WorldWideScience

Sample records for centrifuge model test

  1. Simulation of ultra-long term behavior in HLW near-field by centrifugal model test. Part 1. Development of centrifugal equipment and centrifuge model test method

    International Nuclear Information System (INIS)

    Nishimoto, Soshi; Okada, Tetsuji; Sawada, Masataka

    2011-01-01

    The objective of this paper is to develop a centrifugal equipment which can continuously be run for a long time and a model test method in order to evaluate a long term behavior which is a coupled thermo-hydro-mechanical processes in the high level wastes geological disposal repository and the neighborhood (called 'near-field'). The centrifugal equipment of CRIEPI, 'CENTURY5000-THM', developed in the present study is able to run continuously up to six months. Therefore, a long term behavior in the near-field can be simulated in a short term, for instance, the behavior for 5000 equivalent years can be simulated in six months by centrifugalizing 100 G using a 1/100 size model. We carried out a test using a nylon specimen in a centrifugal force field of 30 G and confirmed the operations of CENTURY5000-THM, control and measurement for 11 days. As the results, it was able to control the stress in the pressure vessel and measure the values of strain, temperature and pressure. And, as a result of scanning the small model of near-field including the metal overpack, bentonite buffer and rock by a medical X-rays CT scanner, the internal structure of the model was able to be evaluated when the metal artifact was reduced. From these results, the evaluation for a long term behavior of a disposal repository by the method of centrifugal model test became possible. (author)

  2. Model tests of geosynthetic reinforced slopes in a geotechnical centrifuge

    International Nuclear Information System (INIS)

    Aklik, P.

    2012-01-01

    Geosynthetic-reinforced slopes and walls became very popular in recent years because of their financial, technical, and ecological advantages. Centrifuge modelling is a powerful tool for physical modelling of reinforced slopes and offers the advantage to observe the failure mechanisms of the slopes. In order to replicate the gravity induced stresses of a prototype structure in a geometrically 1/N reduced model, it is necessary to test the model in a gravitational field N times larger than that of the prototype structure. In this dissertation, geotextile-reinforced slope models were tested in a geotechnical centrifuge to identify the possible failure mechanisms. Slope models were tested by varying slope inclination, tensile strengths of the geotextiles, and overlapping lengths. Photographs of the geotextile reinforced slope models in flight were taken with a digital camera and the soil deformations of geotextile reinforced slopes were evaluated with Particle Image Velocimetry (PIV). The experimental results showed that failure of the centrifuge models initiated at midheight of the slope, and occurred due to geotextile breakage instead of pullout. The location of the shear surface is independent of the tensile strength of the geotextile; it is dependent on the shear strength of the soil. It is logical to see that the required acceleration of the centrifuge at slope failure was decreased with increasing slope inclination. An important contribution to the stability of the slope models was provided by the overlapping of the geotextile layers. It has a secondary reinforcement effect when it was prolonged and passed through the shear surface. Moreover, the location of the shear surface observed with PIV analysis exactly matches the tears of the retrieved geotextiles measured carefully after the centrifuge testing. It is concluded that PIV is an efficient tool to instrument the slope failures in a geotechnical centrifuge.(author) [de

  3. Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations

    Directory of Open Access Journals (Sweden)

    H. Nakajima

    2006-01-01

    Full Text Available Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40g, the optimized unsaturated parameters compared well when accurate pore water pressure measurements were included along with cumulative outflow as input data. With its capability to implement variety of instrumentations under well controlled initial and boundary conditions and to shorten testing time, the centrifuge modeling technique is attractive as an alternative experimental method that provides more freedom to set inverse problem conditions for the parameter estimation.

  4. Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations

    Science.gov (United States)

    Nakajima, H.; Stadler, A. T.

    2006-10-01

    Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40g, the optimized unsaturated parameters compared well when accurate pore water pressure measurements were included along with cumulative outflow as input data. With its capability to implement variety of instrumentations under well controlled initial and boundary conditions and to shorten testing time, the centrifuge modeling technique is attractive as an alternative experimental method that provides more freedom to set inverse problem conditions for the parameter estimation.

  5. Centrifuge modeling of monopiles

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte

    2010-01-01

    To gain a larger knowledge of the monopile foundation concept, centrifuge modeling is used by the geotechnical group at DTU. The centrifuge operated at DTU is a beam centrifuge and was built in 1976. In the recent years it has been upgraded with onboard data acquisition and control systems....... The capabilities of the centrifuge at DTU makes it possible to obtain a scale factor of 85 in experiments which equals a soil volume in prototype scale of a diameter of 40 meters and a depth of 40 meters. This paper describes centrifuge modeling theory, the centrifuge setup at DTU and as an example show results...... from centrifuge tests performed on large diameter piles installed in dry sand....

  6. Fiber Bragg Grating-Based Performance Monitoring of Piles Fiber in a Geotechnical Centrifugal Model Test

    Directory of Open Access Journals (Sweden)

    Xiaolin Weng

    2014-01-01

    Full Text Available In centrifugal tests, conventional sensors can hardly capture the performance of reinforcement in small-scale models. However, recent advances in fiber optic sensing technologies enable the accurate and reliable monitoring of strain and temperature in laboratory geotechnical tests. This paper outlines a centrifugal model test, performed using a 60 g ton geocentrifuge, to investigate the performance of pipe piles used to reinforce the loess foundation below a widened embankment. Prior to the test, quasidistributed fiber Bragg grating (FBG strain sensors were attached to the surface of the pipe piles to measure the lateral friction resistance in real time. Via the centrifuge actuator, the driving of pipe piles was simulated. During testing, the variations of skin friction distribution along the pipe piles were measured automatically using an optical fiber interrogator. This paper represents the presentation and detailed analysis of monitoring results. Herein, we verify the reliability of the fiber optic sensors in monitoring the model piles without affecting the integrity of the centrifugal model. This paper, furthermore, shows that lateral friction resistance developed in stages with the pipe piles being pressed in and that this sometimes may become negative.

  7. Centrifuge modelling of offshore monopile foundation

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Hededal, Ole

    2010-01-01

    centrifuge tests on a laterally loaded monopile in dry sand. The prototype dimension of the piles was modelled to a diameter of 1 meter and penetration depth on 6 meter. The test series were designed in order to investigate the scaling laws in the centrifuge both for monotonic and cyclic loading...

  8. Centrifuge and laboratory tests, modelling the penetrator concept for the disposal of HGW in deep ocean sediments

    International Nuclear Information System (INIS)

    Savvidou, C.; Schofield, A.N.

    1986-12-01

    The report is a summary of the work carried out at Cambridge University Engineering Department to investigate the geotechnical aspects of the subseabed disposal of heat generating waste. The problem of heat transfer and coupled consolidation around a heat source was studied both experimentally and numerically. Calculations of the temperature and pore pressure changes in the soil around a cylindrical heat source were made and verified by both laboratory tests and by centrifuge modelling at 100 times earth's gravity. It was shown that conduction was the major heat transfer process. The high velocity penetration of soil by projectiles was modelled on the Cambridge Geotechnical Centrifuge and this was followed by centrifuge tests in which there was subsequent heating of the projectile after firing. These dynamic tests showed that the projectile produced high pore pressures within the soil, which were quickly dissipated. (author)

  9. Uplift mechanism for a shallow-buried structure in liquefiable sand subjected to seismic load: centrifuge model test and DEM modeling

    Science.gov (United States)

    Zhou, Jian; Wang, Zihan; Chen, Xiaoliang; Zhang, Jiao

    2014-06-01

    Based on a centrifuge model test and distinct element method (DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase (solid and fluid) fully coupled distinct element code. This code incorporates a particle-fluid coupling model by means of a "fixed coarse-grid" fluid scheme in PFC3D (Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power.

  10. Centrifuge modelling - migration of radionuclides from engineered trenches

    International Nuclear Information System (INIS)

    Dean, E.T.R.; Schofield, A.N.

    1991-12-01

    This report provides an overview of some centrifuge small-scale physical model tests and 1g experimental and theoretical work relating to the sub-surface migration of a model pollutant (sodium chloride) from a notional prototype surface landfill of width 25 metres and depth 3 metres cut into a 20 metre deep layer of nominally uniform soil overlying a more permeable base layer. An introduction is given to the application of geotechnical centrifuge modelling techniques to pollutant migration studies. Experiments performed at 1/100th scale using the Cambridge 10 metre diameter Geotechnical Beam Centrifuge simulating transport through silt over prototype time periods of around 35 years, are summarised. Comparisons of data with calculations using early versions of the POLLUTE and MIGRATE computer codes are presented. An experiment at 1/400th scale using the new Cambridge Geotechnical Drum Centrifuge, involving transport through clay over a prototype time period of around 1000 years, is described. Potential future uses of centrifuge modelling techniques to simulate long-term migration through more complex hydrological environments are also discussed. (author)

  11. Centrifuge model test of rock slope failure caused by seismic excitation. Plane failure of dip slope

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is essential to evaluate more accurately the possibilities of rock slope failure and the potential failure boundary, which are triggered by earthquake ground motions. The purpose of this study is to analyze dynamic failure characteristics of rock slopes by centrifuge model tests for verification and improvement of the analytical methods. We conducted a centrifuge model test using a dip slope model with discontinuities limitated by Teflon sheets. The centrifugal acceleration was 50G, and the acceleration amplitude of input sin waves increased gradually at every step. The test results were compared with safety factors of the stability analysis based on the limit equilibrium concept. Resultant conclusions are mainly as follows: (1) The slope model collapsed when it was excited by the sine wave of 400gal, which was converted to real field scale, (2) Artificial discontinuities were considerably concerned in the collapse, and the type of collapse was plane failure, (3) From response acceleration records observed at the slope model, we can say that tension cracks were generated near the top of the slope model during excitation, and that might be cause of the collapse, (4) By considering generation of the tension cracks in the stability analysis, correspondence of the analytical results and the experimental results improved. From the obtained results, we need to consider progressive failure in evaluating earthquake induced rock slope failure. (author)

  12. Applicability of eddy viscosity turbulence models in low specific speed centrifugal pump

    International Nuclear Information System (INIS)

    Wang, Y; Wang, W J

    2012-01-01

    The accuracy of numerical simulation determines the performance prediction whether to be successful or not in the research of centrifugal pump. In order to study the applicability of different turbulence models in the low specific speed centrifugal pump, the object was based on XST45-200 stamping and welding centrifugal pump. Five different kinds of standards which are k-ε model, RNG k-ε model, Realizable k-ε model, Standard k-ω model and SST k-ω model are adopted in steady numerical simulations of the centrifugal pump flow fields. Then, inner and outside characteristics of the centrifugal pump were gotten .And it also provides the calculation of pressure distribution using different turbulence models in the five conditions. Lastly, the performance curves of head, power and efficiency are compared with the test. The results show a good agreement between five kinds of turbulence models and tests obtained in small flow and design condition. In large flow, the standard k-ε model is worse than the other four, which is larger than the tested head with a relative deviation of 47.9% and efficiency with 50%.The calculation accuracy which used RNG k-ε model is highest. SST k-ω model takes the second place. Standard k-ω model can be used for the numerical simulation in the low specific speed centrifugal pump.

  13. Determination of strength behaviour of slope supported by vegetated crib walls using centrifuge model testing

    Science.gov (United States)

    Sudan Acharya, Madhu

    2010-05-01

    The crib retaining structures made of wooden/bamboo logs with live plants inside are called vegetative crib walls which are now becoming popular due to their advantages over conventional civil engineering walls. Conventionally, wooden crib walls were dimensioned based on past experiences. At present, there are several guidelines and design standards for machine finished wooden crib walls, but only few guidelines for the design and construction of vegetative log crib walls are available which are generally not sufficient for an economic engineering design of such walls. Analytical methods are generally used to determine the strength of vegetated crib retaining walls. The crib construction is analysed statically by satisfying the condition of static equilibrium with acceptable level of safety. The crib wall system is checked for internal and external stability using conventional monolithic and silo theories. Due to limitations of available theories, the exact calculation of the strength of vegetated wooden/bamboo crib wall cannot be made in static calculation. Therefore, experimental measurements are generally done to verify the static analysis. In this work, a model crib construction (1:20) made of bamboo elements is tested in the centrifuge machine to determine the strength behaviour of the slope supported by vegetated crib retaining wall. A geotechnical centrifuge is used to conduct model tests to study geotechnical problems such as the strength, stiffness and bearing capacity of different structures, settlement of embankments, stability of slopes, earth retaining structures etc. Centrifuge model testing is particularly well suited to modelling geotechnical events because the increase in gravitational force creates stresses in the model that are equivalent to the much larger prototype and hence ensures that the mechanisms of ground movements observed in the tests are realistic. Centrifuge model testing provides data to improve our understanding of basic mechanisms

  14. A wireless high-speed data acquisition system for geotechnical centrifuge model testing

    Science.gov (United States)

    Gaudin, C.; White, D. J.; Boylan, N.; Breen, J.; Brown, T.; DeCatania, S.; Hortin, P.

    2009-09-01

    This paper describes a novel high-speed wireless data acquisition system (WDAS) developed at the University of Western Australia for operation onboard a geotechnical centrifuge, in an enhanced gravitational field of up to 300 times Earth's gravity. The WDAS system consists of up to eight separate miniature units distributed around the circumference of a 0.8 m diameter drum centrifuge, communicating with the control room via wireless Ethernet. Each unit is capable of powering and monitoring eight instrument channels at a sampling rate of up to 1 MHz at 16-bit resolution. The data are stored within the logging unit in solid-state memory, but may also be streamed in real-time at low frequency (up to 10 Hz) to the centrifuge control room, via wireless transmission. The high-speed logging runs continuously within a circular memory (buffer), allowing for storage of a pre-trigger segment of data prior to an event. To suit typical geotechnical modelling applications, the system can record low-speed data continuously, until a burst of high-speed acquisition is triggered when an experimental event occurs, after which the system reverts back to low-speed acquisition to monitor the aftermath of the event. Unlike PC-based data acquisition solutions, this system performs the full sequence of amplification, conditioning, digitization and storage on a single circuit board via an independent micro-controller allocated to each pair of instrumented channels. This arrangement is efficient, compact and physically robust to suit the centrifuge environment. This paper details the design specification of the WDAS along with the software interface developed to control the units. Results from a centrifuge test of a submarine landslide are used to illustrate the performance of the new WDAS.

  15. A wireless high-speed data acquisition system for geotechnical centrifuge model testing

    International Nuclear Information System (INIS)

    Gaudin, C; White, D J; Boylan, N; Breen, J; Brown, T; De Catania, S; Hortin, P

    2009-01-01

    This paper describes a novel high-speed wireless data acquisition system (WDAS) developed at the University of Western Australia for operation onboard a geotechnical centrifuge, in an enhanced gravitational field of up to 300 times Earth's gravity. The WDAS system consists of up to eight separate miniature units distributed around the circumference of a 0.8 m diameter drum centrifuge, communicating with the control room via wireless Ethernet. Each unit is capable of powering and monitoring eight instrument channels at a sampling rate of up to 1 MHz at 16-bit resolution. The data are stored within the logging unit in solid-state memory, but may also be streamed in real-time at low frequency (up to 10 Hz) to the centrifuge control room, via wireless transmission. The high-speed logging runs continuously within a circular memory (buffer), allowing for storage of a pre-trigger segment of data prior to an event. To suit typical geotechnical modelling applications, the system can record low-speed data continuously, until a burst of high-speed acquisition is triggered when an experimental event occurs, after which the system reverts back to low-speed acquisition to monitor the aftermath of the event. Unlike PC-based data acquisition solutions, this system performs the full sequence of amplification, conditioning, digitization and storage on a single circuit board via an independent micro-controller allocated to each pair of instrumented channels. This arrangement is efficient, compact and physically robust to suit the centrifuge environment. This paper details the design specification of the WDAS along with the software interface developed to control the units. Results from a centrifuge test of a submarine landslide are used to illustrate the performance of the new WDAS

  16. Centrifuge Modelling of Two Civil-Environmental Problems

    National Research Council Canada - National Science Library

    Goodings, Deborah

    2001-01-01

    Research Problem 1: Frost heave and thaw induced settlement in silt and silty clay developing over a year have been modelled correctly using a geotechnical centrifuge with tests requiring less than a day...

  17. Centrifuge model test of rock slope failure caused by seismic excitation. Applicability to the stability evaluation method of safety factors against sliding

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2010-01-01

    The purposes of this study are to analyze dynamic failure characteristics of slopes in discontinuous rock mass with brittle fracture by centrifuge model tests and to study applicability to the equivalent linear analysis against dynamic sliding failure of rock slopes. We conducted centrifuge model test using a dip slope model with discontinuities imitated by Teflon sheets. The centrifugal acceleration was 30G, and the acceleration amplitudes of input sin waves were increased gradually at every step. The test results were compared with safety factors of the sliding surface based on the equivalent linear analysis. The following results were obtained: (1) The slope model collapsed when it was excited by the sine wave of 350gal, which was converted to real field scale. (2) Artificial discontinuities considerably affected the collapse, and the type of collapse was plane failure. (3) From response displacement records measured at the slope model, the failure around toe of the slope model probably caused the collapse. (4) The evaluation of safety factors against sliding based on the equivalent linear analysis were conservative compared with the experimental results. (author)

  18. Effect of Centrifuge Temperature on Routine Coagulation Tests.

    Science.gov (United States)

    Yazar, Hayrullah; Özdemir, Fatma; Köse, Elif

    2018-01-01

    This study investigated the effects of cooled and standard centrifuges on the results of coagulation tests to examine the effects of centrifugation temperature. Equal-volume blood samples from each patient were collected at the same time intervals and subjected to standard (25°C) and cooled centrifugation (2-4°C). Subsequently, the prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, and D-dimer values were determined in runs with the same lot numbers in the same coagulation device using the Dia-PT R (PT and INR), Dia-PTT-liquid (aPTT), Dia-FIB (fibrinogen), and Dia-D-dimer kits, respectively. The study enrolled 771 participants. The PT was significantly (p centrifuges were as follows: PT 10.30 versus 10.50 s; PT (INR) 1.04 versus 1.09 s; APTT 28.90 versus 29.40 s; fibrinogen 321.5 versus 322.1 mg/dL; and D-dimer 179.5 versus 168.7 µg FEU/mL. There were significant differences (p centrifuges. Centrifuge temperature can have a significant effect on the results of coagulation tests. However, broad and specific disease-based studies are needed. © 2018 S. Karger AG, Basel.

  19. Annular centrifugal contactors for TRPO process test

    International Nuclear Information System (INIS)

    Duan, W.H.; Wang, J.C.; Chen, J.; Zhou, X.Z.; Zhou, J.Z.; Song, C.L.

    2005-01-01

    The TRPO process has been developed in China for removing TRU elements from high-level liquid waste (HLLW) since 1980s. Centrifugal contactors have several advantages such as low hold-up volume, short residence time, low solvent degradation, small space requirements and short start-up time. Therefore, they are favored for both the reprocessing of spent fuel and the treatment of HLLW. In order to meet study on the TRPO test, a series of annular centrifugal contactors have been developed in Institute of Nuclear and -New Energy Technology, Tsinghua University, China (INET). In particular, the 10-mm annular centrifugal contactor for the laboratory-scale test has been applied successfully in the cold and hot tests of the TRPO process. The 70-mm annular centrifugal contactor for the industry-scale test has two new design characteristics, namely a modular design and an overflow structure. The modular design makes the contactor to be disassembled and assembled fast by simply moving the modules up and down. With the overflow structure, even though one stage or non-adjacent stages of the multi-stage cascade in operation are ceased to work, the cascade can continue to operate. Both the hydraulic performance and the mass-transfer efficiency of these contactors are excellent, and the extraction stage efficiency is greater than 95% at suitable operating conditions.

  20. Astronaut Gordon Cooper in centrifuge for tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, is strapped into the gondola while undergoing tests in the centrifuge at the Naval Air Development Center, Johnsville, Pennsylvania. The centrifuge is used to investigate by simulation the pilot's capability to control the vehicle during the actual flight in its booster and reentry profile.

  1. EVALUATION OF REINFORCING EFFECT ON FACEBOLTS FOR TUNNELING USING X-RAY CT AND CENTRIFUGE MODEL TEST

    Science.gov (United States)

    Takano, Daiki; Otani, Jun; Date, Kensuke; Yokot, Yasuhiro; Nagatani, Hideki

    The purpose of this paper is firstly to simulate the tunnel face failure in laboratory with four cases of model tests by pulling out tunnel model from a sandy ground that are without using auxiliary method nor facebolts and using facebolts with three different lengths of bolts, and secondary, to investigate the behavior of model ground using X-ray computed tomography (CT) scanner to visualize the failure zone in three dimensions. In addition to those results, a series of centrifuge model tests are conducted to confirm the results of X-ray CT test and also to discuss the ground behavior under full scale stress level. Finally, the effect of face bolting method is evaluated based on all the test results.

  2. Mathematical and physical modeling of rainfall in centrifuge

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc; TRISTANCHO, Julian

    2015-01-01

    Rainfall simulation in centrifuge models is important for modelling soil-atmosphere interactions. However, the presence of Coriolis force, drag forces, evaporation and wind within the centrifuge may affect the distribution of rainfall over the model. As a result, development of appropriate centrifuge rain simulators requires a demanding process of experimental trial and error. This paper highlights the key factors involved in controlling rainfall in centrifuge simulations, develops a mathemat...

  3. Sand characterization by combined centrifuge and laboratory tests

    OpenAIRE

    GAUDIN, C; SCHNAID, F; GARNIER, J

    2005-01-01

    The purpose of this paper is to evaluate new methods of interpretation of in situ tests in sand from correlations established from centrifuge and laboratory data. Emphasis is given to methods that are based on the combination of measurements from independent tests, such as the ratio of the elastic stiffness to ultimate strenght and the ratio of cone resistance and limit pressure. For that purpose, a series of centrifuge tests using a cone penetrometer and a cone pressuremeter was carried out ...

  4. Simulated stand tests and centrifuge training to prevent orthostatic intolerance on Earth, moon, and Mars.

    Science.gov (United States)

    Coats, Brandon W; Sharp, M Keith

    2010-03-01

    One proposed method to overcome postflight orthostatic intolerance is for astronauts to undergo inflight centrifugation. Cardiovascular responses were compared between centrifuge and gravitational conditions using a seven-compartment cardiovascular model. Vascular resistance, heart rate, and stroke volume values were adopted from literature, while compartmental volumes and compliances were derived from impedance plethysmography of subjects (n=8) riding on a centrifuge. Three different models were developed to represent the typical male subject who completed a 10-min postflight stand test ("male finisher"), "non-finishing male" and "female" (all non-finishers). A sensitivity analysis found that both cardiac output and arterial pressure were most sensitive to total blood volume. Simulated stand tests showed that female astronauts were more susceptible to orthostatic intolerance due to lower initial blood pressure and higher pressure threshold for presyncope. Rates of blood volume loss by capillary filtration were found to be equivalent in female and male non-finishers, but four times smaller in male finishers. For equivalent times to presyncope during centrifugation as those during constant gravity, lower G forces at the level of the heart were required. Centrifuge G levels to match other cardiovascular parameters varied depending on the parameter, centrifuge arm length, and the gravity level being matched.

  5. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  6. Centrifuge model tests of rainfall-induced slope failures for the investigation of the initiation conditions

    Science.gov (United States)

    Matziaris, Vasileios; Marshall, Alec; Yu, Hai-Sui

    2015-04-01

    Rainfall-induced landslides are very common natural disasters which cause damage to properties and infrastructure and may result in the loss of human lives. These phenomena often take place in unsaturated soil slopes and are triggered by the saturation of the soil profile, due to rain infiltration, which leads to a loss of shear strength. The aim of this study is to determine rainfall thresholds for the initiation of landslides under different initial conditions. Model tests of rainfall-induced landslides are conducted in the Nottingham Centre for Geomechanics 50g-T geotechnical centrifuge. Initially unsaturated plane-strain slope models made with fine silica sand are prepared at varying densities at 1g and accommodated within a climatic chamber which provides controlled environmental conditions. During the centrifuge flight at 60g, rainfall events of varying intensity and duration are applied to the slope models causing the initiation of slope failure. The impact of soil state properties and rainfall characteristics on the landslide initiation process are discussed. The variation of pore water pressures within the slope before, during and after simulated rainfall events is recorded using miniature pore pressure transducers buried in the soil model. Slope deformation is determined by using a high-speed camera and digital image analysis techniques.

  7. Centrifuge modelling of large diameter pile in sand subject to lateral loading

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    and cyclic behaviour of large diameter rigid piles in dry sand by use of physical modelling. The physical modelling has been carried out at Department of Civil Engineering at the Danish Technical University (DTU.BYG), in the period from 2005 to 2009. The main centrifuge facilities, and especially...... the equipment for lateral load tests were at the start of the research in 2005 outdated and a major part of the work with the geotechnical centrifuge included renovation and upgrading of the facilities. The research with respect to testing of large diameter piles included:  Construction of equipment...... with embedment lengths of 6, 8 and 10 times the diameter. The tests have been carried out with a load eccentricity of 2.5 m to 6.5 m above the sand surface. The present report includes a description of the centrifuge facilities, applied test procedure and equipment along with presentation of the obtained results....

  8. Seismic soil-structure interaction: Analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1986-01-01

    A method for nonlinear dynamic effective stress analysis applicable to soil-structure interaction problems is introduced. Full interaction including slip between structure and foundation is taken into account and the major factors that must be considered when computing dynamic soil response are included. An experimental investigation using simulated earthquake tests on centrifuged geotechnical models was conducted to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. The centrifuge tests were conducted in the Geotechnical Centrifuge at Cambridge University, England. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results clearly show the pronounced effect of increasing pore water pressures on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress nonlinear analysis. On the basis of preliminary results, it appears that the effects of pore water pressure can be predicted. (orig.)

  9. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  10. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    Science.gov (United States)

    Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo

    2009-06-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.

  11. Rheological and physical characteristics of crustal-scaled materials for centrifuge analogue modelling

    Science.gov (United States)

    Waffle, Lindsay; Godin, Laurent; Harris, Lyal B.; Kontopoulou, M.

    2016-05-01

    We characterize a set of analogue materials used for centrifuge analogue modelling simulating deformation at different levels in the crust simultaneously. Specifically, we improve the rheological characterization in the linear viscoelastic region of materials for the lower and middle crust, and cohesive synthetic sands without petroleum-binding agents for the upper crust. Viscoelastic materials used in centrifuge analogue modelling demonstrate complex dynamic behaviour, so viscosity alone is insufficient to determine if a material will be an effective analogue. Two series of experiments were conducted using an oscillating bi-conical plate rheometer to measure the storage and loss moduli and complex viscosities of several modelling clays and silicone putties. Tested materials exhibited viscoelastic and shear-thinning behaviour. The silicone putties and some modelling clays demonstrated viscous-dominant behaviour and reached Newtonian plateaus at strain rates clays demonstrated elastic-dominant power-law relationships. Based on these results, the elastic-dominant modelling clay is recommended as an analogue for basement cratons. Inherently cohesive synthetic sands produce fine-detailed fault and fracture patterns, and developed thrust, strike-slip, and extensional faults in simple centrifuge test models. These synthetic sands are recommended as analogues for the brittle upper crust. These new results increase the accuracy of scaling analogue models to prototype. Additionally, with the characterization of three new materials, we propose a complete lithospheric profile of analogue materials for centrifuge modelling, allowing future studies to replicate a broader range of crustal deformation behaviours.

  12. Centrifuge - dewatering of oil sand fluid tailings: phase 2 field-scale test

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Jack T.C. [BGC Engineering Inc (Canada); O' Kane, Mike [O' Kane Consultants Inc (Canada); Donahue, Robert [Applied Geochemical Solutions Engineering (Canada); Lahaie, Rick [Syncrude Canada Ltd (Canada)

    2011-07-01

    In order to reduce the accumulation of oil sand fluid fine tailings (FFT) and to create trafficable surfaces for reclamation, Syncrude Canada Ltd. has been studying several tailings technologies. Centrifuge-dewatering is one such technology. This paper discusses the phase 2 field-scale tests for centrifuge-dewatering of oil sand FFT. In centrifuge-dewatering, FFT is diluted and treated with flocculant, then processed through a centrifuge plant and the high-density underflow is transported to a tailings deposit. This technology has evolved since 2005 from laboratory bench scale tests. More than 10,000 cubic meters of centrifuge cake was treated, produced and transported to ten different deposits over a 12-week period from August to October 2010. The amount of solids in FFT was increased from 30% to 50% by centrifuging. Sampled deposits were tested and instrumented for in situ strength. It can be concluded that the deposits can be strengthened and densified by natural dewatering processes like freeze-thaw action and evaporative drying.

  13. Implementation of centrifuge testing of expansive soils for pavement design.

    Science.gov (United States)

    2017-03-01

    The novel centrifuge-based method for testing of expansive soils from project 5-6048-01 was implemented into : use for the determination of the Potential Vertical Rise (PVR) of roadways that sit on expansive subgrades. The : centrifuge method was mod...

  14. Centrifuge facilities at Technical University of Denmark

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane; Krogsbøll, Anette Susanne; Hededal, Ole

    2008-01-01

    The geotechnical group at the Danish Technical University (DTU) operates a geotechnical beam centrifuge. The centrifuge was build in 1976 and has been upgraded through the years, latest with onboard data and control systems. The centrifuge concept involves an increased gravity field in which...... the physical model is placed and tested. The capabilities of the centrifuge at DTU makes it possible to obtain a scale factor of 75-85 in the tests which equals a soil volume in prototype scale of ø40m and a depth of 36 m. The centrifuge facilities at DTU have through the years been used for testing various...... geotechnical issues, such as suction anchors, tension piles in clay, active earth pressures on sheet piles and group effects for lateral loaded piles. The paper describes physical modelling in general, the centrifuge, present setups and shows samples of obtained results....

  15. Centrifuge modeling of LNAPL transport in partially saturated sand

    NARCIS (Netherlands)

    Esposito, G.; Allersma, H.G.B.; Selvadurai, A.P.S.

    1999-01-01

    Model tests were performed at the Geotechnical Centrifuge Facility of Delft University of Technology, The Netherlands, to examine the mechanics of light nonaqueous phase liquid (LNAPL) movement in a partially saturated porous granular medium. The experiment simulated a 2D spill of LNAPL in an

  16. Testing of pyrochemical centrifugal contactors

    International Nuclear Information System (INIS)

    Chow, L.S.; Carls, E.L.; Basco, J.K.; Johnson, T.R.

    1996-01-01

    A centrifugal contactor that performs oxidation and reduction exchange reactions between molten metals and salts at 500 degrees Centigrade has been tested successfully at Argonne National Laboratory (ANL). The design is based on contactors for aqueous- organic systems operation near room temperature. In tests to demonstrate the performance of the pyrocontactor, cadmium and LICl-KCl eutectic salt were the immiscible solvent phases, and rare earths were the distributing solutes. The tests showed that the pyrocontactor mixed and separated the phases well, with stage efficiencies approaching 99% at rotor speeds near 2700 rpm. The contactor ran smoothly and reliably over the entire range of speeds that was tested

  17. Influence of the centrifuge time of primary plasma tubes on routine coagulation testing.

    Science.gov (United States)

    Lippi, Giuseppe; Salvagno, Gian Luca; Montagnana, Martina; Manzato, Franco; Guidi, Gian Cesare

    2007-07-01

    Preparation of blood specimens is a major bottleneck in the laboratory throughput. Reliable strategies for reducing the time required for specimen processing without affecting quality should be acknowledged, especially for laboratories performing stat analyses. The present investigation was planned to establish a minimal suitable centrifuge time for primary samples collected for routine coagulation testing. Five sequential primary vacuum tubes containing 0.109 mol/l buffered trisodium citrate were collected from 10 volunteers and were immediately centrifuged on a conventional centrifuge at 1500 x g, at room temperature for 1, 2, 5, 10 and 15 min, respectively. Hematological and routine coagulation testing, including prothrombin time, activated partial thromboplastin time and fibrinogen, were performed. The centrifugation time was inversely associated with residual blood cell elements in plasma, especially platelets. Statistically significant variations from the reference 15-min centrifuge specimens were observed for fibrinogen in samples centrifuged for 5 min at most and for the activated partial thromboplastin time in samples centrifuged for 2 min at most. Meaningful biases related to the desirable bias were observed for fibrinogen in samples centrifuged for 2 min at most, and for the activated partial thromboplastin time in samples centrifuged for 1 min at most. According to our experimental conditions, a 5-10 min centrifuge time at 1500 x g may be suitable for primary tubes collected for routine coagulation testing.

  18. Effects of different centrifugation conditions on clinical chemistry and Immunology test results

    Directory of Open Access Journals (Sweden)

    Nesic Predrag

    2011-05-01

    Full Text Available Abstract Background The effect of centrifugation time of heparinized blood samples on clinical chemistry and immunology results has rarely been studied. WHO guideline proposed a 15 min centrifugation time without citing any scientific publications. The centrifugation time has a considerable impact on the turn-around-time. Methods We investigated 74 parameters in samples from 44 patients on a Roche Cobas 6000 system, to see whether there was a statistical significant difference in the test results among specimens centrifuged at 2180 g for 15 min, at 2180 g for 10 min or at 1870 g for 7 min, respectively. Two tubes with different plasma separators (both Greiner Bio-One were used for each centrifugation condition. Statistical comparisons were made by Deming fit. Results Tubes with different separators showed identical results in all parameters. Likewise, excellent correlations were found among tubes to which different centrifugation conditions were applied. Fifty percent of the slopes lay between 0.99 and 1.01. Only 3.6 percent of the statistical tests results fell outside the significance level of p Conclusion A centrifugation time of either 7 or 10 min provided identical test results compared to the time of 15 min as proposed by WHO under the conditions used in our study.

  19. Analogue scale modelling of extensional tectonic processes using a large state-of-the-art centrifuge

    Science.gov (United States)

    Park, Heon-Joon; Lee, Changyeol

    2017-04-01

    Analogue scale modelling of extensional tectonic processes such as rifting and basin opening has been numerously conducted. Among the controlling factors, gravitational acceleration (g) on the scale models was regarded as a constant (Earth's gravity) in the most of the analogue model studies, and only a few model studies considered larger gravitational acceleration by using a centrifuge (an apparatus generating large centrifugal force by rotating the model at a high speed). Although analogue models using a centrifuge allow large scale-down and accelerated deformation that is derived by density differences such as salt diapir, the possible model size is mostly limited up to 10 cm. A state-of-the-art centrifuge installed at the KOCED Geotechnical Centrifuge Testing Center, Korea Advanced Institute of Science and Technology (KAIST) allows a large surface area of the scale-models up to 70 by 70 cm under the maximum capacity of 240 g-tons. Using the centrifuge, we will conduct analogue scale modelling of the extensional tectonic processes such as opening of the back-arc basin. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A6A3A04056405).

  20. Effects of different centrifugation conditions on clinical chemistry and Immunology test results.

    Science.gov (United States)

    Minder, Elisabeth I; Schibli, Adrian; Mahrer, Dagmar; Nesic, Predrag; Plüer, Kathrin

    2011-05-10

    The effect of centrifugation time of heparinized blood samples on clinical chemistry and immunology results has rarely been studied. WHO guideline proposed a 15 min centrifugation time without citing any scientific publications. The centrifugation time has a considerable impact on the turn-around-time. We investigated 74 parameters in samples from 44 patients on a Roche Cobas 6000 system, to see whether there was a statistical significant difference in the test results among specimens centrifuged at 2180 g for 15 min, at 2180 g for 10 min or at 1870 g for 7 min, respectively. Two tubes with different plasma separators (both Greiner Bio-One) were used for each centrifugation condition. Statistical comparisons were made by Deming fit. Tubes with different separators showed identical results in all parameters. Likewise, excellent correlations were found among tubes to which different centrifugation conditions were applied. Fifty percent of the slopes lay between 0.99 and 1.01. Only 3.6 percent of the statistical tests results fell outside the significance level of p < 0.05, which was less than the expected 5%. This suggests that the outliers are the result of random variation and the large number of statistical tests performed. Further, we found that our data are sufficient not to miss a biased test (beta error) with a probability of 0.10 to 0.05 in most parameters. A centrifugation time of either 7 or 10 min provided identical test results compared to the time of 15 min as proposed by WHO under the conditions used in our study.

  1. Simulation of long-term behavior in HLW near-field by centrifugal model test. Part 4. Model test of coupled THM processes in isotropic stress conditions using heatable overpack

    International Nuclear Information System (INIS)

    Nishimoto, Soshi; Okada, Tetsuji; Sawada, Masataka

    2014-01-01

    We demonstrated the equivalent long-term behavior in the near-field of a geological repository for high level radioactive waste disposal, using the centrifugal near-field model test under the coupled thermo-hydraulic-mechanical condition. The model consisted of a sedimentary bedrock, buffer, and heating type model overpack, and was enclosed within a pressure vessel. Tests were conducted with a centrifugal force field of 30 G under isotropic stress-constrain conditions with confining pressures and injection of pore water. The temperature condition of the overpack was constantly 95°C. As the result, the values showed similar behaviors to that of the normal temperature tests partially. However, the different behaviors were measured such as the displacement of overpack change from the settlement to the heave, the extreme drop in the soil pressure of the buffer and the strain of side wall of bedrock change from the tension to the compression after injecting pore water of hundreds hours. In addition, the flow rate of the injection pore water suddenly changed after hundreds of hours. Furthermore, the density of the buffer was lower than that of the normal temperature tests by X-ray CT imaging in the post-tests. We infer that the high temperature overpack influenced the stiffness and the pore water distribution of the buffer, and the density and the soil pressure of the buffer decreased. As a result of the change of stiffness in the disposal hole (buffer), the tendency to the strain of the surrounding bedrock and the displacement of the overpack changed. (author)

  2. Centrifuge modelling of a laterally cyclic loaded pile

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Leth, Caspar Thrane; Hededal, Ole

    2010-01-01

    A total number of 9 static and 6 cyclic centrifuge tests on laterally loaded piles in very dense, dry sand was erformed. The prototype dimensions of the piles were 1 meter in diameter and penetration depths varying from 6 to 10 meters. The static tests were used to investigate the initial subgrade...... reaction modulus and as a reference for cyclic tests. For the cyclic tests the accumulation of deflections and the change in secant stiffness of the soil from repetitive loading were investigated. From all the tests carried out accumulations of deflections were seen. rom the centrifuge tests it was seen...

  3. Performance prediction of industrial centrifuges using scale-down models.

    Science.gov (United States)

    Boychyn, M; Yim, S S S; Bulmer, M; More, J; Bracewell, D G; Hoare, M

    2004-12-01

    Computational fluid dynamics was used to model the high flow forces found in the feed zone of a multichamber-bowl centrifuge and reproduce these in a small, high-speed rotating disc device. Linking the device to scale-down centrifugation, permitted good estimation of the performance of various continuous-flow centrifuges (disc stack, multichamber bowl, CARR Powerfuge) for shear-sensitive protein precipitates. Critically, the ultra scale-down centrifugation process proved to be a much more accurate predictor of production multichamber-bowl performance than was the pilot centrifuge.

  4. Dynamic model including piping acoustics of a centrifugal compression system

    NARCIS (Netherlands)

    Helvoirt, van J.; Jager, de A.G.

    2007-01-01

    This paper deals with low frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the

  5. Development of centrifuge modeling for evaluating the mechanisms of collapse above underground openings

    International Nuclear Information System (INIS)

    Davis, B.C.; Kutter, B.L.; Chang, J.D.L.

    1988-01-01

    Improved prediction of surface collapse above an underground cavity is important in many LLNL programs, including Nuclear Test. To improve the predictive capability, LLNL must better understand the mechanisms involved in the process of collapse. The research aims to develop the centrifuge technique for modeling mechanisms of underground collapse in soil. The authors will also evaluate the adequacy of existing constitutive or flow models of soils for modeling underground collapse. During FY 86, using the centrifuge at University of California, Davis, the authors developed the basic centrifugal modeling technique, conducted experiments, and modeled the process on a computer. In FY 87, they continued to develop the experimental method and analyze results. Results to date have shown that the model dimensions are not necessarily the critical dimensions (i.e., those determining the adequacy of the model). Rather, the critical dimension is the diameter of the chimney above the opening that develops during collapse

  6. Numerical modeling of centrifuge cyclic lateral pile load experiments

    Science.gov (United States)

    Gerolymos, Nikos; Escoffier, Sandra; Gazetas, George; Garnier, Jacques

    2009-03-01

    To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussées. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimental p-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, “pinching” behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented.

  7. Modeling centrifugal cell washers using computational fluid dynamics.

    Science.gov (United States)

    Kellet, Beth E; Han, Binbing; Dandy, David S; Wickramasinghe, S Ranil

    2004-11-01

    Reinfusion of shed blood during surgery could avoid the need for blood transfusions. Prior to reinfusion of the red blood cells, the shed blood must be washed in order to remove leukocytes, platelets, and other contaminants. Further, the hematocrit of the washed blood must be increased. The feasibility of using computational fluid dynamics (CFD) to guide the design of better centrifuges for processing shed blood is explored here. The velocity field within a centrifuge bowl and the rate of protein removal from the shed blood has been studied. The results obtained indicate that CFD could help screen preliminary centrifuge bowl designs, thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Although the focus of this work is on washing shed blood, the methods developed here are applicable to the design of centrifuge bowls for other blood-processing applications.

  8. AIChe equipment testing procedure centrifugal compressors : a guide to performance evaluation and site testing

    CERN Document Server

    AIChE

    2013-01-01

    With its engineer-tested procedures and thorough explanations, Centrifugal Compressors is an essential text for anyone engaged in implementing new technology in equipment design, identifying process problems, and optimizing equipment performance.  This condensed book presents a step by step approach to preparing for, planning, executing, and analyzing tests of centrifugal compressors, with an emphasis on methods that can be conducted on-site and with an acknowledgement of the strengths and limitations of these methods. The book opens with an extensive and detailed section offering definitions

  9. Effect of centrifuge test on blood serum lipids index of cadet pilots.

    Science.gov (United States)

    Wochyński, Zbigniew; Kowalczuk, Krzysztof; Kłossowski, Marek; Sobiech, Krzysztof A

    2016-01-01

    This study aimed at investigating the relationship between the lipid index (WS) in the examined cadets and duration of exposure to +Gz in the human centrifuge. The study involved 19 first-year cadets of the Polish Air Force Academy in Dęblin. Tests in the human centrifuge were repeated twice, i.e. prior to (test I) and 45 days after (test II). After exposure to +Gz, the examined cadets were divided into 2 groups. Group I (N=11) included cadets subjected to a shorter total duration of exposure to +Gz, while group II (N=8) included cadets with a longer total duration of exposure to +Gz. Total cholesterol (TC), high density lipoprotein (HDL), triglycerides (TG), and apolipoproteins A1 and B were assayed in blood serum prior to (assay A) and after (assay B) both exposures to +Gz. Low density lipoprotein (LDL) level was estimated from the Friedewald formula. WS is an own mathematical algorithm. WS was higher in group II, assay A - 10.0 and B - 10.08 of test I in the human centrifuge than in group I where the WS values were 6.91 and 6.96, respectively. WS was also higher in group II in assay A - 10.0 and B -10.1 of test II in the human centrifuge than in group I - 6.96 and 6.80, respectively. The higher value of WS in group II, both after the first and second exposure to +Gz in human centrifuge, in comparison with group I, indicated its usefulness for determination of the maximum capability of applying acceleration of the interval type during training in the human centrifuge.

  10. Pile-Reinforcement Behavior of Cohesive Soil Slopes: Numerical Modeling and Centrifuge Testing

    Directory of Open Access Journals (Sweden)

    Liping Wang

    2013-01-01

    Full Text Available Centrifuge model tests were conducted on pile-reinforced and unreinforced cohesive soil slopes to investigate the fundamental behavior and reinforcement mechanism. A finite element analysis model was established and confirmed to be effective in capturing the primary behavior of pile-reinforced slopes by comparing its predictions with experimental results. Thus, a comprehensive understanding of the stress-deformation response was obtained by combining the numerical and physical simulations. The response of pile-reinforced slope was indicated to be significantly affected by pile spacing, pile location, restriction style of pile end, and inclination of slope. The piles have a significant effect on the behavior of reinforced slope, and the influencing area was described using a continuous surface, denoted as W-surface. The reinforcement mechanism was described using two basic concepts, compression effect and shear effect, respectively, referring to the piles increasing the compression strain and decreasing the shear strain of the slope in comparison with the unreinforced slope. The pile-soil interaction induces significant compression effect in the inner zone near the piles; this effect is transferred to the upper part of the slope, with the shear effect becoming prominent to prevent possible sliding of unreinforced slope.

