharya, D.

    2018-04-01

    A cost-effective modified combustion method using citric acid and glycine has recently been developed to synthesize high quality, and nanosized BaZr0.9Ho0.1O3 ceramic powder. BaZr0.9Ho0.1O3-δ ceramic powder was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). XRD pattern of BaZr0.9Ho0.1O3-δ ceramic sintered at 1600 °C has shown that pure phase of BaZr0.9Ho0.1O3-δ with cubic Pm3¯m space group symmetry. The transmission electron microscopic investigation has shown that the particle size of the powder calcined at 1100 °C was in the range 30-80 nm. The FESEM image of sintered pellet at 1600 °C for 4 h reveals porous nature of BaZr0.9Ho0.1O3-δ with 83.7 relative density. Impedance analysis reveal three type relaxations in the temperature range 250 °C to 500 °C as studied at different frequencies over 100 Hz to 1 MHz in air. The grain boundary conductivity of BaZr0.9Ho0.1O3-δ ceramic is found lower then grain (bulk) conductivity due to core-space charge layer behavior in grain boundary.

  12. Ferroelectric and dielectric properties of Sr2-x(Na, K)xBi4Ti5O18 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Chen Qian; Xu Zhijun; Chu Ruiqing; Hao Jigong; Zhang Yanjie; Li Guorong; Yin Qingrui

    2010-01-01

    (Na, K)-doped Sr 2 Bi 4 Ti 5 O 18 (SBTi) bismuth layer structure ferroelectric ceramics were prepared by the solid-state reaction method. Pure bismuth-layered structural Sr 2-x (Na, K) x Bi 4 Ti 5 O 18 (x=0.1, 0.2, 0.3, and 0.4) ceramics with uniform grain size were obtained in this work. The effects of (Na, K)-doping on the dielectric, ferroelectric and piezoelectric properties of SBTi ceramics were investigated. Results showed that (Na, K)-doping caused the Curie temperature of SBTi ceramics to shift to higher temperature and enhanced the ferroelectric and piezoelectric properties. At x=0.2, the ceramics exhibited optimum properties with d 33 =20 pC/N, P r =10.3 μC/cm 2 , and T c =324 o C.

  13. H2O grain size and the amount of dust in Mars' residual North polar cap

    Science.gov (United States)

    Kieffer, H.H.

    1990-01-01

    In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author

  14. Effect of texture and grain size on magnetic flux density and core loss in non-oriented electrical steel containing 3.15% Si

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.M.; Park, S.Y. [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Huh, M.Y., E-mail: myhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Kim, J.S. [Electrical Steel Sheet Research Group, Technical Research Laboratories, POSCO, Goedong-dong, Pohang (Korea, Republic of); Engler, O. [Hydro Aluminium Rolled Products GmbH, R and D Center Bonn, P.O. Box 2468, D-53014 Bonn (Germany)

    2014-03-15

    In an attempt to differentiate the impact of grain size and crystallographic texture on magnetic properties of non-oriented (NO) electrical steel sheets, samples with different grain sizes and textures were produced and analyzed regarding magnetic flux density B and core loss W. The textures of the NO electrical steel samples could be precisely quantified with the help of elliptical Gaussian distributions. In samples with identical textures, small grain sizes resulted in about 15% higher core loss W than larger grains, whereas grain size only moderately affected the magnetic flux density B. In samples having nearly the same grain size, a correlation of the magneto-crystalline anisotropic properties of B and W with texture was obtained via the anisotropy parameter A(h{sup →}). With increasing A(h{sup →}) a linear decrease of B and a linear increase of W were observed. - Highlights: • We produced electrical steel sheets having different grain size and texture. • Magnetic flux density B and core loss W were varied with grain size and texture. • Correlation of B and W with texture was established via anisotropy parameter A(h{sup →}). • With increasing A(h{sup →}) a linear decrease of B and a linear increase of W were observed. • Grain size mainly affected W with only minor impact on B.

  15. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    Science.gov (United States)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  16. Effects of Sr2+ doping on the electrical properties of (Bi0.5Na0.50.94Ba0.06TiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Amrita Singh

    2015-03-01

    Full Text Available The influence of SrTiO3 addition on the microstructure and various electrical properties of (Bi0.5Na0.50.94Ba0.06TiO3 (BNTBT6 ceramics, fabricated by a conventional high temperature solid state reaction, was investigated. Analysis of X-ray diffraction patterns revealed the formation of phase pure materials with tetragonal unit cell structure, tetragonality parameter c/a in the interval from 0.9940 to 1.0063 and crystallite sizes ranging from 33–76 nm for addition of 0.2 to 1 wt.% of SrTiO3. SEM studies indicated that Sr2+ doping led to decrease in grain size and non-homogeneity of grain distribution for higher SrTiO3 amount (>0.6 wt.%. Complex impedance, modulus, and conductivity studies indicated the presence of grains and grain boundary contribution, non-Debye type of relaxation and NTCR behaviour of the test ceramic samples. Temperature dependent real part of complex permittivity showed peaks at 475 °C and the dielectric loss tangent showed peaks corresponding to 125 °C and 475 °C for almost all compositions. AC activation energies, computed using Arrhenius relation in the temperature range of 325–500 °C for the BNTBT6 ceramic compositions having SrTiO3 concentration from 0.2 to 1.0 wt.%, were seen to have maximal values at the lowest measurement frequency. Amongst the different chosen doped BNTBT6 ceramic compositions, the composition having 0.6 wt.% of SrTiO3 showed the best ferroelectric and piezoelectric response with maximum value of Pr (8.24 µC/cm2, minimum value of Ec (5.73 kV/mm and maximum d33 value (∼46 pC/N.

  17. Model for phonon transmission through a NbN grain-size distribution: Comparison with tunneling-spectroscopy observations

    International Nuclear Information System (INIS)

    Chicault, R.; Joly, Y.

    1990-01-01

    Transport properties of phonons in granular NbN thin film with left-angle 111 right-angle texture are discussed. We propose a model in which each grain has an acoustic resonance when phonons propagate parallel to the film and where a coupling through the amorphous boundaries exists. A statistical study shows that the most homogeneous chains in the grain stack are selected because of the strong efficiency of their transport properties and that they give a fine structure of phonon modes even if the grain-size distribution is quite large. A reasonable agreement is obtained between our tunneling-spectroscopy experiments and the model. A typical experimental result has been fitted using an inelastic phonon-electron-interaction mean free path Λ ph ∼215 nm and a mean grain size d M ∼25.7 nm, the full width at half maximum of the grain distribution being 14 nm

  18. National Marine Fisheries Service Grain Size Data from the Baltimore Canyon Trough

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Grain size analyses produced by Robert Reid of the NOAA National Marine Fisheries Service for the NOAA/BLM Outer Continental Shelf Mid-Atlantic Project, Baltimore...

  19. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    Science.gov (United States)

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  20. Ferroelectric properties and diffuse phase transition in (Pb,La)Zrsub(0.55)Tisub(0.45)O3 ceramics

    International Nuclear Information System (INIS)

    Wolters, M.

    1976-01-01

    A preparation technique for (Pb,La)Zrsub(0.55)Tisub(0.45)O 3 ceramics is described by which inhomogeneities are eliminated. Grain size effects are studied and ferroelectric-paraelectric phase-transitions are investigated by means of X-ray diffraction analysis and dielectric weak-field (permittivity) and high-field (dc bias and hysteresis) measurements

  1. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  2. New empirical relationship between grain size distribution and hydraulic conductivity for ephemeral streambed sediments

    KAUST Repository

    Rosas, Jorge

    2014-07-19

    Grain size distribution, porosity, and hydraulic conductivity were determined for 39 sediment samples collected from ephemeral streams (wadis) in western Saudi Arabia. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations commonly used to estimate hydraulic conductivity from grain size analyses. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly with the measured hydraulic conductivity values. Modifications of the empirical equations, including changes to special coefficients and statistical offsets, were made to produce modified equations that considerably improved the hydraulic conductivity estimates from grain size data for wadi sediments. The Chapuis, Hazen, Kozeny, Slichter, Terzaghi, and Barr equations produced the best correlations, but still had relatively high predictive errors. The Chapius equation was modified for wadi sediments by incorporating mud percentage and the standard deviation (in phi units) into a new equation that reduced the predicted hydraulic conductivity error to ±14.1 m/day. The equation is best applied to ephemeral stream samples that have hydraulic conductive values greater than 2 m/day.

  3. Effect of effective grain size on Charpy impact properties of high-strength bainitic steels

    International Nuclear Information System (INIS)

    Shin, Sang Yong; Han, Seung Youb; Lee, Sung Hak; Hwang, Byoung Chul; Lee, Chang Gil

    2008-01-01

    This study is concerned with the effect of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels. Six kinds of steels were fabricated by varying alloying elements and hot-rolling conditions, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron back-scatter diffraction analysis. The tensile test results indicated that the B- or Cu-containing steels had the higher yield and tensile strengths than the B- or Cu-free steels because their volume fractions of bainitic ferrite and martensite were quite high. The B- or Cu-free steels had the higher upper shelf energy than the B- or Cu-containing steels because of their higher volume fraction of granular bainite. In the steel containing 10 ppm B without Cu, the best combination of high strengths, high upper shelf energy, and low energy transition temperature could be obtained by the decrease in the overall effective grain size due to the presence of bainitic ferrite having smaller effective grain size

  4. New empirical relationship between grain size distribution and hydraulic conductivity for ephemeral streambed sediments

    KAUST Repository

    Rosas, Jorge; Jadoon, Khan; Missimer, Thomas M.

