WorldWideScience

Sample records for century climate change

  1. 21st Century Climate Change in the European Alps

    Science.gov (United States)

    Gobiet, Andreas; Kotlarski, Sven; Stoffel, Markus; Heinrich, Georg; Rajczak, Jan; Beniston, Martin

    2014-05-01

    The Alps are particularly sensitive to global warming and warmed twice as much as the global average in the recent past. In addition, the Alps and its surroundings are a densly populated areas where society is affected by climate change in many ways, which calls for reliable estimates of future climate change. However, the complex Alpine region poses considerable challenges to climate models, which translate to uncertainties in future climate projections. Against this background, the present study reviews the state-of-knowledge about 21st century climate change in the Alps based on existing literature and additional analyses. It will be demonstrated that considerable and accelerating changes are not only to be expected with regard to temperature, but also precipitation, global radiation, relative humidity, and closely related impacts like floods, droughts, snow cover, and natural hazards will be effected by global warming. Under the A1B emission scenario, about 0.25 °C warming per decade until the mid of the 21st century and accelerated 0.36 °C warming per decade in the second half of the century is expected. Warming will most probably be associated with changes in the seasonality of precipitation, global radiation, and relative humidity. More intense precipitation extremes and flooding potential are particularly expected in the colder part of the year. The conditions of currently record breaking warm or hot winter or summer seasons, respectively, may become normal at the end of the 21st century, and there is indication for droughts to become more severe in the future. Snow cover is expected to drastically decrease below 1500 - 2000 m and natural hazards related to glacier and permafrost retreat are expected to become more frequent. Such changes in climatic variables and related quantities will have considerable impact on ecosystems and society and will challenge their adaptive capabilities. Acknowledgements: This study has been initiated and is partly funded by

  2. 21st century change in ocean response to climate forcing

    CERN Document Server

    Marčelja, Stjepan

    2015-01-01

    Modeling globally averaged information on climate forcing from the land surface temperature data, the sea surface temperatures (SST) and the empirically determined relationship between the changes in SST and the turbulent diffusion of heat into the upper ocean demonstrates a consistent link. The modeling is accurate throughout the 20th century despite the different phases of the Interdecadal Pacific Oscillation (IPO) or the strong divergence between land and ocean surface warming. It only fails during the last 15 years when SST drops well below the trend. The finding reinforces the view that slower global warming over the previous 15 years is not a caused by a negative phase of the IPO or by the variations in the upper ocean (top 700 m) warming but results from a change in the ocean behavior leading to increased heat transfer into the deeper ocean.

  3. Projections of Climate Change over China for the 21st Century

    Institute of Scientific and Technical Information of China (English)

    LUO Yong; ZHAO Zongci; XU Ying; GAO Xuejie; DING Yihui

    2005-01-01

    The projections of climate changes in China for the 21st century by about 40 climate scenarios and multi-model ensembles have been investigated in this research. All the models with the different scenarios project a warming of 1.2℃ to 9.2℃ in China by the end of 21st century. Most of the projections point show the increasing of precipitation in China for the 21st century.

  4. CLIMATE CHANGE: THE MAJOR THREAT OF THE 21ST CENTURY

    Directory of Open Access Journals (Sweden)

    V. Bazylevych

    2014-06-01

    Full Text Available We consider important aspects of Kyiv climate change because of natural influences (growing population and level of household consumption accompanied with mounting volumes of waste and anthropogenic factors (shrinking forests and green spaces, inefficient use of natural resources, increased use of fossil fuels, uneconomical use of energy and water for production and business activities, outdated production technology. The study exposes major negative effects of the climate change, examines the dynamics of trends and the relationship among population growth, consumption of energy resources, emissions of substances to air and waste production in Kyiv during 2000-2013. The environmental conditions in the city are under careful examination and compared with the environmental situation in the largest European capitals. The key scientific and methodological, organizational, economic, technological steps are outlined in the context of Ukraine's integration into the European economic space to counteract climate change in Kyiv.

  5. Climate change in Mediterranean mountains during the 21st century

    DEFF Research Database (Denmark)

    Nogués Bravo, David; Araújo, Miguel B; Lasanta, Teodoro;

    2008-01-01

    spring (-17% under Alfi and -4.8% under B1 for 2085). On the contrary, non-Mediterranean European mountains will not experience a reduction of annual and spring precipitation. Implications of predicted climate change for both human and physical features are coupled in an integrated framework to gain...

  6. Twenty-first century changes in snowfall climate in Northern Europe in ENSEMBLES regional climate models

    Science.gov (United States)

    Räisänen, Jouni

    2016-01-01

    Changes in snowfall in northern Europe (55-71°N, 5-35°E) are analysed from 12 regional model simulations of twenty-first century climate under the Special Report on Emissions Scenarios A1B scenario. As an ensemble mean, the models suggest a decrease in the winter total snowfall in nearly all of northern Europe. In the middle of the winter, however, snowfall generally increases in the coldest areas. The borderline between increasing and decreasing snowfall broadly coincides with the -11 °C isotherm in baseline (1980-2010) monthly mean temperature, although with variation between models and grid boxes. High extremes of daily snowfall remain nearly unchanged, except for decreases in the mildest areas, where snowfall as a whole becomes much less common. A smaller fraction of the snow in the simulated late twenty-first century climate falls on severely cold days and a larger fraction on days with near-zero temperatures. Not only do days with low temperatures become less common, but they also typically have more positive anomalies of sea level pressure and less snowfall for the same temperature than in the present-day climate.

  7. Climate Change Policies for the XXIst Century: Mechanisms, Predictions and Recommendations

    CERN Document Server

    Khmelinskii, Igor

    2011-01-01

    Recent experimental works demonstrated that the Anthropogenic Global Warming (AGW) hypothesis, embodied in a series of Intergovernmental Panel on Climate Change (IPCC) global climate models, is erroneous. These works prove that atmospheric carbon dioxide contributes only very moderately to the observed warming, and that there is no climatic catastrophe in the making, independent on whether or not carbon dioxide emissions will be reduced. In view of these developments, we discuss climate predictions for the XXIst century. Based on the solar activity tendencies, a new Little Ice Age is predicted by the middle of this century, with significantly lower global temperatures. We also show that IPCC climate models can't produce any information regarding future climate, due to essential physical phenomena lacking in those, and that the current budget deficit in many EU countries is mainly caused by the policies promoting renewable energies and other AGW-motivated measures. In absence of any predictable adverse climate...

  8. Modelling the impacts of climate change on tropospheric ozone over three centuries

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2011-02-01

    Full Text Available The ozone chemistry over three centuries has been simulated based on climate prediction from a global climate model and constant anthropogenic emissions in order to separate out the effects on air pollution from climate change. Four decades in different centuries has been simulated using the chemistry version of the atmospheric long-range transport model; the Danish Eulerian Hemispheric Model (DEHM forced with meteorology predicted by the ECHAM5/MPI-OM coupled Atmosphere-Ocean General Circulation Model. The largest changes in both meteorology, ozone and its precursors is found in the 21st century, however, also significant changes are found in the 22nd century. At surface level the ozone concentration is predicted to increase due to climate change in the areas where substantial amounts of ozone precursors are emitted. Elsewhere a significant decrease is predicted at the surface. In the free troposphere a general increase is found in the entire Northern Hemisphere except in the tropics, where the ozone concentration is decreasing. In the Arctic the ozone concentration will increase in the entire air column, which most likely is due to changes in transport. The change in temperature, humidity and the naturally emitted Volatile Organic Compounds (VOCs are governing with respect to changes in ozone both in the past, present and future century.

  9. Landscape and climate change in the central Canadian Rockies during the 20. century

    Energy Technology Data Exchange (ETDEWEB)

    Luckman, B. H. [Western Ontario Univ., Dept. of Geography, London, ON (Canada)

    1998-12-31

    Selected evidence of environmental changes in the central Canadian Rocky Mountains region during the 20. century are reviewed. Climatic records show an annual mean temperature rise of 1.4 degrees C over the last 100 years. Greatest increases have been in winter temperatures (3.2 degrees C/century). Precipitation changes also varied considerably with generally highest flows in the mid-20. century. A tree-ring based temperature reconstruction indicates summer and spring temperatures in the last half of the 20. century higher than any equivalent period over the last 900 years. Glaciers are estimated to have lost 25 per cent of their area in the last 100 years. It is believed that they are smaller now than at any time in the last 3000 years. These two lines of evidence indicate that the climate of the late 20. century is exceptional when viewed in the context of the last one to three millenia. Changes in vegetation also have been observed at the upper treeline ecotone in response to climate changes over the last century, but the most significant change in the last 100 years is the transformation of the character of the montane forest due to reduction in forest fire frequency, resulting from an active policy of fire suppression. 81 refs., 4 tabs., 7 figs.

  10. Probabilistic projections of 21st century climate change over Northern Eurasia

    Science.gov (United States)

    Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.

  11. Impact of 21st century climate change on the Baltic Sea fish community and fisheries

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Gislason, Henrik; Möllmann, C.;

    2007-01-01

    reviewed. We then use recent regional - scale climate - ocean modelling results to consider how climate change during this century will affect the fish community of the Baltic and fisheries management. Expected climate changes in northern Europe will likely affect both the temperature and salinity...... some of the uncertainties and complexities associated with forecasting how fish populations, communities and industries dependent on an estuarine ecosystem might respond to future climate change.......The Baltic Sea is a large brackish semienclosed sea whose species-poor fish community supports important commercial and recreational fisheries. Both the fish species and the fisheries are strongly affected by climate variations. These climatic effects and the underlying mechanisms are briefly...

  12. Projected Changes in Kppen Climate Types in the 21st Century over China

    Institute of Scientific and Technical Information of China (English)

    SHI Ying; GAO Xue-Jie; WU Jia

    2012-01-01

    Future changes in the climate regimes over China as measured by the Kppen climate classification are reported in this paper. The analysis is based on a high-resolution climate change simulation conducted by a regional climate model (the Abdus Salam International Center for Theoretical Physics (ICTP) RegCM3) driven by the global model of Center for Climate System Research (CCSR)/National Institute for Environment Studies (NIES)/Frontier Research Center for Global Change (FRCGC) MIROC3.2_hires (the Model for Interdisciplinary Research on Climate) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. Validation of the model performances is presented first. The results show that RegCM3 reproduces the present-day distribution of the Kppen climate types well. Significant changes of the types are found in the future over China, following the simulated warming and precipitation changes. In southern China, the change is characterized by the replacement of subtropical humid (Cr) by subtropical winter-dry (Cw). A pronounced decrease of the cold climate types is found over China, e.g., tundra (Ft) over the Tibetan Plateau and sub-arctic continental (Ec) over northeast China. The changes are usually greater in the end compared with the middle of the 21st century.

  13. Global priority conservation areas in the face of 21st century climate change.

    Directory of Open Access Journals (Sweden)

    Junsheng Li

    Full Text Available In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the "Global 200" ecoregions - a set of priority ecoregions designed to "achieve the goal of saving a broad diversity of the Earth's ecosystems" - over the 21(st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991-2010 and 2081-2100, 96% of the ecoregions considered will be likely (more than 66% probability to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.

  14. Global priority conservation areas in the face of 21st century climate change.

    Science.gov (United States)

    Li, Junsheng; Lin, Xin; Chen, Anping; Peterson, Townsend; Ma, Keping; Bertzky, Monika; Ciais, Philippe; Kapos, Valerie; Peng, Changhui; Poulter, Benjamin

    2013-01-01

    In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI) that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the "Global 200" ecoregions - a set of priority ecoregions designed to "achieve the goal of saving a broad diversity of the Earth's ecosystems" - over the 21(st) century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991-2010 and 2081-2100, 96% of the ecoregions considered will be likely (more than 66% probability) to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.

  15. Climate change in Hungary during the twentieth century according to Feddema

    Science.gov (United States)

    Breuer, Hajnalka; Ács, Ferenc; Skarbit, Nóra

    2017-02-01

    Climate change in Hungary during the twentieth century is analyzed using Feddema's original scheme suitable for global scale applications (F-GS) and Feddema's fine-tuned scheme designed for Hungarian applications (F-HU). Input data of precipitation (P) and air temperature (T) are taken from the Climatic Research Unit (CRU) TS 1.2 database constructing P-T data referring to three 30-year periods (1901-1930, 1941-1970, 1971-2000) and two 50-year periods (1901-1950, 1951-2000). The method and data organizational effects are compared using these schemes and data sets. The results show that the evaluation of the climate change process depends much more on the methodological rather than on data organizational effects. Methodical fine-tuning effects considerably improved the spatial distribution, while the organization of data improved the insight into the dynamic of the processes. According to F-GS, there is no climate change on 76.7 % of Hungarian territory. According to F-HU, such areas amount to only 38.5 %. The main climate change process for F-GS is drying, while for F-HU drying and warming beside either drying or warming. For both models, the most climate change affected areas are characterized by higher altitudes, such as in the Mecsek and Villány Mountains (geographical region Transdanubia), in the Bükk Mountains (geographical region North Hungarian Mountains), and in the region of the so-called Danube Bend. The spatially most realistic climate description is obtained by using F-HU and the 30-year data sets. It is to be noted that Köppen's, Holdridge's, and Thornthwaite's methods are less suitable than F-HU for representing the process of climate change in Hungary in the twentieth century.

  16. Climate change and malaria risk in the European part of Russia in 21st century

    Science.gov (United States)

    Shartova, N.; Malkhazova, S.

    2009-04-01

    The purpose of this research is development of prognostic model of malaria risk for European part of Russia (EPR) in the 21st century according to climate scenario IPCC "A2". The following issues have been formulated to reach the goal of the research: define the basic epidemiological parameters describing malaria situation and methods of data processing; creating of maps of malaria risk; analysis of changes in malaria distribution for predictable future climate conditions in comparison with conditions of a modern climate. A lot of reasons (biological, social and economic) impact on malaria distribution. Nevertheless, incubation period of the parasite first of all depends on temperature. This is a primary factor that defines a potential area of infection, ability and specificity to transmit malaria. According to this, the model is based on the relationship between climate (average daily temperature) and the intensity of malaria transmission. The object of research is malaria parasite Plasmodium vivax, which has for Russia (particularly for EPR) the greatest importance because it has the lowest minimal temperature threshold for development. Climate data is presented by daily average temperatures of air for three analyzed periods. 1961 -1989 describes a modern climate and corresponds to the minimum 30-year period that is necessary for an assessment of climate and changes connected with biotic components. Prognostic malaria model is based on predicted daily average temperatures for 2046-2065 (the middle of century) and 2089-2100 (the end of century). All data sets for EPR are presented in the grid 2x2. The conclusion on possible changes in malaria distribution and transmission in the middle and the end of the 21st century: There is going to be the increase of duration of effective temperatures period (period when parasite development is possible), period of effective susceptibility to infection of mosquitoes (period when malaria transmission cycle is possible); shift

  17. 21st century climate change in the European Alps—A review

    Energy Technology Data Exchange (ETDEWEB)

    Gobiet, Andreas, E-mail: andreas.gobiet@uni-graz.at [Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz (Austria); Kotlarski, Sven, E-mail: sven.kotlarski@env.ethz.ch [Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich (Switzerland); Beniston, Martin, E-mail: martin.beniston@unige.ch [Institute for Environmental Sciences, University of Geneva, Site de Battelle − Bâtiment D, 7, route de Drize − 1227 Carouge, Geneva (Switzerland); Heinrich, Georg, E-mail: g.heinrich@uni-graz.at [Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz (Austria); Rajczak, Jan, E-mail: jan.rajczak@env.ethz.ch [Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich (Switzerland); Stoffel, Markus, E-mail: markus.stoffel@unige.ch [Institute for Environmental Sciences, University of Geneva, Site de Battelle − Bâtiment D, 7, route de Drize − 1227 Carouge, Geneva (Switzerland)

    2014-09-15

    Reliable estimates of future climate change in the Alps are relevant for large parts of the European society. At the same time, the complex Alpine region poses considerable challenges to climate models, which translate to uncertainties in the climate projections. Against this background, the present study reviews the state-of-knowledge about 21st century climate change in the Alps based on existing literature and additional analyses. In particular, it explicitly considers the reliability and uncertainty of climate projections. Results show that besides Alpine temperatures, also precipitation, global radiation, relative humidity, and closely related impacts like floods, droughts, snow cover, and natural hazards will be affected by global warming. Under the A1B emission scenario, about 0.25 °C warming per decade until the mid of the 21st century and accelerated 0.36 °C warming per decade in the second half of the century is expected. Warming will probably be associated with changes in the seasonality of precipitation, global radiation, and relative humidity, and more intense precipitation extremes and flooding potential in the colder part of the year. The conditions of currently record breaking warm or hot winter or summer seasons, respectively, may become normal at the end of the 21st century, and there is indication for droughts to become more severe in the future. Snow cover is expected to drastically decrease below 1500–2000 m and natural hazards related to glacier and permafrost retreat are expected to become more frequent. Such changes in climatic parameters and related quantities will have considerable impact on ecosystems and society and will challenge their adaptive capabilities. - Highlights: • Warming is expected to accelerate throughout the 21st century in the Alpine region. • Seasonal shifts in precipitation, global radiation, and relative humidity are expected. • Precipitation and temperature extremes are expected to intensify. • Snow cover

  18. Climate change and malaria risk in Russia in 21st century

    Science.gov (United States)

    Malkhazova, S.; Shartova, N.

    2010-09-01

    The purpose of this research is development of prognostic model of malaria risk for Russia in the 21st century according to climate scenario IPCC "А2". The following issues have been formulated to reach the goal of the research: - define the basic epidemiological parameters describing malaria situation and methods of data processing; - creating of maps of malaria risk; - analysis of changes in malaria distribution for predictable future climate conditions in comparison with conditions of a modern climate. A lot of reasons (biological, social and economic) impact on malaria distribution. Nevertheless, incubation period of the parasite first of all depends on temperature. This is a primary factor that defines a potential area of infection, ability and specificity to transmit malaria. According to this, the model is based on the relationship between climate (average daily temperature) and the intensity of malaria transmission. The object of research is malaria parasite Plasmodium vivax, which has for Russia the greatest importance because it has the lowest minimal temperature threshold for development. Climate data is presented by daily average temperatures of air for three analyzed periods. 1961 -1989 describes a modern climate and corresponds to the minimum 30-year period that is necessary for an assessment of climate and changes connected with biotic components. Prognostic malaria model is based on predicted daily average temperatures for 2046-2065 (the middle of century) and 2089-2100 (the end of century). All data sets are presented in the grid 2х20. The conclusion on possible changes in malaria distribution and transmission in the middle and the end of the 21st century: There is going to be the increase of duration of effective temperatures period (period when parasite development is possible), period of effective susceptibility to infection of mosquitoes (period when malaria transmission cycle is possible); shift of the beginning of malaria transmission

  19. 21st Century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, Jouni [Department of Physics, P.O. Box 48 (Erik Palmenin aukio 1), University of Helsinki (Finland); Eklund, Joonas [Department of Physics, P.O. Box 48 (Erik Palmenin aukio 1), University of Helsinki (Finland); Finnish Meteorological Institute, P.O. Box 503 (Erik Palmenin aukio 1), Helsinki (Finland)

    2012-06-15

    Changes in snow amount in northern Europe are analysed from 11 regional model simulations of 21st century climate under the Special Report on Emissions Scenarios A1B scenario. These high-resolution models collectively indicate a future decrease in the water equivalent of the snow pack (SWE). Although winter precipitation increases, this is insufficient to compensate for the increased fraction of liquid precipitation and increased snowmelt caused by higher temperatures. The multi-model mean results suggest a slight increase in March mean SWE only locally in mountains of northern Sweden, and even there, snow is reduced earlier in winter and later in spring. The nature of the changes remains the same throughout the 21st century, but their magnitude increases with time as the greenhouse gas forcing grows larger. The geographical patterns of the change support the physically intuitive view that snow is most vulnerable to warming in areas with relatively mild winter climate. A similar relationship emerges when comparing the 11 simulations with each other: the ratio between the relative SWE decrease and winter mean temperature change is larger (smaller) for simulations with higher (lower) late 20th century winter temperatures. Despite the decrease in long-term mean SWE, individual snow-rich winters do occur in the simulations, but they become increasingly uncommon towards the end of the 21st century. (orig.)

  20. 21 century climatic change impacts on the hydrology of major rivers in the Tibetan Plateau

    Science.gov (United States)

    Su, F.; Duan, X.; Zhang, L.; Hao, Z.; Cuo, L.

    2011-12-01

    Major Asian rivers including Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtz originate from the Tibetan Plateau (TP). These rivers support billions of people downstream, and the TP is therefore considered as the water tower of Asia. Changes of climate factors (e.g., temperature and precipitation) and the induced changes (e.g, melting of glacial and permafrost) may have substantial impacts on the hydrological cycle and runoff of the rivers in the TP. Therefore, quantifying the potential impacts of future climate changes over the TP is essential to assist policy-makers and water managers in adopting strategies reflecting the state of scientific understanding of the likelihood. In this work, temperature and precipitation projected by 20 general circulation models (GCMs) from emission scenarios B1 (lower emission scenario) and A2 (mid-high emission scenario) were used to characterize the potential climate changes over the TP for 2011-2099. Outputs from the 20 GCMs were bias corrected and statistically downscaled, and were used to force a land surface hydrology model. The hydrology model was applied to investigate the impacts of potential climate changes on the hydrology over the TP in the 21th century. Precipitation and streamflow regimes vary among the river basins in the TP. The investigation of climate change impacts was focused on the precipitation-dominated and melting water-dominated river basins.

  1. Coupled model simulations of climate changes in the 20th century and beyond

    Science.gov (United States)

    Yu, Yongqiang; Zhi, Hai; Wang, Bin; Wan, Hui; Li, Chao; Liu, Hailong; Li, Wei; Zheng, Weipeng; Zhou, Tianjun

    2008-07-01

    Several scenario experiments of the IPCC 4th Assessment Report (AR4) are performed by version g1.0 of a Flexible coupled Ocean-Atmosphere-Land System Model (FGOALS) developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP/CAS), including the “Climate of the 20th century experiment”, “CO2 1% increase per year to doubling experiment” and two separate IPCC greenhouse gases emission scenarios A1B and B1 experiments. To distinguish between the different impacts of natural variations and human activities on the climate change, three-member ensemble runs are performed for each scenario experiment. The coupled model simulations show: (1) from 1900 to 2000, the global mean temperature increases about 0.5°C and the major increase occurs during the later half of the 20th century, which is in consistent with the observations that highlights the coupled model’s ability to reproduce the climate changes since the industrial revolution; (2) the global mean surface air temperature increases about 1.6°C in the CO2 doubling experiment and 1.5°C and 2.4°C in the A1B and B1 scenarios, respectively. The global warming is indicated by not only the changes of the surface temperature and precipitation but also the temperature increase in the deep ocean. The thermal expansion of the sea water would induce the rise of the global mean sea level. Both the control run and the 20th century climate change run are carried out again with version g1.1 of FGOALS, in which the cold biases in the high latitudes were removed. They are then compared with those from version g1.0 of FGOALS in order to distinguish the effect of the model biases on the simulation of global warming.

  2. Coupled Model Simulations of Climate Changes in the 20th Century and Beyond

    Institute of Scientific and Technical Information of China (English)

    YU Jiaqiang; ZHI Hai; WANG Bin; WAN Hui; LI Chai; LIU Hailong; LI Wei; ZHENG Weipeng; ZHOU Tianjun

    2008-01-01

    Several scenario experiments of the IPCC 4th Assessment Report (AR4) are performed by version g1.0 of a Flexible coupled Ocean-Atmosphere-Land System Model (FGOALS) developed at the Institute of At- mospheric Physics, Chinese Academy of Sciences (IAP/CAS), including the "Climate of the 20th century experiment", "CO2 1% increase per year to doubling experiment" and two separate IPCC greenhouse gases emission scenarios AIB and B1 experiments. To distinguish between the different impacts of natural vari- ations and human activities on the climate change, three-member ensemble runs are performed for each scenario experiment. The coupled model simulations show: (1) from 1900 to 2000, the global mean temper- ature increases about 0.5℃ and the major increase occurs during the later half of the 20th century, which is in consistent with the observations that highlights the coupled model's ability to reproduce the climate changes since the industrial revolution; (2) the global mean surface air temperature increases about 1.6℃ in the CO2 doubling experiment and 1.5℃ and 2.4℃ in the AlB and Bl scenarios, respectively. The global warming is indicated by not only the changes of the surface temperature and precipitation but also the temperature increase in the deep ocean. The thermal expansion of the sea water would induce the rise of the global mean sea level. Both the control run and the 20th century climate change run are carried out again with version g1.1 of FGOALS, in which the cold biases in the high latitudes were removed. They are then compared with those from version g1.0 of FGOALS in order to distinguish the effect of the model biases on the simulation of global warming.

  3. The role of HFCs in mitigating 21st century climate change

    Directory of Open Access Journals (Sweden)

    Y. Xu

    2013-06-01

    Full Text Available There is growing international interest in mitigating climate change during the early part of this century by reducing emissions of short-lived climate pollutants (SLCPs, in addition to reducing emissions of CO2. The SLCPs include methane (CH4, black carbon aerosols (BC, tropospheric ozone (O3 and hydrofluorocarbons (HFCs. Recent studies have estimated that by mitigating emissions of CH4, BC, and O3 using available technologies, about 0.5 to 0.6 °C warming can be avoided by mid-21st century. Here we show that avoiding production and use of high-GWP (global warming potential HFCs by using technologically feasible low-GWP substitutes to meet the increasing global demand can avoid as much as another 0.5 °C warming by the end of the century. This combined mitigation of SLCPs would cut the cumulative warming since 2005 by 50% at 2050 and by 60% at 2100 from the CO2-only mitigation scenarios, significantly reducing the rate of warming and lowering the probability of exceeding the 2 °C warming threshold during this century.

  4. Projections of Wind Changes for 21st Century in China by Three Regional Climate Models

    Institute of Scientific and Technical Information of China (English)

    JIANG Ying; LUO Yong; ZHAO Zongci; SHI Ying; XU Yinlong; ZHU Jinhong

    2010-01-01

    This paper examines the capability of three regional climate models(RCMs),i.e.,RegCM3(the International Centre for Theoretical Physics Regional Climate Model),PRECIS(Providing Regional Climates for Impacts Studies)and CMM5(the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA,NCAR Mesoscale Model)to simulate the near-surface-layer winds(10 m above surface)all over China in the late 20th century.Results suggest that like global climate models(GCMs),these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country.However,RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed.In view of their merits,these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century.The results show that 1)summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2)annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3)the changes of summer mean wind speed for 2081-2100 are uncertain.As a result,although climate models are absolutely necessary for projecting climate change to come,there are great uncertainties in projections,especially for wind speed,and these issues need to be further explored.

  5. Limits to global and Australian temperature change this century based on expert judgment of climate sensitivity

    Science.gov (United States)

    Grose, Michael R.; Colman, Robert; Bhend, Jonas; Moise, Aurel F.

    2016-07-01

    The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth's climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn't cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.

  6. 21st century climate change threatens mountain flora unequally across Europe

    DEFF Research Database (Denmark)

    Engler, R.; Randin, C.F.; Thuiller, W.

    2011-01-01

    Continental-scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced...... microclimatic variation could allow species to persist locally, and are ill-suited for assessment of species-specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high-resolution (ca. 100 m) species samples...... by 2070–2100. While our high-resolution analyses consistently indicate marked levels of threat to cold-adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming...

  7. Twenty first century climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan

    Science.gov (United States)

    Ali, Shaukat; Li, Dan; Congbin, Fu; Khan, Firdos

    2015-01-01

    This study is based on both the recent and the predicted twenty first century climatic and hydrological changes over the mountainous Upper Indus Basin (UIB), which are influenced by snow and glacier melting. Conformal-Cubic Atmospheric Model (CCAM) data for the periods 1976-2005, 2006-2035, 2041-2070, and 2071-2100 with RCP4.5 and RCP8.5; and Regional Climate Model (RegCM) data for the periods of 2041-2050 and 2071-2080 with RCP8.5 are used for climatic projection and, after bias correction, the same data are used as an input to the University of British Columbia (UBC) hydrological model for river flow projections. The projections of all of the future periods were compared with the results of 1976-2005 and with each other. Projections of future changes show a consistent increase in air temperature and precipitation. However, temperature and precipitation increase is relatively slow during 2071-2100 in contrast with 2041-2070. Northern parts are more likely to experience an increase in precipitation and temperature in comparison to the southern parts. A higher increase in temperature is projected during spring and winter over southern parts and during summer over northern parts. Moreover, the increase in minimum temperature is larger in both scenarios for all future periods. Future river flow is projected by both models to increase in the twenty first century (CCAM and RegCM) in both scenarios. However, the rate of increase is larger during the first half while it is relatively small in the second half of the twenty first century in RCP4.5. The possible reason for high river flow during the first half of the twenty first century is the large increase in temperature, which may cause faster melting of snow, while in the last half of the century there is a decreasing trend in river flow, precipitation, and temperature (2071-2100) in comparison to 2041-2070 for RCP4.5. Generally, for all future periods, the percentage of increased river flow is larger in winter than in

  8. Energy and environment in the 21st century : minimizing climate change.

    CERN Document Server

    CERN. Geneva

    2003-01-01

    Energy demand and economic output are coupled. Both are expected to vastly increase in this century, driven primarily by the economic and population growth of the developing world. If the present reliance on carbon-based fuels as primary energy sources continues, average global temperatures are projected to rise between 3° C and 6° C. Limiting climate change will require reduction in greenhouse gas emissions far beyond the Kyoto commitments. Time scales and options, including nuclear, will be reviewed.

  9. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios

    Science.gov (United States)

    Adloff, Fanny; Somot, Samuel; Sevault, Florence; Jordà, Gabriel; Aznar, Roland; Déqué, Michel; Herrmann, Marine; Marcos, Marta; Dubois, Clotilde; Padorno, Elena; Alvarez-Fanjul, Enrique; Gomis, Damià

    2015-11-01

    The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air-sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961-2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001-2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air-sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070-2099 period compared to 1961-1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in

  10. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  11. A century of climate and ecosystem change in Western Montana: What do temperature trends portend?

    Science.gov (United States)

    Pederson, G.T.; Graumlich, L.J.; Fagre, D.B.; Kipfer, T.; Muhlfeld, C.C.

    2010-01-01

    The physical science linking human-induced increases in greenhouse gasses to the warming of the global climate system is well established, but the implications of this warming for ecosystem processes and services at regional scales is still poorly understood. Thus, the objectives of this work were to: (1) describe rates of change in temperature averages and extremes for western Montana, a region containing sensitive resources and ecosystems, (2) investigate associations between Montana temperature change to hemispheric and global temperature change, (3) provide climate analysis tools for land and resource managers responsible for researching and maintaining renewable resources, habitat, and threatened/endangered species and (4) integrate our findings into a more general assessment of climate impacts on ecosystem processes and services over the past century. Over 100 years of daily and monthly temperature data collected in western Montana, USA are analyzed for long-term changes in seasonal averages and daily extremes. In particular, variability and trends in temperature above or below ecologically and socially meaningful thresholds within this region (e.g., -17.8??C (0??F), 0??C (32??F), and 32.2??C (90??F)) are assessed. The daily temperature time series reveal extremely cold days (??? -17.8??C) terminate on average 20 days earlier and decline in number, whereas extremely hot days (???32??C) show a three-fold increase in number and a 24-day increase in seasonal window during which they occur. Results show that regionally important thresholds have been exceeded, the most recent of which include the timing and number of the 0??C freeze/thaw temperatures during spring and fall. Finally, we close with a discussion on the implications for Montana's ecosystems. Special attention is given to critical processes that respond non-linearly as temperatures exceed critical thresholds, and have positive feedbacks that amplify the changes. ?? Springer Science + Business Media B

  12. Sustainability, energy policy, climatic change, world food supply. Political and legal challenges of the 21th century; Nachhaltigkeit, Energiewende, Klimawandel, Welternaehrung. Politische und rechtliche Herausforderungen des 21. Jahrhunderts

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, Ines (ed.)

    2014-07-01

    The book on sustainability, energy policy, climatic change, world food supply as political challenges in the 21th century includes contributions on the following topics: sustainability and environment, energy and climatic change, agriculture and world food supply.

  13. Century scale climate change in the central highlands of Sri Lanka

    Indian Academy of Sciences (India)

    J De Silva; D U J Sonnadara

    2016-02-01

    In this study, an analysis of century scale climate trends in the central highlands of Sri Lanka is presented. Monthly rainfall and temperature records of the period 1869–2006 from five climatological stations were analyzed. The trend is calculated by the least square regression analysis and the significance of the observed trend is estimated using the Mann–Kendall statistic. The results clearly show that there is a statistically significant decrease in annual rainfall in the western slopes of the central highlands. Throughout the last century, the annual reduction of rainfall in Nuwara Eliya which is at an altitude of 1895 m was 5.2 mm/year. The decrease is largely due to the reduction in southwest monsoon rainfall which contributes to 75% of the total reduction. No significant change was observed on the eastern side of the central highlands which receives rainfall predominantly from the northeast monsoons. The mean annual temperature in the mountainous region shows a uniform increasing trend which is in line with the 100-year global temperature increase of 0.8 ± 0.2°C. Kandy, which is at an altitude of 477 m and closely linked with the rainfall climatology of Nuwara Eliya, showed no significant change in the mean annual temperature. If the current trend continues, in another 100 years, western and eastern slopes of central highlands will receive the same amount of rainfall from the southwest monsoon and the northeast monsoon which will have far reaching consequences for Sri Lanka’s economy and the ecology of the hill country.

  14. Climate change: Evolving technologies, U.S. business, and the world economy in the 21. century

    Energy Technology Data Exchange (ETDEWEB)

    Harter, J.J.

    1996-12-31

    The International Climate Change Partnership presents this report as one of its efforts to present current information on climate change to the public. One often hears about the expenses entailed in protecting the environment. Unfortunately, one hears less about the economic benefits that may be associated with prudent actions to counter environmental threats. This conference is particularly useful because it focuses attention on profitable business opportunities in the United States and elsewhere that arise from practical efforts to mitigate the risks of climate change. The report contains a brief synopsis of each speaker`s address on climate change.

  15. Predicting climate change impacts on native and invasive tree species using radial growth and twenty-first century climate scenarios

    NARCIS (Netherlands)

    González-Muñoz, N.; Linares, J.C.; Castro-Díez, P.; Sass-Klaassen, U.G.W.

    2014-01-01

    The climatic conditions predicted for the twenty-first century may aggravate the extent and impacts of plant invasions, by favouring those invaders more adapted to altered conditions or by hampering the native flora. We aim to predict the fate of native and invasive tree species in the oak forests o

  16. US Food Security and Climate Change: Mid-Century Projections of Commodity Crop Production by the IMPACT Model

    Science.gov (United States)

    Takle, E. S.; Gustafson, D. I.; Beachy, R.; Nelson, G. C.; Mason-D'Croz, D.; Palazzo, A.

    2013-12-01

    Agreement is developing among agricultural scientists on the emerging inability of agriculture to meet growing global food demands. The lack of additional arable land and availability of freshwater have long been constraints on agriculture. Changes in trends of weather conditions that challenge physiological limits of crops, as projected by global climate models, are expected to exacerbate the global food challenge toward the middle of the 21st century. These climate- and constraint-driven crop production challenges are interconnected within a complex global economy, where diverse factors add to price volatility and food scarcity. We use the DSSAT crop modeling suite, together with mid-century projections of four AR4 global models, as input to the International Food Policy Research Institute IMPACT model to project the impact of climate change on food security through the year 2050 for internationally traded crops. IMPACT is an iterative model that responds to endogenous and exogenous drivers to dynamically solve for the world prices that ensure global supply equals global demand. The modeling methodology reconciles the limited spatial resolution of macro-level economic models that operate through equilibrium-driven relationships at a national level with detailed models of biophysical processes at high spatial resolution. The analysis presented here suggests that climate change in the first half of the 21st century does not represent a near-term threat to food security in the US due to the availability of adaptation strategies (e.g., loss of current growing regions is balanced by gain of new growing regions). However, as climate continues to trend away from 20th century norms current adaptation measures will not be sufficient to enable agriculture to meet growing food demand. Climate scenarios from higher-level carbon emissions exacerbate the food shortfall, although uncertainty in climate model projections (particularly precipitation) is a limitation to impact

  17. Redesigning healthcare systems to meet the health challenges associated with climate change in the twenty-first century.

    Science.gov (United States)

    Phua, Kai-Lit

    2015-01-01

    In the twenty-first century, climate change is emerging as a significant threat to the health and well-being of the public through links to the following: extreme weather events, sea level rise, temperature-related illnesses, air pollution patterns, water security, food security, vector-borne infectious diseases, and mental health effects (as a result of extreme weather events and climate change-induced population displacement). This article discusses how national healthcare systems can be redesigned through changes in its components such as human resources, facilities and technology, health information system, and health policy to meet these challenges.

  18. Projections of glacier change in the Altai Mountains under twenty-first century climate scenarios

    Science.gov (United States)

    Zhang, Yong; Enomoto, Hiroyuki; Ohata, Tetsuo; Kitabata, Hideyuki; Kadota, Tsutomu; Hirabayashi, Yukiko

    2016-01-01

    We project glacier surface mass balances of the Altai Mountains over the period 2006-2100 for the representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios using daily near-surface air temperature and precipitation from 12 global climate models in combination with a surface mass balance model. The results indicate that the Altai glaciers will undergo sustained mass loss throughout the 21st for both RCPs and reveal the future fate of glaciers of different sizes. By 2100, glacier area in the region will shrink by 26 ± 10 % for RCP4.5, while it will shrink by 60 ± 15 % for RCP8.5. According to our simulations, most disappearing glaciers are located in the western part of the Altai Mountains. For RCP4.5, all glaciers disappearing in the twenty-first century have a present-day size smaller than 5.0 km2, while for RCP8.5, an additional ~7 % of glaciers in the initial size class of 5.0-10.0 km2 also vanish. We project different trends in the total meltwater discharge of the region for the two RCPs, which does not peak before 2100, with important consequences for regional water availability, particular for the semi-arid and arid regions. This further highlights the potential implications of change in the Altai glaciers on regional hydrology and environment.

  19. Projections of glacier change in the Altai Mountains under twenty-first century climate scenarios

    Science.gov (United States)

    Zhang, Yong; Enomoto, Hiroyuki; Ohata, Tetsuo; Kitabata, Hideyuki; Kadota, Tsutomu; Hirabayashi, Yukiko

    2016-11-01

    We project glacier surface mass balances of the Altai Mountains over the period 2006-2100 for the representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios using daily near-surface air temperature and precipitation from 12 global climate models in combination with a surface mass balance model. The results indicate that the Altai glaciers will undergo sustained mass loss throughout the 21st for both RCPs and reveal the future fate of glaciers of different sizes. By 2100, glacier area in the region will shrink by 26 ± 10 % for RCP4.5, while it will shrink by 60 ± 15 % for RCP8.5. According to our simulations, most disappearing glaciers are located in the western part of the Altai Mountains. For RCP4.5, all glaciers disappearing in the twenty-first century have a present-day size smaller than 5.0 km2, while for RCP8.5, an additional 7 % of glaciers in the initial size class of 5.0-10.0 km2 also vanish. We project different trends in the total meltwater discharge of the region for the two RCPs, which does not peak before 2100, with important consequences for regional water availability, particular for the semi-arid and arid regions. This further highlights the potential implications of change in the Altai glaciers on regional hydrology and environment.

  20. Agriculture in West Africa in the Twenty-first Century: climate change and impacts scenarios, and potential for adaptation

    Directory of Open Access Journals (Sweden)

    Benjamin Sultan

    2016-08-01

    Full Text Available West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the 21st century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options difficult. Further efforts are needed to improve modelling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, the response of the

  1. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation.

    Science.gov (United States)

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  2. Re-orienting crop improvement for the changing climatic conditions of the 21st century

    Directory of Open Access Journals (Sweden)

    Mba Chikelu

    2012-06-01

    Full Text Available Abstract A 70% increase in food production is required over the next four decades to feed an ever-increasing population. The inherent difficulties in achieving this unprecedented increase are exacerbated by the yield-depressing consequences of climate change and variations and by the pressures on food supply by other competing demographic and socioeconomic demands. With the dwindling or stagnant agricultural land and water resources, the sought-after increases will therefore be attained mainly through the enhancement of crop productivity under eco-efficient crop production systems. ‘Smart’ crop varieties that yield more with fewer inputs will be pivotal to success. Plant breeding must be re-oriented in order to generate these ‘smart’ crop varieties. This paper highlights some of the scientific and technological tools that ought to be the staple of all breeding programs. We also make the case that plant breeding must be enabled by adequate policies, including those that spur innovation and investments. To arrest and reverse the worrisome trend of declining capacities for crop improvement, a new generation of plant breeders must also be trained. Equally important, winning partnerships, including public-private sector synergies, are needed for 21st century plant breeding to bear fruits. We also urge the adoption of the continuum approach to the management of plant genetic resources for food and agriculture as means to improved cohesion of the components of its value chain. Compellingly also, the National Agricultural Research and Extension System of developing countries require comprehensive overhauling and strengthening as crop improvement and other interventions require a sustained platform to be effective. The development of a suite of actionable policy interventions to be packaged for assisting countries in developing result-oriented breeding programs is also called for.