  11. Design and test of a high pressure centrifugal compressor

    International Nuclear Information System (INIS)

    Choi, Jae Ho; Han, Chak Heui; Paeng, Ki Seok; Chen, Seung Bae; Kim, Yong Ryun

    2005-01-01

    This paper presents an aerodynamic design, flow analysis and performance test of a pressure ratio 4:1 centrifugal compressor for gas turbine engine. The compressor is made up of a centrifugal impeller, a two-stage diffuser consisted of radial and axial types. The impeller has a 45 degree backswept angle and the design running tip clearance is 5% of impeller exit height. Three-dimensional numerical analysis is performed to analyze the flows in the impeller, diffuser and deswirler considering the impeller tip clearance. Test module and rig facilities for the compressor stage performance test are designed and fabricated. The overall compressor stage performances as well as the static pressure fields on the impeller and diffuser are measured. Two diffusers of wedge and airfoil types are tested with an impeller. The calculation and test results show that flow fields downstream the deswirler at the design and off-design points are highly nonuniform and the airfoil diffuser has the better aerodynamic characteristics than those of wedge diffuser

  12. CENTRIFUGAL VIBRATION TEST OF RC PILE FOUNDATION

    Science.gov (United States)

    Higuchi, Shunichi; Tsutsumiuchi, Takahiro; Otsuka, Rinna; Ito, Koji; Ejiri, Joji

    It is necessary that nonlinear responses of structures are clarified by soil-structure interaction analysis for the purpose of evaluating the seismic performances of underground structure or foundation structure. In this research, centrifuge shake table tests of reinforced concrete pile foundation installed in the liquefied ground were conducted. Then, finite element analyses for the tests were conducted to confirm an applicability of the analytical method by comparing the experimental results and analytical results.

  13. Centrifuge Health Monitoring of the 50gTon beam centrifuge at the University of Sheffield

    OpenAIRE

    Cox, C.M.; Black, J.A.; Hakhamanshi, M.; Baker, N.

    2016-01-01

    In order to fully understand scientific test data it is crucial that we first understand the back-ground centrifuge operational environment and its variation with time and centrifugal acceleration. For exam-ple, changes in ambient air temperature or relative humidity in the centrifuge chamber during operation can have a significant impact on the evaporation levels of water from the surface of a clay model. It is vital to un-derstand these temporal changes in order to mitigate drying out of th...

  14. Influence of centrifuge brake on residual platelet count and routine coagulation tests in citrated plasma.

    Science.gov (United States)

    Daves, Massimo; Giacomuzzi, Katia; Tagnin, Enrico; Jani, Erika; Adcock Funk, Dorothy M; Favaloro, Emmanuel J; Lippi, Giuseppe

    2014-04-01

    Sample centrifugation is an essential step in the coagulation laboratory, as clotting tests are typically performed on citrated platelet (PLT) poor plasma (PPP). Nevertheless, no clear indication has been provided as to whether centrifugation of specimens should be performed with the centrifuge brake set to on or off. Fifty consecutive sodium citrate anticoagulated samples were collected and divided into two aliquots. The former was centrifuged as for Clinical Laboratory Standards Institute (CLSI) guidelines with the centrifuge brake set to on, whereas the latter was centrifuged again as for CLSI guidelines, but with the brake set to off. In the PPP of all samples, a PLT count was performed, followed by the analysis of activated partial thromboplastin time (APTT), prothrombin time (PT) and fibrinogen (FBG). The PLT count after samples centrifugation was substantially reduced, either with centrifuge brake set to on or off (5 ± 1 versus 3 ± 1 × 10/l; P = 0.009). The frequency of samples exceeding a PLT count less than 10 × 10/l was nearly double in samples centrifuged with the brake on than in those with the brake off (14 versus 8%; P centrifuge brake set to on (mean bias 0.2 s; P centrifuge brake set to on (mean bias 0.29 g/l; P centrifugation for routine coagulation testing should be preferably performed with the centrifuge brake set to off for providing a better quality specimen.

  15. NASA low speed centrifugal compressor

    Science.gov (United States)

    Hathaway, Michael D.

    1990-01-01

    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  16. Performance Prediction of Centrifugal Compressor for Drop-In Testing Using Low Global Warming Potential Alternative Refrigerants and Performance Test Codes

    Directory of Open Access Journals (Sweden)

    Joo Hoon Park

    2017-12-01

    Full Text Available As environmental regulations to stall global warming are strengthened around the world, studies using newly developed low global warming potential (GWP alternative refrigerants are increasing. In this study, substitute refrigerants, R-1234ze (E and R-1233zd (E, were used in the centrifugal compressor of an R-134a 2-stage centrifugal chiller with a fixed rotational speed. Performance predictions and thermodynamic analyses of the centrifugal compressor for drop-in testing were performed. A performance prediction method based on the existing ASME PTC-10 performance test code was proposed. The proposed method yielded the expected operating area and operating point of the centrifugal compressor with alternative refrigerants. The thermodynamic performance of the first and second stages of the centrifugal compressor was calculated as the polytropic state. To verify the suitability of the proposed method, the drop-in test results of the two alternative refrigerants were compared. The predicted operating range based on the permissible deviation of ASME PTC-10 confirmed that the temperature difference was very small at the same efficiency. Because the drop-in test of R-1234ze (E was performed within the expected operating range, the centrifugal compressor using R-1234ze (E is considered well predicted. However, the predictions of the operating point and operating range of R-1233zd (E were lower than those of the drop-in test. The proposed performance prediction method will assist in understanding thermodynamic performance at the expected operating point and operating area of a centrifugal compressor using alternative gases based on limited design and structure information.

  17. Centrifuge modelling of drained lateral pile - soil response

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte

    of rigid piles. The tests have been performed in homogeneously dense dry or saturated Fontainebleau sand in order to mimic simplified drained offshore soil conditions. Approximately half of the tests have been carried out to investigate the centrifuge procedure in order to create a methodology of testing...... tests were used to investigate the pile - soil interaction to gain a better in-sight into the complex problem. A monotonic test series was carried out initially and then pile - soil interaction curves were deduced from these tests and compared with methodologies used today. The results indicate...... that the current methodologies can be improved and a modification to the methodology has been proposed. Secondly, a cyclic test series was carried out. The accumulation of displacement and the change in secant stiffness of the total response of these tests were evaluated. A simple mathematical model was proposed...

  18. Centrifugation protocols: tests to determine optimal lithium heparin and citrate plasma sample quality.

    Science.gov (United States)

    Dimeski, Goce; Solano, Connie; Petroff, Mark K; Hynd, Matthew

    2011-05-01

    Currently, no clear guidelines exist for the most appropriate tests to determine sample quality from centrifugation protocols for plasma sample types with both lithium heparin in gel barrier tubes for biochemistry testing and citrate tubes for coagulation testing. Blood was collected from 14 participants in four lithium heparin and one serum tube with gel barrier. The plasma tubes were centrifuged at four different centrifuge settings and analysed for potassium (K(+)), lactate dehydrogenase (LD), glucose and phosphorus (Pi) at zero time, poststorage at six hours at 21 °C and six days at 2-8°C. At the same time, three citrate tubes were collected and centrifuged at three different centrifuge settings and analysed immediately for prothrombin time/international normalized ratio, activated partial thromboplastin time, derived fibrinogen and surface-activated clotting time (SACT). The biochemistry analytes indicate plasma is less stable than serum. Plasma sample quality is higher with longer centrifugation time, and much higher g force. Blood cells present in the plasma lyse with time or are damaged when transferred in the reaction vessels, causing an increase in the K(+), LD and Pi above outlined limits. The cells remain active and consume glucose even in cold storage. The SACT is the only coagulation parameter that was affected by platelets >10 × 10(9)/L in the citrate plasma. In addition to the platelet count, a limited but sensitive number of assays (K(+), LD, glucose and Pi for biochemistry, and SACT for coagulation) can be used to determine appropriate centrifuge settings to consistently obtain the highest quality lithium heparin and citrate plasma samples. The findings will aid laboratories to balance the need to provide the most accurate results in the best turnaround time.

  19. Physical simulations using centrifuge techniques

    International Nuclear Information System (INIS)

    Sutherland, H.J.

    1981-01-01

    Centrifuge techniques offer a technique for doing physical simulations of the long-term mechanical response of deep ocean sediment to the emplacement of waste canisters and to the temperature gradients generated by them. Preliminary investigations of the scaling laws for pertinent phenomena indicate that the time scaling will be consistent among them and equal to the scaling factor squared. This result implies that this technique will permit accelerated-life-testing of proposed configurations; i.e, long-term studies may be done in relatively short times. Presently, existing centrifuges are being modified to permit scale model testing. This testing will start next year

  20. Centrifuge modelling of granular flows

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  1. Elements for modeling and design of centrifugal compressor housings

    International Nuclear Information System (INIS)

    Magoia, J.E.; Calderon, T.

    1990-01-01

    Various aspects of the structural analysis of centrifugal compressor housings are studied. These are usually used in different kinds of nuclear sites. Multiple areas of the analysis are evaluated with elastic models based on finite elements: sensitivity to different variables, quality of models on facing theoretical solutions and performed measurements. The development of an excentric bar element improved for the rigidized plate model, is included. The definition of criteria for a more efficient structural analysis as well as recommendations for the design of centrifugal compressor housings concludes the work. (Author) [es

  2. Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand

    DEFF Research Database (Denmark)

    Truong, P.; Lehane, B. M.; Zania, Varvara

    2018-01-01

    A systematic study into the response of monopiles to lateral cyclic loading in medium dense and dense sand was performed in beam and drum centrifuge tests. The centrifuge tests were carried out at different cyclic load and magnitude ratios, while the cyclic load sequence was also varied...

  3. Analysing hydro-mechanical behaviour of reinforced slopes through centrifuge modelling

    Science.gov (United States)

    Veenhof, Rick; Wu, Wei

    2017-04-01

    Every year, slope instability is causing casualties and damage to properties and the environment. The behaviour of slopes during and after these kind of events is complex and depends on meteorological conditions, slope geometry, hydro-mechanical soil properties, boundary conditions and the initial state of the soils. This study describes the effects of adding reinforcement, consisting of randomly distributed polyolefin monofilament fibres or Ryegrass (Lolium), on the behaviour of medium-fine sand in loose and medium dense conditions. Direct shear tests were performed on sand specimens with different void ratios, water content and fibre or root density, respectively. To simulate the stress state of real scale field situations, centrifuge model tests were conducted on sand specimens with different slope angles, thickness of the reinforced layer, fibre density, void ratio and water content. An increase in peak shear strength is observed in all reinforced cases. Centrifuge tests show that for slopes that are reinforced the period until failure is extended. The location of shear band formation and patch displacement behaviour indicate that the design of slope reinforcement has a significant effect on the failure behaviour. Future research will focus on the effect of plant water uptake on soil cohesion.

  4. Centrifuge modelling of lateral displacement of buried pipelines; Modelagem fisica centrifuga de flambagem lateral de dutos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Renato Moreira da Silva de; Almeida, Marcio de Souza Soares de; Marques, Maria Esther Soares; Almeida, Maria Cascao Ferreira de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Costa, Alvaro Maia da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2003-07-01

    This work discusses soil-structure interaction applied to the buckling phenomena of buried pipelines subjected to heated oil flow. A set of physical modelling tests on lateral buckling of pipelines buried on soft clay is presented using COPPE/UFRJ geotechnical centrifuge. A 1:30 pipeline model was moved side ward through a soft clay layer during centrifuge flight, varying the burial depth, in order to simulate the lateral buckling in plane strain condition. The results show different behaviour concerning horizontal and vertical forces measured at pipeline level due to soil reaction. (author)

  5. Large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading.

    Science.gov (United States)

    Kavazanjian, Edward; Gutierrez, Angel

    2017-10-01

    A large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading was conducted to help validate a numerical model for performance based design of geomembrane liner systems. The test was conducted using the 240g-ton centrifuge at the University of California at Davis under the U.S. National Science Foundation Network for Earthquake Engineering Simulation Research (NEESR) program. A 0.05mm thin film membrane was used to model the liner. The waste was modeled using a peat-sand mixture. The side slope membrane was underlain by lubricated low density polyethylene to maximize the difference between the interface shear strength on the top and bottom of the geomembrane and the induced tension in it. Instrumentation included thin film strain gages to monitor geomembrane strains and accelerometers to monitor seismic excitation. The model was subjected to an input design motion intended to simulate strong ground motion from the 1994 Hyogo-ken Nanbu earthquake. Results indicate that downdrag waste settlement and seismic loading together, and possibly each phenomenon individually, can induce potentially damaging tensile strains in geomembrane liners. The data collected from this test is publically available and can be used to validate numerical models for the performance of geomembrane liner systems. Published by Elsevier Ltd.

  6. A vibration model for centrifugal contactors

    International Nuclear Information System (INIS)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ''Beam'' for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k B ) of a motor after measuring the k B value for three different motors. The k B value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well

  7. Uranium and zirconium mass transfer testing of 5.5-cm-diam centrifugal contactors

    International Nuclear Information System (INIS)

    DeMuth, S.F.; Randolph, J.D.

    1988-01-01

    As part of the Consolidated Fuel Reprocessing Program of the Oak Ridge National Laboratory, compact centrifugal contacts were designed and prototypes build for the Breeder Reprocessing Engineering Test (BRET) facility with a throughput capacity of 0.1 t/d of heavy metals. While the construction of BRET has been put on hold indefinitely, development of the 5.5-cm-diam centrifugal contactors has advanced due to the contactor's broad applicability in other areas of fuel reprocessing and other liquid-liquid extraction. Due to the short residence time of the process fluids in a centrifugal contactor, it was necessary to measure the mass transfer efficiency for a typical process flowsheet. This was done with depleted uranium and 91 Zr. The results of mass transfer tests with uranium and zirconium are reported in this paper

  8. Modeling industrial centrifugation of mammalian cell culture using a capillary based scale-down system.

    Science.gov (United States)

    Westoby, Matthew; Rogers, Jameson K; Haverstock, Ryan; Romero, Jonathan; Pieracci, John

    2011-05-01

    Continuous-flow centrifugation is widely utilized as the primary clarification step in the recovery of biopharmaceuticals from cell culture. However, it is a challenging operation to develop and characterize due to the lack of easy to use, small-scale, systems that can be used to model industrial processes. As a result, pilot-scale continuous centrifugation is typically employed to model large-scale systems requiring a significant amount of resources. In an effort to reduce resource requirements and create a system which is easy to construct and utilize, a capillary shear device, capable of producing energy dissipation rates equivalent to those present in the feed zones of industrial disk stack centrifuges, was developed and evaluated. When coupled to a bench-top, batch centrifuge, the capillary device reduced centrate turbidity prediction error from 37% to 4% compared to using a bench-top centrifuge alone. Laboratory-scale parameters that are analogous to those routinely varied during industrial-scale continuous centrifugation were identified and evaluated for their utility in emulating disk stack centrifuge performance. The resulting relationships enable bench-scale process modeling of continuous disk stack centrifuges using an easily constructed, scalable, capillary shear device coupled to a typical bench-top centrifuge. Copyright © 2010 Wiley Periodicals, Inc.

  9. A vibration model for centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ``Beam`` for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k{sub B}) of a motor after measuring the k{sub B} value for three different motors. The k{sub B} value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  10. Horizontal vibrations of piles in a centrifuge

    International Nuclear Information System (INIS)

    Bourdin, B.

    1987-01-01

    The aim of the thesis is the study of soil dynamics for important structures like nuclear power plants, offshore platforms, dams etc. Experimental results of horizontal vibrations on a pile partially anchored in a soil scale model put into a centrifuge are presented. Mechanical similitude conditions from equilibrium equations or rheologic laws are described. After a description of testing equipment (centrifuge, electrodynamic excitator) experimental results are interpreted with a model. Non-linearities on frequency response curves are characterized [fr

  11. Plasma instability of a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    2002-01-01

    Ever since conception of the vacuum arc centrifuge in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a vacuum arc centrifuge. In this work we develop a linearized theoretical model to describe a range of instabilities in the vacuum arc centrifuge plasma column, and then test the validity of the description through comparison with experiment. We conclude that the observed instability is a 'universal' instability, driven by the density gradient, in a plasma with finite conductivity

  12. Centrifuge advances using HTS magnetic bearings

    Science.gov (United States)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  13. Centrifuge enrichment program

    International Nuclear Information System (INIS)

    Astley, E.R.

    1976-01-01

    Exxon Nuclear has been active in privately funded research and development of centrifuge enrichment technology since 1972. In October of 1975, Exxon Nuclear submitted a proposal to design, construct, and operate a 3000-MT SWU/yr centrifuge enrichment plant, under the provisions of the proposed Nuclear Fuel Assurance Act of 1975. The U.S. Energy Research and Development Administration (ERDA) accepted the proposal as a basis for negotiation. It was proposed to build a 1000-MT SWU/yr demonstration increment to be operational in 1982; and after successful operation for about one year, expand the facilities into a 3000-MT SWU/yr plant. As part of the overall centrifuge enrichment plant, a dedicated centrifuge manufacturing plant would be constructed; sized to support the full 3000-MT SWU/yr plant. The selection of the centrifuge process by Exxon Nuclear was based on an extremely thorough evaluation of current and projected enrichment technology; results show that the technology is mature and the process will be cost effective. The substantial savings in energy (about 93%) from utilization of the centrifuge option rather than gaseous diffusion is a compelling argument. As part of this program, Exxon Nuclear has a large hardware R and D program, plus a prototype centrifuge manufacturing capability in Malta, New York. To provide a full-scale machine and limited cascade test capability, Exxon Nuclear is constructing a $4,000,000 Centrifuge Test Facility in Richland, Washington. This facility was to initiate operations in the Fall of 1976. Exxon Nuclear is convinced that the centrifuge enrichment process is the rational selection for emergence of a commercial enrichment industry

  14. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    Science.gov (United States)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  15. Development of a debris flow model in a geotechnical centrifuge

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2013-04-01

    Debris flows occur in three main stages. At first the initial soil mass, which rests in a rigid configuration, reaches a critic state releasing a finite mass over a failure surface. In the second stage the released mass starts being transported downhill in a dynamic motion. Segregation, erosion, entrainment, and variable channel geometry are among the more common characteristics of this stage. Finally, at the third stage the transported mass plus the mass gained or loosed during the transportation stage reach a flat and/or a wide area and its deposition starts, going back to a rigid configuration. The lack of understanding and predictability of debris flow from the traditional theoretical approaches has lead that in the last two decades the mechanics of debris flows started to be analysed around the world. Nevertheless, the validation of recent numerical advances with experimental data is required. Centrifuge modelling is an experimental tool that allows the test of natural processes under defined boundary conditions in a small scale configuration, with a good level of accuracy in comparison with a full scale test. This paper presents the development of a debris flow model in a geotechnical centrifuge focused on the second stage of the debris flow process explained before. A small scale model of an inclined flume will be developed, with laboratory instrumentation able to measure the pore pressure, normal stress, and velocity path, developed in a scaled debris flow in motion. The model aims to reproduce in a controlled environment the main parameters of debris flow motion. This work is carried under the EC 7th Framework Programme as part of the MUMOLADE project. The dataset and data-analysis obtained from the tests will provide a qualitative description of debris flow motion-mechanics and be of valuable information for MUMOLADE co-researchers and for the debris flow research community in general.

  16. Challenges and Opportunities of Centrifugal Microfluidics for Extreme Point-of-Care Testing

    Directory of Open Access Journals (Sweden)

    Issac J. Michael

    2016-02-01

    Full Text Available The advantages offered by centrifugal microfluidic systems have encouraged its rapid adaptation in the fields of in vitro diagnostics, clinical chemistry, immunoassays, and nucleic acid tests. Centrifugal microfluidic devices are currently used in both clinical and point-of-care settings. Recent studies have shown that this new diagnostic platform could be potentially used in extreme point-of-care settings like remote villages in the Indian subcontinent and in Africa. Several technological inventions have decentralized diagnostics in developing countries; however, very few microfluidic technologies have been successful in meeting the demand. By identifying the finest difference between the point-of-care testing and extreme point-of-care infrastructure, this review captures the evolving diagnostic needs of developing countries paired with infrastructural challenges with technological hurdles to healthcare delivery in extreme point-of-care settings. In particular, the requirements for making centrifugal diagnostic devices viable in developing countries are discussed based on a detailed analysis of the demands in different clinical settings including the distinctive needs of extreme point-of-care settings.

  17. Geographically distributed hybrid testing & collaboration between geotechnical centrifuge and structures laboratories

    Science.gov (United States)

    Ojaghi, Mobin; Martínez, Ignacio Lamata; Dietz, Matt S.; Williams, Martin S.; Blakeborough, Anthony; Crewe, Adam J.; Taylor, Colin A.; Madabhushi, S. P. Gopal; Haigh, Stuart K.

    2018-01-01

    Distributed Hybrid Testing (DHT) is an experimental technique designed to capitalise on advances in modern networking infrastructure to overcome traditional laboratory capacity limitations. By coupling the heterogeneous test apparatus and computational resources of geographically distributed laboratories, DHT provides the means to take on complex, multi-disciplinary challenges with new forms of communication and collaboration. To introduce the opportunity and practicability afforded by DHT, here an exemplar multi-site test is addressed in which a dedicated fibre network and suite of custom software is used to connect the geotechnical centrifuge at the University of Cambridge with a variety of structural dynamics loading apparatus at the University of Oxford and the University of Bristol. While centrifuge time-scaling prevents real-time rates of loading in this test, such experiments may be used to gain valuable insights into physical phenomena, test procedure and accuracy. These and other related experiments have led to the development of the real-time DHT technique and the creation of a flexible framework that aims to facilitate future distributed tests within the UK and beyond. As a further example, a real-time DHT experiment between structural labs using this framework for testing across the Internet is also presented.

  18. Seismic soil structure interaction: analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1985-01-01

    A method for non-linear dynamic effective stress analysis is introduced which is applicable to soil-structure interaction problems. Full interaction including slip between structure and foundation is taken into account and the major factors are included which must be considered when computing dynamic soil response. An experimental investigation was conducted using simulated earthquake tests on centrifuged geotechnical models in order to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically-induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results show clearly the pronounced effect that increasing pore water pressures have on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress non-linear analysis. Based on preliminary results, it appears that the pore water pressure effects can be predicted

  19. Simulation model for centrifugal pump in flow networks based on internal characteristics

    International Nuclear Information System (INIS)

    Sun, Ji-Lin; Xue, Ruo-Jun; Peng, Min-Jun

    2018-01-01

    For the simulation of centrifugal pump in flow network system, in general three approaches can be used, the fitting model, the numerical method and the internal characteristics model. The fitting model is simple and rapid thus widely used. The numerical method can provide more detailed information in comparison with the fitting model, but increases implementation complexity and computational cost. In real-time simulations of flow networks, to simulate the condition out of the rated condition, especially for the volume flow rate, which the accuracy of fitting model is incredible, a new method for simulating centrifugal pumps was proposed in this research. The method based on the theory head and hydraulic loss in centrifugal pumps, and cavitation is also to be considered. The simulation results are verified with experimental benchmark data from an actual pump. The comparison confirms that the proposed method could fit the flow-head curves well, and the responses of main parameters in dynamic-state operations are consistent with theoretical analyses.

  20. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    OpenAIRE

    Orlov Alexey; Ushakov Anton; Sovach Victor

    2016-01-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge casca...

  1. Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G. [European Commission, Joint Research Centre, Institute for Transuranium Elements Via Fermi, 2749-TP181,20127 Ispra (Italy)

    2012-09-26

    The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.

  2. Pile foundation response in liquefiable soil deposit during strong earthquakes. ; Centrifugal test for pile foundation model and correlation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Y.; Miura, K. (Kajima Corp., Tokyo (Japan)); Scott, R.; Hushmand, B. (California Inst. of Technology, California, CA (United States))

    1992-09-30

    For the purpose of studying the pile foundation response in liquefiable soil deposit during earthquakes, a centrifugal loading system is employed which can reproduce the stress conditions of the soil in the actual ground, and earthquake wave vibration tests are performed in dry and saturated sand layers using a pile foundation model equipped with 4 piles. In addition, the result of the tests is analyzed by simulation using an analytic method for which effective stress is taken into consideration to investigate the effectiveness of this analytical model. It is clarified from the result of the experiments that the bending moment of the pile and the response characteristics of the foundation in the pile foundation response in saturated sand are greatly affected by the longer period of acceleration wave form of the ground and the increase in the ground displacement due to excess pore water pressure buildup. It is shown that the analytical model of the pile foundation/ground system is appropriate, and that this analytical method is effective in evaluating the seismic response of the pile foundation in nonlinear liquefiable soil. 23 refs., 21 figs., 3 tabs.

  3. Mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures

    OpenAIRE

    Orlov, Aleksey Alekseevich; Ushakov, Anton; Sovach, Victor

    2017-01-01

    The article presents results of development of a mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of silicon isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary hydraulic processes in gas centrifuge cascades for separation...

  4. Engineering test of stripping performance by multi-centrifugal contactors system for spent nuclear reprocessing

    International Nuclear Information System (INIS)

    Masayuki Takeuchi; Tadahiro Washiya; Hiroki Nakabayashi; Takashi Suganuma; Shinnichi Aose

    2005-01-01

    Japan Nuclear Cycle Development Institute (JNC) has been developing centrifugal contactors which are compact and high performance for solvent extraction process in industrial reprocessing plant. The stripping performance including equilibrium time for distribution and hydraulic behavior of the multi-centrifugal contactors were mainly evaluated by using uranium nitrite solution on engineering scale (10 kgHM/hr). In particular, the effects of feed temperature of stripping solution and O/A on the stripping performance were focused in this test. As results, no hydraulic problem such as overflow and entrainment were observed in multi-centrifugal contactors system through all conditions, and the uranium and acid concentrations showed desirable profiles which were nearly consistent with calculated one by MIXSET-X code. As to stripping performance, uranium leak concentration in solvent reached to less than 0.01 g/L, which is target of the stripping performance on this centrifugal contactors system, within nine stages on all conditions. It was also found that the effect of feed temperature of stripping solution (35 degree C → 60 degree C) or O/A (1.0→0.8) on stripping performance corresponds to distribution capacity of two contactors, respectively. The stage efficiency for a contactor was estimated as 97-98% on stripping stage. There were no uranium leaks (less than 40μg/L) in spent solvent discharged from the final stage. The profiles of uranium concentration in multi-contactors become stable within 10 minutes after the stripping test starting. In this way, it was demonstrated that the centrifugal contactors system has good stripping performance on engineering scale. (authors)

  5. Evaluation of Dynamic Behavior of Pile Foundations for Interim Storage Facilities Through Geotechnical Centrifuge Tests

    International Nuclear Information System (INIS)

    Shizuo Tsurumaki; Hiroyuki Watanabe; Akira Tateishi; Kenichi Horikoshi; Shunichi Suzuki

    2002-01-01

    In Japan, there is a possibility that interim storage facilities for recycled nuclear fuel resources may be constructed on quaternary layers, rather than on hard rock. In such a case, the storage facilities need to be supported by pile foundations or spread foundations to meet the required safety level. The authors have conducted a series of experimental studies on the dynamic behavior of storage facilities supported by pile foundations. A centrifuge modeling technique was used to satisfy the required similitude between the reduced size model and the prototype. The centrifuge allows a high confining stress level equivalent to prototype deep soils to be generated (which is considered necessary for examining complex pile-soil interactions) as the soil strength and the deformation are highly dependent on the confining stress. The soil conditions were set at as experimental variables, and the results are compared. Since 2000, the Nuclear Power Engineering Corporation (NUPEC) has been conducting these research tests under the auspices on the Ministry of Economy, Trade and Industry of Japan. (authors)

  6. An experiment to test centrifugal confinement for fusion

    International Nuclear Information System (INIS)

    Ellis, R.F.; Hassam, A.B.; Messer, S.; Osborn, B.R.

    2001-01-01

    The basic idea of centrifugal confinement is to use centrifugal forces from supersonic rotation to augment conventional magnetic confinement. Optimizing this 'knob' results in a fusion device that features four advantages: steady state, no disruptions, superior cross-field confinement, and a simpler coil configuration. The idea rests on two prongs: first, centrifugal forces can confine plasmas to desired regions of shaped magnetic fields; second, the accompanying large velocity shear can stabilize even magnetohydrodynamic (MHD) instabilities. A third feature is that the velocity shear also viscously heats the plasma; no auxiliary heating is necessary to reach fusion temperatures. Regarding transport, the velocity shear can also quell microturbulence, leading to fully classical confinement, as there are no neoclassical effects. Classical parallel electron transport then sets the confinement time. These losses are minimized by a large Pastukhov factor resulting from the deep centrifugal potential well: at Mach 4-5, the Lawson criterion is accessible. One key issue is whether velocity shear will be sufficient by itself to stabilize MHD interchanges. Numerical simulations indicate that laminar equilibria can be obtained at Mach numbers of 4-5 but that the progression toward laminarity with increasing Mach number is accompanied by residual convection from the interchanges. The central goal of the Maryland Centrifugal Torus (MCT) [R. F. Ellis et al., Bull. Am. Phys. Soc. 44, 48 (1998)] is to obtain MHD stability from velocity shear. As an assist to accessing laminarity, MCT will incorporate two unique features: plasma elongation and toroidal magnetic field. The former raises velocity shear efficiency, and modest magnetic shear should suppress residual convection

  7. Understanding and modeling retention of mammalian cells in fluidized bed centrifuges.

    Science.gov (United States)

    Kelly, William; Rubin, Jonathan; Scully, Jennifer; Kamaraju, Hari; Wnukowski, Piotr; Bhatia, Ravinder

    2016-11-01

    Within the last decade, fully disposable centrifuge technologies, fluidized-bed centrifuges (FBC), have been introduced to the biologics industry. The FBC has found a niche in cell therapy where it is used to collect, concentrate, and then wash mammalian cell product while continuously discarding centrate. The goal of this research was to determine optimum FBC conditions for recovery of live cells, and to develop a mathematical model that can assist with process scaleup. Cell losses can occur during bed formation via flow channels within the bed. Experimental results with the kSep400 centrifuge indicate that, for a given volume processed: the bed height (a bed compactness indicator) is affected by RPM and flowrate, and dead cells are selectively removed during operation. To explain these results, two modeling approaches were used: (i) equating the centrifugal and inertial forces on the cells (i.e., a force balance model or FBM) and (ii) a two-phase computational fluid dynamics (CFD) model to predict liquid flow patterns and cell retention in the bowl. Both models predicted bed height vs. time reasonably well, though the CFD model proved more accurate. The flow patterns predicted by CFD indicate a Coriolis-driven flow that enhances uniformity of cells in the bed and may lead to cell losses in the outflow over time. The CFD-predicted loss of viable cells and selective removal of the dead cells generally agreed with experimental trends, but did over-predict dead cell loss by up to 3-fold for some of the conditions. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1520-1530, 2016. © 2016 American Institute of Chemical Engineers.

  8. THEORETICAL FLOW MODEL THROUGH A CENTRIFUGAL PUMP USED FOR WATER SUPPLY IN AGRICULTURE IRRIGATION

    Directory of Open Access Journals (Sweden)

    SCHEAUA Fanel Dorel

    2017-05-01

    motion of the rotor. A theoretical model for calculating the flow of the working fluid through the interior of a centrifugal pump model is presented in this paper as well as the numerical analysis on the virtual model performed with the ANSYS CFX software in order to highlight the flow parameters and flow path-lines that are formed during centrifugal pump operation.

  9. Rapid prototyping of centrifugal microfluidic modules for point of care blood testing

    CSIR Research Space (South Africa)

    Madzivhandila, Phophi

    2016-11-01

    Full Text Available We present modular centrifugal microfluidic devices that enable a series of blood tests to be performed towards a full blood count. The modular approach allows for rapid prototyping of device components in a generic format to complete different...

  10. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    Directory of Open Access Journals (Sweden)

    Orlov Alexey

    2016-01-01

    Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  11. Centrifuge Testing and Seismic Response Analysis for Uplift Behavior of Spread Foundation Structures on Rock

    Directory of Open Access Journals (Sweden)

    Takuya Suzuki

    2016-09-01

    Full Text Available The uplift behavior of structures subjected to severe seismic motion has not been clarified. This paper presents experimental and analytical studies conducted for clarifying this problem of spread foundation structures on rock. First, centrifugal loading tests are conducted to determine the uplift behavior of these structures, and the uplift behavior of these structures is confirmed. Then, simulation analyses are performed using a three-dimensional FE model and the accuracy of these analyses is confirmed. A comparison between test and analyses results clarified the important analytical conditions required for maintaining analysis precision and the limit of analysis precision.

  12. High stability design for new centrifugal compressor

    Science.gov (United States)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  13. Centrifuge. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module provides waste water treatment plant operators with the basic information needed to: (1) successfully run a centrifuge test; (2) accurately read results obtained in test tubes; and (3) obtain…

  14. Centrifuge modelling of rigid piles in soft clay

    DEFF Research Database (Denmark)

    Klinkvort, R.T.; Poder, M.; Truong, P.

    2016-01-01

    of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...

  15. Effect of piping systems on surge in centrifugal compressors

    International Nuclear Information System (INIS)

    Tamaki, Hideaki

    2008-01-01

    There is a possibility that the exchange of the piping system may change the surge characteristic of a compressor. The piping system of a plant is not always the same as that of a test site. Then it is important to evaluate the effect of piping systems on surge characteristics in centrifugal compressors. Several turbochargers combined with different piping systems were tested. The lumped parameter model which was simplified to be solved easily was applied for the prediction of surge point. Surge lines were calculated with the linearlized lumped parameter model. The difference between the test and calculated results was within 10 %. Trajectory of surge cycle was also examined by solving the lumped parameter model. Mild surge and deep surge were successfully predicted. This study confirmed that the lumped parameter model was a very useful tool to predict the effect of piping systems on surge characteristics in centrifugal compressors, even though that was a simple model

  16. Electro-location, tomography and porosity measurements in geotechnical centrifuge models based on electrical resistivity concepts

    Science.gov (United States)

    Li, Zhihua

    This research was focused on the development of electrical techniques for soil characterization and soil dynamic behavior assessment. The research carried out mainly includes (1) development of a needle probe tool for assessment of soil spatial variability in terms of porosity with high-resolution in the centrifuge testing; (2) development of an electro-location technique to accurately detect buried objects' movements inside the soil during dynamic events; (3) collaborative development of a new electrode switching system to implement electrical resistivity tomography, and electro-location with high speed and high resolution. To assess soil spatial variability with high-resolution, electrical needle probes with different tip shapes were developed to measure soil electrical resistivity. After normalizing soil resistivity by pore fluid resistivity, this information can be correlated to soil porosity. Calibrations in laboratory prepared soils were conducted. Loosening due to insertion of needle probes was evaluated. A special needle probe tool, along with data acquisition and data processing tools were developed to be operated by the new NEES robot on the centrifuge. The needle probes have great potential to resolve interfaces between soil layers and small local porosity variations with a spatial resolution approximately equal to the spacing between electrodes (about half of the probe diameter). A new electrode switching system was developed to accurately detect buried objects' movements using a new electro-location scheme. The idea was to establish an electromagnetic field in a centrifuge model by injecting low-frequency alternating currents through pairs of boundary electrodes. The locations of buried objects are related to the potentials measured on them. A closed form expression for the electric field in a rectangular specimen with insulated boundaries was obtained based on the method of images. Effects of sampling parameters on spatial resolution and tradeoffs

  17. Modeling of surge in free-spool centrifugal compressors : experimental validation

    NARCIS (Netherlands)

    Gravdahl, J.T.; Willems, F.P.T.; Jager, de A.G.; Egeland, O.

    2004-01-01

    The derivation of a compressor characteristic, and the experimental validation of a dynamic model for a variable speed centrifugal compressor using this characteristic, are presented. The dynamic compressor model of Fink et al. is used, and a variable speed compressor characteristic is derived by

  18. Modeling and identification of centrifugal compressor dynamics with approximate realizations

    NARCIS (Netherlands)

    Helvoirt, van J.; Jager, de A.G.; Steinbuch, M.; Smeulers, J.P.M.

    2005-01-01

    This paper deals with the parameter identification of a model for the dynamic behavior of a large industrial centrifugal compression system. Experimental results are presented to evaluate a new approach for determining the parameters of the modified version of the well-known Greitzer model. This

  19. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    Science.gov (United States)

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  20. Model Based Fault Detection in a Centrifugal Pump Application

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Cocquempot, Vincent; Izadi-Zamanabadi, Roozbeh

    2006-01-01

    A model based approach for fault detection in a centrifugal pump, driven by an induction motor, is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, observer design and Analytical Redundancy Relation (ARR) design. Structural considerations...

  1. Installation process of suction anchors in Gulf of Guinea clay : Centrifuge modelling

    OpenAIRE

    THOREL, Luc; GARNIER, Jacques; RAULT, Gérard; DENDANI, Hédi; COLLIAT, JL

    2010-01-01

    The preparation process of a deepwater Gulf of Guinea clay for modelling of 24 m long suction anchors at a scale of 1/100 in the LCPC centrifuge, the clay characteristics and the installation phase (self-weight and suction) are presented. Two types of caissons have been tested in each tub : one with stiffeners and the other without stiffener. The embedment ratio is close to the suction caisson's slenderness of 3. An analysis of the forces of suction and soil friction shows, as expected, hi...

  2. A centrifuge CO2 pellet cleaning system

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.; Nelson, W.D.; Schechter, D.E.

    1993-01-01

    Centrifuge-based cryogenic pellet accelerator technology, originally developed at Oak Ridge National Laboratory (ORNL) for the purpose of refueling fusion reactors with high-speed pellets of frozen deuterium/tritium,is now being developed as a method of cleaning without the use of conventional solvents. In these applications large quantities of pellets made of frozen CO 2 or argon are accelerated in a high-speed rotor. The accelerated pellet stream is used to clean or etch surfaces. The advantage of this system is that the spent pellets and debris resulting from the cleaning process can be filtered leaving only the debris for disposal. This paper discusses the centrifuge CO 2 pellet cleaning system, the physics model of the pellet impacting the surface, the centrifuge apparatus, and some initial cleaning and etching tests

  3. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  4. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeong Gon, E-mail: jgha87@kaist.ac.kr; Kim, Dong-Soo, E-mail: dskim@kaist.ac.kr

    2014-10-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI.

  5. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    International Nuclear Information System (INIS)

    Ha, Jeong Gon; Kim, Dong-Soo

    2014-01-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI

  6. System of Thermal Balance Maintenance in Modern Test Benches for Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    A. I. Petrov

    2015-01-01

    Full Text Available The article “Systems of the heat balance maintenance in modern test benches for centrifugal pumps” makes the case to include cooling systems of a working fluid (heat setting in test bench for impeller pumps. It briefly summarizes an experience of bench building to test centrifugal pumps, developed at the BMSTU Department E-10 over the last 10 years. The article gives the formulas and the algorithm to calculate the heat capacity of different types of impeller pumps when tested at the bench as ell as to determine the heating time of the liquid in the bench without external cooling. Based on analysis of the power balance of a centrifugal pump, it is shown that about 90% of the pump unit-consumed electric power in terminals is used for heating up the working fluid in the loop of the test bench. The article gives examples of elementary heat calculation of the pump operation within the test bench. It presents the main types of systems to maintain thermal balance, their advantages, disadvantages and possible applications. The cooling system schemes for open and closed version of the benches both with built-in and with an independent cooling circuit are analysed. The paper separately considers options of such systems for large benches using the cooling tower as a cooling device in the loop, and to test the pumps using the hydraulic fluids other than water, including those at high temperatures of working fluids; in the latter case a diagram of dual-circuit cooling system "liquid-liquid-air" is shown. The paper depicts a necessity to use ethylene glycol coolant in the two-loop cooling bench. It provides an example of combining the functions of cooling and filtration in a single cooling circuit. Criteria for effectiveness of these systems are stated. Possible ways for developing systems to maintain a thermal balance, modern methods of regulation and control are described. In particular, the paper shows the efficiency of frequency control of the

  7. Observations on centrifugation: application to centrifuge development.

    Science.gov (United States)

    Roberts, T; Smith, M; Roberts, B

    1999-11-01

    This report outlines the background to the development of an automated, serial, discrete centrifuge, reporting on the criteria considered essential in such an instrument. We established the criteria by examining the detailed logistics of centrifuge operation in a hospital laboratory. The mean sample load per run, using six centrifuges, was 13.6 samples, and the user-selectable cycle time ranged from 00:01:10 to 00:12:33 (hours:minutes:seconds) with a fixed g value of 1050. During the laboratory working window, (0900-1700), only 50% of the centrifuge capacity was utilized and more than one-third of the sample workload was delayed for >5 min because the centrifuges were not emptied promptly. In addition, 35% of the sample workload was centrifuged for less than the time prescribed in the operational specifications. Based on these findings, we designed a new continuous, serial centrifuge to overcome some of the deficiencies noted in the logistics study. The centrifuge operates continuously, nominally treating 150 samples/h, with a cycle time of 5 min at 1,000 g. The cycle time and g value are variable between limits, and their selection governs the throughput rate. Each sample is centrifuged separately in individual rotors mounted in a sturdy carousel with a periphery that traverses a load/unload station. There is no sample delay because of operator absence, and the capacity is fully utilized. The centrifuge can operate in a stand-alone capacity or has the capability of being integrated into a sample preparation system or as a direct front end for high-throughput analyzers.

  8. CFD simulation of centrifugal cells washers.

    Science.gov (United States)

    Kellet, Beth E; Binbing, Han; Dandy, David S; Wickramasinghe, S Ranil

    2004-01-01

    The feasibility of using computational fluid dynamics to guide the design of better centrifuges for processing shed blood is explored here. The velocity field and the rate of protein removal from the shed blood have been studied. The results indicate that computational fluid dynamics could help screen preliminary centrifuge bowl designs thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Though the focus of this work is on washing shed blood the methods developed here are applicable to the design of centrifuge bowls for other blood processing applications.

  9. A field test of the centrifugal community organization model using psammophilic gerbils in Israel's southern coastal plain

    Science.gov (United States)

    Wasserberg, Gideon; Kotler, B.P.; Morris, D.W.; Abramsky, Z.

    2007-01-01

    Background: An optimal habitat selection model called centrifugal community organization (CCO) predicts that species, although they have the same primary habitat, may co-exist owing to their ability to use different secondary habitats. Goal: Test the predictions of CCO with field experiments. Species: The Egyptian sand gerbil (40 g), Gerbillus pyramidum, and Allenby's gerbil (25 g), G. andersoni allenbyi. Site: Ashdod sand dunes in the southern coastal plain of Israel. Three sandy habitats are present: shifting, semi-stabilized, and stabilized sand. Gerbils occupied all three habitats. Methods: We surveyed rodent abundance, activity levels, and foraging behaviour while experimentally removing G. pyramidum. Results: Three predictions of the CCO model were supported. Both species did best in the semi-stabilized habitat. However, they differed in their secondary habitats. Gerbillus pyramidum preferred the shifting sand habitat, whereas G. a. allenbyi preferred the stabilized habitat. Habitat selection by both species depended on density. However, in contrast to CCO, G. pyramidum dominated the core habitat and excluded G. a. allenbyi. We term this variant of CCO, 'asymmetric CCO'. Conclusions: The fundamental feature of CCO appears valid: co-existence may result not because of what each competing species does best, but because of what they do as a back-up. But in contrast to the prediction of the original CCO model, all dynamic traces of interaction can vanish if the system includes interference competition. ?? 2007 Gideon Wasserberg.

  10. A review of centrifugal testing of gasoline contamination and remediation.

    Science.gov (United States)

    Meegoda, Jay N; Hu, Liming

    2011-08-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.

  11. A Review of Centrifugal Testing of Gasoline Contamination and Remediation

    Directory of Open Access Journals (Sweden)

    Jay N. Meegoda

    2011-08-01

    Full Text Available Leaking underground storage tanks (USTs containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.

  12. Hydrodynamic and mechanical tests of a newly improved counter-current multi-stage centrifugal extractor

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Retegan, Teodora

    2003-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high level waste (HLW) are nowadays of major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involves an extraction process usually carried out by means of a mixer-settler, pulse column or centrifugal contactor. This last, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and built. Similar apparatus was not found in the literature published to-date. The counter-current multi-stage centrifugal extractor is a stainless steel cylinder with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, working in horizontal position. The new internal structure and geometry of the new advanced centrifugal extractor consisting of nine cells (units), five rotation units, two mixing units, two propelling units and two final plates, ensures the counter-current running of the two phases.The central shaft having the rotation cells fixed on it is coupled by an intermediary connection to a electric motor of high rotation speed. Conceptual layout of the advanced counter-current multi-stage centrifugal extractor is presented. The newly designed extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase =1 to examine the mechanical behavior and the hydrodynamics of the two phases in countercurrent. The results showed that the performances have been generally good and the design requirements were fulfilled. The newly designed counter-current multistage centrifugal extractor appears to be a promising way to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  13. Gas dynamics in strong centrifugal fields

    OpenAIRE

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2017-01-01

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of $10^6$g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wa...