    2014-01-01

    Grain size distribution, porosity, and hydraulic conductivity were determined for 39 sediment samples collected from ephemeral streams (wadis) in western Saudi Arabia. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations commonly used to estimate hydraulic conductivity from grain size analyses. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly with the measured hydraulic conductivity values. Modifications of the empirical equations, including changes to special coefficients and statistical offsets, were made to produce modified equations that considerably improved the hydraulic conductivity estimates from grain size data for wadi sediments. The Chapuis, Hazen, Kozeny, Slichter, Terzaghi, and Barr equations produced the best correlations, but still had relatively high predictive errors. The Chapius equation was modified for wadi sediments by incorporating mud percentage and the standard deviation (in phi units) into a new equation that reduced the predicted hydraulic conductivity error to ±14.1 m/day. The equation is best applied to ephemeral stream samples that have hydraulic conductive values greater than 2 m/day.

  5. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  6. Signal or noise? Separating grain size-dependent Nd isotope variability from provenance shifts in Indus delta sediments, Pakistan

    Science.gov (United States)

    Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.

    2017-12-01

    Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (Pakistan. Here we evaluate how grain size effects drive Nd isotope variability and further resolve the total uncertainties associated with Nd isotope compositions of bulk sediments. Results from the Indus delta indicate bulk sediment ɛNd compositions are most similar to the <63 µm fraction as a result of strong mineralogical control on bulk compositions by silt- to clay-sized monazite and/or allanite. Replicate analyses determine that the best reproducibility (± 0.15 ɛNd points) is observed in the 125-250 µm fraction. The bulk and finest fractions display the worst reproducibility (±0.3 ɛNd points). Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such that resolvable provenance-driven trends can be

  7. Modeling the Effect of Grain Size Mixing on Thermal Inertia Values Derived from Diurnal and Seasonal THEMIS Measurements

    Science.gov (United States)

    McCarty, C.; Moersch, J.

    2017-12-01

    Sedimentary processes have slowed over Mars' geologic history. Analysis of the surface today can provide insight into the processes that may have affected it over its history. Sub-resolved checkerboard mixtures of materials with different thermal inertias (and therefore different grain sizes) can lead to differences in thermal inertia values inferred from night and day radiance observations. Information about the grain size distribution of a surface can help determine the degree of sorting it has experienced or it's geologic maturity. Standard methods for deriving thermal inertia from measurements made with THEMIS can give values for the same location that vary by as much as 20% between scenes. Such methods make the assumption that each THEMIS pixel contains material that has uniform thermophysical properties. Here we propose that if a mixture of small and large particles is present within a pixel, the inferred thermal inertia will be strongly dominated by whichever particle is warmer at the time of the measurement because the power radiated by a surface is proportional (by the Stefan-Boltzmann law) to the fourth power of its temperature. This effect will result in a change in thermal inertia values inferred from measurements taken at different times of day and night. Therefore, we expect to see correlation between the magnitude of diurnal variations in inferred thermal inertia values and the degree of grain size mixing for a given pixel location. Preliminary work has shown that the magnitude of such diurnal variation in inferred thermal inertias is sufficient to detect geologically useful differences in grain size distributions. We hypothesize that at least some of the 20% variability in thermal inertias inferred from multiple scenes for a given location could be attributed to sub-pixel grain size mixing rather than uncertainty inherent to the experiment, as previously thought. Mapping the difference in inferred thermal inertias from day and night THEMIS

  8. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    Science.gov (United States)

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  9. Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the 'Mud Current Meter'

    Science.gov (United States)

    McCave, I. N.; Thornalley, D. J. R.; Hall, I. R.

    2017-09-01

    Fine grain-size parameters have been used for inference of palaeoflow speeds of near-bottom currents in the deep-sea. The basic idea stems from observations of varying sediment size parameters on a continental margin with a gradient from slower flow speeds at shallower depths to faster at deeper. In the deep-sea, size-sorting occurs during deposition after benthic storm resuspension events. At flow speeds below 10-15 cm s-1 mean grain-size in the terrigenous non-cohesive 'sortable silt' range (denoted by SS bar , mean of 10-63 μm) is controlled by selective deposition, whereas above that range removal of finer material by winnowing is also argued to play a role. A calibration of the SS bar grain-size flow speed proxy based on sediment samples taken adjacent to sites of long-term current meters set within 100 m of the sea bed for more than a year is presented here. Grain-size has been measured by either Sedigraph or Coulter Counter, in some cases both, between which there is an excellent correlation for SS bar (r = 0.96). Size-speed data indicate calibration relationships with an overall sensitivity of 1.36 ± 0.19 cm s-1/μm. A calibration line comprising 12 points including 9 from the Iceland overflow region is well defined, but at least two other smaller groups (Weddell/Scotia Sea and NW Atlantic continental rise/Rockall Trough) are fitted by sub-parallel lines with a smaller constant. This suggests a possible influence of the calibre of material supplied to the site of deposition (not the initial source supply) which, if depleted in very coarse silt (31-63 μm), would limit SS bar to smaller values for a given speed than with a broader size-spectrum supply. Local calibrations, or a core-top grain-size and local flow speed, are thus necessary to infer absolute speeds from grain-size. The trend of the calibrations diverges markedly from the slope of experimental critical erosion and deposition flow speeds versus grain-size, making it unlikely that the SS bar (or

  10. Photovoltaic effect in ferroelectric ceramics

    Science.gov (United States)

    Epstein, D. J.; Linz, A.; Jenssen, H. P.

    1982-01-01

    The ceramic structure was simulated in a form that is more tractable to correlation between experiment and theory. Single crystals (of barium titanate) were fabricated in a simple corrugated structure in which the pedestals of the corrugation simulated the grain while the intervening cuts could be filled with materials simulating the grain boundaries. The observed photovoltages were extremely small (100 mv).

  11. Advanced ceramic material for high temperature turbine tip seals

    Science.gov (United States)

    Solomon, N. G.; Vogan, J. W.

    1978-01-01

    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.

  12. The influence of tungsten powder grain size on the properties of small bars and thick wires

    International Nuclear Information System (INIS)

    Jesionek, B.; Ludynski, Z.

    1980-01-01

    The object of the investigations was, if possible, to determine the exact significance of the influence of the pressing parameters on the properties of tungsten bars and larger diameter wires, with special reference to the size of the tungsten grains. Tungsten powders, reduced under different conditions and with different grain sizes, were used for the investigations. These powders were pressed in steel dies at three different pressures, 72.5, 108, and 176 MPa, and the pressings were sintered. After sintering, the following properties of the bars were examined: ability to sinter, strength, and grain size. The bars were then worked down to 1.02 mm diameter wire and the following properties measured: tensile strength, plastic properties and the occurence of internal flaws (cracks). Finally, the optimum pressing parameters of the tungsten powder were determined. (Auth.)

  13. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    Science.gov (United States)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only

  14. The effect of oxide particles on the strength and ductility of bulk iron with a bimodal grain size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Casas, C.; Tejedor, R. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Rodríguez-baracaldo, R. [Department of Mechanical Engineering, Universidad Nacional de Colombia, Bogotá. Colombia (Colombia); Benito, J.A., E-mail: Josep.a.benito@upc.edu [Department of Materials Science and Metallurgical Engineering, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, 08036 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain); Cabrera, J.M. [Department of Materials Science and Metallurgical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic de Manresa, Plaça de la Ciencia, 2, 08243 Manresa (Spain)

    2015-03-11

    The strength and ductility of bulk nanostructured and ultrafine-grained iron containing 0.39% oxygen by weight was determined by tensile tests. Samples were obtained by consolidation of milled iron powder at 500 °C. Heat treatments were designed to cover a wide range of grain sizes spanning from 100 to 2000 nm with different percentages of coarse and nanostructured grain areas, which was defined as a bimodal grain size distribution. Transmission electron microscopy was used to determine the diameter, volume fraction and location of oxides in the microstructure. The strength was analysed following two approaches. The first one was based on the strong effect of oxides and involved the use of a mixed particle-grain boundary strengthening model, and the second one was based on simple grain boundary strengthening. The mixed model underestimated the strength of nanostructured samples, whereas the simple grain boundary model worked better. However, for specimens with a bimodal grain size, the fitting of the mixed model was better. In this case, the more effective particle strengthening was related to the dispersion of oxides inside the large ferrite grains. In addition, the bimodal samples showed an acceptable combination of strength and ductility. Again, the ferrite grains containing oxides promoted strain hardening due to the increase in dislocation activity.

  15. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  16. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis

    Science.gov (United States)

    Li, Tao; Li, Tuan-Jie

    2018-04-01

    The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.

  17. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    Science.gov (United States)

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  18. Transparent Lu 2 O 3 :Eu ceramics by sinter and HIP optimization

    Science.gov (United States)

    Seeley, Z. M.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.

    2011-09-01

    Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu 2O 3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP'ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 °C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 °C to reach full density. Vacuum sintering above 1650 °C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 °C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP'ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu 2O 3:Eu showed ˜4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices.

  19. Microstructural and dielectrical characterization of Ho doped BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Marjanović Miloš

    2014-01-01

    Full Text Available The Ho doped BaTiO3 ceramics, with different Ho2O3 content, ranging from 0.01 to 1.0 wt % Ho, were investigated regarding their microstructural and dielectric characteristics. Doped BaTiO3 were prepared using conventional solid state reaction and sintered at 1380°C for four hours. SEM analysis of Ho/BaTiO3 doped ceramics showed that the low doped samples exhibit mainly fairly uniform and homogeneous microstructure with the grain size ranged from 20-40 μm. In the samples with the higher dopant concentration the abnormal grain growth is inhibited and the grain size ranged between 2-10 μm. Measurements of dielectric properties were carried out as a function of temperature up to 180 °C at different frequencies. The samples doped with 0.01wt % of Ho, exhibit the high value of dielectric permittivity (εr = 2160 at room temperature. A nearly flat permittivity-response was obtained in specimens with higher additive content. Using a Curie-Weiss law and modified Curie-Weiss law the Curie constant (C, Curie temperature (Tc and a critical exponent of nonlinearity (g were calculated. The Curie temperature of doped samples were ranged from 128 to 130°C. The Curie constant for all series of samples decrease with increase of dopant concentration and the lowest values were observed on samples doped with 0.01 wt % of holmium. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057: Directed synthesis, structure and properties of multifunctional materials i br. TR 32026

  20. Influence of the initial grain size of silicon on microstructure and mechanical properties of reaction-sintered silicon nitride

    International Nuclear Information System (INIS)

    Heinrich, J.