  3. Main physical processes and mechanisms responsible for the observable climate changes in the 20-21st centuries

    Science.gov (United States)

    Zherebtsov, G. A.; Kovalenko, V. A.; Kirichenko, K. E.

    2015-11-01

    We discuss the issues of primary importance for understanding the nature of climate changes in the 20th century and main physical processes responsible for them. Special attention is paid to climate changes which occurred in 1943-1976 and 2000-2014. These periods exhibit the maximum increase in CO2 in the atmosphere, with virtually unchanged global temperature and its reduction in some regions. We study atmospheric and sea surface temperature effects of solar activity. The paper deals with results of the analysis of regularities and peculiarities of a tropospheric and sea surface temperature response to separate heliogeophysical disturbances as well as to long-term solar and geomagnetic activity variations. We also present results of the analysis of a change in sea surface temperature covering the time period 1854-2012 and their relation to solar activity variations. We find further evidence for the solar effect on climatic processes in the troposphere and ocean. We reveal a significant response in the major climatic characteristics, namely, surface air temperature and sea surface temperature (SST). It is established that the climatic response is characterized by significant space-time inhomogeneity, is regional and depends on the climate epoch. We discuss a role of wind stress and thermohaline circulation in the observable climate changes.

  4. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    Science.gov (United States)

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.

  5. Arctic climate changes in the 21st century: Ensemble model estimates accounting for realism in present-day climate simulation

    Science.gov (United States)

    Eliseev, A. V.; Semenov, V. A.

    2016-11-01

    In the course of forecasting future climate changes in the Arctic Region based on calculations and an ensemble of the state-of-the-art global climate models, the results depend on the method of construction the statistics from the models.

  6. How may the regional climate change redraw the European terrestrial wild mammals' living territory in the 21st century?

    Science.gov (United States)

    Nagy, Julia; Bartholy, Judit; Pongracz, Rita; Hufnagel, Levente

    2013-04-01

    Climate is one of the abiotic factors, which controls primarily the range areas of wildlife. Animals tend to occupy geographical regions with climatic conditions, which are optimal to their specific needs. Due to the projected global warming and climate change the living territory of wild animals' may be reshaped in the future, some of the species may even suffer extinction. In this research we aim to estimate how climate change alters the distributions of European terrestrial mammal species and modifies biodiversity in the 21st century. For this purpose, first, hierarchical cluster analysis is applied to species for forming major groups. Climatic information is provided by using the E-OBS gridded database for 1961-1990. Then, carefully selecting typical species from the major groups it is possible to predict changes in area by displaying their climate indicator profile maps. For the range datasets the Atlas of European Mammals are analyzed, which was published in 1999 and is now widely used as a reference work. It contains data for pre-1970 and post-1970 presence of mammal species in Europe. Then, in order to assess future changes, available datasets of regional climate model results from the European project ENSEMBLES for 1951-2100 using the moderate SRES A1B emission scenario are considered with 25 km horizontal resolution. Simultaneous analysis of climate simulations and animal range datasets enables us to evaluate the vulnerability of European terrestrial mammal species to regional climate change. The results suggest that rapid change and significant decline in habitats and fauna redraw the wild animals' living territory and make them migrate northward.

  7. Changing Climate And Timberline Dynamics Of The Carpathians During XX Century

    Science.gov (United States)

    Martazinova, V.; Weisberg, P.; Maderych, V.; Ivanova, E.; Savchuk, S.; Shandra, A.

    2010-12-01

    In this investigation weather changes over the Carpathian Mountains during the 20th ct. and their influence on timberline changes are analyzed. Forest cover at timberline is ecologically and societally important because it decreases probability of avalanche occurrence, debris flows, and may decrease negative consequences of floods. First of all, changes in large-scale atmospheric circulation and the response of regional circulation over Carpathian territory were considered. Changes in temperature and precipitation were analyzed on a decadal basis for the 20th ct. and the first decade of the 21st ct. over three regions (West , East, and South Carpathians). The largest changes up to the 21st ct. are during the winter. In the West Carpathians, temperature has increased greatly during the winter, significantly less during the summer, and minimally during transitional seasons. Precipitation increased during the winter and summer, to a smaller extent in the fall, and decreased during spring. In the East Carpathians the increase of temperature is more pronounced in the winter and in the beginning of the 21st ct. exceeds mid-20th century by 1°C. Precipitation noticeably increased in the 1970’s and, until the beginning of the 21st ct., the South slope retained this level, whereas the North experienced an instability in precipitation. In the South Carpathians temperature at the beginning of the 21st ct. exceeds that of the mid-20th ct. by 1°C. The level of winter precipitation at the end of the last decade is similar to its level at the beginning of the study period, summer precipitation is less, and spring precipitation trends are geographically variable, risingon the South-western slopes and falling on the South-Eastern ones. Timberline changes between 1880 and 2000 were analyzed by comparing military maps of the Austro-Hungarian Empire and contemporary Landsat imagery. The whole region experienced a decline in forest cover from 73.2%, to 70.6%. Forest cover increased

  8. Changing Temperature and Precipitation Extremes in Europe's Climate of the 20th Century

    NARCIS (Netherlands)

    Klein Tank, Albertus Maria Gerardus

    2004-01-01

    This thesis aims at increasing the knowledge on past changes in extremes through the analysis of historical records of observations at meteorological stations. The key question addressed is: How did the extremes of daily surface air temperature and precipitation change in Europe's climate of the

  9. Climate change impacts on the power generation potential of a European mid-century wind farms scenario

    Science.gov (United States)

    Tobin, Isabelle; Jerez, Sonia; Vautard, Robert; Thais, Françoise; van Meijgaard, Erik; Prein, Andreas; Déqué, Michel; Kotlarski, Sven; Fox Maule, Cathrine; Nikulin, Grigory; Noël, Thomas; Teichmann, Claas

    2016-03-01

    Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales.

  10. Climate Changes in the 21st Century over the Asia-Pacific Region Simulated by the NCAR CSM and PCM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Climate System Model (CSM) and the Parallel Climate Model (PCM), two coupled global climate models without flux adjustments recently developed at NCAR, were used to simulate the 20th century climate using historical greenhouse gas and sulfate aerosol forcing. These simulations were extended through the 21st century under two newly developed scenarios, a business-as-usual case (BAU, CO2≈710 ppmv in 2100) and a CO2 stabilization case (STA550, CO2≈540 ppmv in 2100). The simulated changes in temperature, precipitation, and soil moisture over the Asia-Pacific region (10°-60°N, 55°-155°E) are analyzed, with a focus on the East Asian summer monsoon rainfall and climate changes over the upper reaches of the Yangtze River. Under the BAU scenario, both the models produce surface warming of about 3-5℃ in winter and 2-3℃ in summer over most Asia. Under the STA550 scenario, the warming is reduced by 0.5-1.0℃ in winter and by 0.5℃ in summer. The warming is fairly uniform at the low latitudes and does not induce significant changes in the zonal mean Hadley circulation over the Asia-Pacific do main. While the regional precipitation changes from single CSM integrations are noisy, the PCM ensemble mean precipitation shows 10%-30% increases north of ~ 30°N and ~ 10% decreases south of ~ 30°N over the Asia-Pacific region in winter and 10%-20% increases in summer precipitation over most of the region. Soil moisture changes are small over most Asia. The CSM single simulation suggests a 30% increase in river runoff into the Three Gorges Dam, but the PCM ensemble simulations show small changes in the runoff.

  11. Projected evolution of California's San Francisco bay-delta-river system in a century of climate change

    Science.gov (United States)

    Cloern, J.E.; Knowles, N.; Brown, L.R.; Cayan, D.; Dettinger, M.D.; Morgan, T.L.; Schoellhamer, D.H.; Stacey, M.T.; van der Wegen, M.; Wagner, R.W.; Jassby, A.D.

    2011-01-01

    Background: Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings: We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010-2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance: Most of these environmental indicators change substantially over the 21st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community

  12. Projected evolution of California's San Francisco Bay-Delta-River System in a century of continuing climate change

    Science.gov (United States)

    Cloern, James E.; Knowles, Noah; Brown, Larry R.; Cayan, Daniel; Dettinger, Michael D.; Morgan, Tara L.; Schoellhamer, David H.; Stacey, Mark T.; van der Wegen, Mick; Wagner, R. Wayne; Jassby, Alan D.

    2011-01-01

    Background Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010–2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance Most of these environmental indicators change substantially over the 21st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community

  13. Projected evolution of California's San Francisco Bay-Delta-river system in a century of climate change.

    Directory of Open Access Journals (Sweden)

    James E Cloern

    Full Text Available BACKGROUND: Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. METHODOLOGY/PRINCIPAL FINDINGS: We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010-2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. CONCLUSIONS/SIGNIFICANCE: Most of these environmental indicators change substantially over the 21(st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1 an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2 varying sensitivity among environmental indicators to the uncertainty of future climates; (3 inevitability of

  14. Millenium- to Century-scale climate change of the northern Neotropics

    Science.gov (United States)

    Torrescano-Valle, N.; Islebe, G. A.; Carrillo-Bastos, A.; Aragón-Moreno, A. A.; Gutiérrez-Ayala, L. V.; Escárraga-Paredes, D. D.; Vela-Pelaez, A. A.

    2013-05-01

    Sensitive responses to environmental changes like sea-level rise, changes of hydrology and sediment deposition can be identified from pollen and sediment records from mangroves cores. Five cores of the Yucatan Peninsula are used to explain mangroves ecosystem dynamics, stabilization of coastal line and regional changes of precipitation, during the last 4000 years ago. Transition of Middle and Late Holocene shows important advance of mangrove ecosystem, changes of tide and water intrusion was identified by means of presence of Forams. Changes of tropical forest composition suggest important reduction of precipitation during the last centuries (The Classic Period and Little Ice Age). A high temporal resolution (millenial and centenary), ecological and biological study of indicator taxa and species assemblages, as well the understanding of regional dynamics, allow the precise interpretation of the paleoenvironmental signals.

  15. Impacts of 21st century climate changes on flora and vegetation in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Skov, Flemming; Nygaard, Bettina; Wind, Peter; Floejgaard, Camilla [Department of Wildlife Ecology and Biodiversity, National Environmental Research Institute, Aarhus University, Grenaavej 14, DK-8410 Roende (Denmark); Borchsenius, Finn; Normand, Signe; Balslev, Henrik; Svenning, Jens-Christian, E-mail: fs@dmu.d [Department of Biological Sciences, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C (Denmark)

    2009-11-01

    In this paper we examined the potential impacts of predicted climatic changes on the flora and vegetation in Denmark using data from a digital database on the natural vegetation of Europe. Climate scenarios A2 and B2 were used to find regions with present climatic conditions similar to Denmark's climate in the year 2100. The potential natural vegetation of Denmark today is predominantly deciduous forest that would cover more than 90% of the landscape. Swamps, bogs, and wet forest would be found under moist or wet conditions. Dwarf shrub heaths would be naturally occurring on poor soils along the coast together with dune systems and salt-marsh vegetation. When comparing the natural vegetation of Denmark to the vegetation of five future-climate analogue areas, the most obvious trend is a shift from deciduous to thermophilous broadleaved forest currently found in Southern and Eastern Europe. A total of 983 taxa were recorded for this study of which 539 were found in Denmark. The Soerensen index was used to measure the floristic similarity between Denmark and the five subregions. Deciduous forest, dwarf shrub heath, and coastal vegetation were treated in more detail, focusing on potential new immigrant species to Denmark. Finally, implications for management were discussed. The floristic similarity between Denmark and regions in Europe with a climate similar to what is expected for Denmark in year 2100 was found to vary between 48-78%, decreasing from North to South. Hence, it seems inevitable that climate changes of the magnitudes foreseen will alter the distribution of individual species and the composition of natural vegetation units. Changes, however, will not be immediate. Historic evidence shows a considerable lag in response to climatic change under natural conditions, but little is known about the effects of human land-use and pollution on this process. Facing such uncertainties we suggested that a dynamic strategy based on modeling, monitoring and

  16. The Influence of 21st Century Climate Change on the Isotopic Composition of Atmospheric Moisture and How it Relates to Past Hydrological Changes

    Science.gov (United States)

    Buenning, N. H.; Stott, L. D.; Yoshimura, K.

    2014-12-01

    Increases in greenhouse gas concentrations through the 21st century are projected to increase global temperatures and change circulation and precipitation patterns globally. However, there remain many uncertainties in how the general circulation of the atmosphere will change and how it will impact regional hydroclimates. In the low and middle latitudes the isotopic composition (δ) of atmospheric moisture could potentially be useful at tracing these changes in precipitation and wind patterns. In this study sea surface temperatures and sea ice conditions from 21st century climate projections (RCP8.5 scenario) were used to force the isotope-enabled Global Spectral Model (IsoGSM). This ensemble of IsoGSM simulations provides insight as to how and where water isotopologues will change globally as a result of 21st century climate change. In general, δ values increase in the subtropics and middle latitudes and decrease in the southern tropics. Changes to horizontal winds suggest that the isotopic changes are likely due to changes in the strength of the Hadley Cell, rather than the poleward expansion of the descending branch of the cells. Regionally, the simulations project consistent increases in δ values through the 21st century over central and southern Africa, the Tibetan Plateau, and the eastern Australia. Decreasing δ values were found over the eastern tropical Pacific and the western margins of South America. A comparison with a present-day IsoGSM simulation reveals similar regional changes in δ values over the last 60 years. The similarities between recent changes and 21st century projections of δ values suggest that certain hydrological aspects of 21st century climate change are already taking place in some regions. Central Africa stands out as a region where IsoGSM simulates robust rises in precipitation and vapor δ values for both the 21st century and the late 20th century. The recent rise in δ values over central Africa is validated against

  17. Projected Changes on the Global Surface Wave Drift Climate towards the END of the Twenty-First Century

    Science.gov (United States)

    Carrasco, Ana; Semedo, Alvaro; Behrens, Arno; Weisse, Ralf; Breivik, Øyvind; Saetra, Øyvind; Håkon Christensen, Kai

    2016-04-01

    The global wave-induced current (the Stokes Drift - SD) is an important feature of the ocean surface, with mean values close to 10 cm/s along the extra-tropical storm tracks in both hemispheres. Besides the horizontal displacement of large volumes of water the SD also plays an important role in the ocean mix-layer turbulence structure, particularly in stormy or high wind speed areas. The role of the wave-induced currents in the ocean mix-layer and in the sea surface temperature (SST) is currently a hot topic of air-sea interaction research, from forecast to climate ranges. The SD is mostly driven by wind sea waves and highly sensitive to changes in the overlaying wind speed and direction. The impact of climate change in the global wave-induced current climate will be presented. The wave model WAM has been forced by the global climate model (GCM) ECHAM5 wind speed (at 10 m height) and ice, for present-day and potential future climate conditions towards the end of the end of the twenty-first century, represented by the Intergovernmental Panel for Climate Change (IPCC) CMIP3 (Coupled Model Inter-comparison Project phase 3) A1B greenhouse gas emission scenario (usually referred to as a ''medium-high emissions'' scenario). Several wave parameters were stored as output in the WAM model simulations, including the wave spectra. The 6 hourly and 0.5°×0.5°, temporal and space resolution, wave spectra were used to compute the SD global climate of two 32-yr periods, representative of the end of the twentieth (1959-1990) and twenty-first (1969-2100) centuries. Comparisons of the present climate run with the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-40 reanalysis are used to assess the capability of the WAM-ECHAM5 runs to produce realistic SD results. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.

  18. The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2013-04-01

    Full Text Available So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes, the importance of which needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM driven by meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC, total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC, mineral dust and secondary inorganic aerosols (SIA and total nitrogen (including NHx + NOy has been determined. For ozone, the impacts of anthropogenic emissions dominate, though a climate penalty is found in the Arctic region and northwestern Europe, where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes, with an increase up to an order of magnitude larger, close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5 enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy in parts of the Arctic and at low latitudes is dominated by impacts of climate change.

  19. The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2012-09-01

    Full Text Available So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes and the importance of these signals needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM driven on meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC, total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC, mineral dust and secondary inorganic aerosols (SIA and total nitrogen (including NHx + NOy has been determined. For ozone the impacts of anthropogenic emissions dominates though a climate penalty is found in the Arctic region and the Northwestern Europe where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes increasing to be up to an order of magnitude larger close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5 enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy in parts of the Arctic and at low latitudes is dominated by impacts of climate change.

  20. Impacts of a changing climate on a century of extreme flood regime of northwest Australia

    Directory of Open Access Journals (Sweden)

    A. Rouillard

    2014-10-01

    to be most significant. Here, we sought to identify the main hydroclimatic determinants of the strongly episodic flood regime of a large catchment in the semi-arid, subtropical northwest of Australia and to establish the background of hydrologic variability for the region over the last century. We used a monthly sequence of satellite images to quantify surface water expression on the Fortescue Marsh, the largest water feature of inland northwest Australia, from 1988 to 2012. We used this sequence together with instrumental rainfall data to build a multiple linear model and reconstruct monthly history of floods and droughts since 1912. We found that severe and intense regional rainfall events, as well as the sequence of recharge events both within and between years, determine surface water expression on the floodplain (i.e., total rainfall, number of rain days and carried-over inundated area; R2adj = 0.79; p value ERMSP = 56 km2. The most severe inundation (~1000 km2 over the last century was recorded in 2000. The Fortescue Marsh was completely dry for 32% of all years, for periods of up to four consecutive years. Extremely wet years (seven of the 100 years caused the Marsh to remain inundated for up to 12 months; only 25% of years (9% of all months had floods of greater than 300 km2. Duration, severity and frequency of inundations between 1999 and 2006 were above average and unprecedented when compared to the last century. While there is high inter-annual variability in the system, changes to the flooding regime over the last 20 years suggest that the wetland will become more persistent in response to increased frequency and intensity of extreme rainfall events for the region, which in turn will likely impact on the structure and functioning of this highly specialized ecosystem.

  1. Empirical evidence for a double step climate change in twentieth century

    CERN Document Server

    V., Belolipetsky P; G., Degermendzhi A; Hsu, Huang-Hsiung; A., Varotsos C

    2013-01-01

    In this study we used the sea surface temperature (SST), El-Nino southern oscillation (ENSO) and Pacific decadal oscillation (PDO) time-series for the time period 1900-2012 in order to investigate plausible manifestation of sharp increases in temperature. It was found that the widely observed warming in the past century did not occur smoothly but sharply. This fact is more pronounced at the latitude zone 30S - 60N during the years 1925/1926 and 1987/1988. We hypothesise that there were two major climate regime shifts in 1925/1926 and 1987/1988 years. During these shifts the mean value of temperature rises, over which natural variability associated with ENSO, PDO and other factors occurs. During each sharp increase mean SST in tropics/north middle latitudes increased by about 0.28/0.36 {\\deg}C. Most of other temperature anomalies are explained by ENSO and PDO. The existence of these shifts tends to be masked by natural variability. This hypothesis has allowed us to develop very simple linear regression models ...

  2. Integrated Assessment of Global Water Scarcity over the 21st Century under Multiple Climate Change Mitigation Policies

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-01-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095, 20% and 27% of the global population, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.

  3. Climate Change of Franz Josef Land in the XX-XXI Centuries

    Science.gov (United States)

    Shilovtseva, Olga; Romanenko, Fedor

    2016-04-01

    The results of climatic observations on the most northern land of Eurasia - Franz Josef Land, that was discovered in 1874, are presented. The gaps in the observations of the observatory named after Ernst Krenkel (Hayes's Island) were supplemented by calculations using reanalysis ERA Interim. It was received the positive trend in surface air temperature during 1958-2013. It is mainly achieved by increasing of the air temperature in winter but the summer trend is not statistically significant. Data of observation and reanalysis are perfectly correlated in cold period when underlying surface is uniform (correlation coefficient of more than 0.95). In summer, the correlation coefficients between the calculated and the real data are significantly lower (up to 0.68). This fact may be a consequence of the small values of the mean air temperatures of summer months (for example, during the July they varied in the interval -1-+2 degrees C.). Furthermore, it may be caused by the difficulty of model reproduction of the real state of the underlying surface, where land, ice, snow and water are chaotically combined. The analysis of circulation types by B.L. Dzerdzeevsky has shown that in the mid-XX Century, the northern meridional and western zonal types of circulation were replaced by southern meridional one, which prevailed during the first decade of the XXI too. This causes a reduction of the ice cover period, which resulted in a strengthening of the beach erosion and of slope processes. But short-term flows of warm air from the south, causing a catastrophic melting of glaciers, were also repeatedly marked in the past. This work is supported by the Russian Science Foundation (project № 14-37-00038) and by the national park "Russian Arctic".

  4. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  5. Impact of climate change on mid-twenty-first century growing seasons in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kerry H.; Vizy, Edward K. [The University of Texas at Austin, Department of Geological Sciences, Jackson School of Geosciences, Austin, TX (United States)

    2012-12-15

    Changes in growing seasons for 2041-2060 across Africa are projected using a regional climate model at 90-km resolution, and confidence in the predictions is evaluated. The response is highly regional over West Africa, with decreases in growing season days up to 20% in the western Guinean coast and some regions to the east experiencing 5-10% increases. A longer growing season up to 30% in the central and eastern Sahel is predicted, with shorter seasons in parts of the western Sahel. In East Africa, the short rains (boreal fall) growing season is extended as the Indian Ocean warms, but anomalous mid-tropospheric moisture divergence and a northward shift of Sahel rainfall severely curtails the long rains (boreal spring) season. Enhanced rainfall in January and February increases the growing season in the Congo basin by 5-15% in association with enhanced southwesterly moisture transport from the tropical Atlantic. In Angola and the southern Congo basin, 40-80% reductions in austral spring growing season days are associated with reduced precipitation and increased evapotranspiration. Large simulated reductions in growing season over southeastern Africa are judged to be inaccurate because they occur due to a reduction in rainfall in winter which is over-produced in the model. Only small decreases in the actual growing season are simulated when evapotranspiration increases in the warmer climate. The continent-wide changes in growing season are primarily the result of increased evapotranspiration over the warmed land, changes in the intensity and seasonal cycle of the thermal low, and warming of the Indian Ocean. (orig.)

  6. Divergent hydrological responses to 20th century climate change in shallow tundra ponds, western Hudson Bay Lowlands

    Science.gov (United States)

    Wolfe, Brent B.; Light, Erin M.; Macrae, Merrin L.; Hall, Roland I.; Eichel, Kaleigh; Jasechko, Scott; White, Jerry; Fishback, LeeAnn; Edwards, Thomas W. D.

    2011-12-01

    The hydrological fate of shallow tundra lakes and ponds under conditions of continued warming remains uncertain, but has important implications for wildlife habitat and biogeochemical cycling. Observations of unprecedented pond desiccation, in particular, signify catastrophic loss of aquatic habitat in some Arctic locations. Shallow tundra ponds are a ubiquitous feature in the western Hudson Bay Lowlands (HBL), a region that has undergone intense warming over the past ˜50 years. But it remains unknown how hydrological processes in these ponds have responded. Here, we use cellulose-inferred pond water oxygen isotope records from sediment cores, informed by monitoring of modern pond water isotope compositions during the 2009 and 2010 ice-free seasons, to reconstruct hydrological conditions of four shallow tundra ponds in the western HBL over the past three centuries. Following an interval of relative hydrological stability during the early part of the records, results reveal widely differing hydrological responses to 20th century climate change among the study sites, which is largely dependent on hydrological connectivity of the basins within their respective surrounding peatlands. These findings suggest the 20th century has been characterized by an increasingly dynamic landscape that has variably influenced surface water balance - a factor that is likely to play a key role in determining the future water balance of ponds in this region.

  7. Climate Change Projections for the 21st Century by the NCC/IAP T63 Model with SRES Scenarios

    Institute of Scientific and Technical Information of China (English)

    XU Ying; ZHAO Zongci; LUO Yong; GAO Xuejie

    2005-01-01

    The projections of climate change in the globe and East Asia by the NCC/IAP T63 model with the SRES A2 and A1B scenarios have been investigated in this paper. The results pointed out a global warming of 3.6℃/100 yr and 2.5℃/100 yr for A2 and A1B during the 21st century, respectively. The warming in high and middle latitudes will be more obvious than that in low latitudes, especially in the winter hemisphere.The warming of 5.1℃/100 yr for A2 and 3.6℃/100 yr for A1B over East Asia in the 21st century will be much higher than that in the globe. The global mean precipitation will increase by about 4.3%/100 yr for A2 and 3.4%/100 yr for A1B in the 21st century, respectively. The precipitation will increase in most parts of the low and high latitudes and decrease in some regions of the subtropical latitudes. The linear trends of the annual mean precipitation anomalies over East Asia will be 9.8%/100 yr for A2 and 5.2%/100 yr for A1B, respectively. The drier situations will occur over the northwestern and southeastern parts of East Asia.The changes of the annual mean temperature and precipitation in the globe for the 21st century by the NCC/IAP T63 model with SRES A2 and A1B scenarios are in agreement with a number of the model projections.

  8. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  9. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  10. Progress in China's climate change study in the 20th century%20世纪中国气候变化研究

    Institute of Scientific and Technical Information of China (English)

    翟盘茂; 巢清尘; 邹旭恺

    2004-01-01

    Studies on the 20th century climate change in China have revealed that under the background of global warming over the past century,climate in China has also experienced significant change with mean annual temperature increased by about 0.5 °C.More reliable results for the latter part of the 20th century indicate that the largest warming occurred in Northwest China,North China and Northeast China,and the warming in winter is most significant.Although no obvious increase or decrease trends were detected for mean precipitation over China in the past half century,regional differences are very distinct.In the middle and lower reaches of the Yangtze River,precipitation increased,while that in the Yellow River Basin markedly decreased.Studies suggest that climate change in China seems to be related not only with the internal factors such as ENSO,PDO,and the others,but also with the anthropogenic effects such as greenhouse gas emissions,and land use.The future climate change studies in China seem to be important in narrowing understanding the nature of China's climate change and its main causes,since it is significant for projection and for impact assessment of climate change in the future.

  11. Transient regional climate change: analysis of the summer climate response in a high-resolution, century-scale, ensemble experiment over the continental United States

    Science.gov (United States)

    Diffenbaugh, Noah S.; Ashfaq, Moetasim; Scherer, Martin

    2013-01-01

    Integrating the potential for climate change impacts into policy and planning decisions requires quantification of the emergence of sub-regional climate changes that could occur in response to transient changes in global radiative forcing. Here we report results from a high-resolution, century-scale, ensemble simulation of climate in the United States, forced by atmospheric constituent concentrations from the Special Report on Emissions Scenarios (SRES) A1B scenario. We find that 21st century summer warming permanently emerges beyond the baseline decadal-scale variability prior to 2020 over most areas of the continental U.S. Permanent emergence beyond the baseline annual-scale variability shows much greater spatial heterogeneity, with emergence occurring prior to 2030 over areas of the southwestern U.S., but not prior to the end of the 21st century over much of the southcentral and southeastern U.S. The pattern of emergence of robust summer warming contrasts with the pattern of summer warming magnitude, which is greatest over the central U.S. and smallest over the western U.S. In addition to stronger warming, the central U.S. also exhibits stronger coupling of changes in surface air temperature, precipitation, and moisture and energy fluxes, along with changes in atmospheric circulation towards increased anticylonic anomalies in the mid-troposphere and a poleward shift in the mid-latitude jet aloft. However, as a fraction of the baseline variability, the transient warming over the central U.S. is smaller than the warming over the southwestern or northeastern U.S., delaying the emergence of the warming signal over the central U.S. Our comparisons with observations and the Coupled Model Intercomparison Project Phase 3 (CMIP3) ensemble of global climate model experiments suggest that near-term global warming is likely to cause robust sub-regional-scale warming over areas that exhibit relatively little baseline variability. In contrast, where there is greater

  12. Transient regional climate change: analysis of the summer climate response in a high-resolution, century-scale, ensemble experiment over the continental United States.

    Science.gov (United States)

    Diffenbaugh, Noah S; Ashfaq, Moetasim; Scherer, Martin

    2011-12-27

    Integrating the potential for climate change impacts into policy and planning decisions requires quantification of the emergence of sub-regional climate changes that could occur in response to transient changes in global radiative forcing. Here we report results from a high-resolution, century-scale, ensemble simulation of climate in the United States, forced by atmospheric constituent concentrations from the Special Report on Emissions Scenarios (SRES) A1B scenario. We find that 21(st) century summer warming permanently emerges beyond the baseline decadal-scale variability prior to 2020 over most areas of the continental U.S. Permanent emergence beyond the baseline annual-scale variability shows much greater spatial heterogeneity, with emergence occurring prior to 2030 over areas of the southwestern U.S., but not prior to the end of the 21(st) century over much of the southcentral and southeastern U.S. The pattern of emergence of robust summer warming contrasts with the pattern of summer warming magnitude, which is greatest over the central U.S. and smallest over the western U.S. In addition to stronger warming, the central U.S. also exhibits stronger coupling of changes in surface air temperature, precipitation, and moisture and energy fluxes, along with changes in atmospheric circulation towards increased anticylonic anomalies in the mid-troposphere and a poleward shift in the mid-latitude jet aloft. However, as a fraction of the baseline variability, the transient warming over the central U.S. is smaller than the warming over the southwestern or northeastern U.S., delaying the emergence of the warming signal over the central U.S. Our comparisons with observations and the Coupled Model Intercomparison Project Phase 3 (CMIP3) ensemble of global climate model experiments suggest that near-term global warming is likely to cause robust sub-regional-scale warming over areas that exhibit relatively little baseline variability. In contrast, where there is greater

  13. North-South asymmetry in the modeled phytoplankton community response to climate change over the 21st century

    Science.gov (United States)

    Marinov, Irina; Doney, Scott C.; Lima, Ivan D.; Lindsay, K.; Moore, J. K.; Mahowald, N.

    2013-12-01

    we analyze the impact of projected climate change on plankton ecology in all major ocean biomes over the 21st century, using a multidecade (1880-2090) experiment conducted with the Community Climate System Model (CCSM-3.1) coupled ocean-atmosphere-land-sea ice model. The climate response differs fundamentally in the Northern and Southern Hemispheres for diatom and small phytoplankton biomass and consequently for total biomass, primary, and export production. Increasing vertical stratification in the Northern Hemisphere oceans decreases the nutrient supply to the ocean surface. Resulting decreases in diatom and small phytoplankton biomass together with a relative shift from diatoms to small phytoplankton in the Northern Hemisphere result in decreases in the total primary and export production and export ratio, and a shift to a more oligotrophic, more efficiently recycled, lower biomass euphotic layer. By contrast, temperature and stratification increases are smaller in the Southern compared to the Northern Hemisphere. Additionally, a southward shift and increase in strength of the Southern Ocean westerlies act against increasing temperature and freshwater fluxes to destratify the water-column. The wind-driven, poleward shift in the Southern Ocean subpolar-subtropical boundary results in a poleward shift and increase in the frontal diatom bloom. This boundary shift, localized increases in iron supply, and the direct impact of warming temperatures on phytoplankton growth result in diatom increases in the Southern Hemisphere. An increase in diatoms and decrease in small phytoplankton partly compensate such that while total production and the efficiency of organic matter export to the deep ocean increase, total Southern Hemisphere biomass does not change substantially. The impact of ecological shifts on the global carbon cycle is complex and varies across ecological biomes, with Northern and Southern Hemisphere effects on the biological production and export partially

  14. Responses of European forest ecosystems to 21st century climate: assessing changes in interannual variability and fire intensity

    Directory of Open Access Journals (Sweden)

    Dury M

    2011-04-01

    Full Text Available Significant climatic changes are currently observed and, according to projections, will be strengthened over the 21st century throughout the world with the continuing increase of the atmospheric CO2 concentration. Climate will be generally warmer with notably changes in the seasonality and in the precipitation regime. These changes will have major impacts on the biodiversity and the functioning of natural ecosystems. The CARAIB dynamic vegetation model driven by the ARPEGE/Climate model under forcing from the A2 IPCC emission scenario is used to illustrate and analyse the potential impacts of climate change on forest productivity and distribution as well as fire intensity over Europe. The potential CO2 fertilizing effect is studied throughout transient runs of the vegetation model over the 1961-2100 period assuming constant and increasing atmospheric CO2 concentration. Without fertilisation effect, the net primary productivity (NPP might increase in high latitudes and altitudes (by up to 40 % or even 60-100 % while it might decrease in temperate (by up to 50 % and in warmer regions, e.g., Mediterranean area (by up to 80 %. This strong decrease in NPP is associated with recurrent drought events occurring mostly in summer time. Under rising CO2 concentration, NPP increases all over Europe by as much as 25-75%, but it is not clear whether or not soils might sustain such an increase. The model indicates also that interannual NPP variability might strongly increase in the areas which will undergo recurrent water stress in the future. During the years exhibiting summer drought, the NPP might decrease to values much lower than present-day average NPP even when CO2 fertilization is included. Moreover, years with such events will happen much more frequently than today. Regions with more severe droughts might also be affected by an increase of wildfire frequency and intensity, which may have large impacts on vegetation density and distribution. For

  15. Agriculture in West Africa in the twenty-first century : climate change and impacts scenarios, and potential for adaptation

    OpenAIRE

    Benjamin Sultan; Marco Gaetani

    2016-01-01

    International audience; West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensiv...

  16. Climate Change: Sources of Warming in the Late 20th Century

    CERN Document Server

    Marsh, Gerald E

    2009-01-01

    The role of the North Atlantic Oscillation, the Pacific Decadal Oscillation, volcanic and other aerosols, as well as the extraordinary solar activity of the late 20th century are discussed in the context of the warming since the mid-1970s. Much of that warming is found to be due to natural causes.

  17. Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century

    OpenAIRE

    Fichefet, T.; Poncin, C.; Goosse, H.; Huybrechts, Philippe; Janssens, I.; Le Treut, H.

    2003-01-01

    Two simulations of the 21st century climate have been carried out using, on the one hand, a coarse resolution climate general circulation model and, on the other hand, the same model coupled to a comprehensive model of the Greenland ice sheet. Both simulations display a gradual global warming up to 2080. In the experiment that includes an interactive ice sheet component, a strong and abrupt weakening of the North Atlantic thermohaline circulation occurs at the end of the 21st century. This fe...

  18. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  19. Climate Change

    Science.gov (United States)

    ... events, such as hurricanes and wildfires. These can cause death, injuries, stress, and mental health problems. Researchers are studying the best ways to lessen climate change and reduce its impact on our health. NIH: ...

  20. An estimate of the effects of climate change on the rainfall of Mediterranean Spain by the late twenty first century

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, G.N. [Centre for Geography, University of Wales, Lampeter, Ceredigion, Wales (United Kingdom); Romero, R.; Homar, V.; Ramis, C.; Alonso, S. [Departament de Fisica, Universitat de les Illes Balears, Palma de Mallorca (Spain); Zorita, E. [Institut fuer Gewaesserphysik GKSS, Geesthacht (Germany)

    2003-05-01

    Heading Abstract. The study uses a GCM (ECHAM-OPYC3) and the association between the atmospheric circulation at 925 and 500 hPa and the distribution of daily precipitation for Mediterranean Spain (from earlier analyses) to give estimates of the probable annual precipitation for the late twenty first century. A down-scaling technique is used which involves the matching of daily circulation output from the model for a sequence of years in the late twentieth century (1971-90) and for a corresponding period in the late twenty first century (2080-99) to derive probable regional atmospheric pattern (AP) frequencies for this latter period, and thence to estimate likely changes in annual precipitation. Model days are classified by searching for the closest analogue amongst 19 previously identified APs from an earlier study. Future annual precipitation distribution is derived using previously established relationships between circulation type and daily precipitation distribution. Predicted AP frequencies and precipitation amounts and distribution are compensated by comparing model output with ECMWF data for a decade (1984-93) within the 1971-90 sequence, so that the analysis also provides a verification of the performance of the model. In general the agreement between model output and actual AP frequencies is very good for the present day, though for this southerly region the model appears slightly to under-estimate the frequency of easterly type circulations, many of which yield some of the most significant autumn severe storm rainfalls along the Mediterranean coast. The model tends to over-estimate the frequency of westerly type situations. The study utilises a 'moving window' technique in an attempt to derive measures of inter-decadal variability within the two 20 year periods. This avoids use of data from outside the periods, which would incorporate changing AP frequencies during a period of sustained climate change. Quite pronounced changes in frequency are

  1. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  2. The Nanchang communication about the potential for the implementation of conservation practices for climate change mitigation and adaptation to achieve food security in the 21st century

    Science.gov (United States)

    Several recent peer reviewed manuscripts have reported on the great challenges humanity is confronting during the XXI century, including a changing climate, depletion of water resources from groundwater and/or snow caps sources that are needed for agricultural production, deforestation, desertificat...

  3. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  4. Climatic changes and caribou abundance in northern Québec over the last century

    Directory of Open Access Journals (Sweden)

    Michel Crête

    1990-09-01

    Full Text Available The temperature increase observed in the Northern hemisphere during the first half of this century was also detectable in Québec; it affected both summer and winter. In northern Québec, warmer summers stimulated growth and favored range expansion of trees and shurbs. Based on black spruce krummholz height and water level in lakes, the warmer period was also characterized by greater snowfall and deeper snow cover. This period of deep snow coincided with apparent caribou scarcity. Three hypotheses were explored to relate increased temperature with caribou decline: 1 destruction of winter habitat due to high frequency of forest fires, 2 increased energy cost to obtain forage in deep snow and 3 delayed melting of snow on calving grounds that shortened the time to raise calves. The combined effect of the 3 mechanism could explain caribou scarcity, particularly for the Rivière George herd whose calving ground becomes snow free in late June. Ways to test the third hypothesis are proposed.

  5. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Marengo, Jose A.; Valverde, Maria C.; Torres, Roger R.; Santos, Daniel C. [Centro de Ciencia do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, CCST/INPE, Sao Paulo, SP (Brazil); Ambrizzi, Tercio; Rocha, Rosmeri P. da [University of Sao Paulo, IAG-DCA/USP, Department of Atmospheric Sciences, Sao Paulo, SP (Brazil); Alves, Lincoln M. [Centro de Previsao de Tempo e Estudos Climaticos, Instituto Nacional de Pesquisas Espaciais, CPTEC/INPE, Sao Paulo, SP (Brazil); Cuadra, Santiago V. [Universidade Federal de Vicosa, Vicosa, MG (Brazil); Ferraz, Simone E.T. [Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2010-11-15

    Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961-1990) and projections for the IPCC A2 high emission scenario for 2071-2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5 N-15 S band, both in summer and especially in winter, reaching up to 6-8 C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4 C and in winter between 3 and 5 C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of

  6. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models

    Science.gov (United States)

    Marengo, Jose A.; Ambrizzi, Tercio; Da Rocha, Rosmeri P.; Alves, Lincoln M.; Cuadra, Santiago V.; Valverde, Maria C.; Torres, Roger R.; Santos, Daniel C.; Ferraz, Simone E. T.

    2010-11-01

    Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961-1990) and projections for the IPCC A2 high emission scenario for 2071-2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5°N-15°S band, both in summer and especially in winter, reaching up to 6-8°C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4°C and in winter between 3 and 5°C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of

  7. Forecasting the Effects of 21st Century Climate Change on Eighteen Ski Resorts in the Western United States

    Science.gov (United States)

    Pidwirny, M. J.; Soroke, M.

    2013-12-01

    This research uses climate data generated from ClimateWNA to determine the effect future global warming will have on eighteen ski resorts in the western United States. The ski resorts selected for this study range in latitude from 48.5° N (Whitefish Mountain Resort, Montana) to 33.4° N (Ski Apache Resort, New Mexico). ClimateWNA is a high quality spatially interpolated climate dataset program that contains historical datasets for the period 1901-2011 and future climate datasets generated by Intergovernmental Panel on Climate Change AR4 climate models. From the ClimateWNA program, three emission scenarios (A1B, A2, and B1) were applied to a subset of selected climate models to produce 20 climate forecasts for each of 2050 and 2080. Three derived climate variables were selected to determine the influence of climate change on the viability of the ski resorts: snowfall, number of frost days, and degree days ski resorts depending on the model and emission scenario used when compared to the 1961-1990 normal period. 2050 and 2080 projections generally suggest declines in ski resort viability because of reductions in snowfall, warmer temperatures, and shorter seasons even under best-case scenarios. However, some of the best-case model predictions do suggest an increase in snowfall in a few of the resorts studied. Worst-case scenarios almost always indicate significant declines in all of the climate variables.