  14. Development of centrifugal contactor for FBR fuel reprocessing

    International Nuclear Information System (INIS)

    Washiya, Tadahiro; Takeuchi, Masayuki; Suganuma, Takashi; Aose, Shinichi; Ogino, Hideki

    2003-01-01

    In the Feasibility Study on Commercialized Fast Reactor Cycle Systems, the aqueous reprocessing technology is nominated as a candidate for future reprocessing system, which supposes to apply a centrifugal contactor in the extraction process. For the reprocessing plant, the centrifugal contactor has great advantages such as reducing solvent degradation, improving of equipment utilization rate, compact designing of equipment layout and critical safety domination. From these advantages, the centrifugal contactor is crucial equipment in the aqueous reprocessing process. Since 1985, JNC has been developing the centrifugal contactor. The single unit development has been accomplished and basic characteristics such as extraction performance, fluidic performance and remote maintenance performance have been determined. A durability test has been conducted for high longevity, with consideration given to the nitric acid mist and estimation of the equipment lifetime. System test equipment with centrifugal contactors of engineering scale was installed, and uranium test was conducted. Up to now, a standard flow sheet test in the extraction process and mal-operation test assuming the one stage shutdown condition have been performed. (author)

  15. Theoretical considerations in solid bowl centrifugation

    International Nuclear Information System (INIS)

    Hamilton, R.T.

    1979-01-01

    A combination of literature survey and independent analysis determined three relationships for the prediction of the critical (or minimum recoverable) particle size in a solid bowl centrifuge. The relationships were derived based on three different theories of fluid behavior within the centrifuge; (1) laminar film flow (laminar film model), (2) plug flow (Sharples Model), and parabolic flow (modified Sharples Model). The critical particle size for the centrifuge used in Cs-PTA recovery in the CAW process predicted by the three relationships range from 0.19 to 0.34 μm (1 μm = 10 -6 m). The laminar film model gives the most conservative estimate of critical particle size (0.34 μm) and the resulting relationship is recommended for use to predict solid bowl centrifuge performance. Three correction factors are incorporated into the predictive equations to account for the effects of fluid turbulence near the centrifuge feed point, fluid lag and hindered settling. Of these factors, turbulence near the feed point (which is accounted for by using an effective centrifuge length) has the greatest impact, increasing the predicted critical particle size by 15%, while the combination of fluid lag and hindered settling factors increase the recoverable particle size by 4%. The overall effect of the correction factors is an approximately 20% decrease in centrifuge effectivity. The fraction of solids smaller than the critical size range has not been reliably determined for laboratory or plant prepared Cs-PTA. In addition, the density of Cs-PTA crystals is reported to vary from 3.2 to 12 grams per cubic centimeter

  16. Design of small centrifugal compressor test model for a supercritical CO2 compressor in the fast reactor power plant

    International Nuclear Information System (INIS)

    Muto, Y.; Ishizuka, T.; Aritomi, M.

    2008-01-01

    In order to clarify the CO 2 compressor performance in the vicinity of critical point, a research project has been started in Tokyo Institute of Technology based on Japanese government fund. This paper describes how fundamental parameters were selected and sizing of a small and high speed impeller of the test centrifugal compressor. The concept of canned type compressor structures provided with high speed electric motor and preliminary aerodynamic performance prediction are also given. (authors)

  17. Development of uranium enrichment technology by gas centrifugation

    International Nuclear Information System (INIS)

    Sibata, Tomofumi; Kai, Tsunetoshi

    1996-01-01

    The development of a gas-centrifuge for uranium enrichment has been conducted by Power Reactor and Nuclear Fuel Development Corporation in Japan after the first several years' fruitless works, the R and D works came to the point and continuing rapid improvements of centrifuges have started, Cascade tests were given with C-1 and C-2 cascade experimental facilities. Life, reliability and feasibility tests were given with the pilot plant and the demonstration plant. As a result of these works, the private commercial plant has started the operation. Although the main efforts were devoted to the development of metal rotor centrifuges in the course mentioned above, composite material rotor centrifuges have also been developed in parallel to achieve higher performance. Promising results have been being obtained with cascade test facilities on the pilot plant scale. Furthermore, R and D works are being proceeded on more excellent and advanced centrifuges. (author)

  18. Determination of a suitable set of loss models for centrifugal compressor performance prediction

    Directory of Open Access Journals (Sweden)

    Elkin I. GUTIÉRREZ VELÁSQUEZ

    2017-10-01

    Full Text Available Performance prediction in preliminary design stages of several turbomachinery components is a critical task in order to bring the design processes of these devices to a successful conclusion. In this paper, a review and analysis of the major loss mechanisms and loss models, used to determine the efficiency of a single stage centrifugal compressor, and a subsequent examination to determine an appropriate loss correlation set for estimating the isentropic efficiency in preliminary design stages of centrifugal compressors, were developed. Several semi-empirical correlations, commonly used to predict the efficiency of centrifugal compressors, were implemented in FORTRAN code and then were compared with experimental results in order to establish a loss correlation set to determine, with good approximation, the isentropic efficiency of single stage compressor. The aim of this study is to provide a suitable loss correlation set for determining the isentropic efficiency of a single stage centrifugal compressor, because, with a large amount of loss mechanisms and correlations available in the literature, it is difficult to ascertain how many and which correlations to employ for the correct prediction of the efficiency in the preliminary stage design of a centrifugal compressor. As a result of this study, a set of correlations composed by nine loss mechanisms for single stage centrifugal compressors, conformed by a rotor and a diffuser, are specified.

  19. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    Science.gov (United States)

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  20. Stainless Steel Round Robin Test: Centrifugally cast stainless steel screening phase

    Energy Technology Data Exchange (ETDEWEB)

    Bates, D J; Doctor, S R; Heasler, P G; Burck, E

    1987-10-01

    This report presents the results of the Centrifugally Cast Stainless Steel Round Robin Test (CCSSRRT). The CCSSRRT is the first phase of an effort to investigate and improve the capability and reliability of NDE inspections of light water reactor piping systems. This phase was a screening test to identify the most promising procedures presently available for CCSS. The next phase will be an in-depth program to evaluate the capability and reliability of inservice inspections (ISI) for piping. In the CCSSRRT, 15 centrifugally cast stainless steel pipe sections containing welds and laboratory-grown thermal fatigue cracks in both columnar and equiaxed base material were used. These pipe specimens were inspected by a total of 18 teams from Europe and the United States using a variety of NDE techniques, mostly ultrasonic (UT). The inspections were carried out at the team's facilities and included inspections from both sides of the weld and inspections restricted to one side of the weld. The results of the CCSSRRT make it apparent that a more detailed study on the capability and reliability of procedures to inspect stainless steel materials is needed to better understand the specific material and flaw properties and how they affect the outcome of an inspection.

  1. CENTRIFUGE APPARATUS

    Science.gov (United States)

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  2. Development of the virtual experimental bench on the basis of modernized research centrifugal compressor stage test unit with the 3D impeller.

    Science.gov (United States)

    Aksenov, A. A.; Danilishin, A. M.; Dubenko, A. M.; Kozhukov, Y. V.

    2017-08-01

    Design modernization of the centrifugal compressor stage test bench with three dimensional impeller blades was carried out for the possibility of holding a series of experimental studies of different 3D impeller models. The studies relates to the problem of joint work of the impeller and the stationary channels of the housing when carrying out works on modernization with the aim of improving the parameters of the volumetric capacity or pressure in the presence of design constraints. The object of study is the experimental single end centrifugal compressor stage with the 3D impeller. Compressor stage consists of the 3D impeller, vaneless diffuser (VLD), outlet collector - folded side scroll and downstream pipe. The drive is a DC motor 75 kW. The increase gear (multiplier) was set between the compressor and DC motor, gear ratio is i = 9.8. To obtain the characteristics of the compressor and the flow area the following values were measured: total pressure, static pressure, direction (angles) of the stream in different cross sections. Additional pneumometric probes on the front wall of the VLD of the test bench have been installed. Total pressure probes and foster holes for the measurement of total and static pressure by the new drainage scheme. This allowed carrying out full experimental studies for two elements of centrifugal compressor stage. After the experimental tests the comprehensive information about the performance of model stage were obtained. Was measured geometric parameters and the constructed virtual model of the experimental bench flow part with the help of Creo Parametric 3.0 and ANSYS v. 16.2. Conducted CFD calculations and verification with experimental data. Identifies the steps for further experimental and virtual works.

  3. Cardiac arrhythmias during aerobatic flight and its simulation on a centrifuge.

    Science.gov (United States)

    Zawadzka-Bartczak, Ewelina K; Kopka, Lech H

    2011-06-01

    It is well known that accelerations during centrifuge training and during flight can provoke cardiac arrhythmias. Our study was designed to investigate both the similarities and differences between heart rhythm disturbances during flights and centrifuge tests. There were 40 asymptomatic, healthy pilots who performed two training flights and were also tested in a human centrifuge according to a program of rapid onset rate acceleration (ROR) and of centrifuge simulation of the actual acceleration experienced in flight (Simulation). During the flight and centrifuge tests ECG was monitored with the Holter method. ECG was examined for heart rhythm changes and disturbances. During flights, premature ventricular contractions (PVCs) were found in 25% of the subjects, premature supraventricular contractions (PSVCs) and PVCs with bigeminy in 5%, and pairs of PVCs in 2.5% of subjects. During the centrifuge tests, PVCs were experienced by 45% of the subjects, PSVCs and pairs of PVCs by 7.5%, and PVCs with bigeminy by 2.5%. Sinus bradycardia was observed during flights and centrifuge tests in 7.5% of subjects. Comparative evaluation of electrocardiographic records in military pilots during flights and centrifuge tests demonstrated that: 1) there were no clinically significant arrhythmias recorded; and 2) the frequency and kind of heart rhythm disturbances during aerobatic flight and its simulation on a centrifuge were not identical and did not occur repetitively in the same persons during equal phases of the tests.

  4. Prediction and Reduction of Aerodynamic Noise of the Multiblade Centrifugal Fan

    Directory of Open Access Journals (Sweden)

    Shuiqing Zhou

    2014-08-01

    Full Text Available An aerodynamic and aeroacoustic investigation of the multiblade centrifugal fan is proposed in this paper, and a hybrid technique of combining flow field calculation and acoustic analysis is applied to solve the aeroacoustic problem of multiblade centrifugal fan. The unsteady flow field of the multiblade centrifugal fan is predicted by solving the incompressible Reynolds-averaged Navier-Stokes (RANS equations with conventional computing techniques for fluid dynamics. The principal noise source induced is extracted from the calculation of the flow field by using acoustic principles, and the modeled sources on inner and outer surfaces of the volute are calculated with multiregional boundary element method (BEM. Through qualitative analysis, the sound pressure amplitude distribution of the multiblade centrifugal fan in near field is given and the sound pressure level (SPL spectrum diagram of monitoring points in far field is obtained. Based on the analysis results, the volute tongue structure is adjusted and then a low-noise design for the centrifugal fan is proposed. The comparison of noise tests shows the noise reduction of improved fan model is more obvious, which is in good agreement with the prediction using the hybrid techniques.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT: TRITON SYSTEMS, LLC SOLID BOWL CENTRIFUGE, MODEL TS-5000

    Science.gov (United States)

    Verification testing of the Triton Systems, LLC Solid Bowl Centrifuge Model TS-5000 (TS-5000) was conducted at the Lake Wheeler Road Field Laboratory Swine Educational Unit in Raleigh, North Carolina. The TS-5000 was 48" in diameter and 30" deep, with a bowl capacity of 16 ft3. ...

  6. Prenatal centrifugation: A model for fetal programming of adult weight?

    Science.gov (United States)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-08-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1-g. Comparisons were made with 1-g stationary controls, also cross- fostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P)12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  7. Waves in Strong Centrifugal Field

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarization and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modeling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  8. Investigation of CFD calculation method of a centrifugal pump with unshrouded impeller

    Science.gov (United States)

    Wu, Dazhuan; Yang, Shuai; Xu, Binjie; Liu, Qiaoling; Wu, Peng; Wang, Leqin

    2014-03-01

    Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k-ɛ, renormalization group k-ɛ, and Spalart-Allmars models, the Realizable k-ɛ model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller.

  9. Lithospheric-scale centrifuge models of pull-apart basins

    Science.gov (United States)

    Corti, Giacomo; Dooley, Tim P.

    2015-11-01

    We present here the results of the first lithospheric-scale centrifuge models of pull-apart basins. The experiments simulate relative displacement of two lithospheric blocks along two offset master faults, with the presence of a weak zone in the offset area localising deformation during strike-slip displacement. Reproducing the entire lithosphere-asthenosphere system provides boundary conditions that are more realistic than the horizontal detachment in traditional 1 g experiments and thus provide a better approximation of the dynamic evolution of natural pull-apart basins. Model results show that local extension in the pull-apart basins is accommodated through development of oblique-slip faulting at the basin margins and cross-basin faults obliquely cutting the rift depression. As observed in previous modelling studies, our centrifuge experiments suggest that the angle of offset between the master fault segments is one of the most important parameters controlling the architecture of pull-apart basins: the basins are lozenge shaped in the case of underlapping master faults, lazy-Z shaped in case of neutral offset and rhomboidal shaped for overlapping master faults. Model cross sections show significant along-strike variations in basin morphology, with transition from narrow V- and U-shaped grabens to a more symmetric, boxlike geometry passing from the basin terminations to the basin centre; a flip in the dominance of the sidewall faults from one end of the basin to the other is observed in all models. These geometries are also typical of 1 g models and characterise several pull-apart basins worldwide. Our models show that the complex faulting in the upper brittle layer corresponds at depth to strong thinning of the ductile layer in the weak zone; a rise of the base of the lithosphere occurs beneath the basin, and maximum lithospheric thinning roughly corresponds to the areas of maximum surface subsidence (i.e., the basin depocentre).

  10. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Mase, Hiroshi

    1998-01-01

    The plasma centrifuge is one of statistical isotope separation processes which uses the centrifugal force of a J x B driven rotating plasma in a magnetic field to give rise to the mass-dependent radial transport of isotopic ions. The system has been developed as an alternative to the gas centrifuge because a much higher rotational velocity and separation factor have been achieved. In this review, the physical aspects of the plasma centrifuge followed by the recent experimental achievements are described, especially in comparison with the gas centrifuge. (author)

  11. Design, fabrication, and test plan of a small centrifugal compressor test model for a supercritical CO2 compressor in the fast reactor power plant

    International Nuclear Information System (INIS)

    Muto, Yasushi; Ishizuka, Takao; Aritomi, Masanori

    2009-01-01

    To clarify the CO 2 compressor performance in the vicinity of the critical point, a research project has begun at Tokyo Institute of Technology based on Japanese government funding. This paper describes the design and fabrication results of a small and high-speed centrifugal test compressor. Drawings of compressor structures such as an impeller and a rotor are presented. Numerical analysis results confirm that a desirable fluid flow distribution and structural integrity with respect to both the vane strength and rotor vibration can be expected. (author)

  12. Performance Testing Of A Modified Centrifugal Fan With Serrated Blade Impeller

    Directory of Open Access Journals (Sweden)

    Zaimar

    2017-10-01

    Full Text Available Changes of shape dimension and component part of impeller might change of characteristic fluid flow so that pressure static in the fan housing changed. Changing some geometric characteristics of the centrifugal fan has more efficiency taking with energy crises into consideration. Several factors that can affect fan performance namely design and type size rotation speed air condition or gas through a fan operating point on the nature of the relationship between a volume of air flow and pressure. The purpose of this research was to test of fan performance of the modified centrifugal fan with the serrated blade impeller. The addition of a percentage of closing the inlet causes the air volumetric rate the airflow energy BHP and total efficiency except for the fan total and static pressure. The experimental test results there are static pressure data and the resulting total pressure is different or distorted 10-17 of deviation from calculation data based on the fan laws. This is possible because of changes in the shape of the blade with serrated on the inside of the impeller. Based on the performance curve shows that the selection of impeller speeds of 800 RPM produces a relatively high air volumetric rate is proportional to the total pressure of the fan and the flow energy so that it is more efficient than other impeller speeds.

  13. THE TESTING OF COMMERCIALLY AVAILABLE ENGINEERING AND PLANT SCALE ANNULAR CENTRIFUGAL CONTACTORS FOR THE PROCESSING OF SPENT NUCLEAR FUEL

    International Nuclear Information System (INIS)

    Jack D. Law; David Meikrantz; Troy Garn; Nick Mann; Scott Herbst

    2006-01-01

    Annular centrifugal contactors are being evaluated for process scale solvent extraction operations in support of United State Advanced Fuel Cycle Initiative goals. These contactors have the potential for high stage efficiency if properly employed and optimized for the application. Commercially available centrifugal contactors are being tested at the Idaho National Laboratory to support this program. Hydraulic performance and mass transfer efficiency have been measured for portions of an advanced nuclear fuel cycle using 5-cm diameter annular centrifugal contactors. Advanced features, including low mix sleeves and clean-in-place rotors, have also been evaluated in 5-cm and 12.5-cm contactors

  14. Application of two turbulence models for computation of cavitating flows in a centrifugal pump

    International Nuclear Information System (INIS)

    He, M; Guo, Q; Zhou, L J; Wang, X; Wang, Z W

    2013-01-01

    To seek a better numerical method to simulate the cavitating flow field in a centrifugal pump, the applications between RNG k- ε and LES turbulence model were compared by using the Zwart-Gerber-Belamri cavitation model. It was found that both the models give almost the same results with respect to pump performance and cavitation evolutions including growth, local contraction, stability and separation in the impeller passage. But the LES model can not only capture the pump suction recirculation and the low frequency fluctuation caused by it, but also combine the changes of the shaft frequency amplitude acting on the impeller with the cavitation unstable characteristics. Thus the LES model has more advantages than RNG k- ε model in calculating the unsteady cavitating flow in a centrifugal pump

  15. Scaling laws in centrifuge modelling for capillary rise in soils; Lois de similitude de l'ascension capillaire dans les sols en centrifugeuse

    Energy Technology Data Exchange (ETDEWEB)

    Rezzoug, A.; Konig, D.; Triantafyllidis, Th. [Ruhr Bochum Univ. (Germany)

    2000-07-01

    It appears to be possible to extend the application of geotechnical centrifuge modelling to environmental problems. In this paper, one aspect of similitude laws concerning the flow of water through soils is investigated. Within the Network of European Centrifuges of Environmental Geotechnic Research (NECER), several tests have been carried out to study similitude laws describing the capillary ascension in porous media under different levels of acceleration. The aim of this paper is to present the results obtained at Ruhr-Universitaet Bochum. A fine sand is used in the experiment. For the visualisation of capillary height in the soil sample, image processing is used. Different boundary conditions (constant water level or variable) have been investigated and discussed. A simple similitude law for capillary rise has been investigated and the kinetic phenomena has been measured at different g-levels. These experiments confirm, that capillary rise appears to be scaled by the factor N and time seems to be scaled by N{sup 2}. These results validate thus the possibility of using accelerated small-scale models of capillary phenomena in a centrifuge, and open the way to more complex investigations on flow and pollutant transports in unsaturated centrifuged soils. (authors)

  16. DEM simulation of granular flows in a centrifugal acceleration field

    Science.gov (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  17. Uranium enrichment by centrifuge in Japan

    International Nuclear Information System (INIS)

    Watanabe, T.; Murase, T.

    1977-01-01

    The demand for enriched uranium is on the increase with nuclear power capacity in which the LWR predominates and is estimated to exceed the supply from the present facilities in the world in less than ten years. Therefore, the basic strategy for enriched uranium is investigated on the following three-point long-range program in Japan: 1. To continue negotiations to extend the current allocation by the long-term contract; 2. To seek active participation in international enrichment projects; and 3. To make efforts to develop uranium enrichment technology and to construct inland facilities. On this basis, a vigorous development program of gas centrigue process for industrialization was launched out in 1972 as a national project. Ever since substantial progress in this field has been made and development works have been increased year after year. At present, a concrete plan of a pilot plant is taking shape. Up to now, several types of centrifuges were developed, of which some were completed as prototype models, and subjected to life tests and also to extensive earthquake-resistivity tests for the characteristics of Japanese geological condition. An enrichment plant is composed of so many centrifuges that the installation and piping system of centrifuges is an important factor which has an effect on plant economy and reliability. Two types of the experimental cascade were constructed in Japan. One has been in operation since 1973, and the other since 1975. Valuable empirical data have been accumulated on cascade characteristics, maintenance scheme and so on. It will be important for the coming plants to have a flexibility to escalation of labor and energy cost, or to variation of the separative work requirement and further. An economic prospect of centrifuge enrichment process is presented

  18. Solvent extraction studies in miniature centrifugal contactors

    International Nuclear Information System (INIS)

    Siczek, A.A.; Meisenhelder, J.H.; Bernstein, G.J.; Steindler, M.J.

    1980-01-01

    A miniature short-residence-time centrifugal solvent extraction contactor and an eight-stage laboratory minibank of centrifugal contactors were used for testing the possibility of utilizing kinetic effects for improving the separation of uranium from ruthenium and zirconium in the Purex process. Results of these tests showed that a small improvement found in ruthenium and zirconium decontamination in single-stage solvent extraction tests was lost in the multistage extraction tests- in fact, the extent of saturation of the solvent by uranium, rather than the stage residence time, controlled the extent of ruthenium and zirconium extraction. In applying the centrifugal contactor to the Purex process, the primary advantages would be less radiolytic damage to the solvent, high troughput, reduced solvent inventory, and rapid attainment of steady-state operating conditions. The multistage mini contactor was also tested to determine the suitability of short-residence-time contactors for use with the Civex and Thorex processes and was found to be compatible with the requirements of these processes. (orig.) [de

  19. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Science.gov (United States)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.

  20. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  1. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  2. Gas dynamics in strong centrifugal fields

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V. [National research nuclear university “MEPhI”, Kashirskoje shosse, 31,115409, Moscow (Russian Federation)

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  3. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    Science.gov (United States)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  4. Optimization of Power Consumption for Centrifugation Process Based on Attenuation Measurements

    Science.gov (United States)

    Salim, M. S.; Abd Malek, M. F.; Sabri, Naseer; Omar, M. Iqbal bin; Mohamed, Latifah; Juni, K. M.

    2013-04-01

    The main objective of this research is to produce a mathematical model that allows decreasing the electrical power consumption of centrifugation process based on attenuation measurements. The centrifugation time for desired separation efficiency may be measured to determine the power consumed of laboratory centrifuge device. The power consumption is one of several parameters that affect the system reliability and productivity. Attenuation measurements of wave propagated through blood sample during centrifugation process were used indirectly to measure the power consumption of device. A mathematical model for power consumption was derived and used to modify the speed profile of centrifuge controller. The power consumption model derived based on attenuation measurements has successfully save the power consumption of centrifugation process keeping high separation efficiency. 18kW.h monthly for 100 daily time device operation had been saved using the proposed model.

  5. Optimization of Power Consumption for Centrifugation Process Based on Attenuation Measurements

    International Nuclear Information System (INIS)

    Salim, M S; Iqbal bin Omar, M; Malek, M F Abd; Mohamed, Latifah; Sabri, Naseer; Juni, K M

    2013-01-01

    The main objective of this research is to produce a mathematical model that allows decreasing the electrical power consumption of centrifugation process based on attenuation measurements. The centrifugation time for desired separation efficiency may be measured to determine the power consumed of laboratory centrifuge device. The power consumption is one of several parameters that affect the system reliability and productivity. Attenuation measurements of wave propagated through blood sample during centrifugation process were used indirectly to measure the power consumption of device. A mathematical model for power consumption was derived and used to modify the speed profile of centrifuge controller. The power consumption model derived based on attenuation measurements has successfully save the power consumption of centrifugation process keeping high separation efficiency. 18kW.h monthly for 100 daily time device operation had been saved using the proposed model.

  6. Separations by centrifugal phenomena

    International Nuclear Information System (INIS)

    Hsu, H.W.

    1981-01-01

    The technical information presented herein emphasizes the uniqueness of the centrifugal separations methodology and pertinent theory for various kinds of centrifugation. The topics are arranged according to gas, liquid, and solid phases, in the order of increasing densities. Much space is devoted to liquid centrifugation because of the importance of this technique in chemical and biological laboratories. Many separational and characterizational examples are illustrated in detail. The material has been divided into 7 chapters entitled: 1) Introduction, 2) Basic Theory of Centrifugation, 3) Gas Centrifuges, 4) Preparative Liquid Centrifuges, 5) Analytical Liquid Centrifuges, 6) Liquid Centrifuges in Practice, and 7) Mechanical Separations by Centrifuges. Separate abstracts have been prepared for each chapter except the introduction

  7. Uplifting Behavior of Shallow Buried Pipe in Liquefiable Soil by Dynamic Centrifuge Test

    Directory of Open Access Journals (Sweden)

    Bo Huang

    2014-01-01

    Full Text Available Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure.

  8. Uplifting Behavior of Shallow Buried Pipe in Liquefiable Soil by Dynamic Centrifuge Test

    Science.gov (United States)

    Liu, Jingwen; Ling, Daosheng

    2014-01-01

    Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure. PMID:25121140

  9. Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test.

    Science.gov (United States)

    Huang, Bo; Liu, Jingwen; Lin, Peng; Ling, Daosheng

    2014-01-01

    Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure.

  10. Design of a piezoelectric shaker for centrifuge testing

    Science.gov (United States)

    Canclini, J. G.; Henderson, J. M.

    1979-01-01

    The design of a prototype piezoelectric shaker and its development to date is described. Although certain design problems remain to be solved, the piezoelectric system shows promise for adaptation to a larger payload system, such as the proposed geotechnical centrifuge at the Ames Research Center.

  11. Centrifugal dewatering of acid casein curd: effect of casein manufacturing and centrifugation variables on curd compression in a laboratory centrifuge.

    Science.gov (United States)

    Munro, P A; Van Til, H J

    1988-10-20

    Data relevant to curd compression in a horizontal, solid bowl decanter centrifuge have been obtained by studying the dewatering of acid casein curd in a batch laboratory centrifuge. Analysis of curd compression under centrifugal force predicts a moisture content gradient in the dewatered curd from a maximum at the curd-liquid interface to a minimum at the centrifuge bowl wall. This moisture content gradient was also measured experimentally, and its practical implications are discussed. Increases in centrifugal force, centrifugation time, and centrifugation temperature all caused a marked de crease in dewatered curd moisture content, whereas in creases in precipitation pH and maximum washing temperature caused a smaller decrease in dewatered curd moisture content.

  12. Multiphase flow modeling in centrifugal partition chromatography.

    Science.gov (United States)

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-09

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B

  13. Centrifugation

    International Nuclear Information System (INIS)

    Subbaramajer.

    1983-01-01

    The theoretical analysis of the processes taking place at centrifugal method of isotope separation taking into account the latest investigations, in particular, investigation of velocity field applying the theory of boundary layers in rotating gas is conducted. As a result of using power computers for the solution of hydrodynamics equations by numerical methods sufficiently exact solutions of main hydrodynamic equations, reflecting the real centrifuge construction are derived. The increase of calculation accuracy of the flow field reflected also on the accuracy of the diffusion equation solution. Three parameters of similarity (height of transfer unit, flow, mass transfer coefficient) and their connection with the flow field, elementary separation coefficient in a cetrifugal field and molecular diffusion coefficient is determined. Modified formulas for the separation coefficient and separation centrifuge power taking into account similarity parameter changes over the axis are derived. The possibility of determining the system of controlled parameters optimizing the separation centrifuge power is shown

  14. Theory of uranium enrichment by the gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D R [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; California Univ., Berkeley (USA). Dept. of Nuclear Engineering)

    1981-01-01

    Onsager's analysis of the hydrodynamics of fluid circulation in the boundary layer on the rotor wall of a gas centrifuge is reviewed. The description of the flow in the boundary layers on the top and bottom end caps due to Carrier and Maslen is summarized. The method developed by Wood and Morton of coupling the flow models in the rotor wall and end cap boundary layers to complete the hydrodynamic analysis of the centrifuge is presented. Mechanical and thermal methods of driving the internal gas circulation are described. The isotope enrichment which results from the superposition of the elementary separation effect due to the centrifugal field in the gas and its internal circulation is analyzed by the Onsager-Cohen theory. The performance function representing the optimized separative power of a centrifuge as a function of throughput and cut is calculated for several simplified internal flow models. The use of asymmetric ideal cascades to exploit the distinctive features of centrifuge performance functions is illustrated.

  15. Thermal hydrodynamic analysis of a countercurrent gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de

    1999-01-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  16. Model based fault diagnosis in a centrifugal pump application using structural analysis

    DEFF Research Database (Denmark)

    Kallesøe, C. S.; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2004-01-01

    A model based approach for fault detection and isolation in a centrifugal pump is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, Analytical Redundant Relations (ARR) and observer designs. Structural considerations on the system are used...

  17. Model Based Fault Diagnosis in a Centrifugal Pump Application using Structural Analysis

    DEFF Research Database (Denmark)

    Kallesøe, C. S.; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2004-01-01

    A model based approach for fault detection and isolation in a centrifugal pump is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, Analytical Redundant Relations (ARR) and observer designs. Structural considerations on the system are used...

  18. Centrifuge modeling of rocking-isolated inelastic RC bridge piers.

    Science.gov (United States)

    Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George

    2014-12-01

    Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Published by John Wiley & Sons Ltd.

  19. A network application for modeling a centrifugal compressor performance map

    Science.gov (United States)

    Nikiforov, A.; Popova, D.; Soldatova, K.

    2017-08-01

    The approximation of aerodynamic performance of a centrifugal compressor stage and vaneless diffuser by neural networks is presented. Advantages, difficulties and specific features of the method are described. An example of a neural network and its structure is shown. The performances in terms of efficiency, pressure ratio and work coefficient of 39 model stages within the range of flow coefficient from 0.01 to 0.08 were modeled with mean squared error 1.5 %. In addition, the loss and friction coefficients of vaneless diffusers of relative widths 0.014-0.10 are modeled with mean squared error 2.45 %.

  20. Scaling of the movement and fate of contaminant releases in the vadose zone by centrifuge modelling; Reproduction de la migration et de l'evolution de polluants rejetes dans la zone insaturee par centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.A. [Waterloo Univ., ON (Canada). Dept. of Civil Engineering; Cooke, A.B. [New Brunswick Univ., Dept. of Civil Engineering, Fredericton, NB (Canada); Mitchell, R.J. [Queen' s Univ., Dept. of Civil Engineering, Kingston, ON (Canada)

    2000-07-01

    The release of contaminants into partially water-wet porous media is a complex problem to simulate in the laboratory and numerically. Research into the application of a geo-environmental centrifuge to simulate non-reactive contaminant releases in partially water-wet sand was performed at Queen's University in Kingston, Ontario. This paper highlights results of the Queen's University centrifuge contaminant release studies from 1990 to present. Results of this study support the conclusion that a geo-environmental centrifuge can be used to replicate the complex behaviour of non-reactive contaminant releases into water-wet sand provided that attention is paid to the modelling materials and modelling scales. (authors)

  1. Direct Monte-Carlo Siumulations In a Gas Centrifuge

    National Research Council Canada - National Science Library

    Roblin, Philippe

    2000-01-01

    The study is related to the centrifugation process for isotope separation. In a gas centrifuge, the major part of the rotating gas is modeled by fluid equations with this gas flow described by suitable Navier-Stokes...

  2. Scaling of rotation and isotope separation in a vacuum-arc centrifuge

    International Nuclear Information System (INIS)

    Prasad, R.R.; Krishnan, M.

    1987-01-01

    Scaling is described of rotation, plasma column size and separation in a vacuum-arc centrifuge. The vacuum-arc centrifuge is a magnetized, fulled ionized, quasineutral column of plasma. The source of plasma is a vacuum-arc discharge between a negatively biased cathode and a grounded mesh anode. Rigid-body rotation, induced by the J x B force, causes radial, centrifugal separation of isotopes in the plasma column. Salient features of a fluid model that provides an understanding of rotation and the concomitant isotope separation in the vacuum-arc centrifuge are described. Scaling of rotation and plasma column size is found be consistent with the model. Measurements of isotope separation, also found to agree with the predictions of the model, are presented. Results of a parametric analysis of isotope separation in such a vacuum-arc centrifuge, using the fluid model and the observed scaling laws, are described. An analysis of the energy cost of separation of the vacuum-arc centrifuge shows that it typically requires only 70 keV/separated atom. (orig.)

  3. PARAMETRIC DIAGNOSTICS OF THE CENTRIFUGAL SUPERCHARGER'S TECHNICAL CONDITION DURING OPERATION

    Directory of Open Access Journals (Sweden)

    Regina A. Khuramshina

    2017-01-01

    Full Text Available Abstract. Objectives The main aim is to develop a mathematical model of a centrifugal compressor and carry out a parametric diagnostics of a centrifugal supercharger's technical condition during operation. Methods  A model is proposed for calculating the thermodynamic properties of natural gas, reducing the parameters of a centrifugal compressor to the initial conditions and to the rotation frequency, as well as the integral indicators of the supercharger's technical state. The technical state of the gas path of the centrifugal supercharger of the compressor unit is determined by the parametric diagnostic method. Results  The software implementation of the mathematical model of centrifugal compressor is carried out using a DVIGwT PC. The analysis of calculations indicates that the model is appropriate, with the error being due to taking into account the properties of iso-butane and i-hexane, in contrast with the VNIIGAZ technique. The evaluation studies of a centrifugal compressor's state are indicative of the presence or absence of its defects. Conclusion  Among a number of the diagnostic methods for evaluating a centrifugal supercharger, the most effective is vibrodiagnostics. However, the search for malfunctions and nascent defects in the flowing part of the centrifugal compressor cannot be limited only to vibrodiagnostic data, which provides about 60% of the reliable information about the state of the gas-air tract. About 20% of the compressor's malfunctions and approximately half of the dangerous modes of the supercharger's flow-through part is detected using thermogasdynamic parametric analysis (parametric diagnostics. The main difficulty of the control over the technical state of the flow-through part of the centrifugal supercharger is in the complication of the quantitative evaluation of the processes taking place in the supercharger, which leads to problems in providing reliable diagnosis during a reasonable period of time.

  4. CENTRIFUGE END CAP

    Science.gov (United States)

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  5. Centrifugation. A theoretical study of oxygen enrichment by centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Kierkegaard, P.; Raetz, E.

    1998-12-01

    In the present paper we first investigate what happens if we fill a cylinder with air, close it and rotate it. The results show that no matter which peripheral speed is used, it is not possible by means of the radial separation effect alone, to enrich the oxygen concentration from the previous 21% to more then 23.3%, which is of no practical value. In case of a too low enrichment in one centrifuge, the wanted material from this centrifuge can be used as an input for a second centrifuge and so on, in this way forming a cascade of centrifuges. Oxygen will be enriched in each step, until the desired concentration is reached. Cascading was the technology in the very beginning by enrichment plants for uraniumhexaflouride, used for atomic weapons and nuclear power plants. In this study we try to avoid cascading by aiming for higher separation factors. Therefore, we next investigate the possibilities of using a countercurrent centrifuge where in principle the enriched gas is subjected to several centrifugation in the same centrifuge. The calculations show, that in this way it is possible to produce nearly a 100% pure oxygen (polluted with some heavier molecules like argon) in one machine. Our third step was to calculate the amount of oxygen produced per hour. Using a countercurrent centrifuge of the Zippe type, 100 cm high and 20 cm in diameter, it is or will be possible in the near future to produce 17 g enriched air per hour enriched to 50% oxygen. That corresponds to processing 1 m{sup 3} atmospherical air in the period of approximately 24 hours. This is not very impressive. Our fourth step was to estimate the amount of power used for producing this amount of oxygen. A rough, but complicated, estimate shows that the power consumption at the production level will be about the double of the consumption used today. The overall conclusion is, that centrifugation as a production method for oxygen (or nitrogen) will not be competitive with the currently used method in the

  6. Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method

    International Nuclear Information System (INIS)

    Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok; Yi, Sun

    2016-01-01

    In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

  7. Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Yi, Sun [North Carolina A and T State Univ., Raleigh (United States)

    2016-08-15

    In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

  8. Modern gas centrifuge and rarefied-gas dynamics

    International Nuclear Information System (INIS)

    Lowry, R.A.; Halle, E.V.; Wood, H.G. III.

    1981-01-01

    Today, the modern gas centrifuge appears to be the preferred method for the enrichment of the isotopes of uranium on a commercial scale. That this is the case is the result of diligent development programs pursued in this country as well as in the UK, Germany, and the Netherlands over the several decades since the end of WW II. The theoretical modelling of gas centrifuge performance has made notable advances. However, the theoretical work has been based primarily on continuum fluid dynamics considerations. Centrifuge problems involving rarefied gas dynamics considerations are discussed in this paper

  9. Bifurcated equilibria in centrifugally confined plasma

    International Nuclear Information System (INIS)

    Shamim, I.; Teodorescu, C.; Guzdar, P. N.; Hassam, A. B.; Clary, R.; Ellis, R.; Lunsford, R.

    2008-01-01

    A bifurcation theory and associated computational model are developed to account for abrupt transitions observed recently on the Maryland Centrifugal eXperiment (MCX) [R. F. Ellis et al. Phys. Plasmas 8, 2057 (2001)], a supersonically rotating magnetized plasma that relies on centrifugal forces to prevent thermal expansion of plasma along the magnetic field. The observed transitions are from a well-confined, high-rotation state (HR-mode) to a lower-rotation, lesser-confined state (O-mode). A two-dimensional time-dependent magnetohydrodynamics code is used to simulate the dynamical equilibrium states of the MCX configuration. In addition to the expected viscous drag on the core plasma rotation, a momentum loss term is added that models the friction of plasma on the enhanced level of neutrals expected in the vicinity of the insulators at the throats of the magnetic mirror geometry. At small values of the external rotation drive, the plasma is not well-centrifugally confined and hence experiences the drag from near the insulators. Beyond a critical value of the external drive, the system makes an abrupt transition to a well-centrifugally confined state in which the plasma has pulled away from the end insulator plates; more effective centrifugal confinement lowers the plasma mass near the insulators allowing runaway increases in the rotation speed. The well-confined steady state is reached when the external drive is balanced by only the viscosity of the core plasma. A clear hysteresis phenomenon is shown.

  10. Flow visualization in models of high speed centrifugal separators

    International Nuclear Information System (INIS)

    Lagerstedt, T.; Nabo, O.

    1987-01-01

    The modern centrifugal separator is a fluid machine where the high ''G'' forces set up by rotation are utilized to separate phases of different densities. The fluid dynamics of the separator is complex and poorly known. Hundred years of (practical) experience has, however, turned the separator into an efficient machine. The present report shows how straight forward visualization experiments in model rigs provide valuable information on the flow inside the separator. The report concentrates on describing the flow between the closely spaced discs in a separator disc stack

  11. Whole-Motion Model of Perception during Forward- and Backward-Facing Centrifuge Runs

    Science.gov (United States)

    Holly, Jan E.; Vrublevskis, Arturs; Carlson, Lindsay E.

    2009-01-01

    Illusory perceptions of motion and orientation arise during human centrifuge runs without vision. Asymmetries have been found between acceleration and deceleration, and between forward-facing and backward-facing runs. Perceived roll tilt has been studied extensively during upright fixed-carriage centrifuge runs, and other components have been studied to a lesser extent. Certain, but not all, perceptual asymmetries in acceleration-vs-deceleration and forward-vs-backward motion can be explained by existing analyses. The immediate acceleration-deceleration roll-tilt asymmetry can be explained by the three-dimensional physics of the external stimulus; in addition, longer-term data has been modeled in a standard way using physiological time constants. However, the standard modeling approach is shown in the present research to predict forward-vs-backward-facing symmetry in perceived roll tilt, contradicting experimental data, and to predict perceived sideways motion, rather than forward or backward motion, around a curve. The present work develops a different whole-motion-based model taking into account the three-dimensional form of perceived motion and orientation. This model predicts perceived forward or backward motion around a curve, and predicts additional asymmetries such as the forward-backward difference in roll tilt. This model is based upon many of the same principles as the standard model, but includes an additional concept of familiarity of motions as a whole. PMID:19208962

  12. Two-Dimensional Computational Flow Analysis and Frictional Characteristics Model for Red Blood Cell under Inclined Centrifuge Microscopy

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki; Shirai, Atsushi

    Simplified two-dimensional flow analysis is performed in order to simulate frictional characteristics measurement of red blood cells moving on a glass plate in a medium with an inclined centrifuge microscope. Computation under various conditions reveals the influences of parameters on lift, drag, and moment acting on a red blood cell. Among these forces, lift appears only when the cell is longitudinally asymmetric. By considering the balance of forces, the frictional characteristics of the red blood cell are modeled as the sum of Coulomb friction and viscous drag. The model describes the possibility that the red blood cell deforms to expand in the front side in response to the inclined centrifugal force. When velocity exceeds some critical value, the lift overcomes the normal centrifugal force component, and the thickness of the plasma layer between the cell and the glass plate increases from the initial value of the plasma protein thickness.

  13. Stall Recovery in a Centrifuge-Based Flight Simulator With an Extended Aerodynamic Model

    NARCIS (Netherlands)

    Ledegang, W.D.; Groen, E.L.

    2015-01-01

    We investigated the performance of 12 airline pilots in recovering from an asymmetrical stall in a flight simulator featuring an extended aerodynamic model of a transport-category aircraft, and a centrifuge-based motion platform capable of generating enhanced buffet motion and g-cueing. All pilots

  14. 75 FR 70300 - USEC, Inc.; American Centrifuge Lead Cascade Facility; American Centrifuge Plant; Notice of...

    Science.gov (United States)

    2010-11-17

    ... Centrifuge Lead Cascade Facility; American Centrifuge Plant; Notice of Receipt of a License Transfer... SNM-2011, for the American Centrifuge Lead Cascade Facility and the American Centrifuge Plant... USEC Inc., (the Licensee), for its American Centrifuge Lead Cascade Facility (LCF) and American...

  15. Experimental Study on Noise Characteristic of Centrifugal Compressor Surge

    OpenAIRE

    Yang, Qichao; Zhao, Yuanyang; SHU, Yue; LI, Xiaosa; LI, Liansheng

    2016-01-01

    The centrifugal air compressor test rig is was designed and established. The experimental study was carried out on the surge characteristics of centrifugal compressor including the pressure in the pipe and the noise characteristics under different rotation speed. The tested results showed that both the suction pressure and discharge pressure fluctuation increase under surge condition and the amplitude of discharge pressure fluctuation is significantly higher than that of suction pressure. In ...

  16. Laser tracker TSPI uncertainty quantification via centrifuge trajectory

    Science.gov (United States)

    Romero, Edward; Paez, Thomas; Brown, Timothy; Miller, Timothy

    2009-08-01

    Sandia National Laboratories currently utilizes two laser tracking systems to provide time-space-position-information (TSPI) and high speed digital imaging of test units under flight. These laser trackers have been in operation for decades under the premise of theoretical accuracies based on system design and operator estimates. Advances in optical imaging and atmospheric tracking technology have enabled opportunities to provide more precise six degree of freedom measurements from these trackers. Applying these technologies to the laser trackers requires quantified understanding of their current errors and uncertainty. It was well understood that an assortment of variables contributed to laser tracker uncertainty but the magnitude of these contributions was not quantified and documented. A series of experiments was performed at Sandia National Laboratories large centrifuge complex to quantify TSPI uncertainties of Sandia National Laboratories laser tracker III. The centrifuge was used to provide repeatable and economical test unit trajectories of a test-unit to use for TSPI comparison and uncertainty analysis. On a centrifuge, testunits undergo a known trajectory continuously with a known angular velocity. Each revolution may represent an independent test, which may be repeated many times over for magnitudes of data practical for statistical analysis. Previously these tests were performed at Sandia's rocket sled track facility but were found to be costly with challenges in the measurement ground truth TSPI. The centrifuge along with on-board measurement equipment was used to provide known ground truth position of test units. This paper discusses the experimental design and techniques used to arrive at measures of laser tracker error and uncertainty.

  17. Thermal analysis of a gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, D.A.; Bastos, J.L.F.; Maiorino, J.R.

    1996-01-01

    The centrifuge separation efficiency is the result of the composition of the centrifuge field to the secondary flow in the axial direction near to the rotor wall. For a given machine, the centrifuge field can not be altered and the effort to augment the separation efficiency should be concentrated on the secondary flow. The secondary flow has a mechanical and a thermal component. The mechanical component is due to the deceleration of the gas at the scoop region. The thermal component is due to the temperature differences at the rotor. This paper presents a thermal model of a centrifuge in order to understand the main heat transfer mechanisms and to establish the boundary conditions for a fluid flow computer code. The heat transfer analysis takes into account conduction at the structure parts of the rotor and shell, radiation with multi-reflections between the rotor and the shell, and convection to the ambient. (author)

  18. CENTRIFUGE

    Science.gov (United States)

    Rushing, F.C.

    1960-09-01

    A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.

  19. Autobalancing and FDIR for a space-based centrifuge prototype

    Science.gov (United States)

    Wilson, Edward; Mah, Robert W.

    2005-01-01

    This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA Ames Research Center's Computational Sciences Division from 1995 through 2003. The goal is to develop an automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge laboratory prototype, constructed in 1993-1995. Significant differences between that prototype and the current International Space Station (ISS) Centrifuge design are that: the spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a vibration 34. The imbalance sensors are strained gauges both in the rotor and the stator, measuring the imbalance forces, whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting from imbalance. High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing technology was begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added.