    1977-01-01

    The influence of the initial grain size of the silicon powder on the microstructure and the resulting mechanical properties are studied. The smaller the grain size of the silicon powders used, the higher will be the degree of reaction at the beginning of the nitridation reaction and the higher the amount of α-modification in the fully nitridated samples. Moreover, the nitrification time can be considerably shortened when fine-grained silicon powders ( [de

  1. Study of parameters of heat treatment in obtaining glass ceramic materials with addition of the industrial waste

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Martins, G.J.M.; Riella, H.G.; Matsinhe, Jonas; Kuhnen, N.C.

    2012-01-01

    The production of materials from crystallization of glass, called glass ceramic, have proved interesting by the possibility of development of different microstructures, with reduced grain size and the presence of residual amorphous phase in different quantities. The method that uses the differential thermal analysis (DTA) provides research on the material properties over a wide temperature range, it's widely applied to crystallization processes of glass ceramic materials. Within this context, this paper aims to study the kinetics of nucleation and crystal growth in glass ceramic materials in the system SiO 2 - Al 2 O 3 -Li 2 O, obtained with the addition of mineral coal bottom ash as source of aluminosilicates, through the technique of differential thermal analysis. (author)

  2. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.

    Science.gov (United States)

    Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha

    2018-07-01

    Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications

    NARCIS (Netherlands)

    Sun, D.G.; Bloemendal, J.; Rea, D.K.; An, Z.S.; Vandenberghe, J.; Lu, H.; Su, R.; Liu, T.S.

    2004-01-01

    Grain-size analysis indicates that Chinese loess generally shows a bimodal distribution with a coarse and a fine component. The coarse component, comprising the main part of the loess, has pronounced kurtosis and is well sorted, which is interpreted to be the product of dust storms generated by

  4. Grain size refinement in nanocrystalline Hitperm-type glass-coated microwires

    International Nuclear Information System (INIS)

    Talaat, A.; Val, J.J. del; Zhukova, V.; Ipatov, M.; Klein, P.; Varga, R.; González, J.; Churyukanova, M.; Zhukov, A.

    2016-01-01

    We present a new-Fe 38.5 Co 38.5 B 18 Mo 4 Cu 1 Hitperm glass-coated microwires obtained by Taylor-Ulitovsky technique with nanocrystalline structure consisting of about 23 nm of BCC α-FeCo and an amorphous precursors in as-prepared samples. Annealing resulted in a considerable decrease of such nano-grains down to (11 nm). Obtained results are discussed in terms of the stress diffusion of limited crystalline growth and the chemical composition. Rectangular hysteresis loops have been observed on all annealed samples that are necessary conditions to obtain fast domain wall propagation. An enhancement of the domain wall velocity as well as mobility after annealing has been obtained due to the structural relaxation of such grains with positive magnetostriction. These structure benefits found in the nanocrystalline Hitperm glass-coated microwires are promising for developing optimal magnetic properties. - Highlights: • Grains size refinement upon annealing. • Enhancement of the domain wall velocity as well as mobility after annealing. • Nanocrystalline structure in as-prepared microwires.

  5. Effect of coarse {gamma} grain size on the dynamic and static recrystallisation during hot working in microalloyed Nb and Nb-Ti steels

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.I.; Abad, R.; Lopez, B.; Rodriguez-Ibabe, J.M. [Centro de Estudios e Investigaciones Tecnicas de Guipuzcoa (CEIT), San Sebastian (Spain)

    1998-10-01

    The effect of coarse austenite grain size on the dynamic and static recrystallisation kinetics of two microalloyed Nb and Nb-Ti steels has been investigated in the present work. To characterize the dynamic recrystallisation behaviour of the austenite, continuous-torsion tests were carried out after the reheating of the specimen at different temperatures in the range 1000-1420 C. It has been observed that the occurrence of dynamic recrystallisation is dependent on the initial grain size and the deformation conditions (temperature and strain-rate). Decreasing values of the Zener-Hollomon parameter (Z) and grain size promotes dynamic recrystallisation. However for the coarser grain sizes no peaks appear on the flow curves above a determined value of Z. This value seems to decrease with increasing the grain size. An equation to predict the {epsilon}{sub p} peak strain for a wide range of grain sizes has been obtained for both steels. The effect of strain on the static recrystallisation of the austenite, having a large grain size, has been also studied. Interrupted-torsion tests were performed to determined the fractional softening. A quadratic dependence of t{sub 0.5} on strain has been observed, denoting a less dependence of recrystallisation on strain than proposed previously by other authors in the range of lower grain sizes. (orig.) 22 refs.

  6. Effect of grain size and arrangement on dynamic damage evolution of ductile metal

    International Nuclear Information System (INIS)

    Qi Mei-Lan; Zhong Sheng; Fan Duan; Zhao Li; He Hong-Liang

    2013-01-01

    Plate-impact experiments have been carried out to examine the effect of grain size and grain arrangement on the damage evolution of ultrapure aluminum. Two groups of samples, “cross-cut“ and “longitudinal-cut,“ are obtained from the rolled aluminum rod along different directions. The peak compressive stress is approximately 1.25 GPa−1.61 GPa, which can cause incipient spall damage that is correlated to the material microstructure. The metallographic analyses of all recovered samples show that nearly all damage nucleates at the grain boundaries, especially those with larger curvature. Moreover, under lower shock stress, the spall strength of the “longitudinal-cut“ sample is smaller than that of the “cross-cut“ sample, because the different grain sizes and arrangement of the two samples cause different nucleation, growth, and coalescence processes. In this study, the difference in the damage distribution between “longitudinal-cut“ and “cross-cut“ samples and the causes for this difference under lower shock-loading conditions are also analyzed by both qualitative and semi-quantitative methods. It is very important for these conclusions to establish a reasonable and perfect equation of damage evolution for ductile metals. (condensed matter: structural, mechanical, and thermal properties)

  7. Size and density sorting of dust grains in SPH simulations of protoplanetary discs

    Science.gov (United States)

    Pignatale, F. C.; Gonzalez, J.-F.; Cuello, Nicolas; Bourdon, Bernard; Fitoussi, Caroline

    2017-07-01

    The size and density of dust grains determine their response to gas drag in protoplanetary discs. Aerodynamical (size × density) sorting is one of the proposed mechanisms to explain the grain properties and chemical fractionation of chondrites. However, the efficiency of aerodynamical sorting and the location in the disc in which it could occur are still unknown. Although the effects of grain sizes and growth in discs have been widely studied, a simultaneous analysis including dust composition is missing. In this work, we present the dynamical evolution and growth of multicomponent dust in a protoplanetary disc using a 3D, two-fluid (gas+dust) smoothed particle hydrodynamics code. We find that the dust vertical settling is characterized by two phases: a density-driven phase that leads to a vertical chemical sorting of dust and a size-driven phase that enhances the amount of lighter material in the mid-plane. We also see an efficient radial chemical sorting of the dust at large scales. We find that dust particles are aerodynamically sorted in the inner disc. The disc becomes sub-solar in its Fe/Si ratio on the surface since the early stage of evolution but sub-solar Fe/Si can be also found in the outer disc-mid-plane at late stages. Aggregates in the disc mimic the physical and chemical properties of chondrites, suggesting that aerodynamical sorting played an important role in determining their final structure.

  8. Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering

    DEFF Research Database (Denmark)

    Zhu, K. N.; Godfrey, A.; Hansen, Niels

    2017-01-01

    Spark plasma sintering (SPS) has been used to prepare fully dense samples of copper in a fully recrystallized condition with grain sizes in the near- and sub-micrometre regime. Two synthesis routes have been investigated to achieve grain size control: (i) SPS at different temperatures from 800...... transmission electron microscope, and on electron back-scatter diffraction studies, confirms the samples are in a nearly fully recrystallized condition, with grains that are dislocation-free, and have a random texture, with a high fraction of high angle boundaries. The mechanical strength of the samples has...

  9. Final report on: Grain size determination in zirconium alloys (IAEA Research Contract No. 6025/Rb.)

    International Nuclear Information System (INIS)

    Martinez M, E.

    1991-12-01

    In spite of the amount of research developed the knowledge still is far from complete and in this basis the International Atomic Energy Agency, (IAEA), by means of the Working Group on Water Reactor Fuel Performance and Technology, initiated, in 1990 the Coordinated Research Programme named Grain Size Determination In Zirconium Alloys. Several countries were invited to participate and to contribute to the main objective of the programme, which can be state as: To develop a unified metallographic technique capable to show the microstructure of zircaloy in a reproducible and uniform manner. To fulfill the objective the following goals were established: A. To measure the grain size and perform an statistical treatment, in samples prepared specifically to show different amounts of cold work, recrystallization and grain growth. B. To compare the results obtained by the different laboratories involved in the programme. C. Finally, after the Ugine meeting, also the determination of the recrystallization and grain growth kinetics. (Author)

  10. Effects of grain size and test temperature on ductility and fracture behavior of a b-doped Ni/sub 3/Al alloy

    International Nuclear Information System (INIS)

    Takeyama, M.; Liu, C.T.