  8. Antarctic 20th Century Accumulation Changes Based on Regional Climate Model Simulations

    Directory of Open Access Journals (Sweden)

    Klaus Dethloff

    2010-01-01

    investigated on the basis of ERA-40 data and HIRHAM simulations. It is shown that the regional accumulation changes are largely driven by changes in the transient activity around the Antarctic coasts due to the varying AAO phases. During positive AAO, more transient pressure systems travelling towards the continent, and Western Antarctica and parts of South-Eastern Antarctica gain more precipitation and mass. Over central Antarctica the prevailing anticyclone causes a strengthening of polar desertification connected with a reduced surface mass balance in the northern part of East Antarctica.

  9. Exploring eco-hydrological consequences of the Amazonian ecosystems under climate and land-use changes in the 21st century

    Science.gov (United States)

    Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.

    2012-12-01

    Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.

  10. Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle

    Directory of Open Access Journals (Sweden)

    L. R. Boysen

    2014-04-01

    Full Text Available Biogeophysical (BGP and biogeochemical (BGC effects of land-use and land cover change (LULCC are separated at the global and regional scales in new interactive CO2 simulations for the 21st century. Results from four Earth System models (ESMs are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID project. Over the period, 2006–2100, LULCC causes the atmospheric CO2 concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between −0.47 and 0.10 K. Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2 concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g. whether pastures or crops are simulated explicitly and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially, when analyzing the regional-scale impacts of LULCC.

  11. Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century.

    Science.gov (United States)

    Ren, Wei; Tian, Hanqin; Tao, Bo; Yang, Jia; Pan, Shufen; Cai, Wei-Jun; Lohrenz, Steven E; He, Ruoying; Hopkinson, Charles S

    2015-04-01

    It is recognized that anthropogenic factors have had a major impact on carbon fluxes from land to the ocean during the past two centuries. However, little is known about how future changes in climate, atmospheric CO2, and land use may affect riverine carbon fluxes over the 21st century. Using a coupled hydrological-biogeochemical model, the Dynamic Land Ecosystem Model, this study examines potential changes in dissolved inorganic carbon (DIC) export from the Mississippi River basin to the Gulf of Mexico during 2010-2099 attributable to climate-related conditions (temperature and precipitation), atmospheric CO2, and land use change. Rates of annual DIC export are projected to increase by 65% under the high emission scenario (A2) and 35% under the low emission scenario (B1) between the 2000s and the 2090s. Climate-related changes along with rising atmospheric CO2 together would account for over 90% of the total increase in DIC export throughout the 21st century. The predicted increase in DIC export from the Mississippi River basin would alter chemistry of the coastal ocean unless appropriate climate mitigation actions are taken in the near future.

  12. Steric Sea Level Change in Twentieth Century Historical Climate Simulation and IPCC-RCP8.5 Scenario Projection: A Comparison of Two Versions of FGOALS Model

    Institute of Scientific and Technical Information of China (English)

    DONG Lu; ZHOU Tianjun

    2013-01-01

    To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC's Representative Concentration Pathway 8.5 (RCP8.5) scenario,the results of two versions of LASG/IAP's Flexible Global Ocean-Atmosphere-Land System model (FGOALS) are analyzed.Both models reasonably reproduce the mean dynamic sea level features,with a spatial pattern correlation coefficient of 0.97 with the observation.Characteristics of steric sea level changes in the 20th century historical climate simulations and RCP8.5 scenario projections are investigated.The results show that,in the 20th century,negative trends covered most parts of the global ocean.Under the RCP8.5 scenario,global-averaged steric sea level exhibits a pronounced rising trend throughout the 21st century and the general rising trend appears in most parts of the global ocean.The magnitude of the changes in the 21st century is much larger than that in the 20th century.By the year 2100,the global-averaged steric sea level anomaly is 18 cm and 10 cm relative to the year 1850 in the second spectral version of FGOALS (FGOALS-s2) and the second grid-point version of FGOALS (FGOALS-g2),respectively.The separate contribution of the thermosteric and halosteric components from various ocean layers is further evaluated.In the 20th century,the steric sea level changes in FGOALS-s2 (FGOALS-g2) are largely attributed to the thermosteric (halosteric) component relative to the pre-industrial control run.In contrast,in the 21st century,the thermosteric component,mainly from the upper 1000 m,dominates the steric sea level change in both models under the RCP8.5 scenario.In addition,the steric sea level change in the marginal sea of China is attributed to the thermosteric component.

  13. Investigating the Impact of Climate Change on Dust Storms Over Kuwait by the Middle of the Century Simulated by WRF Dynamical Downscaling

    Science.gov (United States)

    Alsarraf, Hussain

    The aim of this study is to examine the impact of climate change on future dust storms in Kuwait. Dust storms are more frequent in summertime in the Arabian Peninsula, and can be highly influential on the climate and the environment in the region. In this study, the influence of climate change in the Middle East and especially in Kuwait was investigated by high-resolution (48, 12, and 4 km grid spacing) dynamic downscaling using the WRF (Weather Research & Forecasting) model. The WRF dynamic downscaling was forced by reanalysis using the National Centers for Environment Prediction (NCEP) model for the years 1997, 2000, and 2008. The downscaling results were first validated by comparing NCEP model outputs with the observational data. The global climate change dynamic downscaling model was run using current WRF regional climate model (RCM) simulations (2006--2010) and WRF-RCM climate simulations of the future (2056--2060). They were used to compare results between the present and the middle of the century. In general, the dominant features from (NCEP) runs were consistent with each other, as well as with WRF-RCM results. The influence of climate change in the Middle East and Kuwait can be projected from the differences between the current and model future run. The average temperature showed a positive trend in the future, as in other studies. The temperature was predicted to increase by around 0.5-2.5 °C over the next 50 years. No significant change in mean sea level pressure patterns was projected. However, amongst other things, a change in the trend of the surface wind speeds was indicated during summertime. As a result, the increase in temperature and the decline in wind speed in the future indicate a reduction in dust storm days in Kuwait by the middle of the century.

  14. Population and Climate Change

    Science.gov (United States)

    O'Neill, Brian C.; Landis MacKellar, F.; Lutz, Wolfgang

    2000-11-01

    Population and Climate Change provides the first systematic in-depth treatment of links between two major themes of the 21st century: population growth (and associated demographic trends such as aging) and climate change. It is written by a multidisciplinary team of authors from the International Institute for Applied Systems Analysis who integrate both natural science and social science perspectives in a way that is comprehensible to members of both communities. The book will be of primary interest to researchers in the fields of climate change, demography, and economics. It will also be useful to policy-makers and NGOs dealing with issues of population dynamics and climate change, and to teachers and students in courses such as environmental studies, demography, climatology, economics, earth systems science, and international relations.

  15. Climate Changes around the world

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, J.

    2009-07-01

    This presentation addresses several important aspects of the climate changes that are occurring around the globe. the causes of climate change are first reviewed, with illustrations of orbital oscillations, the atmospheric greenhouse effect, and aerosol effects. Observed changes in climate are next reviewed, both thought many millenia and during the past century. Distinctions are made between global warming and regional changes in temperature and precipitation. Changes in the frequency of weather extremes, including heat waves and tropical storms, are also discussed. (Author)

  16. Impacts of past climate and sea level change on Everglades wetlands: placing a century of anthropogenic change into a late-Holocene context

    Science.gov (United States)

    Willard, D.A.; Bernhardt, C.E.

    2011-01-01

    We synthesize existing evidence on the ecological history of the Florida Everglades since its inception ~7 ka (calibrated kiloannum) and evaluate the relative impacts of sea level rise, climate variability, and human alteration of Everglades hydrology on wetland plant communities. Initial freshwater peat accumulation began between 6 and 7 ka on the platform underlying modern Florida Bay when sea level was ~6.2 m below its current position. By 5 ka, sawgrass and waterlily peats covered the area bounded by Lake Okeechobee to the north and the Florida Keys to the south. Slower rates of relative sea level rise ~3 ka stabilized the south Florida coastline and initiated transitions from freshwater to mangrove peats near the coast. Hydrologic changes in freshwater marshes also are indicated ~3 ka. During the last ~2 ka, the Everglades wetland was affected by a series of hydrologic fluctuations related to regional to global-scale fluctuations in climate and sea level. Pollen evidence indicates that regional-scale droughts lasting two to four centuries occurred ~1 ka and ~0.4 ka, altering wetland community composition and triggering development of characteristic Everglades habitats such as sawgrass ridges and tree islands. Intercalation of mangrove peats with estuarine muds ~1 ka indicates a temporary slowing or stillstand of sea level. Although sustained droughts and Holocene sea level rise played large roles in structuring the greater Everglades ecosystem, twentieth century reductions in freshwater flow, compartmentalization of the wetland, and accelerated rates of sea level rise had unprecedented impacts on oxidation and subsidence of organic soils, changes/loss of key Everglades habitats, and altered distribution of coastal vegetation.

  17. Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle

    Directory of Open Access Journals (Sweden)

    L. R. Boysen

    2014-09-01

    Full Text Available Biogeophysical (BGP and biogeochemical (BGC effects of land-use and land cover change (LULCC are separated at the global and regional scales in new interactive CO2 simulations for the 21st century. Results from four earth system models (ESMs are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC, contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID project. Over the period 2006–2100, LULCC causes the atmospheric CO2 concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between −0.47 and 0.10 K. Modifications of the land carbon pool by LULCC are disentangled in accordance with processes that can lead to increases and decreases in this carbon pool. Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2 concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g., whether pastures or crops are simulated explicitly and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially when analyzing the regional-scale impacts of LULCC.

  18. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century.

    Science.gov (United States)

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R S; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8-56.4) PgC yr(-1) as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s) and then level-off or decline after it increases by more than 1.5 °C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing

  19. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century.

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    Full Text Available Quantitative information on the response of global terrestrial net primary production (NPP to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM, we quantified the magnitude and spatiotemporal variations of contemporary (2000s global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES A2 and B1 of Intergovernmental Panel on Climate Change (IPCC. We estimated a global terrestrial NPP of 54.6 (52.8-56.4 PgC yr(-1 as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6% under the A2 scenario or slightly enhance NPP (2.2% under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s and then level-off or decline after it increases by more than 1.5 °C (after the 2030s. This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1, the high emission scenario (A2 would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and

  20. Projected impact of climate change in the hydroclimatology of Senegal with a focus over the Lake of Guiers for the twenty-first century

    Science.gov (United States)

    Tall, Moustapha; Sylla, Mouhamadou Bamba; Diallo, Ismaïla; Pal, Jeremy S.; Faye, Aïssatou; Mbaye, Mamadou Lamine; Gaye, Amadou Thierno

    2016-04-01

    This study analyzes the impact of anthropogenic climate change in the hydroclimatology of Senegal with a focus over the lake of Guiers basin for the middle (2041-2060) and late twenty-first century (2080-2099). To this end, high-resolution multimodel ensemble based on regional climate model experiments considering two Representative Concentration Pathways (RCP4.5 and RCP8.5) is used. The results indicate that an elevated warming, leading to substantial increase of atmospheric water demand, is projected over the whole of Senegal. In the Lake basin, these increases in potential evapotranspiration (PE) range between 10 and 25 % in the near future and for RCP4.5 while for the far future and RCP8.5, they exceed 50 %. In addition, mean precipitation unveils contrasting changes with wetter (10 to 25 % more) conditions by the middle of the century and drier conditions (more than 50 %) during the late twenty-first century. Such changes cause more/less evapotranspiration and soil moisture respectively during the two future periods. Furthermore, surface runoff shows a tendency to increase in most areas amid few locations including the Lake basin with substantial reduction. Finally, it is found that while semi-arid climates develop in the RCP4.5 scenario, generalized arid conditions prevail over the whole Senegal for RCP8.5. It is thus evident that these future climate conditions substantially threaten freshwater availability for the country and irrigated cropping over the Lake basin. Therefore, strong governmental politics are needed to help design response options to cope with the challenges posed by the projected climate change for the country.

  1. Species composition of coastal dune vegetation in Scotland has proved resistant to climate change over a third of a century.

    Science.gov (United States)

    Pakeman, Robin J; Alexander, Jim; Beaton, Joan; Brooker, Rob; Cummins, Roger; Eastwood, Antonia; Fielding, Debbie; Fisher, Julia; Gore, Sarah; Hewison, Richard; Hooper, Russell; Lennon, Jack; Mitchell, Ruth; Moore, Emily; Nolan, Andrew; Orford, Katy; Pemberton, Clare; Riach, Dave; Sim, Dave; Stockan, Jenni; Trinder, Clare; Lewis, Rob

    2015-10-01

    Climate change is expected to have an impact on plant communities as increased temperatures are expected to drive individual species' distributions polewards. The results of a revisitation study after c. 34 years of 89 coastal sites in Scotland, UK, were examined to assess the degree of shifts in species composition that could be accounted for by climate change. There was little evidence for either species retreat northwards or for plots to become more dominated by species with a more southern distribution. At a few sites where significant change occurred, the changes were accounted for by the invasion, or in one instance the removal, of woody species. Also, the vegetation types that showed the most sensitivity to change were all early successional types and changes were primarily the result of succession rather than climate-driven changes. Dune vegetation appears resistant to climate change impacts on the vegetation, either as the vegetation is inherently resistant to change, management prevents increased dominance of more southerly species or because of dispersal limitation to geographically isolated sites.

  2. Increasing Mississippi river discharge throughout the twenty-first century influenced by changes in climate, land use and atmospheric CO2

    Science.gov (United States)

    Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.

    2014-12-01

    Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.

  3. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    Science.gov (United States)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  4. Projected Impacts of 21st Century Climate Change on Potential Habitat for Vegetation and Forest Types in Russia

    Science.gov (United States)

    Soja, A. J.; Tchebakova, N. M.; Parfenova, E. I.; Cantin, A.; Conard, S. G.

    2015-12-01

    Global GCMs have demonstrated profound potential for projections to affect the distribution of terrestrial ecosystems and individual species at all hierarchical levels. We modeled progression of potential Russian ecotones and forest-forming species as the climate changes. Large-scale bioclimatic models were developed to predict Russian zonal vegetation (RuBCliM) and forest types (ForCliM) from three bioclimatic indices (1) growing degree-days above 5 degrees C; (2) negative degree-days below 0 C ; and (3) an annual moisture index (ratio of growing degree days to annual precipitation). The presence or absence of continuous permafrost was explicitly included in the models as limiting the forests and tree species distribution. All simulations to predict vegetation change across Russia were run by coupling our bioclimatic models with bioclimatic indices and the permafrost distribution for the baseline period and for the future 2020, 2050 and 2100 simulated by 3 GCMs (CGCM3.1, HadCM3 and IPSLCM4) and 3 climate change scenarios (A1B, A2 and B1). Under these climate scenarios, it is projected the zonobiomes will shift far northward to reach equilibrium with the change in climate. Under the warmer and drier projected future climate, about half of Russia would be suitable for the forest-steppe ecotone and grasslands, rather than for forests. Water stress tolerant light-needled taiga would have an increased advantage over water-loving dark-needled taiga. Permafrost-tolerant L. dahurica taiga would remain the dominant forest across permafrost. Increases in severe fire weather would lead to increases in large, high-severity fires, especially at boundaries between forest ecotones, which can be expected to facilitate a more rapid progression of vegetation towards a new equilibrium with the climate. Adaptation to climate change may be facilitated by: assisting migration of forests by seed transfers to establish genotypes that may be more ecologically suited as climate changes

  5. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valerie; Swingedouw, D.; Landais, A.

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...

  6. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  7. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-07-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulate seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse of the thermohaline circulation in the 21st century is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  8. The climate change will be for the second half of the century; Le changement de climat est pour la deuxieme moitie du siecle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Some climatic parameters have already changed, in particular the atmospheric chemistry. This paper resumes the main scientific knowledge which bring off the scientists to pull the communication cord. (A.L.B.)

  9. Sustainability of water uses in managed hydrosystems: human- and climate-induced changes for the mid-21st century

    Science.gov (United States)

    Fabre, Julie; Ruelland, Denis; Dezetter, Alain; Grouillet, Benjamin

    2016-08-01

    This paper assesses the sustainability of planned water uses in mesoscale river basins under multiple climate change scenarios, and contributes to determining the possible causes of unsustainability. We propose an assessment grounded in real-world water management issues, with water management scenarios built in collaboration with local water agencies. Furthermore, we present an analysis through indicators that relate to management goals and present the implications of climate uncertainty for our results, furthering the significance of our study for water management. A modeling framework integrating hydro-climatic and human dynamics and accounting for interactions between resource and demand was applied in two basins of different scales and with contrasting water uses: the Herault (2500 km2, France) and the Ebro (85 000 km2, Spain) basins. Natural streamflow was evaluated using a conceptual hydrological model. A demand-driven reservoir management model was designed to account for streamflow regulations from the main dams. Human water demand was estimated from time series of demographic, socioeconomic and climatic data. Environmental flows were accounted for by defining streamflow thresholds under which withdrawals were strictly limited. Finally indicators comparing water availability to demand at strategic resource and demand nodes were computed. This framework was applied under different combinations of climatic and water use scenarios for the mid-21st to differentiate the impacts of climate- and human-induced changes on streamflow and water balance. Results showed that objective monthly environmental flows would be guaranteed in current climate conditions in both basins, yet in several areas this could imply limiting human water uses more than once every 5 years. The impact of the tested climate projections on both water availability and demand could question the water allocations and environmental requirements currently planned for the coming decades. Water

  10. Large-scale range collapse of Hawaiian forest birds under climate change and the need 21st century conservation options

    Science.gov (United States)

    Fortini, Lucas; Vorsino, Adam E.; Amidon, Fred A.; Paxton, Eben; Jacobi, James D.

    2015-01-01

    Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria's life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.

  11. Projections of mid-century summer air-quality for North America: effects of changes in climate and precursor emissions

    Directory of Open Access Journals (Sweden)

    J. Kelly

    2012-06-01

    Full Text Available Ten year simulations of North American current and future air-quality were carried out using a regional air-quality model driven by a regional climate model, in turn driven by a general circulation model. Three separate summer scenarios were performed: a scenario representing the years 1997 to 2006, and two SRES A2 climate scenarios for the years 2041 to 2050. The first future climate scenario makes use of 2002 anthropogenic precursor emissions, and the second applied emissions scaling factors derived from the IPCC Representative Concentration Pathway 6 (RCP 6 scenario to estimate emissions for 2050 from existing 2020 projections. Ten-year averages of ozone and PM2.5 at North American monitoring network stations were used to evaluate the model's current chemical climatology. The model was found to have a similar performance for ozone as when driven by an operational weather forecast model. The PM2.5 predictions had larger negative biases, likely resulting from the absence of rainwater evaporation, and from sub-regional negative biases in the surface temperature fields, in the version of the climate model used here.

    The differences between the two future climate simulations and the current climate simulation were used to predict the changes to air-quality that might be expected in a future warmer climate, if anthropogenic precursor emissions remain constant at their current levels, versus if the RCP 6 emissions controls were adopted. Metrics of concentration, human health, and ecosystem damage were compared for the simulations. The scenario with future climate and current anthropogenic emissions resulted in worse air-quality than for current conditions – that is, the effect of climate-change alone, all other factors being similar, would be a worsening of air-quality. These effects are spatially inhomogeneous, with the magnitude and sign of the changes varying with region. The scenario with future climate and RCP 6

  12. Projections of mid-century summer air-quality for North America: effects of changes in climate and precursor emissions

    Directory of Open Access Journals (Sweden)

    J. Kelly

    2012-02-01

    Full Text Available Ten year simulations of North American current and future air-quality were carried out using a regional air-quality model driven by a regional climate model, in turn driven by a general circulation model. Three separate summer scenarios were performed: a scenario representing the years 1997 to 2006, and two SRES A2 climate scenarios for the years 2041 to 2050. The first future climate scenario makes use of 2002 anthropogenic precursor emissions, and the second applied emissions scaling factors derived from the IPCC Representative Concentration Pathway 6 (RCP 6 scenario to estimate emissions for 2050 from existing 2020 projections. Ten-year averages of ozone and PM2.5 at North American monitoring network stations were used to evaluate the model's current chemical climatology. The model was found to have a similar performance for ozone as when driven by an operational weather forecast model. The PM2.5 predictions had larger negative biases, likely resulting from the absence of rainwater evaporation, and from sub-regional negative biases in the surface temperature fields, in the version of the climate model used here.

    The differences between the two future climate simulations and the current climate simulation were used to predict the changes to air-quality that might be expected in a future warmer climate, if anthropogenic precursor emissions remain constant at their current levels, versus if the RCP 6 emissions controls were adopted. Metrics of concentration, human health, and ecosystem damage were compared for the simulations. The scenario with future climate and current anthropogenic emissions resulted in worse air-quality than for current conditions – that is, the effect of climate-change alone, all other factors being similar, would be a worsening of air-quality. These effects are spatially inhomogeneous, with the magnitude and sign of the changes varying with region. The scenario with future climate and RCP 6

  13. Integrated assessment of global water scarcity over the 21st century – Part 2: Climate change mitigation policies

    Directory of Open Access Journals (Sweden)

    M. I. Hejazi

    2013-03-01

    Full Text Available We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM, a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m−2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively, under two carbon tax regimes (a universal carbon tax (UCT which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT which excludes land use change emissions are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy with radiative forcing reaching 8.8 W m−2 (equivalent to the SRES A1Fi emission scenario by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  14. Quantifying the effect of Tmax extreme events on local adaptation to climate change of maize crop in Andalusia for the 21st century

    Science.gov (United States)

    Gabaldon, Clara; Lorite, Ignacio J.; Ines Minguez, M.; Lizaso, Jon; Dosio, Alessandro; Sanchez, Enrique; Ruiz-Ramos, Margarita

    2015-04-01

    Extreme events of Tmax can threaten maize production on Andalusia (Ruiz-Ramos et al., 2011). The objective of this work is to attempt a quantification of the effects of Tmax extreme events on the previously identified (Gabaldón et al., 2013) local adaptation strategies to climate change of irrigated maize crop in Andalusia for the first half of the 21st century. This study is focused on five Andalusia locations. Local adaptation strategies identified consisted on combinations of changes on sowing dates and choice of cultivar (Gabaldón et al., 2013). Modified cultivar features were the duration of phenological phases and the grain filling rate. The phenological and yield simulations with the adaptative changes were obtained from a modelling chain: current simulated climate and future climate scenarios (2013-2050) were taken from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). After bias correcting these data for temperature and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) crop simulations were generated by the CERES-maize model (Jones and Kiniry, 1986) under DSSAT platform, previously calibrated and validated. Quantification of the effects of extreme Tmax on maize yield was computed for different phenological stages following Teixeira et al. (2013). A heat stress index was computed; this index assumes that yield-damage intensity due to heat stress increases linearly from 0.0 at a critical temperature to a maximum of 1.0 at a limit temperature. The decrease of crop yield is then computed by a normalized production damage index which combines attainable yield and heat stress index for each location. Selection of the most suitable adaptation strategy will be reviewed and discussed in light of the quantified effect on crop yield of the projected change of Tmax extreme events. This study will contribute to MACSUR knowledge Hub within the Joint Programming Initiative on

  15. Long-Term Changes in Stratospheric Age Spectra in the 21st Century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)

    Science.gov (United States)

    Li, Feng; Waugh, Darryn W.; Douglass, Anne R.; Newman, Paul A.; Strahan, Susan E.; Ma, Jun; Nielsen, J. Eric; Liang, Qing

    2012-01-01

    In this study we investigate the long-term variations in the stratospheric age spectra using simulations of the 21st century with the Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM). Our purposes are to characterize the long-term changes in the age spectra and identify processes that cause the decrease of the mean age in a warming climate. Changes in the age spectra in the 21st century simulations are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to the decrease of tail of the age spectra and the decrease of the old air masses. The weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the main age. Long-term changes in the stratospheric isentropic mixing are investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is outweighed by the increase of the residual circulation. The impacts of the long-term changes in the age spectra on long-lived chemical traces are also investigated. 37 2

  16. Climate change uncertainty and risk assessment in Iran during twenty-first century: evapotranspiration and green water deficit analysis

    Science.gov (United States)

    Karandish, Fatemeh; Mousavi, Seyed-Saeed

    2016-12-01

    For a 120-year period, the projected effects of climate change on annual, seasonal, and monthly potential evapotranspiration (ETo) and green water deficit (GWD) were analyzed involving the associated uncertainties for five climatic zones of Iran. Analysis was carried out using data obtained from 15 general circulation models (GCMs) under three SRES scenarios of A1B, A2, and B1 which were downscaled using LARS-WG for 52 synoptic stations up to 2100. The majority of GCMs as well as the median of the ensemble for each scenario project a positive change in both ETo and GWD. A total of 5.8-19.8 % increase in annual ETo, drier than normal wet seasons, as well as 2.3-56.4 % increase in ETo during December-March period well represent a probable increase in the hydrological water requirement in Iran under global warming. Regarding GWD, the country will experience more arid years requiring 113.7 × 103-576.8 × 103 Mm3 more water to supply annual atmospheric water demand. Semi-arid and Mediterranean regions, principal agricultural producer areas of Iran, will be the most vulnerable part of the country due to 1-38.6 % increase in annual GWD under climate change. In addition, water scarcity for irrigated agriculture will enhance in all climatic zones due to 0.9-41 % increase GWD in June-August. However, rain-fed agriculture might be less affected in the hyper-humid and Mediterranean regions because of 1.1-105.3 % reduction in GWD during wet season. Nevertheless, uncertainty analysis revealed that given results for monthly timescale as well as those for times and regions with lower ETo will be the most uncertain. Based on the results, suitable adaptation solutions are highly required to be undertaken to relieve the extra pressure on the decreased blue water resources in the future.

  17. The Impact Of Climate Change On Production Of Multiple Food Crops In The 21st Century- An Analysis Based On Two Land Surface Models

    Science.gov (United States)

    Song, Y.; Jain, A. K.; Lawrence, P.; Kheshgi, H. S.

    2015-12-01

    Climate change presents potential risks to global food supply. To date, understanding of climate change effects on crop production remains uncertain due to (1) uncertainties in projected climate change trends and their spatial and temporal variability; (2) uncertainties in the physiological, genetic and molecular basis of crop adaptation to climate change and adaptive management practices and (3) uncertainties in current land surface models to estimate crop adaptation to climate change. We apply the process-based land surface model, the Integrated Science Assessment model (ISAM), to assess the impact of climate change on the production of row crops (corn, soybean, rice, cotton, sugarcane and wheat) at global and regional scales. The results are compared to the corresponding simulations performed with the crop model in the Community Land Model (CLM4.5). Three questions are addressed: (1) what is the impact of different climate change projections on global crop production; (2) what is the effect of crop adaptation and adaptive management practices on projected crop production; and (3) how do model differences in ISAM and CLM4.5 impact projected global crop production and adaptive management practices over the 21st century. ISAM and CLM4.5 have been included in the Agricultural Model Intercomparison and Improvement Project (AgMIP). Both models consider the effects of temperature, light and soil water and nitrogen availability on crop photosynthesis and temperature control on crop phenology and carbon allocation. ISAM also considers the adaptation of crop phenology, carbon allocation and structures growth to drought, light stress and N stress. The effects of model differences on projected crop production are evaluated by performing the following experiments. Each model is driven with historical atmospheric forcing data (1901-2005) and projected atmospheric forcing data (2006-2100) under RCP 4.5 or RCP 8.5 from CESM CMIP5 simulations to estimate the effects of different

  18. CHANGING OF THE ALTAI GLACIER SYSTEM SINCE THE MID-TWENTIETH CENTURY AND ITS RESPONSE TO THE CLIMATE WARMING IN FUTURE

    Directory of Open Access Journals (Sweden)

    V. M. Kotlyakov

    2012-01-01

    Full Text Available Characteristics of the Altai glacier system are analyzed on the data from Chinese and Former Soviet Union glacier inventories. Two glacier data sets, recent remote sensing data and the glacier inventories data were compared. It has been found that 208 glaciers disappeared and the glacial area decreased by 12%. Functional models of the glacier system variations have been developed using the equation of relationship between an annual glacier ablation and a mean summer temperature; the glacier system structure and behavior of the equilibrium line altitudes at the steady state were taken into account as well. The models were used to study response of the glacial runoff to a climatic change. The model results show that, under the climate warming scenario of 0.05°С/year, only 3% Altai glaciers inChinaand 9% inRussiawill remain by the end of this century.

  19. Kharlamova, N. F. Climate Changes over the 20th and 21st Centuries in the Upper Basin of the Ob and Irtysh Rivers (Altai Region)

    Science.gov (United States)

    Fedorovna, K. N., II

    2015-12-01

    The Russian climate is more sensitive to global warming than the climate in many other parts of the world. According to the Second Climate Change National Assessment, since the mid-1970s, the average temperature has been rising with rate of 0.43 ° C / 10 years, which is more than two times higher than the rate of global warming. In the Altai region, the rate of temperature change is higher than the average for Russia with an annual surface air temperature increase equal to 1.8°C the 20th century. The maximum value of this increase the past 50 years (1963-2013) was found in the intermountain basins of Altai (+ 2.6°C) mainly due to the winter and spring warming with changes in the summer season being considerably smaller. This warming is accompanied with negative tendencies in annual precipitation over the entire Altai Krai. The mountain ranges of Altai are called the "water tower" of Northern Eurasia. The northward flow of numerous rivers streaming down from these ranges in the Basin of the Ob and the Irtysh Rivers is formed by melting of Altai glaciers and snowfields. Since the middle of the 19th century the largest glaciers in the Altai have retreated by 1.5-2 km and the thickness of their tails decreased by 50-70 m. The reduction of mountain glaciers poses a threat of depletion of water flow to major agricultural regions downstream affecting human activity and even the drinking water availability. Permafrost in the Altai Mountains is actively degraded (thawing), which represents a danger for infrastructure (first of all for roads and pipelines) and increases risk of catastrophic events (landslides, mudflows). Continued warming could contribute to a significant reduction of water resources, biodiversity and other negative processes in the region.The reported study was partially supported by the Russian Foundation for Baseline Research (project No. 15-45-04450).

  20. Water availability and demand in West Africa in the 21st century: impacts of climate change and population growth

    Science.gov (United States)

    Wisser, Dominik; Oyerinde, Ganiyu; Ibrahim, Moussa; Ibrahim, Boubacar

    2014-05-01

    The countries in West Africa are highly dependent on rainfed agriculture. Changes in the magnitude and timing of precipitation will affect the agricultural output and the economies as a whole. Irrigation is increasingly being considered an important adaptation option to help improve food security of the population that is expected to double in less than 50 years. West Africa is one of the regions where general circulation models (GCM) show the highest disagreements in the direction of future trends of precipitation, making assessments of water availability and the potential for irrigation a difficult task. We use output from a set of dynamically downscaled climate data sets from regional climate modes (RCM) from the CORDEX CMIP5 collection to drive WBMplus, a macroscale hydrological model and simultaneously calculate water demand (livestock, domestic, and irrigation) and availability for a set of land use, and socio economic scenarios around the 2050's for river basins in the ten countries participating in the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) project. Contrary to earlier results from GCMs, the set of RCMs suggest a consistent increase (~5-10%) in annual precipitation for a majority of the land area in West Africa that translates to slight increases in river flow under natural conditions for most river basins and a opportunities for increasing irrigation during the dry season. However, water demand is projected to more than double for livestock and domestic needs as a result of population growth. Demand for irrigation will rise sharply if irrigation is expanded from the current area (representing less than 3% of all croplands in the region), closer to its potential which is multiple times higher than the existing area. The pressures on water resources in the region will therefore be dominated by pressures arising from increased demand rather than changes in the availability of water and can potentially lead to

  1. Teaching Climate Change

    Science.gov (United States)

    O'Donoghue, A.

    2011-09-01

    In giving public presentations about climate change, we face the barriers of mis-information in the political debate and lack of science literacy that extends to science phobia for some. In climate issues, the later problem is compounded by the fact that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making it more challenging for general audiences. Also, the process of science, particularly peer review, is suspected by some to be a way of keeping science orthodox instead of keeping it honest. I approach these barriers by focusing on the data and the fact that the data have been carefully acquired over decades and centuries by dedicated people with no political agenda. I have taught elderhostel courses twice and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to speak on this important topic to share how we approach both the science and the politics of this issue.

  2. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Mouri, Goro, E-mail: mouri@rainbow.iis.u-tokyo.ac.jp

    2015-11-15

    appears to vary exponentially, this phenomenon has an impact on the management of social capital, such as drinking water services. Prediction of the impacts of future climate change on fluvial wash-load sediment is crucial for effective environmental planning and the management of social capital to adapt to the next century. Capsule: We demonstrate that simulations comprise an ensemble of factors, including multiple physical configurations, associated with the wash-load component for the whole of Japan. - Highlights: • We assessed the interactions among climate change impacts on wash load component. • The future forest transition was considered. • The fluvial wash load increases from 23% to 165% per year in the GCM models. • Monthly analysis indicated that a large impact appears during typhoon season.

  3. Projected impacts of 21st century climate change on the distribution of potential habitat for vegetation, forest types and major conifer species across Russia.

    Science.gov (United States)

    Tchebakova, Nadezda; Parfenova, Elena; Cantin, Alan; Shvetsov, Eugene; Soja, Amber; Conard, Susane

    2013-04-01

    Global simulations have demonstrated the potential for profound effects of GCM-projected climate change on the distribution of terrestrial ecosystems and individual species at all hierarchical levels. We modeled progressions of potential vegetation cover, forest cover and forest types in Russia in the warming climate during the 21st century. We used large-scale bioclimatic models to predict zonal vegetation (RuBCliM), and forest cover (ForCliM) and forest types. A forest type was defined as a combination of a dominant tree conifer and a ground layer. Distributions of vegetation zones (zonobiomes), conifer species and forest types were simulated based on three bioclimatic indices (1) growing degree-days above 5oC ; (2) negative degree-days below 0oC; and (3) an annual moisture index (ratio of growing degree days to annual precipitation). Additionally, the presence/absence of continuous permafrost, identified by active layer depth of 2 m, was explicitly included in the models as limiting the forests and tree species distribution in Siberia. All simulations to predict vegetation change across Russia were run by coupling our bioclimatic models with bioclimatic indices and the permafrost distribution for the baseline period 1971-2000 and for the future decades of 2011-2020, 2041-2050 and 2091-2100. To provide a range of warming we used three global climate models (CGCM3.1, HadCM3 and IPSLCM4) and three climate change scenarios (A1B, A2 and B1). The CGCM model and the B1 scenario projected the smallest temperature increases, and the IPSL model and the A2 scenario projected the greatest temperature increases. We compared the modeled vegetation and the modeled tree species distributions in the contemporary climate to actual vegetation and forest maps using Kappa (K) statistics. RuBioCliM models of Russian zonal vegetation were fairly accurate (K= 0.40). Contemporary major conifer species (Pinus sibirica, Pinus sylvestris, Larix spp., Abies sibirica and Picea obovata

  4. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  5. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  6. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  7. Improving modelled impacts on the flowering of temperate fruit trees in the Iberian Peninsula of climate change projections for 21st century

    Science.gov (United States)

    Ruiz-Ramos, Margarita; Pérez-Lopez, David; Sánchez-Sánchez, Enrique; Centeno, Ana; Dosio, Alessandro; Lopez-de-la-Franca, Noelia

    2013-04-01

    Flowering of temperate trees needs winter chilling, being the specific requirements dependent on the variety. This work studied the trend and changes of values of chilling hours for some representative agricultural locations in Spain for the last three decades and their projected changes under climate change scenarios. According to our previous results (Pérez-López et al., 2012), areas traditionally producing fruit as the Ebro (NE of Spain) or Guadalquivir (SO) valleys, Murcia (SE) and Extremadura (SO) could have a major cold reduction of chill-hours. This would drive a change of varieties or species and may enhance the use of chemicals to complete the needs of chill hours for flowering. However, these results showed high uncertainty, partly due to the bias of the climate data used, generated by Regional Climate Models. The chilling hours were calculated with different methods according to the species considered: North Carolina method (Shaltout and Unrath, 1983) was used for apples, Utah method (Richardson et al. 1974) for peach and grapevine and the approach used by De Melo-Abreu et al. (2004) for olive trees. The climate data used as inputs were the results of numerical simulations obtained from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/) first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012). This work aims to improve the impact projections obtained in Pérez-López et al. (2012). For this purpose, variation of chill-hours between 2nd half of 20th century and 1st half of 21st century at the study locations were recalculated considering 1) a feedback in the dates in which the chilling hours are calculated, to take into account the shift of phenological dates, and 2) substituting the original ENSEMBLES data set of climate used in Pérez-López et al. (2012) by the bias corrected data set. Calculations for the 2nd half of 20th

  8. A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change.

    Science.gov (United States)

    Bigg, G R; Wei, H L; Wilton, D J; Zhao, Y; Billings, S A; Hanna, E; Kadirkamanathan, V

    2014-06-08

    Iceberg calving is a major component of the total mass balance of the Greenland ice sheet (GrIS). A century-long record of Greenland icebergs comes from the International Ice Patrol's record of icebergs (I48N) passing latitude 48° N, off Newfoundland. I48N exhibits strong interannual variability, with a significant increase in amplitude over recent decades. In this study, we show, through a combination of nonlinear system identification and coupled ocean-iceberg modelling, that I48N's variability is predominantly caused by fluctuation in GrIS calving discharge rather than open ocean iceberg melting. We also demonstrate that the episodic variation in iceberg discharge is strongly linked to a nonlinear combination of recent changes in the surface mass balance (SMB) of the GrIS and regional atmospheric and oceanic climate variability, on the scale of the previous 1-3 years, with the dominant causal mechanism shifting between glaciological (SMB) and climatic (ocean temperature) over time. We suggest that this is a change in whether glacial run-off or under-ice melting is dominant, respectively. We also suggest that GrIS calving discharge is episodic on at least a regional scale and has recently been increasing significantly, largely as a result of west Greenland sources.

  9. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  10. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  11. Influence of isoprene chemical mechanism on modelled changes in tropospheric ozone due to climate and land use over the 21st century

    Directory of Open Access Journals (Sweden)

    O. J. Squire

    2014-09-01

    Full Text Available Isoprene is a precursor to tropospheric ozone, a key pollutant and greenhouse gas. Anthropogenic activity over the coming century is likely to cause large changes in atmospheric CO2 levels, climate and land use, all of which will alter the global vegetation distribution leading to changes in isoprene emissions. Previous studies have used global chemistry–climate models to assess how possible changes in climate and land use could affect isoprene emissions and hence tropospheric ozone. The chemistry of isoprene oxidation, which can alter the concentration of ozone, is highly complex, therefore it must be parameterised in these models. In this work we compare the effect of four different reduced isoprene chemical mechanisms, all currently used in Earth-system models, on tropospheric ozone. Using a box model we compare ozone in these reduced schemes to that in a more explicit scheme (the MCM over a range of NOx and isoprene emissions, through the use of O3 isopleths. We find that there is some variability, especially at high isoprene emissions, caused by differences in isoprene-derived NOx reservoir species. A global model is then used to examine how the different reduced schemes respond to potential future changes in climate, isoprene emissions, anthropogenic emissions and land use change. We find that, particularly in isoprene rich regions, the response of the schemes varies considerably. The wide ranging response is due to differences in the types of peroxy radicals produced by isoprene oxidation, and their relative rates of reaction towards NO, leading to ozone formation, or HO2, leading to termination. Also important is the yield of isoprene-nitrates and peroxyacyl nitrate precursors from isoprene oxidation. Those schemes that produce less of these NOx reservoir species, tend to produce more ozone locally and less away from the source region. Additionally, by combining the emissions and O3 data from all of the global model integrations, we

  12. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison

    NARCIS (Netherlands)

    Rozenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Müller, C.; Neumann, K.

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate

  13. Climate Change and Health

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 Key ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  14. Climate Change Law

    NARCIS (Netherlands)

    Farber, D.A.; Peeters, Marjan

    2016-01-01

    This book brings together over seventy fifty authors for a comprehensive examination of the emerging global regime of climate change law. Despite the relative youth of climate change law, we can already begin to see the outlines of legal regimes addressing climate change mitigation and adaptation (a

  15. Climate change and health

    Energy Technology Data Exchange (ETDEWEB)

    Last, J.M. [Ottawa Univ., ON (Canada); Chiotti, Q.P. [Environment Canada, Ottawa, ON (Canada)

    2001-12-31

    Adverse effects such as heat-related illnesses are felt on human health as a result of climate change. Those effects can also be the increased frequency and severity of extreme weather resulting in injury and death, a wider array of insect vectors for diseases, as well as increased risk of allergic, food-borne and water-borne diseases. Coastal ecosystems are altered, sea levels are rising and millions of people will need to relocate in the next century as a result of global warming. Keeping disaster plans, maintaining epidemiological monitoring and surveillance, and issuing advisory messages concerning the risks to human health are some of the responses required from public health officials. The establishment of standards, the development of policies on food and nutrition and the defining of priorities for research are important aspects that must be kept in mind. The authors indicated that multidisciplinary approaches are better suited to find solutions to the challenges encountered due to climate change than the narrow methods used in the past. refs., 4 tabs.