  20. Theory and experiments on centrifuge cratering

    International Nuclear Information System (INIS)

    Schmidt, R.M.; Holsapple, K.A.

    1980-01-01

    Centrifuge experimental techniques provide possibilities for laboratory simulation of ground motion and cratering effects due to explosive loadings. The results of a similarity analysis for the thermomechanical response of a continuun show that increased gravity is a necessary condition for subscale testing when identical materials for both model and prototype are being used. The general similarity requirements for this type of subscale testing are examined both theoretically and experimentally. The similarity analysis is used to derive the necessary and sufficient requirements due to the general balance and jump equations and gives relations among all the scale factors for size, density, stress, body forces, internal energy, heat supply, heat conduction, heat of detonation, and time. Additional constraints due to specific choices of material constitutive equations are evaluated separately. The class of consitutive equations that add no further requirements is identified. For this class of materials, direct simulation of large-scale cratering events at small scale on the centrifuge is possible and independent of the actual constitutive equations. For a rare-independent soil it is shown that a small experiment at gravity g and energy E is similar to a large event at 1 G but with energy equal to g 3 E. Consequently, experiments at 500 G with 8 grams of explosives can be used to

  1. Mathematical model of secondary rotor of centrifuge based on magnetic or electromagnetic overhead and bottom viscous damper taking into account flexibility and viscosity of rotor, and program of calculating dynamics of rotor in centrifuge

    International Nuclear Information System (INIS)

    Andronov, I.N.

    1999-01-01

    The attempts to development of the rotor-dampers universal model with ability of fast correction of the parameters of mock-up rotor and dampers, their construction were made. The model that takes into account viscous characteristics of the material of the centrifuge rotor and allows research numerically into the rotor behaviour during over-speeding is suggested. The examples of calculations as show good effect of electromagnetic damping on the dynamics of the centrifuge rotor are given [ru

  2. RESEARCH CENTRIFUGE- ADVANCED TOOL SEPERATION

    OpenAIRE

    Mahajan Ashwini; Prof. B.V. Jain; Dr Surajj Sarode

    2015-01-01

    A centrifuge is a critical piece of equipment for the laboratory. Purpose of this study was to study research centrifuge in detail, its applications, uses in different branches and silent features. Their are two types of research centrifuge study here revolutionary research centrifuge and microprocessor research centrifuge. A centrifuge is a device that separates particles from a solution through use of a rotor. In biology, the particles are usually cells, sub cellular organelles, or large mo...

  3. Pipeline system for gas centrifuge

    International Nuclear Information System (INIS)

    Masumoto, Tsutomu; Umezawa, Sadao.

    1977-01-01

    Purpose: To enable effective operation for the gas centrifuge cascade system upon failures in the system not by interrupting the operation of all of the centrifuges in the system but by excluding only the failed centrifuges. Constitution: A plurality of gas centrifuges are connected by way of a pipeline and an abnormal detector for the automatic detection of abnormality such as destruction in a vacuum barrel and loss of vacuum is provided to each of the centrifuges. Bypass lines for short-circuitting adjacent centrifuges are provided in the pipelines connecting the centrifuges. Upon generation of abnormality in a centrifuge, a valve disposed in the corresponding bypass is automatically closed or opened by a signal from the abnormal detector to change the gas flow to thereby exclude the centrifuge in abnormality out of the system. This enables to effectively operate the system without interrupting the operation for the entire system. (Moriyama, K.)

  4. Plasma centrifuges

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    2000-01-01

    The review of the most important studies on the isotope separation processes in the rotating plasma is presented. The device is described and the characteristics of operation of the pulse plasma centrifuges with weakly and strongly ionized plasma as well as the stationary plasma centrifuges with the medium weak ionization and devices, applying the stationary vacuum arc with the high ionization rate and the stationary beam-plasma discharge with complete ionization, are presented. The possible mechanisms of the isotope separation in plasma centrifuges are considered. The specific energy consumption for isotope separation in these devices is discussed [ru

  5. Accurate control testing for clay liner permeability

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R J

    1991-08-01

    Two series of centrifuge tests were carried out to evaluate the use of centrifuge modelling as a method of accurate control testing of clay liner permeability. The first series used a large 3 m radius geotechnical centrifuge and the second series a small 0.5 m radius machine built specifically for research on clay liners. Two permeability cells were fabricated in order to provide direct data comparisons between the two methods of permeability testing. In both cases, the centrifuge method proved to be effective and efficient, and was found to be free of both the technical difficulties and leakage risks normally associated with laboratory permeability testing of fine grained soils. Two materials were tested, a consolidated kaolin clay having an average permeability coefficient of 1.2{times}10{sup -9} m/s and a compacted illite clay having a permeability coefficient of 2.0{times}10{sup -11} m/s. Four additional tests were carried out to demonstrate that the 0.5 m radius centrifuge could be used for linear performance modelling to evaluate factors such as volumetric water content, compaction method and density, leachate compatibility and other construction effects on liner leakage. The main advantages of centrifuge testing of clay liners are rapid and accurate evaluation of hydraulic properties and realistic stress modelling for performance evaluations. 8 refs., 12 figs., 7 tabs.

  6. Tuberculosis diagnosis and multidrug resistance testing by direct sputum culture in selective broth without decontamination or centrifugation.

    Science.gov (United States)

    Grandjean, Louis; Martin, Laura; Gilman, Robert H; Valencia, Teresa; Herrera, Beatriz; Quino, Willi; Ramos, Eric; Rivero, Maribel; Montoya, Rosario; Escombe, A Roderick; Coleman, David; Mitchison, Denis; Evans, Carlton A

    2008-07-01

    Tuberculosis culture usually requires sputum decontamination and centrifugation to prevent cultures from being overgrown by contaminating bacteria and fungi. However, decontamination destroys many tuberculous bacilli, and centrifugation often is not possible in resource-poor settings. We therefore assessed the performance of Mycobacterium tuberculosis culture with unprocessed samples plated directly by using tuberculosis-selective media and compared this procedure to conventional culture using centrifuge decontamination. Quadruplicate aliquots of strain H37RV were cultured in 7H9 broth with and without selective antimicrobials and after centrifuge decontamination. The subsequent comparison was made with 715 sputum samples. Split paired sputum samples were cultured conventionally with centrifuge decontamination and by direct culture in tuberculosis-selective media containing antibiotics. Centrifuge decontamination reduced tuberculosis H37RV colonies by 78% (P laboratories this deficit may be outweighed by the ease of use.

  7. Study on salt dome scale models stability by means of a centrifuge

    International Nuclear Information System (INIS)

    Zelikson, A.

    1991-01-01

    This is the final report on the second part of the programme for centrifuge model simulation of long term instability of salt formations containing storage of radioactive waste. The materials used (clay, loaded clay, gelatine) were the same. The novelty was the introduction of tridimensional models for validation and of the same size of the bidimensional ones. A system for cutting the clay by electro-osmosis was elaborated for this purpose. The bidimensional tests were continued aiming to establish causes for instabilities, the propagation of which, and the roles of jets and fissures. The tridimensional tests validated the bidimensional ones results of trigger thresholds and diapir forms; the evolution rate was quicker. Among the triggering causes were surface relief, residual stresses, cavities in the salt. A stable creeping evolution would degenerate to a catastrophe marked by jets, fissures and rapid folding. A catastrophe is propagated horizontally or vertically for long distances from its source, even in relatively thin salt formations. Fissures, which are sometimes quite narrow, accompany the catastrophes and are propagated for long distances. However, fissure prepared in advance could stay stable and even disappear during the evolution. The safety factors for triggering were always high. 12 refs.; 37 figs

  8. Centrifugation and the Manhattan Project

    Science.gov (United States)

    Reed, Cameron

    2009-05-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  9. Advancing haemostasis automation--successful implementation of robotic centrifugation and sample processing in a tertiary service hospital.

    Science.gov (United States)

    Sédille-Mostafaie, Nazanin; Engler, Hanna; Lutz, Susanne; Korte, Wolfgang

    2013-06-01

    Laboratories today face increasing pressure to automate operations due to increasing workloads and the need to reduce expenditure. Few studies to date have focussed on the laboratory automation of preanalytical coagulation specimen processing. In the present study, we examined whether a clinical chemistry automation protocol meets the preanalytical requirements for the analyses of coagulation. During the implementation of laboratory automation, we began to operate a pre- and postanalytical automation system. The preanalytical unit processes blood specimens for chemistry, immunology and coagulation by automated specimen processing. As the production of platelet-poor plasma is highly dependent on optimal centrifugation, we examined specimen handling under different centrifugation conditions in order to produce optimal platelet deficient plasma specimens. To this end, manually processed models centrifuged at 1500 g for 5 and 20 min were compared to an automated centrifugation model at 3000 g for 7 min. For analytical assays that are performed frequently enough to be targets for full automation, Passing-Bablok regression analysis showed close agreement between different centrifugation methods, with a correlation coefficient between 0.98 and 0.99 and a bias between -5% and +6%. For seldom performed assays that do not mandate full automation, the Passing-Bablok regression analysis showed acceptable to poor agreement between different centrifugation methods. A full automation solution is suitable and can be recommended for frequent haemostasis testing.

  10. Three-dimensional flow analysis and improvement of slip factor model for forward-curved blades centrifugal fan

    International Nuclear Information System (INIS)

    Guo, En Min; Kim, Kwang Yong

    2004-01-01

    This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient

  11. Detection of outliers in gas centrifuge experimental data

    International Nuclear Information System (INIS)

    Andrade, Monica C.V.; Nascimento, Claudio A.O.

    2005-01-01

    Isotope separation in a gas centrifuge is a very complex process. Development and optimization of a gas centrifuge requires experimentation. These data contain experimental errors, and like other experimental data, there may be some gross errors, also known as outliers. The detection of outliers in gas centrifuge experimental data may be quite complicated because there is not enough repetition for precise statistical determination and the physical equations may be applied only on the control of the mass flows. Moreover, the concentrations are poorly predicted by phenomenological models. This paper presents the application of a three-layer feed-forward neural network to the detection of outliers in a very extensive experiment for the analysis of the separation performance of a gas centrifuge. (author)

  12. 76 FR 9613 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order...

    Science.gov (United States)

    2011-02-18

    ... NUCLEAR REGULATORY COMMISSION [EA-11-013] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order Approving Direct Transfer of Licenses and Conforming Amendment I USEC... Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively, which...

  13. 77 FR 9273 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct...

    Science.gov (United States)

    2012-02-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0355] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct Transfer of Licenses In the Matter of USEC INC. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order EA-12- [[Page 9274

  14. Speed and surge control for a lower order centrifugal compressor model

    Directory of Open Access Journals (Sweden)

    Jan T. Gravdahl

    1998-01-01

    Full Text Available A model of a variable speed centrifugal compression system is presented. The model is based on the work of Greitzer (1976, but the compressor characteristic is developed by modelling the losses in the compressor. For surge control, a close coupled valve is employed. This valve is placed immediately downstream of the compressor, and the pressure drop over the valve is used as the control variable. This makes it possible to manipulate the shape of the equivalent compressor, consisting of compressor and valve. The speed of the compressor is controlled with a PI-controller. Semi-global exponential stability of the model with the proposed controllers is proven by the use of Lyapunovs theorem.

  15. The influence of aerosol density upon the performance of centrifugal spectrometers

    International Nuclear Information System (INIS)

    Martonen, T.B.

    1978-01-01

    Centrifugal instruments are valuable components for studying airborne particulate matter of health physics interest because a continuously graded aerodynamic diameter, Dae, spectrum is produced. Applications include the characterization of inhalation exposure aerosols, serving as particle monitors to measure respirable dose, and being the integral unit in a system to generate monodisperse aerosols. Some aerosols of health physics concern differ from the PSL aerosol used to calibrate centrifuges in two main respects: the particulate mass concentration, Cm, is large, and the aerosol gas is not air. The marked influence of these factors upon centrifuge performance is documented (T. B. Martonen, Ph.D. Thesis, University of Rochester, Rochester, NY, 1976). The phenomenon of cloud settling occurs when Cm is of sufficient magnitude. Aerosol gas effects can be defined in terms of the parameter K, the ratio of the aerosol gas to winnowing medium densities. Size classification is modified by diffusiophoretic forces when K 1. In all cases, erroneous size distribution data results. Laboratory procedures are presented which permit accurate particle size assessment when aerosols of large Cm and/or K≠1 are sampled. An engineering analysis of centrifuge physics has been completed which allows optimum operating conditions, which may be quite different for different aerosols, to be computed. Cigarette smoke was used as a test aerosol to check the experimental and theoretical findings. Although it is shown to be subject to both cloud settling and dense gas subsidence, accurate size classification was obtained. The differential equation describing particle motion in centrifuges has been formulated and solved. Further, techniques of dimensional analysis were applied to the equations modelling flow in centrifuges; results indicate how operating conditions and instrument geometry influence particle size classification. These theoretical studies will lead to the development of improved

  16. Gas Centrifuges and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  17. Gas-liquid Two Phase Flow Modelling of Incompressible Fluid and Experimental Validation Studies in Vertical Centrifugal Casting

    International Nuclear Information System (INIS)

    Zhou, J X; Shen, X; Yin, Y J; Guo, Z; Wang, H

    2015-01-01

    In this paper, Gas-liquid two phase flow mathematic models of incompressible fluid were proposed to explore the feature of fluid under certain centrifugal force in vertical centrifugal casting (VCC). Modified projection-level-set method was introduced to solve the mathematic models. To validate the simulation results, two methods were used in this study. In the first method, the simulation result of basic VCC flow process was compared with its analytic solution. The relationship between the numerical solution and deterministic analytic solution was presented to verify the correctness of numerical algorithms. In the second method, systematic water simulation experiments were developed. In this initial experiment, special experimental vertical centrifugal device and casting shapes were designed to describe typical mold-filling processes in VCC. High speed camera system and data collection devices were used to capture flow shape during the mold-filling process. Moreover, fluid characteristic at different rotation speed (from 40rpm, 60rpmand 80rpm) was discussed to provide comparative resource for simulation results. As compared with the simulation results, the proposed mathematical models could be proven and the experimental design could help us advance the accuracy of simulation and further studies for VCC. (paper)

  18. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    Science.gov (United States)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-03-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ~100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s-1, recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells.

  19. A comparison of two centrifuge techniques for constructing vulnerability curves: insight into the 'open-vessel' artifact.

    Science.gov (United States)

    Yin, Pengxian; Meng, Feng; Liu, Qing; An, Rui; Cai, Jing; Du, Guangyuan

    2018-03-30

    A vulnerability curve (VC) describes the extent of xylem cavitation resistance. Centrifuges have been used to generate VCs for decades via static- and flow-centrifuge methods. Recently, the validity of the centrifuge techniques has been questioned. Researchers have hypothesized that the centrifuge techniques might yield unreliable VCs due to the open-vessel artifact. However, other researchers reject this hypothesis. The focus of the dispute is centred on whether exponential VCs are more reliable when the static-centrifuge method is used than with the flow-centrifuge method. To further test the reliability of the centrifuge technique, two centrifuges were manufactured to simulate the static- and flow-centrifuge methods. VCs of three species with open vessels of known lengths were constructed using the two centrifuges. The results showed that both centrifuge techniques produced invalid VCs for Robinia because the water flow through stems under mild tension in centrifuges led to an increasing loss of water conductivity. Additionally, the injection of water in the flow-centrifuge exacerbated the loss of water conductivity. However, both centrifuge techniques yielded reliable VCs for Prunus, regardless of the presence of open vessels in the tested samples. We conclude that centrifuge techniques can be used in species with open vessels only when the centrifuge produces a VC that matches the bench-dehydration VC. This article is protected by copyright. All rights reserved.

  20. The effect of balance holes to centrifugal pump performance

    Science.gov (United States)

    Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.

    2017-07-01

    The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.

  1. SEAL FOR HIGH SPEED CENTRIFUGE

    Science.gov (United States)

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  2. Comparison of Turbulence Models in Simulation of Flow in Small-Size Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    B. B. Novickii

    2015-01-01

    Full Text Available The aim of the work is the choice of turbulence model for the closure of the Reynoldsaveraged Navier-Stokes equations for calculation of the characteristics of small-size centrifugal compressor. To this were built three-dimensional sectors (as the compressor axisymmetric blade impeller and the diffuser of the centrifugal compressor on the basis of which they were created two grid models. The dimension of the grid model for the calculation models of turbulence komega and SST was 1.4 million. Elements and the dimensionless parameter y + does not exceed 2. turbulence model family k-epsilon model grid was also 1.4 million. Elements, and the dimensionless parameter y + was greater than 20, which corresponds to recommended values. The next part of the work was the task of boundary conditions required for the correct ca lculation. When the impeller inlet pawned pressure working fluid and the total temperature at the outlet and the gas flow rate through the stage. On the side faces sectors pawned boundary cond ition «Periodic», allowing everything except the wheel, but only axisymmetric part, which significantly reduces the required computational time and resources. Accounting clearance in addition to the meridional geometry construction additionally taken into account boundary condition «Counter Rotating Wall», which allows you to leave the domain in the rotating disc fixed coa ting.The next step was to analyze the results of these calculations, which showed that the turbulence model k-epsilon and RNG does not show the velocity vectors in the boundary layer, and "pushes" the flow from the blade using wall functions. At the core of the flow turbulence model k-omega shown for the undisturbed flow, which is not typical for the compressor working on predpompazhnom mode. For viscous gas diffuser vane for turbulence models SST, k-omega, RNG k-epsilon and has a similar character.The paper compares the characteristics of pressure centrifugal compressor

  3. Modelling solid-convective flash pyrolysis of straw and wood in the Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Bech, Niels; Larsen, Morten Boberg; Jensen, Peter Arendt

    2009-01-01

    in the Pyrolysis Centrifuge Reactor, a novel solid-convective flash pyrolysis reactor. The model relies on the original concept for ablative pyrolysis of particles being pyrolysed through the formation of an intermediate liquid compound which is further degraded to form liquid organics, char, and gas. To describe...

  4. Design Optimization of a Centrifugal Fan with Splitter Blades

    Science.gov (United States)

    Heo, Man-Woong; Kim, Jin-Hyuk; Kim, Kwang-Yong

    2015-05-01

    Multi-objective optimization of a centrifugal fan with additionally installed splitter blades was performed to simultaneously maximize the efficiency and pressure rise using three-dimensional Reynolds-averaged Navier-Stokes equations and hybrid multi-objective evolutionary algorithm. Two design variables defining the location of splitter, and the height ratio between inlet and outlet of impeller were selected for the optimization. In addition, the aerodynamic characteristics of the centrifugal fan were investigated with the variation of design variables in the design space. Latin hypercube sampling was used to select the training points, and response surface approximation models were constructed as surrogate models of the objective functions. With the optimization, both the efficiency and pressure rise of the centrifugal fan with splitter blades were improved considerably compared to the reference model.

  5. Numerical optimization for separation power of gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi; Liu Bing

    2012-01-01

    In order to obtain higher separation power of the gas centrifuge, the code was developed to solve the flow-field of the counter-current to acquire the separation power, which was integrated with the iSight software, so a numerical optimization model for separation power was presented, in which the driver conditions and the geometry parameters of the waste baffle were optimized to get the maximum separation power using the sequential quadratic programming arithmetic, and the 12% higher results was acquired, which shows the feasibility of this method. The results also note that the separation power of gas centrifuge is sensitive to the driver conditions and the structure parameters of the waste baffle, so it is necessary to perform the optimization calculation for the certain gas centrifuge model. (authors)

  6. Multistage centrifugal extractor of E92 model

    International Nuclear Information System (INIS)

    Wang Houheng; Xing Zhifu; Liu Xiangyan; Liu Shi; Wan Yi; Liang Kui; Hu Benyue

    1987-01-01

    The E92 Model multistage centrifugal extractor has been developed for the recovery of uranium and plutonium from spent nuclear reactor fuel. It offers the following advantages: shorter residence time, low hlod-up, less space required, and simplified startup and shutdown procedures, etc. Experiments on performaces of hydraulics, mass-transfer and crud discharging have proved that this unit provides a wide range of operation. The total flow rate can very from 300 to 450 L/h at organic to aqueous flow ratio of 1 to 5. The unit is designed for ratio of oranic to aqueous phase densities at a range of 0.75 to 0.85. Overall extraction and back-extraction efficiencies which is great than 99.99% were achieved using natural uranium as feed. Experiments showed that mechanical assembling and disassembling of the unit could be rapidly carried out. A run continuning up to 500 hours was stable

  7. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  8. Quasi‐steady centrifuge method for unsaturated hydraulic properties

    Science.gov (United States)

    Caputo, Maria C.; Nimmo, John R.

    2005-01-01

    We have developed the quasi‐steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi‐steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  9. Quasi-steady centrifuge method for unsaturated hydraulic properties

    Science.gov (United States)

    Caputo, Maria C.; Nimmo, John R.

    2005-11-01

    We have developed the quasi-steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi-steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  10. Effects of the number of inducer blades on the anti-cavitation characteristics and external performance of a centrifugal pump

    International Nuclear Information System (INIS)

    Guo, XiaoMei; Shi, GaoPing; Zhu, ZuChao; Cui, BaoLing

    2016-01-01

    Installing an inducer upstream of the main impeller is an effective approach for improving the anti-cavitation performance of a high speed centrifugal pump. For a high-speed centrifugal pump with an inducer, the number of inducer blades can affect its internal flow and external performance. We studied the manner in which the number of inducer blades can affect the anti-cavitation characteristics and external performance of a centrifugal pump. We first use the Rayleigh-Plesset equation and the mixture model to simulate the vapor liquid flow in a centrifugal pump with an inducer, and then predict its external performance. Finally, we tested the external performance of a centrifugal pump with 2-, 3- and 4-bladed inducers, respectively. The results show that the simulations of external performance in a centrifugal pump are in accordance with our experiments. Based on this, we obtained vapor volume fraction distributions for the inducer, the impeller, and in the corresponding whole flow parts. We discovered that the vapor volume fraction of a centrifugal pump with a 3- bladed inducer is less than that of a centrifugal pump with 2- or 4-bladed inducers, which means that a centrifugal pump with a 3-bladed inducer has a better external and anti-cavitation performance.

  11. EM Task 9 - Centrifugal membrane filtration

    International Nuclear Information System (INIS)

    Stepan, Daniel J.; Stevens, Bradley G.; Hetland, Melanie D.

    1999-01-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc)

  12. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    International Nuclear Information System (INIS)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-01-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ∼100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s −1 , recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells. (paper)

  13. Enrichment: centrifuge process

    International Nuclear Information System (INIS)

    Soubbaramayer.

    1989-01-01

    This short course is divided into three sections devoted respectively to the physics of the process, some practical problems raised by the design of a centrifuge and the present situation of centrifugation in the World. 31 figs., 18 refs

  14. CFD comparison with centrifugal compressor measurements on a wide operating range

    Directory of Open Access Journals (Sweden)

    Arnou D.

    2013-04-01

    Full Text Available Centrifugal compressors are widely used in industrial applications thanks to their high efficiency. They are able to provide a wide operating range before reaching the flow barrier or surge limits. Performances and range are described by compressor maps obtained experimentally. After a description of performance test rig, this article compares measured centrifugal compressor performances with computational fluid dynamics results. These computations are performed at steady conditions with R134a refrigerant as fluid. Navier-Stokes equations, coupled with k-ε turbulence model, are solved by the commercial software ANSYS-CFX by means of volume finite method. Input conditions are varied in order to calculate several speed lines. Theoretical isentropic efficiency and theoretical surge line are finally compared to experimental data.

  15. Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation.

    Science.gov (United States)

    Kurita, Masakazu; Matsumoto, Daisuke; Shigeura, Tomokuni; Sato, Katsujiro; Gonda, Koichi; Harii, Kiyonori; Yoshimura, Kotaro

    2008-03-01

    Although injective autologous fat transplantation is one of the most attractive options for soft-tissue augmentation, problems such as unpredictability and fibrosis resulting from fat necrosis limit its universal acceptance. Centrifugation is one of most common methods for overcoming these difficulties. This study was performed to investigate quantitatively the effects of centrifugation on liposuction aspirates to optimize centrifugal conditions for fat transplantation and isolation of adipose-derived stem cells. Liposuction aspirates, obtained from eight healthy female donors, were either not centrifuged or centrifuged at 400, 700, 1200, 3000, or 4200 g for 3 minutes. The volumes of the oil, adipose, and fluid portions and numbers of blood cells and adipose-derived cells in each portion were examined. The processed adipose tissues (1 ml) were injected into athymic mice, and grafts were harvested and weighed at 4 weeks. Morphologic alterations were observed using light and scanning electron microscopy. Centrifugation concentrated adipose tissues and adipose-derived stem cells in the adipose portion and partly removed red blood cells from the adipose portion. Centrifugation at more than 3000 g significantly damaged adipose-derived stem cells. Centrifugation enhanced graft take per 1 ml centrifuged adipose but reduced calculated graft take per 1 ml adipose before centrifugation. Excessive centrifugation can destroy adipocytes and adipose-derived stem cells, but appropriate centrifugation concentrates them, resulting in enhanced graft take. The authors tentatively recommend 1200 g as an optimized centrifugal force for obtaining good short- and long-term results in adipose transplantation.

  16. Centrifuge apparatus

    Science.gov (United States)

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  17. Centrifugal casting of ZA8 zinc alloy and composite A356/silicon carbide: Study and modeling of phases' and particles' segregation

    Science.gov (United States)

    Balout, Bahaa

    Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles

  18. Numerical and experimental analysis of the sedimentation of spherical colloidal suspensions under centrifugal force

    Science.gov (United States)

    Antonopoulou, Evangelia; Rohmann-Shaw, Connor F.; Sykes, Thomas C.; Cayre, Olivier J.; Hunter, Timothy N.; Jimack, Peter K.

    2018-03-01

    Understanding the sedimentation behaviour of colloidal suspensions is crucial in determining their stability. Since sedimentation rates are often very slow, centrifugation is used to expedite sedimentation experiments. The effect of centrifugal acceleration on sedimentation behaviour is not fully understood. Furthermore, in sedimentation models, interparticle interactions are usually omitted by using the hard-sphere assumption. This work proposes a one-dimensional model for sedimentation using an effective maximum volume fraction, with an extension for sedimentation under centrifugal force. A numerical implementation of the model using an adaptive finite difference solver is described. Experiments with silica suspensions are carried out using an analytical centrifuge. The model is shown to be a good fit with experimental data for 480 nm spherical silica, with the effects of centrifugation at 705 rpm studied. A conversion of data to Earth gravity conditions is proposed, which is shown to recover Earth gravity sedimentation rates well. This work suggests that the effective maximum volume fraction accurately captures interparticle interactions and provides insights into the effect of centrifugation on sedimentation.

  19. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane.

    Science.gov (United States)

    Dohan Ehrenfest, David M; Pinto, Nelson R; Pereda, Andrea; Jiménez, Paula; Corso, Marco Del; Kang, Byung-Soo; Nally, Mauricio; Lanata, Nicole; Wang, Hom-Lay; Quirynen, Marc

    2018-03-01

    L-PRF (leukocyte- and platelet-rich fibrin) is one of the four families of platelet concentrates for surgical use and is widely used in oral and maxillofacial regenerative therapies. The first objective of this article was to evaluate the mechanical vibrations appearing during centrifugation in four models of commercially available table-top centrifuges used to produce L-PRF and the impact of the centrifuge characteristics on the cell and fibrin architecture of a L-PRF clot and membrane. The second objective of this article was to evaluate how changing some parameters of the L-PRF protocol may influence its biological signature, independently from the characteristics of the centrifuge. In the first part, four different commercially available centrifuges were used to produce L-PRF, following the original L-PRF production method (glass-coated plastic tubes, 400 g force, 12 minutes). The tested systems were the original L-PRF centrifuge (Intra-Spin, Intra-Lock, the only CE and FDA cleared system for the preparation of L-PRF) and three other laboratory centrifuges (not CE/FDA cleared for L-PRF): A-PRF 12 (Advanced PRF, Process), LW-UPD8 (LW Scientific) and Salvin 1310 (Salvin Dental). Each centrifuge was opened for inspection, two accelerometers were installed (one radial, one vertical), and data were collected with a spectrum analyzer in two configurations (full-load or half load). All clots and membranes were collected into a sterile surgical box (Xpression kit, Intra-Lock). The exact macroscopic (weights, sizes) and microscopic (photonic and scanning electron microscopy SEM) characteristics of the L-PRF produced with these four different machines were evaluated. In the second part, venous blood was taken in two groups, respectively, Intra-Spin 9 ml glass-coated plastic tubes (Intra-Lock) and A-PRF 10 ml glass tubes (Process). Tubes were immediately centrifuged at 2700 rpm (around 400 g) during 12 minutes to produce L-PRF or at 1500 rpm during 14 minutes to produce A

  20. LMR [liquid metal reactor] centrifugal pump coastdowns

    International Nuclear Information System (INIS)

    Dunn, F.E.; Malloy, D.J.

    1987-01-01

    A centrifugal pump model which describes the interrelationships of the pump discharge flowrate, pump speed, shaft torque and dynamic head has been implemented based upon existing models. Specifically, the pump model is based upon the dimensionless-homologous pump theory of Wylie and Streeter. Given data from a representative pump, homologous theory allows one to predict the transient characteristics of similarly sized pumps. This homologous pump model has been implemented into both the one-dimensional SASSYS-1 systems analysis code and the three-dimensional COMMIX-1A code. Comparisons have been made both against other pump models (CRBR) and actual pump coastdown data (EBR-II and FFTF). Agreement with this homologous pump model has been excellent. Additionally, these comparisons indicate the validity of applying the medium size pump data of Wylie and Streeter to a range of typical LMR centrifugal pumps

  1. Fluid dynamic interaction between water hammer and centrifugal pumps

    International Nuclear Information System (INIS)

    Ismaier, A.; Schluecker, E.

    2009-01-01

    Centrifugal pumps generate in piping systems noticeable pressure pulsations. In this paper the dynamic interaction between water hammer and pressure pulsations is presented. The experimental investigations were performed at a piping system with nominal diameter DN 100 (respectively NPS 4) and 75 m total length, built at the Institute for Process Technology and Machinery. Different measurements at this testing facility show that pulsating centrifugal pumps can damp pressure surges generated by fast valve closing. It is also shown that 1-dimensional fluid codes can be used to calculate this phenomenon. Furthermore it is presented that pressure surges pass centrifugal pumps almost unhindered, because they are hydraulic open.

  2. Over facility design description for the CPDF [Centrifuge Plant Demonstration Facility]: SDD-1 [System Design Description

    International Nuclear Information System (INIS)

    1987-04-01

    The Centrifuge Plant Demonstration Facility (CPDF) is an essential part of the continuing development of first-production-plant centrifuge technology that will integrate centrifuge machines into a process and enrichment plant design. The CPDF will provide facilities for testing and continued development of a unit cascade in direct support of the commercial Gas Centrifuge Enrichment Plant (GCEP). The basic cascade-oriented equipment, feed, withdrawal, drive system, process piping, utility piping, and other auxiliary and support equipment will be tested in an operating configuration that represents, to the extent possible, GCEP arrangement and operating conditions. The objective will be to demonstrate procedures for production cascade installation, start-up, operation, and maintenance, and to provide proof of overall cascade and associated system design, construction, and operating and maintenance concepts. To the maximum possible extent, all equipment for the CPDF will be procured from commercial sources. Centrifuges will be procured from industry using government-supplied specifications and drawings. The existing Component Preparation Laboratory (CPL) located near the CPDF site will be used for centrifuge component receiving, inspection, assembly, and qualification testing of pre-production test machines. Later in the test program, samples of production machines planned for use in the GCEP will be tested in the CPDF

  3. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    International Nuclear Information System (INIS)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan; Yu, Weiping

    2008-01-01

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m 3 min -1 .min -1 and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-ε turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  4. Considerations on safeguards approach for small centrifuge enrichment facilities

    International Nuclear Information System (INIS)

    Vicens, Hugo E.; Marzo, Marco A.; Nunes, Vitorio E.

    2004-01-01

    The safeguards' objectives for enrichment facilities encompass the detection of the diversion of declared nuclear material and of facility misuse. The safeguard's approach presently applied for commercial centrifuge enrichment facilities is based on the Hexa partite Project and seems not to be directly applicable to cases of small plants. Since ABACC started its operation one of the main problems faced was the application of safeguards to small centrifuge enrichment plants for testing centrifuges in cascade mode or for small LEU production. These plants consist of a few fully independent cascades, does not operate in a routine basis and panels prevent visual access to the centrifuges and their surroundings for preserving sensitive information. For such plants misuse scenarios seems to dominate, particularly those associated with feeding the plant with undeclared LEU. This paper presents a concise analysis of misuse strategies in small centrifuge facility and alternative safeguard's approach, describing the main control elements to be applied. The particularities arising from the existence of panels or boxes covering the centrifuges are specifically addressed. Two alternatives approaches based on the application of a transitory perimeter control to increase the effectiveness of unannounced inspection and on the application of permanent perimeter control are presented. (author)

  5. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  6. Continental rift architecture and patterns of magma migration: a dynamic analysis based on centrifuge models.

    NARCIS (Netherlands)

    Corti, G.; Bonini, M.; Sokoutis, D.; Innocenti, F.; Manetti, P.; Cloetingh, S.A.P.L.; Mulugeta, G.

    2004-01-01

    Small-scale centrifuge models were used to investigate the role of continental rift structure in controlling patterns of magma migration and emplacement. Experiments considered the reactivation of weakness zones in the lower crust and the presence of magma at Moho depths. Results suggest that

  7. Separation parameters of gas centrifuges

    International Nuclear Information System (INIS)

    May, W.G.

    1977-01-01

    Early work on development of the gas centrifuge for separation of uranium isotopes has recently been reviewed. Several configurations were investigated. The preferred configuration eventually turned out to be a countercurrent centrifuge. In this form, an internal circulation is set up, and as a consequence, light isotope concentrates at one end of the centrifuge, heavy isotope at the other. In many ways the effect resembles the separation obtained in packed columns in the chemical and petroleum industries. It is the purpose of this paper to develop this analogy between countercurrent gas centrifuges and packed towers and to illustrate its usefulness in understanding the separation process in the centrifuge. 8 figures

  8. Optical analysis of pollution transport in geotechnical centrifuge tests; Analyse optique du transport de polluant lors d'essais geotechniques en centrifugeuse

    Energy Technology Data Exchange (ETDEWEB)

    Allersma, H.G.B. [Delft University of Technology, Faculty of Chemical Technology and Materials Sciences, Delft (Netherlands); Esposito, G.M. [Delft University of Technology, TNO-Building and Construction Research, Formerly Delft (Netherlands)

    2000-07-01

    An optical method based on image processing techniques has been described for performing measurements on pollution transport phenomena in soil in centrifuge tests. The geometry of the polluted areas as well as the concentration of the pollution can be measured in two-dimensional tests. (author)

  9. Return to Flying Duties Following Centrifuge or Vibration Exposures

    Science.gov (United States)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch

  10. Analysis and optimization of gas-centrifugal separation of uranium isotopes by neural networks

    Directory of Open Access Journals (Sweden)

    Migliavacca S.C.P.

    2002-01-01

    Full Text Available Neural networks are an attractive alternative for modeling complex problems with too many difficulties to be solved by a phenomenological model. A feed-forward neural network was used to model a gas-centrifugal separation of uranium isotopes. The prediction showed good agreement with the experimental data. An optimization study was carried out. The optimal operational condition was tested by a new experiment and a difference of less than 1% was found.

  11. New centrifugation blood culture device.

    Science.gov (United States)

    Dorn, G L; Smith, K

    1978-01-01

    A single-tube blood culture device designed for centrifugation in a tabletop centrifuge is described. Reconstruction experiments using 21 different organisms and human donor blood indicate that excellent recovery can be obtained by centrifugation for 30 min at 3,000 X g. PMID:342539

  12. Smoothed Particle Hydro-dynamic Analysis of Improvement in Sludge Conveyance Efficiency of Screw Decanter Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Woong [Korea Testing and Research Institute, Kwachun (Korea, Republic of)

    2015-03-15

    A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.

  13. Smoothed Particle Hydro-dynamic Analysis of Improvement in Sludge Conveyance Efficiency of Screw Decanter Centrifuge

    International Nuclear Information System (INIS)

    Park, Dae Woong

    2015-01-01

    A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.

  14. Microwave assisted centrifuge and related methods

    Science.gov (United States)

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  15. 76 FR 50767 - In the Matter of USEC Inc., American Centrifuge Lead Cascade Facility, and American Centrifuge...

    Science.gov (United States)

    2011-08-16

    ...; License Nos. SNM-7003, SNM-2011] In the Matter of USEC Inc., American Centrifuge Lead Cascade Facility, and American Centrifuge Plant; Order Extending the Date by Which the Direct Transfer of Licenses Is To... American Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively...

  16. Centrifuge modelling of seismic soil structure interaction effects

    International Nuclear Information System (INIS)

    Ghosh, B.; Madabhushi, S.P.G.

    2007-01-01

    Proper understanding of the role of unbounded soil in the evaluation of dynamic soil structure interaction (SSI) problem is very important for structures used in the nuclear industry. In this paper, the results from a series of dynamic centrifuge tests are reported. These tests were performed on different types of soil stratifications supporting a rigid containment structure. Test results indicate that accelerations transmitted to the structure's base are dependent on the stiffness degradation in the supporting soil. Steady build up of excess pore pressure leads to softening of the soil, which decreases the shear modulus and shear strength and subsequently changes the dynamic responses. It is also shown that the presence of the structure reduces the translational component of the input base motion and induces rocking of the structure. The test results are compared with some standard formulae used for evaluating interaction in the various building codes. It was concluded that the dynamic shear modulus values used should be representative of the site conditions and can vary dramatically due to softening. Damping values used are still very uncertain and contain many factors, which cannot be accounted in the experiments. It is emphasized that simplified design processes are important to gain an insight into the behaviour of the physical mechanism but for a complete understanding of the SSI effects sophisticated methods are necessary to account for non-linear behaviour of the soil material

  17. Flow behaviour and robustness of non-segregating tailings made from filtered/centrifuged MFT

    Energy Technology Data Exchange (ETDEWEB)

    Nik, R.M.; Sego, D.C.; Morgenstern, N.R. [Alberta Univ., Edmonton, AB (Canada). Geotechnical Center

    2010-07-01

    This PowerPoint presentation described an experimental study of a centrifugal dewatering filtration process for mature fine tailings (MFT). Various MFT samples from different oil sands operations were pumped into a filtering centrifuge that produced cake, thin tailings, and filtrate. The MFT was then transformed into non-segregated tailings (NST) and composite tailings (CT). The depositional characteristics of the CT-NST samples were evaluated in a series of flume tests. Flow profiles were presented for various samples. Vane shear tests were also conducted. The yield stress of each sample was compared with its flow duration and solids content. The results of the experimental tests demonstrated that the centrifugal filtration process can be considered as the initial stage of a multi-stage tailings management plan. The filtering centrifuge method can be used to produce robust CTs with higher solids content. Use of the method can decrease the amount of coagulants or flocculants required for further treatment. tabs., figs.

  18. Dynamics and stability of a tethered centrifuge in low earth orbit

    Science.gov (United States)

    Quadrelli, B. M.; Lorenzini, E. C.

    1992-01-01

    The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.

  19. Numerical prediction and performance experiment in a deep-well centrifugal pump with different impeller outlet width

    Science.gov (United States)

    Shi, Weidong; Zhou, Ling; Lu, Weigang; Pei, Bing; Lang, Tao

    2013-01-01

    The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.

  20. Present status of centrifuge method for uranium enrichment and PNC plant

    International Nuclear Information System (INIS)

    Nishikido, Yoshikazu

    1977-01-01

    Recentry, the tendency to adopt atomic energy owing to the oil shock, the delay in the construction of nuclear power stations worldwide, the uncertainty in the utilization of plutonium, and the prospect of supplying natural uranium are the situations affecting uranium enrichment. Anyway, the enrichment capacity in the world must be increased by the early years of 1980 s. The uranium enrichment technology by centrifugal method is being developed in various countries under strict control of informations, therefore the details are not known, but the general state in Great Britain, F.R. of Germany, Netherlands, U.S.A. and Japan is explained. The development of the centrifugal enrichment method in Japan was designated in 1972 as the national project aiming at operating the enriching plant with international competitive power by 1985. The PNC undertook the development work, and the research and development include the development of a centrifuge, cascade test, life span test, the development of the mass production technology, and safety test. The especially notable matter in this period was the rapid progress of a supercritical type centrifuge. It is judged that the technical basis for constructing a pilot plant has been established. The site for the pilot plant is being prepared now in the Ningyo Pass Mine, PNC, and the enrichment plant with 7000 centrifuges will be constructed there. The outline of the plant and the schedule for the construction are described. (Kako, I.)

  1. A model for the selective amplification of spatially coherent waves in a centrifugal compressor on the verge of rotating stall

    Science.gov (United States)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A simple model for the stability zones of a low speed centrifugal compressor is developed, with the goal of understanding the driving mechanism for the changes in stalling behavior predicted for, and observed in, the Purdue Low Speed Centrifugal Research Compressor Facility. To this end, earlier analyses of rotating stall suppression in centrifugal compressors are presented in a reduced form that preserves the essential parameters of the model that affect the stalling behavior of the compressor. The model is then used to illuminate the relationship between compressor geometry, expected mode shape, and regions of amplification for weak waves which are indicative of the susceptibility of the system to rotating stall. The results demonstrate that increasing the stagger angle of the diffuser vanes, and consequently the diffusion path length, results in the compressor moving towards a condition where higher-order spatial modes are excited during stall initiation. Similarly, flow acceleration in the diffuser section caused by an increase in the number of diffuser vanes also results in the excitation of higher modes.

  2. Experiment of a centrifugal pump during changing speed operation

    International Nuclear Information System (INIS)

    Yuan, H J; Wu, Y L; Liu, S H; Shao, J

    2012-01-01

    In this paper, a method of changing rotational speed of impeller periodically as the pulsatile working condition is developed to realize pulse outputs both of flow discharge and of head for a centrifugal pump through experiment. The performance of the centrifugal pump under pulsatile working operation condition is measured which indicates this model pump could produce desired pulse flow under such condition. Flow patterns at four testing points under pulsatile conditions are obtained by means of the particle image velocimetry (PIV) technology both with laser induced fluorescence (LIF) particles and refractive index matched (RIM) fluid. Results of PIV measurement show the distributions of velocity, streamlines, and the principal Reynolds normal stress (PRNS). Under the design flow rate condition, the relative velocity in the blade channel distributes smoothly and decreases from inlet to exit. And at the impeller exit, the relative velocity is lower close to suction side than that near pressure side of blade in most of blade channels.

  3. Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method.

    Science.gov (United States)

    Tobin, M F; Pratt, R B; Jacobsen, A L; De Guzman, M E

    2013-05-01

    Vulnerability to cavitation curves describe the decrease in xylem hydraulic conductivity as xylem pressure declines. Several techniques for constructing vulnerability curves use centrifugal force to induce negative xylem pressure in stem or root segments. Centrifuge vulnerability curves constructed for long-vesselled species have been hypothesised to overestimate xylem vulnerability to cavitation due to increased vulnerability of vessels cut open at stem ends that extend to the middle or entirely through segments. We tested two key predictions of this hypothesis: (i) centrifugation induces greater embolism than dehydration in long-vesselled species, and (ii) the proportion of open vessels changes centrifuge vulnerability curves. Centrifuge and dehydration vulnerability curves were compared for a long- and short-vesselled species. The effect of open vessels was tested in four species by comparing centrifuge vulnerability curves for stems of two lengths. Centrifuge and dehydration vulnerability curves agreed well for the long- and short-vesselled species. Centrifuge vulnerability curves constructed using two stem lengths were similar. Also, the distribution of embolism along the length of centrifuged stems matched the theoretical pressure profile induced by centrifugation. We conclude that vulnerability to cavitation can be accurately characterised with vulnerability curves constructed using a centrifuge technique, even in long-vesselled species. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Centrifuge design and development

    International Nuclear Information System (INIS)

    Edwards, T.T.; Holmes, M.D.

    1987-01-01

    BNFL has been enriching uranium on an industrial scale using the centrifuge process for over a decade. Together with its Urenco partners, a joint development programme has been and is being vigorously pursued to reduce specific costs, increase output and maintain competitiveness throughout the 1990s. The paper summarises the development of the centrifuge from its earliest concepts through to the centrifuges of today which are jointly designed by the Urenco partners. The potential for further development is also examined. (author)

  5. Simulations of overall flow in gas centrifuge considering feed jet

    International Nuclear Information System (INIS)

    He Liang; Jiang Dongjun; Ying Chuntong

    2010-01-01

    A coupled method for the numerical solution of the flow in rapidly rotating gas centrifuge was presented. An iteration process of DSMC and CFD was performed to analyze the overall flow in radial direction, in which DSMC was adopted to simulate the rarefied region, and CFD was adopted to the counter-current of gas centrifuge to discrete the model equations. It was applied to simulate the 2D symmetrical flow model considering the rarefied region with the feed jet flow. A series of illustrative numerical examples were given. The flow structures of the feed jet in the rarefied gas flow region were shown. The results suggest that DSMC CFD coupled method is competent to the simulations of overall flow in a gas centrifuge. (authors)

  6. Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods

    Directory of Open Access Journals (Sweden)

    V. O. Lomakin

    2014-01-01

    Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.