    1988-01-01

    Effect of grain size on ductility and fracture behavior of boron-doped Ni/sub 3/Al(Ni-23Al-0.5Hf, at.%) was studied by tensile tests using a strain rate of 3.3 x 10/sup -3/s/sup -1/ at temperatures to 1000 0 C under a high vacuum of 0 C, the alloy showed essentially ductile transgranular fracture with more than 30% elongation whereas it exhibited ductile grain-boundary fracture in the temperature range from 700 to 800 0 C. In both cases, the ductility was insensitive to grain size. On the other hand, at room temperatures above 800 0 C, the ductility decreased from about 17 to 0% with increasing grain size. The corresponding fracture mode changed from grain-boundary fracture with dynamic recrystallization to brittle grain-boundary fracture. The ductile transgranular fracture at lower temperatures is explained by stress concentration at the intersection of slip bands. The grain-size dependence of ductility is interpreted in terms of stress concentration at the grain boundaries. Finally, it is suggested that the temperature dependence of ductility in this alloy might be related to the thermal behavior of boron segregated to the grain boundaries

  11. Evaluating the performance of species richness estimators: sensitivity to sample grain size

    DEFF Research Database (Denmark)

    Hortal, Joaquín; Borges, Paulo A. V.; Gaspar, Clara

    2006-01-01

    and several recent estimators [proposed by Rosenzweig et al. (Conservation Biology, 2003, 17, 864-874), and Ugland et al. (Journal of Animal Ecology, 2003, 72, 888-897)] performed poorly. 3.  Estimations developed using the smaller grain sizes (pair of traps, traps, records and individuals) presented similar....... Data obtained with standardized sampling of 78 transects in natural forest remnants of five islands were aggregated in seven different grains (i.e. ways of defining a single sample): islands, natural areas, transects, pairs of traps, traps, database records and individuals to assess the effect of using...

  12. Distribution of garnet grain sizes and morphologies across the Moine Supergroup, northern Scottish Caledonides

    Science.gov (United States)

    Ashley, Kyle T.; Thigpen, J. Ryan; Law, Richard D.

    2016-04-01

    Garnet is used in a wide range of geologic studies due to its important physical and chemical characteristics. While the mineral is useful for thermobarometry and geochronology constraints and can often be correlated to deformation and fabric development, difficulties remain in making meaningful interpretations of such data. In this study, we characterize garnet grain sizes and crystal morphologies from 141 garnet-bearing metasedimentary rock samples collected from the northern part of the Moine Supergroup in the Scottish Caledonides. Larger, euhedral crystals are indicative of prograde metamorphic growth and are typically associated with the most recent phase of orogenesis (Scandian, ˜430 Ma). Small, rounded ("pin-head") garnets are interpreted as detrital in origin. A subhedral classification is more subjective and is used when garnets contains portions of straight boundaries but have rounded edges or rims that have been altered through retrograde metamorphic reactions. From our collection, 88 samples contain anhedral garnets (maximum measured grain size d = 0.46 ± 0.21 mm), 34 bear subhedral garnets (d = 2.0 ± 1.0 mm), and the remaining 19 samples contain garnets with euhedral grains (d = 4.4 ± 2.6 mm). Plotting the distribution of garnets relative to the mapped thrust contacts reveals an abrupt change in morphology and grain size when traced from the Moine thrust sheet across the Ben Hope and Sgurr Beag thrusts into the higher-grade, more hinterland-positioned thrust sheets. The dominance of anhedral garnets in the Moine thrust sheet suggests that these grains should not be used for peak P - T estimation associated with relatively low temperature (advance of interpreting large suits of garnet-derived thermodynamic and geochronologic data.

  13. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoming [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Ruan, Xuezheng; Zhao, Kunyun [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); He, Xueqing [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zeng, Jiangtao, E-mail: zjt@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Li, Yongsheng [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zheng, Liaoying [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Park, Chul Hong [Department of Physics Education, Pusan National University, Pusan 609735 (Korea, Republic of); Li, Guorong [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-05-25

    Highlights: • Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d{sub 33} (512 pC/N) and a planar electromechanical coupling factor k{sub p} (0.49), which have the characteristics of soft Pb(Zr,Ti)O{sub 3} (PZT) piezoceramic, on the other hand, the mechanical quality factor Q{sub m} is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature.

  14. A mesomechanical analysis of the deformation and fracture in polycrystalline materials with ceramic porous coatings

    Science.gov (United States)

    Balokhonov, R. R.; Zinoviev, A. V.; Romanova, V. A.; Batukhtina, E. E.

    2015-10-01

    The special features inherent in the mesoscale mechanical behavior of a porous ceramic coating-steel substrate composite are investigated. Microstructure of the coated material is accounted for explicitly as initial conditions of a plane strain dynamic boundary-value problem solved by the finite difference method. Using a mechanical analogy method, a procedure for generating a uniform curvilinear finite difference computational mesh is developed to provide a more accurate description of the complex grain boundary geometry. A modified algorithm for generation of polycrystalline microstructure of the substrate is designed on the basis of the cellular automata method. The constitutive equations for a steel matrix incorporate an elastic-plastic model for a material subjected to isotropic hardening. The Hall-Petch relation is used to account for the effect of the grain size on the yield stress and strain hardening history. A brittle fracture model for a ceramic coating relying on the Huber criterion is employed. The model allows for crack nucleation in the regions of triaxial tension. The complex inhomogeneous stress and plastic strain patterns are shown to be due to the presence of interfaces of three types: coating-substrate interface, grain boundaries, and pore surfaces.

  15. Method of manufacture of single phase ceramic superconductors

    Science.gov (United States)

    Singh, Jitrenda P.; Poeppel, Roger B.; Goretta, Kenneth C.; Chen, Nan

    1995-01-01

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C resulted in a fine-grain microstructure, with an average grain size of about 4 .mu.m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity.

  16. Recycling of residual IGCC slags and their benefits as degreasers in ceramics.

    Science.gov (United States)

    Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E

    2013-11-15

    This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Surface and grain boundary modifications of YBa2Cu3O7-δ ceramics by plasma-enhanced fluorination

    International Nuclear Information System (INIS)

    Magro, C.; Heintz, J.M.; Etourneau, J.; Tressaud, A.; Cardinaud, C.; Turban, G.; Hudakova, N.

    1994-01-01

    The radiofrequency plasma technique involving mixtures of CF 4 + O 2 gases has been applied to the treatment of high T c superconducting oxides (YBa 2 Cu 3 O 7-δ ). The investigation of the various experimental parameters of the process has shown that the improvement of the critical current density J c mainly depends on the inlet precursor composition CF 4 + τ % O 2 , on the total pressure, and on the reaction time. The presence of fluorine in the bulk of the ceramics has been observed from electron microprobe analysis, together with an increase of the open-quotes Cu 3+ close quotes content. The plasma enhanced fluorination (PEF) treatment improves the superconducting properties of the materials: both values of the resistivity in the normal state and of the superconducting transition width are reduced and the critical transition temperature is improved of about 1 K. Mechanisms of interaction between the reactive species of the plasma and YBa 2 Cu 3 O 7-δ ceramics have been proposed through detailed angle resolved X-ray photoelectron spectroscopic analyses. At the surface of the outer grains, the plasma treatment removes (OH) - and (CO 3 ) 2- species contained in the degradation layer and gives rise to a fluoride-rich layer. In the bulk of the material the occurrence of metal-fluorine bonds in the superconducting phase has to be assumed. Moreover, interactions between atomic fluorine and grain boundaries result in an improvement of intergranular magnetic behavior, according to a.c. susceptibility measurements. An increase of the oxidation state of copper has also been detected, confirming the oxidizing effect of the plasma treatment

  18. FABRICATION AND MECHANICAL PROPERTIES OF Na0.5Bi0.5TiO3–BaTiO3 LEAD-FREE PIEZOELECTRIC CERAMICS

    Directory of Open Access Journals (Sweden)

    PAN YUSONG

    2014-03-01

    Full Text Available Piezoelectric ceramics with 0.94Na0.5Bi0.5TO3–0.06BaTiO3 compositions were fabricated by solid state mixed oxide method and sintered at different temperatures varying from 1050°C to 1150°C to obtain dense ceramics. Phase analysis using X-ray diffraction showed tetragonal perovskite structure of Na0.5Bi0.5TO3 with no BaTiO3 peak detected. The SEM observation revealed that the crystal grain size of the piezoelectric ceramics is on the nano-size dimensions under all the sintering temperature. The study on the compressive mechanical characteristics showed that the compressive strength of the 0.94Na0.5Bi0.5TO3–0.06BaTiO3 piezoelectric ceramics increases with the rise of sintering temperature and sintering time. The change behavior of the compressive strength with the rise of cold pressure presents increasing firstly and then decreases.

  19. Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com; Ashrafizadeh, F.; Niroumand, B.

    2014-04-01

    Ultrafine grained dual phase (DP) steels are among the newest grades of DP steels that incorporate the uniform distribution of fine martensite particles (in the order of 1–2 μm) within a ferrite matrix. These new grades of steels have been developed in response to the world's demand for decreasing the fuel consumption in automobiles by increasing the strength to weight ratio. In the present research, a new kind of ultrafine grained DP (UFG-DP) steel with an average grain size of about 2 μm as well as a coarse grained DP (CG-DP) steel with an average grain size of about 5.4 μm was produced by consecutive intercritical annealing and cold rolling of low carbon AISI 8620 steel. The martensite volume fraction for both microstructures was the same and about 50 percent. Scanning electron microscopy (SEM) microstructural examination and room temperature tensile deformation analyses were performed on both UFG-DP and CG-DP steels and their deformation behavior in terms of strength, elongation and strain hardening was studied and compared. Room-temperature uniaxial tensile tests revealed that for a given martensite volume fraction, yield and tensile strengths were not very sensitive to martensite morphology. However, uniform and total elongation values were noticeably affected by refining martensite particles. The higher plasticity of fine martensite particles as well as the more uniform strain distribution within the UFG-DP microstructure resulted in higher strain hardenability and, finally, the higher ductility of the UFG-DP steel.

  20. Experimental Investigations of the Physical and Optical Properties of Individual Micron/Submicron-Size Dust Grains in Astrophysical Environments

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; LeClair, A.

    2014-01-01

    Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.