  16. Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends

    Science.gov (United States)

    Wiesmeier, Martin; Poeplau, Christopher; Sierra, Carlos A.; Maier, Harald; Frühauf, Cathleen; Hübner, Rico; Kühnel, Anna; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2016-09-01

    Climate change and stagnating crop yields may cause a decline of SOC stocks in agricultural soils leading to considerable CO2 emissions and reduced agricultural productivity. Regional model-based SOC projections are needed to evaluate these potential risks. In this study, we simulated the future SOC development in cropland and grassland soils of Bavaria in the 21st century. Soils from 51 study sites representing the most important soil classes of Central Europe were fractionated and derived SOC pools were used to initialize the RothC soil carbon model. For each site, long-term C inputs were determined using the C allocation method. Model runs were performed for three different C input scenarios as a realistic range of projected yield development. Our modelling approach revealed substantial SOC decreases of 11-16% under an expected mean temperature increase of 3.3 °C assuming unchanged C inputs. For the scenario of 20% reduced C inputs, agricultural SOC stocks are projected to decline by 19-24%. Remarkably, even the optimistic scenario of 20% increased C inputs led to SOC decreases of 3-8%. Projected SOC changes largely differed among investigated soil classes. Our results indicated that C inputs have to increase by 29% to maintain present SOC stocks in agricultural soils.

  17. Water, society and urbanization in the 19th century Belgrade: Lessons for adaptation to the climate change

    Directory of Open Access Journals (Sweden)

    Ćorović Dragana

    2012-01-01

    Full Text Available This paper traces urban history of Belgrade in the 19th century by looking into its waterscape in the context of its transformation as the capital of the Princedom of Serbia. Aiming to underline the importance of water as a resource, with the view to contemporary environmental concerns, we explore how citizens historically related to waterscape in everyday life and created a specific socio-spatial water network through use of public baths on the river banks and public fountains, water features and devices in the city. The paper outlines the process of establishing the first modern public water supply system on the foundations of the city’s historical Roman, Austrian and Ottoman waterworks. It also looks at the Topčider River as the most telling example of degradation of a culturally and historically significant urban watercourse from its natural, pastoral and civic past to its current polluted and hazardous state. Could the restitution of the Topčider River be considered as a legacy of sustainability for future generations, and are there lessons to be learned from the urban history which can point to methods of contemporary water management?

  18. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  19. A common-sense climate index: is climate changing noticeably?

    Science.gov (United States)

    Hansen, J.; Sato, M.; Glascoe, J.; Ruedy, R.

    1998-01-01

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than "business-as-usual" scenarios.

  20. Climate change and rising energy costs will change everything: a new mindset and action plan for 21st century public health.

    Science.gov (United States)

    McCartney, G; Hanlon, P; Romanes, F

    2008-07-01

    Western governments currently prioritize economic growth and the pursuit of profit above alternative goals of sustainability, health and equality. Climate change and rising energy costs are challenging this consensus. The realization of the transformation required to meet these challenges has provoked denial and conflict, but could lead to a more positive response which leads to a health dividend; enhanced well-being, less overconsumption and greater equality. This paper argues that public health can make its best contribution by adopting a new mindset, discourse, methodology and set of tasks.

  1. Modeling the potential contribution of land cover changes to the late twentieth century Sahel drought using a regional climate model: impact of lateral boundary conditions

    Science.gov (United States)

    Wang, Guiling; Yu, Miao; Xue, Yongkang

    2016-12-01

    This paper investigates the potential impact of "idealized-but-realistic" land cover degradation on the late twentieth century Sahel drought using a regional climate model (RCM) driven with lateral boundary conditions (LBCs) from three different sources, including one re-analysis data and two global climate models (GCMs). The impact of land cover degradation is quantified based on a large number of control-and-experiment pairs of simulations, where the experiment features a degraded land cover relative to the control. Two different approaches of experimental design are tested: in the 1st approach, the RCM land cover degradation experiment shares the same LBCs as the corresponding RCM control, which can be derived from either reanalysis data or a GCM; with the 2nd approach, the LBCs for the RCM control are derived from a GCM control, and the LBCs for the RCM land cover degradation experiment are derived from a corresponding GCM land cover degradation experiment. When the 1st approach is used, results from the RCM driven with the three different sources of LBCs are generally consistent with each other, indicating robustness of the model response against LBCs; when the 2nd approach is used, the RCM results show strong sensitivity to the source of LBCs and the response in the RCM is dominated by the response of the driving GCMs. The spatiotemporal pattern of the precipitation response to land cover degradation as simulated by RCM using the 1st approach closely resembles that of the observed historical changes, while results from the GCMs and the RCM using the 2nd approach bear less similarity to observations. Compared with the 1st approach, the 2nd approach has the advantage of capturing the impact on large scale circulation, but has the disadvantage of being influenced by the GCMs' internal variability and any potential erroneous response of the driving GCMs to land degradation. The 2nd approach therefore requires a large ensemble to reduce the uncertainties derived

  2. Projection of global climate change scenarios onto the Hawaiian Islands: Estimating the characteristics of rainfall for the 21st century

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project will build on existing experience with statistical downscaling methods to derive comprehensive estimates of the future rainfall changes over the...

  3. Influence of isoprene chemical mechanism on modelled changes in tropospheric ozone due to climate and land use over the 21st century

    Science.gov (United States)

    Squire, O. J.; Archibald, A. T.; Griffiths, P. T.; Jenkin, M. E.; Smith, D.; Pyle, J. A.

    2015-05-01

    Isoprene is a~precursor to tropospheric ozone, a key pollutant and greenhouse gas. Anthropogenic activity over the coming century is likely to cause large changes in atmospheric CO2 levels, climate and land use, all of which will alter the global vegetation distribution leading to changes in isoprene emissions. Previous studies have used global chemistry-climate models to assess how possible changes in climate and land use could affect isoprene emissions and hence tropospheric ozone. The chemistry of isoprene oxidation, which can alter the concentration of ozone, is highly complex, therefore it must be parameterised in these models. In this work, we compare the effect of four different reduced isoprene chemical mechanisms, all currently used in Earth system models, on tropospheric ozone. Using a box model we compare ozone in these reduced schemes to that in a more explicit scheme (the Master Chemical Mechanism) over a range of NOx and isoprene emissions, through the use of O3 isopleths. We find that there is some variability, especially at high isoprene emissions, caused by differences in isoprene-derived NOx reservoir species. A global model is then used to examine how the different reduced schemes respond to potential future changes in climate, isoprene emissions, anthropogenic emissions and land use change. We find that, particularly in isoprene-rich regions, the response of the schemes varies considerably. The wide-ranging response is due to differences in the model descriptions of the peroxy radical chemistry, particularly their relative rates of reaction towards NO, leading to ozone formation, or HO2, leading to termination. Also important is the yield of isoprene nitrates and peroxyacyl nitrate precursors from isoprene oxidation. Those schemes that produce less of these NOx reservoir species, tend to produce more ozone locally and less away from the source region. We also note changes in other key oxidants such as NO3 and OH (due to the inclusion of

  4. Climate change and the Delta

    Science.gov (United States)

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  5. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  6. Financing climate change adaptation.

    Science.gov (United States)

    Bouwer, Laurens M; Aerts, Jeroen C J H

    2006-03-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources. We present an overview of financial resources and propose the employment of a two-track approach: one track that attempts to secure climate change adaptation funding under the UNFCCC; and a second track that improves mainstreaming of climate risk management in development efforts. Developed countries would need to demonstrate much greater commitment to the funding of adaptation measures if the UNFCCC were to cover a substantial part of the costs. The mainstreaming of climate change adaptation could follow a risk management path, particularly in relation to disaster risk reduction. 'Climate-proofing' of development projects that currently do not consider climate and weather risks could improve their sustainability.

  7. Climate Change and Maize Yield in Iowa.

    Science.gov (United States)

    Xu, Hong; Twine, Tracy E; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.

  8. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  9. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  10. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  11. Introducing land-cover and land-use changes in a climate scenario of the 21. century; Prise en compte des changements de vegetation dans un scenario climatique du 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Voldoire, A

    2005-03-15

    The main objective of this work has been to run a climate simulation of the 21. century that includes not only greenhouse gases and aerosols emitted by human activity but also land-use and land-cover changes. To achieve this goal, the integrated impact model IMAGE2.2 (developed at RIVM, The Netherlands) was used, which simulates the evolution of greenhouse gases concentrations as well as land-cover changes. This model has been coupled to the general circulation model ARPEGE/OPA provided by the CNRM. Before coupling the models, sensitivity experiments with each model have been performed to test their respective sensitivity to the forcing of the other. Ultimately, a simulation with the two models coupled together has shown that interactions between climate and vegetation are not of primary importance for century scale studies. (author)

  12. Projections of twenty-first century climate over Europe

    Directory of Open Access Journals (Sweden)

    Giorgi F.

    2009-02-01

    Full Text Available We present an assessment of climate change pro jections over the European region for the 21st century from the ensembles of CMIP3 global model experiments and PRUDENCE regional climate model experiments. The A2, A1B, and B1 IPCC emission scenarios are considered. A brief review is also presented of the literature available on future European climate pro jections. In all emission scenarios the European region shows maximum warming of up to several degrees C over the Mediterranean region in summer and over northeastern Europe in winter. The precipitation change signal shows a north-south dipolar structure, with increasing precipitation over Northern Europe and decreasing over southern Europe. This structure migrates northward from the winter to the summer and is tied to the north-south motion of an increasing anticyclonic circulation cell over the North Atlantic-European sector. Temperature interannual variability decreases in winter over central and northern Europe and increases in summer throughout Europe. Precipitation interannual variability shows a predominant increase, most pronounced in summer. The seasonal temperature anomaly probability density functions (PDFs show a shift and a widening and flattening in future climate conditions, especially in summer, which is indicative of pronounced increases of extreme hot seasons. The seasonal precipitation anomaly PDFs show pronounced changes over Southern Europe in summer, with a strong increase of very dry seasons. In general, the magnitude of future climate change increases with the greenhouse gas forcing. A broad consensus is found between the pro jections obtained with the CMIP3 and PRUDENCE ensembles, as well as between the present analysis and previous generations of model pro jections. The climate change signal over Europe exhibits a consistent latitudinal and seasonal evolution identified as the European Climate change Oscillation (ECO by Giorgi and Coppola [F. Giorgi and E. Coppola

  13. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  14. Impact of land-use and land-cover changes on CRCM5 climate projections over North America for the twenty-first century

    Science.gov (United States)

    Alexandru, Adelina; Sushama, Laxmi

    2016-08-01

    The aim of this study is to assess the impact of land-use and land-cover change (LULCC) on regional climate projections for North America. To this end, two transient climate change simulations, with and without LULCC, but identical atmospheric forcing, are performed with the 5th generation of the Canadian Regional Climate Model (CRCM5) driven by CanESM2 model for the (2006-2100)-RCP4.5 scenario. For the simulation with LULCC, land-cover data sets are taken from the Global Change Assessment Model representing the RCP4.5 scenario for the period 2006-2100. LULCC in RCP4.5 scenario point to significant reduction in cultivated land (e.g. Canadian Prairies and Mississippi basin) due to intense afforestation. Results suggest that biogeophysical effects of LULCC on climate, assessed through differences between the all-forcing (atmospheric and LULCC) run and the atmospheric forcing run (with constant land cover) are substantial for relevant surface variables. It is shown that the afforestation of cropland lead to warmer regional climates, especially in winter (warming above 1.5 °C), as compared with climates resulting from atmospheric forcings alone. The investigation of processes leading to this response shows high sensitivity of the results to changes in albedo as a response to LULCC. Additional roughness, evaporative cooling and water soil availability also seem to play an important role in regional climate especially for the summer season in certain afforested areas (e.g., southeastern US).

  15. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability

    Science.gov (United States)

    Shope, James B.; Storlazzi, Curt D.; Erikson, Li H.; Hegermiller, Christie A.

    2016-06-01

    Waves are the dominant influence on coastal morphology and ecosystem structure of tropical Pacific islands. Wave heights, periods, and directions for the 21st century were projected using near-surface wind fields from four atmosphere-ocean coupled global climate models (GCM) under representative concentration pathways (RCP) 4.5 and 8.5. GCM-derived wind fields forced the global WAVEWATCH-III wave model to generate hourly time series of bulk wave parameters around 25 islands in the mid to western tropical Pacific Ocean for historical (1976-2005), mid-century, and end-century time periods for the December-February and June-August seasons. The December-February regional wave climate is dominated by strong winds and large swell from extratropical cyclones in the north Pacific while the June-August season brings smaller waves generated by the trade winds and swell from Southern Hemisphere extratropical storms. Extreme significant wave heights decreased (~ 10.0%) throughout the 21st century under both climate scenarios compared to historical wave conditions and the higher radiative forcing RCP 8.5 scenario displayed a greater and more widespread decrease in extreme significant wave heights compared to the lower forcing RCP 4.5 scenario. An exception was for the end-century June-August season. Offshore of islands in the central equatorial Pacific, extreme significant wave heights displayed the largest changes from historical values. The frequency of extreme events during December-February decreased under RCP 8.5, whereas the frequency increased under RCP 4.5. Mean wave directions rotated more than 30° clockwise at several locations during June-August, which could indicate a weakening of the trade winds' influence on extreme wave directions and increasing dominance of Southern Ocean swell. The results of this study underscore that December-February large wave events will become smaller and less frequent in most regions, reducing the likelihood and magnitude of wave

  16. Climate Change and Vietnam

    Science.gov (United States)

    2013-11-01

    expansion of large hydropower and reservoir construction can increase social resilience through associated economic development . However, the same...of the most vulnerable countries globally to the consequences of climate change, Vietnam is highly likely to experience a variety of negative...iii ABSTRACT Climate Change and Vietnam As one of the most vulnerable countries globally to the consequences

  17. Sensitivity of discharge and flood frequency to twenty-first century and late Holocene changes in climate and land use (River Meuse, northwest Europe)

    NARCIS (Netherlands)

    Ward, P.J.; Renssen, H.; Aerts, J.C.J.H.; Verburg, P.H.

    2011-01-01

    We used a calibrated coupled climate–hydrological model to simulate Meuse discharge over the late Holocene (4000–3000 BP and 1000–2000 AD). We then used this model to simulate discharge in the twenty-first century under SRES emission scenarios A2 and B1, with and without future land use change. Mean

  18. Double Exposure: Photographing Climate Change

    Science.gov (United States)

    Arnold, D. P.; Wake, C. P.; Romanow, G. B.

    2008-12-01

    Double Exposure, Photographing Climate Change, is a fine-art photography exhibition that examines climate change through the prism of melting glaciers. The photographs are twinned shots of glaciers, taken in the mid-20th century by world-renowned photographer Brad Washburn, and in the past two years by Boston journalist/photographer David Arnold. Arnold flew in Washburn's aerial "footprints", replicating stunning black and white photographs, and documenting one irreversible aspect of climate change. Double Exposure is art with a purpose. It is designed to educate, alarm and inspire its audiences. Its power lies in its beauty and the shocking changes it has captured through a camera lens. The interpretive text, guided by numerous experts in the fields of glaciology, global warming and geology, helps convey the message that climate change has already forced permanent changes on the face of our planet. The traveling exhibit premiered at Boston's Museum of Science in April and is now criss-crossing the nation. The exhibit covers changes in the 15 glaciers that have been photographed as well as related information about global warming's effect on the planet today.

  19. Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model

    NARCIS (Netherlands)

    Strengers, B.J.; Müller, C.; Schaeffer, M.; Haarsma, R.J.; Severijns, C.; Gerten, D.; Schaphoff, S.; Houdt, Van den R.; Oostenrijk, R.

    2010-01-01

    This study describes the coupling of the dynamic global vegetation model (DGVM), Lund–Potsdam–Jena Model for managed land (LPJmL), with the general circulation model (GCM), Simplified Parameterizations primitivE Equation DYnamics model (SPEEDY), to study the feedbacks between land-use change and nat

  20. Projecting twenty-first century regional sea-level changes

    NARCIS (Netherlands)

    Slangen, A.B.A.; Carson, M.; Katsman, C.A.; van de Wal, R.S.W.; Köhl, A.; Vermeersen, L.L.A.; Stammer, D.

    2014-01-01

    We present regional sea-level projections and associated uncertainty estimates for the end of the 21 (st) century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined wi

  1. Projecting twenty-first century regional sea-level changes

    NARCIS (Netherlands)

    Slangen, A. B A; Carson, M.; Katsman, C. A.; van de Wal, R. S W; Köhl, A.; Vermeersen, L. L A; Stammer, D.

    2014-01-01

    We present regional sea-level projections and associated uncertainty estimates for the end of the 21st century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined with

  2. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  3. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  4. Climate Change: a Theoretical Review

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq-ur Rahman

    2013-01-01

    Full Text Available Climate Change has been undoubtedly the most illustrious environmental issue since late 20th century. But neither the discourse merely emerged during that time, nor it was problematized in the same way since its onset. History of Climate Change discourse reveals that from a purely scientific concern it has turned into a public agenda that is nowadays more inclined to be development problem. Transformations have brought about a complete new paradigm every time. This article presents a theoretical analysis of the Climate Change discourse and to do so it captured the underlying philosophy of the issue using Thomas Kuhn’s well-known thesis of ‘paradigm shift’. In particular it discusses about the crisis that lead the issue towards transformations; explores key perspectives around the crisis thus representation of the issue in the environmental discourse over the time. While this paper establishes that with the beginning of the 21st century, the discourse entered into a new paradigm and will reach to a critical point by the end of 2012, it finally postulates some measures that the discourse might integrate with the existing to advance beyond that point.

  5. Assessment of potential suspended sediment yield in Japan in the 21st century with reference to the general circulation model climate change scenarios

    Science.gov (United States)

    Mouri, Goro; Golosov, Valentin; Chalov, Sergey; Takizawa, Satoshi; Oguma, Kumiko; Yoshimura, Kei; Shiiba, Michiharu; Hori, Tomoharu; Oki, Taikan

    2013-03-01

    In recent decades, soil erosion by water has become a worldwide problem, especially with climate change and progressive declines in the ratio of natural resources to human populations. Changes in future climate will influence soil erosion, particularly suspended sediment (SS) yield, and alter the effectiveness of water resources management strategies from a water quality perspective. We qualitatively assessed future changes in SS yield in Japan. We focused on the impacts of future hydrological changes projected by two models, the Model for Interdisciplinary Research on Climate (MIROC) and the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), whose results have produced monthly data sets for the whole of Japan. The impacts of future climate changes on SS in Japan depend on the balance between changes in climatic and geologic factors. Methods for assessing impact using the catchment simulator were expanded to estimate the SS yield for the whole of Japan. The results indicated that SS generation will increase by the 2090s, with an 8% increase predicted using MRI-GCM data and a 24% increase using MIROC data, compared to present-day values measured by the Automated Meteorological Data Acquisition System (AMEDAS) of the Japan Meteorological Agency. Analysis by month showed the largest increases in SS in September, related to the frequency of extreme events such as typhoons. Increased SS can have negative effects on both society and the environment, including reduced crop productivity, worsened water quality, lower effective reservoir water levels, flooding and habitat destruction. Prediction of the impacts of future climate change on SS generation is crucial for effective environmental planning and management.

  6. Climate change and skin.

    Science.gov (United States)

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  7. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  8. The Environmental Justice Dimensions of Climate Change

    OpenAIRE

    Miranda, Marie Lynn; Hastings, Douglas Andrew; Aldy, Joseph Edgar; Schlesinger, William H.

    2011-01-01

    Nations around the world are considering strategies to mitigate the severe impacts of climate change predicted to occur in the twenty-first century. Many countries, however, lack the wealth, technology, and government institutions to effectively cope with climate change. This study investigates the varying degrees to which developing and developed nations will be exposed to changes in three key variables: temperature, precipitation, and runoff. We use Geographic Information Systems (GIS) anal...

  9. How Should we Address Climate Change?

    Institute of Scientific and Technical Information of China (English)

    YE Duzheng; YAN Zhongwei; HUANG Gang

    2009-01-01

    @@ Global warming goes on The climate has always been changing. Here we refer to the changes concerning the current global warming,which is unprecedented both in terms of the rate at which the warming takes place and the extent to which human activities exert impacts on it. Observational analyses indicate that the global mean temperature increased by about 0.6℃/century over the last century;

  10. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... in the future, then there is also moral reason to address these harms if they materialize now. We argue that these principles are applicable to climate change, and that given the commitment of wealthy countries to a "common but differentiated responsibility," they lead to a commitment to address or compensate...

  11. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  12. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  13. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  14. Indigenous Peoples and Climate Change

    Directory of Open Access Journals (Sweden)

    Shelton H. Davis

    2010-05-01

    Full Text Available There has been a growing attention on the need to take into account the effects of global climate change. This is particularly so with respect to the increasing amount of green house gas emissions from the Untied States and Europe affecting poor peoples, especially those in developing countries. In 2003, for example, the experts of several international development agencies, including the World Bank, prepared a special report titled “Poverty and Climate Change: Reducing the Vulnerability of the Poor through Adaptation” (OECD 2003. This report followed the Eighth Session of the Conference of Parties (COP8 to the United Nations Framework Convention on Climate Change (UNFCCC in New Delhi, India in October 2002. It showed that poverty reduction is not only one of the major challenges of the 21st century, but also that climate change is taking place in many developing countries and is increasingly affecting, in a negative fashion, both the economic conditions and the health of poor people and their communities.

  15. Climate change and cities

    Energy Technology Data Exchange (ETDEWEB)

    Satterthwaite, David

    2006-10-15

    What is done, or not done, in cities in relation to climate change over the next 5-10 years will affect hundreds of millions of people, because their lives and livelihoods are at risk from global warming. What is done in cities will also have a major influence on whether the escalating risks for the whole planet will be reduced or eliminated. Climate change needs to be considered in all development plans and investments - local, regional, national and international. Urban growth must be made more climate-resilient and help reduce, rather than increase, greenhouse gas emissions. This will not be done by the market; it can only be done by governments.

  16. EXTREME WINTERS IN XX–XXI CENTURIES AS INDICATORS OF SNOWINESS AND AVALANCHE HAZARD IN THE PAST AND EXPECTED CLIMATE CHANGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    A. D. Oleynikov

    2012-01-01

    Full Text Available Currently, due to the global climate change and increasing frequency of weather events focus is on prediction of climate extremes. Large-scale meteorological anomalies can cause long-term paralysis of social and economic infrastructure of the major mountain regions and even individual states. In winter periods, these anomalies are associated with prolonged heavy snowfalls and associated with them catastrophic avalanches which cause significant social and economic damage. The climate system maintains a certain momentum during periods of adjustment and transition to other conditions in the ratio of heat and moisture and contains a climate «signal» of the climates of the past and the future. In our view seasonal and yearly extremes perform the role of these indicators, study of which enables for a deeper understanding and appreciation of the real situation of the climate periods related to the modern ones. The paper provides an overview of the criteria for selection of extreme winters. Identification of extremely cold winters during the period of instrumental observation and assessment of their snowiness and avalanche activity done for the Elbrus region, which is a model site for study of the avalanche regime in the Central Caucasus. The studies aim to identify the extreme winters in the Greater Caucasus, assess their frequency of occurrence, characterize the scale and intensity of the avalanche formation. The data obtained can be used to identify winter-analogues in the reconstruction and long-term forecast of avalanches. 

  17. Impacts of climate change on ground level gas-phase pollutants and aerosols in the Iberian Peninsula for the late XXI century

    Science.gov (United States)

    Jiménez-Guerrero, Pedro; Montávez, Juan Pedro; Gómez-Navarro, Juan José; Jerez, Sonia; Lorente-Plazas, Raquel

    2012-08-01

    Climate change alone influences future air pollution levels through modifications of gas-phase chemistry, transport, removal, and natural emissions. Hence, the goal of this study is to determine at what extent concentrations of air pollutants respond to changes over the Iberian Peninsula under a climate change scenario. The methodology includes the use of the regional modeling system MM5 (regional climate model version)-CHIMERE for two nested domains covering Europe and the Iberian Peninsula. Two time slices driven by ECHO-G global circulation model covering from 1991 to 2010 and 2071 to 2100 under the SRES A2 scenario have been compared. Climate change influences the concentrations of both gas-phase pollutants and aerosols through changes in temperature, precipitation, mixing height, transport, humidity, and oxidant levels. The trends of variation of ozone (changes up to 5 ppb, +10% increase during summertime) and aerosols over southwestern Europe are influenced by the higher mean temperature modeled for the future climate (up to +5.4 K), since it favors the formation of secondary gas-phase products. It also enhances sulphates (+2 μg m-3) and secondary organic aerosols (SOA) (+2.5 μg m-3 under SRES A2 scenario) and contributes to the decomposition of ammonium nitrate, remaining in the gas phase. Further, the 17% percent decrease of precipitation modeled for 2071-2100 has a strong effect in the frequency of the washout and therefore in the levels of natural aerosols: the concentrations of aerosols decrease with increasing precipitation as wet deposition provides the main aerosol sink.

  18. The Guanajuato Communication about the Potential for Implementation of Conservation Practices for Climate Change Mitigation and Adaptation to Achieve Food Security in Mexico During the 21st Century

    Science.gov (United States)

    The scientific literature reports that climate change will impact weather in North America, with projections for a drier and hotter southeastern United States and northwestern Mexico. The areas of Mexico that are projected to be impacted cover important grain areas of the country. Additionally, seve...

  19. Natural and human-induced changes in summer climate over the East Asian monsoon region in the last half century: A review

    Directory of Open Access Journals (Sweden)

    Ren-He Zhang

    2015-06-01

    The decadal changes in EASM and summer rainfall over eastern China in the last half century are closely related to natural internal forcing factors such as Eurasian snow cover, Arctic sea ice, sea surface temperatures in tropical Pacific and Indian Ocean, ocean–atmospheric coupled systems of the Pacific Decadal Oscillation (PDO and Asian–Pacific Oscillation (APO, and uneven thermal forcing over the Asian continent. Up to now, the roles of anthropogenic factors, such as greenhouse gases, aerosols, and land usage/cover changes, on existing decadal variations of EASM and summer rainfall in this region remain uncertain.

  20. Large-Scale Range Collapse of Hawaiian Forest Birds under Climate Change and the Need for 21st Century Conservation Options [corrected].

    Science.gov (United States)

    Fortini, Lucas B; Vorsino, Adam E; Amidon, Fred A; Paxton, Eben H; Jacobi, James D

    2015-01-01

    Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria's life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.

  1. Large-Scale Range Collapse of Hawaiian Forest Birds under Climate Change and the Need for 21st Century Conservation Options [corrected].

    Directory of Open Access Journals (Sweden)

    Lucas B Fortini

    Full Text Available Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria's life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows. Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.

  2. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios.

    Science.gov (United States)

    Mouri, Goro; Nakano, Katsuhiro; Tsuyama, Ikutaro; Tanaka, Nobuyuki

    2016-08-01

    Forest disturbance (or land-cover change) and climatic variability are commonly recognised as two major drivers interactively influencing hydrology in forested watersheds. Future climate changes and corresponding changes in forest type and distribution are expected to generate changes in rainfall runoff that pose a threat to river catchments. It is therefore important to understand how future climate changes will effect average rainfall distribution and temperature and what effect this will have upon forest types across Japan. Recent deforestation of the present-day coniferous forest and expected increases in evergreen forest are shown to influence runoff processes and, therefore, to influence future runoff conditions. We strongly recommend that variations in forest type be considered in future plans to ameliorate projected climate changes. This will help to improve water retention and storage capacities, enhance the flood protection function of forests, and improve human health. We qualitatively assessed future changes in runoff including the effects of variation in forest type across Japan. Four general circulation models (GCMs) were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM), and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble including multiple physics configurations and different reference concentration pathways (RCP2.6, 4.5, and 8.5), the results of which have produced monthly data sets for the whole of Japan. The impacts of future climate changes on forest type in Japan are based on the balance amongst changes in rainfall distribution, temperature and hydrological factors. Methods for assessing the impact of such changes include the

  3. Poverty and Climate Change

    Science.gov (United States)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  4. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  5. Inventory of Research on the Impacts of Climate Change

    OpenAIRE

    2004-01-01

    Climate change is one of the greatest threats for the global environment today. Global mean temperature has risen by about 0.6 degrees C during the 20th century, greater than during any other century in the last 1000 years. Subsequently, climate change is likely to have detrimental effects on all global natural and anthropogenic systems. Climate change will have consequences for the structure and function of ecosystems and all the major global biomes. Also agricultural production and producti...

  6. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to investiga

  7. Climate Change: Good for Us?

    Science.gov (United States)

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  8. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  9. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability

    Science.gov (United States)

    Shope, James B.; Storlazzi, Curt; Erikson, Li; Hegermiller, Christie

    2016-01-01

    Waves are the dominant influence on coastal morphology and ecosystem structure of tropical Pacific islands. Wave heights, periods, and directions for the 21st century were projected using near-surface wind fields from four atmosphere-ocean coupled global climate models (GCM) under representative concentration pathways (RCP) 4.5 and 8.5. GCM-derived wind fields forced the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters around 25 islands in the mid to western tropical Pacific Ocean for historical (1976–2005), mid-, and end-of-century time periods. Extreme significant wave heights decreased (~10.0%) throughout the 21st century under both climate scenarios compared to historical wave conditions and the higher radiative forcing 8.5 scenario displayed a greater and more widespread decrease in extreme significant wave heights compared to the lower forcing 4.5 scenario. An exception was for the end-of-century June–August season. Offshore of islands in the central equatorial Pacific, extreme significant wave heights displayed the largest changes from historical values. The frequency of extreme events during December–February decreased under RCP 8.5, whereas the frequency increased under RCP 4.5. Mean wave directions often rotated more than 30° clockwise at several locations during June–August, which could indicate a weakening of the trade winds’ influence on extreme wave directions and increasing dominance of Southern Ocean swell or eastern shift of storm tracks. The projected changes in extreme wave heights, directions of extreme events, and frequencies at which extreme events occur will likely result in changes to the morphology and sustainability of island nations.

  10. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  11. Mesocosms Reveal Ecological Surprises from Climate Change.

    Science.gov (United States)

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  12. Climate Change and Future World

    Science.gov (United States)

    2013-03-01

    fresh water. Movements of migrants from northern Africa and the Middle-East are already a security problem for Europe . This phenomenon is likely to be...Climate Change Science Program , Climate Literacy – The Essential Principles of Climate Sciences, 3. (http://library.globalchange.gov/climate...06/2013. 21 U.S. Climate Change Science Program , Climate Literacy – The Essential Principles of Climate Sciences, 3. (http

  13. Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century

    Science.gov (United States)

    Gabaldón, Clara; Lorite, Ignacio J.; Inés Mínguez, M.; Dosio, Alessandro; Sánchez-Sánchez, Enrique; Ruiz-Ramos, Margarita

    2013-04-01

    The objective of this work is to generate and analyse adaptation strategies to cope with impacts of climate change on cereal cropping systems in Andalusia (Southern Spain) in a semi-arid environment, with focus on extreme events. In Andalusia, located in the South of the Iberian Peninsula, cereals crops may be affected by the increase in average temperatures, the precipitation variability and the possible extreme events. Those impacts may cause a decrease in both water availability and the pollination rate resulting on a decrease in yield and the farmer's profitability. Designing local and regional adaptation strategies to reduce these negative impacts is necessary. This study is focused on irrigated maize on five Andalusia locations. The Andalusia Network of Agricultural Trials (RAEA in Spanish) provided the experimental crop and soil data, and the observed climate data were obtained from the Agroclimatic Information Network of Andalusia and the Spanish National Meteorological Agency (AEMET in Spanish). The data for future climate scenarios (2013-2050) were generated by Dosio and Paruolo (2011) and Dosio et al. (2012), who corrected the bias of ENSEMBLES data for maximum and minimum temperatures and precipitation. ENSEMBLES data were the results of numerical simulations obtained from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). Crop models considered were CERES-maize (Jones and Kiniry, 1986) under DSSAT platform, and CropSyst (Stockle et al., 2003). Those crop models were applied only on locations were calibration and validation were done. The effects of the adaptations strategies, such as changes in sowing dates or choice of cultivar, were evaluated regarding water consumption; changes in phenological dates were also analysed to compare with occurrence of extreme events of maximum temperature. These events represent a threat on summer crops due to the reduction on the duration of

  14. Climate Change Projections for Sri Lanka for the mid-twentieth Century from CMIP5 Simulations under a High Emissions Scenario

    Science.gov (United States)

    Zubair, L.; Agalawatte, P.

    2014-12-01

    Under the Agricultural Model Inter-Comparison program (AgMIP), climate change projections for Sri Lanka were undertaken from the Coupled Model Inter-comparison Project (CMIP5) archives for five locations covering Sri Lanka. These datasets were first quality checked after removing questionable data entries. The gaps in data were filled using AgMERRA data set for the specific location developed by Alex Ruane and Sonali McDermid at NASA- GISS after applying the necessary bias corrections. Future climate projections for 2040- 2070 are based on projections for high Carbon Dioxide emissions (RCP8.5). Analysis was undertaken on the outputs of 20 General Circulation Models (GCMs). Observed climate datasets (for the period 1980- 2010) for each location were used to generate downscaled future predictions. Future projections for maximum temperature, minimum temperature and rainfall were generated while holding solar radiation constant and changing the CO2 value up to 499 ppm. Results for 5 GCMs that simulate the monsoon region best were then selected for further analysis. These are CCSM4, GFDL-ESM2M, HadGEM2-ES, MIROC5, MPI-ESM-MR. All 20 GCM outputs predicted that both minimum and maximum temperature shall rise by around 2 ⁰C throughout the year. This result is consistent across all 5 locations and the uncertainty associated with this prediction was observed to be low compared to that of rainfall. In the case of the rainfall, majority (80- 95%) of GCMs predicted an increment in the annual rainfall by around 0.5 mm/day. Rainfall during September- October- November was predicted to have a high increment (around 2- 7 mm/day) and during February- March a decrement of around 1- 2 mm/day was predicted. The uncertainty of this prediction based on outputs of all 20 GCMs were observed to be high. These results are consistent with the Fourth Assessment Report by the Inter-governmental Panel on Climate Change.

  15. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  16. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  17. Past and Current Climate Change

    Science.gov (United States)

    Mercedes Rodríguez Ruibal, Ma

    2014-05-01

    In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

  18. Corporate Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The American Chamber of Commerce, the People's Republic of China (AmCham-China) and the American Chamber of Commerce in Shanghai recently released "American Corporate Experience in a Changing China: Insights From AmCham Business Climate Surveys, 1999-2005." Excerpts of the report follow:

  19. Adaptation to climate change

    NARCIS (Netherlands)

    Carmin, J.; Tierney, K.; Chu, E.; Hunter, L.M.; Roberts, J.T.; Shi, L.; Dunlap, R.E.; Brulle, R.J.

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  20. Tackling Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Representatives from nearly 200 countries and regions have gathered in Durban,South Africa,for the 17th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) and the 7th session of the Meeting of the Parties to the Kyoto Protocol.The meeting is the follow-up conference to tacklin

  1. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  2. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  3. How emissions, climate, and land use change will impact mid-century air quality over the United States: a focus on effects at National Parks

    Directory of Open Access Journals (Sweden)

    M. Val Martin

    2014-10-01

    Full Text Available We use a global coupled chemistry-climate-land model (CESM to assess the integrated effect of climate, emissions and land use changes on annual surface O3 and PM2.5 on the United States with a focus on National Parks (NPs and wilderness areas, using the RCP4.5 and RCP8.5 projections. We show that, when stringent domestic emission controls are applied, air quality is predicted to improve across the US, except surface O3 over the western and central US under RCP8.5 conditions, where rising background ozone counteracts domestic emissions reductions. Under the RCP4.5, surface O3 is substantially reduced (about 5 ppb, with daily maximum 8 h averages below the primary US EPA NAAQS of 75 ppb (and even 65 ppb in all the NPs. PM2.5 is significantly reduced in both scenarios (4 μg m−3; ~50%, with levels below the annual US EPA NAAQS of 12 μg m−3 across all the NPs; visibility is also improved (10–15 deciviews; >75 km in visibility range, although some parks over the western US (40–74% of total sites in the US may not reach the 2050 target to restore visibility to natural conditions by 2064. We estimate that climate-driven increases in fire activity may dominate summertime PM2.5 over the western US, potentially offsetting the large PM2.5 reductions from domestic emission controls, and keeping visibility at present-day levels in many parks. Our study suggests that air quality in 2050 will be primarily controlled by anthropogenic emission patterns. However, climate and land use changes alone may lead to a substantial increase in surface O3 (2–3 ppb with important consequences for O3 air quality and ecosystem degradation at the US NPs. Our study illustrates the need to consider the effects of changes in climate, vegetation, and fires in future air quality management and planning and emission policy making.

  4. How emissions, climate, and land use change will impact mid-century air quality over the United States: a focus on effects at national parks

    Science.gov (United States)

    Martin, M. Val; Heald, C. L.; Lamarque, J.-F.; Tilmes, S.; Emmons, L. K.; Schichtel, B. A.

    2015-03-01

    We use a global coupled chemistry-climate-land model (CESM) to assess the integrated effect of climate, emissions and land use changes on annual surface O3 and PM2.5 in the United States with a focus on national parks (NPs) and wilderness areas, using the RCP4.5 and RCP8.5 projections. We show that, when stringent domestic emission controls are applied, air quality is predicted to improve across the US, except surface O3 over the western and central US under RCP8.5 conditions, where rising background ozone counteracts domestic emission reductions. Under the RCP4.5 scenario, surface O3 is substantially reduced (about 5 ppb), with daily maximum 8 h averages below the primary US Environmental Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS) of 75 ppb (and even 65 ppb) in all the NPs. PM2.5 is significantly reduced in both scenarios (4 μg m-3; ~50%), with levels below the annual US EPA NAAQS of 12 μg m-3 across all the NPs; visibility is also improved (10-15 dv; >75 km in visibility range), although some western US parks with Class I status (40-74 % of total sites in the US) are still above the 2050 planned target level to reach the goal of natural visibility conditions by 2064. We estimate that climate-driven increases in fire activity may dominate summertime PM2.5 over the western US, potentially offsetting the large PM2.5 reductions from domestic emission controls, and keeping visibility at present-day levels in many parks. Our study indicates that anthropogenic emission patterns will be important for air quality in 2050. However, climate and land use changes alone may lead to a substantial increase in surface O3 (2-3 ppb) with important consequences for O3 air quality and ecosystem degradation at the US NPs. Our study illustrates the need to consider the effects of changes in climate, vegetation, and fires in future air quality management and planning and emission policy making.

  5. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7.......4 billion during 2003–2050. Our analysis identifies improved road design and agricultural sector investments as key ‘no-regret’ adaptation measures, alongside intensified efforts to develop a more flexible and resilient society. Our findings also support the need for cooperative river basin management...

  6. Isolating the effects of climate change in the variation of secondary inorganic aerosols (SIA) in Europe for the 21st century (1991-2100)

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Jose Gomez-Navarro, Juan; Jerez, Sonia; Lorente-Plazas, Raquel; Garcia-Valero, Juan Andres; Montavez, Juan Pedro

    2011-02-01

    The analysis of the influence of future climatic variations on air quality needs of methods that give a space-time display of large atmospheric data related to air pollution. Here a new approach in order to assess the impacts of climate change on the patterns of variation of secondary inorganic aerosols (SIA) over Europe is presented. The most widely used method of analysis (selected time-slices, future-minus-present method) is very sensitive to the chosen control and future periods because of the internal variability of the climate system. In order to overcome this limitation, full transient simulations for the period 1991-2100 under the SRES A2 scenario are analysed by the Empirical Orthogonal Functions (EOFs) methodology in order minimise the uncertainty associated to the internal variability due to the longer time series obtained. The results indicate that the EOF1 accounts for around 30-45% of the total variance for the SIA levels and points out a general increase of its trend over the entire domain ( p 0.1). The correlation between SIA and meteorological parameters indicates that the trends and patterns of variation of aerosols are related to the higher temperature projected for the future climate. It favours the formation of sulphates and ammonium (increasing the concentrations of atmospheric oxidants) and the decomposition of ammonium nitrate, remaining in the gas phase. Further, the decreases in precipitation have a strong effect on the frequency of the washout and therefore in the levels of aerosols. The concentrations of aerosols decrease with increasing precipitation as wet deposition provides the main aerosol sink. The trend from a decreasing mixing height found in several areas of Europe is frequently related to a decrease in precipitation, representing an adding effect for the enhanced future SIA concentrations.