  7. Dynamic Model of Centrifugal Compressor for Prediction of Surge Evolution and Performance Variations

    International Nuclear Information System (INIS)

    Jung, Mooncheong; Han, Jaeyoung; Yu, Sangseok

    2016-01-01

    When a control algorithm is developed to protect automotive compressor surges, the simulation model typically selects an empirically determined look-up table. However, it is difficult for a control oriented empirical model to show surge characteristics of the super charger. In this study, a dynamic supercharger model is developed to predict the performance of a centrifugal compressor under dynamic load follow-up. The model is developed using Simulink® environment, and is composed of a compressor, throttle body, valves, and chamber. Greitzer’s compressor model is used, and the geometric parameters are achieved by the actual supercharger. The simulation model is validated with experimental data. It is shown that compressor surge is effectively predicted by this dynamic compressor model under various operating conditions.

  8. Dynamic Model of Centrifugal Compressor for Prediction of Surge Evolution and Performance Variations

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mooncheong; Han, Jaeyoung; Yu, Sangseok [Chungnam National Univ., Daejeon (Korea, Republic of)

    2016-05-15

    When a control algorithm is developed to protect automotive compressor surges, the simulation model typically selects an empirically determined look-up table. However, it is difficult for a control oriented empirical model to show surge characteristics of the super charger. In this study, a dynamic supercharger model is developed to predict the performance of a centrifugal compressor under dynamic load follow-up. The model is developed using Simulink® environment, and is composed of a compressor, throttle body, valves, and chamber. Greitzer’s compressor model is used, and the geometric parameters are achieved by the actual supercharger. The simulation model is validated with experimental data. It is shown that compressor surge is effectively predicted by this dynamic compressor model under various operating conditions.

  9. Vacuum chamber-free centrifuge with magnetic bearings.

    Science.gov (United States)

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  10. Design and Implementation of Closed-loop PI Control Strategies in Real-time MATLAB Simulation Environment for Nonlinear and Linear ARMAX Models of HVAC Centrifugal Chiller Control Systems

    Directory of Open Access Journals (Sweden)

    Nicolae Tudoroiu

    2018-04-01

    Full Text Available The objective of this paper is to investigate three different approaches of modeling, design and discrete-time implementation of PI closed-loop control strategies in SIMULINK simulation environment, applied to a centrifugal chiller system. Centrifugal chillers are widely used in large building HVAC systems. The system consists of an evaporator, a condenser, a centrifugal compressor and an expansion valve. The overall system is an interconnection of two main control loops, namely the chilled water temperature inside the evaporator, and the refrigerant liquid level control in condenser. The centrifugal chiller dynamics model in a discrete-time state-space representation is of high complexity in terms of dimension and encountered nonlinearities. For simulation purpose the centrifugal chiller model is simplified by using different approaches, especially the development of linear polynomials ARMAX and ARX models. The aim to build linear ARMAX models for centrifugal chiller is to simplify considerable the control design strategies that are investigated in this research paper. The novelty of this research is a new controller design approach, more precisely an improved version of proportional – integral control, the so called Proportional-Integral-Plus control for systems with time delay, based on linear ARMAX models. It is conceived within the context of non-minimum state space control system that “seems to be the natural description of a discrete-time transfer function, since its dimension is dictated by the complete structure of the model”. The effectiveness of this new controller design, its implementation simplicity, convergence speed and robustness are proved in the last section of the paper.

  11. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan [Tsinghua University, Beijing (China); Yu, Weiping [Zhejiang Pump Works, Zhejiang (China)

    2008-10-15

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m{sup 3}min{sup -1}.min{sup -1} and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-{epsilon} turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  12. Flow control arrangements for centrifuges

    International Nuclear Information System (INIS)

    Alderton, G.W.; Davidge, P.C.

    1983-01-01

    In a centrifuge plant for the separation of uranium isotopes, when a centrifuge machine breaks down, light gas is produced. This gas can cause adjacent machines to break down, so propagating the fault. The present invention provides flow control arrangements in gas pipes to the centrifuge, whereby sudden egress of gas from a failed machine is inhibited. (author)

  13. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings Theory and Implementation

    CERN Document Server

    Yoon, Se Young; Allaire, Paul E

    2013-01-01

    Control of Surge in Centrifugal Compressors by Active Magnetic Bearings sets out the fundamentals of integrating the active magnetic bearing (AMB) rotor suspension technology in compressor systems, and describes how this relatively new bearing technology can be employed in the active control of compressor surge. The authors provide a self-contained and comprehensive review of rotordynamics and the fundamentals of the AMB technology. The active stabilization of compressor surge employing AMBs in a machine is fully explored, from the modeling of the instability and the design of feedback controllers, to the implementation and experimental testing of the control algorithms in a specially-constructed, industrial-size centrifugal compression system. The results of these tests demonstrate the great potential of the new surge control method developed in this text. This book will be useful for engineers in industries that involve turbocompressors and magnetic bearings, as well as for researchers and graduate students...

  14. Evaluation of enrichment by centrifugal separation: the future of the centrifugal-separation method

    International Nuclear Information System (INIS)

    Kanagawa, A.

    A gas centrifuge plant for uranium enrichment is considered from the point of view of economic competition with other methods. Characteristics of the method are presented including: energy efficiency, the cascade, the separation coefficient, the equilibrium separation process, and capability as centrifugal pump. The structure of an individual gas centrifuge separator is described including the rotating cylinder, mechanisms for gas injection and extraction, mechanisms for counter-streaming of gas, the axle holder mechanism, the gas sealing mechanism, and the driving mechanism. (U.S.)

  15. Integrating Electrochemical Detection with Centrifugal Microfluidics for Real-Time and Fully Automated Sample Testing

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga; Kwasny, Dorota; Amato, Letizia

    2015-01-01

    Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical experime......Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical...

  16. Analytical performance of centrifuge-based device for clinical chemistry testing.

    Science.gov (United States)

    Suk-Anake, Jamikorn; Promptmas, Chamras

    2012-01-01

    A centrifuge-based device has been introduced to the Samsung Blood Analyzer (SBA). The verification of this analyzer is essential to meet the ISO15189 standard. Analytical performance was evaluated according to the NCCLS EP05-A method. The results of plasma samples were compared between the SBA and a Hitachi 917 analyzer according to the NCCLS EP09-A2-IR method. Percent recovery was determined via analysis of original control serum and spiked serum. Within-run precision was found to be 0.00 - 6.61% and 0.96 - 5.99% in normal- and abnormal-level assays, respectively, while between-run precision was 1.31 - 9.09% and 0.89 - 6.92%, respectively. The correlation coefficients (r) were > 0.990. The SBA presented analytical accuracy at 96.64 +/- 3.39% to 102.82 +/- 2.75% and 98.31 +/- 4.04% to 103.61 +/- 8.28% recovery, respectively. The results obtained verify that all of the 13 tests performed using the SBA demonstrates good and reliable precision suitable for use in qualified clinical chemistry laboratory service.

  17. A novel technique using the Hendrickx centrifuge for extracting winter sporangia of Synchytrium endobioticum from soil

    NARCIS (Netherlands)

    Wander, J.G.N.; Berg, van den W.; Boogert, van den P.H.J.F.; Lamers, J.G.; Leeuwen, van G.C.M.; Hendrickx, G.; Bonants, P.J.M.

    2007-01-01

    A zonal centrifugation method, known as the Hendrickx centrifuge technique, was tested for routine detection of winter sporangia of Synchytrium endobioticum in soil. In four experiments the ability of the Hendrickx centrifuge to extract the sporangia from soil was compared with a method used by the

  18. The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems.

    Science.gov (United States)

    Hacke, Uwe G; Venturas, Martin D; MacKinnon, Evan D; Jacobsen, Anna L; Sperry, John S; Pratt, R Brandon

    2015-01-01

    The standard centrifuge method has been frequently used to measure vulnerability to xylem cavitation. This method has recently been questioned. It was hypothesized that open vessels lead to exponential vulnerability curves, which were thought to be indicative of measurement artifact. We tested this hypothesis in stems of olive (Olea europea) because its long vessels were recently claimed to produce a centrifuge artifact. We evaluated three predictions that followed from the open vessel artifact hypothesis: shorter stems, with more open vessels, would be more vulnerable than longer stems; standard centrifuge-based curves would be more vulnerable than dehydration-based curves; and open vessels would cause an exponential shape of centrifuge-based curves. Experimental evidence did not support these predictions. Centrifuge curves did not vary when the proportion of open vessels was altered. Centrifuge and dehydration curves were similar. At highly negative xylem pressure, centrifuge-based curves slightly overestimated vulnerability compared to the dehydration curve. This divergence was eliminated by centrifuging each stem only once. The standard centrifuge method produced accurate curves of samples containing open vessels, supporting the validity of this technique and confirming its utility in understanding plant hydraulics. Seven recommendations for avoiding artefacts and standardizing vulnerability curve methodology are provided. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters

    Science.gov (United States)

    Lu, Yunsong; Wang, Fuli; Jia, Mingxing; Qi, Yuanchen

    2016-12-01

    This paper concerns fault diagnosis of centrifugal compressor based on thermal parameters. An improved qualitative simulation (QSIM) based fault diagnosis method is proposed to diagnose the faults of centrifugal compressor in a gas-steam combined-cycle power plant (CCPP). The qualitative models under normal and two faulty conditions have been built through the analysis of the principle of centrifugal compressor. To solve the problem of qualitative description of the observations of system variables, a qualitative trend extraction algorithm is applied to extract the trends of the observations. For qualitative states matching, a sliding window based matching strategy which consists of variables operating ranges constraints and qualitative constraints is proposed. The matching results are used to determine which QSIM model is more consistent with the running state of system. The correct diagnosis of two typical faults: seal leakage and valve stuck in the centrifugal compressor has validated the targeted performance of the proposed method, showing the advantages of fault roots containing in thermal parameters.

  20. Centrifugal Compressor Aeroelastic Analysis Code

    Science.gov (United States)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  1. Development of a new miniature short-residence-time annular centrifugal solvent extraction contactor for tests of process flowsheets in hot cells

    International Nuclear Information System (INIS)

    Lanoe, J.Y.; Rivalier, P.

    2000-01-01

    Researches undertaken on new nuclear fuel reprocessing extraction processes need tests of process flowsheets in hot cells. To this goal, a new miniature short residence-time annular centrifugal solvent extraction contactor was conceived and developed at Marcoule. This single stage contactor is composed of an outer stationary cylinder (made of transparent plexiglas on prototype and of stainless steel on models for hot cells) and a suspended inner rotating cylinder of stainless steel; the inside diameter of the rotor is 12 mm. Aqueous and organic phases are fed into the gap between the two cylinders. The mixture flows down the annular space and then up through an orifice at the bottom of the rotor. Into the rotor, the emulsion breaks rapidly under the centrifugal force (up to 600 g with rotor speed of 10,000 rpm). The separated phases flow over their weirs and discharge at the top in their collector rings. The liquid hold-up of this centrifugal contactor is approximately 6 mL. The use in hots cells needed original designs for: - the assembly of a single-stage contactor: every part (motor, rotor, stationary housing) is simply inserted on the other one without screws and nuts; - the assembly of multistage group: every stage is stacking in two rails and an intermediate part (supported on the two rails) links exit ports and their corresponding inlet ports. All the parts are pressed and sealed against a terminal plate with a screw. Separating capacity tests with. a prototype were conducted using water as the aqueous phase and hydrogenated tetra-propylene (TPH) as the organic phase with aqueous to organic (A/O) flow ratio equal to 1. The best performances were obtained with rotor speed ranging from 4000 to 5000 rpm; the total throughput was then up to 2 L.h -1 . For a total throughput of 300 mL.h -1 , the hold-up in the annular mixing zone varied from 0.5 to 1.5 mL according to the A/O ratio and the starting mode. A number of tests were also performed to measure the

  2. Initial Earthquake Centrifuge Model Experiments for the Study of Liquefaction

    National Research Council Canada - National Science Library

    Steedman, R

    1998-01-01

    .... These are intended to gather data suitable for the development of improved design approaches for the prediction of liquefaction under earthquake loading using the new centrifuge facility at the WES...

  3. Multiple-isotope separation in gas centrifuge

    International Nuclear Information System (INIS)

    Wood, Houston G.; Mason, T.C.; Soubbaramayer

    1996-01-01

    In previous works, the Onsager's pancake equation was used to provide solution to the internal counter-current flow field, which is necessary to calculate solutions to the isotope transport equation. The diffusion coefficient was assumed to be constant which is a good approximation for gases with large molecular weights, and small differences in the molecular weights of the various isotopes. A new optimization strategy was presented for determining the operating parameters of a gas centrifuge to be used for multiple-component isotope separation. Scoop drag, linear wall temperature gradient, the feed rate ant the cut have been chosen as operating parameters for the optimization. The investigation was restricted to a single centrifuge, and the problem of cascading for multiple-isotope separation was not addressed. The model describing the flow and separation phenomena in centrifuge includes a set of equations describing the fluid dynamics of the counter-current flow and the diffusion equations written for each isotope of the mixture. In this paper, an optimization algorithm is described and applied to an example for the re enrichment of spent reactor uranium

  4. The magnetic centrifugal mass filter

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  5. The magnetic centrifugal mass filter

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-09-15

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  6. Detection of outliers in a gas centrifuge experimental data

    Directory of Open Access Journals (Sweden)

    M. C. V. Andrade

    2005-09-01

    Full Text Available Isotope separation with a gas centrifuge is a very complex process. Development and optimization of a gas centrifuge requires experimentation. These data contain experimental errors, and like other experimental data, there may be some gross errors, also known as outliers. The detection of outliers in gas centrifuge experimental data is quite complicated because there is not enough repetition for precise statistical determination and the physical equations may be applied only to control of the mass flow. Moreover, the concentrations are poorly predicted by phenomenological models. This paper presents the application of a three-layer feed-forward neural network to the detection of outliers in analysis of performed on a very extensive experiment.

  7. Assessment of a turbulence model for numerical predictions of sheet-cavitating flows in centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Houlin; Wang, Yong; Liu, Dongxi; Yuan, Shouqi; Wang, Jian [Jiangsu University, Zhenjiang (China)

    2013-09-15

    Various approaches have been developed for numerical predictions of unsteady cavitating turbulent flows. To verify the influence of a turbulence model on the simulation of unsteady attached sheet-cavitating flows in centrifugal pumps, two modified RNG k-ε models (DCM and FBM) are implemented in ANSYS-CFX 13.0 by second development technology, so as to compare three widespread turbulence models in the same platform. The simulation has been executed and compared to experimental results for three different flow coefficients. For four operating conditions, qualitative comparisons are carried out between experimental and numerical cavitation patterns, which are visualized by a high-speed camera and depicted as isosurfaces of vapor volume fraction α{sub v} = 0.1, respectively. The comparison results indicate that, for the development of the sheet attached cavities on the suction side of the impeller blades, the numerical results with different turbulence models are very close to each other and overestimate the experiment ones slightly. However, compared to the cavitation performance experimental curves, the numerical results have obvious difference: the prediction precision with the FBM is higher than the other two turbulence models. In addition, the loading distributions around the blade section at midspan are analyzed in detail. The research results suggest that, for numerical prediction of cavitating flows in centrifugal pumps, the turbulence model has little influence on the development of cavitation bubbles, but the advanced turbulence model can significantly improve the prediction precision of head coefficients and critical cavitation numbers.

  8. Numerical analysis on centrifugal compressor with membrane type dryer

    Science.gov (United States)

    Razali, M. A.; Zulkafli, M. F.; Mat Isa, N.; Subari, Z.

    2017-09-01

    Moisture content is a common phenomenon in industrial processes especially in oil and gas industries. This contaminant has a lot of disadvantages which can lead to mechanical failure DEC (Deposition, Erosion & Corrosion) problems. To overcome DEC problem, this study proposed to design a centrifugal compressor with a membrane type dryer to reduce moisture content of a gas. The effectiveness of such design has been analyzed in this study using Computational Fluid Dynamics (CFD) approach. Numerical scheme based on multiphase flow technique is used in ANSYS Fluent software to evaluate the moisture content of the gas. Through this technique, two kind of centrifugal compressor, with and without membrane type dryer has been tested. The results show that the effects of pressure on dew point temperature of the gas change the composition of its moisture content, where high value lead more condensation to occur. However, with the injection of cool dry gas through membrane type dryer in the centrifugal compressor, the pressure and temperature of moisture content as well as mass fraction of H2O in centrifugal compressor show significant reduction.

  9. Instability of a Vacuum Arc Centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Bosco, E. del; Simpson, S.W.

    2003-01-01

    Ever since conception of the Vacuum Arc Centrifuge (VAC) in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a VAC. Our theoretical and experimental research suggests that these fluctuations are in fact a pressure-gradient driven drift mode. In this work, we summarise the properties of a theoretical model describing the range of instabilities in the VAC plasma column, present theoretical predictions and compare with detailed experiments conducted on the PCEN centrifuge at the Brazilian National Space Research Institute (INPE). We conclude that the observed instability is a 'universal' instability, driven by the density-gradient, in a plasma with finite conductivity

  10. Theoretical investigations on plasma centrifuges

    International Nuclear Information System (INIS)

    Hong, S.H.

    1978-01-01

    The theoretical analysis of the steady-state dynamics of plasma centrifuges is dealt with to understand the physics of rotating plasmas and their feasibility for isotope separation. The centrifuge systems under consideration employ cylindrical gas discharge chambers with externally-applied axial magnetic fields. The cathode and anode are symmetric about the cylinder axis and arranged in such a way for each system, i.e., (1) two ring electrodes of different radii in the chamber end plates or (2) two ring electrodes embedded in the mantle of the cylinder. They produce converging and/or diverging current density field lines, which intersect the external magnetic field under a nonvanishing angle. The associated Lorentz forces set the plasma, which is produced through an electrical discharge, into rotation around the cylinder axis. Three boundary-value problems for the coupled partial differential equations of the centrifuge fields are formulated, respectively, on the basis of the magnetogasdynamic equations. The electric field, electrostatic potential, current density, induced magnetic field, and velocity distributions are discussed in terms of the Hartmann number, the Hall coefficient, and the magnetic Reynolds number. The plasma centrifuge analyses presented show that the speeds of plasma rotation up to the order of 10 4 m/sec are achievable at typical conditions. The associated centrifugal forces produce a significant spatial isotope separation, which is somewhat reduced in the viscous boundary layers at the centrifuge walls. The speeds of plasma rotation increase with increasing Hartmann number and Hall coefficient. For small Hall coefficient, the induced azimuthal magnetic field does not affect the plasma rotation. For large volumes of rotating isotope mixtures, a multidischarge centrifuge can be constructed by setting up a large number of centrifuge systems in series

  11. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  12. Optimizing platelet-rich plasma gel formation by varying time and gravitational forces during centrifugation.

    Science.gov (United States)

    Jo, Chris H; Roh, Young Hak; Kim, Ji Eun; Shin, Sue; Yoon, Kang Sup

    2013-10-01

    Despite the increasing clinical use of topical platelet-rich plasma (PRP) to enhance tissue healing and regeneration, there is no properly standardized method of autologous PRP gel preparation. This study examined the effect of the centrifugation time and gravitational force (g) on the platelet recovery ratio of PRP and determined the most effective centrifugation conditions for preparing PRP. Two-step centrifugations for preparing PRP were used in 39 subjects who had consented prior to the study's start. The separating centrifugation (Step 1, used to separate whole blood into its two main components: red blood cells and plasma) was tested from 500g to 1900g at 200g increments for 5 minutes (min), and from 100g to 1300g at 200g increments for 10 minutes. After separating centrifugation, upper plasma layer was transferred to another plain tube for the condensation centrifugation and remaining lower cell layer was discarded. The condensation centrifugation (Step 2, used to condense the platelets in the separated plasma) was tested at 1000g for 15 min, 1500g for 15 min, 2000g for 5 min and 3000g for 5 min, additionally at 1000g for 10 min and 1500g for 10 min. Platelet gelation was induced by adding 10% calcium gluconate to final PRP with volume ratio of 1:10. The optimal separating centrifugation conditions were followed by 900g for 5 minutes and the condensation conditions were followed by 1500g for 15 minutes, of which recovery ratios were 92.0 ± 3.1% and 84.3 ± 10.0%, respectively.

  13. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    Heriot, I.D.

    1988-01-01

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  14. Centrifugation speed affects light transmission aggregometry.

    Science.gov (United States)

    Merolla, M; Nardi, M A; Berger, J S

    2012-02-01

    Light transmission aggregometry (LTA) is considered the gold standard for investigating platelet activity ex vivo. However, LTA protocols are not standardized, and differences in LTA procedure are a potential source of variance in results. Centrifugation speed is an essential component of platelet preparation in LTA, has yet to be standardized, and may affect platelet aggregation results. We sought to investigate the effect of relative centrifugal force (RCF) intensity on LTA results. Ten healthy controls had venous blood drawn and centrifuged at 150, 200, 300, and 500 g for 10 min. Cell counts in whole blood and platelet-rich plasma (PRP) were measured using a hematology analyzer. LTA was performed using 1.0 μm adenosine diphosphate (ADP) and 0.4 μm epinephrine as an agonist. Aggregation (%) was compared at 60, 120, 180, and 300 s and at maximum aggregation. Centrifugation speed was associated with decreasing platelet count (P centrifuge RCF at 60, 120, 180, 300 s and at maximum aggregation (P centrifugation speed in the interpretation of LTA results, supporting the need for standardization of centrifugation RCF in LTA protocols. © 2011 Blackwell Publishing Ltd.

  15. Simplified simulation of multicomponent isotope separation by gas centrifuge

    International Nuclear Information System (INIS)

    Guo Zhixiong; Ying Chuntong

    1995-01-01

    The expressions of diffusion equation for multicomponent isotope separation by gas centrifuge are derived by utilizing the simplified diffusion transport vector. A method of radial averaging which was restricted to a binary mixture is extended to multicomponent isotope mixtures by using an iterative scheme. A numerical analysis of tetradic UF 6 or SF 6 gas isotope separation by centrifuge is discussed when a special model of velocity distribution is given. The dependence of mutual separation factor for the components on their molecular weights' difference is obtained. Some aspects of the given model of gas fluid are also discussed

  16. CENTAURE, a numerical model for the computation of the flow and isotopic concentration fields in a gas centrifuge

    International Nuclear Information System (INIS)

    Soubbaramayer

    1977-01-01

    A numerical code (CENTAURE) built up with 36000 cards and 343 subroutines to investigate the full interconnected field of velocity, temperature, pressure and isotopic concentration in a gas centrifuge is presented. The complete set of Navier-Stokes equations, continuity equation, energy balance, isotopic diffusion equation and gas state law, form the basis of the model with proper boundary conditions, depending essentially upon the nature of the countercurrent and the thermal condition of the walls. Sources and sinks are located either inside the centrifuge or in the boundaries. The model includes not only the usual terms of CORIOLIS, compressibility, viscosity and thermal diffusivity but also the non linear terms of inertia in momentum equations, thermal convection and viscous dissipation in energy equation. The computation is based on finite element method and direct resolution instead of finite difference and iterative process. The code is quite flexible and well adapted to compute many physical cases in one centrifuge: the computation time per one case is then very small (we work with an IBM-360-91). The numerical results are exploited with the help of a visualisation screen IBM 2250. The possibilities of the code are exposed with numerical illustration. Some results are commented and compared to linear theories

  17. Effect of pore fluid on the cyclic behavior of laterally loaded offshore piles modelled in centrifuge

    NARCIS (Netherlands)

    Askarinejad, A.; Philia Boru Sitanggang, Anggi; Schenkeveld, Ferry; Lee, W.; Lee, J-S.; Kim, H-K.; kim, D-S.

    The common practice in centrifuge modelling of dynamic processes is to use high-viscosity pore fluids to unify the time scaling factors for the generation and dissipation of pore pressures. This paper focuses on the effects of the density and viscosity of the pore fluid on the behaviour of an

  18. NECESSARY CONDITIONS OF STABILITY MOVING PARTS OF ROTOR CENTRIFUGE

    OpenAIRE

    Strackeljan, Jens; Babenko, Andriy; Lavrenko, Iaroslav

    2014-01-01

    Design features of modern centrifuges studied. Revealed that their rotors are movable elements that revolve around horizontal axes. The dynamics of these moving parts of laboratory centrifuge considered. Using the Lagrange equation of the second kind the resulting differential equations of their motion considered. The modeling visualization of motion using the software package RecurDyn was made. The results that obtained by the research package RecurDyn and analytically showed that their moti...

  19. Modifying a Commercial Centrifuge to Reduce Electromagnetic Interference and Evaluating Functionality of Ultrasound Equipment

    Science.gov (United States)

    Greening, Gage J.

    2016-01-01

    The Project Management and Engineering Branch (SF4) supports the Human Health and Performance Directorate (HH&P) and is responsible for developing and supporting human systems hardware for the International Space Station (ISS). When a principal investigator's (PI) medical research project on the ISS is accepted, SF4 develops the necessary hardware and software to transport to the ISS. The two projects I primarily worked on were the centrifuge and ultrasound projects. Centrifuge: One concern with spacecraft such as the ISS is electromagnetic interference (EMI) from onboard equipment, typically from radio waves (frequencies of 3 kHz to 300 GHz), which can negatively affect nearby circuitry. Standard commercial centrifuges produce EMI above safety limits, so my task was to help reduce EMI production from this equipment. Two centrifuges were tested: one unmodified as a control and one modified. To reduce EMI below safety limits, one centrifuge was modified to become a Faraday shield, in which significant electrical contact was made between all regions of the centrifuge housing. This included removing non-conductive paint, applying conductive fabric to the lid and foam sealer, adding a 10,000 µF decoupling capacitor across the power supply, and adding copper adhesive-mount gaskets to the housing interior. EMI testing of both centrifuges was performed in the EMI/EMC Control Test and Measurement Facility. EMI for both centrifuges was below safety limits for frequencies between 10 MHz and 15 GHz (pass); however, between 14 kHz and 10 MHz, EMI for the unmodified centrifuge exceeded safety limits (fail) as expected. Alternatively, for the modified centrifuge with the Faraday shield, EMI was below the safely limit of 55 dBµV/m for electromagnetic frequencies between 14 kHz and 10 MHz. This result indicates our modifications were successful. The successful EMI test allowed us to communicate with the vendor what modifications they needed to make to their commercial unit to

  20. Numerical Investigations of Unsteady Flow in a Centrifugal Pump with a Vaned Diffuser

    Directory of Open Access Journals (Sweden)

    Olivier Petit

    2013-01-01

    Full Text Available Computational fluid dynamics (CFD analyses were made to study the unsteady three-dimensional turbulence in the ERCOFTAC centrifugal pump test case. The simulations were carried out using the OpenFOAM Open Source CFD software. The test case consists of an unshrouded centrifugal impeller with seven blades and a radial vaned diffuser with 12 vanes. A large number of measurements are available in the radial gap between the impeller and the diffuse, making this case ideal for validating numerical methods. Results of steady and unsteady calculations of the flow in the pump are compared with the experimental ones, and four different turbulent models are analyzed. The steady simulation uses the frozen rotor concept, while the unsteady simulation uses a fully resolved sliding grid approach. The comparisons show that the unsteady numerical results accurately predict the unsteadiness of the flow, demonstrating the validity and applicability of that methodology for unsteady incompressible turbomachinery flow computations. The steady approach is less accurate, with an unphysical advection of the impeller wakes, but accurate enough for a crude approximation. The different turbulence models predict the flow at the same level of accuracy, with slightly different results.

  1. Characteristics of centrifugal rapid contactor, (3)

    International Nuclear Information System (INIS)

    Nakanishi, Mitsuo; Hirayama, Hiroshi; Takasu, Nobuyuki; Takeda, Hiroshi; Hoshino, Tadaya

    1979-01-01

    Organic solvent yields the degradation product as a result of irradiation, in the extraction process of spent fuel reprocessing. The development of a centrifugal rapid contactor is required for the reduction of the solvent degradation by shortening the contact time. The effects of fine solid particles were investigated with a SGN-Robatel LX-208N contactor, following the uranium extraction and re-extraction performance tests. It was found as the experimental result that the considerable quantity of solids accumulated in the rotor of the centrifugal contactor. As for this experimental apparatus, the flow diagram for the centrifugal rapid contactor and auxiliary apparatuses is shown, which are the same system used for the uranium extraction and re-extraction tests. The schematic diagram, the typical stage construction and fluid transfer path of the LX-208 contactor are illustrated. The main specifications of the LX-208 contactor are as follows: the internal diameter of a rotating bowl 200 mm, the material SUS 316, the number of stages 8, and the total hold-up volume of the contactor 1.8 l. Most tests were carried out with aqueous feed only, because white Alundum is easily deposited in the rotor, and the particle concentration in effluent stream becomes undetectable when organic and aqueous feeds are supplied simultaneously. As the experimental results, the correlation of Alundum concentration in effluent and running time, the effect of rotor speed on effluent stream concentration, the particle size distribution curves for No. 6000 and No. 8000 white Alundum, the effect of flow rate on effluent stream concentration and the effect of flow rate on particle size distribution for both No. 6000 and No. 8000 white Alundum are presented. (Nakai, Y.)

  2. Paste pumping and deposition field trials and concepts on Syncrude's dewatered mature fine tailings MFT centrifuge cake

    Energy Technology Data Exchange (ETDEWEB)

    Lahaie, R. [Syncrude Canada Ltd., Edmonton, AB (Canada); Ahmed, I.; Labelle, M.; Brown, R. [Golder Paste Technology, Sudbury, ON (Canada)

    2009-07-01

    This presentation discussed a paste pumping and deposition field study conducted on dewatered mature fine tailings (MFT) located at Syncrude's Mildred Lake operation. Bench scale rheological examinations of centrifuge cakes and design field testing are used to determine the pumpability of MFT centrifuge cakes. The study included a transportation assessment for the conveyor and positive displacement pumps and pipelines, as well as geotechnical and environmental analyses of bulk materials. Flocculant optimization and centrifuge operational parameter assessments were conducted. Pressure differential and flow rate data were captured in the field studies in order to determine pipeline friction loss. The study showed that pipe friction factors can be obtained using the Bingham plastic model. A natural deposition angle was determined for the MFT centrifuged cake. The study showed that the cake must be sheared in order to reduce yield stress before pumping. It was concluded that displacement pumps can be used to reduced pipeline friction factors. tabs., figs.

  3. Impact of sample processing on the measurement of circulating microparticles: storage and centrifugation parameters.

    Science.gov (United States)

    Vila-Liante, Virtudes; Sánchez-López, Verónica; Martínez-Sales, Vicenta; Ramón-Nuñez, Luis A; Arellano-Orden, Elena; Cano-Ruiz, Alejandra; Rodríguez-Martorell, Francisco J; Gao, Lin; Otero-Candelera, Remedios

    2016-11-01

    Microparticles (MPs) have been shown to be markers of cellular activation and interactions. Pre-analytical conditions such as the centrifugation protocol and sample storage conditions represent an important source of variability in determining MPs values. The objectives of this study were to evaluate the influence of sample storage conditions and centrifugation speed and temperature on the determination of MPs in plasma. Citrate-anticoagulated blood samples obtained from 21 healthy subjects were centrifuged under four different protocols involving different speeds (2500 g or 1500 g) and temperatures (4 °C or 20 °C) to isolate platelet-poor plasma (PPP). The number of MPs in fresh and frozen-thawed PPP were analyzed by flow cytometry, and MPs-mediated procoagulant activity was determined by a thrombin generation test and phospholipid-dependent procoagulant tests. The number of MPs and their procoagulant activity were affected by freeze-thaw cycling and centrifugation speed but not by centrifugation temperature. Sample freezing increased MPs number (six-fold) and thrombin generation (four-fold), and decreased clotting time (two-fold). Low centrifugation speed caused an increase in MPs number and a parallel increase in MP-mediated procoagulant activity. Sample storage conditions and centrifugation speed are important processing conditions affecting MPs number and activity. Before any study, the protocol for MPs isolation should be optimized to ensure a reliable characterization of MPs, which could provide important information for diagnostic purposes and for understanding the pathogenesis of diseases.

  4. Centrifugal acceleration of the polar wind

    Science.gov (United States)

    Horwitz, J. L.; Ho, C. W.; Scarbro, H. D.; Wilson, G. R.; Moore, T. E.

    1994-01-01

    The effect of parallel ion acceleration associated with convection was first applied to energization of test particle polar ions by Cladis (1986). However, this effect is typically neglected in 'self-consistent' models of polar plasma outflow, apart from the fluid simulation by Swift (1990). Here we include approximations for this acceleration, which we broadly characterize as centrifugal in nature, in our time-dependent, semikinetic model of polar plasma outflow and describe the effects on the bulk parameter profiles and distribution functions of H+ and O+. For meridional convection across the pole the approximate parallel force along a polar magnetic field line may be written as F(sub cent, pole) = 1.5m(E(sub i))/B(sub i))squared (r(squared)/r(sup 3)(sub i)) where m is ion mass, r is geometric distance; and E(sub i), B(sub i) and r(sub i) refer to the electric and magnetic field magnitudes and geocentric distance at the ionosphere, respectively. For purely longitudinal convection along a constant L shell the parallel force is F(cent. long) = F(sub cent, pole)(1 - (r/(r(sub i)L))(sup 3/2)/(1 - 3r/(4 r(sub i)L))(sup 5/2). For high latitudes the difference between these two cases is relatively unimportant below approximately 5 R(sub E). We find that the steady state O+ bulk velocities and parallel temperatures strongly increase and decrease, respectively, with convection strength. In particular, the bulk velocities increase from near 0 km/s at 4000 km altitude to approximately 10 km/s at 5 R(sub E) geocentric distance for 50-mV/m ionospheric convection electric field. However, the centrifugal effect on the steady O+ density profiles depends on the exobase ion and electron temperatures: for low-base temperatures (T(sub i) = T(sub e) = 3000 K) the O+ density at high altitudes increases greatly with convection, while for higher base temperatures (T(sub i) = 5000 K, T(sub e) = 9000 K), the high-altitude O+ density decreases somewhat as convection is enhanced. The

  5. Numerical study of the effects of curvature on the fluid dynamics of gas centrifuges

    International Nuclear Information System (INIS)

    Jordan, J.A.; Gunzburger, M.D.; Wood, H.G. III.

    1983-06-01

    A finite element method for the approximate solution of the flow in rapidly rotating gas centrifuges is presented. The Onsager model, as amended by Maslen, is used in deriving the model equations to be discretized. The pancake effects are not assumed in the model, i.e., curvature terms are retained. To show the effects of these terms on the hydrodynamics of a gas centrifuge, numerical examples done with and without these curvature terms are presented and compared. Two flow models are used for the examples, one for flow driven by a linear temperature gradient along the wall and the other for flow driven by axial mass fluxes through the end caps of the centrifuge

  6. Progress in ultra-centrifuge enrichment technology

    International Nuclear Information System (INIS)

    Paul Dawson

    2006-01-01

    Urenco have undertaken a continuous development programme in centrifuge technology for over 35 years. This has seen development from sub-critical machines in the mid 1970's through to the company's world leading TC12 supercritical centrifuge, which has been deployed on a large-scale basis over the last decade. The latest centrifuge to emerge from this programme is Urenco's sixth generation centrifuge, the TC21, which will be commercially deployed from mid-2007 onwards. In recent times Urenco has vested its centrifuge technology in Enrichment Technology Company (ETC) as a vehicle to enable the use of this advanced technology by other operators for commercial purposes. This paper reviews why Urenco and ETC believe this technology represents the best choice for creating new global commercial enrichment capacity and its future development prospects. (author)

  7. Cavitation simulation and NPSH prediction of a double suction centrifugal pump

    International Nuclear Information System (INIS)

    Li, P; Huang, Y F; Li, J

    2012-01-01

    This paper illustrates the flow field numerical analysis of the double-suction centrifugal pump. For the study of the cavitation flow inside the double-suction centrifugal pump, the professional pump/motor simulation software PumpLinx and its Full Cavitation Model has been employed. According to the PumpLinx calculation result and the Cavitation damage index, the cavitation position, level and the cavitation characteristics of the double-suction centrifugal pump has been predicted. For the further objective, the simulation of the flow field in the double-suction centrifugal pump under different inlet conditions has been carried out. By the result analysis, NPSHr has been predicted; the reliability of the results has been verified by comparing with the experimental data. At the same time, this practice can provide guidance for the optimal design of double-suction pump.

  8. Empirical Design Considerations for Industrial Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2012-01-01

    Full Text Available Computational Fluid Dynamics (CFD has been extensively used in centrifugal compressor design. CFD provides further optimisation opportunities for the compressor design rather than designing the centrifugal compressor. The experience-based design process still plays an important role for new compressor developments. The wide variety of design subjects represents a very complex design world for centrifugal compressor designers. Therefore, some basic information for centrifugal design is still very important. The impeller is the key part of the centrifugal stage. Designing a highly efficiency impeller with a wide operation range can ensure overall stage design success. This paper provides some empirical information for designing industrial centrifugal compressors with a focus on the impeller. A ported shroud compressor basic design guideline is also discussed for improving the compressor range.

  9. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  10. Numerical modeling and optimization of the Iguassu gas centrifuge

    Science.gov (United States)

    Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.

    2017-07-01

    The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.

  11. New methods and media for the centrifugation of honey bee (Hymenoptera: Apidae) drone semen.

    Science.gov (United States)

    Wegener, Jakob; May, Tanja; Kamp, Günter; Bienefeld, Kaspar

    2014-02-01

    Centrifugation of Apis mellifera L. drone semen is a necessary step in the homogenization of semen pools for the enlargement of the effective breeding population, as well as in the collection of semen by the so-called washing technique. It is also of interest for the removal of cryoprotectants after cryopreservation. The adoption of methods involving semen centrifugation has been hampered by their damaging effect to sperm. Here, we tested four new diluents as well as three additives (catalase, hen egg yolk, and a protease inhibitor), using sperm motility and dual fluorescent staining as indicators of semen quality. Three of the new diluents significantly reduced motility losses after centrifugation, as compared with the literature standard. Values of motility and propidium iodide negativity obtained with two of these diluents were not different from those measured with untreated semen. The least damaging diluent, a citrate-HEPES buffer containing trehalose, was then tested in an insemination experiment with centrifuged semen. Most queens receiving this semen produced normal brood, and the number of sperm reaching the storage organ of the queen was not significantly different from that in queens receiving untreated semen. These results could improve the acceptance of techniques involving the centrifugation of drone semen. The diluent used in the insemination experiment could also serve as semen extender for applications not involving centrifugation.

  12. Research on energy conversion mechanism of a screw centrifugal pump under the water

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Han, W; Cheng, X R; Shen, Z J; Su, Q M

    2013-01-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase

  13. The Advanced Gas Centrifuge program

    International Nuclear Information System (INIS)

    Riepe, R.

    1984-01-01

    Although the gas centrifuge process for uranium enrichment is often referred to as a ''new technology,'' it has been under development for approximately 25 years to bring it to its current state of deployment. Centrifuges are now being installed in a new gas centrifuge enrichment plant (GCEP) at Portsmouth, Ohio. The objective of this new plant was to provide additional U.S. uranium enrichment capacity at a production cost comparable to the U.S. diffusion process but requiring much less power per separative work unit (SWU) produced. The current, commercial scale centrifuge technology being installed meets that objective. The objective for new U.S. enrichment capacity has changed. The objective is not to provide more SWUs but to provide cheaper SWUs. The objective is to make the U.S. uranium enrichment enterprise competitive on the international market. Where the U.S. at one time supplied virtually all of the free world SWU demand, the U.S. market share has now dropped to approximately 35% of the foreign free world market. The Advanced Gas Centrifuge (AGC) program provides an avenue for making the U.S. the economically attractive, reliable enrichment supplier

  14. Evaluation of a Spiral Groove Geometry for Improvement of Hemolysis Level in a Hydrodynamically Levitated Centrifugal Blood Pump.

    Science.gov (United States)

    Murashige, Tomotaka; Kosaka, Ryo; Sakota, Daisuke; Nishida, Masahiro; Kawaguchi, Yasuo; Yamane, Takashi; Maruyama, Osamu

    2015-08-01

    The purpose of this study is to evaluate a spiral groove geometry for a thrust bearing to improve the hemolysis level in a hydrodynamically levitated centrifugal blood pump. We compared three geometric models: (i) the groove width is the same as the ridge width at any given polar coordinate (conventional model); (ii) the groove width contracts inward from 9.7 to 0.5 mm (contraction model); and (iii) the groove width expands inward from 0.5 to 4.2 mm (expansion model). To evaluate the hemolysis level, an impeller levitation performance test and in vitro hemolysis test were conducted using a mock circulation loop. In these tests, the driving conditions were set at a pressure head of 200 mm Hg and a flow rate of 4.0 L/min. As a result of the impeller levitation performance test, the bottom bearing gaps of the contraction and conventional models were 88 and 25 μm, respectively. The impeller of the expansion model touched the bottom housing. In the hemolysis test, the relative normalized index of hemolysis (NIH) ratios of the contraction model in comparison with BPX-80 and HPM-15 were 0.6 and 0.9, respectively. In contrast, the relative NIH ratios of the conventional model in comparison with BPX-80 and HPM-15 were 9.6 and 13.7, respectively. We confirmed that the contraction model achieved a large bearing gap and improved the hemolysis level in a hydrodynamically levitated centrifugal blood pump. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Extraction of soil solution by drainage centrifugation-effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils.

    Science.gov (United States)

    Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique

    2017-02-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.

  16. Centrifuge enrichment plants. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socioeconomic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are considered. (Contains a minimum of 171 citations and includes a subject term index and title list.)

  17. Valve for gas centrifuges

    Science.gov (United States)

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  18. Designing and analysis study of uranium enrichment with gas centrifuge

    International Nuclear Information System (INIS)

    Tsunetoshi Kai

    2006-01-01

    This note concerns a designing and analysis study of uranium enrichment with a gas centrifuge. At first, one dimensional model is presented and a conventional analytical method is applied to grasp the general idea of a centrifuge performance. Secondly, two-dimensional numerical method is adopted to describe the diffusion phenomena with assumption of simple flow patterns. Parametric surveys are made on the dimension of a centrifuge rotor, the gas feed, withdrawal and circulation system, and operation variables such as feed flow rate, cut and so on. Thirdly, full numerical solutions are obtained for the flow and diffusion equations in static state, using a modified version of the Newton method without neglect of any non-linear term. The numerical results are compared with the experimental data made by Beams et al. and Zippe, and found to be in good agreement. Further, the theoretical pressure and separative power are compared respectively with experimental ones on a comparatively recent centrifuge. The results reveal that the characteristics of separation performance of a centrifuge can be fully described by the present method. Some of inevitable problems are tackled regarding UF 6 gas isotope separation by centrifugation. To examine the influence of the extraneous light gas, the diffusion equations for ternary mixture are solved and also the flow field of binary mixture with large mass difference is obtained to simultaneously solve the Navier-Stokes equations and the diffusion equation.for binary case. Since the gas in the interior region of the rotor is so rarefied that the Navier-Stokes equations cease to be valid, the Burnett equations are solved.for gas flow in a rotating cylinder. Considering that the uranium recovered at a reprocessing plant includes 236 U besides 235 U and 238 U, the concentration distributions of the ternary gas isotopes are determined and a value function is defined for the evaluation of separative work for the multi-component mixture

  19. An Iterative Method to Derive the Equivalent Centrifugal Compressor Performance at Various Operating Conditions: Part I: Modelling of Suction Parameters Impact

    Directory of Open Access Journals (Sweden)

    Waleed Albusaidi

    2015-08-01

    Full Text Available This paper introduces a new iterative method to predict the equivalent centrifugal compressor performance at various operating conditions. The presented theoretical analysis and empirical correlations provide a novel approach to derive the entire compressor map corresponding to various suction conditions without a prior knowledge of the detailed geometry. The efficiency model was derived to reflect the impact of physical gas properties, Mach number, and flow and work coefficients. One of the main features of the developed technique is the fact that it considers the variation in the gas properties and stage efficiency which makes it appropriate with hydrocarbons. This method has been tested to predict the performance of two multistage centrifugal compressors and the estimated characteristics are compared with the measured data. The carried comparison revealed a good matching with the actual values, including the stable operation region limits. Furthermore, an optimization study was conducted to investigate the influences of suction conditions on the stage efficiency and surge margin. Moreover, a new sort of presentation has been generated to obtain the equivalent performance characteristics for a constant discharge pressure operation at variable suction pressure and temperature working conditions. A further validation is included in part two of this study in order to evaluate the prediction capability of the derived model at various gas compositions.