  1. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Yashika [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Department of Electronic Science, University of Delhi-South Campus, New Delhi 110021 (India); Arun, P., E-mail: arunp92@physics.du.ac.in [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Naudi, A.A.; Walz, M.V. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Instituto de Física del Litoral (CONICET-UNL), Guemes 3450, 3000 Santa Fe (Argentina)

    2016-08-01

    Tin sulphide nano-crystalline thin films were fabricated on glass and Indium Tin Oxide (ITO) substrates by thermal evaporation method. The crystal structure orientation of the films was found to be dependent on the substrate. Residual stress existed in the films due to these orientations. This stress led to variation in lattice parameter. The nano-crystalline grain size was also found to vary with film thickness. A plot of band-gap with grain size or with lattice parameter showed the existence of a family of curves. This implied that band-gap of SnS films in the preview of the present study depends on two parameters, lattice parameter and grain size. The band-gap relation with grain size is well known in the nano regime. Experimental data fitted well with this relation for the given lattice constants. The manuscript uses theoretical structure calculations for different lattice constants and shows that the experimental data follows the trend. Thus, confirming that the band gap has a two variable dependency. - Highlights: • Tin sulphide films are grown on glass and ITO substrates. • Both substrates give differently oriented films. • The band-gap is found to depend on grain size and lattice parameter. • Using data from literature, E{sub g} is shown to be two parameter function. • Theoretical structure calculations are used to verify results.

  2. A Simple Size Effect Model for Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Pedersen, M. U.; Clorius, Christian Odin; Damkilde, Lars

    2003-01-01

    The strength in tension perpendicular to the grain is known to decrease with an increase in the stressed volume. Usually this size effect is explained on a stochastic basis, that is, an explanation relying on the increased probability of encountering a strength reducing flaw when the volume...... of the material under stress is increased. This paper presents an experimental investigation on specimens with a well-defined structural orientation of the material. The experiments exhibit a large size effect and the nature of the failures encountered suggests that the size effect can be explained...... on a deterministic basis. Arguments for such a simple deterministic explanation of size effect is found in finite element modelling, using the orthotropic stiffness characteristics in the transverse plane of wood....

  3. Microstructure and grain size effects on irradiation hardening of low carbon steel for reactor tanks

    International Nuclear Information System (INIS)

    Milasin, N.

    1964-05-01

    Irradiation hardening of steel for reactor pressure vessels has been studied extensively during the past few years. A great number of experimental results concerning the behaviour of these steels in the radiation field and several review papers (1,2) have been published. Most of the papers deal with the effects of specific metallurgical factors or irradiation conditions (temperature, flux) on irradiation hardening and embrittlement. In addition, a number of experiments are performed to give evidence on the mechanism of irradiation hardening of these steels. However, this mechanism is still unknown due to the complexity of steel as a system. Among different methods used in radiation damage studies, the changes of mechanical properties have been mainly investigated. By using Hall-Petch's empirical relation, σ y =σ i +k y d -1/2 between lower yield stress, σ y , and grain size, 2d, the information about the effect of irradiation on the parameters σ i and k y is obtained. Taking as a base interpretation of σ i and k y given by Petch and his co-workers it has been concluded that radiation does not change the stress to start slip but that it increase the friction that opposes the passage of free dislocations across a slip plane. In attempting to apply Hall-Petch's relation to one unirradiated ferritic steel with a carbon content higher than 0.15% some difficulties were encountered. The results obtained indicate that the influence of grain size can not be isolated from other factors introduced by the treatments used to produce different grain sizes. This paper deals with a similar problem in the case of irradiated steel. The results obtained give the changes of the mechanical properties of steel in neutron irradiation field as a function of microstructure and grain size. In addition, the mechanical properties of irradiated steel are measured after annealing at 150 deg C and 450 deg C. On the basis of the experimental results obtained the relative microstructure and

  4. Sintering and thermal ageing studies of zirconia - yttria ceramics by impedance spectroscopy

    International Nuclear Information System (INIS)

    Florio, Daniel Zanetti de

    1998-01-01

    ZrO 2 :8 mol %Y 2 O 3 solid electrolyte ceramic pellets have been prepared with powders of three different origins: a Nissan (Japan) commercial powder, a powder obtained by the coprecipitation technique at IPEN, and the mixing of powder oxides (ZrO 2 produced at a Pilot Plant at IPEN and 99.9% pure Y 2 O 3 of USA origin). These starting powders have been analysed by the following techniques: X-ray fluorescence for yttrium content, X-ray diffraction for structural phase content, sedimentation for particle size distribution, gas adsorption (BET) for surface area determination, and transmission electron microscopy for average particle size determination. Pressed ceramic pellets have been analysed by dilatometry to evaluate the sintering stages. Sintered pellets have been characterized by X-ray diffraction for phase analysis and scanning electron microscopy for grain morphology analysis. Impedance spectroscopy analysis have been carried out to follow thermal ageing of zirconia-yttria solid electrolyte at 600 deg C, the working temperature of permanent oxygen sensor, and to study sintering kinetics. The main results show that ageing at 600 deg C decreases the emf sensor response in the first 100 h to a steady value. Moreover, sintering studies by impedance spectroscopy allowed for finding correlations between electrical parameters, sintering kinetics and grain growth mechanisms. (author)

  5. Grain Size Data from the NOAA Outer Continental Shelf Environmental Assessment Program (OCSEAP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains grain size data from samples acquired under the NOAA Outer Continental Shelf Environmental Assessment Program (OCSEAP) from the Outer...

  6. Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2014-04-08

    We report a novel synthesis strategy to prepare high-performance bulk polycrystalline Pr-doped SrTiO3 ceramics. A large thermoelectric power factor of 1.3 W m-1 K-1 at 500 °C is achieved in these samples. In-depth investigations of the electronic transport and microstructure suggest that this significant improvement results from a substantial enhancement in carrier mobility originating from the formation of Pr-rich grain boundaries. This work provides new directions to higher performance oxide thermoelectrics as well as possibly other properties and applications of this broadly functional perovskite material. © 2014 American Chemical Society.

  7. Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement

    KAUST Repository

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna K.; Darroudi, Taghi; Graff, Jennifer W.; Schwingenschlö gl, Udo; Alshareef, Husam N.; Tritt, Terry M.

    2014-01-01

    We report a novel synthesis strategy to prepare high-performance bulk polycrystalline Pr-doped SrTiO3 ceramics. A large thermoelectric power factor of 1.3 W m-1 K-1 at 500 °C is achieved in these samples. In-depth investigations of the electronic transport and microstructure suggest that this significant improvement results from a substantial enhancement in carrier mobility originating from the formation of Pr-rich grain boundaries. This work provides new directions to higher performance oxide thermoelectrics as well as possibly other properties and applications of this broadly functional perovskite material. © 2014 American Chemical Society.

  8. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  9. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  10. A visual basic program to generate sediment grain-size statistics and to extrapolate particle distributions

    Science.gov (United States)

    Poppe, L.J.; Eliason, A.H.; Hastings, M.E.

    2004-01-01

    Measures that describe and summarize sediment grain-size distributions are important to geologists because of the large amount of information contained in textural data sets. Statistical methods are usually employed to simplify the necessary comparisons among samples and quantify the observed differences. The two statistical methods most commonly used by sedimentologists to describe particle distributions are mathematical moments (Krumbein and Pettijohn, 1938) and inclusive graphics (Folk, 1974). The choice of which of these statistical measures to use is typically governed by the amount of data available (Royse, 1970). If the entire distribution is known, the method of moments may be used; if the next to last accumulated percent is greater than 95, inclusive graphics statistics can be generated. Unfortunately, earlier programs designed to describe sediment grain-size distributions statistically do not run in a Windows environment, do not allow extrapolation of the distribution's tails, or do not generate both moment and graphic statistics (Kane and Hubert, 1963; Collias et al., 1963; Schlee and Webster, 1967; Poppe et al., 2000)1.Owing to analytical limitations, electro-resistance multichannel particle-size analyzers, such as Coulter Counters, commonly truncate the tails of the fine-fraction part of grain-size distributions. These devices do not detect fine clay in the 0.6–0.1 μm range (part of the 11-phi and all of the 12-phi and 13-phi fractions). Although size analyses performed down to 0.6 μm microns are adequate for most freshwater and near shore marine sediments, samples from many deeper water marine environments (e.g. rise and abyssal plain) may contain significant material in the fine clay fraction, and these analyses benefit from extrapolation.The program (GSSTAT) described herein generates statistics to characterize sediment grain-size distributions and can extrapolate the fine-grained end of the particle distribution. It is written in Microsoft

  11. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.

    Science.gov (United States)

    Kim, Daehyeon; Ha, Sungwoo

    2014-02-07

    In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  12. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size.

    Science.gov (United States)

    Alves, Leonardo Cardoso; Magalhães, Diogo Maciel De; Labate, Mônica Teresa Veneziano; Guidetti-Gonzalez, Simone; Labate, Carlos Alberto; Domingues, Douglas Silva; Sera, Tumoru; Vieira, Luiz Gonzaga Esteves; Pereira, Luiz Filipe Protasio

    2016-02-24

    Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.

  13. Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids

    Science.gov (United States)

    Dai, Jiawei; Pan, Yubai; Xie, Tengfei; Kou, Huamin; Li, Jiang

    2018-04-01

    Highly transparent terbium aluminum garnet (Tb3Al5O12, TAG) magneto-optical ceramics were fabricated from co-precipitated nanopowders with tetraethoxysilane (TEOS) as sintering aid by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment. The ball milled TAG powder shows better dispersity than the as-synthesized powder, and its average particle size is about 80 nm. For the ceramic sample pre-sintered at 1720 °C for 20 h with HIP post-treated at 1700 °C for 3 h, the in-line transmittance exceeds 76% in the region of 400-1580nm (except the absorption band), reaching a maximum value of 81.8% at the wavelength of 1390 nm. The microstructure of the TAG ceramic is homogeneous and its average grain size is approximately 19.7 μm. The Verdet constant of the sample is calculated to be -182.7 rad·T-1·m-1 at room temperature.