  7. Review on the natural factors implications for the climate change in century scale%自然气候变率对近百年气候变化的影响研究进展

    Institute of Scientific and Technical Information of China (English)

    张志华; 陈幸荣; 蔡怡

    2013-01-01

    对近年来关于自然气候变率对近百年全球、中国气候以及海洋影响的研究成果进行了详细的总结分析.目前的研究认为,20世纪后50年的气温变化,更可能是人类活动的结果,而20世纪的前50年的气候变化,被认为是自然外力和人类活动共同的影响结果;对于中国20世纪气候增暖的原因,研究认为人类活动可能已经对中国的气候变暖产生了影响,但太阳活动、火山爆发及气候系统内部的低频振动对气候变化可能也具有重要影响.另外研究认为引起全球海洋总热容量增加的重要原因是人类活动的影响.%We summarized the research achievements in recent years about the effect of the nature climate variation on the global and Chinese climate and ocean in a hundred years,Current studies suggested that the air temperature change in the last 50 years of the 20th century was mainly caused by human activities and it was the combined effects of both nature climate variation and human activity in the first 50 years of the 20th century.For the reasons of the climate warming in China in the 20th century,it's suggested that the human activities must have produced effects of the climate warming in China,meanwhile,the solar activity,the volcanic eruption and other low frequency oscillations inside of the climate system may also have important impact.Another study indicated that the important factor of global ocean heat content increasing was the impact of human activities.

  8. Hantaviruses and climate change.

    Science.gov (United States)

    Klempa, B

    2009-06-01

    Most hantaviruses are rodent-borne emerging viruses. They cause two significant human diseases, haemorrhagic fever with renal syndrome in Asia and Europe, and hantavirus cardiopulmonary syndrome in the Americas. Very recently, several novel hantaviruses with unknown pathogenic potential have been identified in Africa and in a variety of insectivores (shrews and a mole). Because there is very limited information available on the possible impact of climate change on all of these highly dangerous pathogens, it is timely to review this aspect of their epidemiology. It can reasonably be concluded that climate change should influence hantaviruses through impacts on the hantavirus reservoir host populations. We can anticipate changes in the size and frequency of hantavirus outbreaks, the spectrum of hantavirus species and geographical distribution (mediated by changes in population densities), and species composition and geographical distribution of their reservoir hosts. The early effects of global warming have already been observed in different geographical areas of Europe. Elevated average temperatures in West-Central Europe have been associated with more frequent Puumala hantavirus outbreaks, through high seed production (mast year) and high bank vole densities. On the other hand, warm winters in Scandinavia have led to a decline in vole populations as a result of the missing protective snow cover. Additional effects can be caused by increased intensity and frequency of extreme climatic events, or by changes in human behaviour leading to higher risk of human virus exposure. Regardless of the extent of climate change, it is difficult to predict the impact on hantavirus survival, emergence and epidemiology. Nevertheless, hantaviruses will undoubtedly remain a significant public health threat for several decades to come.

  9. Natural and human-induced changes in summer climate over the East Asian monsoon region in the last half century: A review

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Ren-He

    2015-01-01

    In the last half century,a significant warming trend occurred in summer over eastern China in the East Asian monsoon region.However,there were no consistent trends with respect to the intensity of the East Asian summer monsoon(EASM) or the amount of summer rainfall averaged over eastern China.Both of the EASM and summer rainfall exhibited clear decadal variations.Obvious decadal shifts of EASM occurred around the mid- and late 1970 s,the late 1980 s and the early 1990 s,and the late 1990 s and early 2000 s,respectively.Summer rainfall over eastern China exhibited a change in spatial distribution in the decadal timescale,in response to the decadal shifts of EASM.From the mid- and late 1970 s to the late 1980 s and the early 1990 s,there was a meridional tri-polar rainfall distribution anomaly with more rainfall over the Yangtze River valley and less rainfall in North and South China; but in the period from the early 1990 s to the late 1990 s and the early 2000 s the tri-polar distribution changed to a dipolar one,with more rainfall appearing over southern China south to the Yangtze River valley and less rainfall in North China.However,from the early 2000 s to the late 2000 s,the Yangtze River valley received less rainfall.The decadal changes in EASM and summer rainfall over eastern China in the last half century are closely related to natural internal forcing factors such as Eurasian snow cover,Arctic sea ice,sea surface temperatures in tropical Pacific and Indian Ocean,oceaneatmospheric coupled systems of the Pacific Decadal Oscillation(PDO) and AsianePacific Oscillation(APO),and uneven thermal forcing over the Asian continent.Up to now,the roles of anthropogenic factors,such as greenhouse gases,aerosols,and land usage/cover changes,on existing decadal variations of EASM and summer rainfall in this region remain uncertain.

  10. Shifts of climate zones in multi-model climate change experiments using the Koeppen climate classification

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, Franziska; Koerper, Janina; Spangehl, Thomas; Cubash, Ulrich [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie

    2012-04-15

    This study investigates the future changes in the climate zones' distribution of the Earth's land area due to increasing atmospheric greenhouse gas concentrations in three IPCC SRES emissions scenarios (A1B, A2 and B1). The Koeppen climate classification is applied to climate simulations of seven atmosphere-ocean general circulation models (AOGCMs) and their multi-model mean. The evaluation of the skill of the individual climate models compared to an observation-reanalysis-based climate classification provides a first order estimate of relevant model uncertainties and serves as assessment for the confidence in the scenario projections. Uncertainties related to differences in simulation pathways of the future projections are estimated by both, the multi-model ensemble spread of the climate change signals for a given scenario and differences between different scenarios. For the recent climate the individual models fail to capture the exact Koeppen climate types in about 24-39 % of the global land area excluding Antarctica due to temperature and precipitation biases, while the multi-model ensemble mean simulates the present day observation-reanalysis-based distribution of the climate types more accurately. For the end of the 21{sup st} century compared to the present day climate the patterns of change are similar across the three scenarios, while the magnitude of change is largest for the highest emission scenario. Moreover, the temporal development of the climate shifts from the end of the 20st century and during the 21{sup st} century show that changes of the multi-model ensemble mean for the A2 and B1 scenario are generally within the ensemble spread of the individual models for the A1B scenario, illustrating that for the given range of scenarios the model uncertainty is even larger than the spread given by the different GHG concentration pathways. The multi-model ensemble mean's projections show climate shifts to dryer climates in the subtropics

  11. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... and to investigate the institutional dynamics new institutional theory is used with an emphasis on examining institutional mechanisms in relation to building legitimacy for action. The concept of mechanisms can help explain how and why constraints on action occur, and the concept of legitimacy is useful to clarify...... the strategies used by officials to enable climate change action. A long running criticism of institutional theory is the emphasis on how institutions constrain actions rather than act as productive phenomena that facilitate action. Emergent strands within new institutional theory emphasise the role of agency...

  12. Climate Change Justice

    OpenAIRE

    Sunstein, Cass R.; Posner, Eric A.

    2007-01-01

    Greenhouse gas reductions would cost some nations much more than others and benefit some nations far less than others. Significant reductions would impose especially large costs on the United States, and recent projections suggest that the United States has relatively less to lose from climate change. In these circumstances, what does justice require the United States to do? Many people believe that the United States is required to reduce its greenhouse gas emissions beyond the point that is ...

  13. Confronting Climate Change

    Science.gov (United States)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  14. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  15. Climate change and disaster management.

    Science.gov (United States)

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks.

  16. Climate change regional review: Russia

    OpenAIRE

    Sharmina, Maria; Anderson, Kevin; Bows-Larkin, Alice

    2013-01-01

    With climate change, an increasingly important focus of scientific and policy discourse, the Russian government has aimed to position the country as one of the leaders of the global process for addressing climate change. This article reviews a breadth of literature to analyze the politico-economic situation in Russia with regard to international climate change negotiations, related domestic policies, societal attitudes, and climatic change impacts on Russia's territory. The analysis demonstra...

  17. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...

  18. Climate Change and Natural Disasters

    NARCIS (Netherlands)

    Merkouris, Panos; Negri, Stefania; Maljean-Dubois, Sandrine

    2014-01-01

    Only 21 years ago, in 1992, the first ever convention on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was signed. The science behind studying climate change and its effects on the environment is not only mind-boggling but still in its infancy. It should come the

  19. Long-range Prediction of climatic Change in the Eastern Seaboard of Thailand over the 21st Century using various Downscaling Approaches

    Science.gov (United States)

    Bejranonda, Werapol; Koch, Manfred; Koontanakulvong, Sucharit

    2010-05-01

    Triggered by a long drought, a huge water supply crisis took place at the Eastern Seaboard of Thailand (east of the Gulf of Thailand) in 2005. In that year no rainfall occurred for four months after the beginning of the rainy season which led to the situation that the industrial estates of the Eastern Seaboard were not able to fully operate. Normally, most of the urban and industrial water used in this coastal region along east of the Gulf of Thailand, which is part of the Pacific Ocean, is surface water stored in a large-scale reservoir-network across the main watershed in the region. Thus the three major reservoirs usually gather water from monsoon storms that blow from the South and provide accumulative 80% of the annual rainfall during the 6 months of the rainy season which normally lasts from May-October. During the dry season (November - April) the winds are blowing from northern Indo-China land mass and rain drops only a few days in a month. Because of this typical tropical climate system, surface water resources across most of the southeastern Asia-Pacific region and the Eastern Seaboard of Thailand, in particular, rely on the annual occurrence of the monsoon season. There is now sufficient evidence that the named extreme weather conditions of 2005 occurring in that part of Thailand are not a singularity, but might be another signal of recent ongoing climate change in that country as a whole. Because of this imminent threat to the water resources of the region, and for the set-up of appropriate water management schemes for the near future, a climate impact study is proposed here. More specifically, the water budget of the Khlong Yai basin, which is the main watershed of the Eastern Seaboard, is modeled using the distributed hydrological model SWAT. To that avail the watershed model is coupled sequentially to a global climate model (GCM), whereby the latter provides the input forcing parameters (e.g. precipitation and temperature) to the former. Because of

  20. Arctic marine climate of the early nineteenth century

    Directory of Open Access Journals (Sweden)

    P. Brohan

    2010-05-01

    Full Text Available The climate of the early nineteenth century is likely to have been significantly cooler than that of today, as it was a period of low solar activity (the Dalton minimum and followed a series of large volcanic eruptions. Proxy reconstructions of the temperature of the period do not agree well on the size of the temperature change, so other observational records from the period are particularly valuable. Weather observations have been extracted from the reports of the noted whaling captain William Scoresby Jr., and from the records of a series of Royal Navy expeditions to the Arctic, preserved in the UK National Archives. They demonstrate that marine climate in 1810–1825 was marked by consistently cold summers, with abundant sea-ice. But although the period was significantly colder than the modern average, there was considerable variability: in the Greenland Sea the summers following the Tambora eruption (1816 and 1817 were noticeably warmer, and had less sea-ice coverage, than the years immediately preceding them; and the sea-ice coverage in Lancaster Sound in 1819 and 1820 was low even by modern standards.

  1. Climate change science compendium 2009

    Energy Technology Data Exchange (ETDEWEB)

    McMullen, C.P.; Jabbour, J.

    2009-09-15

    In a matter of a few weeks' time, governments will gather in Copenhagen, Denmark, for a crucial UN climate convention meeting. Many governments and stakeholders have requested an annual snapshot of how the science has been evolving since the publication of the IPCC's landmark fourth assessment in advance of the panel's next one in 2014. This Climate Change Science Compendium, based on the wealth of peerreviewed research published by researchers and institutions since 2006, has been compiled by UNEP in response to that request. The findings indicate that ever more rapid environmental change is underway with the pace and the scale of climate change accelerating, along with the confidence among researchers in their forecasts. The Arctic, with implications for the globe, is emerging as an area of major concern. There is growing evidence that the ice there is melting far faster than had been previously supposed. Mountains glaciers also appear to be retreating faster. Scientists now suggest that the Arctic could be virtually ice free in September of 2037 and that a nearly ice-free September by 2028 is well within the realms of possibility. Recent findings also show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. The impact on the Earth's multi-trillion dollar ecosystems is also a key area of concern. Under a high emission scenario-the one that most closely matches current trends-12-39 per cent of the planet's terrestrial surface could experience novel climate conditions and 10-48 per cent could suffer disappearing climates by 2100. Rising levels of aridity are also concentrating scientific minds. New research indicates that by the end of the 21st century the Mediterranean region will also experience much more severe increases in aridity than previously estimated rendering the entire region, but particularly the southern Mediterranean

  2. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  3. Communicating Climate Change (Invited)

    Science.gov (United States)

    Mann, M. E.

    2009-12-01

    I will discuss the various challenges scientists must confront in efforts to communicate the science and implications of climate change to the public. Among these challenges is the stiff headwind we must fight of a concerted disinformation effort designed to confuse the public about the nature of our scientific understanding of the problem and the reality of the underlying societal threat. We also must fight the legacy of the public’s perception of the scientist. That is to say, we must strive to communicate in plainspoken language that neither insults the intelligence of our audience, nor hopelessly loses them in jargon and science-speak. And through all of this, we must maintain our composure and good humor even in the face of what we might consider the vilest of tactics by our opposition. When it comes to how best to get our message out to the broader public, I don’t pretend to have all of the answers. But I will share some insights and anecdotes that I have accumulated over the course of my own efforts to inform the public about the reality of climate change and the potential threat that it represents.

  4. Politics of climate change belief

    Science.gov (United States)

    2017-01-01

    Donald Trump's actions during the election and his first weeks as US president-elect send a strong message about his belief in climate change, or lack thereof. However, these actions may reflect polarization of climate change beliefs, not climate mitigation behaviour.

  5. Effects of Irrigation on Global Climate During the 20th Century

    Science.gov (United States)

    Puma, M. J.; Cook, B. I.

    2010-01-01

    Various studies have documented the effects of modern ]day irrigation on regional and global climate, but none, to date, have considered the time ]varying impact of steadily increasing irrigation rates on climate during the 20th century. We investigate the impacts of observed irrigation changes over this century with two ensemble simulations using an atmosphere general circulation model. Both ensembles are forced with transient climate forcings and observed sea surface temperatures from 1902 to 2000; one ensemble includes irrigation specified by a time ]varying data set of irrigation water withdrawals. Early in the century, irrigation is primarily localized over southern and eastern Asia, leading to significant cooling in boreal summer (June.August) over these regions. This cooling spreads and intensifies by century fs end, following the rapid expansion of irrigation over North America, Europe, and Asia. Irrigation also leads to boreal winter (December.February) warming over parts of North America and Asia in the latter part of the century, due to enhanced downward longwave fluxes from increased near ]surface humidity. Precipitation increases occur primarily downwind of the major irrigation areas, although precipitation in parts of India decreases due to a weaker summer monsoon. Irrigation begins to significantly reduce temperatures and temperature trends during boreal summer over the Northern Hemisphere midlatitudes and tropics beginning around 1950; significant increases in precipitation occur in these same latitude bands. These trends reveal the varying importance of irrigation ]climate interactions and suggest that future climate studies should account for irrigation, especially in regions with unsustainable irrigation resources.

  6. Macroclimatic change expected to transform coastal wetland ecosystems this century

    Science.gov (United States)

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  7. Climate Change and Water Tools

    Science.gov (United States)

    EPA tools and workbooks guide users to mitigate and adapt to climate change impacts. Various tools can help manage risks, others can visualize climate projections in maps. Included are comprehensive tool kits hosted by other federal agencies.

  8. Climate Change and Water Training

    Science.gov (United States)

    To take action on climate impacts, practitioners must understand how climate change will effect their region, and the country. Training provided here by EPA and partners allow users to better grasp the issues and make decisions based on current science.

  9. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  10. Risks of non-linear climate change

    Energy Technology Data Exchange (ETDEWEB)

    Van Ham, J.; Van Beers, R.J.; Builtjes, P.J.H.; Koennen, G.P.; Oerlemans, J.; Roemer, M.G.M. [TNO-SCMO, Delft (Netherlands)

    1995-12-31

    Climate forcing as a result of increased concentrations of greenhouse gases has been primarily addressed as a problem of a possibly warmer climate. So far, such change has been obscured in observations, possibly as a result of natural climate variability and masking by aerosols. Consequently, projections of the effect of climate forcing have to be based on modelling, more specifically by applying Global Circulation Models GCMs. These GCMs do not cover all possible feedbacks; neither do they address all specific possible effects of climate forcing. The investigation reviews possible non-linear climate change which does not fall within the coverage of present GCMs. The review includes the potential relevance of changes in biogeochemical cycles, aerosol and cloud feedback, albedo instability, ice-flow instability, changes in the thermohaline circulation and changes resulting from stratospheric cooling. It is noted that these changes may have different time horizons. Three from the investigated issues provide indications for a possible non-linear change. On the decadal scale stratospheric cooling, which is the result of the enhanced greenhouse effect, in combination with a depleted ozone layer, could provide a positive feedback to further ozone depletion, in particular in the Arctic. Decreasing albedo on the Greenland ice sheet may enhance the runoff from this ice sheet significantly in case of warming on a timescale of a few centuries. Changes in ocean circulation in the North Atlantic could seasonally more than compensate a global warming of 3C in North-West Europe on a timescale of centuries to a millennium. 263 refs.

  11. Philosophy of climate science part I: observing climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the first of three parts of an introduction to the philosophy of climate science. In this first part about observing climate change, the topics of definitions of climate and climate change, data sets and data models, detection of climate change, and attribution of climate change will be discussed.

  12. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  13. The Strategic Threat of Inevitable Climate Change

    Science.gov (United States)

    2013-03-01

    global temperature by several degrees.3 In 1980, ice core samples drilled in the Greenland and Antarctic ice caps, which allowed scientists to measure...changes in ocean heat content along with melting and dynamic ice loss in the Antarctic and Greenland will continue for centuries.38 The climate, as...advocacy, recently withdrew from the Kyoto treaty as the rising price of oil made the tar sands of Alberta, which contain an estimated 240 gigatons of

  14. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  15. The Mathematical Formatting of Climate Change: Critical Mathematics Education and Post-Normal Science

    Science.gov (United States)

    Barwell, Richard

    2013-01-01

    Climate change is one of the most pressing issues of the 21st Century. Mathematics is involved at every level of understanding climate change, including the description, prediction and communication of climate change. As a highly complex issue, climate change is an example of "post-normal" science -- it is urgent, complex and involves a…

  16. Conflict in a changing climate

    Science.gov (United States)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  17. Regional climate change and national responsibilities

    Science.gov (United States)

    Hansen, James; Sato, Makiko

    2016-03-01

    Global warming over the past several decades is now large enough that regional climate change is emerging above the noise of natural variability, especially in the summer at middle latitudes and year-round at low latitudes. Despite the small magnitude of warming relative to weather fluctuations, effects of the warming already have notable social and economic impacts. Global warming of 2 °C relative to preindustrial would shift the ‘bell curve’ defining temperature anomalies a factor of three larger than observed changes since the middle of the 20th century, with highly deleterious consequences. There is striking incongruity between the global distribution of nations principally responsible for fossil fuel CO2 emissions, known to be the main cause of climate change, and the regions suffering the greatest consequences from the warming, a fact with substantial implications for global energy and climate policies.

  18. An Astronomer's View of Climate Change

    Science.gov (United States)

    Morton, Donald C.

    2014-01-01

    There are several astronomical effects that could be important for understanding climate changes such as the ice ages, the Medieval Maximum, the Little Ice Age, the 20th century temperature rise and the small decrease during the past 15 years. These effects include variations in the sun's luminosity, periodic changes in the earth's orbital parameters, the sun's orbit around our galaxy, the solar wind, the variability of solar activity and the anticorrelation of the galactic cosmic ray flux with that activity. With the publication of the Fifth Assessment Report to the Intergoverment Panel on Climate Change, it is useful to review these effects and the extent to which that report and previoius ones have recognized them. This paper also discusses recent trends in solar activity and global temperatures and compares the latter with the predictions of climate models.

  19. The North American Regional Climate Change Assessment Program: Overview of Climate Change Results

    Science.gov (United States)

    Mearns, L. O.

    2012-12-01

    The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models (RCMs) and multiple global model responses by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with a medium-high emissions scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within the NCEP reanalysis R2. The basic spatial resolution of the RCM simulations is 50 km. This program includes six different RCMs that have been used in various intercomparison programs in Europe and the United States. Four different AOGCMs provide boundary conditions to drive the RCMS for 30 years in the current climate and 30 years for the mid 21st century. The resulting climate model simulations form the basis for multiple high resolution climate scenarios that can be used in climate change impacts and adaptation assessments over North America. All 12 sets of current and future simulations have been completed. Measures of uncertainty across the multiple simulations are being developed by geophysical statisticians. In this overview talk, results from the various climate change experiments for various subregions, along with measures of uncertainty, will be presented

  20. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  1. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  2. Climate change in China and China’s policies and actions for addressing climate change

    Directory of Open Access Journals (Sweden)

    Luo Y.

    2010-12-01

    Full Text Available Since the first assessment report (FAR of Inter-Governmental Panel on Climate Change (IPCC in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4 was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  3. Adapting agriculture to climate change

    NARCIS (Netherlands)

    Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H.B.

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of exi

  4. Vegetation zones shift in changing climate

    Science.gov (United States)

    Belda, Michal; Halenka, Tomas; Kalvova, Jaroslava; Holtanova, Eva

    2016-04-01

    The analysis of climate patterns can be performed for each climate variable separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. In case of the Köppen-Trewartha classification it is integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also represent a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is used on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Furthermore, the analysis of the CMIP5 ensemble for RCP 4.5 and 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area of individual types, in the continental scale some shifts of boundaries

  5. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions.

  6. Sewer Systems and Climate Change

    OpenAIRE

    Brandsma, T.

    1993-01-01

    In this article the impact of climate change on the overflows of sewer systems is assessed. The emphasis is on the overflows of combined sewer systems. The purpose is twofold: first, to obtain a first-order estimate of the impact of climate change on overflows of sewer systems; and second, to obtain insight into the relevant meteorological variables that are important with respect to climate change. A reservoir model is used to assess the impact of climate change on several combinations of st...

  7. Climate Change Attribution Using Empirical Decomposition of Climatic Data

    CERN Document Server

    Loehle, Craig; 10.2174/1874282301105010074

    2012-01-01

    The climate change attribution problem is addressed using empirical decomposition. Cycles in solar motion and activity of 60 and 20 years were used to develop an empirical model of Earth temperature variations. The model was fit to the Hadley global temperature data up to 1950 (time period before anthropogenic emissions became the dominant forcing mechanism), and then extrapolated from 1951 to 2009. After subtraction of the model, the residuals showed an approximate linear upward trend after 1942. Herein we assume that the residual upward warming observed during the second half of the 20th century has been mostly induced by a worldwide rapid increase of anthropogenic emissions, urbanization and land use change. The warming observed before 1942 is relatively small and it is assumed to have been mostly naturally induced by a climatic recovery since the Little Ice Age of the 17th century and the Dalton Minimum at the beginning of the 19th century. The resulting full natural plus anthropogenic model fits the enti...

  8. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  9. Projected Climate Change Impacts on Pennsylvania

    Science.gov (United States)

    Najjar, R.; Shortle, J.; Abler, D.; Blumsack, S.; Crane, R.; Kaufman, Z.; McDill, M.; Ready, R.; Rydzik, M.; Wagener, T.; Wardrop, D.; Wilson, T.

    2009-05-01

    We present an assessment of the potential impacts of human-induced climate change on the commonwealth of Pennsylvania, U.S.A. We first assess a suite of 21 global climate models for the state, rating them based on their ability to simulate the climate of Pennsylvania on time scales ranging from submonthly to interannual. The multi-model mean is superior to any individual model. Median projections by late century are 2-4 degrees C warming and 5-10 percent precipitation increases (B1 and A2 scenarios), with larger precipitation increases in winter and spring. Impacts on the commonwealth's aquatic and terrestrial ecosystems, water resources, agriculture, forests, energy, outdoor recreation, tourism, and human health, are evaluated. We also examine barriers and opportunities for Pennsylvania created by climate change mitigation. This assessment was sponsored by the Pennsylvania Department of Environmental Protection which, pursuant to the Pennsylvania Climate Change Act, Act 70 of 2008, is required to develop a report on the potential scientific and economic impacts of climate change to Pennsylvania.

  10. Records of climatic changes and volcanic events in an ice core from Central Dronning Maud Land (East Antarctica) during the past century

    Indian Academy of Sciences (India)

    V N Nijampurkar; D K Rao; H B Clausen; M K Kaul; A Chaturvedi

    2002-03-01

    The depth profiles of electrical conductance, 18O, 210Pb and cosmogenic radio isotopes 10Be and 36Cl have been measured in a 30 m ice core from east Antarctica near the Indian station, Dakshin Gangotri. Using 210Pb and 18O, the mean annual accumulation rates have been calculated to be 20 and 21 cm of ice equivalent per year during the past ∼150 years. Using these acumulation rates, the volcanic event that occurred in 1815 AD, has been identified based on electrical conductance measurements. Based on 18O measurements, the mean annual surface air temperatures (MASAT) data observed during the last 150 years indicates that the beginning of the 19th century was cooler by about 2°C than the recent past and the middle of 18th century. The fallout of cosmogenic radio isotope 10Be compares reasonably well with those obtained on other stations (73° S to 90°S) from Antarctica and higher latitudes beyond 77°N. The fallout of 36Cl calculated based on the present work agrees well with the mean global production rate estimated earlier by Lal and Peters (1967) The bomb pulse of 36Cl observed in Greenland is not observed in the present studies a result which is puzzling and needs to be studied on neighbouring ice cores from the same region.

  11. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment

    Science.gov (United States)

    Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.

    2008-01-01

    Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.

  12. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  13. Climate Change and Collective Violence.

    Science.gov (United States)

    Levy, Barry S; Sidel, Victor W; Patz, Jonathan A

    2017-03-20

    Climate change is causing increases in temperature, changes in precipitation and extreme weather events, sea-level rise, and other environmental impacts. It is also causing or contributing to heat-related disorders, respiratory and allergic disorders, infectious diseases, malnutrition due to food insecurity, and mental health disorders. In addition, increasing evidence indicates that climate change is causally associated with collective violence, generally in combination with other causal factors. Increased temperatures and extremes of precipitation with their associated consequences, including resultant scarcity of cropland and other key environmental resources, are major pathways by which climate change leads to collective violence. Public health professionals can help prevent collective violence due to climate change (a) by supporting mitigation measures to reduce greenhouse gas emissions, (b) by promoting adaptation measures to address the consequences of climate change and to improve community resilience, and

  14. Projections of 21st century climate of the Columbia River Basin

    Science.gov (United States)

    Rupp, David E.; Abatzoglou, John T.; Mote, Philip W.

    2016-10-01

    Simulations from 35 global climate models (GCMs) in the Coupled Model Intercomparison Project Phase 5 provide projections of 21st century climate in the Columbia River Basin under scenarios of anthropogenic activity given by Representative Concentration Pathways (RCP4.5 and RCP8.5). The multi-model ensemble 30-year mean annual temperature increases by 2.8 °C (5.0 °C) by late 21st century under RCP4.5 (RCP8.5) over the 1979-1990 baseline, with 18% (24%) more warming in summer. By late 21st century, annual precipitation increases by 5% (8%), with an 8% (14%) winter increase and a 4% (10%) summer decrease, but because some models project changes of opposite sign, confidence in these sign changes is lower than those for temperature. Four questions about temperature and precipitation changes were addressed: (1) How and why do climate projections vary seasonally? (2) Is interannual variability in seasonal temperature and precipitation projected to change? (3) What explains the large inter-model spread in the projections? (4) Do projected changes in climate depend on model skill? Changes in precipitation and temperature vary seasonally as a result of changes in large-scale circulation and regional surface energy budget, respectively. Interannual temperature variability decreases slightly during the cool seasons and increases in summer, while interannual precipitation variability increases in all seasons. The magnitude of regional warming is linked to models' global climate sensitivity, whereas internal variability dominates the inter-model spread of precipitation changes. Lastly, GCMs that better reproduce historical climate tend to project greater warming and larger precipitation increases, though these results depend on the evaluation method.

  15. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  16. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  17. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  18. Sewer Systems and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the impact of climate change on the overflows of sewer systems is assessed. The emphasis is on the overflows of combined sewer systems. The purpose is twofold: first, to obtain a first-order estimate of the impact of climate change on overflows of sewer systems; and second, to obtain

  19. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate chang

  20. Dune erosion under climate change

    NARCIS (Netherlands)

    de Winter, R.C.

    2014-01-01

    This PhD-thesis investigated the effect of future climate change on dune erosion in the Netherlands. At present, dune erosion occurs under a combination of large storm surge and high waves, which are both generated by a storm event. Therefore to investigate the affect of future climate change on dun

  1. Generating Arguments about Climate Change

    Science.gov (United States)

    Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

    2012-01-01

    This unit is a different and fun way to engage students with an extremely important topic, climate change, which cuts across scientific and nonscientific disciplines. While climate change itself may not be listed in the curriculum of every science class, the authors contend that such a unit is appropriate for virtually any science curriculum.…

  2. Climate change, responsibility, and justice.

    Science.gov (United States)

    Jamieson, Dale

    2010-09-01

    In this paper I make the following claims. In order to see anthropogenic climate change as clearly involving moral wrongs and global injustices, we will have to revise some central concepts in these domains. Moreover, climate change threatens another value ("respect for nature") that cannot easily be taken up by concerns of global justice or moral responsibility.

  3. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  4. Climate change challenges for SEA

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    This paper takes a theoretical perspective on the challenges that climate changes pose for SEA. The theoretical framework used is the sociologist Ulrich Beck’s theory of risk society and the aspects that characterise this society. Climate change is viewed as a risk, and the theory is used to derive...

  5. US Agriculture and Climate Change: Perspectives from Recent Research

    OpenAIRE

    Reilly, John M.

    2004-01-01

    Across several projections of climate change in the coming century, total food production in the United States is not found to be at risk. Some regions, however, could experience declining production and profitability due to unfavorable climate, water availability, ecological pressures, or extreme weather events.

  6. Climate of Hungary in the twentieth century according to Feddema

    Science.gov (United States)

    Ács, Ferenc; Breuer, Hajnalka; Skarbit, Nóra

    2015-01-01

    Feddema's (Physical Geography 26:442-466, 2005) bioclimatic classification scheme is applied to Hungary for the twentieth century using the Climatic Research Unit (CRU) data series. The method is tested in two modes. In the first, its original form is used which is suitable for global scale analysis. In the second, the criteria used in the method are slightly modified for mesoscale classification purposes. In both versions, potential evapotranspiration (PET) is calculated using McKenney and Rosenberg's (Meteorol 64:81-110, 1993) formula. We showed that McKenney and Rosenberg's formula could be applied to Hungary. According to Feddema's global scale application, local climates of the three main geographical regions, the Great Hungarian Plain, the North Hungarian Mountains, and Transdanubia, can be distinguished. However, the spatial distribution pattern within the regions is poorly reproduced, if at all. According to Feddema's mesoscale application, a picture of climatic subregions could be observed.

  7. Projections of Climate Change in the 21st Century in Guizhou under Various Emission Scenarios%不同排放情景下贵州21世纪气候变化预估

    Institute of Scientific and Technical Information of China (English)

    张娇艳; 白慧; 吴战平; 严小冬; 徐智慧

    2011-01-01

    Based on the simulation outputs provided by IPCC -AR4, the possible climate change in Guizhou during the 21 st century has been analyzed under various greenhouse gas emission scenarios. Results indicate that the climate would become warmer and wetter in Guizhou in the 21st century due to the increase in gas emission. In the late 21st Century (2071 -2099 ), the temperature would be 2 - 3.2℃ higher than the normal while the rainfall would increase by 3.8 -5.8%. Moreover, under the circumstances of SRES A2, A1B and B1, the annual mean increase in temperature (rainfall) would be 4.0℃/100a( 136mm/100a), 3.6℃/100a(96mm/100a) and 2.1℃/ 100a(61mm/100a) respectively, which suggests a warmer (wetter) trend with more gas emission. According to the seasonal characteristics, the winter temperature increase is higher than other seasons in different emission sce- narios. The winter precipitation does not show any significant variations but the rainfalls in other seasons increase. Additionally, the precipitations during the early 21st century would decrease considering the effects of the SRES A1B and B1 but show no significant change with SRES A2.%利用IPCCAR4提供的模式预估结果,分析了不同排放情景下21世纪贵州气候变化特征,结果表明:21世纪由于人类排放的增加,贵州省将继续变暖、变湿。到21世纪后期(2071--2099年)贵州省温度比常年高2~3,2℃,降水比常年多3.8%-5.8%。且在SRESA.2(高排放)、A1B(中排放)、B1(低排放)情景下贵州省年平均温度(降水)整体变化幅度分别为4.0℃/100a(136mm/100a)、3.6℃/100a(96mm/100a)、2.1℃/100a(61mm/100a),体现了排放量越高,增温(增湿)越显著的特征。从季节特征来看,不同情景下冬季温度的增加趋势都大于其它季节;冬季降水预估没有明显的变化趋势,其余季节基本上以上

  8. Climate change or variable weather

    DEFF Research Database (Denmark)

    Baron, Nina; Kjerulf Petersen, Lars

    2015-01-01

    Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...... data and models. This influences the way they understand the future risks of climate change. Concurrently, with the theory of Latour, we can understand how those experiences with the local landscape are mediated by the existing water-managing technologies such as pumps and dikes. These technologies...

  9. Coupled Aerosol-Chemistry-Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses

    Science.gov (United States)

    Koch, Dorothy; Bauer, Susanne E.; Del Genio, Anthony; Faluvegi, Greg; McConnell, Joseph R.; Menon, Surabi; Miller, Ronald L.; Rind, David; Ruedy, Reto; Schmidt, Gavin A.; Shindell, Drew

    2011-01-01

    The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s-80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is -0.41 Watts per square meter, the BC-albedo effect is -0.02 Watts per square meter, and the net ozone forcing is +0.24 Watts per square meter. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observedmidcentury cooling followed by the late century warming.Over the century, 20% of Arctic warming and snow ice cover loss is attributed to the BC albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling. To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed

  10. Uncertainty in projected impacts of climate change on biodiversity

    DEFF Research Database (Denmark)

    Garcia, Raquel A.

    Evidence for shifts in the phenologies and distributions of species over recent decades has often been attributed to climate change. The prospect of greater and faster changes in climate during the 21st century has spurred a stream of studies anticipating future biodiversity impacts. Yet, uncerta......Evidence for shifts in the phenologies and distributions of species over recent decades has often been attributed to climate change. The prospect of greater and faster changes in climate during the 21st century has spurred a stream of studies anticipating future biodiversity impacts. Yet...... with alternative climate data and model algorithms. Ensemble forecasting provides a means for exploring the breadth and spatial variation of uncertainties, and for building consensus among projections. Several consensus methodologies are compared here, including a newly proposed methodology that preserves...

  11. The three-century climatic upheaval of c. 2000 BC, and regional radiocarbon disparities

    CERN Document Server

    Keenan, D J

    1999-01-01

    Several researchers have previously identified a severe climatic upheaval in tropical North Africa that began just over 4000 years ago and lasted for about three centuries. The upheaval is known to have occurred shortly after a volcanic eruption, and companion work proposes that this eruption was colossal. Here, we suggest how the eruption acted as a trigger for the upheaval: by forcing changes in ocean circulation; although the initial (atmospheric) forcing lasted only a few years, the ocean required three centuries to regain equilibrium. The suggested triggering mechanism is supported by palaeoceanographic, palaeoecological, and archaeo-historical data and by related experiments with a (coupled general-circulation) climate model. We argue that the changes in ocean circulation forced changes in sea-surface temperatures that led to a weakening of the south-west North African monsoon. The upheaval has been proposed to have also encompassed south-western Asia. We argue that it encompassed most of the Northern H...

  12. Methane hydrates and contemporary climate change

    Science.gov (United States)

    Ruppel, Carolyn D.

    2011-01-01

    As the evidence for warming climate became better established in the latter part of the 20th century (IPCC 2001), some scientists raised the alarm that large quantities of methane (CH4) might be liberated by widespread destabilization of climate-sensitive gas hydrate deposits trapped in marine and permafrost-associated sediments (Bohannon 2008, Krey et al. 2009, Mascarelli 2009). Even if only a fraction of the liberated CH4 were to reach the atmosphere, the potency of CH4 as a greenhouse gas (GHG) and the persistence of its oxidative product (CO2) heightened concerns that gas hydrate dissociation could represent a slow tipping point (Archer et al. 2009) for Earth's contemporary period of climate change.

  13. Risk communication on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Wardekker, J.A.

    2004-10-01

    For the title study use has been made of available scientific literature, results of new surveys and interviews. In the first part of the study attention is paid to the exchange of information between parties involved in climate change and differences in supply and demand of information. In the second part citizens' views on climate change, problems with communication on climate change, and the resulting consequences and options for communication are dealt with. In this second part also barriers to action that are related or influenced by communication are taken into consideration.

  14. Climatic change; Le Changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, Ch. de [Universite de Paris-Dauphine, 75 - Paris (France); Caisse des depots, Mission climat, 75 - Paris (France); Delbosc, A. [Caisse des depots, Mission climat, 75 - Paris (France)

    2009-07-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  15. Inhalation anaesthetics and climate change

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Sander, S P; Nielsen, O J

    2010-01-01

    Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane......, and sevoflurane are widely used inhalation anaesthetics. Emissions of these compounds contribute to radiative forcing of climate change. To quantitatively assess the impact of the anaesthetics on the forcing of climate, detailed information on their properties of heat (infrared, IR) absorption and atmospheric...

  16. The IMAGE 2.2 implementation of the SRES scenarios: a comprehensive analysis of emissions, climate change and impacts in the 21st century

    NARCIS (Netherlands)

    IMAGE team,

    2001-01-01

    The Integrated Model to Assess the Global Environment (IMAGE) is a dynamic integrated assessment modelling framework for global change. The main objectives of IMAGE are to contribute to scientific understanding and support decision-making by quantifying the relative importance of major processes and

  17. The future of species under climate change: resilience or decline?

    Science.gov (United States)

    Moritz, Craig; Agudo, Rosa

    2013-08-02

    As climates change across already stressed ecosystems, there is no doubt that species will be affected, but to what extent and which will be most vulnerable remain uncertain. The fossil record suggests that most species persisted through past climate change, whereas forecasts of future impacts predict large-scale range reduction and extinction. Many species have altered range limits and phenotypes through 20th-century climate change, but responses are highly variable. The proximate causes of species decline relative to resilience remain largely obscure; however, recent examples of climate-associated species decline can help guide current management in parallel with ongoing research.

  18. The wanted change against climate change: assessing the role of organic farming as an adaptation strategy

    OpenAIRE

    Aravindakshan, Sreejith; Sherief, Aliyaru Kunju

    2010-01-01

    Conventional input intensive agriculture practised over the last century has been a major contributor to climate change, second only to energy sector. The communities engaged in pesticide and synthetic input rich agriculture is most vulnerable to the impacts of climate change. Many emerging economies including India have had the opportunity to develop National Adaptation Plans of Action in the context of the United Nations Framework Convention on Climate Change but implementation of those pro...

  19. Response of aeolian desertification to regional climate change in Horqin sandy land at beginning of 21st century%21世纪初科尔沁沙地沙漠化对区域气候变化的响应

    Institute of Scientific and Technical Information of China (English)

    王永芳; 张继权; 马齐云; 朱萌

    2016-01-01

    Using time series MODIS-NDVI dataset in growing season from 2000 to 2013 and precipitation, temperature, evaporation and wind speed data, dynamic change of aeolian desertification and its response to regional climate change in Horqin sandy land at the beginning of 21st century were studied in this paper. A dimidiate pixel model was chosen to calculate the vegetation coverage index (VCI), and aeolian desertification index (ADI) was established on the basis of negative correlation between VCI and aeolian desertification degree. Then, a classification system of ADI was developed by the decision tree method. In addition, linear regression was used for the temporal trend analysis of ADI and the selected climate factors. Mann-Kendall statistical test was used to estimate the significance of the trends. To reveal the effects of climate change on aeolian desertification further, this study analyzed the correlation between climate factors and aeolian desertified lands at an administrative scale using Pearson’s correlation analysis method. The result showed that the aeolian desertification underwent a process of reversion-development-reversion in Horqin sandy land at the beginning of 21st century, among which the area of aeolian desertified lands decreased in periods from 2000 to 2005 and from 2009 to 2013 and increased from 2005 to 2009. The areas of slight and medium aeolian desertified lands changed in a significant downward trend. The areas of serious and extreme serious aeolian desertified lands changed in a non-significant downward trend. The non-aeolian desertified lands were mainly distributed in the northwest parts while the serious and extreme serious aeolian desertified lands were in the southwest parts of the study area. The slight and the medium aeolian desertified lands were wildly distributed in the northern, eastern and the southern parts of the study area. The precipitation was on the rise while the temperature, evaporation, and the windy days driving sand

  20. Coping with climate change

    DEFF Research Database (Denmark)

    Zheng, Yuan; Byg, Anja

    2014-01-01

    found across villages regarding the degree of perceived sensitivity and responses despite similar exposure to climate extremes. These differences are partly related to the nature of events and varied socio-economic characteristics of households, which influence their vulnerability and ability to cope...