  20. Centrifuge in space fluid flow visualization experiment

    Science.gov (United States)

    Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.

    1993-01-01

    A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.

  1. Some engineering considerations when designing centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Edwards, T.T.

    1982-01-01

    A review is given of the three main areas where flexibility is needed in the design of centrifuge enrichment plants. These are: the need to cope with market requirements, the limitations imposed by currently available centrifuges and ever advancing centrifuge technology. Details of BNFL's experience with centrifuge enrichment at Capenhurst are presented. (U.K.)

  2. An approach using centrifugation for the extraction of the soil solution and its usefulness in studies of radionuclide speciation in soils - Approach using centrifugation for extraction of soil solution and its study for uranium speciation

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Adriana S. [CAPES Foundation, Ministry of Education of Brazil, 70040-020, Brasilia, Brazil, Proc.BEX 1958/13-5 (Brazil); Lozano, J.C.; Prieto, C. [Universidad de Salamanca, 37008, Salamanca (Spain); Blanco Rodriguez, P.; Vera Tome, F. [Universidad de Extremadura, 06006, Badajoz (Spain)

    2014-07-01

    The centrifugation technique is tested as a methodology for extraction of soil solution, for further characterization, in order to elucidate its contribution to the speciation of radionuclides, particularly uranium, in radioactively contaminated soils, as well as the determination of its availability for vegetation. Centrifugation of a previously saturated soil core provides the soil solution with a specific origin inside the soil sample. In such way that the different soil solution origin, associate to the effective pressure applied to the soil core, will reflect different distribution coefficients which affect the radionuclide availability definition. Speciation of radionuclides in the soil solution can be also conditioned by this water origin. The development of this methodology relating to technical challenges faces materials suitable for the centrifugation process, both in terms of mechanical properties and chemical inertness. This paper reports the preparation of ceramic pellets of perlite produced with the intention of replacing glass pellets, used inserts in support to soils coupled with centrifuges. The characterization of porosity and the test of its chemical inertness and mechanical strength to the centrifugation process have been performed. Porosity characterization is required to control the saturation gradient, which conditions the flow of water from the soil. Its mechanical adequacy was tested by subjecting the pellets to the centrifugation process and assessing its integrity end. Chemical inertia was measured by placing the tablets in aqueous solutions of known composition and then evaluating the presence or absence of elements in this solution, after on time of contact between them. (authors)

  3. Basic characteristics of centrifuges, (4)

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi

    1977-01-01

    A method of numerically solving the convection-diffusion equation is presented for a binary isotopic gas mixture in the axisymmetric velocity field. A modified Newton's method is employed to perform the numerical integration without the assumptions that the pressure can be estimated from the rigid rotation model and the temperature of gas is uniform. A suitable form of the finite difference equation gives a computationally stable integration with reasonable representation of the molar concentration distribution of isotopic molecules in a rotating cylinder. The method includes a Gaussian elimination procedure which consists of the transformation of the Jacobian matrix to a triangular matrix followed by the backward elimination. Computations are made on UF 6 gas in various centrifuges which have the openings for feed, product and waste on the end plates. Discussions are also presented on gas flows and separative efficiencies for the centrifuges which have baffle plates, skirting plates and bellows. (auth.)

  4. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    International Nuclear Information System (INIS)

    Li Ning; Camassa, Roberto; Ecke, Robert E.; Venneri, Francesco

    1995-01-01

    We report on the physical separation of dilute solutions using centrifugal techniques. We use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. We verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. We show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. We also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, we have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies we show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. We consider technical issues in the design of such a separation system

  5. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    International Nuclear Information System (INIS)

    Ning Li; Camassa, R.; Ecke, R.E.

    1995-01-01

    The authors report on the physical separation of dilute solutions using centrifugal techniques. They use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. They verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. The authors show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. They also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, they have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies the authors show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. The authors consider technical issues in the design of such a separation system

  6. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    Ning Li; Camassa, R.; Ecke, R.E. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    The authors report on the physical separation of dilute solutions using centrifugal techniques. They use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. They verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. The authors show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. They also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, they have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies the authors show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. The authors consider technical issues in the design of such a separation system.

  7. Centrifuge treatment of coal tar

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  8. Centrifuges and inertial shear forces

    NARCIS (Netherlands)

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Smit, T.H.

    2004-01-01

    Centrifuges are often used in biological studies for 1xg control samples in space flight microgravity experiments as well as in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the

  9. Design of Structural Parameters for Centrifugal Elevator Overspeed Governors

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-01-01

    Full Text Available As an important part of overspeed and fail-safe protection for elevators, the centrifugal elevator overspeed governor is a device for limiting overspeed of elevator cars. This paper researches on the vibration of the centrifugal block, which plays a key role in the performance of this overspeed governor. By performing dynamics analysis on the centrifugal block, the differential equation on the vibration of the centrifugal block is established. Based on this, the paper performs simulation analysis on the influence of systematic parameters such as the speed of the overspeed governor sheave, the mass of centrifugal block, the turning radius of the centrifugal block, the position where the spring acts, and the stiffness of the centrifugal block spring, on the vibration of the centrifugal block, and finds out their specific influence relationship.

  10. Runtime and Inversion Impacts on Estimation of Moisture Retention Relations by Centrifuge

    Science.gov (United States)

    Sigda, J. M.; Wilson, J. L.

    2003-12-01

    the impact of different runtimes and different inversion techniques on estimated moisture retention parameters. Moisture retention data were collected for a number of poorly lithified sands and indurated deformed sands using the UFA centrifuge system (Conca and Wright, 1990). Parameters for the van Genuchten model were estimated for short and long runtimes with one inversion technique. Model parameters were re-estimated for one other inversion technique and a simple averaging approach which does not involve inversion. Our results demonstrate that the averaging approach greatly underestimates the van Genuchten n parameter relative to the inversion techniques. Insufficient runtimes also have a significant impact on estimated parameters. Our analysis indicates a need, barring method standardization, for practitioners to include information about inversion technique and runtime criteria when presenting centrifuge moisture retention results.

  11. Modeling of filling gas centrifuge cascade for nickel isotope separation by feed flow input to different stages

    Directory of Open Access Journals (Sweden)

    Orlov Alexey A.

    2017-01-01

    Full Text Available The article presents results of research filling gas centrifuge cascade by process gas fed into different stages. The modeling of filling cascade was done for nickel isotope separation. Analysis of the research results shows that nickel isotope concentrations of light and heavy fraction flows after filling cascade depend on feed stage number.

  12. High-efficiency design optimization of a centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Man Woong; Ma, Sang Bum; Shim, Hyeon Seok; Kim, Kwang Yong [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of)

    2016-09-15

    Design optimization of a backward-curved blades centrifugal pump with specific speed of 150 has been performed to improve hydraulic performance of the pump using surrogate modeling and three-dimensional steady Reynolds-averaged Navier-Stokes analysis. The shear stress transport model was used for the analysis of turbulence. Four geometric variables defining the blade hub inlet angle, hub contours, blade outlet angle, and blade angle profile of impeller were selected as design variables, and total efficiency of the pump at design flow rate was set as the objective function for the optimization. Thirty-six design points were chosen using the Latin hypercube sampling, and three different surrogate models were constructed using the objective function values calculated at these design points. The optimal point was searched from the constructed surrogate model by using sequential quadratic programming. The optimum designs of the centrifugal pump predicted by the surrogate models show considerable increases in efficiency compared to a reference design. Performance of the best optimum design was validated compared to experimental data for total efficiency and head.

  13. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1982-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength KEVLAR/epoxy composite. This arbon has been spin-tested to a tip speed of 1 km/s

  14. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1983-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength Kevlar/epoxy composite. This arbor has been spin-tested to a tip speed of 1 km/s

  15. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    Science.gov (United States)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  16. Liquid centrifugation for nuclear waste partitioning

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1992-01-01

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF 2 salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the 137 Cs and 135 Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10 7 and the fraction of 137 CS in 133 Cs being as low as a few parts in 10 5 . A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components

  17. Performance and internal flow condition of mini centrifugal pump with splitter blades

    International Nuclear Information System (INIS)

    Shigemitsu, T; Fukutomi, J; Kaji, K; Wada, T

    2012-01-01

    Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.

  18. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  19. The effect of centrifugation speed and time on pre-analytical platelet activation.

    Science.gov (United States)

    Söderström, Anna C; Nybo, Mads; Nielsen, Christian; Vinholt, Pernille J

    2016-12-01

    The results of laboratory analyses are affected by pre-analytical variables, and in particular can platelets be activated by shear handling stress and secrete granular substances. We therefore evaluated the effect of centrifugation speed and time on pre-analytical platelet activation. Citrate- and EDTA-anticoagulated blood from healthy volunteers were centrifuged at 80-10,000 g for 5-15 min to prepare plasma and platelet-rich plasma. Pre-analytical platelet activation was assessed by flow cytometric measurement of platelet P-selectin (CD62p) expression. Blood cell counts, mean platelet volume (MPV), immature platelet fraction (IPF), and platelet distribution width (PDW) were measured. Platelet aggregation in platelet-rich plasma induced by arachidonic acid (AA), ADP or thrombin receptor activator peptide-6 (TRAP) was tested by 96-well aggregometry. The median percentage of platelets expressing P-selectin in citrate- and EDTA-plasma centrifuged at 2000 g for 10 min were 43% [interquartile range (IQR), 38%-53%] and 56% (IQR, 31%-78%), respectively (p=0.82). Platelet-rich plasma prepared at 100-250 g for 10 min had significantly lower platelet P-selectin expression (11%-15%), pcentrifuged. In platelet-rich plasma, increasing centrifugation speed significantly increased platelet yield but decreased contamination from other blood cells, platelet composition was altered as platelet parameters (MPV, IPF, and PDW) was lowered. Platelet aggregation was not affected by the centrifugation speed platelet-rich plasma was prepared. Proportional to centrifugation speed, platelets in plasma and platelet-rich plasma were activated with centrifugation speed, cell content and composition changed while platelet aggregation was unaltered.

  20. Centrifugal separator cascade connected in zigzag manner

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Nagakura, Masaaki.

    1974-01-01

    Object: To effectively accommodate centrifugal separators of the entire cascade within the available space in a plant by freely selecting perpendicular direction of connection of the centrifugal separator. Structure: Centrifugal separators are connected in zigzag fashion by using a single header for each stage so that in a rectangular shape the entire cascade is arranged. (Kamimura, M.)

  1. Assessment of centrifugation using for accelerated immunological microarray analysis for blood cells investigation

    Directory of Open Access Journals (Sweden)

    A. V. Shishkin

    2011-01-01

    Full Text Available Phase of incubation microarray with cell suspension is prolonged when cells are investigated. It takes from 20 to 60 min if cell sedimentation on the surface of microarray is the result of gravity . Decrease of this stage duration is possible due to centrifugation. In th is article influence of centrifugation on results of analysis is considered. Changes of morphological description of cells are estimated when they a re precipitatedwith different acceleration. Also availability of centrifugation using when it is necessary to obtain the high density of cell binding in test regions of microarray if cells concentration in sample is small is demonstrated.

  2. Investigation on Flow-Induced Noise due to Backflow in Low Specific Speed Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2013-01-01

    Full Text Available Flow-induced noise causes disturbances during the operation of centrifugal pumps and also affects their performance. The pumps often work at off-design conditions, mainly at part-load conditions, because of frequent changes in the pump device system. Consequently numerous unstable phenomena occur. In low specific speed centrifugal pumps the main disturbance is the inlet backflow, which is considered as one of the most important factors of flow-induced noise and vibration. In this study, a test rig of the flow-induced noise and vibration of the centrifugal pump was built to collect signals under various operating conditions. The three-dimensional unsteady flow of centrifugal pumps was calculated based on the Reynolds-averaged equations that resemble the shear stress transport (SST k-ω turbulence model. The results show that the blade passing frequency and shaft frequency are dominant in the spectrum of flow-induced noise, whereas the shaft component, amplitude value at shaft frequency, and peak frequencies around the shaft increase with decreasing flow. Through flow field analysis, the inlet backflow of the impeller occurs under 0.7 times the design flow. The pressure pulsation spectrum with backflow conditions validates the flow-induced noise findings. The velocity characteristics of the backflow zone at the inlet pipe were analyzed, and the dynamic characteristics of the backflow eddy during one impeller rotating period were simultaneously obtained by employing the backflow conditions. A flow visualization experiment was performed to confirm the numerical calculations.

  3. Thermal hydrodynamic analysis of a countercurrent gas centrifuge; Analise termo hidrodinamica de uma centrifuga a contracorrente

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de

    1999-07-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  4. Thermal hydrodynamic analysis of a countercurrent gas centrifuge; Analise termo hidrodinamica de uma centrifuga a contracorrente

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de

    1999-07-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  5. Performance Testing Of A Modified Centrifugal Fan With Serrated Blade Impeller

    OpenAIRE

    Zaimar; Mursalim; H. Abbas; Supratomo

    2017-01-01

    Changes of shape dimension and component part of impeller might change of characteristic fluid flow so that pressure static in the fan housing changed. Changing some geometric characteristics of the centrifugal fan has more efficiency taking with energy crises into consideration. Several factors that can affect fan performance namely design and type size rotation speed air condition or gas through a fan operating point on the nature of the relationship between a volume of air flow and pressur...

  6. Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors

    International Nuclear Information System (INIS)

    Broatch, A.; Galindo, J.; Navarro, R.; García-Tíscar, J.

    2014-01-01

    Highlights: • A DES of a turbocharger compressor working at peak pressure point is performed. • In-duct pressure signals are measured in a steady flow rig with 3-sensor arrays. • Pressure spectra comparison is performed as a validation for the numerical model. • A suitable comparison methodology is developed, relying on pressure decomposition. • Whoosh noise at outlet duct is detected in experimental and numerical spectra. - Abstract: Centrifugal compressors working in the surge side of the map generate a broadband noise in the range of 1–3 kHz, named as whoosh noise. This noise is perceived at strongly downsized engines operating at particular conditions (full load, tip-in and tip-out maneuvers). A 3-dimensional CFD model of a centrifugal compressor is built to analyze fluid phenomena related to whoosh noise. A detached eddy simulation is performed with the compressor operating at the peak pressure point of 160 krpm. A steady flow rig mounted on an anechoic chamber is used to obtain experimental measurements as a means of validation for the numerical model. In-duct pressure signals are obtained in addition to standard averaged global variables. The numerical simulation provides global variables showing excellent agreement with experimental measurements. Pressure spectra comparison is performed to assess noise prediction capability of numerical model. The influence of the type and position of the virtual pressure probes is evaluated. Pressure decomposition is required by the simulations to obtain meaningful spectra. Different techniques for obtaining pressure components are analyzed. At the simulated conditions, a broadband noise in 1–3 kHz frequency band is detected in the experimental measurements. This whoosh noise is also captured by the numerical model

  7. Kinetically limited differential centrifugation as an inexpensive and readily available alternative to centrifugal elutriation.

    Science.gov (United States)

    Tan, Jinwang; Lee, Byung-Doo; Polo-Parada, Luis; Sengupta, Shramik

    2012-08-01

    When separating two species with similar densities but differing sedimentation velocities (because of differences in size), centrifugal elutriation is generally the method of choice. However, a major drawback to this approach is the requirement for specialized equipment. Here, we present a new method that achieves similar separations using standard benchtop centrifuges by loading the seperands as a layer on top of a dense buffer of a specified length, and running the benchtop centrifugation process for a calculated amount of time, thereby ensuring that all faster moving species are collected at the bottom, while all slower moving species remain in the buffer. We demonstrate the use of our procedure to isolate bacteria from blood culture broth (a mixture of bacterial growth media, blood, and bacteria).

  8. A centrifuge-less plasma separation method from whole blood anticoagulated with EDTA-2K for the use of clinical laboratory tests.

    Science.gov (United States)

    Tatsumi, N; Tsuda, I; Fukumori, T; Hino, M; Takubo, T; Kondo, H

    2001-12-01

    In the modern medical laboratory system, simple and rapid processing of specimens are required. In the current system with the transportation line, its centrifugation part would disturb smooth flow of the testing because it needs much time for the centrifugation. To solve the problems, a serum separation method was tried for the whole blood specimen using poly-L-lysine, concanavalin A and phyto-hemoagglutinin. Ploy-L-lysine with molecular weight 130,000 to 210,000 in a final concentration of 0.1% could accelerate blood sedimentation, although its supernatant contaminated platelets. Concanavalin and phytohemoagulutinin could accelerate the sedimentation and obtained plasma, but the method could yield enough amount of supernatant by 1 hour standing. As the purpose of this study is to develop a centrifugeless method, a sieve method using a steel mesh and a magnet was applied to the mixture of EDTA blood, red-cell adhesives and thrombin. The method was unique to separate plasma, but the yield was not so high and chemistry data were not fitted with serum data in some of tests. Thus, the trial would be a new technology, but it was judged that some further improvement will be needed technically.

  9. NASA low-speed centrifugal compressor for 3-D viscous code assessment and fundamental flow physics research

    Science.gov (United States)

    Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.

    1991-01-01

    A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.

  10. Centrifuge workers study. Phase II, completion report

    International Nuclear Information System (INIS)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom

  11. Centrifuge workers study. Phase II, completion report

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  12. Development of a 3D circular microfluidic centrifuge for the separation of mixed particles by using their different centrifuge times

    International Nuclear Information System (INIS)

    Jeon, H J; Kim, D I; Kim, M J; Nguyen, X D; Park, D H; Go, J S

    2015-01-01

    This paper presents a circular microfluidic centrifuge with two inlets and two outlets to separate mixed microparticles with a specially designed sample injection hole. To separate the mixed particles, it uses a rotational flow, generated in a chamber by counter primary flows in the microchannels. The shape and sizes of the circular microfluidic centrifuge have been designed through numerical evaluation to have a large relative centrifugal force. The difference of centrifuge times of the mixed particles of 1 μm and 6 μm was determined to be 8.2 s at an inlet Reynolds number of 500 and a sample Reynolds number of 20. In the experiment, this was measured to be about 10 s. From the separation of the two polymer particles analogous to the representative sizes of platelets and red blood cells, the circular microfluidic centrifuge shows a potential to separate human blood cells size-selectively by using the difference of centrifuge times. (paper)

  13. Centrifuge in Free Fall: Combustion at Partial Gravity

    Science.gov (United States)

    Ferkul, Paul

    2017-01-01

    A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.

  14. Centrifugal force: a few surprises

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Max-Planck-Institut fuer Physik und Astrophysik, Garching

    1990-01-01

    The need for a rather fundamental revision in understanding of the nature of the centrifugal force is discussed. It is shown that in general relativity (and contrary to the situation in Newtonian theory) rotation of a reference frame is a necessary but not sufficient condition for the centrifugal force to appear. A sufficient condition for its appearance, in the instantaneously corotating reference frame of a particle, is that the particle motion in space (observed in the global rest frame) differs from a photon trajectory. The direction of the force is the same as that of the gradient of the effective potential for photon motion. In some cases, the centrifugal force will attract towards the axis of rotation. (author)

  15. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    OpenAIRE

    Li, Tao; Zhang, Weiming; Jiang, Ming; Li, Zhengyang

    2013-01-01

    A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...

  16. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    Jordan, I.

    1980-05-01

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author) [pt

  17. Unexpected properties of the centrifugal force

    International Nuclear Information System (INIS)

    Abramowicz, M.A.

    1990-01-01

    Contrary to what is stated in the Newtonian dynamics, rotation of a reference frame is not sufficient for the occurrence of the centrifugal force. Instead, the necessary and sufficient condition is a motion along a path different from that of a photon trajectory in space. This calls for a rather fundamental change in understanding of the very nature of the centrifugal force. It also has important practical physical consequences: in a strong gravitational field, where light trajectories are substantially curved, centrifugal force is much weaker than the Newtonian theory predicts. In addition, when there are closed (circular) photon trajectories in space, the centrifugal force may reverse its direction - it attracts towards the rotation axis!. The weakening of the centrifugal force in strong gravitational fields and the reversal of its direction in the neighbourhood of close photon trajectories in space fully and clearly explain puzzling examples of counter intuitive behaviour of dynamical effects of rotation found previously by several authors: e.g. reversal of the ellipticity behaviour of the relativistic Maclaurin spheroids (Chandrasekhar and Miller, 1974), reversal of the viscous torque action (Anderson and Lemos, 1988), or the fact that rotation increases internal pressure of a sufficiently compact star (Abramowicz and Wagoner, 1974). Weakening of the centrifugal force implies that rotating neutron stars are less oblate (and probably more stable) than the Newtonian theory predicts. This is important for the recently discussed question of how fast can pulsars spin. (author). 23 refs, 3 figs

  18. Unexpected properties of the centrifugal force

    International Nuclear Information System (INIS)

    Abramowicz, M.A.

    1990-01-01

    Contrary to what is stated in the Newtonian dynamics, rotation of a reference frame is not sufficient for the occurrence of the centrifugal force. Instead, the necessary and sufficient condition is a motion along a path different from that of a photon trajectory in space. This calls for a rather fundamental change in understanding of the very nature of the centrifugal force. It also has important practical physical consequences: in a strong gravitational field, where light trajectories are substantially curved, centrifugal force is much weaker than the Newtonian theory predicts. In addition, when there are closed (circular) photon trajectories in space, the centrifugal force may reverse its direction - it attracts towards the rotation axis. The weakening of the centrifugal force in strong gravitational fields and the reversal of its direction in the neighborhood of close photon trajectories in space fully and clearly explain puzzling examples of counter intuitive behaviour of dynamical effects of rotation found previously by several authors: e.g. reversal of the ellipticity behaviour of the relativistic Maclaurin spheroids (Chandrasekhar and Miller, 1974), reversal of the viscous torque action (Anderson and Lemos, 1988) or the fact that rotation increases internal pressure of a sufficiently compact star (Abramowicz and Wagoner, 1974). Weakening of the centrifugal force implies that rotating neutron stars are less oblate (and probably more stable) than the Newtonian theory predicts. This is important for the recently discussed question of how fast can pulsars spins. (author). 31 refs, 3 figs

  19. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we

  20. Centrifuge Facility for the International Space Station Alpha

    Science.gov (United States)

    Johnson, Catherine C.; Hargens, Alan R.

    1994-01-01

    The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from

  1. A Turbidity Test Based Centrifugal Microfluidics Diagnostic System for Simultaneous Detection of HBV, HCV, and CMV

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Chang

    2015-01-01

    Full Text Available This paper presents a LAMP- (loop-mediated isothermal amplification- based lab-on-disk optical system that allows the simultaneous detection of hepatitis B virus, hepatitis C virus, and cytomegalovirus. The various flow stages are controlled in the proposed system using different balance among centrifugal pumping, Coriolis pumping, and the capillary force. We have implemented a servo system for positioning and speed control for the heating and centrifugal pumping. We have also successfully employed a polymer light-emitting diode section for turbidity detection. The easy-to-use one-click system can perform diagnostics in less than 1 hour.

  2. The computer simulation of 3d gas dynamics in a gas centrifuge

    Science.gov (United States)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  3. The computer simulation of 3d gas dynamics in a gas centrifuge

    International Nuclear Information System (INIS)

    Borman, V D; Bogovalov, S V; Borisevich, V D; Tronin, I V; Tronin, V N

    2016-01-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there. (paper)

  4. Design Method for Channel Diffusers of Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Mykola Kalinkevych

    2013-01-01

    Full Text Available The design method for channel diffusers of centrifugal compressors, which is based on the solving of the inverse problem of gas dynamics, is presented in the paper. The concept of the design is to provide high pressure recovery of the diffuser by assuming the preseparation condition of the boundary layer along one of the channel surfaces. The channel diffuser was designed with the use of developed method to replace the vaned diffuser of the centrifugal compressor model stage. The numerical simulation of the diffusers was implemented by means of CFD software. Obtained gas dynamic characteristics of the designed diffuser were compared to the base vaned diffuser of the compressor stage.

  5. Flow in a centrifugal fan impeller at off-design conditions

    Science.gov (United States)

    Wright, T.; Tzou, K. T. S.; Madhavan, S.

    1984-06-01

    A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.

  6. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.

    OpenAIRE

    Sundin, D R; Mecham, J O

    1989-01-01

    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  7. Development of the chemical decontamination process of uranium enrichment gas centrifuges

    International Nuclear Information System (INIS)

    Mita, Yutaka; Endo, Yuji; Yamanaka, Toshihiro; Oohashi, Yusuke

    2002-01-01

    In Ningyo-Toge Environmental Engineering Center, many of the centrifuges that were tested for uranium enrichment are kept in storage. In the future, it will be necessary to dispose of them properly. By categorizing these centrifuges as 'items that are not required to be treated as radioactive waste', chemical decontamination tests were conducted with the wet process (diluted sulfuric acid) to reduce the amount of such radioactive waste. As a result, concerning the rotors, the assumed radioactive level was attained as items that are not required to be treated as radioactive waste', but the effectiveness of the casings varied. As a future subject, in order to find the optimal decontamination process, the basic test shall be conducted continuously. By taking economical efficiency and the processing time into consideration, the decontamination process will be evaluated and a rational method examined. (author)

  8. Evaluation of amides and centrifugation temperature in boar semen cryopreservation.

    Science.gov (United States)

    Bianchi, I; Calderam, K; Maschio, E F; Madeira, E M; da Rosa Ulguim, R; Corcini, C D; Bongalhardo, D C; Corrêa, E K; Lucia, T; Deschamps, J C; Corrêa, M N

    2008-03-15

    Two experiments were conducted to evaluate the use of amides as cryoprotectants and two centrifugation temperatures (15 or 24 degrees C) in boar semen cryopreservation protocols. Semen was diluted in BTS, cooled centrifuged, added to cooling extenders, followed by the addition of various cryoprotectants. In experiment 1, mean (+/-S.E.M.) sperm motility for 5% dimethylformamide (DMF; 50.6+/-1.9%) and 5% dimethylacetamide (DMA; 53.8+/-1.7%) were superior (P0.05). In experiment 2, we tested MF, DMF, and DMA at 3, 5, and 7%. Sperm motility and membrane integrity were higher for 5% DMA (53.8+/-1.7 and 50.9+/-1.9%) and 5% DMF (50.6+/-1.9 and 47.9+/-2.1%), in comparison with 7% DMF and all MF concentrations (P0.05). In conclusion, boar semen was successfully cryopreserved by replacement of glycerol with amides (especially 5% DMA) and centrifugation at 15 degrees C, with benefits for post-thaw sperm motility and membrane integrity.

  9. Dynamic Modeling of Starting Aerodynamics and Stage Matching in an Axi-Centrifugal Compressor

    Science.gov (United States)

    Wilkes, Kevin; OBrien, Walter F.; Owen, A. Karl

    1996-01-01

    A DYNamic Turbine Engine Compressor Code (DYNTECC) has been modified to model speed transients from 0-100% of compressor design speed. The impetus for this enhancement was to investigate stage matching and stalling behavior during a start sequence as compared to rotating stall events above ground idle. The model can simulate speed and throttle excursions simultaneously as well as time varying bleed flow schedules. Results of a start simulation are presented and compared to experimental data obtained from an axi-centrifugal turboshaft engine and companion compressor rig. Stage by stage comparisons reveal the front stages to be operating in or near rotating stall through most of the start sequence. The model matches the starting operating line quite well in the forward stages with deviations appearing in the rearward stages near the start bleed. Overall, the performance of the model is very promising and adds significantly to the dynamic simulation capabilities of DYNTECC.

  10. Active unsteady aerodynamic suppression of rotating stall in an incompressible flow centrifugal compressor with vaned diffuser

    Science.gov (United States)

    Lawless, Patrick B.; Fleeter, Sanford

    1991-01-01

    A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.

  11. A specter of coexistence: Is centrifugal community organization haunted by the ghost of competition?

    Science.gov (United States)

    Wasserberg, Gideon; Kotler, B.P.; Morris, D.W.; Abramsky, Z.

    2006-01-01

    In a centrifugally organized community species prefer the same habitat (called "core") but differ in their secondary habitat preferences. The first model of centrifugal community organization (CCO) predicted that optimally foraging, symmetrically competing species would share use of the core habitat at all density combinations. But one might also assume that the competition in the core habitat is asymmetrical, that is, that one of the species (the dominant) has a behavioral advantage therein. In this study, we asked how should habitat use evolve in a centrifugally organized community if its species compete asymmetrically in the core habitat? To address this question we developed an "isoleg model". The model predicts that in a centrifugally organized community, asymmetric competition promotes the use of the core habitat exclusively by the dominant species at most points in the state space. The separation of the core habitat use by the species ("the ghost of competition past") may be either complete or partial ("partial ghost"), and behavior at the stable competitive equilibrium between the species could determine whether coexistence should occur at the "complete-" or the "partial ghost" regions. This version of CCO should be a common feature of competitive systems.

  12. Effect of separation factors on product assay of an ideal cascade composed of UF6 centrifuges

    International Nuclear Information System (INIS)

    Yamashita, S.; Okamoto, T.

    1975-01-01

    Kinetics equations using two assumptions describe an ideal cascade with accuracy. Using the kinetics equations, it is found that if the decrease of the separation factor in a selected stage is small, the product can be withdrawn at the product assay allowed for shipment without stopping the operation of the ideal cascade composed of the model centrifuges (approximately 4 kg SWU/yr, α = 1.135). Moreover, the fraction of centrifuges permissible to stop in case of an accident is found to be 4 to 5 percent of the model centrifuges in each stage in the enriching section of the ideal cascade. (U.S.)

  13. Headlines... Areva on the way toward centrifugation

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The French industrial group Areva, that gathers Cogema and Framatome-ANP, has entered into a partnership with the British nuclear consortium Urenco for creating ETC (enrichment technology company) in order to replace its uranium enrichment facility (Georges-Besse-I) that is planned to close in 2012 by a new one (George-Besse-II) that will enter into service as early as 2007. The new facility will be based on the centrifugation technique developed by Urenco, this technique will cut the consumption of electricity by 3 in comparison with the gaseous diffusion technique used in the Georges-Besse-I facility. The other asset of the centrifugation technique is that the facility can grow with the number of centrifuges that are set. In 2007 only 7% of the total number of centrifuges will be installed, which will sufficient to satisfy the demand for enriched uranium. The full size of the facility will be reached in 2016 through gradual steps of 10% more centrifuges set every year. (A.C.)

  14. Instabilities expected to exist in a gas centrifuge

    International Nuclear Information System (INIS)

    Sakurai, Takeo

    1977-01-01

    A typical counter current type centrifuge of long bowl geometry is schematically shown. At first glance, the main flow field in this centrifuge can be taken as a swirling pipe flow. Taking in mind the operating gas (uranium hexafluoride) the temperature of which is 20 deg C and the peripheral pressure 10 torrs, the density and pressure obey the barometric relation in which the gravity is replaced by the centrifugal acceleration; in a thermally driven centrifuge, an additional weak temperature gradient appears along the axial direction. These situations are similar to those in the earth's atmosphere. So, it is stressed that the interior of a gas centrifuge is a new kind of rotating atmosphere and offers a 'new face' in the field of geophysical fluid dynamics. Instabilities in inviscid case and the destabilizing effects of the diffusivity are thus discussed together with the effects of the mechanical vibrations of the centrifuge, and vortex breakdown phenomena

  15. Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability

    Science.gov (United States)

    Skoch, Gary J.

    2004-01-01

    Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.

  16. The gas centrifuge, uranium enrichment and nuclear proliferation

    International Nuclear Information System (INIS)

    Chapman, A.

    1988-01-01

    The author considers the consequences for controlling nuclear proliferation of the emergence of the gas centrifuge method for enriching uranium and succeeds in the difficult and delicate task of saying enough about gas centrifuge techniques for readers to judge, what may be involved in fully embracing gas centrifuge enrichment within the constraints of an anti-proliferation strategy, whilst at the same time saying nothing that could be construed as encouraging an interest in the gas centrifuge route to highly enriched uranium where none had before existed. (author)

  17. Application of CFD in Bioprocessing: Separation of mammalian cells using disc stack centrifuge during production of biotherapeutics.

    Science.gov (United States)

    Shekhawat, Lalita Kanwar; Sarkar, Jayati; Gupta, Rachit; Hadpe, Sandeep; Rathore, Anurag S

    2018-02-10

    Centrifugation continues to be one of the most commonly used unit operations for achieving efficient harvest of the product from the mammalian cell culture broth during production of therapeutic monoclonal antibodies (mAbs). Since the mammalian cells are known to be shear sensitive, optimal performance of the centrifuge requires a balance between productivity and shear. In this study, Computational Fluid Dynamics (CFD) has been successfully used as a tool to facilitate efficient optimization. Multiphase Eulerian-Eulerian model coupled with Gidaspow drag model along with Eulerian-Eulerian k-ε mixture turbulence model have been used to quantify the complex hydrodynamics of the centrifuge and thus evaluate the turbulent stresses generated by the centrifugal forces. An empirical model has been developed by statistical analysis of experimentally observed cell lysis data as a function of turbulent stresses. An operating window that offers the optimal balance between high productivity, high separation efficiency, and low cell damage has been identified by use of CFD modeling. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A centrifugal microfluidic platform for point-of-care diagnostic applications

    Directory of Open Access Journals (Sweden)

    Suzanne Hugo

    2014-02-01

    Full Text Available Microfluidic systems enable precise control over tiny volumes of fluid in a compact and low-cost form, thus providing the ideal platform on which to develop point-of-care diagnostic solutions. Centrifugal microfluidic systems, also referred to as lab-on-a-disc or lab-on-a-CD systems, provide a particularly attractive solution for the implementation of microfluidic point-of-care diagnostic solutions as a result of their simple and compact instrumentation, as well as their functional diversity. Here we detail the implementation of a centrifugal microfluidic platform the first of its kind in South Africa as a foundation for the development of point-of-care diagnostic applications for which both the need and impact is great. The centrifugal microfluidic platform consists of three main components: a microfluidic disc device similar in size and shape to a CD, a system for controlling fluid flow on the device, and a system for recording the results obtained. These components have been successfully implemented and tested. Preliminary test results show that microfluidic functions such as pumping and valving of fluids can be successfully achieved, as well as the generation of monodisperse microfluidic droplets, providing a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of applications, including point-of-care diagnostics. The lab-on-a-disc platform has the potential to provide new diagnostic solutions at the point-of-need in health- and industry-related areas. This paves the way for providing resource limited areas with services such as improved, decentralised health-care access or water-quality monitoring, and reduced diagnosis times at a low cost.

  19. Clean-in-Place and Reliability Testing of a Commercial 12.5-cm Annular Centrifugal Contactor at the INL

    International Nuclear Information System (INIS)

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-01-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly

  20. Clean-in-Place and Reliability Testing of a Commercial 12.5 cm Annular Centrifugal Contactor at the INL

    International Nuclear Information System (INIS)

    N. R. Mann; T. G. Garn; D. H. Meikrantz; J. D. Law; T. A. Todd

    2007-01-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitates brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly

  1. Separative power of an optimised concurrent gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, Sergey; Boman, Vladimir [National Research Nuclear University (MEPHI), Moscow (Russian Federation)

    2016-06-15

    The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to δU = 12.7 (V/700 m/s)2(300 K/T)(L/1 m) kg·SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.

  2. Steady state behavior of rotating plasmas in a vacuum-arc centrifuge

    International Nuclear Information System (INIS)

    Bittencourt, J.A.; Ludwig, G.O.

    1987-01-01

    The steady state behaviour of the fully ionized, multiple species, rotating, magnetized plasma in a vacuum-arc plasma centrifuge is described in detail. The analysis is based on a multiple species fluid model which includes electromagnetic, pressure gradient, centrifugal and collisional forces, for each species, in cylindrical geometry. It is shown that there is a family of theoretically possible dynamical equilibrium configurations, which can be achieved by different combinations of ion rotation velocity, radial ion density distribution and radial dependence of internal electric potential. The parametric dependences of the various plasma parameters under equilibrium conditions, including the ion separation factor, are presented for a nickel-copper plasma. The numerical results are analysed and discussed in light of experimentally measured plasma characteristics in a vacuum-arc plasma centrifuge. (author)

  3. Steady state behavior of rotating plasmas in a vacuum-arc centrifuge

    International Nuclear Information System (INIS)

    Bittencourt, J.A.; Ludwig, G.O.

    1986-06-01

    The steady state behavior of the fully ionized, multiple species, rotating, magnetized plasma in a vacuum-arc plasma centrifuge is described in detail. The analysis is based on a multiple species fluid model which includes electromagnetic, pressure gradient, centrifugal and collisional forces, for each species, in cylindrical geometry. It is showm that there is a family of theoretically possible dynamical equilibrium configurations, which can be achieved by different combinations of ion rotation velocity, radial ion density distribution and radial dependence of internal electric potential. The parametric dependences of the various plasma parameters under equilibrium conditions, including the ion separation factor, are presented for a nickel-copper plasma. The numerical results are analysed and discussed on light of experimentally measured plasma characteristics in a vacuum-arc plasma centrifuge. (Author) [pt

  4. Plutonium recovery from incinerator ash and centrifuge sludge by peroxide fusion

    International Nuclear Information System (INIS)

    Partridge, J.A.; Wheelwright, E.J.

    1975-05-01

    A technique was demonstrated for solubilizing the plutonium contained in incinerator ash and in other waste solids (such as solids accumulated by centrifugation after solvent extraction contacts in the plutonium reclamation facility at Hanford). A sodium hydroxide--sodium peroxide fusion is performed on the Pu-containing solids. The cooled melt is then dissolved in dilute nitric acid. Mild steel cans were used as ''single use'' crucibles for the fusions. Both the can and the cooled melt are dissolved in nitric acid. Fusion tests were conducted on three different cans of incinerator ash and on one can of centrifuge sludge. The series of tests demonstrated that a caustic-peroxide fusion treatment can yield 95 percent or greater recovery of plutonium from these waste solids. In most cases, quantitative recovery of the plutonium can probably be achieved by recycling the residual solids obtained in aqueous dissolution of the cooled fusion mixture. Tests with some of the incinerator ash and with the centrifuge sludge resulted in gelatinous precipitates which were difficult to separate from the nitric acid dissolver solutions. These gelatinous precipitates present what is probably the major problem to be overcome in the use of this Pu recovery method. Techniques need to be examined for making these residual solids less difficult to separate from the dissolver solution. (U.S.)

  5. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a

  6. Optimization of centrifugal pump cavitation performance based on CFD

    International Nuclear Information System (INIS)

    Xie, S F; Wang, Y; Liu, Z C; Zhu, Z T; Ning, C; Zhao, L F

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-ε model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head

  7. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    1995-03-01

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  8. Interrogation of fibre Bragg gratings through a fibre optic rotary joint on a geotechnical centrifuge

    Science.gov (United States)

    Correia, Ricardo; James, Stephen W.; Marshall, Alec; Heron, Charles; Korposh, Sergiy

    2016-05-01

    The monitoring of an array of fibre Bragg gratings (FBGs) strain sensors was performed through a single channel, single mode fibre optic rotary joint (FORJ) mounted on a geotechnical centrifuge. The array of three FBGs was attached to an aluminum plate that was anchored at the ends and placed on the model platform of the centrifuge. Acceleration forces of up to 50g were applied and the reflection signal of the monitored FBGs recorded dynamically using a 2.5kHz FBG interrogator placed outside the centrifuge. The use of a FORJ allowed the monitoring of the FBGs without submitting the FBG interrogator to the high g-forces experienced in the centrifuge.

  9. Orientation illusions and heart-rate changes during short-radius centrifugation

    NARCIS (Netherlands)

    Hecht, H.; Kavelaars, J.; Cheung, C. C.; Young, L. R.

    2001-01-01

    Intermittent short-radius centrifugation is a promising countermeasure against the adverse effects of prolonged weightlessness. To assess the feasibility of this countermeasure, we need to understand the disturbing sensory effects that accompany some movements carried out during rotation. We tested

  10. Towards an optimized flow-sheet for a SANEX demonstration process using centrifugal contactors

    International Nuclear Information System (INIS)

    Magnusson, D.; Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano-Purroy, D.; Modolo, G.; Sorel, C.

    2008-01-01

    The design of an efficient process flow-sheet requires accurate extraction data for the experimental set-up used. Often this data is provided as equilibrium data. Due to the small hold-up volume compared to the flow rate in centrifugal contactors the time for extraction is often too short to reach the equilibrium D-ratios. In this work single stage kinetics experiments have been carried out to investigate the D-ratio dependence of the flow rate and also to compare with equilibrium batch experiments for CyMe 4 - BTBP. The first centrifuge experiment was run with spiked solutions while in the second a genuine actinide/lanthanide fraction from a TODGA process was used. Three different flow rates were tested with each set-up. The results show that even with low flow rates, around 8% of the equilibrium D-ratio (Am) was reached for the extraction in the spiked test and around 16% in the hot test (the difference is due to the size of the centrifuges). The general conclusion is that the development of a process flow sheet needs investigation of the kinetic behaviour in the actual equipment used. (authors)

  11. Safety aspects of gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely

  12. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    International Nuclear Information System (INIS)

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S.; Stefanescu, I.

    2008-01-01

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  13. Improved g-level calculations for coil planet centrifuges.

    Science.gov (United States)

    van den Heuvel, Remco N A M; König, Carola S

    2011-09-09

    Calculation of the g-level is often used to compare CCC centrifuges, either against each other or to allow for comparison with other centrifugal techniques. This study shows the limitations of calculating the g-level in the traditional way. Traditional g-level calculations produce a constant value which does not accurately reflect the dynamics of the coil planet centrifuge. This work has led to a new equation which can be used to determine the improved non-dimensional values. The new equations describe the fluctuating radial and tangential g-level associated with CCC centrifuges and the mean radial g-level value. The latter has been found to be significantly different than that determined by the traditional equation. This new equation will give a better understanding of forces experienced by sample components and allows for more accurate comparison between centrifuges. Although the new equation is far better than the traditional equation for comparing different types of centrifuges, other factors such as the mixing regime may need to be considered to improve the comparison further. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. The Use of a "Qual" Centrifuge for Greatly Simplifying and Speeding the Study of Milk

    Science.gov (United States)

    Petersen, Quentin R.

    1996-09-01

    Laboratory study of the constituents of milk is almost always slowed by difficult separation of relatively large amounts of curd and whey by filtration. In the two-and-one-half hour experiment described, only 5 mL of skim milk is used and the curd is separated from the whey by using a simple "qual" centrifuge. Casein and serum proteins are quickly isolated as solids in essentially-quantitative yields in a procedure utilizing only two 13 x 100 mm test tubes and a 50 mL beaker along with the centrifuge and a hotplate. Protein solutions are prepared in the test tubes in which they were isolated and subjected to a variety of classical tests, the most dramatic of which is the Hopkins-Cole test which shows the presence of tryptophan in casein and its absence in serum protein. An essentially-quantitative yield of solid lactose is obtained by evaporation of the supernatant liquid obtained from the serum protein centrifugation. A lactose solution is subjected to Benedict's and Barfoed's tests, identifying it as a disaccharide. Sufficient time is available to compare the fat and enzyme contents of raw milk and skim milk.

  15. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    Science.gov (United States)

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.

  16. Achieving an ever-improving centrifuge

    International Nuclear Information System (INIS)

    Edwards, T.T.; Wilcox, P.

    1988-01-01

    To ensure that the latest technical innovations can be rapidly incorporated, centrifuge development in the Urenco organization is carried out in different phases simultaneously on different generations of machines. This system has led to progressively increased outputs and reduced specific costs, and with the further known potential available, is expected to maintain Urenco's competitiveness throughout the 1990s. The process of separating isotopes by centrifuge is described. (author)

  17. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller

    Energy Technology Data Exchange (ETDEWEB)

    Bellary, Sayed Ahmed Imran; Samad, Abdus [Indian Institute of Technology Madras, Chennai (India); Husain, Afzal [Sultan Qaboos University, Al-Khoudh (Oman)

    2014-12-15

    The major issue of multiple fidelity based analysis and optimization of fluid machinery system depends upon the proper construction of low fidelity model or meta-model. A low fidelity model uses responses obtained from a high fidelity model, and the meta-model is then used to produce population of solutions required for evolutionary algorithm for multi-objective optimization. The Pareto-optimal front which shows functional relationships among the multiple objectives can produce erroneous results if the low fidelity models are not well-constructed. In the present research, response surface approximation and Kriging meta-models were evaluated for their effectiveness for the application in the turbomachinery design and optimization. A high fidelity model such as CFD technique along with the metamodels was used to obtain Pareto-optimal front via multi-objective genetic algorithm. A centrifugal impeller has been considered as case study to find relationship between two conflicting objectives, viz., hydraulic efficiency and head. Design variables from the impeller geometry have been chosen and the responses of the objective functions were evaluated through CFD analysis. The fidelity of each metamodel has been discussed in context of their predictions in entire design space in general and near optimal region in particular. Exploitation of the multiple meta-models enhances the quality of multi-objective optimization and provides the information pertaining to fidelity of optimization model. It was observed that the Kriging meta-model was better suited for this type of problem as it involved less approximation error in the Pareto-optimal front.