  14. Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-11

    The confocal energy dispersive micro-X-ray diffraction (EDMXRD) based on polycapillary X-ray optics was used to determine the grain size of polycrystalline materials. The grain size of a metallographic specimen of nickel base alloy was measured by using the confocal EDMXRD. The experimental results demonstrated that the confocal EDMXRD had potential applications in measuring large grain size.

  15. Significant effect of grain size distribution on compaction rates in granular aggregates

    NARCIS (Netherlands)

    Niemeijer, André|info:eu-repo/dai/nl/370832132; Elsworth, Derek; Marone, Chris

    2009-01-01

    We investigate the role of pressure solution in deformation of upper- to mid-crustal rocks using aggregates of halite as a room temperature analog for fluid-assisted deformation processes in the Earth's crust. Experiments evaluate the effects of initial grain size distribution on macroscopic

  16. Formation and corrosion of a 410 SS/ceramic composite

    Science.gov (United States)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2016-11-01

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases.

  17. Porous (Ba,SrTiO3 ceramics for tailoring dielectric and tunability properties: Modelling and experiment

    Directory of Open Access Journals (Sweden)

    Roxana E. Stanculescu

    2017-12-01

    Full Text Available 3D Finite Element Method simulations were employed in order to describe tunability properties in anisotropic porous paraelectric structures. The simulations predicted that properties of a ceramic can be tailored by using various levels of porosity. Porous Ba0.6Sr0.4TiO3 (BST ceramics have been studied in order to investigate the influence of porosity on their functional properties. The BST ceramics with various porosity levels have been obtained by solid-state reaction. Lamellar graphite in different concentration of 10, 20 and 35 vol.% was added as sacrificial pore forming agent. The structural, microstructural, dielectric and tunability properties were investigated. By comparison with dense BST ceramic, porous samples present a fracture mode transformation from intragranular to an intergranular fracture and a decrease of grain size. Lower dielectric constants, low dielectric losses, but higher values of tunability than in the dense material were obtained in the porous BST structures as a result of local field inhomogeneity generated by the presence of air pores-ceramic interfaces.

  18. Effect of time and temperature on grain size of V and V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Natesan, K.; Rink, D.L.

    1996-01-01

    Grain growth studies were conducted to evaluate the effect of time and temperature on the grain size of pure V, V-4 wt.%Cr-4 wt.%Ti, and V-5 wt.%Cr-5 wt.%Ti alloys. The temperatures used in the study were 500, 650, 800, and 1000 degrees C, and exposure times ranged between 100 and ∼5000 h. All three materials exhibited negligible grain growth at 500, 650, and 800 degrees C, even after ∼5000 h. At 1000 degrees C, pure V showed substantial grain growth after only 100 h, and V-4Cr-4Ti showed growth after 2000 h, while V-5Cr-5Ti showed no grain growth after exposure for up to 2000 h

  19. Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of humidity sensors. PMID:27916913

  20. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    Science.gov (United States)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  1. Large Piezoelectric Strain with Superior Thermal Stability and Excellent Fatigue Resistance of Lead-Free Potassium Sodium Niobate-Based Grain Orientation-Controlled Ceramics.

    Science.gov (United States)

    Quan, Yi; Ren, Wei; Niu, Gang; Wang, Lingyan; Zhao, Jinyan; Zhang, Nan; Liu, Ming; Ye, Zuo-Guang; Liu, Liqiang; Karaki, Tomoaki

    2018-03-19

    Environment-friendly lead-free piezoelectric materials with high piezoelectric response and high stability in a wide temperature range are urgently needed for various applications. In this work, grain orientation-controlled (with a 90% ⟨001⟩ c -oriented texture) (K,Na)NbO 3 -based ceramics with a large piezoelectric response ( d 33 *) = 505 pm V -1 and a high Curie temperature ( T C ) of 247 °C have been developed. Such a high d 33 * value varies by less than 5% from 30 to 180 °C, showing a superior thermal stability. Furthermore, the high piezoelectricity exhibits an excellent fatigue resistance with the d 33 * value decreasing within only by 6% at a field of 20 kV cm -1 up to 10 7 cycles. These exceptional properties can be attributed to the vertical morphotropic phase boundary and the highly ⟨001⟩ c -oriented textured ceramic microstructure. These results open a pathway to promote lead-free piezoelectric ceramics as a viable alternative to lead-based piezoceramics for various practical applications, such as actuators, transducers, sensors, and acoustic devices, in a wide temperature range.

  2. Grain size-dependent strength of phyllosilicate-rich gouges in the shallow crust: Insights from the SAFOD site

    Science.gov (United States)

    Phillips, Noah John; White, Joseph Clancy

    2017-07-01

    The San Andreas Fault Observatory at Depth (SAFOD) drilling project directly sampled a transitional (between creeping and locked) segment of the San Andreas Fault at 2.7 km depth. At the site, changes in strain rate occur between periods of coseismic slip (>10-7 s-1) and interseismic creep (10-10 s-1) over decadal scales ( 30 years). Microstructural observations of core retrieved from the SAFOD site show throughgoing fractures and gouge-rich cores within the fractures, evidence of predominantly brittle deformation mechanisms. Within the gouge-rich cores, strong phases show evidence of deformation by pressure solution once the grain size is reduced to a critical effective grain size. Models of pressure solution-accommodated creep for quartz-phyllosilicate mixtures indicate that viscous weakening of quartz occurs during the interseismic period once a critical effective grain size of 1 μm is achieved, consistent with microstructural observations. This causes pronounced weakening, as the strength of the mixture is then controlled by the frictional properties of the phyllosilicate phases. These results have pronounced implications for the internal deformation of fault zones in the shallow crust, where at low strain rates, deformation is accommodated by both viscous and brittle deformation mechanisms. As strain rates increase, the critical effective grain size for weakening decreases, localizing deformation into the finest-grained gouges until deformation can no longer be accommodated by viscous processes and purely brittle failure occurs.

  3. High temperature corrosion behavior of different grain size specimens of 2.25 Cr-1 Mo steel in SO2+O2 environment

    International Nuclear Information System (INIS)

    Ghosh, D.; Mitra, S.K.

    2011-01-01

    The investigation is primarily aimed at the high temperature corrosion behavior of different grain sizes of 2.25 Cr-1 Mo steel at SO 2 +O 2 (mixed oxidation and sulfidation). The various grain sizes (18 μm,26 μm, 48 μm, and 72 μm) are obtained by different annealing treatment. Isothermal corrosion studies are carried out in different grain size specimens at 973K for 8 hours. The corrosion growth rate and the reaction kinetics are studied by weight gain method. The external scales of the post corroded specimen are studied in Scanning Electron Microscope (SEM) to examine the corrosion products morphology on the scale. X-ray mapping analysis of the different elements (Fe, O, Cr and S) is carried out by Energy Dispersive Spectroscopy (EDS) attached with SEM. The X-ray Diffraction Analysis (XRD) is also carried out to identify the corrosion products in the external scale. Finally, it is concluded that that the corrosion rate of 2.25 Cr-1 Mo steel strongly depend on grain sizes of the specimens. The corrosion rate increases with the decreases of grain size. The finer grain (18 μm) show higher corrosion rate than the coarse grains (72 μm). The weight gain kinetics follows the parabolic growth rate which further indicates that the corrosion process is diffusion controlled. The scale analysis shows the thicker scale and extensive scale cracking and spallations in case of finer grain size specimen (18 μm), whereas the coarse grain specimen (72 μm) shows compact and adherent layer. The XRD analysis shows that the corrosion products consist of mixtures of iron oxides( Fe 3 O 4 and Fe 2 O 3 ) and iron sulfides (FeS). The details mechanism of the corrosion is discussed to explain the difference in corrosion rate for different grain sizes. (author)

  4. The effect of abrading and cutting instruments on machinability of dental ceramics.

    Science.gov (United States)

    Sakoda, Satoshi; Nakao, Noriko; Watanabe, Ikuya

    2018-03-16

    The aim was to investigate the effect of machining instruments on machinability of dental ceramics. Four dental ceramics, including two zirconia ceramics were machined by three types (SiC, diamond vitrified, and diamond sintered) of wheels with a hand-piece engine and two types (diamond and carbide) of burs with a high-speed air turbine. The machining conditions used were abrading speeds of 10,000 and 15,000 r.p.m. with abrading force of 100 gf for the hand-piece engine, and a pressure of 200 kPa and a cutting force of 80 gf for the air-turbine hand-piece. The machinability efficiency was evaluated by volume losses after machining the ceramics. A high-abrading speed had high-abrading efficiency (high-volume loss) compared to low-abrading speed in all abrading instruments used. The diamond vitrified wheels demonstrated higher volume loss for two zirconia ceramics than those of SiC and diamond sintered wheels. When the high-speed air-turbine instruments were used, the diamond points showed higher volume losses compared to the carbide burs for one ceramic and two zirconia ceramics with high-mechanical properties. The results of this study indicated that the machinability of dental ceramics depends on the mechanical and physical properties of dental ceramics and machining instruments. The abrading wheels show autogenous action of abrasive grains, in which ground abrasive grains drop out from the binder during abrasion, then the binder follow to wear out, subsequently new abrasive grains come out onto the instrument surface (autogenous action) and increase the grinding amount (volume loss) of grinding materials.