  1. Deliberating Climate Change

    DEFF Research Database (Denmark)

    Agger, Annika; Jelsøe, Erling; Jæger, Birgit

    to include the voice of the citizens into complex scientific and technological issues. The purpose of WWV was to pass on the opinions of ordinary citizens to political decision-makers at The United Nations Climate Summit, COP15, in Copenhagen in December 2009. The authors made a study of the Danish WWV event...

  2. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    ) a study on the effects of elevated atmospheric CO2-concentration, warming and drought on the photosynthetic capacity and phenology of C. vulgaris and D. flexuosa in an outdoor climate change experiment on a grassy heathland in Denmark; 4) a study on climate change impacts on the competitive interactions...... and flexibly reduces its green biomass under drought conditions. C. vulgaris is less flexible and hardly adjusts photosynthetic capacity or green biomass to drought or warming. Despite these differential responses, competitive interactions were robust. C. vulgaris, in the building phase, outcompetes D...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...

  3. Anthropogenic Aerosols in Asia, Radiative Forcing, and Climate Change

    Science.gov (United States)

    Ramaswamy, V.; Bollasina, M. A.; Ming, Y.; Ocko, I.; Persad, G.

    2014-12-01

    Aerosols arising as a result of human-induced emissions in Asia form a key 'driver' in causing pollution and in the forcing of anthropogenic climate change. The manner of the forced climate change is sensitive to the scattering and absorption properties of the aerosols and the aerosol-cloud microphysical interactions. Using the NOAA/ GFDL global climate models and observations from multiple platforms, we investigate the radiative perturbations due to the 20th Century sulfate and carbonaceous aerosol emissions and the resultant impacts on surface temperature, tropical precipitation, Indian monsoon, hemispheric circulation, and atmospheric and oceanic heat transports. The influence of the aerosol species has many contrasts with that due to the anthropogenic well-mixed greenhouse gas emissions e.g., the asymmetry in the hemispheric climate response, but is subject to larger uncertainties. The aerosol forcing expected in the future indicates a significant control on the 21st Century anthropogenic climate change in Asia.

  4. Teaching about climate change in medical education: an opportunity

    Directory of Open Access Journals (Sweden)

    Janie Maxwell

    2016-04-01

    Full Text Available Climate change threatens many of the gains in development and health over the last century. However, it could also be a catalyst for a necessary societal transformation to a sustainable and healthy future. Doctors have a crucial role in climate change mitigation and health system adaptation to prepare for emergent health threats and a carbon-constrained future. This paper argues that climate change should be integrated into medical education for three reasons: first, to prepare students for clinical practice in a climate-changing world; secondly, to promote public health and eco-health literacy; and finally, to deepen existing learning and strengthen graduate attributes. This paper builds on existing literature and the authors’ experience to outline potential learning objectives, teaching methods and assessment tasks. In the wake of recent progress at the United Nations climate change conference, COP-21, it is hoped that this paper will assist universities to integrate teaching about climate change into medical education.

  5. Grapevine phenology and climate change in Georgia

    Science.gov (United States)

    Cola, G.; Failla, O.; Maghradze, D.; Megrelidze, L.; Mariani, L.

    2016-10-01

    While the climate of Western Europe has been deeply affected by the abrupt climate change that took place in the late `1980s of the twentieth century, a similar signal is detected only few years later, in 1994, in Georgia. Grapevine phenology is deeply influenced by climate and this paper aimed to analyze how phenological timing changed before and after the climatic change of 1994. Availability of thermal resources in the two climatic phases for the five altitudinal belts in the 0-1250-m range was analyzed. A phenological dataset gathered in two experimental sites during the period 2012-2014, and a suitable thermal dataset was used to calibrate a phenological model based on the normal approach and able to describe BBCH phenological stages 61 (beginning of flowering), 71 (fruit set), and 81 (veraison). Calibration was performed for four relevant Georgian varieties (Mtsvane Kakhuri, Rkatsiteli, Ojaleshi, and Saperavi). The model validation was performed on an independent 3-year dataset gathered in Gorizia (Italy). Furthermore, in the case of variety Rkatsiteli, the model was applied to the 1974-2013 thermal time series in order to obtain phenological maps of the Georgian territory. Results show that after the climate change of 1994, Rkatsiteli showed an advance, more relevant at higher altitudes where the whole increase of thermal resource was effectively translated in phenological advance. For instance the average advance of veraison was 5.9 days for 250-500 m asl belt and 18.1 days for 750-1000 m asl). On the other hand, at lower altitudes, phenological advance was depleted by superoptimal temperatures. As a final result, some suggestions for the adaptation of viticultural practices to the current climatic phase are provided.

  6. Can Climate Change Negotiations Succeed?

    Directory of Open Access Journals (Sweden)

    Jon Hovi

    2013-09-01

    Full Text Available More than two decades of climate change negotiations have produced a series of global climate agreements, such as the Kyoto Protocol and the Copenhagen Accords, but have nevertheless made very limited progress in curbing global emissions of greenhouse gases. This paper considers whether negotiations can succeed in reaching an agreement that effectively addresses the climate change problem. To be effective, a climate agreement must cause substantial emissions reductions either directly (in the agreement's own lifetime or indirectly (by paving the way for a future agreement that causes substantial emissions reductions directly. To reduce global emissions substantially, an agreement must satisfy three conditions. Firstly, participation must be both comprehensive and stable. Secondly, participating countries must accept deep commitments. Finally, the agreement must obtain high compliance rates. We argue that three types of enforcement will be crucial to fulfilling these three conditions: (1 incentives for countries to ratify with deep commitments, (2 incentives for countries that have ratified with deep commitments to abstain from withdrawal, and (3 incentives for countries having ratified with deep commitments to comply with them. Based on assessing the constraints that characterize the climate change negotiations, we contend that adopting such three-fold potent enforcement will likely be politically infeasible, not only within the United Nations Framework Convention on Climate Change, but also in the framework of a more gradual approach. Therefore, one should not expect climate change negotiations to succeed in producing an effective future agreement—either directly or indirectly.

  7. Climate change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  8. Probabilistic projections of transient climate change

    Science.gov (United States)

    Harris, Glen R.; Sexton, David M. H.; Booth, Ben B. B.; Collins, Mat; Murphy, James M.

    2013-06-01

    This paper describes a Bayesian methodology for prediction of multivariate probability distribution functions (PDFs) for transient regional climate change. The approach is based upon PDFs for the equilibrium response to doubled carbon dioxide, derived from a comprehensive sampling of uncertainties in modelling of surface and atmospheric processes, and constrained by multiannual mean observations of recent climate. These PDFs are sampled and scaled by global mean temperature predicted by a Simple Climate Model (SCM), in order to emulate corresponding transient responses. The sampled projections are then reweighted, based upon the likelihood that they correctly replicate observed historical changes in surface temperature, and combined to provide PDFs for 20 year averages of regional temperature and precipitation changes to the end of the twenty-first century, for the A1B emissions scenario. The PDFs also account for modelling uncertainties associated with aerosol forcing, ocean heat uptake and the terrestrial carbon cycle, sampled using SCM configurations calibrated to the response of perturbed physics ensembles generated using the Hadley Centre climate model HadCM3, and other international climate model simulations. Weighting the projections using observational metrics of recent mean climate is found to be as effective at constraining the future transient response as metrics based on historical trends. The spread in global temperature response due to modelling uncertainty in the carbon cycle feedbacks is determined to be about 65-80 % of the spread arising from uncertainties in modelling atmospheric, oceanic and aerosol processes of the climate system. Early twenty-first century aerosol forcing is found to be extremely unlikely to be less than -1.7 W m-2. Our technique provides a rigorous and formal method of combining several lines of evidence used in the previous IPCC expert assessment of the Transient Climate Response. The 10th, 50th and 90th percentiles of our

  9. Climate change and group dynamics

    NARCIS (Netherlands)

    Postmes, Tom

    2015-01-01

    The characteristics and views of people sceptical about climate change have been analysed extensively. A study now confirms that sceptics in the US have some characteristics of a social movement, but shows that the same group dynamics propel believers

  10. Cities lead on climate change

    Science.gov (United States)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  11. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  12. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  13. Climate change: Unattributed hurricane damage

    Science.gov (United States)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  14. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change......, as a point of departure for an examination of what happens when a requirement to save energy and resources, as a response to global climate change, encounters local ways of knowing the world. Developed through meetings, workshops, competitions and the promotion of exemplary individuals, the campaign...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...

  15. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  16. Responsible Reaction To Climate Change

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China calls for turning UNFCCC provisions into concrete actions Never before has climate change been as prominent on the public agenda as it is today.Its rele- vance was highlighted once again when more than 10,000 delegates from over 180 countries flocked to Bali early this month to discuss the topic.Environment officials as well as representatives from intergovernmental and nongovernmental organizations gath- ered on the Indonesian island on December 3-14 for the UN Climate Change Conference.

  17. Climate Change and National Security

    Science.gov (United States)

    2013-02-01

    atmosphere, which is causing warming of global temperatures as well as more extreme and less predictable weather patterns. While this issue is debated in...develop unique, policy-relevant solutions to complex global challenges. About the CCAPS Program The Climate Change and African Political Stability...political circles, scientists overwhelmingly agree that human-induced or anthropogenic climate change is real. Given the complexity of the issue, there

  18. Social protection and climate change

    DEFF Research Database (Denmark)

    Johnson, Craig; Bansha Dulal, Hari; Prowse, Martin Philip

    2013-01-01

    This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject.......This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject....

  19. Climate Change in Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, M.A.; Lasage, R.; Dorlands, C. (eds.) [Free University, Amsterdam (Netherlands)

    2006-09-15

    This book presents an overview of the studies conducted by the Netherlands Climate Change Studies Assistance programme. The programme was set up in recognition of the need for developing countries, in particular, to face the challenges confronting all countries under the UN Framework Convention on Climate Change. The book presents an overview of the main results in 13 countries: Bolivia, Colombia, Ecuador, Egypt, Ghana, Kazakhstan, Mali, Mongolia, Senegal, Surinam, Vietnam, Yemen and Zimbabwe. It provides a critical evaluation of the methodologies and approaches used, a cross-country synthesis and recommendations for further studies. Subjects dealt with include not only impact studies, but also vulnerability and adaptation, mitigation and climate related policy.

  20. Update on global climate change.

    Science.gov (United States)

    Weber, Carol J

    2010-01-01

    Global climate change brings new challenges to the control of infectious diseases. Since many waterborne and vector-borne pathogens are highly sensitive to temperature and rainfall, health risks resulting from a warming and more variable climate are potentially huge. Global climate change involves the entire world, but the poorest countries will suffer the most. Nations are coming together to address what can be done to reduce greenhouse gas emissions and cope with inevitable temperature increases. A key component of any comprehensive mitigation and adaptation plan is a strong public health infrastructure across the world. Nothing less than global public health security is at stake.

  1. A National Road Map to a Climate Literate Society: Advancing Climate Literacy by Coordinating Federal Climate Change Educational Programs (Invited)

    Science.gov (United States)

    Niepold, F.; Karsten, J. L.

    2009-12-01

    Over the 21st century, climate scientists expect Earth's temperature to continue increasing, very likely more than it did during the 20th century. Two anticipated results are rising global sea level and increasing frequency and intensity of heat waves, droughts, and floods. [IPCC 2007, USGCRP 2009] These changes will affect almost every aspect of human society, including economic prosperity, human and environmental health, and national security. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both. Society needs citizens who understand the climate system and know how to apply that knowledge in their careers and in their engagement as active members of their communities. Climate change will continue to be a significant element of public discourse. Understanding the essential principles of climate science will enable all people to assess news stories and contribute to their everyday conversations as informed citizens. Key to our nations response to climate change will be a Climate Literate society that understands their influence on climate and climate’s influence on them and society. In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been endorsed by the 13 Federal agencies that make up the US Global Change Research Program (http://globalchange.gov/resources/educators/climate-literacy) and twenty-four other science and educational institutions. This session will explore the coordinated efforts by the federal agencies and partner organizations to ensure a climate literate society. "Climate Literacy: The Essential Principles of Climate Sciences: A Guide for Individuals and Communities" produced by the U.S. Global Change Research Program in March 2009

  2. The Pace of Perceivable Extreme Climate Change

    Science.gov (United States)

    Tan, X.; Gan, T. Y.

    2015-12-01

    When will the signal of obvious changes in extreme climate emerge over climate variability (Time of Emergence, ToE) is a key question for planning and implementing measures to mitigate the potential impact of climate change to natural and human systems that are generally adapted to potential changes from current variability. We estimated ToEs for the magnitude, duration and frequency of global extreme climate represented by 24 extreme climate indices (16 for temperature and 8 for precipitation) with different thresholds of the signal-to-noise (S/N) ratio based on projections of CMIP5 global climate models under RCP8.5 and RCP4.5 for the 21st century. The uncertainty of ToE is assessed by using 3 different methods to calculate S/N for each extreme index. Results show that ToEs of the projected extreme climate indices based on the RCP4.5 climate scenarios are generally projected to happen about 20 years later than that for the RCP8.5 climate scenarios. Under RCP8.5, the projected magnitude, duration and frequency of extreme temperature on Earth will all exceed 2 standard deviations by 2100, and the empirical 50th percentile of the global ToE for the frequency and magnitude of hot (cold) extreme are about 2040 and 2054 (2064 and 2054) for S/N > 2, respectively. The 50th percentile of global ToE for the intensity of extreme precipitation is about 2030 and 2058 for S/N >0.5 and S/N >1, respectively. We further evaluated the exposure of ecosystems and human societies to the pace of extreme climate change by determining the year of ToE for various extreme climate indices projected to occur over terrestrial biomes, marine realms and major urban areas with large populations. This was done by overlaying terrestrial, ecoregions and population maps with maps of ToE derived, to extract ToEs for these regions. Possible relationships between GDP per person and ToE are also investigated by relating the mean ToE for each country and its average value of GDP per person.

  3. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates

    Science.gov (United States)

    Garcia, Raquel A; Burgess, Neil D; Cabeza, Mar; Rahbek, Carsten; Araújo, Miguel B

    2012-01-01

    Africa is predicted to be highly vulnerable to 21st century climatic changes. Assessing the impacts of these changes on Africa's biodiversity is, however, plagued by uncertainties, and markedly different results can be obtained from alternative bioclimatic envelope models or future climate projections. Using an ensemble forecasting framework, we examine projections of future shifts in climatic suitability, and their methodological uncertainties, for over 2500 species of mammals, birds, amphibians and snakes in sub-Saharan Africa. To summarize a priori the variability in the ensemble of 17 general circulation models, we introduce a consensus methodology that combines co-varying models. Thus, we quantify and map the relative contribution to uncertainty of seven bioclimatic envelope models, three multi-model climate projections and three emissions scenarios, and explore the resulting variability in species turnover estimates. We show that bioclimatic envelope models contribute most to variability, particularly in projected novel climatic conditions over Sahelian and southern Saharan Africa. To summarize agreements among projections from the bioclimatic envelope models we compare five consensus methodologies, which generally increase or retain projection accuracy and provide consistent estimates of species turnover. Variability from emissions scenarios increases towards late-century and affects southern regions of high species turnover centred in arid Namibia. Twofold differences in median species turnover across the study area emerge among alternative climate projections and emissions scenarios. Our ensemble of projections underscores the potential bias when using a single algorithm or climate projection for Africa, and provides a cautious first approximation of the potential exposure of sub-Saharan African vertebrates to climatic changes. The future use and further development of bioclimatic envelope modelling will hinge on the interpretation of results in the light

  4. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  5. Mitigating Climate Change with Earth Orbital Sunshades

    Science.gov (United States)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  6. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K.; Karlen, W. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  7. Climate change and our responsibilities as chemists

    Directory of Open Access Journals (Sweden)

    Bassam Z. Shakhashiri

    2014-01-01

    Full Text Available For almost all of 4.5 billion years, natural forces have shaped Earth’s environment. But, during the past century, as a result of the Industrial Revolution, which has had enormous benefits for humans, the effects of human activities have become the main driver for climate change. The increase of atmospheric carbon dioxide caused by burning fossil fuels for energy to power the revolution causes an energy imbalance between incoming solar radiation and outgoing planetary emission. The imbalance is warming the planet and causing the atmosphere and oceans to warm, ice to melt, sea level to rise, and weather extremes to increase. In addition, dissolution of part of the carbon dioxide in the oceans is causing them to acidify, with possible negative effects on marine biota. As citizens of an interconnected global society and scientists who have the background to understand climate change, we have a responsibility first to understand the science. One resource that is available to help is the American Chemical Society Climate Science Toolkit, www.acs.org/climatescience. With this understanding our further responsibility as citizen scientists is to engage others in deliberative discussions on the science, to take actions ourselves to adapt to and mitigate human-caused climate change, and urge others to follow our example.

  8. Flood risk and climate change: global and regional perspectives

    OpenAIRE

    Kundzewicz, Zbigniew W.; Kanae, Shinjiro; Seneviratne, Sonia I; Handmer, John; Nicholls, Neville; Peduzzi, Pascal; Mechler, Reinhard; Laurens M. Bouwer; Arnell, Nigel; Mach, Katharine; Muir-Wood, Robert; Brakenridge, G. Robert; Kron, Wolfgang; Benito, Gerardo; Honda, Yasushi

    2014-01-01

    A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increase...

  9. Climate change hotspots in the CMIP5 global climate model ensemble.

    Science.gov (United States)

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21(st) century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20(th)-century baseline), but not at the higher levels of global warming that occur in the late-21(st)-century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  10. Modelling the response of valley glaciers to climatic change

    NARCIS (Netherlands)

    Oerlemans, J.

    1996-01-01

    In the context of Global Change research, glaciers are of interest because they register small but persistent changes in climate, and because they affect global sea level on the decadal-to-century time scale. In addition, in some regions glaciers are of great importance for human activities like con

  11. Climate Change: Integrating Science and Economics

    Science.gov (United States)

    Prinn, R. G.

    2008-12-01

    The world is facing an ever-growing conflict between environment and development. Climate change is a century-scale threat requiring a century-long effort in science, technology and policy analysis, and institutions that can sustain this effort over generations. To inform policy development and implementation there is urgent need for better integration of the diverse components of the problem. Motivated by this challenge, we have developed the Integrated Global System Model (IGSM) at MIT. It comprises coupled sub- models of economic development, atmospheric chemistry, climate dynamics and ecosystems. The results of a recent uncertainty analysis involving hundreds of runs of the IGSM imply that, without mitigation policies, the global average surface temperature may rise much faster than previously estimated. Polar temperatures are projected to rise even faster than the average rate with obvious great risks for high latitude ecosystems and ice sheets at the high end of this range. Analysis of policies for climate mitigation, show that the greatest effect of these policies is to lower the probability of extreme changes as opposed to lowering the medians. Faced with the above estimated impacts, the long lifetimes of most greenhouse gases in the atmosphere, the long delay in ultimate warming due to ocean heat uptake, and the capital-intensive global energy infrastructure, the case is strong for concerted action now. Results of runs of the IGSM indicate the need for transformation of the global energy industry on a very large scale to mitigate climate change. Carbon sequestration, renewable energy sources, and nuclear present new economic, technological, and environmental challenges when implemented at the needed scales. Economic analyses using the IGSM indicate that global implementation of efficient policies could allow the needed transformations at bearable costs.

  12. Climate Change in New England | Energy and Global Climate ...

    Science.gov (United States)

    2017-04-10

    EPA Region 1's Energy and Climate Unit and Oceans and Coastal Unit provide information and technical assistance on climate change impacts and adaptation, resilience and preparedness to climate disruptions

  13. Coastal sea level changes, observed and projected during the 20th and 21st century

    NARCIS (Netherlands)

    Carson, M.; Köhl, A.; Stammer, D.; A. Slangen, A. B.; Katsman, C. A.; W. van de Wal, R. S.; Church, J.; White, N.

    2015-01-01

    Timeseries of observed and projected sea level changes for the 20th and 21st century are analyzed at various coastal locations around the world that are vulnerable to climate change. Observed time series are from tide gauges and altimetry, as well as from reconstructions over the last 50 years. CMIP

  14. Global climate change impacts on forests and markets

    Science.gov (United States)

    Tian, Xiaohui; Sohngen, Brent; Kim, John B.; Ohrel, Sara; Cole, Jefferson

    2016-03-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, the MC2 model. The results suggest that climate change will cause forest outputs (such as timber) to increase by approximately 30% over the century. Aboveground forest carbon storage also is projected to increase, by approximately 26 Pg C by 2115, as a result of climate change, potentially providing an offset to emissions from other sectors. The effects of climate mitigation policies in the energy sector are then examined. When climate mitigation in the energy sector reduces warming, we project a smaller increase in forest outputs over the timeframe of the analysis, and we project a reduction in the sink capacity of forests of around 12 Pg C by 2115.

  15. Climate in Spain: past, present and future. Regional climate change assessment report

    OpenAIRE

    Bladé, Ileana; Cacho, Isabel; Castro-Díez, Yolanda; Gomis, Damià; González-Sampériz, Penélope; Miguez-Macho, Gonzalo; Rodríguez-Fonseca, Belén; Rodríguez-Puebla, Concepción; Sánchez, Enrique; Sotillo, Marcos G.; Valero-Garcés, Blas L.; Vargas-Yáñez, Manuel

    2010-01-01

    Climate change is nowadays a reality and one of the most important challenges that humanity has to face this century, because of the threat that it represents, among others, for the economy, health, food and safety. There are increasingly more scientific evidences that we are at a critical moment, although we can still tackle the negative consequences of climate change if we take decisive actions at a global level. One of the key actions needed to meet this challenge is to gain as...

  16. Climate change adaptation in Ethiopia

    DEFF Research Database (Denmark)

    Weldegebriel, Zerihun Berhane; Prowse, Martin

    Ethiopia is vulnerable to climate change due to its limited development and dependence on agriculture. Social protection schemes like the Productive Safety Net Programme (PSNP) can play a positive role in promoting livelihoods and enhancing households’ risk management. This article examines......, they suggest the PSNP may not be helping smallholders diversify income sources in a positive manner for climate adaptation. The article concludes by arguing for further investigation of the PSNP’s influence on smallholders’ adaptation strategies....

  17. How Volcanism Controls Climate Change

    Science.gov (United States)

    Ward, P. L.

    2013-12-01

    km decrease in tropopause height. Changes in the rates and types of volcanism have been the primary cause of climate change throughout geologic time. Large explosive volcanoes erupting as frequently as once per decade increment the world into ice ages. Extensive, effusive basaltic volcanism warms the world out of ice ages. Twelve of the 13 dated basaltic table mountains in Iceland experienced their final eruptive phase during the last deglaciation when deposits of sulfate and volcanic ash fell over Greenland at their highest rates. Massive flood basalts are typically accompanied by extreme warming, ozone depletion, and major mass extinctions. The Paleocene-Eocene Thermal Maximum occurred when subaerial extrusion of basalts related to the opening of the Greenland-Norwegian Sea suddenly increased to rates greater than 3000 cubic km per km of rift per million years. Dansgaard-Oeschger sudden warming events are contemporaneous with increased volcanism especially in Iceland and last longer when that volcanism lasts longer. Sudden influxes of fresh water often observed in the North Atlantic during these events are most likely caused by extensive sub-glacial volcanism. The Medieval Warm Period, Little Ice Age, major droughts, and many sudden changes in human civilization began with substantial increases in volcanism. Extensive submarine volcanism does not affect climate directly but is linked with increases in ocean acidity and anoxic events.

  18. Climate Change: Meeting the Challenge

    Science.gov (United States)

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  19. Health Effects of Climate Change

    Science.gov (United States)

    ... resulting health effects. Extreme weather events due to climate change may cause people to experience geographic displacement, damage to their property, loss of loved ones, and chronic stress—all of which can negatively affect ... change may be associated with staple food shortages, malnutrition, ...

  20. Can seasonal forecast reliability calibrate climate change projections?

    Science.gov (United States)

    Matsueda, Mio; Palmer, Tim; Weisheimer, Antje

    2014-05-01

    High-resolution climate models generally better simulate the 20th Century Climate than low-resolution models because model biases are often reduced with higher resolution. But what is the impact of model bias on climate change projections? In this study, 20th Century simulations and time-slice projections have been conducted with MRI-AGCM3.2 at two different horizontal resolutions - a resolution typical of contemporary climate models (180-km) and a resolution typical of contemporary numerical weather prediction (20-km). The high-resolution model is treated as a surrogate of "truth", for both 20th and 21st Century climates (1979-2003 and 2075-2009). We focus on climate change signals of precipitation, and investigate whether seasonal predictions done with the low-resolution model can calibrate probabilities of wet and dry seasons in the 21st Century runs with the low-resolution model. For this, 4-month seasonal retrospective predictions have been conducted with the low-resolution model using prescribed observed SST and sea ice over the period 1979-2003. The 21-member seasonal predictions have been initialised with Japanese reanalyses on around the 1st May and 1st November for JJA and DJF, respectively, and have been verified against the high-resolution model ("truth"). We find that model biases have some nonlinear influences on climate change projections and therefor climate change projections from a biased model should be calibrated. Regression lines of reliability diagrams from seasonal predictions can be a useful tool to calibrate the low-resolution probabilities of wet and dry seasons for most of the global land regions, although the calibration coefficient for the probabilities derived from the slope of the regression line should be to some degree reduced. Our analysis suggests that reductions in model biases on the seasonal timescale can lead to more accurate climate change projections.

  1. Dislocated interests and climate change

    Science.gov (United States)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  2. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  3. The fluvial record of climate change.

    Science.gov (United States)

    Macklin, M G; Lewin, J; Woodward, J C

    2012-05-13

    Fluvial landforms and sediments can be used to reconstruct past hydrological conditions over different time scales once allowance has been made for tectonic, base-level and human complications. Field stratigraphic evidence is explored here at three time scales: the later Pleistocene, the Holocene, and the historical and instrumental period. New data from a range of field studies demonstrate that Croll-Milankovitch forcing, Dansgaard-Oeschger and Heinrich events, enhanced monsoon circulation, millennial- to centennial-scale climate variability within the Holocene (probably associated with solar forcing and deep ocean circulation) and flood-event variability in recent centuries can all be discerned in the fluvial record. Although very significant advances have been made in river system and climate change research in recent years, the potential of fluvial palaeohydrology has yet to be fully realized, to the detriment of climatology, public health, resource management and river engineering.

  4. Western water and climate change

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris P.

    2015-01-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northernmost West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent.

  5. How Will Climate Change Impact Cholera Outbreaks?

    Science.gov (United States)

    Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.

    2014-12-01

    Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.

  6. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  7. Climate Change Hotspots Identification in China through the CMIP5 Global Climate Model Ensemble

    Directory of Open Access Journals (Sweden)

    Huanghe Gu

    2014-01-01

    Full Text Available China is one of the countries vulnerable to adverse climate changes. The potential climate change hotspots in China throughout the 21st century are identified in this study by using a multimodel, multiscenario climate model ensemble that includes Phase Five of the Coupled Model Intercomparison Project (CMIP5 atmosphere-ocean general circulation models. Both high (RCP8.5 and low (RCP4.5 greenhouse gas emission trajectories are tested, and both the mean and extreme seasonal temperature and precipitation are considered in identifying regional climate change hotspots. Tarim basin and Tibetan Plateau in West China are identified as persistent regional climate change hotspots in both the RCP4.5 and RCP8.5 scenarios. The aggregate impacts of climate change increase throughout the 21st century and are more significant in RCP8.5 than in RCP4.5. Extreme hot event and mean temperature are two climate variables that greatly contribute to the hotspots calculation in all regions. The contribution of other climate variables exhibits a notable subregional variability. South China is identified as another hotspot based on the change of extreme dry event, especially in SON and DJF, which indicates that such event will frequently occur in the future. Our results can contribute to the designing of national and cross-national adaptation and mitigation policies.

  8. Assessing urban climate change resilience

    Science.gov (United States)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  9. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...... health, comfort and convenience. Conceived as pleasurable, easy to approach, and good for the body, low-carbon life comes to be seen as a series of hobby-like activities that residents can engage in as part of their quests for good and meaningful lives in old age. Campaigners engage engage in trans-historical...

  10. Climate change and game theory.

    Science.gov (United States)

    Wood, Peter John

    2011-02-01

    This paper examines the problem of achieving global cooperation to reduce greenhouse gas emissions. Contributions to this problem are reviewed from noncooperative game theory, cooperative game theory, and implementation theory. We examine the solutions to games where players have a continuous choice about how much to pollute, as well as games where players make decisions about treaty participation. The implications of linking cooperation on climate change with cooperation on other issues, such as trade, are also examined. Cooperative and noncooperative approaches to coalition formation are investigated in order to examine the behavior of coalitions cooperating on climate change. One way to achieve cooperation is to design a game, known as a mechanism, whose equilibrium corresponds to an optimal outcome. This paper examines some mechanisms that are based on conditional commitments, and their policy implications. These mechanisms could make cooperation on climate change mitigation more likely.

  11. Ecosystem vulnerability of China under B2 climate scenario in the 21st century

    Institute of Scientific and Technical Information of China (English)

    WU ShaoHong; DAI ErFu; HUANG Mei; SHAO XueMei; LI ShuangCheng; TAO Bo

    2007-01-01

    This paper applies climate change scenarios in China based on the SRES assumptions with the help of RCMs projections by PRECIS (providing regional climates for impacts studies) system introduced to China from.he Hadley Centre for Climate Prediction and Research at a high-resolution (50 kmx50 km)over China.This research focuses on B2 scenario of SRES.A biogeochemical model "Atmosphere Vegetation Integrated Model (AV1M2)" was applied to simulating ecosystem status in the 21st century.Then vulnerability of ecosystems was assessed based on a set of index of mainly net primary production (NPP) of vegetation.Results show that climate change would affect ecosystem of China severely and there would be a worse trend with the lapse of time.The regions where having vulnerable ecological background would have heavier impacts while some regions with better ecological background would also receive serious impacts.Extreme climate even would bring about worse impact on the ecosystems.Open shrub and desert steppe would be the two most affected types.When the extreme events happen,vulnerable ecosystem would extend to part of defoliate broad-leaved forest,woody grassland and evergreen conifer forest.Climate change would not always be negative.It could be of some benefit to cold region during the near-term.However,in view of mid-term to long-term negative impact on ecosystem vulnerability would be enormously.

  12. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios

    Science.gov (United States)

    Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain

    2011-12-01

    Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.

  13. Change Ringing - communicating climate change through contemporary classical music

    Science.gov (United States)

    Kapur, Ravi; Osborn, Laurence; Shenai, Peter

    2016-04-01

    Change Ringing is a collaborative artwork by artist Peter Shenai and composer Laurence Osborn that forms around a playable sculpture and a large-scale composition. The sculpture incorporates a set of six bronze bells designed and cast by artist Peter Shenai. Their shapes are mathematically derived from graphic statistical representations of summer temperatures at seventeen-year intervals over the course of the twentieth century. Arranged according to the chronology of their corresponding data sets and struck in order, the bells voice a series of inharmonic spectra that communicate sonically the story of climate change during the twentieth century. This series forms the basis for Laurence Osborn's twenty-five minute composition, scored for string orchestra and the bells themselves. In Change Ringing, an artwork that combines music, sculpture, performance, and ritual, we want to move audiences and, in doing so, facilitate their engagement with ideas that are highly relevant today. We believe that the medium of musically organized sound, so often wrongly dismissed as "abstract" and non-referential, can be a more than adequate reflection of lived human experience in the 21st Century, and we work in the hope that Change Ringing will connect with contemporary audiences on the most fundamental level.

  14. Observed 20th century desert dust variability: impact on climate and biogeochemistry

    Directory of Open Access Journals (Sweden)

    N. M. Mahowald

    2010-11-01

    Full Text Available Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere over the 20th century to be −0.14 ± 0.11 W/m2 (1990–1999 vs. 1905–1914. The estimated radiative change due to dust is especially strong between the heavily loaded 1980–1989 and the less heavily loaded 1955–1964 time periods (−0.57 ± 0.46 W/m2, which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 °C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and

  15. Observed 20th Century Desert Dust Variability: Impact on Climate and Biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Natalie [Cornell University; Kloster, Silvia [Cornell University; Engelstaedter, S. [Cornell University; Moore, Jefferson Keith [University of California, Irvine; Mukhopadhyay, S. [Harvard University; McConnell, J. R. [Desert Research Institute, Reno, NV; Albani, S. [Cornell University; Doney, Scott C. [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Bhattacharya, A. [Harvard University; Curran, M. A. J. [Antarctic Climate and Ecosystems Cooperative Research Centre; Flanner, Mark G. [University of Michigan; Hoffman, Forrest M [ORNL; Lawrence, David M. [National Center for Atmospheric Research (NCAR); Lindsay, Keith [National Center for Atmospheric Research (NCAR); Mayewski, P. A. [University of Maine; Neff, Jason [University of Colorado, Boulder; Rothenberg, D. [Cornell University; Thomas, E. [British Antarctic Survey, Cambridge, UK; Thornton, Peter E [ORNL; Zender, Charlie S. [University of California, Irvine

    2010-01-01

    Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere) over the 20th century to be -0.14 {+-} 0.11 W/m{sup 2} (1990-1999 vs. 1905-1914). The estimated radiative change due to dust is especially strong between the heavily loaded 1980-1989 and the less heavily loaded 1955-1964 time periods (-0.57 {+-} 0.46 W/m{sup 2}), which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC) reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC) of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and biogeochemistry, and our understanding

  16. Observed 20th century desert dust variability: impact on climate and biogeochemistry

    Directory of Open Access Journals (Sweden)

    N. M. Mahowald

    2010-05-01

    Full Text Available Desert dust perturbs climate by interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were in the net increasing or decreasing desert dust. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere over the 20th century to be −0.14±0.11 W/m2 (1990–1999 vs. 1905–1914. The estimated radiative change due to aerosols is especially strong between the dusty 1980–1989 and the less dusty 1955–1964 time periods (−0.57±0.46 W/m2, which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 °C. Model simulations also indicate strong regional shifts in precipitation and temperature from the desert dust changes, causing 6 ppm (12 Pg C reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 Pg C of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and biogeochemistry, and our understanding of these

  17. Climate Change: A Regional Perspective

    OpenAIRE

    Inter-American Development Bank (IDB); Economic Commission for Latin America and the Caribbean (ECLAC)

    2010-01-01

    The purpose of this document is to contribute to the ongoing discussion on climate change in light of the available evidence on the possible channels of transmission of the economic impact of this phenomenon and the results of the latest session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 15), held in Copenhagen from 7 to 18 December 2009. This document has been prepared, at the request of the Government of Mexico, by the Economic Commiss...

  18. [Air quality and climate change].

    Science.gov (United States)

    Loft, Steffen

    2009-10-26

    Air quality, health and climate change are closely connected. Ozone depends on temperature and the greenhouse gas methane from cattle and biomass. Pollen presence depends on temperature and CO2. The effect of climate change on particulate air pollution is complex, but the likely net effect is greater health risks. Reduction of greenhouse-gas emissions by reduced livestock production and use of combustion for energy production, transport and heating will also improve air quality. Energy savings in buildings and use of CO2 neutral fuels should not deteriorate indoor and outdoor air quality.

  19. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people.

  20. Cascading climate effects and related ecological consequences during past centuries

    Directory of Open Access Journals (Sweden)

    B. Naef-Daenzer

    2012-10-01

    Full Text Available The interface between climate and ecosystem structure and function is incompletely understood, partly because few ecological records start before the recent warming phase. Here, we analyse an exceptional 100-yr long record of the great tit (Parus major population in Switzerland in relation to climate and habitat phenology. Using structural equation analysis, we demonstrate an uninterrupted cascade of significant influences of the large-scale atmospheric circulation (North-Atlantic Oscillation, NAO, and North-sea – Caspian Pattern, NCP on habitat and breeding phenology, and further on fitness-relevant life history traits within great tit populations. We then apply the relationships of this analysis to reconstruct the circulation-driven component of fluctuations in great tit breeding phenology and productivity on the basis of new seasonal NAO and NCP indices back to 1500 AD. According to the structural equation model, the multi-decadal oscillation of the atmospheric circulation likely led to substantial variation in habitat phenology, productivity and consequently, tit population fluctuations with minima during the "Maunder Minimum" (∼ 1650–1720 and the Little Ice Age Type Event I (1810–1850. The warming since 1975 was not only related with a quick shift towards earlier breeding, but also with the highest productivity since 1500, and thus, the impact of the NAO and NCP has contributed to an unprecedented increase of the population. A verification of the structural equation model against two independent data series (1970–2000 and 1750–1900 corroborates that the retrospective model reliably depicts the major long-term NAO/NCP impact on ecosystem parameters. The results suggest a complex cascade of climate effects beginning at a global scale and ending at the level of individual life histories. This sheds light on how large-scale climate conditions substantially affect major life history parameters within a population, and thus

  1. Cascading climate effects and related ecological consequences during past centuries

    Directory of Open Access Journals (Sweden)

    B. Naef-Daenzer

    2012-06-01

    Full Text Available The interface between climate and ecosystem structure and function is incompletely understood, partly because few ecological records start before the recent warming phase. Here, we analyse an exceptional 100-yr long record of the great tit (Parus major population in Switzerland in relation to climate and habitat phenology. Using path analysis, we demonstrate an uninterrupted cascade of significant influences of the large-scale atmospheric circulation (North-Atlantic Oscillation, NAO, and North-sea – Caspian Pattern, NCP on habitat and breeding phenology, and further on fitness-relevant life history traits within animal populations. We then apply the relationships of this analysis to reconstruct the circulation-driven component of fluctuations in great tit breeding phenology and population dynamics on the basis of new seasonal NAO and NCP indices back to 1500 AD. According to the path model, the multi-decadal oscillation of the atmospheric circulation likely led to substantial variation in habitat phenology, and consequently, tit population minima during the "Maunder Minimum" (1650–1720 and the Little Ice Age Type Event I (1810–1850. The warming since 1975 was not only related with a quick shift towards earlier breeding, but also with the highest productivity since 1500, and thus, an unprecedented increase of the population. A verification of the structural equation model against two independent data series corroborates that the retrospective model reliably depicts the major long-term NAO/NCP impact on ecosystem parameters. The results suggest a complex cascade of climate effects beginning at a global scale and ending at the level of individual life histories. This sheds light on how large scale climate conditions substantially affect major life-history parameters within a population, and thus influence key ecosystem parameters at the scale of centuries.

  2. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  3. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  4. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-12-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  5. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-08-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  6. Changing habits, changing climate : a foundation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enright, W. [Canadian Inst. of Child Health, Ottawa, ON (Canada)

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs.

  7. SOILS AS INDICATORS OF CLIMATIC CHANGES

    Directory of Open Access Journals (Sweden)

    Yury Chendev

    2012-01-01

    Full Text Available A number of examples for the reaction of chernozems in the center of the East European Plain and their relation to different periodical climatic changes are examined. According to unequal-age chernozems properties, the transition from the Middle Holocene arid conditions to the Late Holocene wet conditions occurred at 4000 yr BP. Using data on changes of soil properties, the position of boundary between steppe and forest-steppe and the annual amount of precipitation at approximately 4000 yr BP were reconstructed. The change from warm-dry to cool-moist climatic phases, which occurred at the end of the XX century as a reflection of intra-age-long climatic cyclic recurrence, led to the strengthening of dehumification over the profile of automorphic chernozems and to the reduction of its content in the upper meter of the soils. The leaching of carbonates and of readily soluble salts contributed to the decrease in soil areas occupied by typical and solonetzic chernozems, and to the increase in areas occupied by leached chernozems.

  8. Arctic climate change in NORKLIMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The NORKLIMA programme is the national Norwegian initiative on climate research established for the period 2004-2013. The programme seeks to generate key knowledge about climate trends, the impacts of climate change, and how Norway can adapt to these changes. The NORKLIMA programme also encompasses research on instruments and policies for reducing emissions. Large-scale Programmes As part of the effort to meet national research-policy priorities, the Research Council has established a special funding instrument called the Large-scale Programmes. This initiative is designed to build long-term knowledge in order to encourage innovation and enhance value creation as well as to help find solutions to important challenges facing society.(Author)

  9. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Tchebakova, N M; Parfenova, E [V N Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Academgorodok, Krasnoyarsk, 660036 (Russian Federation); Soja, A J, E-mail: ncheby@forest.akadem.r, E-mail: Amber.J.Soja@nasa.go [National Institute of Aerospace (NIA), NASA Langley Research Center, Climate Sciences, 21 Langley Boulevard, Mail Stop 420, Hampton, VA 23681-2199 (United States)

    2009-10-15

    Observations and general circulation model projections suggest significant temperature increases in Siberia this century that are expected to have profound effects on Siberian vegetation. Potential vegetation change across Siberia was modeled, coupling our Siberian BioClimatic Model with several Hadley Centre climate change scenarios for 2020, 2050 and 2080, with explicit consideration of permafrost and fire activity. In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over half of Siberia due to the dryer climate by 2080. Despite the large predicted increases in warming, permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats by 2080. Potential fire danger evaluated with the annual number of high fire danger days (Nesterov index is 4000-10 000) is predicted to increase by 2080, especially in southern Siberia and central Yakutia. In a warming climate, fuel load accumulated due to replacement of forest by steppe together with frequent fire weather promotes high risks of large fires in southern Siberia and central Yakutia, where wild fires would create habitats for grasslands because the drier climate would no longer be suitable for forests.