  18. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller

    International Nuclear Information System (INIS)

    Bellary, Sayed Ahmed Imran; Samad, Abdus; Husain, Afzal

    2014-01-01

    The major issue of multiple fidelity based analysis and optimization of fluid machinery system depends upon the proper construction of low fidelity model or meta-model. A low fidelity model uses responses obtained from a high fidelity model, and the meta-model is then used to produce population of solutions required for evolutionary algorithm for multi-objective optimization. The Pareto-optimal front which shows functional relationships among the multiple objectives can produce erroneous results if the low fidelity models are not well-constructed. In the present research, response surface approximation and Kriging meta-models were evaluated for their effectiveness for the application in the turbomachinery design and optimization. A high fidelity model such as CFD technique along with the metamodels was used to obtain Pareto-optimal front via multi-objective genetic algorithm. A centrifugal impeller has been considered as case study to find relationship between two conflicting objectives, viz., hydraulic efficiency and head. Design variables from the impeller geometry have been chosen and the responses of the objective functions were evaluated through CFD analysis. The fidelity of each metamodel has been discussed in context of their predictions in entire design space in general and near optimal region in particular. Exploitation of the multiple meta-models enhances the quality of multi-objective optimization and provides the information pertaining to fidelity of optimization model. It was observed that the Kriging meta-model was better suited for this type of problem as it involved less approximation error in the Pareto-optimal front.

  19. Modelling of a condenser-fan control for an air-cooled centrifugal chiller

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2007-01-01

    There is a lack of detailed experimental and simulation studies on air-cooled centrifugal chillers. This paper investigates how to optimize the control of condenser fans within the chillers to maximize their coefficients of performance (COPs). A thermodynamic model for the chillers was developed and used to analyse the steady-state COP under various load and ambient conditions. An algorithm is introduced to compute the number of staged condenser fans based on settings of the condensing pressure and outdoor temperature. The model was validated using the experimental data and performance data of an existing chiller running under various operating conditions. It is found that the best strategy for switching condenser fans is to vary their rotating speed by the use of a set point of the condensing temperature, which is adjusted in response to the chiller load and condenser air-inlet temperature. The results of this paper provide an important insight into how to increase the COPs of air-cooled chillers

  20. Modelling of a condenser-fan control for an air-cooled centrifugal chiller

    Energy Technology Data Exchange (ETDEWEB)

    Yu, F.W.; Chan, K.T. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2007-11-15

    There is a lack of detailed experimental and simulation studies on air-cooled centrifugal chillers. This paper investigates how to optimize the control of condenser fans within the chillers to maximize their coefficients of performance (COPs). A thermodynamic model for the chillers was developed and used to analyse the steady-state COP under various load and ambient conditions. An algorithm is introduced to compute the number of staged condenser fans based on settings of the condensing pressure and outdoor temperature. The model was validated using the experimental data and performance data of an existing chiller running under various operating conditions. It is found that the best strategy for switching condenser fans is to vary their rotating speed by the use of a set point of the condensing temperature, which is adjusted in response to the chiller load and condenser air-inlet temperature. The results of this paper provide an important insight into how to increase the COPs of air-cooled chillers. (author)

  1. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    Science.gov (United States)

    Sullivan, Michael J.

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS) thruster disturbances. A Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used to model both the effect of the rotor imbalance and the 155 thrusters on the CR relative motion measurement. The sinusoidal disturbance states compensate for the lack of the availability of plant inputs for use in the Kalman filter. Testing confirms that complete disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to show that increased estimator operational bandwidth can be achieved through the expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo analysis shows the varying levels of robustness against defined plant/filter uncertainty variations.

  2. Rhie-Chow interpolation in strong centrifugal fields

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2015-10-01

    Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

  3. Numerical investigations on cavitating flows with thermodynamic effects in a diffuser-type centrifugal pump

    International Nuclear Information System (INIS)

    Xuelin, Tang Xue; Liyuan, Bian; Fujun, Wang; Xiaoqin, Lin; Man, Hao

    2013-01-01

    A cavitation model with thermodynamic effects for cavitating flows in a diffuser-type centrifugal pump is developed based on the bubble two-phase flow model. The proposed cavitation model includes mass, momentum, and energy transportations according to the thermodynamic mechanism of cavitation. Numerical simulations are conducted inside the entire passage of the centrifugal pump by using the proposed cavitation model and the renormalization group-based k - ε turbulent model coupled with the energy transportation equation. By using the commercial computational fluid dynamics software FLUENT 6.3, we have shown that the predicted performance characteristics of the pump, as well as the pressure, vapor, and density distributions in the impeller, agree well with that calculated by the full cavitation model. Simulation results show that cavitation initially occurs slightly behind the inlet of the blade suction surface, i.e., the area with maximum vapor concentration and minimum pressure. The predicted temperature field shows that the reduction in temperature restrains the growth of cavitating bubbles. Therefore, the thermodynamic effect should be treated as a necessary factor in cavitation models. Comparison results validate the efficiency and accuracy of the numerical technique in simulating cavitation flows in centrifugal pumps.

  4. Decontamination of nuclear fuels with centrifugal separation

    International Nuclear Information System (INIS)

    Ning, Li; Camassa, R.; Ecke, R.; Venneri, F.

    1995-01-01

    The treatment and disposal of nuclear material is a crucial element in today's nuclear power industry. We present a physical process of centrifugal separation that has potential to deal with existing waste and provide opportunities for realizing advanced accelerator-driven power generation. In our proposed process a liquid metal solution containing actinides and fission products is fed through a series of continuous flow centrifuges. We show fundamentals of centrifugation including theory and experiments and estimate how the processing can be optimized

  5. Decontamination of nuclear fuels with centrifugal separation

    International Nuclear Information System (INIS)

    Ning, L.; Camassa, R.; Ecke, R.; Venneri, F.

    1995-01-01

    The treatment and disposal of nuclear material is a crucial element in today's nuclear power industry. We present a physical process of centrifugal separation that has potential to deal with existing waste and provide opportunities for realizing advanced accelerator driven power generation. In our proposed process a liquid metal solution containing actinides and fission products is fed through a series of continuous flow centrifuges. We show fundamentals of centrifugation including theory and experiments and estimate how the processing can be optimized. (authors)

  6. Prediction of active control of subsonic centrifugal compressor rotating stall

    Science.gov (United States)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.

  7. Experimental study of multi-component separation by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou, M.S.; Liang, X.W.; Chen, W.N.; Yin, Y.T.

    2006-01-01

    Stable isotopes are applied in many areas and most stable isotopes are multi-component, This paper presents experimental results of several stable isotopes separation conducted in Tsinghua University by using ultra-speed gas centrifuges. Xe, WF 6 , TeF 6 , SiHCl 3 , SiF 4 were chosen as the process gases. By adjusting some of the centrifuge's parameters, the suitable centrifuge parameters for different process gas separations were found and the overall unit separation factors γ 0 were obtained by means of single gas centrifuge separation. The experimental results show that with appropriate process gases, stable isotope separation by gas centrifuge was effective. (authors)

  8. An Experimental Study of Cavitation Detection in a Centrifugal Pump Using Envelope Analysis

    Science.gov (United States)

    Tan, Chek Zin; Leong, M. Salman

    Cavitation represents one of the most common faults in pumps and could potentially lead to a series of failure in mechanical seal, impeller, bearing, shaft, motor, etc. In this work, an experimental rig was setup to investigate cavitation detection using vibration envelope analysis method, and measured parameters included sound, pressure and flow rate for feasibility of cavitation detection. The experiment testing included 3 operating points of the centrifugal pump (B.E.P, 90% of B.E.P and 80% of B.E.P). Suction pressure of the centrifugal pump was decreased gradually until the inception point of cavitation. Vibration measurements were undertaken at various locations including casing, bearing, suction and discharge flange of the centrifugal pump. Comparisons of envelope spectrums under cavitating and non-cavitating conditions were presented. Envelope analysis was proven useful in detecting cavitation over the 3 testing conditions. During the normal operating condition, vibration peak synchronous to rotational speed was more pronounced. It was however during cavitation condition, the half order sub-harmonic vibration component was clearly evident in the envelope spectrums undertaken at all measurement locations except at the pump bearing. The possible explanation of the strong sub-harmonic (½ of BPF) during cavitation existence in the centrifugal pump was due to insufficient time for the bubbles to collapse completely before the end of the single cycle.

  9. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  10. The effects of curvature on the flow field in rapidly rotating gas centrifuges

    International Nuclear Information System (INIS)

    Wood, H.G.; Jordan, J.A.

    1984-01-01

    The effects of curvature on the fluid dynamics of rapidly rotating gas centrifuges are studied. A governing system of a linear partial differential equation and boundary conditions is derived based on a linearization of the equations for viscous compressible flow. This system reduces to the Onsager pancake model if the effects of curvature are neglected. Approximations to the solutions of the governing equations with and without curvature terms are obtained via a finite-element method. Two examples are considered: first where the flow is driven by a thermal gradient at the wall of the centrifuge, and then for the flow being driven by the introduction and removal of mass through the ends of the centrifuge. Comparisons of the results obtained show that, especially for the second example, the inclusion of the terms due to curvature in the model can have an appreciable effect on the solution. (author)

  11. Settlement mechanism of the backfilled ground around nuclear power plant buildings. Part 2. A series of centrifuge tests and a numerical simulation by using FEM about a typical test result

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Ishimaru, Makoto

    2009-01-01

    During the Niigataken Chuetsu-oki earthquake, rather large settlements of the backfill ground around the rigid and stable buildings were observed. In this study, five cases of centrifuge tests with shaking events were conducted to reproduce the similar type of the settlements in order to examine the mechanism of the settlements. The results from those tests showed that the ground was settled by the negative dilatancy of sandy soils anywhere in the model ground and the additional settlements were suddenly caused when the backfill ground was apart from the rigid wall modeling the rigid and stable buildings, namely a sliding failure in an active state was occurred in the backfill ground near the structure. It was confirmed that these settlements were able to be estimated by a simple method proposed in this report, in which only the differences between the self-weight of the sliding block and the soil strength calculated at the initial stress conditions were considered as the driving forces of the sliding failure, and then the accelerations calculated from the forces being divided by the mass of the sliding block were simply integrated two times with respected to the time when the ground was apart from the structure. Further, a numerical simulation by using FEM about a typical test result was conducted, and these settlements were well simulated. (author)

  12. Isotopic enrichment in a plasma centrifuge

    International Nuclear Information System (INIS)

    Del Bosco, E.; Dallaqua, R.S.; Ludwig, G.O.; Bittencourt, J.A.

    1987-01-01

    High rotational velocity and centrifugal isotopic separation of carbon in a vacuum-arc plasma centrifuge are presented. Enrichments of up to 390% for 13 C are measured at 6 cm radius with angular rotation frequencies in excess of 1.0 x 10 5 rad/s in an axial magnetic field of 0.12 T

  13. Research on the development of the centrifugal spinning

    Directory of Open Access Journals (Sweden)

    Zhang Zhiming

    2017-01-01

    Full Text Available Centrifugal spinning is a new and efficient method to produce nanofibers quickly. It makes use of the centrifugal force instead of high voltage to produce the nanofibers. The centrifugal spinning has many advantages such as no high voltage, high yield, simple structure, no pollution and can be applied to high polymer material, ceramic and metal material. In order to have more understand about this novel nanofibers formation method, this paper introduces the method of centrifugal spinning and the effect of rotation speed, the properties of material such as viscosity and solvent evaporation, collector distance which have an impact on nanofibers morphology and diameter were also analyzed.

  14. Engineering design of centrifugal casting machine

    Science.gov (United States)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  15. DSMC simulation of feed jet flow in gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi

    2011-01-01

    Feed jet flow acts an important role for the counter-current in gas centrifuge. Direct simulation Monte-Carlo (DSMC) method was adopted to simulate the structure of the radial feed jet model. By setting the proper boundary conditions and the collision model of molecules, the flow distributions of the 2D radial feed jet were acquired under different feed conditions, including the wave structure of feed jet and the profile of the flow parameters. The analyses of the calculation results note the following flow phenomena: Near the radial outflow boundary, the obvious peaks of the flow parameters exist; higher speed of feed gas brings stronger influence on the flow field of the centrifuge; including the density, pressure and velocity of the gas, the distribution of the temperature is affected by the feed jet, at the outflow boundary, temperature to double times of the average value. (authors)

  16. The American Gas Centrifuge Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Dean

    2004-09-15

    The art of gas centrifugation was born in 1935 at the University of Virginia when Dr. Jesse Beams demonstrated experimentally the separation of chlorine isotopes using an ultra-high speed centrifuge. Dr. Beam’s experiment initiated work that created a rich history of scientific and engineering accomplishment in the United States in the art of isotope separation and even large scale biological separation by centrifugation. The early history of the gas centrifuge development was captured in a lecture and documented by Dr. Jesse Beams in 1975. Much of Dr. Beams lecture material is used in this paper up to the year 1960. Following work by Dr. Gernot Zippe at the University of Virginia between 1958 and 1960, the US government embarked on a centrifuge development program that ultimately led to the start of construction of the Gas Centrifuge Enrichment Plant in Piketon Ohio in the late 1970’s. The government program was abandoned in 1985 after investing in the construction of two of six planned process buildings, a complete supply chain for process and centrifuge parts, and the successful manufacture and brief operation of an initial complement of production machines that would have met 15 percent of the planned capacity of the constructed process buildings. A declining market for enriched uranium, a glut of uranium enrichment capacity worldwide, and the promise of a new laser based separation process factored in the decision to stop the government program. By the late 1990’s it had become evident that gas centrifugation held the best promise to produce enriched uranium at low cost. In1999, the United States Enrichment Corporation undertook an initiative to revive the best of the American centrifuge technology that had been abandoned fourteen years earlier. This is an exciting story and one that when complete will enable the United States to maintain its domestic supply and to be highly competitive in the world market for this important energy commodity. (auth)

  17. Combined short-arm centrifuge and aerobic exercise training improves cardiovascular function and physical working capacity in humans.

    Science.gov (United States)

    Yang, Chang-Bin; Zhang, Shu; Zhang, Yu; Wang, Bing; Yao, Yong-Jie; Wang, Yong-Chun; Wu, Yan-Hong; Liang, Wen-Bin; Sun, Xi-Qing

    2010-12-01

    Musculoskeletal and cardiovascular deconditioning occurring in long-term spaceflight gives rise to the needs to develop new strategies to counteract these adverse effects. Short-arm centrifuge combined with ergometer has been proposed as a strategy to counteract adverse effects of microgravity. This study sought to investigate whether the combination of short-arm centrifuge and aerobic exercise training have advantages over short-arm centrifuge or aerobic exercise training alone. One week training was conducted by 24 healthy men. They were randomly divided into 3 groups: (1) short-arm centrifuge training, (2) aerobic exercise training, 40 W, and (3) combined short-arm centrifuge and aerobic exercise training. Before and after training, the cardiac pump function represented by stroke volume, cardiac output, left ventricular ejection time, and total peripheral resistance was evaluated. Variability of heart rate and systolic blood pressure were determined by spectral analysis. Physical working capacity was surveyed by near maximal physical working capacity test. The 1-week combined short-arm centrifuge and aerobic exercise training remarkably ameliorated the cardiac pump function and enhanced vasomotor sympathetic nerve modulation and improved physical working capacity by 10.9% (Pcentrifuge nor the aerobic exercise group showed improvements in these functions. These results demonstrate that combined short-arm centrifuge and aerobic exercise training has advantages over short-arm centrifuge or aerobic exercise training alone in influencing several physiologically important cardiovascular functions in humans. The combination of short-arm centrifuge and aerobic exercise offers a promising countermeasure to microgravity.

  18. Protein removal from waste brines generated during ham salting through acidification and centrifugation.

    Science.gov (United States)

    Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel

    2014-03-01

    The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®

  19. Detection methods for centrifugal microfluidic platforms

    DEFF Research Database (Denmark)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-01-01

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation...... for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles....

  20. Subjective stress factors in centrifuge training for military aircrews.

    Science.gov (United States)

    Lin, Pei-Chun; Wang, Jenhung; Li, Shih-Chin

    2012-07-01

    This study investigates stress-influence factors perceived by military aircrews undergoing centrifuge training, which lowers the incidence of G-induced loss of consciousness (G-LOC) for the crews of high-performance combat aircrafts. We used questionnaires to assess the subjective stress-influence factors of crews undergoing centrifuge training. Professionals in aviation physiology identified attributes measuring the perceived stress induced by centrifuge training, which were segmented into three constructs by factor analysis, theory lecture, centrifuge equipment, and physical fitness. Considerable interpenetration was discernible between these factors and military rank, age, length of service, flight hours accrued, and type of aircraft piloted. Identifying and quantifying the perceived stressors experienced in human-use centrifuge training enables aviators, astronauts, and air forces of the world to determine which constructs perceptibly increase or alleviate the perceived stress undergone by trainees when partaking in centrifuge training. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  2. Rotordynamic Forces on Centrifugal Pump Impellers

    OpenAIRE

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with rad...

  3. A Laboratory Experiment to Demonstrate the Principles of Sedimentation in a Centrifuge: Estimation of Radius and Settling Velocity of Bacteria

    Science.gov (United States)

    Riley, Erin; Felse, P. Arthur

    2017-01-01

    Centrifugation is a major unit operation in chemical and biotechnology industries. Here we present a simple, hands-on laboratory experiment to teach the basic principles of centrifugation and to explore the shear effects of centrifugation using bacterial cells as model particles. This experiment provides training in the use of a bench-top…

  4. Centrifugal Fragmentation of a Dinuclear System in the Process of Its Evolution to the Compound Nucleus

    CERN Document Server

    Volkov, V V

    2005-01-01

    The physical content of centrifugal fragmentation is discussed. It is a specific nuclear process which is realized in the evolution of a dinuclear system into a compound nucleus at large angular momenta and large mass asymmetry of the system. The dinuclear system concept which describes the process of the compound nucleus formation in heavy ion reactions predicts the possibility of centrifugal fragmentation. Experimental data giving evidence of the realization of this nuclear process are given. A possible scheme of the centrifugal fragmentation model is discussed.

  5. Centrifugal fragmentation of a dinuclear system in the process of its evolution to the compound nucleus

    International Nuclear Information System (INIS)

    Volkov, V.V.

    2005-01-01

    The physical content of centrifugal fragmentation is discussed. It is a specific nuclear process which is realized in the evolution of a dinuclear system into a compound nucleus at large angular momenta and large mass asymmetry of the system. The dinuclear system concept which describes the process of the compound nucleus formation in heavy ion reactions predicts the possibility of centrifugal fragmentation. Experimental data giving evidence of the realization of this nuclear process are given. A possible scheme of the centrifugal fragmentation model is discussed

  6. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  7. Centrifuge modeling of rapid load tests with open-ended piles

    NARCIS (Netherlands)

    Nguyen, T.C.; Van Lottum, H.; Holscher, P.; Van Tol, A.F.

    2012-01-01

    Rapid and static load tests were conducted on open-ended and close-ended piles in the Deltares GeoCentriflige. hi flight, a pile was driven into the soil. Both fme-grained sand and silt beds were tested. Both the rapid and static soil resistances o f a close-ended pile were higher than the soil

  8. Heat Transfer Coefficient at Cast-Mold Interface During Centrifugal Casting: Calculation of Air Gap

    Science.gov (United States)

    Bohacek, Jan; Kharicha, Abdellah; Ludwig, Andreas; Wu, Menghuai; Karimi-Sibaki, Ebrahim

    2018-06-01

    During centrifugal casting, the thermal resistance at the cast-mold interface represents a main blockage mechanism for heat transfer. In addition to the refractory coating, an air gap begins to form due to the shrinkage of the casting and the mold expansion, under the continuous influence of strong centrifugal forces. Here, the heat transfer coefficient at the cast-mold interface h has been determined from calculations of the air gap thickness d a based on a plane stress model taking into account thermoelastic stresses, centrifugal forces, plastic deformations, and a temperature-dependent Young's modulus. The numerical approach proposed here is rather novel and tries to offer an alternative to the empirical formulas usually used in numerical simulations for a description of a time-dependent heat transfer coefficient h. Several numerical tests were performed for different coating thicknesses d C, rotation rates Ω, and temperatures of solidus T sol. Results demonstrated that the scenario at the interface is unique for each set of parameters, hindering the possibility of employing empirical formulas without a preceding experiment being performed. Initial values of h are simply equivalent to the ratio of the coating thermal conductivity and its thickness ( 1000 Wm-2 K-1). Later, when the air gap is formed, h drops exponentially to values at least one order of magnitude smaller ( 100 Wm-2 K-1).

  9. Numerical simulation of flow in centrifugal pump under cavitation and sediment condition

    International Nuclear Information System (INIS)

    Lu, J L; Guo, P C; Zheng, X B; Zhao, Q; Luo, X Q

    2012-01-01

    The sediment concentration is very high in many rivers in the world, especially in China. The pumps that designed for the clear water are usually seriously abraded. The probability of pump cavitation is greatly enhanced due to the existence of sand. Under the joint action and mutual promotion of sand erosion and cavitation, serious abrasion could occurred, and the hydraulic performance of the pump may be greatly descended, meanwhile the safety and stability of the whole pump are greatly threatened. Therefore, it is significant to investigate the cavitation characteristic of pump under sediment flow condition. In this paper, the flow in a single stage centrifugal pump under cleat water and sediment flow conditions was numerically simulated. The cavitation performance under clear water was firstly analyzed. Then, The pressure, velocity and solid particle distribution in centrifugal pump under different particle diameter and different particle concentration was investigated by using the two-fluid model; The area and extent of erosion was illustrated by using the particle track model. Finally, the influence of mixed sand on centrifugal pump performance was investigated.

  10. Leukoreduction by centrifugation does not eliminate Trypanosoma cruzi from infected blood units.

    Science.gov (United States)

    Dzib, Doris; Hernández, Virginia Peña; Ake, Baldemar Canche; López, Ruth Alacantara; Monteón, Victor Manuel

    2009-06-01

    Current strategies to prevent transfusion-associated Chagas disease include the identification of Trypanosoma cruzi-infected blood donors through questionnaires and serologic tests. There are other procedures such as leukoreduction that prevent the transmission of infectious agents associated to white cells. The objective of the present work was to estimate the seroprevalence, evaluate the efficacy of leukoreduction by centrifugation to eliminate T. cruzi in infected blood units, and the correlation of immunoglobulin G (IgG) subclasses of seropositive blood donors with chronic chagasic cardiopathy. Over a period of 14 months, 33 out of 6600 blood donors (0.5%) at Centro Estatal de la Transfusión Sanguínea in Campeche State, México were seropositive for T. cruzi. Twenty seropositive blood units were submitted through leukoreduction by centrifugation, and in the fractions generated (red cell fraction, platelets, and the buffy-coat), we searched for the presence of T. cruzi using specific polymerase chain reaction. We detected parasite DNA in 50% to 60% of the fractions tested, suggesting that leukoreduction by centrifugation does not eliminate the microorganisms in the infected blood unit. We also observed that the level of IgG2 and IgG4 subclasses specific for T. cruzi in seropositive blood donors was lower than in chronic cardiopathic chagasic patients. In conclusion, leukoreduction by centrifugation has a limited role in eliminating T. cruzi in infected blood supply, and the low level of specific IgG2 and IgG4 could be a marker in the indeterminate phase of infection.

  11. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  12. Progress of High Efficiency Centrifugal Compressor Simulations Using TURBO

    Science.gov (United States)

    Kulkarni, Sameer; Beach, Timothy A.

    2017-01-01

    Three-dimensional, time-accurate, and phase-lagged computational fluid dynamics (CFD) simulations of the High Efficiency Centrifugal Compressor (HECC) stage were generated using the TURBO solver. Changes to the TURBO Parallel Version 4 source code were made in order to properly model the no-slip boundary condition along the spinning hub region for centrifugal impellers. A startup procedure was developed to generate a converged flow field in TURBO. This procedure initialized computations on a coarsened mesh generated by the Turbomachinery Gridding System (TGS) and relied on a method of systematically increasing wheel speed and backpressure. Baseline design-speed TURBO results generally overpredicted total pressure ratio, adiabatic efficiency, and the choking flow rate of the HECC stage as compared with the design-intent CFD results of Code Leo. Including diffuser fillet geometry in the TURBO computation resulted in a 0.6 percent reduction in the choking flow rate and led to a better match with design-intent CFD. Diffuser fillets reduced annulus cross-sectional area but also reduced corner separation, and thus blockage, in the diffuser passage. It was found that the TURBO computations are somewhat insensitive to inlet total pressure changing from the TURBO default inlet pressure of 14.7 pounds per square inch (101.35 kilopascals) down to 11.0 pounds per square inch (75.83 kilopascals), the inlet pressure of the component test. Off-design tip clearance was modeled in TURBO in two computations: one in which the blade tip geometry was trimmed by 12 mils (0.3048 millimeters), and another in which the hub flow path was moved to reflect a 12-mil axial shift in the impeller hub, creating a step at the hub. The one-dimensional results of these two computations indicate non-negligible differences between the two modeling approaches.

  13. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  14. Enrichment technology. Dependable vendor of gas centrifuges

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Enrichment Technology is an innovative, high-tech company that develops, manufactures and installs gas centrifuges for enriching uranium. In addition, Enrichment Technology designs enrichment plants that use gas centrifuge technology. This technology offers the most efficient and cost-effective method for enriching uranium yet: high-performance, safe technology that dominates the market with a global share of 45 percent. A determining factor in Enrichment Technology's success is its mission: supplying its customers with safe, reliable technology. Production of the centrifuges requires versatile know-how and collaboration between different departments as well as interdisciplinary teams at the various sites. More than 2000 operators at 8 sites in 5 countries contribute their individual knowledge and personal skills in order to produce this exceptional technology. The head office is in Beaconsfield near London and the operational headquarters are in Almelo in the Netherlands. There are other sites in Germany (Juelich und Gronau), Great Britain (Capenhurst) as well as project sites in the USA and France. Capenhurst is where experienced engineers design new enrichment plants and organise their construction. Centrifuge components are manufactured in Almelo and Juelich, while the pipework needed to connect up the centrifuges is produced at the site in Gronau. In Juelich, highly qualified scientists in interdisciplinary teams are continuously researching ways of improving the current centrifuges. Communication between specialists in the fields of chemistry, physics and engineering forms the basis for the company's success and the key to extending this leading position in the global enrichment market. (orig.)

  15. Centrifuge-induced neck and back pain in F-16 pilots

    DEFF Research Database (Denmark)

    Lange, Britt; Nielsen, René Tyranski; Skejø, Pernille Bro

    2013-01-01

    Early in their careers, as an important part of their training to become fighter pilots, pilots undergo centrifuge training in order to learn effective anti-G straining maneuvers (AGSM) and to test their G tolerance. The exposure of pilots, especially early in their careers, to training that could...

  16. Microcomputer-based instrument for the detection and analysis of precession motion in a gas centrifuge machine

    International Nuclear Information System (INIS)

    Paulus, S.S.

    1986-03-01

    The Centrifuge Precession Analyzer (CPA) is a microcomputer-based instrument which detects precession motion in a gas centrifuge machine and calculates the amplitude and frequency of precession. The CPA consists of a printed circuit board which contains signal-conditioning circuitry and a 24-bit counter and an INTEL iSBC 80-/24 single-board computer. Precession motion is detected by monitoring a signal generated by a variable reluctance pick-up coil in the top of the centrifuge machine. This signal is called a Fidler signal. The initial Fidler signal triggers a counter which is clocked by a high-precision, 20.000000-MHz, temperature-controlled, crystal oscillator. The contents of the counter are read by the computer, and the counter reset after every ten Fidler signals. The speed of the centrifuge machine and the amplitude and frequency of precession are calculated, and the results are displayed on a liquid crystal display on the front panel of the CPA. The thesis contains results from data generated by a Fidler signal simulator and data taken when the centrifuge was operated under three test conditions: (1) nitrogen gas during drive-up, steady state, and drive-down, (2) xenon gas during slip test, steady state, and the addition of gas, and (3) no gas during steady state. The qualitative results were consistent with experience with centrifuge machines UF 6 in that the amplitude of precession increased and the frequency of precession decreased during drive-up, drive-down and the slip check. The magnitude of the amplitude and frequency of precession were proportional to the molecular weight of the gases in steady state

  17. 300 W - 1.75 K TORE SUPRA refrigerator cold centrifugal compressors report

    International Nuclear Information System (INIS)

    Gistau, G.M.; Pecoud, Y.; Ravex, A.E.

    1988-01-01

    The centrifugal helium compressors for the TORE SUPRA tokamak refrigerator were designed and manufactured by L'Air Liquide and tested at nominal conditions on a custom test rig. The refrigerator is now installed and all acceptance tests have been completed. Other tests were carried out off design conditions with the machines installed in the TORE SUPRA refrigerator. The results of these tests, including compression ratio, efficiency, and heat losses, are discussed

  18. Vestibular Stimulus and Perceived Roll Tilt During Coordinated Turns in Aircraft and Gondola Centrifuge.

    Science.gov (United States)

    Tribukait, Arne; Ström, Adrian; Bergsten, Eddie; Eiken, Ola

    2016-05-01

    One disorienting movement pattern, common during flight, is the entering of a coordinated turn. While the otoliths persistently sense upright head position, the change in roll attitude constitutes a semicircular canal stimulus. This sensory conflict also arises during acceleration in a swing-out gondola centrifuge. From a vestibular viewpoint there are, however, certain differences between the two stimulus situations; the aim of the present study was to elucidate whether these differences are reflected in the perceived roll attitude. Eight nonpilots were tested in a centrifuge (four runs) and during flight (two turns). The subjective visual horizontal (SVH) was measured using an adjustable luminous line in darkness. The centrifuge was accelerated from stationary to 1.56 G (roll 50°) within 7 s; the duration of the G plateau was 5 min. With the aircraft, turns with approximately 1.4 G (45°) were entered within 15 s and lasted for 5 min. Tilt perception (TP) was defined as the ratio of SVH/real roll tilt; initial and final values were calculated for each centrifugation/turn. In both systems there was a sensation of tilt that declined with time. The initial TP was (mean ± SD): 0.40 ± 0.27 (centrifuge) and 0.37 ± 0.30 (flight). The final TP was 0.20 ± 0.26 and 0.17 ± 0.19, respectively. Both initial and final TP correlated between the two conditions. The physical roll tilt is under-estimated to a similar degree in the centrifuge and aircraft. Also the correspondence at the individual level suggests that the vestibular dilemma of coordinated flight can be recreated in a lifelike manner using a gondola centrifuge.

  19. Optimising the refrigeration cycle with a two-stage centrifugal compressor and a flash intercooler

    Energy Technology Data Exchange (ETDEWEB)

    Roeyttae, Pekka; Turunen-Saaresti, Teemu; Honkatukia, Juha [Lappeenranta University of Technology, Laboratory of Energy and Environmental Technology, PO Box 20, 53851 Lappeenranta (Finland)

    2009-09-15

    The optimisation of a refrigeration process with a two-stage centrifugal compressor and flash intercooler is presented in this paper. The two-stage centrifugal compressor stages are on the same shaft and the electric motor is cooled with the refrigerant. The performance of the centrifugal compressor is evaluated based on semi-empirical specific-speed curves and the effect of the Reynolds number, surface roughness and tip clearance have also been taken into account. The thermodynamic and transport properties of the working fluids are modelled with a real-gas model. The condensing and evaporation temperatures, the temperature after the flash intercooler, and cooling power have been chosen as fixed values in the process. The aim is to gain a maximum coefficient of performance (COP). The method of optimisation, the operation of the compressor and flash intercooler, and the method for estimating the electric motor cooling are also discussed in the article. (author)

  20. A novel centrifuge for animal physiological researches in hypergravity and variable gravity forces

    Science.gov (United States)

    Kumei, Yasuhiro; Hasegawa, Katsuya; Inoue, Katarzyna; Zeredo, . Jorge; Kimiya Narikiyo, .; Maezawa, Yukio; Yuuki Watanabe, .; Aou, Shuji

    2012-07-01

    Understanding the physiological responses to altered gravitational environments is essential for space exploration and long-term human life in space. Currently available centrifuges restrict experimentation due to limited space for laboratory equipments. We developed a medium-sized disc-type centrifuge to conduct ground-based studies on animal physiological response to hypergravity and variable gravity forces, which features the following advantages: 1) It enables simultaneous examination into the effects of various gravity levels including rotation control. 2) Beside the constant G force, variable G forces (delta-G) can be loaded to generate gravitational acceleration and deceleration. 3) Multiple imaging techniques can be used, such as high-speed video (16 channels wireless) and photography, X-ray, and infra-red imaging. 4) Telemetry is available on the disc table of the centrifuge through 128-channel analog and 32-channel digital signals, with sampling rate of 100 kHz for 2 hours. Our dynamic-balanced centrifuge can hold payloads of 600 kg that enable experimentation on various models of living organisms, from cells to animals and plants. We use this novel centrifuge for neurochemical and neurophysiological approaches such as microdialysis and telemetrical recording of neuronal activity in the rat brain. Financial supports from JSPS to K. Hasegawa (2011) and from JAXA to Y. Kumei (2011).

  1. New improved counter - current multi-stage centrifugal extractor for solvent extraction process

    International Nuclear Information System (INIS)

    Gheorghe, Ionita; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Retegan, Teodora; Kitamoto, Asashi

    2003-01-01

    Total actinide recovery, lanthanide/actinide separation and selective partitioning of actinide from high level waste (HLW) are nowadays of a major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involves an extraction process usually by means of mixer-settler, pulse column or centrifugal contactor. The latter, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and performed. A similar apparatus was not found from in other published papers as yet. The counter-current multi-stage centrifugal extractor was a cylinder made of stainless steel with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, working in a horizontal position. The new internal structure and geometry of the new advanced centrifugal extractor consisting of nine cells (units), five rotation units, two mixing units, two propelling units and two final plates, ensures the counter-current running of the two phases.The central shaft having the rotation cells fixed on it is coupled by an intermediary connection to a electric motor of high rotation speed. The conceptual layout of the advanced counter-current multi-stage centrifugal extractor is presented. The newly designed extractor has been tested at 500-2800 rot/min for a ratio of the aqueous/organic phase =1 to examine the mechanical behavior and the hydrodynamics of the two phases in countercurrent. The results showed that the performances have been generally good and the design requirements were fulfilled. The newly designed counter-current multistage centrifugal extractor appears to be a promising way to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  2. Quantification of platelets obtained by different centrifugation protocols in SHR rats

    OpenAIRE

    João Alberto Yazigi Junior; João Baptista Gomes dos Santos; Bruno Rodrigues Xavier; Marcela Fernandes; Sandra Gomes Valente; Vilnei Mattiolli Leite

    2015-01-01

    ABSTRACT OBJECTIVE: To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. METHODS: We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × gand 400 × g; and double centrifugation, usin...

  3. Radwaste disposal drum centrifuge

    International Nuclear Information System (INIS)

    Rubin, L.S.; Deltete, C.P.; Crook, M.R.

    1988-01-01

    The drum or processing bowl of the DDC becomes the disposal container when the filling operation is completed. Rehandling of the processed resin is eliminated. By allowing the centrifugally compacted resin to remain in the processing container, extremely efficient waste packaging can be achieved. The dewatering results and volume reductions reported during 1986 were based upon laboratory scale testing sponsored by the Electric Power Research Institute (EPRI) and the Department of Energy (DOE). Since the publication of these preliminary results, additional testing using a full-scale prototype DDC has been completed, again under the auspices of the DOE. Full-scale testing has substantiated the results of earlier testing and has formed the basis for preliminary discussions with the U.S. Nuclear Regulatory Commission (NRC) regarding DDC licensing for radioactive applications. A comprehensive Topical Report and Process Control Program is currently being prepared for submittal to the NRC for review under a utility licensing action. Detailed cost-benefit analyses for actual plant operations have been prepared to substantiate the attractiveness of the DDC. Several methods to physically integrate a DDC into a nuclear power plant have also been developed

  4. Exit loss model for plain axial seals in multi-stage centrifugal pumps

    NARCIS (Netherlands)

    Bruurs, K.A.J.; van Esch, B.P.M.; van der Schoot, M.S.

    2017-01-01

    Plain axial seals are often used in centrifugal pumps as a means to achieve acceptable sealing against leakage flow without the much higher friction losses that are associated with mechanical seals. Examples of their application are the front seals in shrouded radial and mixed-flow pumps and the

  5. Paperfuge: An ultralow-cost, hand-powered paper-centrifuge inspired by the mechanics of a whirligig toy

    Science.gov (United States)

    Bhamla, M. Saad; Benson, Brandon; Chai, Chew; Katsikis, Georgios; Johri, Aanchal; Prakash, Manu

    From a global-health context, commercial centrifuges are expensive, bulky and electricity-powered, and thus constitute a critical bottleneck in the development of decentralized, battery-free-point-of-care (POC) diagnostic devices. Here, we report an ultralow-cost (20 cents), lightweight (2 g), human-powered paper centrifuge (which we name 'paperfuge') designed on the basis of a theoretical model inspired by the fundamental mechanics of an ancient whirligig (or buzzer toy; 3300 B.C.E). The paperfuge achieves speeds of 125,000 rpm (and equivalent centrifugal forces of 30,000 g), with theoretical limits predicting one million rpm. We demonstrate that the paperfuge can separate pure plasma from whole blood in less than 1.5 minutes, and isolate malaria parasites in 15 minutes. We also show that paperfuge-like centrifugal microfluidic devices can be made of polymethylsiloxane, plastic and 3D-printed polymeric materials. Ultracheap, power-free centrifuges should open up opportunities for POC diagnostics in resource-poor settings.

  6. AERODYNAMIC STUDIES IN THE STATIC COMPONENTS OF A CENTRIFUGAL COMPRESSOR STAGE

    Directory of Open Access Journals (Sweden)

    K. Srinivasa Reddy

    2011-12-01

    Full Text Available Aerodynamic studies in the static components of a centrifugal compressor stage were conducted using the computational fluid dynamics solver FLUENT. For the simulation study, a typical centrifugal compressor stage geometry with a flow coefficient of 0.053 was chosen, The study is confined to the static components of the centrifugal compressor stage, i.e., the crossover bend (180° U-bend, a radial cascade of return channel vanes, and the exit ducting (90° L-turn. The aerodynamic performance is reported in terms of total pressure loss coefficient, static pressure recovery coefficient, return channel vane surface static pressure distribution, and stage exit swirl angle distribution. The simulated flow through the static components covered five different operating conditions of the actual centrifugal compressor stage: the design point with 100% flow rate, and the off-design operating conditions with 70%, 80%, 110%, and 120% flow rates. The standard k-ε model was used with standard wall functions to predict the turbulence. A minimum total pressure loss coefficient was observed near 80% flow rate when the average flow angle at the U-bend inlet was 24°. Better static pressure recovery was observed with 70%, 80%, and 100% flow rates. The swirl angle distribution at the stage exit was recognized as satisfactory.

  7. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition.

    Science.gov (United States)

    Blue, Rebecca S; Pattarini, James M; Reyes, David P; Mulcahy, Robert A; Garbino, Alejandro; Mathers, Charles H; Vardiman, Johnené L; Castleberry, Tarah L; Vanderploeg, James M

    2014-07-01

    We examined responses of volunteers with known medical disease to G forces in a centrifuge to evaluate how potential commercial spaceflight participants (SFPs) might tolerate the forces of spaceflight despite significant medical history. Volunteers were recruited based upon suitability for each of five disease categories (hypertension, cardiovascular disease, diabetes, lung disease, back or neck problems) or a control group. Subjects underwent seven centrifuge runs over 2 d. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z), Run 2) and two +G(x), runs (peak = +6.0 G(x), Run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z), peak = +6.0 G(x)/+4.0 G(z)). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular exams, and post-run questionnaires regarding motion sickness, disorientation, grayout, and other symptoms. A total of 335 subjects registered for participation, of which 86 (63 men, 23 women, age 20-78 yr) participated in centrifuge trials. The most common causes for disqualification were weight and severe and uncontrolled medical or psychiatric disease. Five subjects voluntarily withdrew from the second day of testing: three for anxiety reasons, one for back strain, and one for time constraints. Maximum hemodynamic values recorded included HR of 192 bpm, systolic BP of 217 mmHg, and diastolic BP of 144 mmHg. Common subjective complaints included grayout (69%), nausea (20%), and chest discomfort (6%). Despite their medical history, no subject experienced significant adverse physiological responses to centrifuge profiles. These results suggest that most individuals with well-controlled medical conditions can withstand acceleration forces of launch and re-entry profiles of current commercial spaceflight vehicles.

  8. Effect of science laboratory centrifuge of space station environment

    Science.gov (United States)

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  9. High U-density nuclear fuel development with application of centrifugal atomization technology

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Kim, Ki Hwan; Lee, Don Bae

    1997-01-01

    In order to simplify the preparation process and improve the properties of uranium silicide fuels prepared by mechanical comminution, a fuel fabrication process applying rotating-disk centrifugal atomization technology was invented in KAERI in 1989. The major characteristic of atomized U 3 Si and U 3 Si 2 powders have been examined. The out-pile properties, including the thermal compatibility between atomized particle and aluminum matrix in uranium silicide dispersion fuels, have generally showed a superiority to the comminuted fuels. Moreover, the RERTR (reduced enrichment for research and test reactors) program, which recently begins to develop very-high-density uranium alloy fuels, including U-Mo fuels, requires the centrifugal atomization process to overcome the contaminations of impurities and the difficulties of the comminution process. In addition, a cooperation with ANL in the U.S. has been performed to develop high-density fuels with an application of atomization technology since December 1996. If the microplate and miniplate irradiation tests of atomized fuels, which have been performed with ANL, demonstrated the stability and improvement of in-reactor behaviors, nuclear fuel fabrication technology by centrifugal atomization could be most-promising to the production method of very-high-uranium-loading fuels. (author). 22 refs., 2 tabs., 12 figs

  10. Centrifugal microfluidic platforms: advanced unit operations and applications.

    Science.gov (United States)

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  11. Forces on Centrifugal Pump Impellers

    OpenAIRE

    Jery, Belgacem; Brennen, Christopher E.; Caughey, Thomas K.; Acosta, Allan

    1985-01-01

    Forces are exerted on a centrifugal pump impeller, due to the asymmetry of the flow caused by the volute of diffuser, and to the motion of the center of the impeller whenever the shaft whirls. Recent work in the measurement of these forces as a function of the whirl speed to shaft speed ratio, and the influence of the volute, is reviewed. These forces may be decomposed into a steady force, a static stiffness matrix, a damping matrix and an inertia matrix. It is shown that for centrifugal p...

  12. Quantification of platelets obtained by different centrifugation protocols in SHR rats

    Directory of Open Access Journals (Sweden)

    João Alberto Yazigi Junior

    2015-12-01

    Full Text Available ABSTRACT OBJECTIVE: To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. METHODS: We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × gand 400 × g; and double centrifugation, using whole blood subjected one centrifugation at different rotations, followed by collection of whole plasma subjected to another centrifugation at different rotations: 200 × g+ 200 ×g; 200 × g+ 400 × g; 200 × g+ 800 × g; 400 ×g+ 400 × g; 400 × g+ 800 × g. Samples of 3 ml of blood were drawn from each animal by means of cardiac puncture. The blood was stored in Vacutainer collection tubes containing 3.2% sodium citrate. The blood from the control group animals was analyzed without being subjected to centrifugation. After the blood from the other groups of animals had been subjected to centrifugation, the whole plasma was collected and subjected to platelet counting in the lower third of the sample. RESULTS: We obtained greatest platelet enrichment in the subgroup with two centrifugations comprising 400 × gfor 10 min + 400 ×gfor 10 min, in which the mean platelet concentration was 11.30 times higher than that of the control group. CONCLUSION: It was possible to obtain a high platelet concentration using viable simple techniques, by means of centrifugation of whole blood and use of commonly used materials. The most effective method for obtaining platelet concentrate was found in samples subjected to two centrifugations.

  13. Numerical simulation investigation on centrifugal compressor performance of turbocharger

    International Nuclear Information System (INIS)

    Li, Jie; Yin, Yuting; Li, Shuqi; Zhang, Jizhong

    2013-01-01

    In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.

  14. Numerical simulation investigation on centrifugal compressor performance of turbocharger

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [China Iron and Steel Research Institute Group, Beijing (China); Yin, Yuting [China North Engine Research Institute, Datong (China); Li, Shuqi; Zhang, Jizhong [Science and Technology Diesel Engine Turbocharging Laboratory, Datong (China)

    2013-06-15

    In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.