  5. Grain size stability and hardness in nanocrystalline Cu–Al–Zr and Cu–Al–Y alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D., E-mail: droy2k6@gmail.com [Material Science and Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Materials and Metallurgical Engineering Department, NIFFT, Ranchi 834003 (India); Mahesh, B.V. [Department of Mechanical and Aerospace Engineering, Monash University (Australia); Atwater, M.A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Chan, T.E.; Scattergood, R.O.; Koch, C.C. [Material Science and Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States)

    2014-03-01

    Cryogenic high energy ball milling has been used to synthesize nanocrystalline Cu–14Al, Cu–12Al–2Zr and Cu–12Al–2Y alloys by mechanical alloying. The alloys were studied with the aim of comparing the effect of substituting Y and Zr in place of Al, in Cu–Al alloys, on the grain size stability at elevated temperatures. The as-milled alloys were subjected to annealing at various temperatures between 200 and 900 °C and the resulting grain morphology has been studied using X-ray diffraction and transmission electron microscopy. The addition of Y results in significantly reduced susceptibility to grain growth whereas in case of CuAl and CuAlZr alloys, the susceptibility to grain growth was much higher. The hardness is substantially increased due to Zr and Y addition in the as-milled CuAl powders. However, the hardness of Cu–12Al–2Zr gradually decreases and approaches that of Cu–14Al alloy after the annealing treatment whereas in case of Cu–12Al–2Y alloy, the relative drop in the hardness is much lower after annealing. Accordingly, the efficacy of grain size stabilization by Y addition at high homologous temperatures has been explained on the basis of a recent thermodynamic stabilization models.

  6. Grain size stability and hardness in nanocrystalline Cu–Al–Zr and Cu–Al–Y alloys

    International Nuclear Information System (INIS)

    Roy, D.; Mahesh, B.V.; Atwater, M.A.; Chan, T.E.; Scattergood, R.O.; Koch, C.C.

    2014-01-01

    Cryogenic high energy ball milling has been used to synthesize nanocrystalline Cu–14Al, Cu–12Al–2Zr and Cu–12Al–2Y alloys by mechanical alloying. The alloys were studied with the aim of comparing the effect of substituting Y and Zr in place of Al, in Cu–Al alloys, on the grain size stability at elevated temperatures. The as-milled alloys were subjected to annealing at various temperatures between 200 and 900 °C and the resulting grain morphology has been studied using X-ray diffraction and transmission electron microscopy. The addition of Y results in significantly reduced susceptibility to grain growth whereas in case of CuAl and CuAlZr alloys, the susceptibility to grain growth was much higher. The hardness is substantially increased due to Zr and Y addition in the as-milled CuAl powders. However, the hardness of Cu–12Al–2Zr gradually decreases and approaches that of Cu–14Al alloy after the annealing treatment whereas in case of Cu–12Al–2Y alloy, the relative drop in the hardness is much lower after annealing. Accordingly, the efficacy of grain size stabilization by Y addition at high homologous temperatures has been explained on the basis of a recent thermodynamic stabilization models

  7. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido

  8. The effect of grain size on the mechanical response of a metastable austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Sinclair C.W.

    2013-11-01

    Full Text Available The combination of high environmental resistance and excellent strength, elongation and energy absorption make austenitic stainless steels potentially attractive for transportation applications. In the case of metastable grades that undergo a strain induced martensitic transformation it is possible to significantly change the mechanical properties simply by changing the austenite grain size. Predicting such behaviour using physically based models is, however, extremely challenging. Here, some recent work on the coupling between grain size and mechanical response will be presented for a metastable AISI 301 LN stainless steel. Successes and continuing challenges will be highlighted.

  9. Evaluation of the effect of heavy rare earth elements on the microstructure and mechanical and electrical properties of zirconia - Yttria ceramics

    International Nuclear Information System (INIS)

    Lazar, Dolores Ribeiro Ricci

    2002-01-01

    The use of Yttria concentrates for synthesis and processing of zirconia based ceramics, applied as structural and solid electrolyte materials, was investigated in this work. Terbium, dysprosium, holmium, erbium and ytterbium are chemical elements, classified as heavy rare earths, that can be found in those concentrates due to their association with yttrium ores. The ceramic characteristics were compared to zirconia - Yttria and zirconia - Yttria - rare earth oxide systems. The dopant content was 3 and 9 mol%. The raw materials were prepared by the coprecipitation route using solutions from the chemical processing of zircon and monazite ores and obtained by dissolution of high purity rare earth oxides. In the first part of this work, calcination, milling and ceramic processing were studied to produce ceramics with densities up to 95% TD. Samples were prepared in optimized conditions for the evaluation of the effect of each heavy rare earth element. Powders were characterized by chemical analysis. X-ray diffraction, scanning and transmission electron microscopy, gas adsorption (BET) and laser diffraction for the determination of the agglomerate size distributions. Green pellets were characterized by mercury porosimetry and the sintering kinetic was studied by dilatometry. The characterization of the as-sintered pellets was performed by the apparent density measurement (Archimedes method). X-ray diffraction, microstructure analysis by scanning and transmission electron microscopy, Vickers indentation tests for hardness and fracture toughness determination, dynamic mechanical analysis for the elastic modulus measurement, and impedance spectroscopy for electrical resistivity measurement. It was observed that the presence of heavy rare earths in a concentrate containing 85 wt% of Yttria has no significant influence on the properties of zirconia based ceramics. TZP ceramics, containing 3 mol% of dopants, have grain size smaller than 0.4μm, and Vickers hardness and

  10. Physically based method for measuring suspended-sediment concentration and grain size using multi-frequency arrays of acoustic-doppler profilers

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2014-01-01

    As the result of a 12-year program of sediment-transport research and field testing on the Colorado River (6 stations in UT and AZ), Yampa River (2 stations in CO), Little Snake River (1 station in CO), Green River (1 station in CO and 2 stations in UT), and Rio Grande (2 stations in TX), we have developed a physically based method for measuring suspended-sediment concentration and grain size at 15-minute intervals using multifrequency arrays of acoustic-Doppler profilers. This multi-frequency method is able to achieve much higher accuracies than single-frequency acoustic methods because it allows removal of the influence of changes in grain size on acoustic backscatter. The method proceeds as follows. (1) Acoustic attenuation at each frequency is related to the concentration of silt and clay with a known grain-size distribution in a river cross section using physical samples and theory. (2) The combination of acoustic backscatter and attenuation at each frequency is uniquely related to the concentration of sand (with a known reference grain-size distribution) and the concentration of silt and clay (with a known reference grain-size distribution) in a river cross section using physical samples and theory. (3) Comparison of the suspended-sand concentrations measured at each frequency using this approach then allows theory-based calculation of the median grain size of the suspended sand and final correction of the suspended-sand concentration to compensate for the influence of changing grain size on backscatter. Although this method of measuring suspended-sediment concentration is somewhat less accurate than using conventional samplers in either the EDI or EWI methods, it is much more accurate than estimating suspended-sediment concentrations using calibrated pump measurements or single-frequency acoustics. Though the EDI and EWI methods provide the most accurate measurements of suspended-sediment concentration, these measurements are labor-intensive, expensive, and

  11. Commercialization of Ultra-Hard Ceramics for Cutting Tools Final Report CRADA No. TC0279.0

    Energy Technology Data Exchange (ETDEWEB)

    Landingham, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Neumann, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Greenleaf Corporation (Greenleaf) to develop the technology for forming unique precursor nano-powders process that can be consolidated into ceramic products for industry. LLNL researchers have developed a solgel process for forming nano-ceramic powders. The nano powders are highly tailorable, allowing the explicit design of desired properties that lead to ultra hard materials with fine grain size. The present CRADA would allow the two parties to continue the development of the sol-gel process and the consolidation process in order to develop an industrially sound process for the manufacture of these ultra-hard materials.

  12. Novel analytical model for the determination of grain size distributions in nanocrystalline materials with low lattice microstrains by X-ray diffractometry

    International Nuclear Information System (INIS)

    Sanchez-Bajo, F.; Ortiz, A.L.; Cumbrera, F.L.

    2006-01-01

    We have developed a novel, analytical model for the determination of grain size distributions in nanocrystalline (nc) materials with low internal stresses by X-ray diffractometry (XRD). The model assumes explicitly that the XRD peaks are pseudo-Voigtian and that the grain size distributions are lognormal, both of which are assumptions amply supported by the experimental evidence. It was found analytically that the grain size dispersion depends on the shape of the XRD peaks only, whereas the grain size median depends on both the shape and width of the XRD peaks. In addition, the theoretical predictions resulting from the model were validated using standard XRD peaks obtained by computer simulation from first principles. Particular emphasis is given to the discussion of the validity limits of the model, and to the analysis of the influence of the characteristics of the grain size distributions on the nature of the XRD peaks. We then show how to calculate the average and apparent grain sizes from the grain size distribution determined with the model, and how this compares with the Scherrer method. Implications for the characterization of (undistorted and distorted) nc-materials are indicated, and a case study of an nc-powder of cubic ZrO 2 is presented. The application of the model itself is simple, involving only the fit of a pseudo-Voigt function to a single XRD peak followed by the use of two equations. This suggests that the model may have an important role to play in the characterization of nc-materials

  13. Predictive modelling of grain size distributions from marine electromagnetic profiling data using end-member analysis and a radial basis function network

    Science.gov (United States)

    Baasch, B.; M"uller, H.; von Dobeneck, T.

    2018-04-01

    In this work we present a new methodology to predict grain-size distributions from geophysical data. Specifically, electric conductivity and magnetic susceptibility of seafloor sediments recovered from electromagnetic profiling data are used to predict grain-size distributions along shelf-wide survey lines. Field data from the NW Iberian shelf are investigated and reveal a strong relation between the electromagnetic properties and grain-size distribution. The here presented workflow combines unsupervised and supervised machine learning techniques. Nonnegative matrix factorisation is used to determine grain-size end-members from sediment surface samples. Four end-members were found which well represent the variety of sediments in the study area. A radial-basis function network modified for prediction of compositional data is then used to estimate the abundances of these end-members from the electromagnetic properties. The end-members together with their predicted abundances are finally back transformed to grain-size distributions. A minimum spatial variation constraint is implemented in the training of the network to avoid overfitting and to respect the spatial distribution of sediment patterns. The predicted models are tested via leave-one-out cross-validation revealing high prediction accuracy with coefficients of determination (R2) between 0.76 and 0.89. The predicted grain-size distributions represent the well-known sediment facies and patterns on the NW Iberian shelf and provide new insights into their distribution, transition and dynamics. This study suggests that electromagnetic benthic profiling in combination with machine learning techniques is a powerful tool to estimate grain-size distribution of marine sediments.