  10. Probabilistic Predictions of Regional Climate Change

    Science.gov (United States)

    Harris, G. R.; Sexton, D. M.; Booth, B. B.; Brown, K.; Collins, M.; Murphy, J. M.

    2009-12-01

    We present a methodology for quantifying the leading sources of uncertainty in climate change projections that allows more robust prediction of probability distribution functions (PDFs) for transient regional climate change than is possible, for example, with the multimodel ensemble in the the CMIP3 archive used for the IPCC Fourth Assessment. Uncertainty in equilibrium climate response has been systematically explored by varying uncertain parameters in the atmosphere, sea-ice and surface components in a ensemble of simulations with the third version of the Hadley Centre model coupled to a slab ocean. The ensemble is used to emulate the response for one million parameter combinations, ensuring robust prediction of the prior distributions of equilibrium response for this model. Posterior PDFs are estimated using a weighting scheme that calculates the likelihood for each model version, based upon its ability to reproduce a large set of observed seasonal-mean climate variables. Information from the CMIP3 simulations is used to assess the effect of structural uncertainty, and this is included as an additional variance in the weighting. The posterior distributions of equilibrium response are shown to be relatively robust to variation in key assumptions of the method. A time-scaling technique that maps equilibrium to transient change is then used to predict PDFs for transient regional climate change for specified emissions scenarios. The scaling uses a simple climate model (SCM), with global climate feedbacks and local response sampled from the equilibrium response, and other SCM parameters tuned to the response of other AOGCM ensembles. Use of the SCM allows efficient sampling of uncertainties not fully sampled by expensive GCM simulation, including uncertainty in aerosol radiative forcing, the rate of ocean heat uptake, and the strength of carbon-cycle feedbacks. Uncertainties arising from statistical components of the method, such as emulation or scaling, are

  11. Projection of Climate Change with Various Emission Scenarios over Huaihe River Basin in the 21st Century%多模式集合预估21世纪淮河流域气候变化情景

    Institute of Scientific and Technical Information of China (English)

    李秀萍; 徐宗学; 程华琼

    2012-01-01

    利用政府间气候变化委员会第四次评估报告(the Fourth Assessment Report of the Intergov-ernmental Panel on Climate Change,IPCC AR4)的14个全球气候耦合模式对中国淮河流域气温和降水的模拟能力进行了评估,预估了该地区21世纪的降水和气温变化。同时,还分析了14个气候模式对1961-1999年气温和降水的模拟能力,并且根据Taylor方法选取具有较好模拟能力的模式做集合分析。结果表明,不同的气候模式对淮河流域的气温和降水都具有一定的模拟能力,但大多数模式模拟的气温偏低、降水偏多;选取的模式集合可以明显改善模式的模拟能力,但是没有表现出明显的优势。对淮河流域降水和气温未来情景的预估表明,各模式给出的情景结果尽管存在一定的差异,但模拟的21世纪气候变化的趋势基本一致,即气温持续增加,降水出现区域性增加;还重点分析了14个模式集合的结果在2010-2039年、2040-2069年和2070-2099年3个时段的年平均、季节平均降水和气温变化及其时空变化特征,结果表明,3个时段的气温和降水在不同情景下都是逐渐增加的,A2情景下增幅最显著,B1情景下增幅最小。%Using 14GCMs from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change(IPCC AR4),the simulated air temperature and precipitation in the Huaihe River basin has been assessed,and their changes in the 21st century are projected.The simulation ability of 14GCMs in simulating present climate for one single GCM is analyzed by comparing with observations for 1961-1999,and the ensemble simulation ability composed by better models selected through the Taylor diagram is analyzed as well.The results suggest that all GCMs show the good simulation ability for air temperature and precipitation over the Huaihe River basin,but most of them underestimate air temperature and overestimate precipitation.Ensemble models could improve the

  12. Attribution of glacier fluctuations to climate change

    Science.gov (United States)

    Oerlemans, J.

    2012-04-01

    Glacier retreat is a worlwide phenomenon, which started around the middle of the 19th century. During the period 1800-1850 the number of retreating and advancing glaciers was roughly equal (based on 42 records from different continents). During the period 1850-1900 about 92% of all mountain glaciers became shorter (based on 65 records). After this, the percentage of shrinking glaciers has been around 90% until the present time. The glacier signal is rather coherent over the globe, especially when surging and calving glaciers are not considered (for such glaciers the response to climate change is often masked by length changes related to internal dynamics). From theoretical studies as well as extensive meteorological work on glaciers, the processes that control the response of glaciers to climate change are now basically understood. It is useful to make a difference between geometric factors (e.g. slope, altitudinal range, hypsometry) and climatic setting (e.g. seasonal cycle, precipitation). The most sensitive glaciers appear to be flat glaciers in a maritime climate. Characterizing the dynamic properties of a glacier requires at least two quantities: the climate sensitivity, expressing how the equilibrium glacier state depends on the climatic conditions, and the response time, indicating how fast a glacier approaches a new equilibrium state after a stepwise change in the climatic forcing. These quantities can be estimated from relatively simple theory, showing that differences among glaciers are substantial. For larger glaciers, climate sensitivities (in terms of glacier length) vary from 1 to 8 km per 100 m change in the equilibrium-line altitude. Response times are mainly in the range of 20 to 200 years, with most values between 30 and 80 years. Changes in the equilibrium-line altitude or net mass balance of a glacier are mainly driven by fluctuations in air temperature, precipitation, and global radiation. Energy-balance modelling for many glaciers shows that

  13. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    Science.gov (United States)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  14. Climate and culture Changes, lessons, and challenges

    Directory of Open Access Journals (Sweden)

    Yunita T. Winarto

    2010-10-01

    Full Text Available From generation to generation over the centuries, people in all parts of the world have developed adaptive social-cultural institutions and strategies of natural resource management based on the intimate relationship they had with their environment. At present, recent global warming is threatening people’s lives. Unfortunately, climate change is a natural phenomenon which is neither easy to observe, nor to predict and anticipate accurately. In many places, local people can no longer rely on earlier experiences and existing socio-cultural institutions to adjust to unprecedented changes. We are in urgent need of specific efforts to re-interpret and enrich our knowledge of this natural phenomenon. However, this is not an easy thing to do. People from all kinds of levels and entities in society are simultaneously the cause and the victims of global warming. The problem becomes even more complicated because of various mutually-affecting dimensions like ethics, politics, power, economics, and justice. These are the ultimate challenges scholars of the social sciences and humanities need to address seriously everywhere in the world, including in Indonesia. This article addresses the arguments of what scholars in the social sciences and humanities could and should do in response to climate change. Promoting a new paradigm and ethics in dealing with climate change is urgent and improvements in approaches and research methodologies are necessary. Learning from experiences gained from the way farmers in Java respond to climate change, the author argues that interdisciplinary research across social and natural sciences, and collaborative work with target groups is a promising and significant step (although scholars will have to face many challenges and constraints.

  15. A Lesson on Climate Change.

    Science.gov (United States)

    Lewis, Jim

    This cooperative learning activity, for grades 7-12, promotes critical thinking skills within the context of learning about the causes and effects of climate change. Objectives include: (1) understanding factors that reduce greenhouse gases; (2) understanding the role of trees in reducing greenhouse gases; (3) identifying foods that produce…

  16. Hydrological response to climate change

    NARCIS (Netherlands)

    Yan, Dan; Werners, S.E.; Ludwig, Fulco; Huang, He Qing

    2015-01-01

    Study region: The Pearl River, located in the south of China, is the second largest river in China in terms of streamflow. Study focus: The study aims to assess the impact of climate change on seasonal discharge and extreme flows. For the assessment we use the variable infiltration capacity (VIC)

  17. Students' evaluations about climate change

    Science.gov (United States)

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-05-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to investigate middle school students' evaluations when confronted with alternative explanations of the complex and controversial topic of climate change. Through a qualitative analysis, we determined that students demonstrated four distinct categories of evaluation when writing about the connections between evidence and alternative explanations of climate change: (a) erroneous evaluation, (b) descriptive evaluation, (c) relational evaluation, and (d) critical evaluation. These categories represent different types of evaluation quality. A quantitative analysis revealed that types of evaluation, along with plausibility perceptions about the alternative explanations, were significant predictors of postinstructional knowledge about scientific principles underlying the climate change phenomenon. Specifically, more robust evaluations and greater plausibility toward the scientifically accepted model of human-induced climate change predicted greater knowledge. These findings demonstrate that instruction promoting critical evaluation and plausibility appraisal may promote greater understanding of socio-scientific topics and increased use of scientific thinking when considering alternative explanations, as is called for by recent science education reform efforts.

  18. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review.

  19. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  20. The Science of Climate Change

    Science.gov (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  1. The Whiteness of Climate Change

    DEFF Research Database (Denmark)

    Jensen, Lars

    2011-01-01

    This article examines two major debates in contemporary Australian discourses on the nation: climate change and whiteness studies. It is primarily concerned with establishing a framework for connecting the two discourses, and in that process it raises pivotal questions about how narratives about...

  2. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy of…

  3. Climate change and trace gases.

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

    2007-07-15

    Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment.

  4. Teaching About Climate Change in Medical Education: An Opportunity.

    Science.gov (United States)

    Maxwell, Janie; Blashki, Grant

    2016-04-26

    Climate change threatens many of the gains in development and health over the last century. However, it could also be a catalyst for a necessary societal transformation to a sustainable and healthy future. Doctors have a crucial role in climate change mitigation and health system adaptation to prepare for emergent health threats and a carbon-constrained future. This paper argues that climate change should be integrated into medical education for three reasons: first, to prepare students for clinical practice in a climate-changing world; secondly, to promote public health and eco-health literacy; and finally, to deepen existing learning and strengthen graduate attributes. This paper builds on existing literature and the authors' experience to outline potential learning objectives, teaching methods and assessment tasks. In the wake of recent progress at the United Nations climate change conference, COP-21, it is hoped that this paper will assist universities to integrate teaching about climate change into medical education. Significance for public healthThere is a strong case for teaching about climate change in medical education. Anthropogenic climate change is accepted by scientists, governments and health authorities internationally. Given the dire implications for human health, climate change is of fundamental relevance to future doctors. Integrating climate change into medical education offers an opportunity for future doctors to develop skills and insights essential for clinical practice and a public health role in a climate-changing world. This echoes a broader call for improved public health literacy among medical graduates. This paper provides medical schools with a rationale and an outline for teaching on climate change.

  5. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  6. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  7. River science in the light of climate change

    NARCIS (Netherlands)

    De Vriend, H.J.

    2011-01-01

    Climate change and a river’s response to it are likely to be slow processes as compared to the responses to direct human interventions such as engineering works. Therefore, we have to look at timescales of centuries. Such timescales are difficult to be covered by numerical models and, moreover, unce

  8. Little auks buffer the impact of current Arctic climate change

    DEFF Research Database (Denmark)

    Grémillet, David; Welcker, Jorg; Karnovsky, Nina J.

    2012-01-01

    Climate models predict a multi-degree warming of the North Atlantic in the 21st century. A research priority is to understand the impact of such changes upon marine organisms. With 40-80 million individuals, planktivorous little auks (Alle alle) are an essential component of pelagic food webs in ...

  9. Twentieth century Walker Circulation change: data analysis and model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingjia [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Chinese Research Academy of Environmental Sciences, River and Coastal Environment Research Center, Beijing (China); Chinese Academy of Sciences, Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Qingdao (China); Latif, Mojib; Park, Wonsun; Keenlyside, Noel S.; Martin, Thomas [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Semenov, Vladimir A. [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2012-05-15

    Recent studies indicate a weakening of the Walker Circulation during the twentieth century. Here, we present evidence from an atmospheric general circulation model (AGCM) forced by the history of observed sea surface temperature (SST) that the Walker Circulation may have intensified rather than weakened. Observed Equatorial Indo-Pacific Sector SST since 1870 exhibited a zonally asymmetric evolution: While the eastern part of the Equatorial Pacific showed only a weak warming, or even cooling in one SST dataset, the western part and the Equatorial Indian Ocean exhibited a rather strong warming. This has resulted in an increase of the SST gradient between the Maritime Continent and the eastern part of the Equatorial Pacific, one driving force of the Walker Circulation. The ensemble experiments with the AGCM, with and without time-varying external forcing, suggest that the enhancement of the SST gradient drove an anomalous atmospheric circulation, with an enhancement of both Walker and Hadley Circulation. Anomalously strong precipitation is simulated over the Indian Ocean and anomalously weak precipitation over the western Pacific, with corresponding changes in the surface wind pattern. Some sensitivity to the forcing SST, however, is noticed. The analysis of twentieth century integrations with global climate models driven with observed radiative forcing obtained from the Coupled Model Intercomparison Project (CMIP) database support the link between the SST gradient and Walker Circulation strength. Furthermore, control integrations with the CMIP models indicate the existence of strong internal variability on centennial timescales. The results suggest that a radiatively forced signal in the Walker Circulation during the twentieth century may have been too weak to be detectable. (orig.)

  10. Improving leadership on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala

    2011-03-15

    The upcoming UN conference on climate change in Durban, South Africa throws a spotlight on African climate policy. As part of a knowledge-sharing initiative in Southern Africa, we assessed parliamentarians' needs for more information on climate threats and responses, and ways to improve their capabilities as key stakeholders influencing national and global decisionmaking. Funded by the UK Foreign and Commonwealth Office and partnered with the Association of European Parliamentarians with Africa (AWEPA), IIED worked with parliamentarians in the Southern Africa Customs Union (SACU) — Botswana, Lesotho, Namibia, South Africa and Swaziland — through interviews, literature surveys, field trips and workshops. Similar studies in Malawi and Scotland also fed into this project.

  11. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  12. Changes in Köppen-Geiger climate types under a future climate for Australia: hydrological implications

    Directory of Open Access Journals (Sweden)

    R. S. Crosbie

    2012-09-01

    Full Text Available The Köppen-Geiger climate classification has been used for over a century to delineate climate types across the globe. As it was developed to mimic the distribution of vegetation, it may provide a useful surrogate for making projections of the future distribution of vegetation, and hence resultant hydrological implications, under climate change scenarios. This paper developed projections of the Köppen-Geiger climate types covering the Australian continent for a 2030 and 2050 climate relative to a 1990 historical baseline climate using 17 Global Climate Models (GCMs and five global warming scenarios. At the highest level of classification for a +2.4 °C future climate (the upper limit projected for 2050 relative to the historical baseline, it was projected that the area of the continent covered by

    – tropical climate types would increase from 8.8% to 9.1%;
    – arid climate types would increase from 76.5% to 81.7%;
    – temperate climate types would decrease from 14.7% to 9.2%;
    – cold climate types would decrease from 0.016% to 0.001%.

    Previous climate change impact studies on water resources in Australia have assumed a static vegetation distribution. If the change in projected climate types is used as a surrogate for a change in vegetation, then the major transition in climate from temperate to arid in parts of Australia under a drier future climate could cause indirect effects on water resources. A transition from annual cropping to perennial grassland would have a compounding effect on the projected reduction in recharge. In contrast, a transition from forest to grassland would have a mitigating effect on the projected reduction in runoff.

  13. Changes in Köppen-Geiger climate types under a future climate for Australia: hydrological implications

    Directory of Open Access Journals (Sweden)

    R. S. Crosbie

    2012-06-01

    Full Text Available The Köppen-Geiger climate classification has been used for over a century to delineate climate types across the globe. As it was developed to mimic the distribution of vegetation it may provide a useful surrogate for making projections of the future distribution of vegetation, and hence resultant hydrological implications, under climate change scenarios. This paper developed projections of the Köppen-Geiger climate types covering the Australian continent for a 2030 and 2050 climate relative to a 1990 historical baseline climate using 17 Global Climate Models (GCMs and five global warming scenarios. At the highest level of classification for a +2.4 °C future climate (the upper limit projected for 2050 relative to the historical baseline, it was projected that the area of the continent covered by:
    – Tropical climate types would increase from 8.8% to 9.1%
    – Arid climate types would increase from 76.5% to 81.7%
    – Temperate climate types would decrease from 14.7% to 9.2%
    – Cold climate types would decrease from 0.016% to 0.001%.
    Previous climate change impact studies on water resources in Australia have assumed a static vegetation distribution. If the change in projected climate types is used as a surrogate for a change in vegetation, then the major transition in climate from Temperate to Arid in parts of Australia under a drier future climate could cause indirect effects on water resources. For a transition from annual cropping to perennial grassland this would have a compounding effect on the projected reduction in recharge. In contrast, a transition from forest to grassland would have a mitigating effect on the projected reduction in runoff.

  14. Asia's changing role in global climate change.

    Science.gov (United States)

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  15. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  16. Centennial glacier retreat as categorical evidence of regional climate change

    Science.gov (United States)

    Roe, Gerard H.; Baker, Marcia B.; Herla, Florian

    2016-12-01

    The near-global retreat of glaciers over the last century provides some of the most iconic imagery for communicating the reality of anthropogenic climate change to the public. Surprisingly, however, there has not been a quantitative foundation for attributing the retreats to climate change, except in the global aggregate. This gap, between public perception and scientific basis, is due to uncertainties in numerical modelling and the short length of glacier mass-balance records. Here we present a method for assessing individual glacier change based on the signal-to-noise ratio, a robust metric that is insensitive to uncertainties in glacier dynamics. Using only meteorological and glacier observations, and the characteristic decadal response time of glaciers, we demonstrate that observed retreats of individual glaciers represent some of the highest signal-to-noise ratios of climate change yet documented. Therefore, in many places, the centennial-scale retreat of the local glaciers does indeed constitute categorical evidence of climate change.

  17. An Overview of BCC Climate System Model Development and Application for Climate Change Studies

    Institute of Scientific and Technical Information of China (English)

    WU Tongwen; WU Fanghua; LIU Yiming; ZHANG Fang; SHI Xueli; CHU Min; ZHANG Jie; FANG Yongjie; WANG Fang; LU Yixiong; LIU Xiangwen; SONG Lianchun; WEI Min; LIU Qianxia; ZHOU Wenyan; DONG Min; ZHAO Qigeng; JI Jinjun; Laurent LI; ZHOU Mingyu; LI Weiping; WANG Zaizhi; ZHANG Hua; XIN Xiaoge; ZHANG Yanwu; ZHANG Li; LI Jianglong

    2014-01-01

    This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC-CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC-CSM1.1 with coarse resolution (approximately 2.8125◦×2.8125◦) and BCC-CSM1.1(m) with moderate resolution (approximately 1.125◦×1.125◦). Both versions are fully cou-pled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase fi ve (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate pro jections. Simulations of the 20th century climate using BCC-CSM1.1 and BCC-CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and pro jections of climate change during the next century are also presented and discussed. Both BCC-CSM1.1 and BCC-CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses in-dicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSM1.1, particularly on regional scales.

  18. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  19. Integrating Water into an Economic Assessment of Climate Change Impacts on Egypt

    OpenAIRE

    Yates, D

    1996-01-01

    Recent research indicates that larger countries, with multiple agro-climatic zones, have the capacity to adjust to marginal climate changes which could occur over the next century. However, in countries with fewer adaptation options and with increasing dependency on imports to meet growing domestic demands, climate change might have significant impacts. To date, little has been done on assessing integrated impacts of climate change in developing countries. This motivates the need for imp...

  20. Radiative forcing and climate response to projected 21st century aerosol decreases

    Directory of Open Access Journals (Sweden)

    D. M. Westervelt

    2015-03-01

    Full Text Available It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80% by the year 2100, according to the four Representative Concentration Pathway (RCP scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3 to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m−2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d−1. Regionally and locally, climate impacts can be much larger, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm d−1 precipitation increase, a 7 g m−2 LWP decrease, and a 2 μm increase in cloud droplet effective radius. Future aerosol decreases could be responsible for 30–40% of total climate warming by 2100 in East Asia, even under the high greenhouse gas emissions scenario (RCP8.5. The expected unmasking of global warming caused

  1. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  2. Climate change - Agricultural land use - Food security

    Science.gov (United States)

    Nagy, János; Széles, Adrienn

    2015-04-01

    In Hungary, plougland decreased to 52% of its area by the time of political restructuring (1989) in comparison with the 1950s. Forested areas increased significantly (18%) and lands withdrawn from agricultural production doubled (11%). For today, these proportions further changed. Ploughlands reduced to 46% and forested areas further increased (21%) in 2013. The most significat changes were observed in the proportion of lands withdrawn from agricultural production which increased to 21%. Temperature in Hungary increased by 1°C during the last century and predictions show a further 2.6 °C increase by 2050. The yearly amount of precipitation significantly decreased from 640 mm to 560 mm with a more uneven temporal distribution. The following aspects can be considered in the correlation between climate change and agriculture: a) impact of agriculture on climate, b) future impact of climate change on agriculture and food supply, c) impact of climate change on food security. The reason for the significant change of climate is the accumulation of greenhouse gases (GHG) which results from anthropological activities. Between 2008 and 2012, Hungary had to reduce its GHG emission by 6% compared to the base period between 1985-1987. At the end of 2011, Hungarian GHG emission was 43.1% lower than that of the base period. The total gross emission was 66.2 million CO2 equivalent, while the net emission which also includes land use, land use change and forestry was 62.8 million tons. The emission of agriculture was 8.8 million tons (OMSZ, 2013). The greatest opportunity to reduce agricultural GHG emission is dinitrogen oxides which can be significantly mitigated by the smaller extent and more efficient use of nitrogen-based fertilisers (precision farming) and by using biomanures produced from utilised waste materials. Plant and animal species which better adapt to extreme weather circumstances should be bred and maintained, thereby making an investment in food security. Climate

  3. Challenges and Possibilities in Climate Change Education

    Science.gov (United States)

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  4. Distinguishing Aerosol Impacts on Climate Over the Past Century

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

    2008-08-22

    Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

  5. Coastal tourism and climate change in Tunisia

    Science.gov (United States)

    Henia, Latifa; Hlaoui, Zouhaier; Alouane, Tahar

    2014-05-01

    Tunisia is a major tourist destination on the southern shore of the Mediterranean. The tourism sector occupies an important place in the Tunisian economy with 816 hotels, 229,873 beds and a more than six million tourists at the end of the first decade of the 21th century, i.e. , more than half of the population. It offers a large number of direct and indirect jobs: One out of five people work in the tourism sector. The 1960s tourism boom was caused by a number of factors including long days of sunshine, 1,300 km of sandy coast, and a location close to Europe. Tunisian tourism is fundamentally based on two natural determinants: the sun and the sea. The coastline accounts for 95% of tourism investments and functional beds. The high season extends from April to October and it records 73% of nonresident tourists. This results in a homogenous growth of the "product" and its "consumers". This standardization is an important factor in the vulnerability of the Tunisian tourism to climate change. Global warming may affect the comfort level of the swimming season as well as its structure. An estimation of air and water temperature evolution near the Tunisian coasts was conducted under the CLIM-RUN project "Climate Local Information in the Mediterranean Region: Responding to User Needs" funded by the European Union's Seventh Framework Program (FP7). The University of Tunis research unit "GREVACHOT", project partner in charge of the case study of Tunisian tourism, has made the study of comfort indices of the present climate. This paper presents: - The climate comfort indices for seaside tourism in Tunisia, - The approach and results of the future evolution of air and water temperatures by the Tunisian coasts, - The future evolution of climate seaside comfort indices of Tunisia as well as the evolution of the swimming season in relation to global warming.

  6. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  7. Complexity in Climate Change Manipulation Experiments

    DEFF Research Database (Denmark)

    Kreyling, Juergen; Beier, Claus

    2014-01-01

    Climate change goes beyond gradual changes in mean conditions. It involves increased variability in climatic drivers and increased frequency and intensity of extreme events. Climate manipulation experiments are one major tool to explore the ecological impacts of climate change. Until now, precipi...... variability in temperature are ecologically important. Embracing complexity in future climate change experiments in general is therefore crucial.......Climate change goes beyond gradual changes in mean conditions. It involves increased variability in climatic drivers and increased frequency and intensity of extreme events. Climate manipulation experiments are one major tool to explore the ecological impacts of climate change. Until now......, precipitation experiments have dealt with temporal variability or extreme events, such as drought, resulting in a multitude of approaches and scenarios with limited comparability among studies. Temperature manipulations have mainly been focused only on warming, resulting in better comparability among studies...

  8. Climate Change and Land Management in the Rangelands of Central Oregon

    Science.gov (United States)

    Creutzburg, Megan K.; Halofsky, Jessica E.; Halofsky, Joshua S.; Christopher, Treg A.

    2015-01-01

    Climate change, along with exotic species, disturbances, and land use change, will likely have major impacts on sagebrush steppe ecosystems in the western U.S. over the next century. To effectively manage sagebrush steppe landscapes for long-term goals, managers need information about the interacting impacts of climate change, disturbances and land management on vegetation condition. Using a climate-informed state-and-transition model, we evaluated the potential impacts of climate change on rangeland condition in central Oregon and the effectiveness of multiple management strategies. Under three scenarios of climate change, we projected widespread shifts in potential vegetation types over the twenty-first century, with declining sagebrush steppe and expanding salt desert shrub likely by the end of the century. Many extreme fire years occurred under all climate change scenarios, triggering rapid vegetation shifts. Increasing wildfire under climate change resulted in expansion of exotic grasses but also decreased juniper encroachment relative to projections without climate change. Restoration treatments in warm-dry sagebrush steppe were ineffective in containing exotic grass, but juniper treatments in cool-moist sagebrush steppe substantially reduced the rate of juniper encroachment, particularly when prioritized early in the century. Overall, climate-related shifts dominated future vegetation patterns, making management for improved rangeland condition more difficult. Our approach allows researchers and managers to examine long-term trends and uncertainty in rangeland vegetation condition and test the effectiveness of alternative management actions under projected climate change.

  9. NASA Nice Climate Change Education

    Science.gov (United States)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  10. Climate Change and Climate Variability in the Latin American Region

    Science.gov (United States)

    Magrin, G. O.; Gay Garcia, C.; Cruz Choque, D.; Gimenez-Sal, J. C.; Moreno, A. R.; Nagy, G. J.; Nobre, C.; Villamizar, A.

    2007-05-01

    Over the past three decades LA was subjected to several climate-related impacts due to increased El Niño occurrences. Two extremely intense episodes of El Niño and other increased climate extremes happened during this period contributing greatly to augment the vulnerability of human systems to natural disasters. In addition to weather and climate, the main drivers of the increased vulnerability are demographic pressure, unregulated urban growth, poverty and rural migration, low investment in infrastructure and services, and problems in inter-sector coordination. As well, increases in temperature and increases/decreases in precipitation observed during the last part of 20th century have yet led to intensification of glaciers melting, increases in floods/droughts and forest fires frequency, increases in morbidity and mortality, increases in plant diseases incidence; lost of biodiversity, reduction in dairy cattle production, and problems with hydropower generation, highly affecting LA human system. For the end of the 21st century, the projected mean warming for LA ranges from 1 to 7.5ºC and the frequency of weather and climate extremes could increase. Additionally, deforestation is projected to continue leading to a reduction of 25 percent in Amazonia forest in 2020 and 40 percent in 2050. Soybeans planted area in South America could increase by 55 percent by 2020 enhancing aridity/desertification in many of the already water- stressed regions. By 2050 LA population is likely to be 50 percent larger than in 2000, and migration from the country sides to the cities will continue. In the near future, these predicted changes are very likely to severely affect a number of ecosystems and sectors distribution; b) Disappearing most tropical glaciers; c) Reducing water availability and hydropower generation; d) Increasing desertification and aridity; e) Severely affecting people, resources and economic activities in coastal areas; f) Increasing crop's pests and diseases

  11. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  12. A time-series analysis of the 20th century climate simulations produced for the IPCC's Fourth Assessment Report.

    Directory of Open Access Journals (Sweden)

    Francisco Estrada

    Full Text Available In this paper evidence of anthropogenic influence over the warming of the 20th century is presented and the debate regarding the time-series properties of global temperatures is addressed in depth. The 20th century global temperature simulations produced for the Intergovernmental Panel on Climate Change's Fourth Assessment Report and a set of the radiative forcing series used to drive them are analyzed using modern econometric techniques. Results show that both temperatures and radiative forcing series share similar time-series properties and a common nonlinear secular movement. This long-term co-movement is characterized by the existence of time-ordered breaks in the slope of their trend functions. The evidence presented in this paper suggests that while natural forcing factors may help explain the warming of the first part of the century, anthropogenic forcing has been its main driver since the 1970's. In terms of Article 2 of the United Nations Framework Convention on Climate Change, significant anthropogenic interference with the climate system has already occurred and the current climate models are capable of accurately simulating the response of the climate system, even if it consists in a rapid or abrupt change, to changes in external forcing factors. This paper presents a new methodological approach for conducting time-series based attribution studies.

  13. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  14. Climate change and the invasion of California by grasses

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dangremond, Emily

    2012-01-01

    Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily...... invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait...

  15. Climate Change Impacts on Central China and Adaptation Measures

    Institute of Scientific and Technical Information of China (English)

    REN Yong-Jian; CUI Jiang-Xue; WAN Su-Qin; LIU Min; CHEN Zheng-Hong; LIAO Yu-Fang; WANG Ji-Jun

    2013-01-01

    In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within the study area, and with the harmful effects far more prevalent. Under the scenario A1B, it is reported that temperature, precipitation, days of heat waves and extreme precipitation intensity will increase at respective rates of 0.38◦C per decade, 12.6 mm per decade, 6.4 d and 47 mm per decade in the 21st century. It is widely believed that these climate changes in the future will result in some apparent impacts on agro-ecosystems, water resources, wetland ecosystem, forest ecosystem, human health, energy sectors and other sensitive fields in Central China. Due to the limited scientific knowledge and researches, there are still some shortages in the climate change assessment methodologies and many uncertainties in the climate prediction results. Therefore, it is urgent and essential to increase the studies of the regional climate change adaptation, extend the research fields, and enhance the studies in the extreme weather and climate events to reduce the uncertainties of the climate change assessments.

  16. Managing Climate Change Refugia for Biodiversity Conservation

    Science.gov (United States)

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  17. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon

    Science.gov (United States)

    Ribeiro, Bruno R.; Sales, Lilian P.; De Marco, Paulo; Loyola, Rafael

    2016-01-01

    Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species’ response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species’ range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species’ ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts. PMID:27829036

  18. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  19. Climate Change and Water in Vulnerable Agriculture: Impacts - Mitigation - Adaptation

    Science.gov (United States)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2016-04-01

    Agriculture highly depends on climate and is adversely affected by climate extremes caused mainly by anthropogenic climate change and increasing climate variability. Moreover, agricultural production risks and vulnerability of agriculture may become an issue in several regions around the world, since they are likely to increase the incidence of crop failure. The aim of this paper is to present the water availability and requirements in Southern Europe and specifically in the Mediterranean region, which is characterized by vulnerable agriculture. Indeed, the climatic trend in the 21st century for this region indicates temperature increase, precipitation decrease combined with an increase in the frequency of climate extremes, such as droughts, heat waves and forest fires. The three major components of climate change are examined, namely impacts, mitigation and adaptation. In particular, precipitation frequency analysis has already indicated a reduction in the precipitation amounts and a shift towards more intense rainstorms. Moreover, time series of drought indices are presented in affected areas. The importance of climate change mitigation measures is also highlighted. Finally, an adaptation scheme for agriculture from climate change in vulnerable and water scarce areas is presented.

  20. The science of climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  1. Forest Policies Addressing Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a developing country with a large population and a fragile ecological environment, China is particularly vulnerable to the adverse effects of climate change. Beginning with the Rio Conference of 1992 China has played a progressively enhanced role in combating climate change. A series of policies and measures to address climate change have been taken in the overall context of national sustainable development strategy, making positive contributions to the mitigation and adaptation to climate change, among ...

  2. Terrestrial plant production and climate change.

    Science.gov (United States)

    Friend, Andrew D

    2010-03-01

    The likely future increase in atmospheric CO(2) and associated changes in climate will affect global patterns of plant production. Models integrate understanding of the influence of the environment on plant physiological processes and so enable estimates of future changes to be made. Moreover, they allow us to assess the consequences of different assumptions for predictions and so stimulate further research. This paper is a review of the sensitivities of one such model, Hybrid6.5, a detailed mechanistic model of terrestrial primary production. This model is typical of its type, and the sensitivities of the global distribution of predicted production to model assumptions and possible future CO(2) levels and climate are assessed. Sensitivity tests show that leaf phenology has large effects on mean C(3) crop and needleleaved cold deciduous tree production, reducing potential net primary production (NPP) from that obtained using constant maximum annual leaf area index by 32.9% and 41.6%, respectively. Generalized Plant Type (GPT) specific parameterizations, particularly photosynthetic capacity per unit leaf N, affect mean predicted NPP of higher C(3) plants by -22.3% to 27.9%, depending on the GPT, compared to NPP predictions obtained using mean parameter values. An increase in atmospheric CO(2) concentrations from current values to 720 ppm by the end of this century, with associated effects on climate from a typical climate model, is predicted to increase global NPP by 37.3%. Mean increases range from 43.9-52.9% across different C(3) GPTs, whereas the mean NPP of C(4) grass and crop increases by 5.9%. Significant uncertainties concern the extent to which acclimative processes may reduce any potential future increase in primary production and the degree to which any gains are transferred to durable, and especially edible, biomass. Experimentalists and modellers need to work closely together to reduce these uncertainties. A number of research priorities are suggested

  3. Risk Communication, Moral Emotions and Climate Change.

    NARCIS (Netherlands)

    Roeser, Sabine

    2012-01-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt

  4. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  5. Climate Change Ignorance: An Unacceptable Legacy

    Science.gov (United States)

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  6. Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation

    NARCIS (Netherlands)

    Drijfhout, S.S.; Gleeson, E.; Dijkstra, H.A.; Livina, V.

    2013-01-01

    Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little

  7. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  8. Has solar variability caused climate change that affected human culture?

    Science.gov (United States)

    Feynman, Joan

    If solar variability affects human culture it most likely does so by changing the climate in which the culture operates. Variations in the solar radiative input to the Earth's atmosphere have often been suggested as a cause of such climate change on time scales from decades to tens of millennia. In the last 20 years there has been enormous progress in our knowledge of the many fields of research that impinge on this problem; the history of the solar output, the effect of solar variability on the Earth's mean climate and its regional patterns, the history of the Earth's climate and the history of mankind and human culture. This new knowledge encourages revisiting the question asked in the title of this talk. Several important historical events have been reliably related to climate change including the Little Ice Age in northern Europe and the collapse of the Classical Mayan civilization in the 9th century AD. In the first section of this paper we discus these historical events and review the evidence that they were caused by changes in the solar output. Perhaps the most important event in the history of mankind was the development of agricultural societies. This began to occur almost 12,000 years ago when the climate changed from the Pleistocene to the modern climate of the Holocene. In the second section of the paper we will discuss the suggestion ( Feynman and Ruzmaikin, 2007) that climate variability was the reason agriculture developed when it did and not before.

  9. THE INUNDATIONS IN ROMANIA, CONSEQUENCE THE CLIMATE CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    Mariana Ciobanu; Gabriela Demian [University of Craiova, Faculty of Engineering and Management of the Technological Systems, Drobeta Turnu Severin (Romania); Marius Victor Ciobanu [Inspectorate District of Frontier Police, Mehedinti (Romania)

    2008-09-30

    Climate Change is one of the major challenges of our century-a complex area of which we still need to improve our knowledge and understanding in order to take timely and correct measures for tackling the climate change challenges in the most cost effective way, while following the precautionary principle. Climate change affects us all. Globally, as well as at national and local levels within our own country. Whether or not these floods are the direct result of climate change, they provide an indication of the kind of future impacts that climate change may have on our local communities. With this Strategy, Romania takes its first steps towards a targeted and coordinated national effort to limit emissions of greenhouse gas emissions and deal with the climatic changes that are to be expected, regardless of efforts to limit emissions. The Romanian Government wishes to consider and address the future requirements for Romania resulting from our future membership of the EU as well as from our international commitments under the UNFCCC and Kyoto Protocol, in order to prepare for the most feasible national approach both in the short, medium and long term. Climate changes, through consequences immediately, presently social relocate, economically and polilical irremediably crisis, on long time.

  10. Climatic change and river ice breakup

    Energy Technology Data Exchange (ETDEWEB)

    Beltaos, S. [Environment Canada, National Water Research Institute, Burlington, ON (Canada); Burrell, B. C. [New Brunswick Dept. of the Environment and Local Government, Sciences and Planning Division, Fredericton, NB (Canada)

    2003-07-01

    An overview of climatic factors and impact relative to river ice engineering and science is presented. An explanation of the fundamentals of climatic change is followed by a review of direct and indirect climatic influences that govern river ice breakup and related trends. Known responses of river ice to climatic change and potential future changes to ice breakup processes are described along with the probable ecological and socio-economic consequences of these changes. Changes in engineering approaches to accommodate the present ice regime and predicted changes in climatic variables that affect river ice processes and reduce the vulnerability of infrastructure and ecosystems to climatic change are examined. Future research on the links between river ice and stream ecology is suggested to identify ecological concerns that may result from changes in river ice regimes induced by climatic change. 60 refs., 3 figs.

  11. Human and climate impacts on the 21st century hydrological drought

    Science.gov (United States)

    Wanders, N.; Wada, Y.

    2015-07-01

    Climate change will very likely impact future hydrological drought characteristics across the world. Here, we quantify the impact of human water use including reservoir regulation and climate change on future low flows and associated hydrological drought characteristics on a global scale. The global hydrological and water resources model PCR-GLOBWB is used to simulate daily discharge globally at 0.5 ° resolution for 1971-2099. The model was forced with the latest CMIP5 climate projections taken from five General Circulation Models (GCMs) and four emission scenarios (RCPs), under the framework of the Inter-Sectoral Impact Model Intercomparison Project. A natural or pristine scenario has been used to calculate the impact of the changing climate on hydrological drought and has been compared to a scenario with human influences. In the latter scenario reservoir operations and human water use are included in the simulations of discharge for the 21st century. The impact of humans on the low flow regime and hydrological drought characteristics has been studied at a catchment scale. Results show a significant impact of climate change and human water use in large parts of Asia, Middle East and the Mediterranean, where the relative contribution of humans on the changed drought severity can be close to 100%. The differences between Representative Concentration Pathways are small indicating that human water use is proportional to the changes in the climate. Reservoirs tend to reduce the impact of drought by water retention in the wet season, which in turn will lead to increased water availability in the dry season, especially for large regions in Europe and North America. The impact of climate change varies throughout the season for parts of Europe and North-America, while in other regions (e.g. North-Africa, Middle East and Mediterranean), the impact is not influenced by seasonal changes. This study illustrates that the impact of human water use and reservoirs is nontrivial

  12. Fast Vegetational Responses to Late-Glacial Climate Change

    Science.gov (United States)

    Williams, J. W.; Post, D. M.; Cwynar, L. C.; Lotter, A. F.; Levesque, A. J.

    2001-12-01

    How rapidly can natural ecosystems respond to rapid climate change? This question can be addressed by studying paired paleoecological and paleoclimatological records spanning the last deglaciation. Between 16 and 10 ka, abrupt climatic oscillations (e.g. Younger Dryas, Gerzensee/Killarney Oscillations) interrupted the general warming trend. Rates of climate change during these events were as fast or faster than projected rates of change for this century. We compiled a dozen high-resolution lacustrine records in North America and Europe with a pollen record and independent climatic proxy, a clear Younger Dryas signal, and good age control. Cross-correlation analysis suggests that vegetation responded rapidly to late-glacial climate change, with significant changes in vegetation composition occurring within the lifespan of individual trees. At all sites, vegetation lagged climate by less than 200 years, and at two-thirds of the sites, the initial vegetational response occurred within 100 years. The finding of rapid vegetational responses is consistent across sites and continents, and is similar to the 100-200 year response times predicted by gap-scale forest models. Likely mechanisms include 1) increased susceptibility of mature trees to disturbances such as fire, wind, and disease, thereby opening up gaps for colonization, 2) the proximity of these sites to late-glacial treeline, where climate may directly control plant population densities and range limits, 3) the presence of herbaceous taxa with short generation times in these plant communities, and 4) rapid migration due to rare long-distance seed dispersals. Our results are consistent with reports that plant ranges are already shifting in response to recent climate change, and suggest that these shifts will persist for the next several centuries. Widespread changes in plant distributions may affect surface-atmosphere interactions and will challenge attempts to manage ecosystems and conserve biodiversity.