  15. Calibration of gyro G-sensitivity coefficients with FOG monitoring on precision centrifuge

    Science.gov (United States)

    Lu, Jiazhen; Yang, Yanqiang; Li, Baoguo; Liu, Ming

    2017-07-01

    The advantages of mechanical gyros, such as high precision, endurance and reliability, make them widely used as the core parts of inertial navigation systems (INS) utilized in the fields of aeronautics, astronautics and underground exploration. In a high-g environment, the accuracy of gyros is degraded. Therefore, the calibration and compensation of the gyro G-sensitivity coefficients is essential when the INS operates in a high-g environment. A precision centrifuge with a counter-rotating platform is the typical equipment for calibrating the gyro, as it can generate large centripetal acceleration and keep the angular rate close to zero; however, its performance is seriously restricted by the angular perturbation in the high-speed rotating process. To reduce the dependence on the precision of the centrifuge and counter-rotating platform, an effective calibration method for the gyro g-sensitivity coefficients under fiber-optic gyroscope (FOG) monitoring is proposed herein. The FOG can efficiently compensate spindle error and improve the anti-interference ability. Harmonic analysis is performed for data processing. Simulations show that the gyro G-sensitivity coefficients can be efficiently estimated to up to 99% of the true value and compensated using a lookup table or fitting method. Repeated tests indicate that the G-sensitivity coefficients can be correctly calibrated when the angular rate accuracy of the precision centrifuge is as low as 0.01%. Verification tests are performed to demonstrate that the attitude errors can be decreased from 0.36° to 0.08° in 200 s. The proposed measuring technology is generally applicable in engineering, as it can reduce the accuracy requirements for the centrifuge and the environment.

  16. Flow induced vibrations in gas tube assembly of centrifuge

    International Nuclear Information System (INIS)

    Alam, M.; Atta, M.A.; Mirza, J.A.; Khan, A.Q.

    1986-01-01

    A centrifuge essentially consists of a rotor rotating at very high speed. Gas tube assembly, located at the center of the rotor, is used to introduce feed gas into the rotor and remove product and waste streams from it. The gas tube assembly is thus a static component, the product and waste scoops of which are lying in the high pressure region of a fluid rotating at very high speed. This can cause flow induced vibrations in the gas tube assembly. Such vibrations affect not only the mechanical stability of the gas tube assembly but may also reduce the separative power of the centrifuge. In a cascade, if some of the centrifuges have gas tube vibration, then cascade performance will be affected. A theoretical analysis of the effect of waste tube vibrations on product and waste flow rates and pressures in the centrifuge is presented. A simple stage consisting of two centrifuges, in which one has tube vibration, is considered for this purpose. The results are compared with experiment. It is shown that waste tube vibration generates oscillations in waste and product flow rates that are observable outside the centrifuge. (author)

  17. Genetic Algorithm Optimization of the Volute Shape of a Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    Martin Heinrich

    2016-01-01

    Full Text Available A numerical model for the genetic optimization of the volute of a centrifugal compressor for light commercial vehicles is presented. The volute cross-sectional shape is represented by cubic B-splines and its control points are used as design variables. The goal of the global optimization is to maximize the average compressor isentropic efficiency and total pressure ratio at design speed and four operating points. The numerical model consists of a density-based solver in combination with the SST k-ω turbulence model with rotation/curvature correction and the multiple reference frame approach. The initial validation shows a good agreement between the numerical model and test bench measurements. As a result of the optimization, the average total pressure rise and efficiency are increased by over 1.0% compared to the initial designs of the optimization, while the maximum efficiency rise is nearly 2.5% at m˙corr=0.19 kg/s.

  18. Simulation of Shuttle launch G forces and acoustic loads using the NASA Ames Research Center 20G centrifuge

    Science.gov (United States)

    Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.

    1994-01-01

    The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.

  19. Predictability of rotating stall and surge in a centrifugal compressor stage with dynamic simulations

    NARCIS (Netherlands)

    González Díez, N.; Smeulers, J.P.M.; Tapinassi, L.; Scotti del Greco, A.; Toni, L.

    2014-01-01

    A testing campaign performed on a centrifugal compressor test-loop showed that multiple areas of stable operation existed that were not expected. It was shown during the tests that after a first region of instability at low flow rates, a second stable region would appear at even lower flow rates.

  20. Gas centrifuge uranium enrichment programme in the United States of America

    International Nuclear Information System (INIS)

    Gestson, D.K.

    1983-01-01

    The technology of uranium enrichment using the gas centrifuge is fully proven as a result of over twenty years of research. The high performance of the centrifuge has been confirmed, and its reliability established, through detailed evaluation of a series of centrifuge designs. The baseline centrifuge for the Gas Centrifuge Enrichment Plant (GCEP) is now in commercial production by three qualified manufacturers. It will be ready for installation in GCEP on schedule. The GCEP construction is also on schedule, with two process buildings expected to start operation in 1988 and 1989. Development and demonstration of the Set IV advanced gas centrifuge is under way and it is expected to be ready for installation in Process Building 3 in early 1989. (author)

  1. Numerical simulation of the unsteady progress in centrifuge

    International Nuclear Information System (INIS)

    Wei Chunlin; Zeng Shi

    2006-01-01

    Unsteady flow equations for the centrifuge are solved on a staggered grid by a finite volume method. The transient process that the axial flow in the centrifuge is established under a steady thermal driving. It can be concluded that the influence which causes the perturbing fluid is different at the beginning and the end of the processing. The flow is caused by the imbalance of temperature which turns to be caused by the imbalance of pressure. The results show that the numerical simulation is effective at the unsteady fluid in a centrifuge. (authors)

  2. Wave Augmented Diffusers for Centrifugal Compressors

    Science.gov (United States)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  3. Separative properties of counter-current beams type centrifuge, (2)

    International Nuclear Information System (INIS)

    Todo, Fukuzo

    1975-01-01

    One-time through scheme is studied, which would produce the highest overall centrifuge efficiency among the three different flow schemes of enriching, stripping and one-time through. If the ''optimum concentration method'' is applied to the one-time through centrifuge, the machine will be able to obtain a very high efficiency at small gas flow rates. A proposed arrangement of centrifuges for this method is shown. The efficiency of this method will be more than 15--20% higher than obtainable with enriching scheme. When the radial gas flow rate near the end caps in the rotor is increased to about 10% of the total gas feed rate, the efficiency was found to decrease by only 1%. The efficiency appears to be almost independent of small amounts of refluxing gas flow. Since a separation method having a high efficiency at small gas flow rates is required for large-scale gas centrifuge plants, the one-time through centrifuge is promising, provided the optimum concentration method is adopted. (auth.)

  4. Evaluation of a reduced centrifugation time and higher centrifugal force on various general chemistry and immunochemistry analytes in plasma and serum.

    Science.gov (United States)

    Møller, Mette F; Søndergaard, Tove R; Kristensen, Helle T; Münster, Anna-Marie B

    2017-09-01

    Background Centrifugation of blood samples is an essential preanalytical step in the clinical biochemistry laboratory. Centrifugation settings are often altered to optimize sample flow and turnaround time. Few studies have addressed the effect of altering centrifugation settings on analytical quality, and almost all studies have been done using collection tubes with gel separator. Methods In this study, we compared a centrifugation time of 5 min at 3000 ×  g to a standard protocol of 10 min at 2200 ×  g. Nine selected general chemistry and immunochemistry analytes and interference indices were studied in lithium heparin plasma tubes and serum tubes without gel separator. Results were evaluated using mean bias, difference plots and coefficient of variation, compared with maximum allowable bias and coefficient of variation used in laboratory routine quality control. Results For all analytes except lactate dehydrogenase, the results were within the predefined acceptance criteria, indicating that the analytical quality was not compromised. Lactate dehydrogenase showed higher values after centrifugation for 5 min at 3000 ×  g, mean bias was 6.3 ± 2.2% and the coefficient of variation was 5%. Conclusions We found that a centrifugation protocol of 5 min at 3000 ×  g can be used for the general chemistry and immunochemistry analytes studied, with the possible exception of lactate dehydrogenase, which requires further assessment.

  5. Investigation on steady and unsteady performance of a SCO2 centrifugal compressor with splitters

    Directory of Open Access Journals (Sweden)

    Guo Ding

    2017-01-01

    Full Text Available Supercritical carbon dioxide (SCO2 is widely concerned with its excellent physical properties. Its high density helps to achieve a compact mechanical structure, especially in all kinds of turbomachinery. In this paper, a SCO2 centrifugal compressor with splitter blades is displayed and numerically investigated. A thorough numerical analysis of the steady and unsteady performance of this SCO2 centrifugal compressor is performed in ANSYS-CFX with SST turbulence model. Streamlines, pressure and temperature under steady- and unsteady-state are compared and analyzed. Moreover, the trans-critical phenomenon at the leading edge of the rotor blade and the aerodynamic performance are covered. The results in this paper provide the foundation for the design and numerical investigation of SCO2 centrifugal compressors.

  6. The effect of centrifugation at various g force levels on rheological properties of rat, dog, pig and human red blood cells.

    Science.gov (United States)

    Kiss, Ferenc; Toth, Eniko; Miszti-Blasius, Kornel; Nemeth, Norbert

    2016-01-01

    Laboratory investigations often require centrifugation of blood samples for various erythrocyte tests. Although there is a lack of data about the effect of centrifugation at various g force levels on erythrocyte rheological properties. We aimed to investigate the effect of a 10-minute centrifugation at 500, 1000 or 1500 g at 15°C of rat, dog, pig and human venous (K3-EDTA, 1.5 mg/ml) blood samples. Hematological parameters, erythrocyte deformability, cell membrane stability, osmotic gradient ektacytometry (osmoscan) and erythrocyte aggregation were determined. Hematological and erythrocyte deformability parameters showed interspecies differences, centrifugation caused no significant alterations. Cell membrane stability for human erythrocytes centrifuged at higher g level showed less decrease in deformability. Osmoscan O min parameter showed slight elevation in dog centrifuged aliquots. Erythrocyte aggregation parameters changed unexpectedly. Rat and dog erythrocyte aggregation indices significantly dropped in centrifuged aliquots. Pig erythrocyte aggregation indices increased significantly after centrifugation. Human erythrocyte aggregation was the most stable one among the investigated species. The used centrifugation protocols caused the largest alterations in erythrocyte aggregation in a controversial way among the investigated species. On the other hand, erythrocyte deformability parameters were stable, cell membrane stability and osmoscan data show minor shifts.

  7. Quantification of platelets obtained by different centrifugation protocols in SHR rats.

    Science.gov (United States)

    Yazigi Junior, João Alberto; Dos Santos, João Baptista Gomes; Xavier, Bruno Rodrigues; Fernandes, Marcela; Valente, Sandra Gomes; Leite, Vilnei Mattiolli

    2015-01-01

    To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × g and 400 × g; and double centrifugation, using whole blood subjected one centrifugation at different rotations, followed by collection of whole plasma subjected to another centrifugation at different rotations: 200 × g + 200 × g; 200 × g + 400 × g; 200 × g + 800 × g; 400 × g + 400 × g; 400 × g + 800 × g. Samples of 3 ml of blood were drawn from each animal by means of cardiac puncture. The blood was stored in Vacutainer collection tubes containing 3.2% sodium citrate. The blood from the control group animals was analyzed without being subjected to centrifugation. After the blood from the other groups of animals had been subjected to centrifugation, the whole plasma was collected and subjected to platelet counting in the lower third of the sample. We obtained greatest platelet enrichment in the subgroup with two centrifugations comprising 400 × g for 10 min + 400 × g for 10 min, in which the mean platelet concentration was 11.30 times higher than that of the control group. It was possible to obtain a high platelet concentration using viable simple techniques, by means of centrifugation of whole blood and use of commonly used materials. The most effective method for obtaining platelet concentrate was found in samples subjected to two centrifugations.

  8. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  9. Analysis of cavitation behaviour in a centrifugal pump

    International Nuclear Information System (INIS)

    He, M; Zhou, L J; Guo, Q; Fu, L P; Wang, Z W

    2012-01-01

    Cavitation is a well-known problem in centrifugal pumps, causing serious damage and substantial head losses. However, the reason for the sudden head drop in cavitation curves is not fully understood. In this paper, the transient three-dimensional cavitating flow field in a centrifugal pump was calculated using RNG k-ε turbulence model and Rayleigh Plesset cavitation model. The NPSH-H curve and the cavitation development in the whole passage were predicted. The blade loading and energy transfer are analyzed for various cavitation conditions. The results show that the existing of the cavities changes the load distribution on blades. With the decrease of NPSH the loads on blades tend to increases in the rear part but decreases in the front part. If NPSH is not so low, sometimes the overall torque may increase slightly, thus the head may also increase slightly. But if the NPSH become low and reach a threshold value, the overall torque will also decrease. At the same time, the energy dissipation in the vortices increases greatly because of the growth of the cavities. These two reasons make the head drop rapidly.

  10. Design and construction of a two-stage centrifugal pump | Nordiana ...

    African Journals Online (AJOL)

    Centrifugal pumps are widely used in moving liquids from one location to another in homes, offices and industries. Due to the ever increasing demand for centrifugal pumps it became necessary to design and construction of a two-stage centrifugal pump. The pump consisted of an electric motor, a shaft, two rotating impellers ...

  11. Centrifugal Blower for Personal Air Ventilation System (PAVS) - Phase 1

    Science.gov (United States)

    2015-02-01

    3  FIGURE 5: PHOTO & PERFORMANCE PLOT OF EXISTING CENTRIFUGAL COMPRESSOR ...aerodynamically similar to an existing centrifugal compressor pictured in Figure 5. The performance plot of this compressor demonstrates a high...blade tip diameter at impeller exit Figure 5: Photo & Performance plot of existing centrifugal compressor 70% 75% 65% 60%   6

  12. Mechanical and hydrodynamic behavior of new improved centrifugal extractor for solvent extraction process

    International Nuclear Information System (INIS)

    Retegan, Teodora; Gheorghe, Ionita; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Kitamoto, Asashi

    2004-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinides from high level waste (HLW) are nowadays of a major interest. Actinide partitioning with a view to safe disposing of HLW or utilisation in many various applications of recovered elements involves an extraction process usually by means of mixer-settler, pulse column or centrifugal contactor. This one, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and put in operation. A similar apparatus was not found from in other published papers as yet. The counter-current multi-stage centrifugal extractor was a cylinder made of stainless steel with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, working in a horizontal position. The new internal structure and geometry of the new advanced centrifugal extractor consisting of nine cells (units), five rotation units, two mixing units, two propelling units and two final plates, ensures the counter-current running of the two phases.The central shaft having the rotation cells fixed on it is coupled by an intermediary connection to a electric motor of high rotation speed. Conceptual layout of the advanced counter-current multi-stage centrifugal extractor is presented. The newly designed extractor has been tested at 500-2800 rot/min for a ratio of the aqueous/organic phase =1 to examine the mechanical behavior and the hydrodynamics of the two phases in countercurrent. The results showed that the performances have been generally good and the design requirements were fulfilled. The newly designed counter-current multistage centrifugal extractor appears to be a promising way to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  13. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    Science.gov (United States)

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  14. Dynamic analysis of centrifugal machines rotors supported on ball bearings by combined application of 3D and beam finite element models

    Science.gov (United States)

    Pavlenko, I. V.; Simonovskiy, V. I.; Demianenko, M. M.

    2017-08-01

    This research paper is aimed to investigating rotor dynamics of multistage centrifugal machines with ball bearings by using the computer programs “Critical frequencies of the rotor” and “Forced oscillations of the rotor,” which are implemented the mathematical model based on the use of beam finite elements. Free and forces oscillations of the rotor for the multistage centrifugal oil pump NPS 200-700 are observed by taking into account the analytical dependence of bearing stiffness on rotor speed, which is previously defined on the basis of results’ approximation for the numerical simulation in ANSYS by applying 3D finite elements. The calculations found that characteristic and constrained oscillations of rotor and corresponded to them forms of vibrations, as well as the form of constrained oscillation on the actual frequency for acceptable residual unbalance are determined.

  15. Investigation on Thrust and Moment Coefficients of a Centrifugal Turbomachine

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-04-01

    Full Text Available In radial pumps and turbines, the centrifugal through-flow in both the front and the back chambers is quite common. It strongly impacts the core swirl ratio, pressure distribution, axial thrust and frictional torque. In order to investigate these relationships experimentally, a test rig was designed at the University of Duisburg-Essen and described in this paper. Based on both the experimental and numerical results, correlations are determined to predict the impacts of the centrifugal through-flow on the core swirl ratio, the thrust coefficient and the moment coefficient. Two correlations respectively are determined to associate the core swirl ratio with the local through-flow coefficient for both Batchelor type flow and Stewartson type flow. The correlations describing the thrust coefficient and the moment coefficient in a rotor-stator cavity with centripetal through-flow (Hu et al., 2017 are modified for the case of centrifugal through-flow. The Daily and Nece diagram distinguishing between different flow regimes in rotor-stator cavities is extended with a through-flow coordinate into 3D. The achieved results provide a comprehensive data base which is intended to support the calculation of axial thrust and moment coefficients during the design process of radial pumps and turbines in a more accurate manner.

  16. Probing molecular potentials with an optical centrifuge

    Science.gov (United States)

    Milner, A. A.; Korobenko, A.; Hepburn, J. W.; Milner, V.

    2017-09-01

    We use an optical centrifuge to excite coherent rotational wave packets in N2O, OCS, and CS2 molecules with rotational quantum numbers reaching up to J ≈465 , 690, and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high levels of rotational excitation can be used as a sensitive tool to probe the molecular potential energy surface at internuclear distances far from their equilibrium values. Significant bond stretching in the centrifuged molecules results in the growing period of the rotational revivals, which are experimentally detected using coherent Raman scattering. We measure the revival period as a function of the centrifuge-induced rotational frequency and compare it with the numerical calculations based on the known Morse-cosine potentials.

  17. Rotating stall simulation for axial and centrifugal compressors

    Science.gov (United States)

    Halawa, Taher; Gadala, Mohamed S.

    2017-05-01

    This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.

  18. Fluid dynamics and mass transfer in a gas centrifuge

    International Nuclear Information System (INIS)

    Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.

    1982-01-01

    The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)

  19. Experimental study on enriching 12C by centrifuge method

    International Nuclear Information System (INIS)

    Xiao Huaxian

    1994-07-01

    The diamond made from the highly enriched 12 C, whose thermal conductivity and electric insulativity are much better than that of natural diamond, has widely uses in new and high technology. In many enriching 12 C methods, the gas centrifuge method is superior to others. After selecting the appropriate process gas and solving key problems, such as feed and extract, the separation experiments are performed by a single stage of centrifuge. To increase the separation capacity of single machine, various parameters in the centrifugal separation are optimized, and appropriate mechanical drive, thermal drive, hold-up and process parameters are selected. The optimal operating condition of single machine is also obtained in the cascade. Thus, highly enriched 12 C is produced in the centrifuge cascade

  20. Convective instabilities in liquid centrifugation for nuclear wastes separation

    Energy Technology Data Exchange (ETDEWEB)

    Camassa, R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The separation of fission products from liquid solutions using centrifugal forces may prove an effective alternative to chemical processing in cases where radioactive materials necessitate minimal mixed-waste products or when allowing access to sophisticated chemical processing is undesirable. This investigation is a part of the effort to establish the feasibility of using liquid centrifugation for nuclear waste separation in the Accelerator Driven Energy Production (ADEP) program. A number of fundatmental issues in liquid centrifugation with radioactive elements need to be addressed in order to validate the approach and provide design criteria for experimental liquid salt (LiF and BeF{sub 2}) centrifuge. The author concentrates on one such issue, the possible onset of convective instabilities which could inhibit separation.

  1. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    Science.gov (United States)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  2. Human Powered Centrifuge

    Science.gov (United States)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  3. A fuzzy controlled three-phase centrifuge for waste separation

    International Nuclear Information System (INIS)

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge

  4. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    International Nuclear Information System (INIS)

    Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

    2013-01-01

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  5. New type of centrifugal extractor

    International Nuclear Information System (INIS)

    Miyauchi, T.; Tolich, A.

    1975-01-01

    The main principles of a centrifugal extractor design which can be used in the reprocessing of spent fuel with high degree of burning out are given. The extractor consists of two rotating coaxial cylinders. The contact of liquid phases is done in the circular space between the cylinders. By the cylinder rotating the phases are dispersed and the interface, as well as the extraction rate is increased. The given principles of the extractor design are realized in two simplified laboratory installations. The preliminary data obtained point out that much greater rates of the phases contact are achieved in centrifugal extractors than in extraction columns

  6. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    Science.gov (United States)

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  7. Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli.

    Science.gov (United States)

    DENNISON, D S

    1961-09-01

    A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5 degrees /min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell.

  8. Centrifuge separation effect on bacterial indicator reduction in dairy manure.

    Science.gov (United States)

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Roa-Espinosa, Aicardo; Runge, Troy

    2017-04-15

    Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log 10 in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Microcomputer-based instrument for the detection and analysis of precession motion in a gas centrifuge machine. Revision 1

    International Nuclear Information System (INIS)

    Paulus, S.S.

    1986-03-01

    The Centrifuge Procession Analyzer (CPA) is a microcomputer-based instrument which detects precession motion in a gas centrifuge machine and calculates the amplitude and frequency of precession. The CPA consists of a printed circuit board which contains signal-conditioning circuitry and a 24-bit counter and an INTEL iSBC 80/24 single/board computer. Pression motion is detected by monitoring a signal generated by a variable reluctance pick-up coil in the top of the centrifuge machine. This signal is called a Fidler signal. The initial Fidler signal triggers a counter which is clocked by a high-precision, 20.000000-MHz, temperature-controlled, crystal oscillator. The contents of the counter are read by the computer and the counter reset after every ten Fidler signals. The speed of the centrifuge machine and the amplitude and frequency of precession are calculated and the results are displayed on a liquid crystal display on the front panel of the CPA. The report contains results from data generated by a Fidler signal simulator and data taken when the centrifuge was operated under three test conditions: (1) nitrogen gas during drive-up, steady state, and drive-down; (2) xenon gas during slip test, steady state, and the addition of gas; and (3) no gas during steady state. The qualitative results were consistent with experience with centrifuge machines using UF 6 in that the amplitude of precession increased and the frequency of precession decreased during drive-up, drive-down and the slip check. The magnitude of the amplitude and frequency of precession were proportional to the molecular weight of the gases in steady state

  10. Crystallinity of Electrospun and Centrifugal Spun Polycaprolactone Fibers: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Eva Kuzelova Kostakova

    2017-01-01

    Full Text Available Crystalline properties of semicrystalline polymers are very important parameters that can influence the application area. The internal structure, like the mentioned crystalline properties, of polymers can be influenced by the production technology itself and by changing technology parameters. The present work is devoted to testing of electrospun and centrifugal spun fibrous and nanofibrous materials and compare them to foils and granules made from the same raw polymer. The test setup reveals the structural differences caused by the production technology. Effects of average molecular weight are also exhibited. The applied biodegradable and biocompatible polymer is polycaprolactone (PCL as it is a widespread material for medical purposes. The crystallinity of PCL has significant effect on rate of degradation that is an important parameter for a biodegradable material and determines the applicability. The results of differential scanning calorimetry (DSC showed that, at the degree of crystallinity, there is a minor difference between the electrospun and centrifugal spun fibrous materials. However, the significant influence of polymer molecular weight was exhibited. The morphology of the fibrous materials, represented by fiber diameter, also did not demonstrate any connection to final measured crystallinity degree of the tested materials.

  11. Minor isotope safeguards techniques (MIST): Analysis and visualization of gas centrifuge enrichment plant process data using the MSTAR model

    Science.gov (United States)

    Shephard, Adam M.; Thomas, Benjamin R.; Coble, Jamie B.; Wood, Houston G.

    2018-05-01

    This paper presents a development related to the use of minor isotope safeguards techniques (MIST) and the MSTAR cascade model as it relates to the application of international nuclear safeguards at gas centrifuge enrichment plants (GCEPs). The product of this paper is a derivation of the universal and dimensionless MSTAR cascade model. The new model can be used to calculate the minor uranium isotope concentrations in GCEP product and tails streams or to analyze, visualize, and interpret GCEP process data as part of MIST. Applications of the new model include the detection of undeclared feed and withdrawal streams at GCEPs when used in conjunction with UF6 sampling and/or other isotopic measurement techniques.

  12. Variability in perceived tilt during a roll plane canal-otolith conflict in a gondola centrifuge.

    Science.gov (United States)

    Tribukait, Arne; Bergsten, Eddie; Eiken, Ola

    2013-11-01

    During a simulated coordinated turn in a gondola centrifuge, the perceived roll-tilt, quantified as the subjective visual horizontal (SVH), may differ tenfold between individuals. One aim of this study was to discern whether this variability reflects real individual characteristics or is due to noise or day-to-day variation. We also wanted to establish whether there are any habituation or learning effects of the centrifuge test. In nine nonpilots (NP) and nine student pilots (SP), with a flight experience of 150 h, the SVH was measured using an adjustable luminous line in darkness. At two test occasions (T1, T2) (interval 5-14 d) subjects underwent two runs (R1, R2; acceleration to 2 G in 10 s, gondola inclination 60 degrees, 5 min at 2 G, deceleration to 1 g in 10 s, interval between runs 5 min) in a centrifuge (r = 9.1 m). Initial and final SVH was determined for each individual run. Acceleration of the centrifuge induced a tilt of the SVH. At T1 R1, this SVH tilt was, in NP, initially 24 +/- 18 degrees and finally 8 +/- 10 degrees. The corresponding values for SP were 28 +/- 18 degrees and 31 +/- 33 degrees. The SVH tilt was slightly larger at R2 than at R1. There was no difference between T1 and T2. Reliability coefficients ranged between 0.86 and 0.98 for NP and between 0.78 and 0.99 for SP. The large interindividual variability combined with a very high reproducibility suggests the existence of persistent individual characteristics in the perception of complex vestibular stimuli. Habituation or learning effects of gondola centrifugation appears to be small.

  13. Optimization of a centrifugal compressor impeller using CFD: the choice of simulation model parameters

    Science.gov (United States)

    Neverov, V. V.; Kozhukhov, Y. V.; Yablokov, A. M.; Lebedev, A. A.

    2017-08-01

    Nowadays the optimization using computational fluid dynamics (CFD) plays an important role in the design process of turbomachines. However, for the successful and productive optimization it is necessary to define a simulation model correctly and rationally. The article deals with the choice of a grid and computational domain parameters for optimization of centrifugal compressor impellers using computational fluid dynamics. Searching and applying optimal parameters of the grid model, the computational domain and solver settings allows engineers to carry out a high-accuracy modelling and to use computational capability effectively. The presented research was conducted using Numeca Fine/Turbo package with Spalart-Allmaras and Shear Stress Transport turbulence models. Two radial impellers was investigated: the high-pressure at ψT=0.71 and the low-pressure at ψT=0.43. The following parameters of the computational model were considered: the location of inlet and outlet boundaries, type of mesh topology, size of mesh and mesh parameter y+. Results of the investigation demonstrate that the choice of optimal parameters leads to the significant reduction of the computational time. Optimal parameters in comparison with non-optimal but visually similar parameters can reduce the calculation time up to 4 times. Besides, it is established that some parameters have a major impact on the result of modelling.

  14. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Science.gov (United States)

    Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru

    2015-01-01

    To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  15. Deep-body temperature changes in rats exposed to chronic centrifugation.

    Science.gov (United States)

    Oyama, J.; Platt, W. T.; Holland, V. B.

    1971-01-01

    Deep-body temperature was monitored continuously by implant biotelemetry in unrestrained rats before, during, and after exposure to prolonged and almost continuous centrifugation. Rats subjected to centrifugation for the first time at various G loads ranging up to 2.5 G show a rapid and significant fall in temperature which is sustained below normal levels for periods as long as 3 days. The magnitude of the temperature fall and the recovery time were generally proportional to the G load imposed. The initial fall and recovery of body temperature closely parallels the decrease in food consumption and to a lesser degree the decrease in body mass experienced by centrifuged rats. After exposure to 2 weeks of centrifugation, rats show either no change or only a small transient increase in temperature when decelerated to a lower G level or when returned to normal gravity. Rats repeatedly exposed to centrifugation consistently showed a smaller temperature response compared to the initial exposure. Implant temperature biotelemetry has been found to be a sensitive, reliable, and extremely useful technique for assessing the initial stress of centrifugation and in monitoring the time course of recovery and acclimation of rats to increase as well as*decrease G.

  16. Advanced counter-current multi-stage centrifugal extractor for solvent extraction process

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Steflea, Dumitru; Mihaila, V.; Peteu, Gh.

    2002-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high level waste (HLW) are nowadays of a major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involve an extraction process usually by means of mixer-settler, pulse column or centrifugal contactor. The latter, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and built. The counter-current multi-stage centrifugal extractor is a stainless steel cylinder with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, having horizontal position as working position. The new internal structure and geometry of the new advanced centrifugal extractor is shown. It consists of nine cells (units): five rotation units, two mixing units, two propelling units and two final plates which ensures the counter-current running of the two phases. The central shaft having the rotation cells fixed on it is connected to an electric motor of high rotation speed. The extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase = 1. The mechanical and hydrodynamic behavior of the two phases in counter-current are described. The results showed that the performances have been generally good. The new facility appears to be a promising idea to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  17. Calculation of the separate parameters of a countercurrent centrifuge with an axially varying internal flow

    International Nuclear Information System (INIS)

    Migliavacca, S.C.P.

    1991-01-01

    A review of the isotope separation theory for the countercurrent gas centrifuge is presented. The diffusion-convection equation is solved according to the ONSAGER-COHEN solution for the constant internal flow and adapted to an axially varying countercurrent flow. Based on that theory, a numerical program is developed for the calculation of the isotopic compositions and the separative parameters of the centrifuge. The influence of the feed flow and the internal parameters. Like cut and countercurrent flow, on the separative parameters is then analysed for a model-centrifuge, which afterwards is optimized with respect to its separative power. Finally, a comparison between the present calculation procedure and some published results, provided by different theories, shows deviations lower then 20%. (author)

  18. Centrifugal compressor case study

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, B.

    2010-10-15

    Three centrifugal compressors at a pipeline station were retrofitted with higher head impellers in 2008. The owners of the station experienced vibration problems over the following 2 years that caused transmitter and position failures that were assumed to be flow-induced pulsations. A vibration and pulsation analysis indicated that the shell mode piping vibration excited by the blade pass pulsation was responsible for the failures. This study outlined factors that contributed to the vibration problem. Interferences between the compressor and shell mode piping natural frequencies were predicted, and potential excitation sources were examined. The study demonstrated how centrifugal vibration analyses can be used during the design phase to avoid costly adjustments. Recommendations included the addition of stiffeners to alter the shell modes, and the addition of constrained layer damping material to reduce resonant responses. 2 refs., 1 tab., 12 figs.

  19. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    Science.gov (United States)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  20. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...

  1. Cardio-postural interactions and short-arm centrifugation.

    Science.gov (United States)

    Blaber, Andrew; Goswami, Nandu; Xu, Da; Laurin, Alexendre

    INTRODUCTION: We are interested in mechanisms associated with orthostatic tolerance. In previous studies we have shown that postural muscles in the calf contribute to both posture and blood pressure regulation during orthostatic stress. In this study we investigated the relationship between cardiovascular and postural muscle control before, during and after short arm human centrifuge (SAHC) up to 2.2 G. METHODS: Eleven healthy young subjects (6 m, 5 f), with no history of cardiovascular disease, falls or orthostatic hypotension, participated. All were familiarized with the SAHC with 10 minutes at 1-G at the feet. Each subject was instrumented in the supine position on the SAHC for beat-to-beat ECG and blood pressure (Portapres derived SBP). Bilateral lower leg EMG was collected from four leg postural muscles: tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and medial soleus. Transdermal differential recording of signals was performed using an 8-channel EMG system, (Myosystem 1200, Noraxon Inc., Arizona, USA). Postural sway data of the body COP was computed from the force and moment data collected with a force platform (Accusway, AMTI, MA, USA). Before and after SAHC, the subject stood on a force platform with their gaze fixed on a point at eye level, closed their eyes and stood quietly for 5 min. A final stand was conducted 30 min after centrifugation with supine rest in between. During clockwise centrifugation (10-min 1g and 10-min 2.2g at the foot) the subjects’ head was hooded and in the dark. The subject’s body was restrained into the rotation arm with a parachute harness and given additional body support with a foot-plate. ECG, EMG and BP data were collected throughout and centre of pressure trajectory (COP) collected during the stand test. Subjects were requested to relax and not to voluntarily contract the leg muscles; however, they were not to suppress contractions as they occurred involuntarily or by reflex. A Continuous Wavelet

  2. Compound drum for a centrifugal separator

    International Nuclear Information System (INIS)

    1972-01-01

    This invention concerns a method for centrifugal separation of UF 6 . The invention provides a composite drum capable of rapid rotation for use in a centrifugal separating arrangement for gaseous materials. The drum is provided with a first drum section comprised of a metal and a second drum section comprised of a fiber-reinforced synthetic material. The second drum section is applied on the outside peripheral surface of the first drum section, where the second drum section is provided with a number of annular components, each of which is shorter than the first drum section

  3. Centrifuge impact cratering experiment 5

    Science.gov (United States)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  4. Centrifugal pumps: fundamentals and classification

    International Nuclear Information System (INIS)

    Solar Manuel, A. M.

    2009-01-01

    Centrifugal pumps are usually employed to impulse water to elevate it, dose it or give it pressure or speed. They can be used with clean water or loaded with high solid concentration and don't work properly with air or another gas flow. There are another less used pumps, coming from volumetric or ram pumps to magnetic ones for specific uses. Centrifugal ones are rotokinetic pumps, like peripherical or lateral channel pumps. They work in a different way that non rotational kinetic ones and static ones. The work approaches their pre definition, selection, installation, operation and maintenance. It also review their morphology, hidromechanic principles and the basic elements pumps are made of. (Author)

  5. Automated cellular sample preparation using a Centrifuge-on-a-Chip.

    Science.gov (United States)

    Mach, Albert J; Kim, Jae Hyun; Arshi, Armin; Hur, Soojung Claire; Di Carlo, Dino

    2011-09-07

    The standard centrifuge is a laboratory instrument widely used by biologists and medical technicians for preparing cell samples. Efforts to automate the operations of concentration, cell separation, and solution exchange that a centrifuge performs in a simpler and smaller platform have had limited success. Here, we present a microfluidic chip that replicates the functions of a centrifuge without moving parts or external forces. The device operates using a purely fluid dynamic phenomenon in which cells selectively enter and are maintained in microscale vortices. Continuous and sequential operation allows enrichment of cancer cells from spiked blood samples at the mL min(-1) scale, followed by fluorescent labeling of intra- and extra-cellular antigens on the cells without the need for manual pipetting and washing steps. A versatile centrifuge-analogue may open opportunities in automated, low-cost and high-throughput sample preparation as an alternative to the standard benchtop centrifuge in standardized clinical diagnostics or resource poor settings.

  6. Multifunctional centrifugal grinding unit

    Science.gov (United States)

    Sevostyanov, V. S.; Uralskij, V. I.; Uralskij, A. V.; Sinitsa, E. V.

    2018-03-01

    The article presents scientific and engineering developments of multifunctional centrifugal grinding unit in which the selective effect of grinding bodies on the crushing material is realized, depending on its physical and mechanical characteristics and various schemes for organizing the technological process

  7. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge; Mace, Charles R.; Martinez, Ramses V.; Kumar, Ashok A.; Nie, Zhihong; Patton, Matthew R.; Whitesides, George M.

    2012-01-01

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  8. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge

    2012-08-08

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  9. Prediction and optimization of the recovery rate in centrifugal separation of platelet-rich plasma (PRP)

    Science.gov (United States)

    Piao, Linfeng; Park, Hyungmin; Jo, Chris

    2016-11-01

    We present a theoretical model of the recovery rate of platelet and white blood cell in the process of centrifugal separation of platelet-rich plasma (PRP). For the practically used conditions in the field, the separation process is modeled as a one-dimensional particle sedimentation; a quasi-linear partial differential equation is derived based on the kinematic-wave theory. This is solved to determine the interface positions between supernatant-suspension and suspension-sediment, used to estimate the recovery rate of the plasma. While correcting the Brown's hypothesis (1989) claiming that the platelet recovery is linearly proportional to that of plasma, we propose a new correlation model for prediction of the platelet recovery, which is a function of the volume of whole blood, centrifugal acceleration and time. For a range of practical parameters, such as hematocrit, volume of whole blood and centrifugation (time and acceleration), the predicted recovery rate shows a good agreement with available clinical data. We propose that this model is further used to optimize the preparation method of PRP that satisfies the customized case. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  10. Centrifugal compressor design for electrically assisted boost

    International Nuclear Information System (INIS)

    Yang, M Y; Martinez-Botas, R F; Zhuge, W L; Qureshi, U; Richards, B

    2013-01-01

    Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically

  11. Test Results of a 1.2 kg/s Centrifugal Liquid Helium Pump for the ATLAS Superconducting Toroid Magnet System

    CERN Document Server

    Pengo, R; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The toroid superconducting magnet of ATLAS-LHC experiment at CERN will be indirectly cooled by means of forced flow of liquid helium at about 4.5 K. A centrifugal pump will be used, providing a mass flow of 1.2 kg/s and a differential pressure of 40 kPa (ca. 400 mbar) at about 4300 rpm. Two pumps are foreseen, one for redundancy, in order to feed in parallel the cooling circuits of the Barrel and the two End-Caps toroid magnets. The paper describes the tests carried out at CERN to measure the characteristic curves, i.e. the head versus the mass flow at different rotational speeds, as well as the pump total efficiency. The pump is of the "fullemission" type, i.e. with curved blades and it is equipped with an exchangeable inducer. A dedicated pump test facility has been constructed at CERN, which includes a Coriolis-type liquid helium mass flow meter. This facility is connected to the helium refrigerator used for the tests at CERN of the racetrack magnets of the Barrel and of the End-Cap toroids.

  12. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    Science.gov (United States)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  13. Mechanical and hydrodynamic behaviour of new improved centrifugal extractor for solvent extraction process

    International Nuclear Information System (INIS)

    Retegan, T.; Ionita, Gh.; Kitamoto, A.; Mirica, D.; Croitoru, C.; Stefanescu, I. . E-mail address of corresponding author: office@icsi.ro; Romania)

    2005-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinides from high level waste (HLW) are nowadays of a major interest. Actinide partitioning with a view to safe disposing of HLW or utilisation in many other applications of recovered elements involves an extraction process usually by means mixer-settler, pulse column or centrifugal contactor. This one, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and performed. Similar apparatus still not found from other published paper yet. The counter-current multi-stage centrifugal extractor was a cylinder made of stainless steel with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, having horizontal position as working position. The new internal structure and geometry of the new advanced centrifugal extractor (Fig.1) consists in nine cells (units): five rotation units(R), two mixing units (M), two propelling units (P) and two final plates (S) assures the counter-current running of the two phases. The central shaft (CS) having the rotation cells fixed on it is connected by an intermediary connection to an electric motor of high rotation speed. The new designed extractor has been tested at 500-2800 rot/min for a ratio of the aqueous/organic phase =1. The results showed that the performances have been generally good and the design demand was reached. New designed counter-current multistage centrifugal extractor may be a promising idea to increase extraction rate of radionuclides and metals from liquid effluents. (author)

  14. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Directory of Open Access Journals (Sweden)

    Hironobu Morita

    Full Text Available To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  15. Thermally-controlled centrifuge for isotopic separation

    International Nuclear Information System (INIS)

    Cenedese, A.; Cunsolo, D.

    1976-01-01

    Among the various methods proposed to obtain lighter component enrichment in the isotopic separation of uranium, ultracentrifugation is becoming more and more interesting today, as this process becomes a useful alternate method to gaseous diffusion. The ultracentrifuge main gas-dynamic features are investigated in the present study. In particular, the field inside the centrifuge has been subdivided into three axial zones: an internal central zone, characterized by an essentially axial flow; two external zones, near the two caps of the centrifuge; two intermediate zones, of a length of the order of the radius. For the analytical solution the linearized Navier-Stokes equations have been considered. The central zone flow is solved by separating the independent variables; the corresponding eigenvalue problem has been solved numerically. A series of eigensolutions which satisfy boundary conditions at the walls of the cylinder has been calculated. An integral method for the superimposition of the above mentioned eigensolutions is proposed in order to satisfy the conditions at the tops for thermally-controlled centrifuges. (author)

  16. EM Task 9 - Centrifugal Membrane Filtration

    International Nuclear Information System (INIS)

    Stevens, B.G.; Stepan, D.J.; Hetland, M.D.

    1998-01-01

    This project is designed to establish the utility of a novel centrifugal membrane filtration technology for the remediation of liquid mixed waste streams at US Department of Energy (DOE) facilities in support of the DOE Environmental Management (EM) program. The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., a small business and owner of the novel centrifugal membrane filtration technology, to establish the applicability of the technology to DOE site remediation and the commercial viability of the technology for liquid mixed waste stream remediation. The technology is a uniquely configured process that makes use of ultrafiltration and centrifugal force to separate suspended and dissolved solids from liquid waste streams, producing a filtered water stream and a low-volume contaminated concentrate stream. This technology has the potential for effective and efficient waste volume minimization, the treatment of liquid tank wastes, the remediation of contaminated groundwater plumes, and the treatment of secondary liquid waste streams from other remediation processes, as well as the liquid waste stream generated during decontamination and decommissioning activities

  17. Losses and blade tip clearance for a centrifugal compressor

    Directory of Open Access Journals (Sweden)

    Oana DUMITRESCU

    2018-06-01

    Full Text Available The present paper presents the numerical analysis for a transonic centrifugal compressor using steady state CFD. The blade tip clearance effect over the position of shock waves, tip losses and the performances of the impeller are studied. Numerical simulations have been performed using RANS modelling, with the k-omega SST turbulence model (Shear Stress Transport. Eight cases were taken into consideration for the impeller with the following blade tip clearances values: 0 mm, 0.1 mm, 0.3 mm, 0.4 mm, 0.5mm, 0.7 mm, 1 mm, 2 mm, at the same operating conditions. For the entire stage only seven cases were studied, without the value for 0.1 mm because of its abnormal behaviour, as can be seen in the case of the impeller simulations. Results showed that the position of the shock wave does not change with the increase of the tip clearance. Aerodynamic losses due to shock wave, secondary flow and turbulence can be seen in the polytropic efficiency of the centrifugal impeller and the difference between the two extreme cases is about 3.2 %.

  18. Prenatal Centrifugation: A Mode1 for Fetal Programming of Body Weight?

    Science.gov (United States)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-01-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1 -g. Comparisons were made with 1-g stationary controls, also crossfostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P) 12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  19. Validity range of centrifuges for the regulation of nanomaterials: from classification to as-tested coronas

    Science.gov (United States)

    Wohlleben, Wendel

    2012-12-01

    Granulometry is the regulatory category where the differences between traditional materials and nanomaterials culminate. Reported herein is a careful validation of methods for the quantification of dispersability and size distribution in relevant media, and for the classification according to the EC nanodefinition recommendation. Suspension-based techniques can assess the nanodefinition only if the material in question is reasonably well dispersed. Using dispersed material of several chemical compositions (organic, metal, metal-oxide) as test cases we benchmark analytical ultracentrifugation (AUC), dynamic light scattering (DLS), hydrodynamic chromatography, nanoparticle tracking analysis (NTA) against the known content of bimodal suspensions in the commercially relevant range between 20 nm and a few microns. The results validate fractionating techniques, especially AUC, which successfully identifies any dispersed nanoparticle content from 14 to 99.9 nb% with less than 5 nb% deviation. In contrast, our screening casts severe doubt over the reliability of ensemble (scattering) techniques and highlights the potential of NTA to develop into a counting upgrade of DLS. The unique asset of centrifuges with interference, X-ray or absorption detectors—to quantify the dispersed solid content for each size interval from proteins over individualized nanoparticles up to agglomerates, while accounting for their loose packing—addresses also the adsorption/depletion of proteins and (de-)agglomeration of nanomaterials under cell culture conditions as tested for toxicological endpoints.

  20. Validity range of centrifuges for the regulation of nanomaterials: from classification to as-tested coronas

    International Nuclear Information System (INIS)

    Wohlleben, Wendel

    2012-01-01

    Granulometry is the regulatory category where the differences between traditional materials and nanomaterials culminate. Reported herein is a careful validation of methods for the quantification of dispersability and size distribution in relevant media, and for the classification according to the EC nanodefinition recommendation. Suspension-based techniques can assess the nanodefinition only if the material in question is reasonably well dispersed. Using dispersed material of several chemical compositions (organic, metal, metal-oxide) as test cases we benchmark analytical ultracentrifugation (AUC), dynamic light scattering (DLS), hydrodynamic chromatography, nanoparticle tracking analysis (NTA) against the known content of bimodal suspensions in the commercially relevant range between 20 nm and a few microns. The results validate fractionating techniques, especially AUC, which successfully identifies any dispersed nanoparticle content from 14 to 99.9 nb% with less than 5 nb% deviation. In contrast, our screening casts severe doubt over the reliability of ensemble (scattering) techniques and highlights the potential of NTA to develop into a counting upgrade of DLS. The unique asset of centrifuges with interference, X-ray or absorption detectors—to quantify the dispersed solid content for each size interval from proteins over individualized nanoparticles up to agglomerates, while accounting for their loose packing—addresses also the adsorption/depletion of proteins and (de-)agglomeration of nanomaterials under cell culture conditions as tested for toxicological endpoints.