  14. Novel analytical model for the determination of grain size distributions in nanocrystalline materials with low lattice microstrains by X-ray diffractometry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Bajo, F. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas S/N, Badajoz 06071 (Spain); Ortiz, A.L. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas S/N, Badajoz 06071 (Spain)]. E-mail: alortiz@unex.es; Cumbrera, F.L. [Departamento de Fisica, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071 (Spain)

    2006-01-15

    We have developed a novel, analytical model for the determination of grain size distributions in nanocrystalline (nc) materials with low internal stresses by X-ray diffractometry (XRD). The model assumes explicitly that the XRD peaks are pseudo-Voigtian and that the grain size distributions are lognormal, both of which are assumptions amply supported by the experimental evidence. It was found analytically that the grain size dispersion depends on the shape of the XRD peaks only, whereas the grain size median depends on both the shape and width of the XRD peaks. In addition, the theoretical predictions resulting from the model were validated using standard XRD peaks obtained by computer simulation from first principles. Particular emphasis is given to the discussion of the validity limits of the model, and to the analysis of the influence of the characteristics of the grain size distributions on the nature of the XRD peaks. We then show how to calculate the average and apparent grain sizes from the grain size distribution determined with the model, and how this compares with the Scherrer method. Implications for the characterization of (undistorted and distorted) nc-materials are indicated, and a case study of an nc-powder of cubic ZrO{sub 2} is presented. The application of the model itself is simple, involving only the fit of a pseudo-Voigt function to a single XRD peak followed by the use of two equations. This suggests that the model may have an important role to play in the characterization of nc-materials.

  15. The Strain and Grain Size Dependence of the Flow Stress of Copper

    DEFF Research Database (Denmark)

    Hansen, Niels; Ralph, B.

    1982-01-01

    Tensile stress strain data for 99.999% copper at room and liquid nitrogen temperature as a function of grain size are presented together with some microstructural observations made by transmission electron microscopy. It is shown that the flow stress data, at constant strain may be expressed...

  16. Producing transparent PLZT ceramics using different synthesis method

    International Nuclear Information System (INIS)

    Dambekalne, M.; Antonova, M.; Livinsh, M.; Kalvane, A.; Plonska, M.; Garbarz-Glos, B.

    2004-01-01

    Full text: Ceramic samples of Pb 1-x La x (Zr 0.65 Ti 0.35 )O 3 (x 8, 9, 10) were prepared from powders being sintered by two methods: 1) peroxohydroxopolimer (PHP), where as precursors were used solutions of inorganic salts TiCl 4 , ZrOCl 4 ·8H 2 O, Pb(NO 3 ) 2 , La(NO 3 ) 3 ·6H 2 O); 2) sol-gel, using as precursors solutions of metal organic salts Pb(COOCH 3 ) 2 ·3H 2 O, La(COOCH 3 ) 3 ·1.5H 2 O, Zr(OCH 2 CH 2 CH 3 ) 4 , Ti(OCH 2 CH 2 CH 3 ) 4 . The thermal regimes for both powders were similar: synthesis at 600 0 C for 2 - 4h, obtaining amorphous nanopowder. Ceramic samples were produced by hot pressing at 1100 - 1200 0 C for 2 - 6h and pressure of 20Mpa.Optical transmittance of ceramic samples from PHP derived powders was higher than that from sol- gel derived. The transparency of poled plates with thickness of 0.3mm (wavelength λ = 630nm) was 67 - 69% and 56 - 59%, respectively. It can be explained by lack of technical support for sol-gel processing in atmosphere of neutral gas, as metal organic precursors are extremely sensitive to moisture of air. X-ray and DTA studies were used for powders. Dielectrics, ferroelectric and optical properties as well as studies of icrostructure were carried out for ceramic samples. The grain size of ceramics produced from PHP powders is 3- 4μ, for sol-gel ceramics less than 1μ

  17. Density and critical current of metal-sheathed superconducting YBa2Cu3Oy ceramics deformed by hydroextrusion and subsequent drawing-rolling

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Gnesin, B.A.; Snegirev, A.A.

    1994-01-01

    The critical-current density j c in ceramic superconductors is strongly dependent on texture, which is determined by the orientation of ceramic grains with respect to the specimen axes and by the misalignment between grains. Y ceramics with prolate grains aligned parallel to the long axis of the specimen were obtained by melt solidification. Such ceramics exhibited j c = 18500 A/cm 2 at 77 K in zero magnetic field. Texturing was also achieved by rolling Ag-sheathed powder of superconducting ceramics. This method ensured critical current densities (2-7) x 10 3 A/cm 2 in Y, Bi, and Tl ceramics. In flat ceramic samples, the grains of a superconducting phase were oriented in such a way that the crystallographic c axis was perpendicular to the rolling plane. In this work, the authors studied the effect of rolling deformation on the current-carrying capacity j c and density p of metal-sheathed YBa 2 Cu 3 O y ceramics that were first subjected to hydroextrusion and drawing at ∼20, 550, and 700 degrees C. The data obtained for j c and p were compared with the texture factor

  18. Magnetospheric ion sputtering and water ice grain size at Europa

    Science.gov (United States)

    Cassidy, T. A.; Paranicas, C. P.; Shirley, J. H.; Dalton, J. B., III; Teolis, B. D.; Johnson, R. E.; Kamp, L.; Hendrix, A. R.

    2013-03-01

    We present the first calculation of Europa's sputtering (ion erosion) rate as a function of position on Europa's surface. We find a global sputtering rate of 2×1027 H2O s-1, some of which leaves the surface in the form of O2 and H2. The calculated O2 production rate is 1×1026 O2 s-1, H2 production is twice that value. The total sputtering rate (including all species) peaks at the trailing hemisphere apex and decreases to about 1/3rd of the peak value at the leading hemisphere apex. O2 and H2 sputtering, by contrast, is confined almost entirely to the trailing hemisphere. Most sputtering is done by energetic sulfur ions (100s of keV to MeV), but most of the O2 and H2 production is done by cold oxygen ions (temperature ∼ 100 eV, total energy ∼ 500 eV). As a part of the sputtering rate calculation we compared experimental sputtering yields with analytic estimates. We found that the experimental data are well approximated by the expressions of Famá et al. for ions with energies less than 100 keV (Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161), while the expressions from Johnson et al. fit the data best at higher energies (Johnson, R.E., Burger, M.H., Cassidy, T.A., Leblanc, F., Marconi, M., Smyth, W.H., 2009. Composition and Detection of Europa's Sputter-Induced Atmosphere, in: Pappalardo, R.T., McKinnon, W.B., Khurana, K.K. (Eds.), Europa. University of Arizona Press, Tucson.). We compare the calculated sputtering rate with estimates of water ice regolith grain size as estimated from Galileo Near-Infrared Mapping Spectrometer (NIMS) data, and find that they are strongly correlated as previously suggested by Clark et al. (Clark, R.N., Fanale, F.P., Zent, A.P., 1983. Frost grain size metamorphism: Implications for remote sensing of planetary surfaces. Icarus 56, 233-245.). The mechanism responsible for the sputtering rate/grain size link is uncertain. We also report a surface composition estimate using

  19. Effect of nanoprecipitates and grain size on the mechanical properties of advanced structural steels

    International Nuclear Information System (INIS)

    Suarez, M.A.; Alvarez-Perez, M.A.; Alvarez-Fregoso, O.; Juarez-Islas, J.A.

    2011-01-01

    Highlights: → The composition of the steel responded positively to the thermomechanical processing. → Yield strength was increased due to micrometric grain size of 2.2 μm. → Mechanical properties were improved due to nanometric precipitates of 5 nm. → Yield strength values of the API steel were improved up to 877.9 MPa. - Abstract: The microstructure and nanometric precipitates present in advanced structured steel have been studied by high resolution transmission electron microscopy equipped with energy dispersion X-ray microanalysis, in order to relate the nanometric precipitates and grain size with the improvement of the yield strength value of the API steel. The microstructure and nanometric precipitates of the advanced steel were obtained by a combination of thermo-mechanical controlled hot rolling and accelerated cooling procedures. The API steel composition consisted of hot rolled Nb-Ti microalloyed with: 0.07C, 1.40Mn, 0.24Si, 0.020Al, 0.009P, 0.001S, 0.05Mo, 0.5Cr, 0.05Nb, 0.25Ni, 0.10Cu, 0.012Ti, 0.05N in wt%. As a result, this hot rolled steel tested at a strain rate of 5 x 10 -3 s -1 showed an improved yield strength from 798 MPa to 878 MPa due to the micrometric grain size of 2.2 μm and to the nanometric precipitates with a size of around 5 nm in the microstructure of the steel studied.

  20. The influence of spatial grain size on the suitability of the higher-taxon approach in continental priority-setting

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Rahbek, Carsten

    2005-01-01

    The higher-taxon approach may provide a pragmatic surrogate for the rapid identification of priority areas for conservation. To date, no continent-wide study has examined the use of higher-taxon data to identify complementarity-based networks of priority areas, nor has the influence of spatial gr...... grain size been assessed. We used data obtained from 939 sub-Saharan mammals to analyse the performance of higher-taxon data for continental priority-setting and to assess the influence of spatial grain sizes in terms of the size of selection units (1°× 1°, 2°× 2° and 4°× 4° latitudinal...... as effectively as species-based priority areas, genus-based areas perform considerably less effectively than species-based areas for the 1° and 2° grain size. Thus, our results favour the higher-taxon approach for continental priority-setting only when large grain sizes (= 4°) are used.......The higher-taxon approach may provide a pragmatic surrogate for the rapid identification of priority areas for conservation. To date, no continent-wide study has examined the use of higher-taxon data to identify complementarity-based networks of priority areas, nor has the influence of spatial...