  13. Inspiring facility fuses a century of change.

    Science.gov (United States)

    Baillie, Jonathan

    2011-04-01

    Creating a 21st Century mental healthcare facility which would soon be world-renowned both for its quality of care, and for the high standard of its buildings, was the overriding goal of the project team behind the new pound 75 million, 312-bed Roseberry Park mental healthcare facility in Middlesbrough. HEJ editor Jonathan Baillie visited the new PFI facility to discover more about the sizeable new mental healthcare "village", which was highly commended at the 2010 Building Better Healthcare Awards, from MAAP Architects lead designer and director Raechal Ferguson, and project director at the Tees, Esk and Wear Valleys (TEWV) NHS Foundation Trust John Ord.

  14. Assessing changes in precipitation and temperature over the Iberian Peninsula during the 21st century

    Science.gov (United States)

    Bernardino, Mariana; Pimpão Silva, Álvaro; Espírito Santo, Fátima; Pinto, Armando

    2016-04-01

    Climate is a major factor driving the spatio-temporal distribution of most ecological systems and human activities, due to their vulnerability to inter-annual climate variability and to climate change. These systems are very sensitive to changes in traditional patterns of regional climate but also to the frequency and magnitude of extreme events. Changes in surface air temperature extremes and precipitation over the Iberian Peninsula were investigated using one of the high resolution climate simulations produced by the Euro-Cordex consortium. Two sets of simulations forced with the new IPCC AR5 emission scenarios RCP4.5 and RCP8.5, with a horizontal resolution of 12.5 km were used to compute climate indices defined by the European Climate Assessment (ECA) project, for present (1970-2010) and for the 21st century climates. Changes in magnitude and in the spatial patterns of these indices were evaluated and once the expected impacts in different sectors are related with these changes, the results provide information to be used in sectoral adaption measures, namely in tourism, water, agriculture, human health, energy and infrastructures.

  15. Introduction to the symposium theme : climate change in fragmented landscapes: can we develop spatial adaptation strategies?

    OpenAIRE

    Verboom, J.; Vos, C.C.

    2007-01-01

    The Intergovernmental Panel for Climate Change (IPCC) concluded that by increasing the concentration of greenhouse gasses, man has a discernible influence on climate, and this is expected to be a long-term phenomenon affecting the environment in the forthcoming decades or even centuries. Since climate is a key driving force for ecological processes, climate change is likely to exert considerable impact on ecosystems. Since nature policy worldwide is often based upon policy plans which do not ...

  16. Limits to health adaptation in a changing climate

    Science.gov (United States)

    Ebi, K. L.

    2015-12-01

    Introduction: Because the health risks of climate variability and change are not new, it has been assumed that health systems have the capacity, experience, and tools to effectively adapt to changing burdens of climate-sensitive health outcomes with additional climate change. However, as illustrated in the Ebola crisis, health systems in many low-income countries have insufficient capacity to manage current health burdens. These countries also are those most vulnerable to climate change, including changes in food and water safety and security, increases in extreme weather and climate events, and increases in the geographic range, incidence, and seasonality of a variety of infectious diseases. The extent to which they might be able to keep pace with projected risks depends on assumptions of the sustainability of development pathways. At the same time, the magnitude and pattern of climate change will depend on greenhouse gas emission pathways. Methods: Review of the success of health adaptation projects and expert judgment assessment of the degree to which adaptation efforts will be able to keep pace with projected changes in climate variability and change. Results: Health adaptation can reduce the current and projected burdens of climate-sensitive health outcomes over the short term in many countries, but the extent to which it could do so past mid-century will depend on emission and development pathways. Under high emission scenarios, climate change will be rapid and extensive, leading to fundamental shifts in the burden of climate-sensitive health outcomes that will challenging for many countries to manage. Sustainable development pathways could delay but not eliminate associated health burdens. Conclusions: To prepare for and cope with the Anthropocene, health systems need additional adaptation policies and measures to develop more robust health systems, and need to advocate for rapid and significant reductions in greenhouse gas emissions.

  17. Climate, people, fire and vegetation: new insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD

    Directory of Open Access Journals (Sweden)

    J. Bakker

    2012-08-01

    Full Text Available Anatolia forms a bridge between Europe, Africa and Asia and is influenced by all three continents in terms of climate, vegetation and human civilisation. Unfortunately, well dated palynological records focussing on the period from the end of the classical Roman period until subrecent times are rare for Anatolia and completely absent for southwest Turkey, resulting in a lacuna in knowledge concerning the interactions of climatic change, human impact, and environmental change in this important region. Two well dated palaeoecological records from the Western Taurus Mountains, Turkey, provide a first relatively detailed record of vegetation dynamics from late Roman times until the present in SW Turkey. Combining pollen, non-pollen palynomorphs, charcoal, sedimentological, archaeological data, and newly developed multivariate numerical analyses, allows for the disentangling of climatic and anthropogenic influences on vegetation change. Results show both the regional pollen signal as well as local soil sediment characteristics respond accurately to shifts in regional climatic conditions. Both climatic as well as anthropogenic change had a strong influence on vegetation dynamics and land use. A moist environmental trend during the late 3rd century caused an increase in marshes and wetlands in the moister valley floors, limiting possibilities for intensive crop cultivation at such locations. A mid 7th century shift to pastoralism coincided with a climatic deterioration as well as the start of Arab incursions into the region, the former driving the way in which the vegetation developed afterwards. Resurgence in agriculture was observed in the study during the mid 10th century AD, coinciding with the Medieval Climate Anomaly. An abrupt mid 12th century decrease in agriculture is linked to socio-political change, rather than the onset of the Little Ice Age. Similarly, gradual deforestation occurring from the 16th century onwards has been linked to changes

  18. Probabilistic Forecast for 21st Century Climate Based on an Ensemble of Simulations using a Business-As-Usual Scenario

    Science.gov (United States)

    Scott, J. R.; Forest, C. E.; Sokolov, A. P.; Dutkiewicz, S.

    2011-12-01

    The behavior of the climate system is examined in an ensemble of runs using an Earth System Model of intermediate complexity. Climate "parameters" varied are the climate sensitivity, the aerosol forcing, and the strength of ocean heat uptake. Variations in the latter were accomplished by changing the strength of the oceans' background vertical mixing. While climate sensitivity and aerosol forcing can be varied over rather wide ranges, it is more difficult to create such variation in heat uptake while maintaining a realistic overturning ocean circulation. Therefore, separate ensembles were carried out for a few values of the vertical diffusion coefficient. Joint probability distributions for climate sensitivity and aerosol forcing are constructed by comparing results from 20th century simulations with available observational data. These distributions are then used to generate ensembles of 21st century simulations; results allow us to construct probabilistic distributions for changes in important climate change variables such as surface air temperature, sea level rise, and magnitude of the AMOC. Changes in the rate of air-sea flux of CO2 and the export of carbon into the deep ocean are also examined.

  19. Tropical deforestation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ebeling, J.

    2006-08-15

    This dissertation evaluates recent proposals to include tropical deforestation into international climate change mitigation strategies. Deforestation is responsible for up to 25 percent of global greenhouse gas emissions. The research aim here is to evaluate implications of a range of policy options for the environmental effectiveness of a prospective agreement, as well as for its political and economic attractiveness for different countries and stakeholders. A literature review, 48 key stakeholder interviews, analyses of submissions to the United Nations Framework Convention on Climate Change (UNFCCC), modelling approaches and statistical analyses were carried out to answer these questions. On this basis the study identifies potential deal breakers and explores possible solutions to existing 'real' and perceived obstacles. Findings suggest that, given sufficient political will, an effective agreement between current UNFCCC Parties is feasible and that existing concerns can be addressed in pragmatic ways. Among the different policy alternatives, creating a new carbon trading mechanism under a post-2012 Kyoto regime is likely to deliver greatest economic and environmental benefits. Measuring emission reductions against national-level baselines based on historical base periods would increase the environmental integrity of resulting carbon credits. The study also finds that potential monetary benefits are distributed very unevenly between potential host countries, and that this may partly explain current negotiation positions. Complementary approaches, not based on emission trading, may have to be developed to foster broader support for an agreement. Finally, setting more ambitious emission reduction targets for industrialised countries would overcome concerns about 'flooding' of carbon markets, and would make the most of a unique opportunity to tackle both climate change and deforestation.

  20. Changing Permafrost in the Arctic and its Global Effects in the 21st Century (PAGE21): A very large international and integrated project to measure the impact of permafrost degradation on the climate system

    Science.gov (United States)

    Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang

    2013-04-01

    The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on

  1. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H. [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  2. Renewable energy and climate change

    CERN Document Server

    Quaschning, Volker

    2010-01-01

    This dazzling introductory textbook encompasses the full range of today's important renewable energy technologies. Solar thermal, photovoltaic, wind, hydro, biomass and geothermal energy receive balanced treatment with one exciting and informative chapter devoted to each. As well as a complete overview of these state-of-the-art technologies, the chapters provide: clear analysis on their development potentials; an evaluation of the economic aspects involved; concrete guidance for practical implementation; how to reduce your own energy waste. If we do not act now to stop climate change, the cons.

  3. Virgin's Knight tackles climate change

    Science.gov (United States)

    Banks, Michael

    2008-11-01

    "There is no greater or more immediate challenge than that posed by climate change," said Sir Richard Branson, chairman of the Virgin group, via video-link at the 59th International Astronautical Congress (IAC) held in Glasgow in the UK at the end of September. That grand statement may seem like a lot of hot air for the entrepreneur best known for his attempt to circumnavigate the globe by balloon. But Branson went on to reveal that Virgin Galactic, which aims to fly passengers 100 km into space for 200 000 per trip, will also provide room on its craft for a series of scientific experiments to study the Earth's atmosphere.

  4. A history of climate change

    DEFF Research Database (Denmark)

    Hastrup, Kirsten Blinkenberg

    2017-01-01

    they were first described and became known to outsiders, it is shown how flexibility and mobility were always preconditions for survival in this environment. Then, they were trapped in too much ice, while now they have to negotiate a rapidly melting environment. In both cases their response is deeply......This article presents a small community of High Arctic hunters (the Inughuit in North West Greenland) who have always had to negotiate climatic changes with great impact on their living conditions. This points us toward the natural-social entanglements implied in the notion of the Anthropocene...

  5. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks

    OpenAIRE

    Zepp, R. G.; D. J. Erickson; Paul, N.D.; Sulzberger, B.

    2011-01-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects,...

  6. India's National Action Plan on Climate Change

    OpenAIRE

    Pandve, Harshal T.

    2009-01-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture – further endangering food security – to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate C...

  7. Climate Change and Corporate Environmental Responsibility

    OpenAIRE

    Dewan Mahboob HOSSAIN; Chowdhury, M. Jahangir Alam

    2012-01-01

    Climate change, as an international environmental issue, is getting a lot of attention. The negative effects of climate change have become one of the most talked about issues among Governments, scientists, environmentalists and others. It is said that business activities are affecting the climate negatively. In order to minimize the negative effects of climate change, the activities of the businesses should be controlled and encouraged to perform in a socially responsible manner. The article ...

  8. The challenges of communicating climate change

    Directory of Open Access Journals (Sweden)

    Emiliano Feresin

    2009-06-01

    Full Text Available The climate change issue has become increasingly present in our society in the last decade and central also to communication studies. In the e-book “Communicating Climate Change: Discourses, Mediations and Perceptions”, edited by Anabela Carvalho, various scholars investigate how climate change challenges communication by looking at three main aspects: the discourses of a variety of social actors on climate change; the reconstruction of those discourses in the media; the citizens’ perceptions, understandings and attitudes in relation to climate change.

  9. Saving Grace - A Climate Change Documentary Education Program

    Science.gov (United States)

    Byrne, J. M.; McDaniel, S.; Graham, J.; Little, L.; Hoggan, J. C.

    2012-12-01

    Saving Grace conveys climate change knowledge from the best international scientists and social scientists using a series of new media formats. An Education and Communication Plan (ECP) has been developed to disseminate climate change knowledge on impacts, mitigation and adaptation for individuals, and for all sectors of society. The research team is seeking contacts with science and social science colleagues around the world to provide the knowledge base for the ECP. Poverty enslaves…and climate change has, and will, spread and deepen poverty to hundreds of millions of people, primarily in the developing world. And make no mistake; we are enslaving hundreds of millions of people in a depressing and debilitating poverty that in numbers will far surpass the horrors of the slave trade of past centuries. Saving Grace is the story of that poverty - and minimizing that poverty. Saving Grace stars the best of the world's climate researchers. Saving Grace presents the science; who, where and why of greenhouse gases that drive climate change; current and projected impacts of a changing climate around the world; and most important, solutions to the climate change challenges we face.

  10. Multi-hazard assessment in Europe under climate change

    Science.gov (United States)

    Forzieri, Giovanni; Feyen, Luc; Russo, Simone; Vousdoukas, Michalis; Alfieri, Lorenzo; Outten, Stephen; Migliavacca, Mirco; Bianchi, Alessandra; Rojas, Rodrigo; Cid, Alba

    2016-04-01

    While reported losses of climate-related hazards are at historically high levels, climate change is likely to enhance the risk posed by extreme weather events. Several regions are likely to be exposed to multiple climate hazards, yet their modeling in a joint scheme is still at the early stages. A multi-hazard framework to map exposure to multiple climate extremes in Europe along the twenty-first century is hereby presented. Using a coherent ensemble of climate projections, changes in the frequency of heat and cold waves, river and coastal flooding, streamflow droughts, wildfires and windstorms are evaluated. Corresponding variations in expected annual exposure allow for an objective comparison of hazards described by different process characteristics and metrics. Projected changes in exposure depict important variations in hazard scenarios, especially those linked to rising temperatures, and spatial patterns largely modulated by local climate conditions. Results show that Europe will likely face a progressive increase in overall climate hazard with a prominent spatial gradient towards south-western regions mainly driven by the rise of heat waves, droughts and wildfires. Key hotspots emerge particularly along coastlines and in floodplains, often highly populated and economically pivotal, where floods and windstorms could be critical in combination with other climate hazards. Projected increases in exposure will be larger for very extreme events due to their pronounced changes in frequency. Results of this appraisal provide useful input for forthcoming European disaster risk and adaptation policy.

  11. Six centuries of changing oceanic mercury

    Science.gov (United States)

    Zhang, Yanxu; Jaeglé, Lyatt; Thompson, LuAnne; Streets, David G.

    2014-11-01

    Mercury (Hg) is a global and persistent contaminant, affecting human health primarily via marine fish consumption. Large anthropogenic releases of Hg to the atmosphere by mining and coal combustion have resulted in a significant perturbation to the biogeochemical cycling of Hg. The magnitude of this perturbation and the relative roles of the ocean and land as sinks for anthropogenic Hg remain unclear. Here we use a 3-D global ocean biogeochemical model to show that surface ocean Hg concentrations have increased fourfold over the last 600 years. We find that anthropogenic Hg enters the ocean's interior predominantly by absorption onto sinking organic matter particulates, which decompose and release Hg at a depth of 500-800 m, implying that the human perturbation is largest in subsurface waters of biologically productive regions. Our model simulation predicts that over the last six centuries half of emitted anthropogenic Hg has accumulated in the oceans and marine sediments.

  12. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  13. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs...... of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...... on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing...

  14. Estimating global chlorophyll changes over the past century

    Science.gov (United States)

    Boyce, Daniel G.; Dowd, Michael; Lewis, Marlon R.; Worm, Boris

    2014-03-01

    Marine phytoplankton account for approximately half of the production of organic matter on earth, support virtually all marine ecosystems, constrain fisheries yields, and influence climate and weather. Despite this importance, long-term trajectories of phytoplankton abundance or biomass are difficult to estimate, and the extent of changes is unresolved. Here, we use a new, publicly-available database of historical shipboard oceanographic measurements to estimate long-term changes in chlorophyll concentration (Chl; a widely used proxy for phytoplankton biomass) from 1890 to 2010. This work builds upon an earlier analysis (Boyce et al., 2010) by taking published criticisms into account, and by using recalibrated data, and novel analysis methods. Rates of long-term chlorophyll change were estimated using generalized additive models within a multi-model inference framework, and post hoc sensitivity analyses were undertaken to test the robustness of results. Our analysis revealed statistically significant Chl declines over 62% of the global ocean surface area where data were present, and in 8 of 11 large ocean regions. While Chl increases have occurred in many locations, weighted syntheses of local- and regional-scale estimates confirmed that average chlorophyll concentrations have declined across the majority of the global ocean area over the past century. Sensitivity analyses indicate that these changes do not arise from any bias between data types, nor do they depend upon the method of spatial or temporal aggregation, nor the use of a particular statistical model. The wider consequences of this long-term decline of marine phytoplankton are presently unresolved, but will need to be considered in future studies of marine ecosystem structure, geochemical cycling, and fishery yields.

  15. [Climate change and Kyoto protocol].

    Science.gov (United States)

    Ergasti, G; Pippia, V; Murzilli, G; De Luca D'Alessandro, E

    2009-01-01

    Due to industrial revolution and the heavy use of fossil fuels, the concentration of greenhouse gases in the atmosphere has increased dramatically during the last hundred years, and this has lead to an increase in mean global temperature. The environmental consequences of this are: the melting of the ice caps, an increase in mean sea-levels, catastrophic events such as floodings, hurricanes and earthquakes, changes to the animal and vegetable kingdoms, a growth in vectors and bacteria in water thus increasing the risk of infectious diseases and damage to agriculture. The toxic effects of the pollution on human health are both acute and chronic. The Kyoto Protocol is an important step in the campaign against climatic changes but it is not sufficient. A possible solution might be for the States which produce the most of pollution to adopt a better political stance for the environment and to use renewable resources for the production of energy.

  16. Contributions of Psychology to Limiting Climate Change

    Science.gov (United States)

    Stern, Paul C.

    2011-01-01

    Psychology can make a significant contribution to limiting the magnitude of climate change by improving understanding of human behaviors that drive climate change and human reactions to climate-related technologies and policies, and by turning that understanding into effective interventions. This article develops a framework for psychological…

  17. Climate change. Scientific background and process

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Fuglestvedt, Jan; Seip, Hans Martin; Skodvin, Tora

    1999-07-01

    The paper describes briefly the natural and man-made forces behind climate change and outlines climate variations in the past. It also discusses the future impact of anthropogenic emission of greenhouse gases, and the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC)

  18. Science Teachers' Perspectives about Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  19. Climate Change Adaptation in the Water Sector

    NARCIS (Netherlands)

    Ludwig, F.; Kabat, P.; Schaik, van H.; Valk, van der M.

    2009-01-01

    Today’s climate variability already has a large impact on water supply and protection. Millions of people are affected every year by droughts and floods. Future climate change is likely to make things worse. Many people within the water sector are aware that climate change is affecting water resourc

  20. Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios

    NARCIS (Netherlands)

    Slangen, A.B.A.; Katsman, C.A.; Van de Wal, R.S.W.; Vermeersen, L.L.A.; Riva, R,E.M.

    2012-01-01

    Sea-level change is often considered to be globally uniform in sea-level projections. However, local relative sea-level (RSL) change can deviate substantially from the global mean. Here, we present maps of twenty-first century local RSL change estimates based on an ensemble of coupled climate model

  1. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  2. Rethinking climate change as a security threat

    Energy Technology Data Exchange (ETDEWEB)

    Schoch, Corinne

    2011-10-15

    Once upon a time climate change was a strictly environment and development issue. Today it has become a matter of national and international security. Efforts to link climate change with violent conflict may not be based on solid evidence, but they have certainly captured the attention of governments. They have played a vital role in raising the much-needed awareness of climate change as an issue that deserves global action. But at what cost? Focusing on climate change as a security threat alone risks devolving humanitarian responsibilities to the military, ignoring key challenges and losing sight of those climate-vulnerable communities that stand most in need of protection.

  3. Quantitative approaches in climate change ecology

    DEFF Research Database (Denmark)

    Brown, Christopher J.; Schoeman, David S.; Sydeman, William J.

    2011-01-01

    climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer‐reviewed articles that examined relationships...... between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non...

  4. Scientific aspects of climate change; Fundamentos cientificos del calentamiento global

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, G.

    2007-07-01

    For the last 35 years, the average temperature of the planet has been steadily increasing- Are the greenhouse gases emitted by human beings the cause? What will the consequences be? What can we do? The fourth report of the intergovernmental Panel on Climate change tries to answer these questions. There are clear signs of thawing that primary affect Greenland and the Antarctic, but there are still many doubts what the consequences will be throughout the century. In any case, it seems obvious that, if greenhouse gas emissions are not substantially reduced very soon, the rising temperature trend and its associated consequences will persist beyond the 21st century. (Author)

  5. Climate change and the ecology and evolution of Arctic vertebrates

    DEFF Research Database (Denmark)

    Gilg, Olivier; Kovacs, Kit M.; Aars, J.

    2012-01-01

    Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation......, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have...... immigration from the South, many Arctic vertebrates are expected to become increasingly threatened during this century....

  6. Pacific Islands Climate Change Virtual Library

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virtual Library provides access to web based climate variability and climate change information and tools relevant to the Pacific Islands including case studies,...

  7. Climate Change, Health, and Populations of Concern

    Science.gov (United States)

    This page contains communication materials that summarize key points from the U.S. Climate and Health Assessment for eight different populations that are disproportionately affected by climate change impacts.

  8. Climatic Droughts conditions in US during the Past Century

    Science.gov (United States)

    Ge, Y.; Apurv, T.; Cai, X.

    2015-12-01

    It has been debated whether drought has become more severe under climate change. Different data sources of Palmer Drought Severity Index (PDSI) have been used to address the issue. This study assesses drought frequency in the continental US using two PDSI datasets (generated by Sheffield et al., 2012 and Dai, 2013). The uni-variate return period for three drought characteristics (duration, severity and intensity) and the bi-variate return period based on the Copulas distribution for combinations of duration and severity/intensity are generated in a time series of sequential moving windows with a horizon of 40 years (1900-1939, 1901-1940, …, 1973-2012). This time series will allow us to analyze both short-term (e.g., 10-year) and long-term (e.g., 100-year) droughts. A change point detection method is applied to the generated time series to detect both abrupt and gradual changes of drought in terms of return periods. The detection results can tell whether short-term (e.g., 5-year return period) or long-term (e.g., 100-year return period) droughts have occurred with larger intensity, longer duration, and/or higher severity and when a trend, if existing, in those characteristics began or stopped (e.g., the increasing trend of intensity levels at all return periods began around 1970 at a location in Northern California as shown in Figure 1a). We find some different results when comparing short- and long-term drought events. For examples, the levels of duration, severity and intensity for short-term (e.g., 5-year and 10-year return period) and long-term (e.g., 50-year and 100-year return period) drought events experienced different trends in central Colorado (Figure 1b). This presentation will provide the results for the entire continental U.S. and especially the spatial heterogeneity and distribution of the changes. References A. Dai, Nature Climate Change, 3, 52-58 (2013). J. Sheffield, E.F. Wood, M. L. Roderick, Nature, 491, 435-438 (2012) Figure 1. Levels of

  9. The human factor: climate change and climate communication

    DEFF Research Database (Denmark)

    2011-01-01

    Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)......Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)...

  10. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  11. Abrupt climate change: can society cope?

    Science.gov (United States)

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  12. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  13. Climate Change Adaptation Challenges and EO Business Opportunities

    Science.gov (United States)

    Lopez-Baeza, Ernesto; Mathieu, Pierre-Philippe; Bansal, Rahul; Del Rey, Maria; Mohamed, Ebrahim; Ruiz, Paz; Signes, Marcos

    Climate change is one of the defining challenges of the 21st century, but is no longer a matter of just scientific concern. It encompasses economics, sociology, global politics as well as national and local politics, law, health and environmental security, etc. The challenge of facing the impacts of climate change is often framed in terms of two potential paths that civilization might take: mitigation and adaptation. On the one hand, mitigation involves reducing the magnitude of climate change itself and is composed of emissions reductions and geoengineering. On the other hand and by contrast, adaptation involves efforts to limit our vulnerability to climate change impacts through various measures. It refers to our ability to adjust ourselves to climate change -including climate variability and extremes, to moderate potential damage, to take advantage of opportunities, or to cope with the consequences. Therefore, we are now faced with a double challenge: next to deep cuts in greenhouse gas emissions, we also need to adapt to the changing climate conditions. The use of satellites to monitor processes and trends at the global scale is essential in the context of climate change. Earth Observation has the potential to improve our predictive vision and to advance climate models. Space sciences and technologies constitute a significant issue in Education and Public Awareness of Science. Space missions face the probably largest scientific and industrial challenges of humanity. It is thus a fact that space drives innovation in the major breakthrough and cutting edge technological advances of mankind (techniques, processes, new products, … as well as in markets and business models). Technology and innovation is the basis of all space activities. Space agencies offer an entire range of space-related activities - from space science and environmental monitoring to industrial competitiveness and end-user services. More specifically, Earth Observation satellites have a unique

  14. Climate Change in Myanmar: Impacts and Adaptation

    Science.gov (United States)

    2014-12-01

    complex field of study developed from a rather simple idea. Climate, as described by Harun Rashid and Bimal Paul, can be defined as...Harun Rashid and Bimal Paul, Climate Change in Bangladesh: Confronting Impending Disasters (Lanham, MD: Lexington Books, 2014), 3–4. 43 “Climate...El Nino seasons, the warming trend has continued in a positive 44 Rashid and Paul, Climate Change

  15. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Kanchan Joshi

    2013-03-01

    Full Text Available Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  16. Economic Consequences Of Climate Change

    Science.gov (United States)

    Szlávik, János; Füle, Miklós

    2009-07-01

    Even though the climate conflict resulting from green houses gases (GHG) emissions was evident by the Nineties and the well-known agreements made, their enforcement is more difficult than that of other environmental agreements. That is because measures to reduce GHG emissions interfere with the heart of the economy and the market: energy (in a broader sense than the energy sector as defined by statistics) and economical growth. Analyzing the environmental policy responses to climate change the conclusion is that GHG emission reduction can only be achieved through intensive environmental policy. While extensive environmental protection complements production horizontally, intensive environmental protection integrates into production and the environment vertically. The latter eliminates the source of the pollution, preventing damage. It utilizes the biochemical processes and self-purification of the natural environment as well as technical development which not only aims to produce state-of-the-art goods, but to make production more environmentally friendly, securing a desired environmental state. While in extensive environmental protection the intervention comes from the outside for creating environmental balance, in intensive environmental protection the system recreates this balance itself. Instead of dealing with the consequences and the polluter pays principle, the emphasis is on prevention. It is important to emphasize that climate strategy decisions have complex effects regarding the aspects of sustainability (economical, social, ecological). Therefore, all decisions are political. At present, and in the near future, market economy decisions have little to do with sustainability values under normal circumstances. Taking social and ecological interests into consideration can only be successful through strategic political aims.

  17. Climate change and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  18. Wildfire Suppression Costs for Canada under a Changing Climate.

    Science.gov (United States)

    Hope, Emily S; McKenney, Daniel W; Pedlar, John H; Stocks, Brian J; Gauthier, Sylvie

    2016-01-01

    Climate-influenced changes in fire regimes in northern temperate and boreal regions will have both ecological and economic ramifications. We examine possible future wildfire area burned and suppression costs using a recently compiled historical (i.e., 1980-2009) fire management cost database for Canada and several Intergovernmental Panel on Climate Change (IPCC) climate projections. Area burned was modelled as a function of a climate moisture index (CMI), and fire suppression costs then estimated as a function of area burned. Future estimates of area burned were generated from projections of the CMI under two emissions pathways for four General Circulation Models (GCMs); these estimates were constrained to ecologically reasonable values by incorporating a minimum fire return interval of 20 years. Total average annual national fire management costs are projected to increase to just under $1 billion (a 60% real increase from the 1980-2009 period) under the low greenhouse gas emissions pathway and $1.4 billion (119% real increase from the base period) under the high emissions pathway by the end of the century. For many provinces, annual costs that are currently considered extreme (i.e., occur once every ten years) are projected to become commonplace (i.e., occur once every two years or more often) as the century progresses. It is highly likely that evaluations of current wildland fire management paradigms will be necessary to avoid drastic and untenable cost increases as the century progresses.

  19. Acting locally, developing knowledge globally: a transitions perspective on designing climate change adaptation strategies

    NARCIS (Netherlands)

    Grin, J.; Driessen, J.; Leroy, P.; van Vierssen, W.

    2010-01-01

    Climate change, from many perspectives and for many reasons, is a complex issue: scientifically, politically, and in terms of global justice. As such, climate change might be the global societal and political challenge of the 21st century. Dealing with it, either via mitigation or via adaptation, wi

  20. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  1. Responses of alpine biodiversity to climate change

    OpenAIRE

    Yang Liu; Jian Zhang; Wanqin Yang

    2009-01-01

    The alpine belt is the temperature-driven treeless region between the timberline and the snowline. Alpine belts are ideal sites for monitoring climate change because species in mountain habitats are especially sensitive to climate change. Global warming is shifting the distribution of alpine biodiversity and is leading to glacial retreat, implying that alterations in alpine biodiversity are indicators of climate change. Therefore, more attention has been given to changes in species compositio...

  2. Covering Climate Change in Wikipedia

    Science.gov (United States)

    Arritt, R. W.; Connolley, W.; Ramjohn, I.; Schulz, S.; Wickert, A. D.

    2010-12-01

    The first hit in an internet search for "global warming" using any of the three leading search engines (Google, Bing, or Yahoo) is the article "Global warming" in the online encyclopedia Wikipedia. The article garners about half a million page views per month. In addition to the site's visibility with the public, Wikipedia's articles on climate-related topics are widely referenced by policymakers, media outlets, and academia. Despite the site's strong influence on public understanding of science, few geoscientists actively participate in Wikipedia, with the result that the community that edits these articles is mostly composed of individuals with little or no expertise in the topic at hand. In this presentation we discuss how geoscientists can help shape public understanding of science by contributing to Wikipedia. Although Wikipedia prides itself on being "the encyclopedia that anyone can edit," the site has policies regarding contributions and behavior that can be pitfalls for newcomers. This presentation is intended as a guide for the geoscience community in contributing to information about climate change in this widely-used reference.

  3. Climate Trends and Farmers' Perceptions of Climate Change in Zambia

    Science.gov (United States)

    Mulenga, Brian P.; Wineman, Ayala; Sitko, Nicholas J.

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters—notably, rising average temperature—there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  4. Agroclimatic potential in central Siberia in an altered 21st century climate

    Science.gov (United States)

    Soja, A.; Tchebakova, N.; Parfenova, E.; Lysanova, G.

    2012-04-01

    The largest temperature increases are currently found in Northern Hemishpere upper latitudes, and this is where temperature increases from climate change are predicted to be the greatest in the future. Alteration of boreal and Arctic landscapes is already apparent, particularly in Siberia. In this work, we will explore the current spatial and temporal patterns of agriculture potential in Siberia and then investigate potential future agriculture dynamics. Humans have traditionally cultivated steppe and forest-steppe on fertile soils for agriculture. It is predicted that forests will move northwards in a warmer climate and be replaced by forest-steppe and steppe ecosystems. Climate change impacts on agriculture in south-central Siberia are analyzed based on the hypothesis that agriculture in traditionally cold Siberia may benefit from warming. Simple models are used to determine crop range and regression models are constructed to determine crop yield, and these are applied to climate change scenarios for various time frames: pre-1960, 1960-1990, 1990-2010 using historic data and for 2020 and 2080 using HadCM3 B1 and A2 projections. From 50 to 85% of central Siberia is predicted to be climatically suitable for agriculture by the end of the century, and only soil potential would limit crop advance and expansion to the north. Crop production could increase twofold. Future climatic resources in Siberia would provide potential growth for a variety of crops that previously did not exist on these lands. Traditional Siberian crops could gradually shift as far as 500 km northwards (about 50-70 km per decade) within suitable soil conditions, and new crops, nonexistent today, may be introduced in the dry south that would necessitate irrigation. Agriculture in central Siberia would likely benefit from climate warming but would also result in different feedbacks to the atmosphere and climate systems, in terms of an altered landscape albedo, substantially modified hydrological

  5. Climate Change Risk Appraisal in the Austrian Ski Industry

    Science.gov (United States)

    Wolfsegger, C.

    2009-04-01

    Ski tourism is an economically and culturally important industry in many parts of Europe. A growing number of studies in Europe, North America, Japan, and Australia have concluded that climate change has potentially serious implications for the sustainability of ski operations by reducing the average length of ski seasons and, where applicable, increasing snowmaking costs. To date, however, the climate change risk awareness and adaptive responses of stakeholders in the ski industry have not been examined. A survey of managers at low elevation ski areas in Austria was undertaken to explore their perceptions of climate change (past and future), how climate change had/will affect their operations, and their adaptive responses (past and planned). The results indicate that climate change is not perceived to be a serious threat to ski operations and that with technological adaptation, principally snowmaking, ski area managers believe they will be able to effectively cope with climate change in the 21st century. The consequences of these perceptions for the future operation of these ski areas are discussed and conclusions drawn for the future of ski tourism in Austria.

  6. The Climate Change Challenge for Land Professionals

    DEFF Research Database (Denmark)

    Enemark, Stig

    2014-01-01

    monitoring systems and systems for land administration and management should serve as a basis for climate change mitigation and adaptation as well as prevention and management of natural disasters. In facing the climate change challenge the role of land professionals is twofold: • Monitoring change...... such as sea level rise and environmental degradation through global positioning infrastructures and data interpretation and presentation; • Implementing climate change adaptation and mitigation measures into land administration systems and systems for disaster risk management. This paper provides an overall...... understanding of the climate change challenge and looks at land governance as a key means of contributing to climate change adaptation as well disaster risk prevention and management. More specifically the paper looks at identifying the role of land professionals in addressing the climate change challenge...

  7. Abrupt climate change:Debate or action

    Institute of Scientific and Technical Information of China (English)

    CHENG Hai

    2004-01-01

    Global abrupt climate changes have been documented by various climate records, including ice cores,ocean sediment cores, lake sediment cores, cave deposits,loess deposits and pollen records. The climate system prefers to be in one of two stable states, i.e. interstadial or stadial conditions, but not in between. The transition between two states has an abrupt character. Abrupt climate changes are,in general, synchronous in the northern hemisphere and tropical regions. The timescale for abrupt climate changes can be as short as a decade. As the impacts may be potentially serious, we need to take actions such as reducing CO2emissions to the atmosphere.

  8. Numerical Simulation of Global Temperature Change during the 20th Century with the IAP/LASG GOALS Model

    Institute of Scientific and Technical Information of China (English)

    马晓燕; 郭裕福; 石广玉; 俞永强

    2004-01-01

    The IAP/LASG GOALS coupled model is used to simulate the climate change during the 20th century using historical greenhouse gases concentrations, the mass mixing ratio of sulfate aerosols simulated by a CTM model, and reconstruction of solar variability spanning the period 1900 to 1997. Four simulations,including a control simulation and three forcing simulations, are conducted. Comparison with the observational record for the period indicates that the three forcing experiments simulate reasonable temporal and spatial distributions of the temperature change. The global warming during the 20th century is caused mainly by increasing greenhouse gas concentration especially since the late 1980s; sulfate aerosols offset a portion of the global warming and the reduction of global temperature is up to about 0.11°C over the century; additionally, the effect of solar variability is not negligible in the simulation of climate change over the 20th century.

  9. Climate Change and Economic Development: A Pragmatic Approach (Invited Lecture)

    OpenAIRE

    John Gowdy; Aneel Salman

    2007-01-01

    Two major problems promise to dominate economic and social policy during the twentyfirst century. These are global climate change and the growing gap between the rich and the poor. Economists are facing these issues at a time when many of the standard tools of economic analysis for example, competitive general equilibrium and the theoretical system that supports it have fallen into disfavour in analysing global issues involving uncertainty and irreversibility. This is both a challenge and an ...

  10. Basic Info | Energy and Global Climate Change in New ...

    Science.gov (United States)

    2017-04-10

    Beginning late in the 18th Century, human activities associated with the Industrial Revolution changed the chemical composition of the atmosphere and began influencing the Earth's climate: the burning of fossil fuels, such as coal and oil, along with deforestation, has caused concentrations of heat-trapping 'greenhouse gases' to increase significantly in our atmosphere. These gases act to prevent heat from escaping into space, like the glass panels of a greenhouse.

  11. IMPACT, VULNERABILITY AND INURING TO THE CLIMATE CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    Mazilu Mirela; Buce Gabriela; Ciobanu Mariana [University of Craiova, University Centre of Drobeta Turnu Severin, Mehedinti (Romania)

    2008-09-30

    The adverse effects of the climate changes caused or not by the human being are on the international politic agenda for more than a decade. All over the world the discussions on the climate changes are intensifying and heading new directions, with a larger opening. The climate changes were subject of the agenda of the most important regional and international meetings this year, many of these asking the ending with positive results of the U.N.O. Conference on Climate Changes that is taking place these days in Bali, between the 3rd and 14th of December 2007. The Bali Conference will give the possibility of getting involved in the future into the multilateral processes of climate change under the auspices of the United Nations and into the process of shaping a global approaching plan of the climate changes. The climate changes represent one of the major challenges in our century--a complex field about what we have to improve our knowledge and understanding in order to take immediate and correct actions for a lasting and efficient approach from the point of view of the costs and challenges in the climate changes field respecting the precaution and climate changes inuring principle. The inuring is a process which allows societies to learn to react to the risks associated to the climate changes. These risks are real and already present in many systems and essential sectors of the human existence--the hydrological resources, alimentary security and health. The inuring options are multiple and vary from the technical ones--protection against the water gown level or dwellings protected against the floods by being hanged up on pontoons--to the change of the behavior of the individuals, such as the reduce of the water or energy consumption and/or a more efficient consumption. Other strategies suppose: signaling systems of the meteorological phenomenon, improvements of the risk management, ways to assure and preserve the biodiversity in order to reduce the impact of the

  12. Wealth reallocation and sustainability under climate change

    Science.gov (United States)

    Fenichel, Eli P.; Levin, Simon A.; McCay, Bonnie; St. Martin, Kevin; Abbott, Joshua K.; Pinsky, Malin L.

    2016-03-01

    Climate change is often described as the greatest environmental challenge of our time. In addition, a changing climate can reallocate natural capital, change the value of all forms of capital and lead to mass redistribution of wealth. Here we explain how the inclusive wealth framework provides a means to measure shifts in the amounts and distribution of wealth induced by climate change. Biophysical effects on prices, pre-existing institutions and socio-ecological changes related to shifts in climate cause wealth to change in ways not correlated with biophysical changes. This implies that sustainable development in the face of climate change requires a coherent approach that integrates biophysical and social measurement. Inclusive wealth provides a measure that indicates sustainability and has the added benefit of providing an organizational framework for integrating the multiple disciplines studying global change.

  13. Emissions pathways, climate change, and impacts on California

    Science.gov (United States)

    Hayhoe, K.; Cayan, D.; Field, C.B.; Frumhoff, P.C.; Maurer, E.P.; Miller, N.L.; Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.E.; Dale, L.; Drapek, R.; Hanemann, R.M.; Kalkstein, L.S.; Lenihan, J.; Lunch, C.K.; Neilson, R.P.; Sheridan, S.C.; Verville, J.H.

    2004-01-01

    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine/subalpine forests are reduced by 50-75%; and Sierra snowpack is reduced 30-70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine/subalpine forests are reduced by 75-90%; and snowpack declines 73-90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California's water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades.

  14. Climate change threatens European conservation areas

    Science.gov (United States)

    Araújo, Miguel B; Alagador, Diogo; Cabeza, Mar; Nogués-Bravo, David; Thuiller, Wilfried

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P<0.001), but Natura 2000 areas retain climate suitability for species no better and sometimes less effectively than unprotected areas. The risk is high that ongoing efforts to conserve Europe's biodiversity are jeopardized by climate change. New policies are required to avert this risk. PMID:21447141

  15. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  16. India's National Action Plan on Climate Change.

    Science.gov (United States)

    Pandve, Harshal T

    2009-04-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture - further endangering food security - to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate Change (NAPCC) to mitigate and adapt to climate change on June 30, 2008, almost a year after it was announced. The NAPCC runs through 2017 and directs ministries to submit detailed implementation plans to the Prime Minister's Council on Climate Change by December 2008. This article briefly reviews the plan and opinion about it from different experts and organizations.

  17. Climate Change and the Social Factor

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Jensen, Anne; Nielsen, Signe Svalgaard

    risks and concerns of everyday life? The project found that the distinction between climate change mitigation and adaptation is of little significance for lay people. The prospect of climate change does provoke reflections on social values and the need for saving energy, but when it comes to protecting......This poster reports from a explorative study about social aspects of climate change adaptation in Denmark. The aim of the project was to explore how people perceive and relate to climate change adaptation, what risks are associated with climate change and how are those risks balanced with other...... ones own life and property against future damaging effects of climate change the threat seems distant and other forms of home improvement seem more relevant. People have a high level of trust in socio-technical systems and feel that adaptation measures primarily should be taken by the authorities....

  18. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01